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Software Modeling and Design

This book provides all you need to know for modeling and design of soft-
ware applications, from use cases to software architectures in UML. It
shows you how to apply the COMET UML-based modeling and design
method to real-world problems. The author describes architectural pat-
terns for various architectures, such as broker, discovery, and transaction
patterns for service-oriented architectures, and layered patterns for soft-
ware product line architectures, and addresses software quality attributes,
including maintainability, modifiability, testability, traceability, scalabil-
ity, reusability, performance, availability, and security.

Complete case studies illustrate design issues for different software
architectures: a banking system for client/server architectures, an online
shopping system for service-oriented architectures, an emergency moni-
toring system for component-based software architectures, and an auto-
mated guided vehicle system for real-time software architectures.

Organized as an introduction followed by several self-contained chap-
ters, the book is perfect for senior undergraduate or graduate courses in
software engineering and for experienced software engineers who want a
quick reference at each stage of the analysis, design, and development of
large-scale software systems.

Hassan Gomaa is Professor of Computer Science and Software Engi-
neering at George Mason University. Gomaa has more than thirty years’
experience in software engineering, in both industry and academia. He
has published more than 170 technical papers and is the author of three
books: Designing Software Product Lines with UML; Designing Concur-
rent, Distributed, and Real-Time Applications with UML; and Software
Design Methods for Concurrent and Real-Time Systems.
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Preface

OVERVIEW

This book describes a use case–driven UML-based method for the modeling and
design of software architectures, including object-oriented software architectures,
client/server software architectures, service-oriented architectures, component-
based software architectures, concurrent and real-time software architectures, and
software product line architectures. The book provides a unified approach to design-
ing software architectures and describes the special considerations for each cate-
gory of software architecture. In addition, there are four case studies, a client/server
banking system, a service-oriented architecture for an online shopping system, a
distributed component-based emergency monitoring system, and a real-time auto-
mated guided vehicle system.

This book describes a UML-based software modeling and design method called
COMET (Collaborative Object Modeling and Architectural Design Method).
COMET is a highly iterative object-oriented software development method that
addresses the requirements, analysis, and design modeling phases of the object-
oriented development life cycle.

The book is intended to appeal to readers who wish to design software architec-
tures using a systematic UML-based method that starts from requirements modeling
with use cases, through static and dynamic modeling, to software design based on
architectural design patterns.

WHAT THIS BOOK PROVIDES

Various textbooks on the market describe object-oriented analysis and design con-
cepts and methods. This book addresses the specific needs of designing software
architectures. It addresses UML-based design of software architectures, starting
with use cases for requirements modeling, static modeling with class diagrams,
and dynamic modeling with object interaction analysis and state machine model-
ing, through software design with architectural design patterns. All examples are

xv



xvi Preface

described using the UML 2 notation, the latest version of the standard. In particu-
lar, this book:

■ Provides a comprehensive treatment of the application of the UML-based
object-oriented concepts to requirements modeling, analysis modeling, and
design modeling. Requirements modeling addresses use case modeling to des-
cribe functional requirements with extensions to describe nonfunctional require-
ments. Analysis modeling addresses static modeling and dynamic modeling
(both interaction and state machine modeling). Design modeling addresses
important architectural issues, including a systematic approach for integrating
use case–based interaction diagrams into an initial software architecture and
applying architectural and design patterns for designing software architectures.

■ Provides a common approach for requirements and analysis modeling and then
addresses specific design issues (in a separate chapter for each category of soft-
ware architecture) for designing the software architecture for object-oriented
software systems, client/server systems, service-oriented systems, component-
based systems, real-time systems, and software product lines.

■ Describes how software architectures are designed by first considering software
architectural patterns relevant for that category of software architecture, such as
client/service patterns for client/server and component-based software architec-
ture; brokering, discovery, and transaction patterns for service-oriented architec-
tures; real-time control patterns for real-time software architecture; and layered
patterns for software product line architectures.

■ Describes software quality attributes, which can have a profound effect on the
quality of a software product. Many of these attributes can be addressed and
evaluated at the time the software architecture is developed. The software qual-
ity attributes covered include maintainability, modifiability, testability, traceabil-
ity, scalability, reusability, performance, availability, and security.

■ Presents four detailed case studies. Case studies are presented by software
architecture area, including a banking system for client/server architectures, an
online shopping system for service-oriented architecture, an emergency mon-
itoring system for component-based software architecture, and an automated
guided vehicle system for the real-time software architecture.

■ Appendices include a glossary, a bibliography, and a catalog of architectural
design patterns. There is also be an appendix on teaching considerations for
teaching academic and industrial courses based on this book. Exercises follow
most chapters.

INTENDED AUDIENCE

This book is intended for both academic and professional audiences. The academic
audience includes senior undergraduate- and graduate-level students in computer
science and software engineering, as well as researchers in the field. The profes-
sional audience includes analysts, software architects, software designers, program-
mers, project leaders, technical managers, program managers, and quality-assurance
specialists who are involved in the analysis, design, and development of large-scale
software systems in industry and government.



Preface xvii

WAYS TO READ THIS BOOK

This book may be read in various ways. It can be read in the order in which it is pre-
sented, in which case Chapters 1 through 4 provide introductory concepts; Chapter 5
provides an overview of the COMET/UML software modeling and design method;
Chapters 6 through 20 provide an in-depth treatment of software modeling and
design; and Chapters 21 through 24 provide detailed case studies.

Alternatively, some readers may wish to skip some chapters, depending on their
level of familiarity with the topics discussed. Chapters 1 through 4 are introductory
and may be skipped by experienced readers. Readers familiar with software design
concepts may skip Chapter 4. Readers particularly interested in software modeling
and design can proceed directly to the description of COMET/UML, starting in
Chapter 5. Readers who are not familiar with UML, or who are interested in finding
out about the changes introduced by UML 2, can read Chapter 2 in conjunction with
Chapters 5 through 20.

Experienced software designers may also use this book as a reference, referring
to various chapters as their projects reach a particular stage of the requirements,
analysis, or design process. Each chapter is relatively self-contained. For example, at
different times one might refer to Chapter 6 for a description of use cases, to Chapter
7 for a discussion of static modeling, and to Chapter 9 for a description of dynamic
interaction modeling. Chapter 10 can be referenced for designing state machines;
Chapter 12 and Appendix A for software architectural patterns; Chapter 14 for
object-oriented software architectures; and Chapter 15 for designing a relational
database from a static model. Chapter 16 can be consulted for service-oriented
architectures; Chapter 17 for distributed component-based software design; Chap-
ter 18 for real-time design; and Chapter 19 for software product line design. One
can also improve one’s understanding of how to use the COMET/UML method by
reading the case studies, because each case study explains the decisions made at
each step of the requirements, analysis, and design modeling processes in the design
of a real-world application.

Hassan Gomaa
George Mason University
December 2010
Email: hgomaa@gmu.edu
Web: http://mason.gmu.edu/∼hgomaa
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PART I: OVERVIEW

Chapter 1: Introduction

This chapter presents an introduction to software modeling and design, a discussion
of software design issues, an introduction to software architecture, and an overview
of object-oriented analysis and design with UML.

Chapter 2: Overview of the UML Notation

This chapter presents an introduction to the UML notation, including use case dia-
grams, class diagrams, interaction diagrams, statechart diagrams, packages, concur-
rent communication diagrams, and deployment diagrams. The chapter also covers
UML extension mechanisms and the evolution of UML into a standard.

Chapter 3: Software Life Cycle Models and Processes

This chapter introduces the software life cycles used for developing software, includ-
ing the waterfall, prototyping, iterative, spiral, and unified process. It compares and
contrasts them.

Chapter 4: Software Design and Architecture Concepts

This chapter discusses and presents an overview of key software design concepts,
including object-oriented design concepts of classes, objects, information hiding and
inheritance, and concurrent processing with concurrent objects. An introduction is
given to software architecture and components, software design patterns, and soft-
ware quality attributes.

xix
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Chapter 5: Overview of Software Modeling and Design Method

This chapter provides an overview of the software modeling and design method,
including requirements modeling, analysis modeling, and design modeling. An
overview of the different kinds of software architectures addressed in this textbook
is given.

PART II: SOFTWARE MODELING

Chapter 6: Use Case Modeling

This chapter starts with an overview of requirements analysis and specification. It
then goes on to describe the use case modeling approach to developing require-
ments. This is followed by an approach for developing use cases. The chapter covers
use cases, actors, identifying use cases, documenting use cases, and use case rela-
tionships. An introduction is given to activity diagrams for precise modeling of indi-
vidual use cases. Use cases are extended to document nonfunctional requirements.

Chapter 7: Static Modeling

This chapter describes static modeling concepts, including associations, whole/part
relationships (composition and aggregation), and generalization/specialization rela-
tionships. Special topics include modeling the boundary of the system and modeling
entity classes, which are information-intensive classes.

Chapter 8: Object and Class Structuring

This chapter describes the categorization of application classes, or the role the class
plays in the application. The major categories covered are boundary objects, entity
objects, control objects, and application logic objects. This chapter also describes
the corresponding behavior pattern for each category of object.

Chapter 9: Dynamic Interaction Modeling

This chapter describes dynamic interaction modeling concepts. Interaction (se-
quence or communication) diagrams are developed for each use case, including the
main scenario and alternative scenarios. It also describes how to develop an inter-
action model starting from the use case.

Chapter 10: Finite State Machines

This chapter describes finite state machine modeling concepts. In particular, a
state-dependent control class needs to be modeled with a finite state machine and
depicted as a statechart. This chapter covers events, states, conditions, actions, entry
and exit actions, composite states, and sequential and orthogonal states.
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Chapter 11: State-Dependent Dynamic Interaction Modeling

This chapter describes dynamic interaction modeling for state-dependent object
interactions. It describes how state machines and interaction diagrams relate to each
other and how to make them consistent with each other.

PART III: ARCHITECTURAL DESIGN

Chapter 12: Overview of Software Architectures

This chapter introduces software architecture concepts. Multiple views of a software
architecture and an overview of software architectural patterns (architectural struc-
ture and communication patterns) are presented. A template for software architec-
tural patterns is provided, and interface design is introduced and discussed.

Chapter 13: Software Subsystem Architectural Design

This chapter presents issues in software architectural design, including the transition
from analysis to architectural design, separation of concerns in subsystem design,
subsystem structuring criteria, and the design of subsystem message communication
interfaces.

Chapter 14: Designing Object-Oriented Software Architectures

This chapter describes object-oriented design of sequential software architectures,
particularly design using the concepts of information hiding, classes, and inher-
itance. In class interface design, the designer of the class needs to decide what
information should be hidden and what information should be revealed in the class
interface, which consists of the operations provided by the class. This chapter also
discusses design by contract and sequential class design, which includes the design
of data abstraction classes, state machine classes, graphical user interface classes,
and business logic classes. Detailed design of classes is also considered.

Chapter 15: Designing Client/Server Software Architectures

The design of clients and servers is described in this chapter. It also includes a discus-
sion of client/service patterns (structural and behavioral), sequential and concurrent
services, and mapping a static model to a relational database, which includes the
design of database wrappers and logical relational database design.

Chapter 16: Designing Service-Oriented Architectures

This chapter describes the characteristics of service-oriented architectures. It dis-
cusses Web services and service patterns, including registration, brokering, and
discovery patterns. It then describes transaction patterns and transaction design,
including atomic transactions, two-phase commit protocol, compound transactions,
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and long-living transactions. This chapter also presents information on how to
design services for reuse, how to build applications that reuse services, and service
coordination.

Chapter 17: Designing Component-Based
Software Architectures

This chapter describes distributed component-based software architectural design.
The design of component interfaces (provided and required) is described. The chap-
ter also discusses how component-based software architectures can be depicted with
the structured class and composite structure diagram notation introduced in UML 2,
which allows components, ports, connectors, and provided and required interfaces
to be depicted.

Chapter 18: Designing Concurrent and Real-Time
Software Architectures

This chapter considers the characteristics of embedded real-time systems. It dis-
cusses concurrency and control; control patterns for real-time systems; concurrent
task structuring, including event-driven tasks, periodic tasks, and demand-driven
tasks; and design of task interfaces, including message communication, event syn-
chronization, and communication through passive objects.

Chapter 19: Designing Software Product Line Architectures

This chapter presents characteristics of software product lines – modeling common-
ality and variability for a family of systems. Also discussed are feature modeling,
variability modeling, software product line architectures, and application engineer-
ing. Variability modeling in use cases, static and dynamic models, and software
architectures is also considered.

Chapter 20: Software Quality Attributes

This chapter describes software quality attributes and how they are used to evaluate
the quality of the software architecture. Software quality attributes include main-
tainability, modifiability, traceability, usability, reusability, testability, performance,
and security. The chapter also presents a discussion of how the architectural design
method supports the software quality attributes.

PART IV: CASE STUDIES

Each case study provides a detailed description of how to apply the concepts and
methods described so far to the design of different kinds of software architecture:
client/server software architecture, service-oriented architecture, component-based
software architecture, and real-time software architecture. In each case study, the
rationale for the modeling and design decisions is discussed.
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Chapter 21: Client/Server Software Architecture Case Study:
Banking System

This chapter describes how the software modeling and design method is applied
to the design of a client/server system that consists of a bank server and several
ATM clients. The design of the ATM client is also an example of concurrent soft-
ware design. The design of the banking service is an example of a sequential object-
oriented design.

Chapter 22: Service-Oriented Architecture Case Study:
Online Shopping System

This chapter describes how the software modeling and design method is applied to
the design of a service-oriented architecture for an online shopping system, which
consists of multiple services invoked by multiple clients and needs brokering, dis-
covery, and service coordination.

Chapter 23: Component-Based Software Architecture Case Study:
Emergency Monitoring System

This chapter describes how the software modeling and design method is applied to
the design of a component-based software architecture, an emergency monitoring
system, in which software components can be assigned to the hardware configura-
tion at deployment time.

Chapter 24: Real-Time Software Architecture Case Study:
Automated Guided Vehicle System

This chapter describes how the software modeling and design method is applied
to the design of a real-time automated guided vehicle system (consisting of several
concurrent tasks), which is part of a factory automation system of systems.

Appendix A: Catalog of Software Architectural Patterns

The software architectural structure, communication, and transaction patterns
used in this textbook are documented alphabetically in a common template for easy
reference.

Appendix B: Teaching Considerations

This appendix describes approaches for teaching academic and industrial courses
based on this textbook.
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PART I

Overview





1

Introduction

1.1 SOFTWARE MODELING

Modeling is used in many walks of life, going back to early civilizations such as
Ancient Egypt, Rome, and Greece, where modeling was used to provide small-scale
plans in art and architecture (Figure 1.1). Modeling is widely used in science and
engineering to provide abstractions of a system at some level of precision and detail.
The model is then analyzed in order to obtain a better understanding of the system
being developed. According to the Object Modeling Group (OMG), “modeling is
the designing of software applications before coding.”

In model-based software design and development, software modeling is used as
an essential part of the software development process. Models are built and ana-
lyzed prior to the implementation of the system, and are used to direct the subse-
quent implementation.

A better understanding of a system can be obtained by considering it from dif-
ferent perspectives (also referred to as multiple views) (Gomaa 2006; Gomaa and
Shin 2004), such as requirements models, static models, and dynamic models of the
software system. A graphical modeling language such as UML helps in developing,
understanding, and communicating the different views.

This chapter introduces object-oriented methods and notations, an overview of
software modeling and architectural design, and an introduction to model-driven
architecture and UML. The chapter then briefly describes the evolution of software
design methods, object-oriented analysis and design methods, and concurrent, dis-
tributed, and real-time design methods.

1.2 OBJECT-ORIENTED METHODS AND THE UNIFIED
MODELING LANGUAGE

Object-oriented concepts are crucial in software analysis and design because they
address fundamental issues of software modifiability, adaptation, and evolution.
Object-oriented methods are based on the concepts of information hiding, classes,
and inheritance. Information hiding can lead to systems that are more self-contained

3
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b) The great pyramid of 

Egypt

a) A model of the great 

pyramid of Egypt

Figure 1.1. Example of modeling and architecture

and hence are more modifiable and maintainable. Inheritance provides an approach
for adapting a class in a systematic way.

With the proliferation of notations and methods for the object-oriented analysis
and design of software applications, the Unified Modeling Language (UML) was
developed to provide a standardized graphical language and notation for describ-
ing object-oriented models. However, because UML is methodology-independent,
it needs to be used together with an object-oriented analysis and design method.
Because the UML is now the standardized graphical language and notation for
describing object-oriented models, this book uses the UML notation throughout.

Modern object-oriented analysis and design methods are model-based and use
a combination of use case modeling, static modeling, state machine modeling, and
object interaction modeling. Almost all modern object-oriented methods use the
UML notation for describing software requirements, analysis, and design mod-
els (Booch, Rumbaugh, and Jacobson 2005; Fowler 2004; Rumbaugh, Booch, and
Jacobson 2005).

In use case modeling, the functional requirements of the system are defined in
terms of use cases and actors. Static modeling provides a structural view of the sys-
tem. Classes are defined in terms of their attributes, as well as their relationships
with other classes. Dynamic modeling provides a behavioral view of the system. The
use cases are realized to show the interaction among participating objects. Object
interaction diagrams are developed to show how objects communicate with each
other to realize the use case. The state-dependent aspects of the system are defined
with statecharts.
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1.3 SOFTWARE ARCHITECTURAL DESIGN

A software architecture (Bass, Clements, and Kazman 2003; Shaw and Garlan
1996) separates the overall structure of the system, in terms of components and
their interconnections, from the internal details of the individual components.
The emphasis on components and their interconnections is sometimes referred to
as programming-in-the-large, and the detailed design of individual components is
referred to as programming-in-the-small.

A software architecture can be described at different levels of detail. At a high
level, it can describe the decomposition of the software system into subsystems.
At a lower level, it can describe the decomposition of subsystems into modules or
components. In each case, the emphasis is on the external view of the subsystem/
component – that is, the interfaces it provides and requires – and its interconnec-
tions with other subsystems/components.

The software quality attributes of a system should be considered when devel-
oping the software architecture. These attributes relate to how the architecture
addresses important nonfunctional requirements, such as performance, security, and
maintainability.

The software architecture is sometimes referred to as a high-level design. A soft-
ware architecture can be described from different views, as described in Section 1.7.
It is important to ensure that the architecture fulfills the software requirements, both
functional (what the software has to do) and nonfunctional (how well it should do
it). It is also the starting point for the detailed design and implementation, when
typically the development team becomes much larger.

1.4 METHOD AND NOTATION

This section defines important terms for software design.
A software design notation is a means of describing a software design either

graphically or textually, or both. For example, class diagrams are a graphical design
notation, and pseudocode is a textual design notation. UML is a graphical nota-
tion for object-oriented software applications. A design notation suggests a partic-
ular approach for performing a design; however, it does not provide a systematic
approach for producing a design.

A software design concept is a fundamental idea that can be applied to designing
a system. For example, information hiding is a software design concept.

A software design strategy is an overall plan and direction for develop-
ing a design. For example, object-oriented decomposition is a software design
strategy.

Software structuring criteria are heuristics or guidelines used to help a designer
in structuring a software system into its components. For example, object structuring
criteria provide guidelines for decomposing the system into objects.

A software design method is a systematic approach that describes the sequence
of steps to follow in order to create a design, given the software requirements of
the application. It helps a designer or design team identify the design decisions to
be made, the order in which to make them, and the structuring criteria to use in
making them. A design method is based on a set of design concepts, employs one or
more design strategies, and documents the resulting design, using a design notation.
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During a given design step, the method might provide a set of structuring criteria to
help the designer in decomposing the system into its components.

The Collaborative Object Modeling and Design Method, or COMET, uses the
UML notation to describe the design. COMET is based on the design concepts
of information hiding, classes, inheritance, and concurrent tasks. It uses a design
strategy of concurrent object design, which addresses the structuring of a software
system into active and passive objects and defines the interfaces between them. It
provides structuring criteria to help structure the system into objects during analy-
sis, and additional criteria to determine the subsystems and concurrent tasks during
design.

1.5 COMET: A UML-BASED SOFTWARE MODELING AND DESIGN
METHOD FOR SOFTWARE APPLICATIONS

This book describes a UML-based software modeling and architectural design
method called COMET. COMET is an iterative use case driven and object-oriented
software development method that addresses the requirements, analysis, and design
modeling phases of the software development life cycle. The functional require-
ments of the system are defined in terms of actors and use cases. Each use case
defines a sequence of interactions between one or more actors and the system. A
use case can be viewed at various levels of detail. In a requirements model, the func-
tional requirements of the system are defined in terms of actors and use cases. In
an analysis model, the use case is realized to describe the objects that participate
in the use case and their interactions. In the design model, the software architec-
ture is developed, addressing issues of distribution, concurrency, and information
hiding.

1.6 UML AS A STANDARD

This section briefly reviews the evolution of UML into a standard modeling lan-
guage and notation for describing object-oriented designs. The evolution of UML
is described in detail by Kobryn (1999). UML 0.9 unified the modeling notations of
Booch, Jacobson (1992), and Rumbaugh et al. (1991). This version formed the basis
of a standardization effort, with the additional involvement of a diverse mix of ven-
dors and system integrators. The standardization effort culminated in submission of
the initial UML 1.0 proposal to the OMG in January 1997. After some revisions,
the final UML 1.1 proposal was submitted later that year and adopted as an object
modeling standard in November 1997.

The OMG maintains UML as a standard. The first adopted version of the stan-
dard was UML 1.3. There were minor revisions with UML 1.4 and 1.5. A major
revision to the notation was made in 2003 with UML 2.0. The latest books on UML
conform to UML 2.0, including the revised editions of Booch, Rumbaugh, and
Jacobson (2005), Rumbaugh, Booch, and Jacobson (2005), Fowler (2004), Eriks-
son et al. (2004), and Douglass (2004). There have been minor revisions since then.
The current version of the standard is referred to as UML 2.
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1.6.1 Model-Driven Architecture with UML

In the OMG’s view, “modeling is the designing of software applications before cod-
ing.” The OMG promotes model-driven architecture as the approach in which UML
models of the software architecture are developed prior to implementation. Accord-
ing to the OMG, UML is methodology-independent; UML is a notation for describ-
ing the results of an object-oriented analysis and design developed via the method-
ology of choice.

A UML model can be either a platform-independent model (PIM) or a platform-
specific model (PSM). The PIM is a precise model of the software architecture
before a commitment is made to a specific platform. Developing the PIM first is
particularly useful because the same PIM can be mapped to different middleware
platforms, such as COM, CORBA, .NET, J2EE, Web Services, or another Web
platform. The approach in this book is to use the concept of model-driven architec-
ture to develop a component-based software architecture, which is expressed as a
UML platform–independent model.

1.7 MULTIPLE VIEWS OF SOFTWARE ARCHITECTURE

A software architecture can be considered from different perspectives, which are
referred to as different views. Kruchten (Kruchten 1995) introduced the 4+1 view
model of software architecture, in which he advocated a multiple-view modeling
approach for software architectures, in which the use case view is the unifying view
(the 1 view of the 4+1 views). The views are the logical view, which is a static mod-
eling view; the process view, which is a concurrent process or task view; and the
development view, which is a subsystem and component design view. Hofmeister et
al. (2000) describe an industrial perspective on applied software architecture con-
sisting of four views: a conceptual view, which describes the main design elements
and the relationships between them; a code view, which consists of the source code
organized into object code, libraries, and directories; a module view, which consists
of subsystems and modules; and an execution view, which is a concurrent and dis-
tributed execution perspective.

In this book, we will describe and depict the different modeling views of the
software architecture in UML. The views are as follows:

■ Use case view. This view is a functional requirements view, which is an input
to develop the software architecture. Each use case describes the sequence of
interactions between one or more actors (external users) and the system.

■ Static view. The architecture is depicted in terms of classes and relationships,
which can be associations, whole/part relationships (compositions or aggrega-
tions), or generalization/specialization relationships. Depicted on UML class
diagrams.

■ Dynamic interaction view. This view describes the architecture in terms of
objects as well as the message communication between them. This view can also
be used to depict the execution sequence of specific scenarios. Depicted on UML
communication diagrams.
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■ Dynamic state machine view. The internal control and sequencing of a control
component can be depicted using a state machine. Depicted on UML statechart
diagrams.

■ Structural component view. The software architecture is depicted in terms of
components, which are interconnected through their ports, which in turn support
provided and required interfaces. Depicted on UML structured class diagrams.

■ Dynamic concurrent view. The software architecture is viewed as concurrent
components, executing on distributed nodes, and communicating by messages.
Depicted on UML concurrent communication diagrams.

■ Deployment view. This depicts a specific configuration of the distributed archi-
tecture with components assigned to hardware nodes. Depicted on UML deploy-
ment diagrams.

1.8 EVOLUTION OF SOFTWARE MODELING AND DESIGN METHODS

In the 1960s, programs were often implemented with little or no systematic require-
ments analysis and design. Graphical notations – in particular, flowcharts – were
often used, either as a documentation tool or as a design tool for planning a detailed
design prior to coding. Subroutines were originally created as a means of allowing a
block of code to be shared by calling it from different parts of a program. They were
soon recognized as a means of constructing modular systems and were adopted as a
project management tool. A program could be divided up into modules, where each
module could be developed by a separate person and implemented as a subroutine
or function.

With the growth of structured programming in the early seventies, the ideas
of top-down design and stepwise refinement (Dahl 1972) gained prominence as
program design methods, with the goal of providing a systematic approach for struc-
tured program design. Dijkstra developed one of the first software design methods
with the design of the T.H.E. operating system (Dijkstra 1968), which used a hier-
archical architecture. This was the first design method to address the design of a
concurrent system, namely, an operating system.

In the mid- to late 1970s, two different software design strategies gained
prominence: data flow–oriented design and data structured design. The data flow
oriented–design approach as used in Structured Design (see Budgen [2003] for an
overview) was one of the first comprehensive and well-documented design methods
to emerge. The idea was that a better understanding of the functions of the system
could be obtained by considering the flow of data through the system. It provided a
systematic approach for developing data flow diagrams for a system and then map-
ping them to structure charts. Structured Design introduced the coupling and cohe-
sion criteria for evaluating the quality of a design. This approach emphasized func-
tional decomposition into modules and the definition of module interfaces. The first
part of Structured Design, based on data flow diagram development, was refined and
extended to become a comprehensive analysis method, namely, Structured Analysis
(see Budgen [2003] for an overview).

An alternative software design approach was that of data structured design. This
view was that a full understanding of the problem structure is best obtained from
consideration of the data structures. Thus, the emphasis is on first designing the
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data structures and then designing the program structures based on the data struc-
tures. The two principal design methods to use this strategy were Jackson Structured
Programming (Jackson 1983) and the Warnier/Orr method.

In the database world, the concept of separating logical and physical data was
key to the development of database management systems. Various approaches were
advocated for the logical design of databases, including the introduction of entity-
relationship modeling by Chen.

Parnas (1972) made a great contribution to software design with his advocacy
of information hiding. A major problem with early systems, even in many of those
designed to be modular, resulted from the widespread use of global data, which
made these systems prone to error and difficult to change. Information hiding pro-
vided an approach for greatly reducing, if not eliminating, global data.

A major contribution for the design of concurrent and real-time systems came
in the late 1970s with the introduction of the MASCOT notation and later the
MASCOT design method. Based on a data flow approach, MASCOT formalized the
way tasks communicate with each other, either through channels for message com-
munication or through pools (information-hiding modules that encapsulate shared
data structures). The data maintained by a channel or pool are accessed by a task
only indirectly by calling access procedures provided by the channel or pool. The
access procedures also synchronize access to the data, typically using semaphores,
so that all synchronization issues are hidden from the calling task.

There was a general maturation of software design methods in the 1980s, and
several system design methods were introduced. Parnas’s work with the Naval Re-
search Lab (NRL), in which he explored the use of information hiding in large-
scale software design, led to the development of the Naval Research Lab Software
Cost Reduction Method (Parnas, Clements, and Weiss 1984). Work on applying
Structured Analysis and Structured Design to concurrent and real-time systems led
to the development of Real-Time Structured Analysis and Design (RTSAD) (see
Gomaa [1993] for an overview) and the Design Approach for Real-Time Systems
(DARTS) (Gomaa 1984) methods.

Another software development method to emerge in the early 1980s was Jackson
System Development (JSD) (Jackson 1983). JSD views a design as being a simula-
tion of the real world and emphasizes modeling entities in the problem domain by
using concurrent tasks. JSD was one of the first methods to advocate that the design
should model reality first and, in this respect, predated the object-oriented analysis
methods. The system is considered a simulation of the real world and is designed
as a network of concurrent tasks, in which each real-world entity is modeled by
means of a concurrent task. JSD also defied the then-conventional thinking of top-
down design by advocating a middle-out behavioral approach to software design.
This approach was a precursor of object interaction modeling, an essential aspect of
modern object-oriented development.

1.9 EVOLUTION OF OBJECT-ORIENTED ANALYSIS
AND DESIGN METHODS

In the mid- to late 1980s, the popularity and success of object-oriented program-
ming led to the emergence of several object-oriented design methods, including
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Booch, Wirfs-Brock, Wilkerson, and Wiener (1990), Rumbaugh et al. (1991), Shlaer
and Mellor (1988, 1992), and Coad and Yourdon (1991, 1992). The emphasis in
these methods was on modeling the problem domain, information hiding, and
inheritance.

Parnas advocated using information hiding as a way to design modules that were
more self-contained and therefore could be changed with little or no impact on
other modules. Booch introduced object-oriented concepts into design initially with
information hiding, in the object-based design of Ada-based systems and later
extended this to using information hiding, classes, and inheritance in object-oriented
design. Shlaer and Mellor (1988), Coad and Yourdon (1991), and others introduced
object-oriented concepts into analysis. It is generally considered that the object-
oriented approach provides a smoother transition from analysis to design than the
functional approach.

Object-oriented analysis methods apply object-oriented concepts to the analysis
phase of the software life cycle. The emphasis is on identifying real-world objects
in the problem domain and mapping them to software objects. The initial attempt
at object modeling was a static modeling approach that had its origins in informa-
tion modeling, in particular, entity-relationship (E-R) modeling or, more generally,
semantic data modeling, as used in logical database design. Entities in E-R modeling
are information-intensive objects in the problem domain. The entities, the attributes
of each entity, and relationships among the entities, are determined and depicted
on E-R diagrams; the emphasis is entirely on data modeling. During design, the
E-R model is mapped to a database, usually relational. In object-oriented analy-
sis, objects in the problem domain are identified and modeled as software classes,
and the attributes of each class, as well as the relationships among classes, are
determined (Coad 1991; Rumbaugh et al. 1991; Shlaer and Mellor 1988).

The main difference between classes in static object-oriented modeling and entity
types in E-R modeling is that classes have operations but entity types do not have
operations. In addition, whereas information modeling only models persistent enti-
ties that are to be stored in a database, other problem domain classes are also
modeled in static object modeling. The advanced information modeling concepts of
aggregation and generalization/specialization are also used. The most widely used
notation for static object modeling before UML was the Object Modeling Tech-
nique (OMT) (Rumbaugh et al. 1991).

Static object modeling was also referred to as class modeling and object modeling
because it involves determining the classes to which objects belong and depicting
classes and their relationships on class diagrams. The term domain modeling is also
used to refer to static modeling of the problem domain (Rosenberg and Scott 1999;
Shlaer and Mellor 1992).

The early object-oriented analysis and design methods emphasized the structural
aspects of software development through information hiding and inheritance but
neglected the dynamic aspects. A major contribution by the OMT (Rumbaugh et al.
1991) was to clearly demonstrate that dynamic modeling was equally important. In
addition to introducing the static modeling notation for the object diagrams, OMT
showed how dynamic modeling could be performed with statecharts for showing the
state-dependent behavior of active objects and with sequence diagrams to show the
sequence of interactions between objects. Rumbaugh et al. (1991) used statecharts,
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which are hierarchical state transition diagrams originally conceived by Harel (1988,
1998), for modeling active objects. Shlaer and Mellor (1992) also used state transi-
tion diagrams for modeling active objects. Booch initially used object diagrams to
show the instance-level interactions among objects and later sequentially numbered
the interactions to more clearly depict the communication among objects.

Jacobson (1992) introduced the use case concept for modeling the system’s
functional requirements. Jacobson also used the sequence diagram to describe the
sequence of interactions between the objects that participate in a use case. The use
case concept was fundamental to all phases of Jacobson’s object-oriented software
engineering life cycle. The use case concept has had a profound impact on modern
object-oriented software development.

Prior to UML, there were earlier attempts to unify the various object-oriented
methods and notations, including Fusion (Coleman et al. 1993) and the work of
Texel and Williams (1997). The UML notation was originally developed by Booch,
Jacobson, and Rumbaugh to integrate the notations for use case modeling, static
modeling, and dynamic modeling (using statecharts and object interaction model-
ing), as described in Chapter 2. Other methodologists also contributed to the devel-
opment of UML. An interesting discussion of how UML has evolved and how it is
likely to evolve in the future is given in Cobryn [1999] and Selic (1999).

1.10 SURVEY OF CONCURRENT, DISTRIBUTED, AND REAL-TIME
DESIGN METHODS

The Concurrent Design Approach for Real-Time Systems (CODARTS) method
(Gomaa 1993) built on the strengths of earlier concurrent design, real-time design,
and early object-oriented design methods by emphasizing both information-hiding
module structuring and concurrent task structuring.

Octopus (Awad, Kuusela, and Ziegler 1996) is a real-time design method based
on use cases, static modeling, object interactions, and statecharts. For real-time sys-
tems, ROOM (Selic, Gullekson, and Ward 1994) is an object-oriented real-time
design method that is closely tied in with a CASE (Computer-Assisted Software
Engineering) tool called ObjecTime. ROOM is based around actors, which are
active objects that are modeled using a variation on statecharts called ROOMcharts.
A ROOM model is capable of being executed and thus could be used as an early
prototype of the system.

Buhr (1996) introduced an interesting concept called the use case map (based
on the use case concept) to address the issue of dynamic modeling of large-scale
systems.

For UML-based real-time software development, Douglass (2004, 1999) has
provided a comprehensive description of how UML can be applied to real-time
systems.

An earlier version of the COMET method for designing concurrent, real-time,
and distributed applications, which is based on UML 1.3, is described in Gomaa
(2000). This new textbook expands on the COMET method by basing it on UML
2, increasing the emphasis on software architecture, and addressing a wide range of
software applications, including object-oriented software architectures, client/server
software architectures, service-oriented architectures, component-based software
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architectures, concurrent and real-time software architectures, and software prod-
uct line architectures.

1.11 SUMMARY

This chapter introduced object-oriented methods and notations, software archi-
tectural design, and UML. The chapter briefly described the evolution of soft-
ware design methods, object-oriented analysis and design methods, and concurrent,
distributed, and real-time design methods. Chapter 2 provides an overview of the
UML notation. Chapter 3 describes software life cycles and methods. Chapter 4
describes software design and architecture concepts. Chapter 5 describes the use
case–based software life cycle for the COMET method.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is software modeling?
(a) Developing models of software.
(b) Designing software applications

before coding.
(c) Developing software diagrams.
(d) Developing software prototypes.

2. What is the Unified Modeling Lan-
guage?
(a) A programming language for des-

cribing object-oriented models.
(b) A diagramming tool for drawing

object-oriented models.
(c) A graphical language for describing

object-oriented models.
(d) A standardized graphical language

and notation for describing object-
oriented models.

3. What is a software architecture?
(a) The software inside a building.
(b) The structure of a client/server sys-

tem.
(c) The overall structure of a software

system.
(d) The software classes and their rela-

tionships.
4. What is a software design notation?

(a) Notes about the software design.
(b) A graphical or textual description

of the software.
(c) Documentation of the software.
(d) A systematic approach for produc-

ing a design.

5. What is a software design concept?
(a) A graphical or textual description

of the software.
(b) Documentation of the software.
(c) A fundamental idea that can be

applied to designing a system.
(d) A systematic approach for produc-

ing a design.
6. What is a software design strategy?

(a) A graphical or textual description
of the software.

(b) A fundamental idea that can be
applied to designing a system.

(c) A systematic approach for produc-
ing a design.

(d) An overall plan and direction for
developing a design.

7. What are software structuring criteria?
(a) Fundamental ideas that can be

applied to designing a system.
(b) Systematic approaches for produc-

ing a design.
(c) Guidelines used to help in structur-

ing a software system into its com-
ponents.

(d) Overall plans for developing a
design.

8. What is a software design method?
(a) A systematic approach for produc-

ing a design.
(b) Guidelines used to help in structur-

ing a software system into its com-
ponents.

(c) An overall plan for developing a
design.
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(d) A graphical or textual description
of the software.

9. What is a platform-independent model
(PIM)?
(a) A software platform before a com-

mitment is made to a specific hard-
ware platform.

(b) A precise model of the software
architecture before a commitment
is made to a specific platform.

(c) A precise model of the software
architecture mapped to a specific
platform.

(d) A graphical or textual description
of the software.

10. What is a platform-specific model
(PSM)?
(a) A specific hardware platform.
(b) A precise model of the software

architecture before a commitment
is made to a specific platform.

(c) A precise model of the software
architecture mapped to a specific
platform.

(d) A graphical or textual description
of the software.
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Overview of the UML Notation

The notation used for the COMET method is the Unified Modeling Language
(UML). This chapter provides a brief overview of the UML notation. The UML
notation has evolved since it was first adopted as a standard in 1997. A major
revision to the standard was made in 2003, so the current version of the standard
is UML 2. The previous versions of the standard are referred to as UML
1.x.

The UML notation has grown substantially over the years, and it supports many
diagrams. The approach taken in this book is the same as Fowler’s (2004), which
is to use only those parts of the UML notation that provide a distinct benefit.
This chapter describes the main features of the UML notation that are particu-
larly suited to the COMET method. The purpose of this chapter is not to be a
full exposition of UML, because several detailed books exist on this topic, but
rather to provide a brief overview. The main features of each of the UML dia-
grams used in this book are briefly described, but lesser-used features are omitted.
The differences between UML 2 notation and UML 1.x notation are also briefly
explained.

2.1 UML DIAGRAMS

The UML notation supports the following diagrams for application development:

■ Use case diagram, briefly described in Section 2.2.
■ Class diagram, briefly described in Section 2.4.
■ Object diagram (an instance version of the class diagram), which is not used by

COMET.
■ Communication diagram, which in UML 1.x was called the collaboration dia-

gram, briefly described in Section 2.5.1.
■ Sequence diagram, briefly described in Section 2.5.2.
■ State Machine diagram, briefly described in Section 2.6.
■ Activity diagram, which is not used extensively by COMET, is described briefly

in Chapter 6.

14
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«extend» «extend»

«include» «include»

Use Case

Use Case A

Use Case B
Use Case C

Use Case X

Use Case Y
Use Case Z

Actor

Figure 2.1. UML notation for a use case diagram

■ Composite structure diagram, a new diagram introduced in UML 2 that
is actually better suited for modeling distributed components in a UML
platform–independent model. The composite structure diagram is described in
Chapter 17.

■ Deployment diagram, briefly described in Section 2.9.

Chapters 6 through 19 describe how these UML diagrams are used by the COMET
method.

2.2 USE CASE DIAGRAMS

An actor initiates a use case. A use case defines a sequence of interactions between
the actor and the system. An actor is depicted as a stick figure on a use case diagram.
The system is depicted as a box. A use case is depicted as an ellipse inside the box.
Communication associations connect actors with the use cases in which they par-
ticipate. Relationships among use cases are defined by means of include and extend
relationships. The notation is depicted in Figure 2.1.

2.3 CLASSES AND OBJECTS

Classes and objects are depicted as boxes in the UML notation, as shown in Fig-
ure 2.2. The class box always holds the class name. Optionally, the attributes and
operations of a class may also be depicted. When all three are depicted, the top
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Class

attributes

operations

Class
Class

attributes

Class with attributesClass

Class with attributes and operations

Objects

anObject anotherObject : Class : Class

Figure 2.2. UML notation for objects and classes

compartment of the box holds the class name, the middle compartment holds the
attributes, and the bottom compartment holds the operations.

To distinguish between a class (the type) and an object (an instance of the type),
an object name is shown underlined. An object can be depicted in full with the
object name separated by a colon from the class name – for example, anObject :
Class. Optionally, the colon and class name may be omitted, leaving just the object
name – for example, anObject. Another option is to omit the object name and depict
just the class name after the colon, as in : Class. Classes and objects are depicted on
various UML diagrams, as described in Section 2.4.

2.4 CLASS DIAGRAMS

In a class diagram, classes are depicted as boxes, and the static (i.e., permanent)
relationships between them are depicted as lines connecting the boxes. The follow-
ing three main types of relationships between classes are supported: associations,
whole/part relationships, and generalization/specialization relationships, as shown
in Figure 2.3. A fourth relationship, the dependency relationship, is often used to
show how packages are related, as described in Section 2.7.

2.4.1 Associations

An association is a static, structural relationship between two or more classes. An
association between two classes, which is referred to as a binary association, is
depicted as a line joining the two class boxes, such as the line connecting the ClassA
box to the ClassB box in Figure 2.3a. An association has a name and optionally a
small black arrowhead to depict the direction in which the association name should
be read. On each end of the association line joining the classes is the multiplicity of
the association, which indicates how many instances of one class are related to an
instance of the other class. Optionally, a stick arrow may also be used to depict the
direction of navigability.

The multiplicity of an association specifies how many instances of one class may
relate to a single instance of another class (see Figure 2.3a, right). The multiplicity
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*
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b) Aggregation and
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a) Associations

 c) Generalization/

specializationHierarchy

Figure 2.3. UML notation for relationships on a class diagram

of an association can be exactly one (1), optional (0..1), zero or more (∗), one or
more (1..∗), or numerically specified (m..n), where m and n have numeric values.

2.4.2 Aggregation and Composition Hierarchies

Aggregation and composition hierarchies are whole/part relationships. The compo-
sition relationship (shown by a black diamond) is a stronger form of whole/part
relationship than the aggregation relationship (shown by a hollow diamond).
The diamond touches the aggregate or composite (Class Whole) class box (see
Figure 2.3b).

2.4.3 Generalization/Specialization Hierarchy

A generalization/specialization hierarchy is an inheritance relationship. A general-
ization is depicted as an arrow joining the subclass (child) to the superclass (parent),
with the arrowhead touching the superclass box (see Figure 2.3c).

2.4.4 Visibility

Visibility refers to whether an element of the class is visible from outside the class,
as depicted in Figure 2.4. Depicting visibility is optional on a class diagram. Public
visibility, denoted with a + symbol, means that the element is visible from outside
the class. Private visibility, denoted with a – symbol, means that the element is vis-
ible only from within the class that defines it and is thus hidden from other classes.
Protected visibility, denoted with a # symbol, means that the element is visible from
within the class that defines it and within all subclasses of the class.
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ClassName

- privateClassAttributes

+ publicClassOperations
- privateClassOperations

SubclassA1

- privateClassAttributes

SubclassA2

- privateClassAttributes

Superclass

# protectedClassAttributes

Figure 2.4. UML notation for visibility on a class diagram

2.5 INTERACTION DIAGRAMS

UML has two main kinds of interaction diagrams, which depict how objects inter-
act: the communication diagram and the sequence diagram. On these interaction
diagrams, objects are depicted in rectangular boxes. However, object names are not
underlined. The main features of these diagrams are described in Sections 2.5.1 and
2.5.2.

2.5.1 Communication Diagrams

A communication diagram, which was called a collaboration diagram in UML 1.x,
shows how cooperating objects dynamically interact with each other by sending and
receiving messages. The diagram depicts the structural organization of the objects
that interact. Objects are shown as boxes, and lines joining boxes represent object
interconnection. Labeled arrows adjacent to the arcs indicate the name and direc-
tion of message transmission between objects. The sequence of messages passed
between the objects is numbered. The notation for communication diagrams is illus-
trated in Figure 2.5. An optional iteration is indicated by an asterisk (∗), which
means that a message is sent more than once. An optional condition means that
the message is sent only if the condition is true.

objectA

objectB1 : ClassB

anObject

: ClassC

1: Input Message

2: Internal Message

3*: Iteration Message

4[Condition]: Conditional 

Message

: Actor

Figure 2.5. UML notation for a communication diagram
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objectA objectB1 : ClassB anObject : ClassC

1: Input Message

2: Internal Message

3: Another Message

4: Request Message

: Actor

Figure 2.6. UML notation for a sequence diagram

2.5.2 Sequence Diagrams

A different way of illustrating the interaction among objects is to show them on
a sequence diagram, which depicts object interaction arranged in time sequence,
as shown in Figure 2.6. A sequence diagram is a two-dimensional diagram in
which the objects participating in the interaction are depicted horizontally and
the vertical dimension represents time. Starting at each object box is a vertical
dashed line, referred to as a lifeline. Optionally, each lifeline has an activation
bar (not shown), depicted as a double solid line, which shows when the object is
executing.

The actor is usually shown at the extreme left of the page. Labeled horizontal
arrows represent messages. Only the source and destination of the arrow are rel-
evant. The message is sent from the source object to the destination object. Time
increases from the top of the page to the bottom. The spacing between messages is
not relevant.

UML 2 has substantially extended the notation for sequence diagrams to allow
for loops and conditionals, as described in Chapters 9 and 11.

2.6 STATE MACHINE DIAGRAMS

In the UML notation, a state transition diagram is referred to as a state machine
diagram. In this book, the shorter term statechart is generally used. In the UML
notation, states are represented by rounded boxes, and transitions are represented
by arcs that connect the rounded boxes, as shown in Figure 2.7. The initial state of
the statechart is depicted by an arc originating from a small black circle. Option-
ally, a final state may be depicted by a small black circle inside a larger white circle,
sometimes referred to as a bull’s-eye. A statechart may be hierarchically decom-
posed such that a composite state is broken down into substates.

On the arc representing the state transition, the notation Event [condition]/
Action is used. The event causes the state transition. The optional Boolean con-
dition must be true, when the event occurs, for the transition to take place. The
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Substate A2

Event [condition] / 
Action

Substate A1

entry / Action

exit / Action

composite state A

Initial State

Event

Event / Action

Final State

Figure 2.7. UML notation for a state machine: composite state with
sequential substates

optional action is performed as a result of the transition. Optionally, a state may
have any of the following:

■ An entry action, performed when the state is entered
■ An exit action, performed on exit from the state

Figure 2.7 depicts a composite state A decomposed into sequential substates
A1 and A2. In this case, the statechart is in only one substate at a time; that is,
first substate A1 is entered and then substate A2. Figure 2.8 depicts a composite
B decomposed into orthogonal regions BC and BD. In this case, the statechart is
in each of the orthogonal regions, BC and BD, at the same time. Each orthogonal

composite state B

Substate B1

Substate B3

Event 1 Event 4

Initial State

Substate B2

Substate B4

State C

Event 2

Event 3

orthogonal region BC

orthogonal region BD

Figure 2.8. UML notation for a state machine: composite state with orthog-
onal substates
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«system»

SystemPackage

«subsystem»

Subsystem

PackageA

«subsystem»

Subsystem

PackageB

Figure 2.9. UML notation for packages

substate is further decomposed into sequential substates. Thus, when the composite
B is initially entered, each of the substates B1 and B3 is also entered.

2.7 PACKAGES

In UML, a package is a grouping of model elements – for example, to represent
a system or subsystem. A package is depicted by a folder icon, a large rectangle
with a small rectangle attached on one corner, as shown in Figure 2.9. Packages may
also be nested within other packages. Possible relationships between packages are
dependency (shown in Figure 2.9) and generalization/specialization relationships.
Packages may be used to contain classes, objects, or use cases.

2.8 CONCURRENT COMMUNICATION DIAGRAMS

In the UML notation, an active object can be used to depict a concurrent object,
process, thread, or task, and is depicted by a rectangular box with two vertical par-
allel lines on the left- and right-hand sides. An active object has its own thread of
control and executes concurrently with other objects. By contrast, a passive object
has no thread of control. A passive object executes only when another object (active
or passive) invokes one of its operations.

Active objects are depicted on concurrent communication diagrams, which
depict the concurrency viewpoint of the system (Douglass 2004). On a concur-
rent communication diagram, a UML 2 active object is depicted as a rectangu-
lar box with two vertical parallel lines on the left- and right-hand sides; a passive
object is depicted as a regular rectangular box. The UML 1.x notation for active
objects – rectangular boxes with thick black lines – is no longer used. An example
is given in Figure 2.10, which also shows the notation for multiobjects (useful UML
1.x notation although no longer used in UML 2), used when more than one object
is instantiated from the same class.
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«passive object»

«passive object»

Active object

Passive object

Active

multiobject

Passive

multiobject

«active object»
«active object»

Figure 2.10. UML notation for active and passive objects

2.8.1 Message Communication on Concurrent
Communication Diagrams

Message interfaces between tasks on concurrent communication diagrams are either
asynchronous (loosely coupled) or synchronous (tightly coupled).

The UML notation for message communication is summarized in Figure 2.11.
Figure 2.12 depicts a concurrent communication diagram, a version of the com-
munication diagram that shows active objects (concurrent objects, processes, tasks,
or threads) and the various kinds of message communication between them. For
synchronous message communication, two possibilities exist: (1) synchronous mes-
sage communication with reply (arrow with black arrowhead for request and dashed
arrow with stick arrowhead for reply) and (2) synchronous message communication
without reply (arrow with black arrowhead for request). Note that from UML 1.4
onwards, the UML notation for asynchronous communication has changed from
an arrow with a half arrowhead to an arrow with a stick arrowhead. Note also
that showing a simple message as an arrow with a stick arrowhead is a convention
used in UML 1.3 and earlier. It is useful, however, to use simple messages during
analysis modeling when no decision has yet been made about the type of message
communication.

Simple message
No decision yet made about message type

a) Asynchronous (loosely coupled) message 
communication 

b) Synchronous (tightly coupled) message communication

c) Synchronous (tightly coupled) message communication with reply

«simple message»
message-name

«asynchronous message»
message-name (argument list)

«synchronous message»
message-name (argument list)

«synchronous message with reply»
message-name (in argument list, out argument list)

«synchronous message»
message-name (argument list)

«reply»

c1) Option 1:

c2) Option 2:

UML 1.3

UML 1.4 and in UML 2

«asynchronous message»
message-name (argument list)

Figure 2.11. UML notation for messages
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1: inputMessage

2: asynchronousMessage

3: synchronousMessage

5: reply4: synchronousMessage

: Actor

«active object»

objectA

«active object»

objectB

«active object»

objectC

«active object»

objectD

Figure 2.12. UML notation for a concurrent communication diagram

2.9 DEPLOYMENT DIAGRAMS

A deployment diagram shows the physical configuration of the system in terms of
physical nodes and physical connections between the nodes, such as network con-
nections. A node is shown as a cube, and the connection is shown as a line joining
the nodes. A deployment diagram is essentially a class diagram that focuses on the
system’s nodes (Booch, Rumbaugh, and Jacobson 2005).

In this book, a node usually represents a computer node, with a constraint (see
Section 2.10.3) describing how many instances of this node may exist. The physical
connection has a stereotype (see Section 2.10.1) to indicate the type of connection,
such as «local area network» or «wide area network». Figure 2.13 shows two exam-
ples of deployment diagrams. In the first example, nodes are connected via a wide
area network (WAN); in the second, they are connected via a local area network
(LAN). In the first example, the ATM Client node (which has one node for each
ATM) is connected to a Bank Server that has one node. Optionally, the objects that
reside at the node may be depicted in the node cube. In the second example, the
network is shown as a node cube. This form of the notation is used when more than
two computer nodes are connected by a network.

2.10 UML EXTENSION MECHANISMS

UML provides three mechanisms to allow the language to be extended (Booch,
Rumbaugh, and Jacobson 2005; Rumbaugh, Booch, and Jacobson 2005). These are
stereotypes, tagged values, and constraints.

2.10.1 Stereotypes

A stereotype defines a new building block that is derived from an exist-
ing UML modeling element but tailored to the modeler’s problem (Booch,
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«wide area network»
ATMClient

{1 node per ATM}

BankServer

{1 node}

Server1 Server2

Client1 Client2 Client3

«local area network»

Figure 2.13. UML notation for a deployment diagram

Rumbaugh, and Jacobson 2005). This book makes extensive use of stereo-
types. Several standard stereotypes are defined in UML. In addition, a mod-
eler may define new stereotypes. This chapter includes several examples of
stereotypes, both standard and COMET-specific. Stereotypes are indicated by
guillemets (« »).

Figure 2.9 shows the stereotypes «system» and «subsystem» to distinguish
between two different kinds of packages. Figure 2.11 uses stereotypes to distinguish
among different kinds of messages.

In UML 1.3, a UML modeling element could be depicted only with one stereo-
type. However, UML 1.4 onward extended the stereotype concept to allow a mod-
eling element to be depicted by more than one stereotype. Therefore, different,
possibly orthogonal, characteristics of a modeling element can now be depicted
with different stereotypes. The COMET method takes advantage of this additional
functionality.

The UML stereotype notation allows a modeler to tailor a UML modeling ele-
ment to a specific problem. In UML, stereotypes are enclosed in guillemets usu-
ally within the modeling element (e.g., class or object), as depicted in Figure 2.14a.
However, UML also allows stereotypes to be depicted as symbols. One of the most
common such representations was introduced by Jacobson (1992) and is used in the
Unified Software Development Process (USDP) (Jacobson, Booch, and Rumbaugh
1999). Stereotypes are used to represent «entity» classes, «boundary» classes, and
«control» classes. Figure 2.14b depicts the Process Plan «entity» class, the Elevator
Control «control» class, and the Sensor Interface «boundary» class using the USDP’s
stereotype symbols.
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«entity»
ProcessPlan

Alternative a (standard UML notation for depicting  

stereotypes):

«control»
ElevatorControl

«boundary»
SensorInterface

Alternative b (stereotypes used in Unified Software Development 

Process):

ProcessPlan ElevatorControl SensorInterface

Figure 2.14. Alternative notations for UML stereotypes

2.10.2 Tagged Values

A tagged value extends the properties of a UML building block (Booch, Rumbaugh,
and Jacobson 2005), thereby adding new information. A tagged value is enclosed in
braces in the form {tag = value}. Commas separate additional tagged values. For
example, a class may be depicted with the tagged values {version = 1.0, author =
Gill}, as shown in Figure 2.15.

2.10.3 Constraints

A constraint specifies a condition that must be true. In UML, a constraint is an
extension of the semantics of a UML element to allow the addition of new rules or
modifications to existing rules (Booch, Rumbaugh, and Jacobson 2005). For exam-
ple, for the Account class depicted in Figure 2.15, the constraint on the attribute bal-
ance is that the balance can never be negative, depicted as {balance >=0}. Option-
ally, UML provides the Object Constraint Language (Warmer and Kleppe 1999) for
expressing constraints.

2.11 CONVENTIONS USED IN THIS BOOK

For improved readability, the conventions used for depicting names of classes,
objects, and so on in the figures are sometimes different from the conventions used
for the same names in the text. In the figures, examples are shown in Times Roman

Account

{version = 1.0, author = Gill}

-accountNumber : integer

-balance : real {balance >= 0}

«entity»

Figure 2.15. UML notation for tagged values and constraints
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font. In the body of the text, however, examples are shown in a different font to
distinguish them from the regular Times Roman font. Some specific additional con-
ventions used in the book vary depending on the phase of the project. For example,
the conventions for capitalization are different in the analysis model (which is less
formal) than in the design model (which is more formal).

2.11.1 Requirements Modeling

In both figures and text, use cases are shown with an uppercase initial letter and
spaces in multiword names – for example, Withdraw Funds.

2.11.2 Analysis Modeling

The naming conventions for the analysis model are as follows.

Classes
Classes are shown with an uppercase initial letter. In the figures, there are no spaces
in multiword names – for example, CheckingAccount. In the text, however, spacing
is introduced to improve the readability – for example, Checking Account.

Attributes are shown with a lowercase initial letter – for example, balance. For
multiword attributes, there are no spaces between the words in figures, but spaces
are introduced in the text. The first word of the multiword name has an initial lower-
case letter; subsequent words have an initial uppercase letter – for example, account-
Number in figures, and account Number in text.

The type of the attribute has an initial uppercase letter – for example, Boolean,
Integer, or Real.

Objects
Objects may be depicted in various ways, as described next:

■ An individual named object. In this case, the first letter of the first word is
lowercase, and subsequent words have an uppercase first letter. In figures, the
objects appear as, for example, aCheckingAccount and anotherCheckingAccount.
In the text, these objects appear as a Checking Account and another Checking
Account.

■ An individual unnamed object. Some objects are shown in the figures as class
instances without a given object name – for example, : CheckingAccount. In the
text, this object is referred to as Checking Account. For improved readability, the
colon is removed, and a space is introduced between the individual words of a
multiword name.

This means that, depending on how the object is depicted in a figure, it will
appear in the text sometimes with a first word in which the initial letter is upper-
case and sometimes with a first word in which the initial letter is lowercase.
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Messages
In the analysis model, messages are always depicted as simple messages (see Fig-
ure 2.11 and Section 2.8.1) because no decision has yet been made about the message
type. Messages are depicted with an uppercase initial letter. Multiword messages are
shown with spaces in both figures and text – for example, Simple Message Name.

Statecharts
In both figures and text, states, events, conditions, actions, and activities are all
shown with initial letter uppercase and spaces in multiword names – for example,
the state Waiting for PIN, the event Cash Dispensed, and the action Dispense Cash.

2.11.3 Design Modeling

The naming conventions for the design model are as follows.

Active and Passive Classes
The naming conventions for active classes (concurrent classes) and passive classes
are the same as for classes in the analysis model (see Section 2.11.2).

Active and Passive Objects
The naming conventions for active objects (concurrent objects) and passive objects
are the same as for objects in the analysis model (see Section 2.11.2).

Messages
In the design model, the first letter of the first word of the message is lowercase, and
subsequent words have an uppercase first letter. In both the figures and text, there
is no space between words, as in alarmMessage.

Message parameters are shown with a lowercase initial letter – for example,
speed. For multiword attributes, there are no spaces between the words in both
the figures and text. The first word of the multiword name has a lowercase ini-
tial letter, and subsequent words have an uppercase initial letter – for example,
cumulativeDistance– in both figures and text.

Operations
The naming conventions for operations (also known as methods) follow the conven-
tions for messages in both figures and text. Thus, the first letter of the first word of
both the operation and the parameter is lowercase, and subsequent words have an
uppercase first letter. There is no space between words – for example, validatePass-
word (userPassword).

2.12 SUMMARY

This chapter briefly described the main features of the UML notation and the main
characteristics of the UML diagrams used in this book.

For further reading on UML 2 notation, Fowler (2004) and Ambler (2005)
provide introductory material. More detailed information can be found in Booch,
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Rumbaugh, and Jacobson (2005) and Eriksson et al. (2004). A comprehensive and
detailed reference to UML is Rumbaugh, Booch, and Jacobson (2005).

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. How is an actor depicted on a use case
diagram?
(a) An oval
(b) A stick figure
(c) A box
(d) A dashed line

2. How is a use case depicted on a use case
diagram?
(a) An oval
(b) A stick figure
(c) A box
(d) A dashed line

3. How is a class depicted on a class dia-
gram?
(a) A box with one compartment
(b) A box with one or two compart-

ments
(c) A box with one, two, or three com-

partments
(d) An oval

4. How is an association depicted on a
class diagram?
(a) A solid line joining two class

boxes
(b) A dashed line joining two class

boxes
(c) A diamond touching the upper

class box
(d) An arrowhead touching the upper

class box
5. How is public visibility depicted for a

class element on a class diagram?
(a) + sign
(b) − sign
(c) # sign
(d) ∗sign

6. What are the two kinds of UML inter-
action diagrams?

(a) Class diagram and sequence dia-
gram

(b) Sequence diagram and communica-
tion diagram

(c) Class diagram and communication
diagram

(d) Statechart and communication dia-
gram

7. What does an interaction diagram
depict?
(a) Objects and links
(b) Classes and relationships
(c) Objects and messages
(d) States and events

8. What does a statechart diagram depict?
(a) Objects and links
(b) Classes and relationships
(c) Objects and messages
(d) States and events

9. What is a UML package?
(a) A box
(b) A grouping of classes
(c) A grouping of use cases
(d) A grouping of model elements

10. What does a deployment diagram
depict?
(a) The physical configuration of the

system in terms of physical classes
and physical connections between
the classes

(b) The physical configuration of the
system in terms of physical objects
and physical connections between
the objects

(c) The physical configuration of the
system in terms of physical nodes
and physical connections between
the nodes

(d) The physical configuration of the
system in terms of physical comput-
ers and physical networks between
the computers



3

Software Life Cycle Models and Processes

A software life cycle is a phased approach to developing software, with specific
deliverables and milestones within each phase. A software life cycle model is an
abstraction of the software development process, which is convenient to use for
planning purposes. This chapter takes a software life cycle perspective on software
development. Different software life cycle models (also referred to as software pro-
cess models), including the spiral model and the Unified Software Development
Process, are briefly described and compared. The roles of design verification and
validation and of software testing are discussed.

3.1 SOFTWARE LIFE CYCLE MODELS

The waterfall model was the earliest software life cycle model to be widely used.
This section starts with an overview of the waterfall model. It then outlines alter-
native software life cycle models that have since been developed to overcome some
of the limitations of the waterfall model. These are the throwaway prototyping life
cycle model, the incremental development life cycle model (also referred to as evo-
lutionary prototyping), the spiral model, and the Unified Software Development
Process.

3.1.1 Waterfall Life Cycle Model

Since the 1960s, the cost of developing software has grown steadily and the cost
of developing and purchasing hardware has rapidly decreased. Furthermore, soft-
ware now typically costs eighty percent of a total project’s budget, whereas in the
early days of software development, the hardware was by far the largest project cost
(Boehm 2006).

The problems involved in developing software were not clearly understood in
the 1960s. In the late sixties, it was realized that a software crisis existed. The term
software engineering was coined to refer to the management and technical methods,
procedures, and tools required to effectively develop a large-scale software system.
With the application of software engineering concepts, many large-scale software

29
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systems have been developed using a software life cycle. The first widely used soft-
ware life cycle model, often referred to as the waterfall model, is shown in Figure
3.1. It is generally considered the conventional or “classical” software life cycle. The
waterfall model is an idealized process model in which each phase is completed
before the next phase is started, and a project moves from one phase to the next
without iteration or overlap.

3.1.2 Limitations of the Waterfall Model

The waterfall model is a major improvement over the undisciplined approach used
on early software projects and has been used successfully on many projects. In prac-
tice, however, some overlap is often necessary between successive phases of the
life cycle, as well as some iteration between phases when errors are detected (Fig-
ure 3.2). Moreover, for some software development projects, the waterfall model
presents the following significant problems:

■ Software requirements, a key factor in any software development project, are
not properly tested until a working system is available to demonstrate to the
end-users. In fact, several studies have shown that errors in the requirements
specification are usually the last to be detected (often not until system or accep-
tance testing) and the most costly to correct.

■ A working system becomes available only late in the life cycle. Thus, a major
design or performance problem might go undetected until the system is almost
operational, at which time it is usually too late to take effective action.

For software development projects with a significant risk factor – for example,
due to requirements that are not clearly understood or are expected to change –
variations or alternatives to the waterfall model have been proposed.

Two different software prototyping approaches have been used to overcome
some of the limitations of the waterfall model: throwaway prototypes and evolu-
tionary prototypes. Throwaway prototypes can help resolve the first problem of the
waterfall model, which was described in the preceding list, and evolutionary proto-
types can help resolve the second problem.

3.1.3 Throwaway Prototyping

Throwaway prototypes can be used to help clarify user requirements. This approach
is particularly useful for getting feedback on the user interface and can be used for
systems that have a complex user interface.

A throwaway prototype may be developed after a preliminary requirements
specification (Figure 3.3). By giving users the capability of exercising the prototype,
much valuable feedback can be obtained that is otherwise frequently difficult to get.
Based on this feedback, a revised requirements specification can be prepared. Sub-
sequent development proceeds, following the conventional software life cycle.

Throwaway prototyping, particularly of the user interface, has been shown to
be an effective solution to the problem of specifying requirements for interactive
information systems. Gomaa (1990) described how a throwaway prototype was used
to help clarify the requirements of a highly interactive manufacturing application.
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The biggest problem it helped overcome was the communications barrier that
existed between the users and the developers.

Throwaway prototypes can also be used for experimental prototyping of the
design (Figure 3.4). This can be used to determine if certain algorithms are logically
correct or to determine if they meet their performance goals.

3.1.4 Evolutionary Prototyping by Incremental Development

The evolutionary prototyping approach is a form of incremental development in
which the prototype evolves through several intermediate operational systems (Fig-
ure 3.5) into the delivered system. This approach can help in determining whether
the system meets its performance goals and in testing critical components of the
design. It also reduces development risk by spreading the implementation over a
longer time frame. Use cases and scenario-based communication diagrams can be
used to assist in selecting system subsets for each increment.

One objective of the evolutionary prototyping approach is to have a subset of the
system working early, which is then gradually built on. It is advantageous if the first
incremental version of the system tests a complete path through the system from
external input to external output.

An example of evolutionary prototyping by means of incremental development
is described in Gomaa (1990). Using this approach on a real-time robot controller
system (Gomaa 1986) resulted in availability of an early operational version of the
system, providing a big morale boost for both the development team and manage-
ment. It also had the important benefits of verifying the system design, establishing
whether certain key algorithms met their performance goals, and spreading system
integration over time.

3.1.5 Combining Throwaway Prototyping and Incremental Development

With the incremental development life cycle model approach, a working system in
the form of an evolutionary prototype is available significantly earlier than with the
conventional waterfall life cycle. Nevertheless, much greater care needs to be taken
in developing this kind of prototype than with a throwaway prototype because it
forms the basis of the finished product; thus, software quality has to be built into
the system from the start and cannot be added as an afterthought. In particular, the
software architecture needs to be carefully designed and all interfaces specified.

The conventional waterfall life cycle is impacted significantly by the introduction
of throwaway prototyping or incremental development. It is also possible to com-
bine the two approaches, as shown in Figure 3.6. A throwaway prototyping exercise
is carried out to clarify the requirements. After the requirements are understood
and a specification is developed, an incremental development life cycle is pursued.
After subsequent increments, further changes in requirements might be necessary
owing to changes in the user environment.

3.1.6 Spiral Model

The spiral model is a risk-driven process model originally developed by Boehm
(1988) to address known problems with earlier process models of the software life
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1. Define objectives, alternatives, and 

constraints

2. Analyze risks

3. Develop product4. Plan next cycle

Figure 3.7. Spiral process model

cycle – in particular, the waterfall model. The spiral model is intended to encompass
other life cycle models, such as the waterfall model, the incremental development
model, and the throwaway prototyping model.

In the spiral model, the radial coordinate represents cost, and the angular coor-
dinate represents progress in completion of a cycle of the model. The spiral model
consists of the following four quadrants, as shown in Figure 3.7:

1. Define objectives, alternatives, and constraints. Detailed planning for this
cycle: identify goals and alternative approaches to achieving them.

2. Analyze risks. Detailed assessment of current project risks; plan activities to
be performed to alleviate these risks.

3. Develop product. Work on developing product, such as requirements analy-
sis, design, or coding.

4. Plan next cycle. Assess progress made on this cycle and start planning for next
cycle.

Each cycle of the spiral model iterates through these four quadrants, although the
number of cycles is project-specific. The descriptions of the activities in each quad-
rant are intended to be general enough that they can be included in any cycle.

The goal of the spiral model is to be risk-driven, so the risks in a given cycle are
determined in the “analyze risks” quadrant. To manage these risks, certain addi-
tional project-specific activities may be planned to address the risks, such as require-
ments prototyping if the risk analysis indicates that the software requirements are
not clearly understood. These project-specific risks are termed process drivers. For
any process driver, one or more project-specific activities need to be performed to
manage the risk (Boehm and Belz 1990).

An example of identifying a project-specific risk is to determine that the ini-
tial software requirements are not well understood. A project-specific activity per-
formed to manage the risk is to develop a throwaway prototype, with the goal of
getting feedback from the users in order to help clarify the requirements.
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Requirements

Analysis

Design

Implementation

Test

Core Workflows

Phases

Inception Elaboration Construction Transition

iteration

#1

iteration

#2

iteration

#n-1

iteration

#n
--- --- --- --- ---

Iterations

Figure 3.8. Unified Software Development Process
(Jacobson et al, THE UNIFIED SOFTWARE DEVELOPMENT PROCESS, Figure 1.5
“Unified Software Development Process” p. 11, c© 1999 Pearson Educa-
tion, Inc. Reproduced by permission of Pearson Education, Inc.)

3.1.7 Unified Software Development Process

The Unified Software Development Process (USDP), as described in Jacobson
et al. (1999), is a use case–driven software process that uses the UML notation. The
USDP is also known as the Rational Unified Process (RUP) (Kroll and Kruchten
2003; Kruchten 2003). USDP/RUP is a popular process for UML-based software
development. This section describes how the PLUS method can be used with the
USDP/RUP process.

The USDP consists of five core workflows and four phases and is iterative, as
shown in Figure 3.8. An artifact is defined as a piece of information that is produced,
modified, or used by a process (Kruchten 2003). A workflow is defined as a sequence
of activities that produces a result of observable value (Kruchten 2003). A phase is
defined as the time between two major milestones during which a well-defined set
of objectives is met, artifacts are completed, and decisions about whether to move
on to the next phase are made (Kruchten 2003). There is usually more than one
iteration in a phase; thus, a phase iteration in USDP corresponds to a cycle in the
spiral model.

Each cycle goes through all four phases and addresses the development of a core
workflow. The workflows and products of each workflow are as follows:

1. Requirements. The product of the requirements workflow is the use case
model.

2. Analysis. The product of the analysis workflow is the analysis model.
3. Design. The products of the design workflow are the design model and the

deployment model.
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4. Implementation. The product of the implementation workflow is the imple-
mentation model.

5. Test. The product of the test workflow is the test model.

Like the spiral model, the USDP is a risk-driven process. The life cycle phases
of the USDP are as follows (Jacobson, Booch, and Rumbaugh 1999; Kruchten
2003):

1. Inception. During the inception phase, the seed idea is developed to a suffi-
cient level to justify entering the elaboration phase.

2. Elaboration. During the elaboration phase, the software architecture is
defined.

3. Construction. During the construction phase, the software is built to the point
at which it is ready for release to the user community.

4. Transition. During the transition phase, the software is turned over to the user
community.

3.2 DESIGN VERIFICATION AND VALIDATION

Boehm (1981) differentiates between software validation and software verification.
The goal of software validation is to ensure that the software development team
“builds the right system,” that is, to ensure that the system conforms to the user’s
needs. The goal of software verification is to ensure that the software development
team “builds the system right,” that is, to ensure that each phase of the software
system is built according to the specification defined in the previous phase.

Topics discussed briefly in this section are software quality assurance and perfor-
mance analysis of software designs. Another important activity is testing the fully
integrated system against the software requirements, which is carried out during
system testing, as described in Section 3.3 on software testing.

3.2.1 Software Quality Assurance

Software quality assurance is a name given to a set of activities whose goal is to
ensure the quality of the software product. Software verification and validation are
important goals of software quality assurance.

Throwaway prototyping can be used for validation of the system (before it is
developed) against the user requirements, to help ensure that the team “builds
the right system,” that is, a system that actually conforms to the user’s require-
ments. Throwaway prototypes can also be used for experimental prototyping of the
design.

Software technical reviews can help considerably with software verification and
validation. In software verification, it is important to ensure that the design con-
forms to the software requirements specification. Requirements tracing and techni-
cal reviews of the software design help with this activity.
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3.2.2 Performance Analysis of Software Designs

Analyzing the performance of a software design before implementation is neces-
sary to estimate whether the design will meet its performance goals. If potential
performance problems can be detected early in the life cycle, steps can be taken to
overcome them.

Approaches for evaluating software designs use queuing models (Menascé,
Almeida, and Dowdy 2004; Menascé, Gomaa, and Kerschberg 1995; Menascé and
Gomaa 2000) and simulation models (Smith 1990). For concurrent systems, Petri
nets (David 1994; Jensen 1997; Pettit and Gomaa 2006; Stansifer 1994) can be used
for modeling and analyzing concurrent designs. An approach described in (Gomaa
2000) is to analyze the performance of real-time designs by using real-time schedul-
ing theory.

3.3 SOFTWARE LIFE CYCLE ACTIVITIES

Whichever software life cycle is adopted, the software engineering activities briefly
described in the following sections will need to be carried out.

3.3.1 Requirements Analysis and Specification

In this phase, the user’s requirements are identified and analyzed. The requirements
of the system to be developed are specified in a Software Requirements Specifica-
tion (SRS). The SRS is an external specification of the software. Its goal is to provide
a complete description of what the system’s external behavior is without describing
how the system works internally. The issues of what constitutes a SRS are described
lucidly in Davis (1993).

With some systems, such as embedded systems, in which the software is part of a
larger hardware/software system, it is likely that a systems requirements analysis and
specification phase precedes the software requirements analysis and specification.
With this approach, system functional requirements are allocated to software and
hardware before software requirements analysis begins (Davis 1993).

3.3.2 Architectural Design

A software architecture (Bass, Clements, and Kazman 2003; Shaw and Garlan
1996) separates the overall structure of the system, in terms of components and
their interconnections, from the internal details of the individual components. The
emphasis on components and their interconnections is sometimes referred to as
programming-in-the-large, and detailed design of individual components is referred
to as programming-in-the-small. During this phase, the system is structured into its
constituent components and the interfaces between these components are defined.

3.3.3 Detailed Design

During the detailed design phase, the algorithmic details of each system compo-
nent are defined. This is often achieved using a Program Design Language (PDL)
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notation, also referred to as Structured English or pseudocode. Internal data struc-
tures are also designed.

3.3.4 Coding

During the coding phase, each component is coded in the programming language
selected for the project. Usually a set of coding and documentation standards have
to be adhered to.

3.4 SOFTWARE TESTING

Because of the difficulty of detecting errors and then locating and correcting the
detected errors, software systems are usually tested in several stages (Ammann
and Offutt 2008). Unit and integration testing are “white box” testing approaches,
requiring knowledge of the internals of the software; system testing is a “black box”
testing approach based on the software requirements specification, without knowl-
edge of the software internals.

3.4.1 Unit Testing

In unit testing, an individual component is tested before it is combined with other
components. Unit testing approaches use test-coverage criteria. Frequently used
test-coverage criteria are statement coverage and branch coverage. Statement cov-
erage requires that each statement should be executed at least once. Branch cover-
age requires that every possible outcome of each branch should be tested at least
once.

3.4.2 Integration Testing

Integration testing involves combining tested components into progressively more
complex groupings of components and then testing these groupings until the whole
software system has been put together and the interfaces tested.

3.4.3 System Testing

System testing is the process of testing an integrated hardware and software system
to verify that the system meets its specified requirements (IEEE 1990). The whole
system or major subsystems are tested to determine conformance with the require-
ments specification. To achieve greater objectivity, it is preferable to have system
testing performed by an independent test team.

During system testing, several features of the software system need to be tested
(Beizer 1995). These include the following:

■ Functional testing. To determine that the system performs the functions
described in the requirements specification.

■ Load (stress) testing. To determine whether the system can handle the large and
varied workload it is expected to handle when operational.
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■ Performance testing. To test that the system meets its response time require-
ments.

3.4.4 Acceptance Testing

The user organization or its representative usually carries out acceptance testing,
typically at the user installation, prior to acceptance of the system. Most of the issues
relating to system testing also apply to acceptance testing.

3.5 SUMMARY

This chapter has taken a software life cycle perspective on software development.
Various software life cycle models, also referred to as software process models
(including the spiral model and the Unified Software Development Process) were
briefly described and compared. The roles of design verification and validation and
of software testing were discussed. Chapter 5 describes the use case–based software
life cycle for the COMET method.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a software life cycle?
(a) The life of the software
(b) A cyclic approach to developing

software
(c) A phased approach to developing

software
(d) The life of software developed in

cycles
2. What is the waterfall life cycle model?

(a) Software developed under a water-
fall

(b) A process model in which each
phase is completed before the next
phase is started

(c) A process model in which phases
are overlapped

(d) A process model in which phases
are cyclic

3. Which of the following is a limitation of
the waterfall life cycle model?
(a) Software is developed in phases.
(b) Each phase is completed before the

next phase is started.
(c) Software development is cyclic.
(d) Software requirements are not

properly tested until a working sys-
tem is available.

4. Which of the following approaches can
overcome the limitation in the previous
question?
(a) Phased software development
(b) Throwaway prototyping
(c) Evolutionary prototyping
(d) Incremental development

5. What is evolutionary prototyping?
(a) Phased software development
(b) Throwaway prototyping
(c) Risk-driven development
(d) Incremental development

6. What approach does the spiral model
emphasize?
(a) Phased software development
(b) Throwaway prototyping
(c) Risk-driven development
(d) Incremental development

7. What is the goal of software valida-
tion?
(a) Building the system
(b) Building the right system
(c) Building the system right
(d) Testing the system

8. What is the goal of software verifica-
tion?
(a) Building the system
(b) Building the right system
(c) Building the system right
(d) Testing the system
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9. What is “white box” testing?
(a) Unit testing
(b) Integration testing
(c) Testing with knowledge of the sys-

tem internals
(d) Testing without knowledge of the

software internals

10. What is “black box” testing?
(a) System testing
(b) Integration testing
(c) Testing with knowledge of the sys-

tem internals
(d) Testing without knowledge of the

software internals
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Software Design and Architecture Concepts

This chapter describes key software design concepts that have shown their value
over the years for the design of software architectures. First, object-oriented con-
cepts are introduced, and objects and classes are described. Then there is a discus-
sion of the role of information hiding in object-oriented design and an introduc-
tion to the concept of inheritance. Next, the concurrent processing concept and the
concept of concurrent objects in concurrent applications are introduced. This is fol-
lowed by an overview of software design patterns, software architecture, and the
main characteristics of component-based systems. Finally, the concept of software
quality attributes is discussed. Examples in this chapter are described in UML. An
overview of the UML notation is given in Chapter 2.

Section 4.1 provides an overview of object-oriented concepts. Section 4.2
describes information hiding. Section 4.3 describes inheritance and generalization/
specialization relationships. Section 4.4 provides an overview of concurrent pro-
cessing. Section 4.5 gives an overview of software design patterns, with the actual
patterns described in subsequent chapters. Section 4.6 provides an overview of soft-
ware architecture and the main characteristics of component-based systems. Finally,
Section 4.7 gives an introduction to software quality attributes.

4.1 OBJECT-ORIENTED CONCEPTS

The term object-oriented was first introduced in connection to object-oriented pro-
gramming and Smalltalk, although the object-oriented concepts of information hid-
ing and inheritance have earlier origins. Information hiding and its use in software
design date back to Parnas (1972), who advocated using information hiding as a way
to design modules that were more self-contained and, hence, could be changed with
little or no impact on other modules. The concepts of classes and inheritance were
first used in Simula 67 (Dahl and Hoare 1972), but only with the introduction of
Smalltalk did they start gaining widespread acceptance.

Object-oriented concepts are considered important in software development
because they address fundamental issues of adaptation and evolution. Because the

45
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object-oriented model of software development is considered especially conducive
to evolution and change, the software modeling approach takes an object-oriented
perspective. This section describes object-oriented concepts at the problem (analy-
sis) level and the solution (design) level.

4.1.1 Objects and Classes

An object is a real-world physical or conceptual entity that provides an understand-
ing of the real world and, hence, forms the basis for a software solution. A real-world
object can have physical properties (they can be seen or touched); examples are a
door, motor, or lamp. A conceptual object is a more abstract concept, such as an
account or transaction.

Object-oriented applications consist of objects. From a design perspective, an
object groups both data and procedures that operate on the data. The procedures
are usually called operations or methods. Some approaches, including the UML
notation, refer to the operation as the specification of a function performed by an
object and the method as the implementation of the function (Rumbaugh et al.
2005). In this book, the term operation refers to both the specification and the imple-
mentation, in common with Gamma et al. (1995), Meyer (2000), and others.

The signature of an operation specifies the operation’s name, the operation’s
parameters, and the operation’s return value. An object’s interface is the set of oper-
ations it provides, as defined by the signatures of the operations. An object’s type
is defined by its interface. An object’s implementation is defined by its class. Thus,
Meyer refers to a class as an implementation of an abstract data type (Meyer 2000).

An object (also referred to as an object instance) is a single “thing” – for exam-
ple, John’s car or Mary’s account. A class (also referred to as an object class) is a
collection of objects with the same characteristics; for example, Account, Employee,
Car, or Customer. Figure 4.1 depicts a class Customer and two objects a Customer and
another Customer that are instances of the class Customer. The objects an Account
and another Account are instances of the class Account.

Figure 4.1. Examples of classes and objects
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Figure 4.2. Example of a class with attributes

An attribute is a data value held by an object in a class. Each object has a specific
value of an attribute. Figure 4.2 shows a class with attributes. The class Account has
two attributes: account Number and balance. Two objects of the Account class are
shown: an Account and another Account. Each account has specific values of the
attributes. For example, the value of account Number of the object an Account is
1234, and the value of account Number of the object another Account is 5678. The
value of balance of the former object is $525.36, and the value of balance of the latter
is $1,897.44. An attribute name is unique within a class, although different classes
may have the same attribute name; for example, both the Customer and Employee
classes have attributes name and address.

An operation is the specification of a function performed by an object. An object
has one or more operations. The operations manipulate the values of the attributes
maintained by the object. Operations may have input and output parameters. All
objects in the same class have the same operations. For example, the class Account
has the operations read Balance, credit, debit, open, and close. Figure 4.3 shows the
Account class with its operations.

An object is an instance of a class. Individual objects are instantiated as required
at execution time. Each object has a unique identity, which is the characteristic
that distinguishes it from other objects. In some cases, this identity may be an
attribute (e.g., an account number or a customer name), but it does not need to be
an attribute. Consider two blue balls: they are identical in every respect; however,
they have different identities.

Figure 4.3. Example of class with attributes and operations
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4.2 INFORMATION HIDING

Information hiding is a fundamental software design concept relevant to the design
of all software systems. Early systems were frequently error-prone and difficult
to modify because they made widespread use of global data. Parnas (1972, 1979)
showed that by using information hiding, developers could design software systems
to be substantially more modifiable by greatly reducing or – ideally – eliminating
global data. Parnas advocated information hiding as a criterion for decomposing a
software system into modules. Each information hiding module should hide a design
decision that is considered likely to change. Each changeable decision is called the
secret of the module. With this approach, the goal of design for change could be
achieved.

4.2.1 Information Hiding in Object-Oriented Design

Information hiding is a basic concept of object-oriented design. Information hiding
is used in designing the object, in particular when deciding what information should
be visible and what information should be hidden. Those parts of an object that
need not be visible to other objects are hidden; therefore, if the internals of the
object change, only this object is affected. The term encapsulation is also used to
describe information hiding by an object.

With information hiding, the information that could potentially change is encap-
sulated (i.e., hidden) inside an object. The information can be externally accessed
only indirectly by the invocation of operations – access procedures or functions –
that are also part of the object. Only these operations can access the information
directly; thus, the hidden information and the operations that access it are bound
together to form an information hiding object. The specification of the operations
(i.e., the name and the parameters of the operations) is called the interface of the
object. The object’s interface is also referred to as the abstract interface, virtual inter-
face, or external interface. The interface represents the visible part of the object –
that is, the part that is revealed to users of the object. Other objects call the opera-
tions provided by the object.

A potential problem in application software development is that an impor-
tant data structure, one that is accessed by several objects, might need to be
changed. Without information hiding, any change to the data structure is likely
to require changes to all the objects that access that data structure. Informa-
tion hiding can be used to hide the design decision concerning the data struc-
ture, its internal linkage, and the details of the operations that manipulate it.
The information hiding solution is to encapsulate the data structure in an object.
The data structure is accessed only directly by the operations provided by the
object.

Other objects may only indirectly access the encapsulated data structure by call-
ing the operations of the object. Thus, if the data structure changes, the only object
affected is the one containing the data structure. The external interface supported
by the object does not change; hence, the objects that indirectly access the data
structure are not affected by the change. This form of information hiding is called
data abstraction.
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X

Stack array

1

N

Push Pop

Index

Stack implemented 

as array

Max Size = N

Note: This diagram does not conform to the UML notation.

Figure 4.4. Example of global access to stack array

4.2.2 Example of Information Hiding

An example of information hiding in software design is given next and compared
with the functional approach, which does not use information hiding. To illustrate
the benefits of information hiding, consider the functional and information hiding
solutions to the following problem. A stack is accessed by several modules; the mod-
ules are procedures or functions in the functional solution and objects in the infor-
mation hiding solution. In the functional solution, the stack is a global data structure.
With this approach, each module accesses the stack directly, so each module needs
to know the representation of the table (array or linked list) in order to manipulate
it (Figure 4.4).

The information hiding solution is to hide the representation of the stack – for
example, an array – from the objects needing to access it. An information hiding
object – the stack object – is designed as follows (Figure 4.5):

■ A set of operations is defined to manipulate the data structure. In the case of the
stack, typical operations are push, pop, full, and empty.

push (in item) pop (out item) empty

X

Stack
information
hiding object

Stack array

Index

Max Size

full

Note: This diagram does not conform to the UML notation.

Figure 4.5. Example of a stack information hiding object implemented as
an array
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Note: This diagram does not conform to the UML notation.

Figure 4.6. Example of global access to a stack linked list

■ The data structure is defined. In the case of the stack, for example, a one-
dimensional array is defined. A variable is defined to refer to the top of the
stack, and another variable has the value of the size of the array.

■ Other objects are not permitted to access the data structure. They can call the
object’s operations to push an item onto the stack or pop an item off the stack.

Now assume that the design of the stack is changed from an array to a linked
list. Consider its impact on the functional and information hiding solutions. In both
cases, the data structure for the stack has to change. However, in the functional
solution, the stack is implemented as a global data structure, so every module that
accesses the stack also has to change because it operates directly on the data struc-
ture. Instead of manipulating array indexes, the module has to manipulate the point-
ers of the linked list (Figure 4.6).

In the information hiding solution, in addition to the internal stack data structure
changing drastically, the internals of the information hiding object’s operations have
to change because they now access a linked list instead of an array (Figure 4.7).
However, the external interface of the object, which is what is visible to the other

push (in item) pop (out item) empty

Stack linked list

X

Top

Bottom

# Entries

Max Size

full

Note: This diagram does not conform to the UML notation.

Figure 4.7. Example of a stack information hiding object implemented as a
linked list
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Figure 4.8. Example of a stack information hiding class

objects, does not change. Thus, the objects that use the stack are not affected by
the change; they continue to call the object’s operations without even needing to be
aware of the change.

The same concepts can be applied to designing a stack class, which is a template
for creating stack objects. A stack class is defined, which hides the data structure
to be used for the stack and specifies the operations that manipulate it, as shown in
Figure 4.8. Individual stack objects are instantiated as required by the application.
Each stack object has its own identity. It also has its own local copy of the stack
data structure, as well as a local copy of any other instance variables required by the
stack’s operations.

4.2.3 Designing Information Hiding Objects

The main purpose of the previous two examples is to illustrate the benefits of infor-
mation hiding. It is important to realize that encapsulation raises the level of abstrac-
tion by abstracting away the internal complexity of the object. This increases the size
of granularity. It is only necessary to consider the interface, not the internal com-
plexity; thus, in the stack example, we do not need to initially consider the inter-
nal details of the stack. In fact, we should start the design of an information hiding
object by considering what interface the object should provide. For the design of the
stack, for example, the interface needs to provide push, pop, empty, and full oper-
ations. For a message queue, there should be operations to enqueue and dequeue
a message; the actual data structure for the queue can be decided later. In applying
information hiding to the design of the I/O device interface, the crucial issue is the
specification of the operations that constitute the virtual device interface, and not
the details of how to interface to the real-world device.

Thus, the design of an object (or class) is a two-step process – first to design the
interface, which is the external view, and then to design the internals. The first step is
part of the high-level design, and the second step is part of the detailed design. This
is likely to be an iterative process because there are usually tradeoffs to consider in
deciding what should be externally visible and what should not. It is generally not a
good idea to reveal all the variables encapsulated in an object – for example, through
get and set operations – because that means that little information is hidden.

4.3 INHERITANCE AND GENERALIZATION/SPECIALIZATION

Inheritance is a useful abstraction mechanism in analysis and design. Inheritance
naturally models objects that are similar in some, but not all, respects; thus, the
objects have some common properties as well as unique properties that distin-
guish them. Inheritance is a classification mechanism that has been widely used in
other fields. An example is the taxonomy of the animal kingdom, in which animals



52 Overview

are classified as mammals, fish, reptiles, and so on. Cats and dogs have common
properties that are generalized into the properties of mammals. However, they also
have unique properties (e.g., a dog barks and a cat mews).

Inheritance is a mechanism for sharing and reusing code between classes. A child
class inherits the properties (encapsulated data and operations) of a parent class. It
can then adapt the structure (i.e., encapsulated data) and behavior (i.e., operations)
of its parent class. The parent class is referred to as a superclass or base class. The
child class is referred to as a subclass or derived class. The adaptation of a par-
ent class to form a child class is referred to as specialization. Child classes may be
further specialized, allowing the creation of class hierarchies, also referred to as
generalization/specialization hierarchies.

Class inheritance is a mechanism for extending an application’s functionality by
reusing the functionality specified in parent classes. Thus, a new class can be incre-
mentally defined in terms of an existing class. A child class can adapt the encapsu-
lated data (referred to as instance variables) and operations of its parent class. It
adapts the encapsulated data by adding new instance variables. It adapts the oper-
ations by adding new operations or by redefining existing operations. It is also pos-
sible for a child class to suppress an operation of the parent; however, such sup-
pression is not recommended, because in that case the subclass no longer shares the
interface of the superclass.

Consider the example of bank accounts given in Figure 4.9. Checking accounts
and savings accounts have some attributes in common and others that are differ-
ent. The attributes that are common to all accounts – namely, account Number and
balance – are made attributes of an Account superclass. Attributes specific to a
savings account, such as cumulative Interest (in this bank, checking accounts do
not accumulate any interest), are made attributes of the subclass Savings Account.
Attributes specific to a checking account, such as last Deposit Amount, are made
attributes of the subclass Checking Account.

# accountNumber : Integer

# balance : Real = 0

+ readBalance () : Real

+ credit (amount : Real)

+ debit (amount : Real)

+ open (accountNumber : Integer)

+ close ()

- lastDepositAmount : Real = 0

+ credit (amount : Real)

+ readLastDepositAmount() : Real

- cumulativeInterest : Real = 0 

+ addInterest (interestRate : Real)

+ readCumulativeInterest () : Real

Figure 4.9. Example of a generalization/specialization hierarchy
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For each of the subclasses, new operations are added. For the Savings Account
subclass, the new operations are read Cumulative Interest to read cumulative Interest,
and add Interest to add the daily interest. For the Checking Account subclass, the
new operation is read Last Deposit Amount. This example is treated in more detail in
Chapter 14.

4.4 CONCURRENT PROCESSING

An object may be active or passive. Whereas objects are often passive – that is,
they wait for another object to invoke an operation and never initiate any actions –
some object-oriented methods and languages, such as Ada and Java, support active
objects. Active objects, also referred to as concurrent objects, execute indepen-
dently of other active objects.

4.4.1 Sequential and Concurrent Applications

A sequential application is a sequential program that consists of passive objects and
has only one thread of control. When an object invokes an operation in another
object, control is passed from the calling operation to the called operation. When the
called operation finishes executing, control is passed back to the calling operation.
In a sequential application, only synchronous message communication (procedure
call or method invocation) is supported.

In a concurrent application, there are typically several concurrent objects, each
with its own thread of control. Asynchronous message communication is supported,
so a concurrent source object can send an asynchronous message to a concurrent
destination object and then continue executing, regardless of when the destination
object receives the message. If the destination object is busy when the message
arrives, the message is buffered for the object.

4.4.2 Concurrent Objects

Concurrent objects are also referred to as active objects, concurrent processes, con-
current tasks, or threads (Gomaa 2000). A concurrent object (active object) has
its own thread of control and can execute independently of other objects. Passive
objects have operations that are invoked by concurrent objects. Passive objects can
invoke operations in other passive objects. A passive object has no thread of con-
trol; thus, passive objects are instances of passive classes. An operation of a passive
object, once invoked by a concurrent object, executes within the thread of control
of the concurrent object.

A concurrent object represents the execution of a sequential program or a
sequential component in a concurrent program. Each concurrent object deals with
one sequential thread of execution; thus, no concurrency is allowed within a con-
current object. However, overall system concurrency is achieved by the execution
of multiple concurrent objects in parallel. Concurrent objects often execute asyn-
chronously (i.e., at different speeds) and are relatively independent of each other
for significant periods of time. From time to time, concurrent objects need to com-
municate with each other and synchronize their actions.
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4.4.3 Cooperation between Concurrent Objects

In the design of concurrent systems, several problems need to be considered that
do not arise in the design of sequential systems. In most concurrent applications,
concurrent objects must cooperate with each other in order to perform the services
required by the application. The following three problems commonly arise when
concurrent objects cooperate with each other:

1. The mutual exclusion problem occurs when concurrent objects need to have
exclusive access to a resource, such as shared data or a physical device. A vari-
ation on this problem, in which the mutual exclusion constraint can sometimes
be relaxed, is the multiple readers and writers problem.

2. The synchronization problem occurs when two concurrent objects need to
synchronize their operations with each other.

3. The producer/consumer problem occurs when concurrent objects need to
communicate with each other in order to pass data from one concurrent object
to another. Communication between concurrent objects is often referred to as
interprocess communication (IPC).

4.4.4 Synchronization Problem

Event synchronization is used when two tasks need to synchronize their operations
without communicating data between the tasks. The source task executes a signal
(event) operation, which signals that an event has taken place. Event synchroniza-
tion is asynchronous. In the UML, the two tasks are depicted as active objects with
an asynchronous event signal sent from the sender task to the receiver task. The
destination task executes a wait (event) operation, which suspends the task until the
source task has signaled the event. If the event has already been signaled, the desti-
nation task is not suspended. An example is given next.

Example of Synchronization between Concurrent Objects
Consider an example of event synchronization from concurrent robot systems. Each
robot system is designed as a concurrent object and controls a moving robot arm. A
pick-and-place robot brings a part to the work location so that a drilling robot can
drill four holes in the part. On completion of the drilling operation, the pick-and-
place robot moves the part away.

Several synchronization problems need to be solved here. First, there is a colli-
sion zone where the pick-and-place and drilling robot arms could potentially collide.
Second, the pick-and-place robot must deposit the part before the drilling robot can
start drilling the holes. Third, the drilling robot must finish drilling before the pick-
and-place robot can remove the part. The solution is to use event synchronization,
as described next.

The pick-and-place robot moves the part to the work location, moves out of the
collision zone, and then signals the event part Ready. This signal awakens the drilling
robot, which moves to the work location and drills the holes. After completing the
drilling operation, the drilling robot moves out of the collision zone and then signals
a second event, part Completed, which the pick-and-place robot is waiting to receive.
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Figure 4.10. Example of synchronization between concurrent objects

After being awakened, the pick-and-place robot removes the part. Each robot exe-
cutes a loop, because the robots repetitively perform their operations. The solution
is as follows (see also Figure 4.10):

Pick-and-Place Robot

while workAvailable do
Pick up part
Move part to work location
Release part
Move robot arm to safe position
signal (partReady)
wait (partCompleted)
Pick up part
Remove part from work location
Place part

end while;

Drilling Robot

while workAvailable do
wait (partReady)
Move robot arm to work location
Drill four holes
Move robot arm to safe position
signal (partCompleted)

end while;

4.4.5 Producer/Consumer Problem

A common problem in concurrent systems is that of producer and consumer con-
current objects. The producer concurrent object produces information, which is then
consumed by the consumer concurrent object. In a concurrent system, each concur-
rent object has its own thread of control and the concurrent objects execute asyn-
chronously. It is therefore necessary for the concurrent objects to synchronize their
operations when they wish to exchange data. Thus, the producer must produce the
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data before the consumer can consume it. If the consumer is ready to receive the
data but the producer has not yet produced it, then the consumer must wait for
the producer. If the producer has produced the data before the consumer is ready
to receive it, then either the producer has to be held up or the data needs to be
buffered for the consumer, thereby allowing the producer to continue.

A common solution to this problem is to use message communication between
the producer and consumer concurrent objects. Message communication between
concurrent objects serves two purposes:

1. Transfer of data from a producer (source) concurrent object to a consumer
(destination) concurrent object.

2. Synchronization between producer and consumer. If no message is available,
the consumer has to wait for the message to arrive from the producer. In some
cases, the producer waits for a reply from the consumer.

Message communication between concurrent objects may be asynchronous or
synchronous. The concurrent objects may reside on the same node or be distributed
over several nodes in a distributed application. With asynchronous message com-
munication, the producer sends a message to the consumer and continues without
waiting for a response. With synchronous message communication, the producer
sends a message to the consumer and then immediately waits for a response.

4.4.6 Asynchronous Message Communication

With asynchronous message communication, also referred to as loosely coupled
message communication, the producer sends a message to the consumer and either
does not need a response or has other functions to perform before receiving a
response. Thus, the producer sends a message and continues without waiting for
a response. The consumer receives the message. As the producer and consumer
concurrent objects proceed at different speeds, a first-in-first-out (FIFO) message
queue can build up between producer and consumer. If there is no message avail-
able when the consumer requests one, the consumer is suspended.

An example of asynchronous message communication is given in Figure 4.11, in
which the producer concurrent object sends messages to the consumer concurrent
object. A FIFO message queue can exist between the producer and the consumer.

4.4.7 Synchronous Message Communication with Reply

In the case of synchronous message communication with reply, also referred to
as tightly coupled message communication with reply, the producer sends a mes-
sage to the consumer and then waits for a reply. When the message arrives, the
consumer accepts the message, processes it, generates a reply, and then sends

1: sendAsynchronousMessage (in message)

aProducer aConsumer

Figure 4.11. Asynchronous (loosely coupled) message communication
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1: sendSynchronousMessageWithReply

(in message, out response)

aProducer aConsumer

Figure 4.12. Synchronous (tightly coupled) message communication with reply

the reply. The producer and consumer then both continue. The consumer is sus-
pended if no message is available. For a given producer/consumer pair, no message
queue develops between the producer and the consumer. It is also possible to have
synchronous message communication without replydesing pattern as described in
Chapter 12.

An example of synchronous message communication with reply is given in Fig-
ure 4.12 in which the producer sends a message to the consumer; after receiving the
message, the consumer sends a reply to the producer.

4.5 DESIGN PATTERNS

In software design, one frequently encounters a problem that one has solved before
on a different project. Often the context of the problem is different; it might be
a different application, a different platform, or a different programming language.
Because of the different context, one usually ends up redesigning and reimplement-
ing the solution, thereby falling into the “reinventing the wheel” trap. The field of
software patterns, including architectural and design patterns, is helping developers
avoid unnecessary redesign and reimplementation.

The concept of a pattern was first developed by Christopher Alexander in the
architecture of buildings and described in his book The Timeless Way of Build-
ing (Alexander 1979). In software, the field of design patterns was popularized by
Gamma, Helms, Johnson, and Vlissides in their book Design Patterns (1995), in
which they described 23 design patterns. Later, Buschmann et al. (1996) described
patterns that span different levels of abstraction, from high-level architectural pat-
terns through design patterns to low-level idioms.

A design pattern describes a recurring design problem to be solved, a solution
to the problem, and the context in which that solution works (Buschmann et al.
1996; Gamma et al. 1995). The description specifies objects and classes that are cus-
tomized to solve a general design problem in a particular context. A design pattern
is a larger-grained form of reuse than a class because it involves more than one class
and the interconnection among objects from different classes. A design pattern is
sometimes referred to as a microarchitecture.

After the original success of the design pattern concept, other kinds of patterns
were developed. The main kinds of reusable patterns are as follows:

■ Design patterns. In a widely cited book (Gamma et al. 1995), design patterns
were described by four software designers – Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides – who were named in some quarters as the
“gang of four.” A design pattern is a small group of collaborating objects.
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■ Architectural patterns. This work was described by Buschmann et al. (1996) at
Siemens. Architectural patterns are larger-grained than design patterns, address-
ing the structure of major subsystems of a system.

■ Analysis patterns. Analysis patterns were described by Fowler (2002), who
found similarities during analysis of different application domains. He described
recurring patterns found in object-oriented analysis and described them with
static models, expressed in class diagrams.

■ Product line–specific patterns. These are patterns used in specific application
areas, such as factory automation (Gomaa 2005) or electronic commerce. By
concentrating on a specific application domain, design patterns can provide more
tailored domain-specific solutions.

■ Idioms. Idioms are low-level patterns that are specific to a given programming
language and describe implementation solutions to a problem that use the fea-
tures of the language – for example, Java or C++. These patterns are closest
to code, but they can be used only by applications that are coded in the same
programming language.

4.6 SOFTWARE ARCHITECTURE AND COMPONENTS

A software architecture (Bass et al. 2003; Shaw and Garlan 1996) separates the over-
all structure of the system, in terms of components and their interconnections, from
the internal details of the individual components. This section describes the design
of component interfaces, an important issue in software architecture. It describes
how interfaces are specified before describing provided and required interfaces, and
connectors that interconnect components.

4.6.1 Components and Component Interfaces

The term component is used in different ways. It is often used in a general sense to
mean modular systems, in which the modules could be developed in different ways
depending on the particular platform the software architecture.

A component is a self-contained, usually concurrent, object with a well-defined
interface that is capable of being used in applications different from that for which
it was originally designed. To fully specify a component, it is necessary to define
it in terms of the operations it provides and the operations it requires (Magee et al.
1994; Shaw and Garlan 1996). Such a definition is in contrast to conventional object-
oriented approaches, which describe an object only in terms of the operations it pro-
vides. However, if a preexisting component is to be integrated into a component-
based system, it is just as important to understand – and therefore to represent
explicitly – both the operations that the component requires and those that it pro-
vides.

4.6.2 Connectors

In addition to defining the components, a software architecture must define the
connectors that join the components. A connector encapsulates the intercon-
nection protocol between two or more components. Different kinds of message
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communication between components include asynchronous (loosely coupled) and
synchronous (tightly coupled). The interaction protocols for each of these types of
communication can be encapsulated in a connector. For example, although asyn-
chronous message communication between components on the same node is log-
ically the same as between components on different nodes, different connectors
would be used in the two cases. In the former case, the connector could use a shared
memory buffer; the latter case would use a different connector that sends messages
over a network.

4.7 SOFTWARE QUALITY ATTRIBUTES

Software quality attributes (Bass, Clements, and Kazman 2003) refer to the quality
requirements of the software, which are often referred to as nonfunctional require-
ments. Each of the nonfunctional requirements needs to be explicitly considered
in the design of the software architecture. The quality attributes are addressed and
evaluated at the time the software architecture is developed, and can have a pro-
found effect on the quality of a software product. The quality attributes include the
following:

■ Maintainability. The extent to which software is capable of being changed after
deployment.

■ Modifiability. The extent to which software is capable of being modified during
and after initial development.

■ Testability. The extent to which software is capable of being tested.
■ Traceability. The extent to which products of each phase can be traced back to

products of previous phases.
■ Scalability. The extent to which the system is capable growing after its initial

deployment.
■ Reusability. The extent to which software is capable of being reused.
■ Performance. The extent to which the system meets its performance goals, such

as throughput and response times.
■ Security. The extent to which the system is resistant to security threats.
■ Availability. The extent to which the system is capable of addressing system

failure.

4.8 SUMMARY

This chapter described key concepts in software design and important concepts for
developing component-based software architectures. The object-oriented concepts
introduced here form the basis of several of the forthcoming chapters. Chapter 7
describes how static modeling is applied to modeling software systems. Chapters 9,
10, and 11 describe how dynamic modeling is applied to modeling software systems.
Chapters 9 and 11 describe dynamic modeling between objects using object interac-
tion modeling, and Chapter 10 focuses on dynamic modeling within an object using
finite state machines.
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This chapter introduced nonfunctional requirements in terms of software qual-
ity attributes. Specifying nonfunctional requirements is described in Chapter 6,
whereas Chapter 20 describes how the software quality attributes are addressed
in the software architecture. Design patterns are described in more detail in
Chapter 12.

This chapter also described the concepts of component-based software architec-
tures, emphasizing component fundamentals rather than technologies, which tend
to change frequently. The development of component-based software architectures
is described further in Chapter 17.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. Which of the following are object-
oriented concepts?
(a) Modules and interfaces
(b) Modules and information hiding
(c) Classes, information hiding, and

inheritance
(d) Concurrency and information hid-

ing
2. Which of the following is a characteris-

tic of an object?
(a) A function or subroutine
(b) A module
(c) Groups data and procedures that

operate on the data
(d) Groups a function and an algorithm

3. What is a class?
(a) An object instance
(b) The implementation of the object
(c) A collection of objects with the

same characteristics
(d) A collection of objects with differ-

ent characteristics
4. What is an operation (also known as

method) of a class?
(a) Specification and the implementa-

tion of a function performed by a
class

(b) Specification and the implementa-
tion of a subroutine provided by a
class

(c) Specification and the implementa-
tion of a function or procedure pro-
vided by a class

(d) Specification and the implementa-
tion of an interface provided by a
class

5. What is the signature of an operation?
(a) The operation’s name

(b) The operation’s function or sub-
routine

(c) The operation’s name, parameters,
and return value

(d) The object’s interface
6. What is the interface of a class?

(a) The signature of a class
(b) The specification of operations pro-

vided by the class
(c) The internals of the class
(d) The implementation of the class

7. What is an attribute?
(a) A description of a class
(b) An internal property of a class
(c) A data item held by a class
(d) A parameter of a class

8. What is information hiding in software
design?
(a) Hiding information so that it can-

not be found
(b) Hiding a design decision that is con-

sidered likely to change
(c) Hiding information to make it

secure
(d) Encapsulating data in a class

9. What is data abstraction?
(a) Another name for information hid-

ing
(b) Encapsulating data so that its struc-

ture is hidden
(c) Storing data in a database
(d) Storing data in a data structure

10. What is inheritance?
(a) A mechanism for inheriting charac-

teristics from a parent
(b) A mechanism for sharing and re-

using code between classes
(c) A mechanism for sharing data be-

tween classes
(d) A mechanism for hiding informa-

tion between classes
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Overview of Software Modeling
and Design Method

The software modeling and design method described in this book is called COMET
(Collaborative Object Modeling and Architectural Design Method), which uses the
UML notation. COMET is an iterative use case–driven and object-oriented method
that specifically addresses the requirements, analysis, and design modeling phases
of the software development life cycle. This chapter considers the COMET method
from a software life cycle perspective. The development process for the COMET
method is a use case–based software process, which is compatible with the Unified
Software Development Process (USDP) (Jacobson, Booch, and Rumbaugh 1999)
and the spiral model (Boehm 1988). This chapter presents the COMET use case–
based software life cycle and describes how the COMET method may be used with
the USDP or the spiral model. It then outlines the main activities of the COMET
method and concludes with a description of the steps in using COMET.

Section 5.1 describes the COMET use case–based software life cycle, and Section
5.2 compares COMET with other software processes. Section 5.3 gives an overview
of the requirements, analysis, and design modeling activities in COMET. Section 5.4
gives an overview of the design of different kinds of software architectures covered
in this textbook.

5.1 COMET USE CASE–BASED SOFTWARE LIFE CYCLE

The COMET use case–based software life cycle model is a highly iterative software
development process based around the use case concept. In the requirements model,
the functional requirements of the system are described in terms of actors and use
cases. Each use case defines a sequence of interactions between one or more actors
and the system. In the analysis model, the use case is realized to describe the objects
that participate in the use case and their interactions. In the design model, the soft-
ware architecture is developed, describing components and their interfaces. The full
COMET use case–based software life cycle model is illustrated in Figure 5.1 and
described next. The COMET life cycle is highly iterative. The COMET method ties
in the three phases of requirements, analysis, and design modeling by means of a
use case–based approach, as outlined next.
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5.1.1 Requirements Modeling

During the requirements modeling phase, a requirements model is developed in
which the functional requirements of the system are described in terms of actors
and use cases. A narrative description of each use case is developed. User inputs
and active participation are essential to this effort. If the requirements are not well
understood, a throwaway prototype can be developed to help clarify the require-
ments, as described in Chapter 2.

5.1.2 Analysis Modeling

In the analysis modeling phase, static and dynamic models of the system are devel-
oped. The static model defines the structural relationships among problem domain
classes. The classes and their relationships are depicted on class diagrams. Object
structuring criteria are used to determine the objects to be considered for the anal-
ysis model. A dynamic model is then developed in which the use cases from the
requirements model are realized to show the objects that participate in each use case
and how they interact with each other. Objects and their interactions are depicted
on either communication diagrams or sequence diagrams. In the dynamic model,
state-dependent objects are defined using statecharts.

5.1.3 Design Modeling

In the design modeling phase, the software architecture of the system is designed,
in which the analysis model is mapped to an operational environment. The analysis
model, with its emphasis on the problem domain, is mapped to the design model,
with its emphasis on the solution domain. Subsystem structuring criteria are pro-
vided to structure the system into subsystems, which are considered as aggregate
or composite objects. Special consideration is given to designing distributed sub-
systems as configurable components that communicate with each other using mes-
sages. Each subsystem is then designed. For sequential systems, the emphasis is on
the object-oriented concepts of information hiding, classes, and inheritance. For the
design of concurrent systems, such as real-time, client/server, and distributed appli-
cations, it is necessary to consider concurrent tasking concepts in addition to object-
oriented concepts.

5.1.4 Incremental Software Construction

After completion of the software architectural design, an incremental software con-
struction approach is taken. This approach is based on selecting a subset of the sys-
tem to be constructed for each increment. The subset is determined by choosing
the use cases to be included in this increment and the objects that participate in
these use cases. Incremental software construction consists of the detailed design,
coding, and unit testing of the classes in the subset. This is a phased approach by
which the software is gradually constructed and integrated until the whole system is
built.
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5.1.5 Incremental Software Integration

During incremental software integration, the integration testing of each software
increment is performed. The integration test for the increment is based on the
use cases selected for the increment. Integration test cases are developed for each
use case. Integration testing is a form of white box testing, in which the interfaces
between the objects that participate in each use case are tested.

Each software increment forms an incremental prototype. After the software
increment is judged to be satisfactory, the next increment is constructed and inte-
grated by iterating through the incremental software construction and incremental
software integration phases. However, if significant problems are detected in the
software increment, iteration through the requirements modeling, analysis model-
ing, and design modeling phases might be necessary.

5.1.6 System Testing

System testing includes the functional testing of the system – namely, testing the
system against its functional requirements. This testing is black box testing and is
based on the black box use cases. Thus, functional test cases are built for each black
box use case. Any software increment released to the customer needs to go through
the system testing phase.

5.2 COMPARISON OF THE COMET LIFE CYCLE WITH
OTHER SOFTWARE PROCESSES

This section briefly compares the COMET life cycle with the Unified Software
Development Process (USDP) and the spiral model. The COMET method can be
used in conjunction with either the USDP or the spiral model.

5.2.1 Comparison of the COMET Life Cycle with Unified Software
Development Process

The USDP, as described in Jacobson, Booch, and Rumbaugh (1999) and briefly
described in Chapter 3, emphasizes process and – to a lesser extent – method. The
USDP provides considerable detail about the life cycle aspects and some detail
about the method to be used. The COMET method is compatible with USDP. The
workflows of the USDP are the requirements, analysis, design, implementation, and
test workflows.

Each phase of the COMET life cycle corresponds to a workflow of the USDP.
The first three phases of COMET have the same names as the first three work-
flows of the USDP – not surprising, because the COMET life cycle was strongly
influenced by Jacobson’s earlier work (Jacobson 1992). The COMET incremental
software construction activity corresponds to the USDP implementation workflow.
The incremental software integration and system test phases of COMET map to
the test workflow of USDP. COMET separates these activities because integration
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testing is viewed as a development team activity, whereas a separate test team
should carry out system testing.

5.2.2 Comparison of the COMET Life Cycle with the Spiral Model

The COMET method can also be used with the spiral model (Boehm 1988). Dur-
ing the project planning for a given cycle of the spiral model, the project manager
decides what specific technical activity should be performed in the third quadrant,
which is the product development quadrant. The selected technical activity, such as
requirements modeling, analysis modeling, or design modeling, is then performed
in the third quadrant. The risk analysis activity, performed in the second quadrant,
and cycle planning, performed in the fourth quadrant, determine how many itera-
tions are required through each of the technical activities.

5.3 REQUIREMENTS, ANALYSIS, AND DESIGN MODELING

The UML notation supports requirements, analysis, and design concepts. The
COMET method described in this book separates requirements activities, analy-
sis activities, and design activities. It should be emphasized that the UML models
need to be supplemented with additional information to fully describe the software
architecture.

Requirements modeling addresses developing the functional and nonfunctional
requirements of the system. COMET differentiates analysis from design as follows:
analysis is breaking down or decomposing the problem so it is understood better;
design is synthesizing or composing (putting together) the solution. These activities
are described in more detail in the next sections.

5.3.1 Activities in Requirements Modeling

In the requirements model, the system is considered as a black box. The use case
model is developed.

■ Use case modeling. Define actors and black box use cases. The functional
requirements of the system are described in terms of use cases and actors. The
use case descriptions are a behavioral view; the relationships among the use cases
give a structural view. Use case modeling is described in Chapter 6.

■ Addressing nonfunctional requirements is also important at the requirements
phase. The UML notation does not address this. However, the use case mod-
eling approach can be supplemented to address nonfunctional requirements, as
described in Chapter 6.

5.3.2 Activities in Analysis Modeling

In the analysis model, the emphasis is on understanding the problem; hence, the
emphasis is on identifying the problem domain objects and the information passed
between them. Issues such as whether the object is active or passive, whether the
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message sent is asynchronous or synchronous, and what operation is invoked at the
receiving object are deferred until design time.

In the analysis model, the analysis of the problem domain is considered. The
activities are as follows:

■ Static modeling. Define problem-specific static model. This is a structural view
of the information provided in the system. Classes are defined in terms of their
attributes, as well as their relationship with other classes. Operations are defined
in the design model. For information-intensive systems, this view is of great
importance. The emphasis is on the information modeling of real-world classes
in the problem domain. Static modeling is described in Chapter 7.

■ Object structuring. Determine the objects that participate in each use case.
Object structuring criteria are provided to help determine the software objects
in the system, which can be entity objects, boundary objects, control objects,
and application logic objects. Object structuring is described in Chapter 8. After
the objects have been determined, the dynamic interactions between objects are
depicted in the dynamic model.

■ Dynamic interaction modeling. The use cases are realized to show the interac-
tion among the objects participating in each use case. Communication diagrams
or sequence diagrams are developed to show how objects communicate with
each other to execute the use case. Chapter 9 describes stateless dynamic mod-
eling, including the dynamic interaction modeling approach, which is used to
help determine how objects interact with each other to support the use cases.
Chapter 11 describes state-dependent dynamic interaction modeling, in which
the interaction among the state-dependent control objects and the statecharts
they execute is explicitly modeled.

■ Dynamic state machine modeling. The state-dependent view of the system is
defined using hierarchical statecharts. Each state-dependent object is defined
in terms of its constituent statechart. Designing finite state machines and state-
charts is described in Chapter 10.

5.3.3 Activities in Design Modeling

In the design model, the solution domain is considered. During this phase, the anal-
ysis model is mapped to a concurrent design model. For designing software archi-
tectures, the following activities are performed:

■ Integrate the object communication model. Develop integrated object commu-
nication diagram(s). This is described in Chapter 13.

■ Make decisions about subsystem structure and interfaces. Develop the over-
all software architecture. Structure the application into subsystems. This is
described in Chapter 13.

■ Make decisions about what software architectural and design patterns to use
in the software architecture. Software architectural patterns are described in
Chapters 12, 15, 16, 17, and 18.

■ Make decisions about class interfaces, in particular for sequential software archi-
tectures. For each subsystem, design the information hiding classes (passive
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classes). Design the operations of each class and the parameters of each oper-
ation. This is described in Chapter 14.

■ Make decisions about how to structure the distributed application into dis-
tributed subsystems, in which subsystems are designed as configurable
components, and define the message communication interfaces between the
components. This is described in Chapters 13, 15, 16, and 17.

■ Make decisions about the characteristics of objects, particularly whether they
are active or passive. For each subsystem, structure the system into concur-
rent tasks (active objects). During task structuring, tasks are structured using
the task-structuring criteria, and task interfaces are defined. This is described in
Chapter 18.

■ Make decisions about the characteristics of messages, particularly whether they
are asynchronous or synchronous (with or without reply). Architectural commu-
nication patterns are described in Chapters 12, 13, 15, 16, 17, and 18.

COMET emphasizes the use of structuring criteria at certain stages in the anal-
ysis and design process. Object structuring criteria are used to help determine the
objects in the system, subsystem structuring criteria are used to help determine the
subsystems, and concurrent object structuring criteria are used to help determine
the concurrent (active) objects in the system. UML stereotypes are used through-
out to clearly show the use of the structuring criteria.

5.4 DESIGNING SOFTWARE ARCHITECTURES

During software design modeling, design decisions are made relating to the charac-
teristics of the software architecture. The chapters in the design modeling section of
this textbook describe the design of different kinds of software architectures:

■ Object-Oriented Software Architectures. Chapter 14 describes object-oriented
design using the concepts of information hiding, classes, and inheritance.

■ Client/Server Software Architectures. Chapter 15 describes the design of
client/server software architectures. A typical design consists of one server and
multiple clients.

■ Service-Oriented Architectures. Chapter 16 describes the design of service-
oriented architectures, which typically consist of multiple distributed
autonomous services that can be composed into distributed software applica-
tions.

■ Distributed Component-Based Software Architectures. Chapter 17 describes
the design of component-based software architectures, which can be deployed
to execute on distributed platforms in a distributed configuration.

■ Real-Time Software Architectures. Chapter 18 describes the design of real-time
software architectures, which are concurrent architectures usually having to deal
with multiple streams of input events. They are typically state-dependent, with
either centralized or decentralized control.

■ Software Product Line Architectures. Chapter 19 describes the design of soft-
ware product line architectures, which are architectures for families of products
that need to capture both the commonality and variability in the family.
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5.5 SUMMARY

This chapter described the COMET use case–based software life cycle for the de-
velopment of UML-based object-oriented software applications. It compared the
COMET life cycle with the USDP and the spiral model, and described how the
COMET method can be used with either the USDP or the spiral model. The chapter
then described the main activities of the COMET method and concluded with a
description of the steps in using COMET. Each of the steps in the COMET method
is described in more detail in the subsequent chapters of this textbook.

For software intensive systems, in which the software is one component of a
larger hardware/software system, systems modeling can be carried out before soft-
ware modeling. A dialect of UML called SysML is a general purpose modeling lan-
guage for systems engineering applications (Friedenthal et al 2009).

EXERCISES

The following questions relate to the
software modeling and design method
(COMET) described in this book.

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is carried out during requirements
modeling?
(a) Functional requirements of the sys-

tem are described in terms of func-
tions, inputs, and outputs.

(b) Functional requirements of the sys-
tem are described in terms of actors
and use cases.

(c) Functional requirements of the sys-
tem are described textually.

(d) Functional requirements of the sys-
tem are determined by interviewing
users.

2. What is carried out during analysis
modeling?
(a) Developing use case models
(b) Developing data flow and entity-

relationship diagrams
(c) Developing static and dynamic

models
(d) Developing software architectures

3. What is carried out during design mod-
eling?
(a) Developing use case models

(b) Developing data flow and entity-
relationship diagrams

(c) Developing static and dynamic
models

(d) Developing software architectures
4. What is carried out during incremental

software construction?
(a) Detailed design and coding of the

classes in a subset of the system
(b) Detailed design, coding, and unit

testing of the classes in a subset of
the system

(c) Coding and unit testing of the
classes in a subset of the system

(d) Unit and integration testing of the
classes in a subset of the system

5. What is carried out during incremental
software integration?
(a) Implementation of the classes in

each software increment
(b) Unit testing of the classes in each

software increment
(c) Integration testing of the classes in

each software increment
(d) System testing of the classes in each

software increment
6. What is carried out during system test-

ing?
(a) White box testing
(b) Black box testing
(c) Unit testing
(d) Integration testing
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Use Case Modeling

The requirements of a system describe what the user expects from the system – in
other words, what the system will do for the user. When defining the requirements
of a system, the system should be viewed as a black box, so that only the exter-
nal characteristics of the system are considered. Both functional and nonfunctional
requirements need to be considered. Requirements modeling consists of require-
ments analysis and requirements specification.

Use case modeling is an approach for describing the functional requirements of
the system, as described in this chapter. The system’s data requirements in terms of
the information that needs to be stored by the system are determined using static
modeling, as described in Chapter 7. The inputs to the system and the outputs from
the system are described initially in the use case models and then specified in more
detail during static modeling.

This chapter gives an overview of software requirements analysis and specifica-
tion in Section 6.1. It then goes on to describe the use case approach to defining
functional requirements, as well as how to extend use cases to describe nonfunc-
tional requirements. This chapter describes the concepts of actors and use cases,
and then goes on to describe use case relationships, in particular, the include and
extend relationships. Section 6.2 gives an overview of use case modeling followed
by an example of a simple use case. Section 6.3 then describes actors and their
role in use case modeling. The important topic of how to identify use cases is cov-
ered in Section 6.4. Section 6.5 describes how to document use cases. Section 6.6
gives some examples of use case descriptions. Section 6.7 then describes use case
relationships. Modeling with the include relationship is described in Section 6.8;
modeling with the extend relationship is described in Section 6.9. Use case
guidelines are described in Section 6.10, specifying nonfunctional requirements is
described in Section 6.11, use case packages are described in Section 6.12, and
how to describe use cases more precisely using activity diagrams is described in
Section 6.13.

71
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6.1 REQUIREMENTS MODELING

There are two main reasons for developing a new software system: either to replace
a manual system or to replace an existing software system. In the first case, the new
system is developed to replace a manual system, in which records might be kept on
paper documents and stored in filing cabinets. Alternatively, the new system might
be developed to replace an existing software system that has become seriously out-
dated, for example, because it runs on obsolete hardware (such as a centralized
mainframe system) or because it was developed using an obsolete language such as
Cobol and/or because the system has little or no documentation. Whether develop-
ing a new system or replacing an existing system, it is very important to specify the
requirements of the new system precisely and unambiguously. There are frequently
many users of the system; in a large company, these might be engineers, market-
ing and sales staff, managers, IT staff, administrative staff, etc. The requirements
of each group of users, often referred to as stakeholders, must be understood and
specified.

6.1.1 Requirements Analysis

The software requirements describe the functionality that the system must pro-
vide for the users. Requirements analysis involves analyzing the requirements – for
example, by interviewing users – and analyzing the existing system(s), manual or
automated. Questions to ask users include the following: What is your role in the
current system (manual or automated)? How do you use the current system? What
are the advantages and limitations of the current system? What features should the
new system provide for you? Analyzing an existing manual system involves under-
standing and documenting the current system, determining which features of the
current system should be automated and which should remain manual, and dis-
cussing with users what functions could be done differently when the system is auto-
mated. Analyzing an existing software system necessitates extracting the software
requirements, separating functional requirements from functions that result from
design or implementation decisions, identifying nonfunctional requirements, decid-
ing what functions should be done differently, and what new functions should be
added.

6.1.2 Requirements Specification

After the analysis, the requirements need to be specified. The requirements spec-
ification is the document that needs to be agreed on by the requirements analysts
and the users. It is the starting point for the subsequent design and development,
so it must also be understood by the developers. Both functional requirements and
nonfunctional requirements need to be specified.

A functional requirement describes the functionality the system must be capa-
ble of providing in order to fulfill the purpose of the system. In defining a functional
requirement, it is necessary to describe what functionality the system needs to pro-
vide, what information needs to be input to the system from the external environ-
ment (such as external users, external systems, or external devices), what the system
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needs to output to the external environment, and what stored information the sys-
tem reads or updates. For example, for a functional requirement to view the bal-
ance of a bank account, the user would need to input the account number, and the
system would need to read the balance from the customer account and output the
balance.

A nonfunctional requirement, sometimes referred to as a quality attribute, refers
to a quality-of-service goal that the system must fulfill. Examples of nonfunctional
requirements are a performance requirement specifying a system response time
of 2 seconds, an availability requirement specifying a system must be operational
for 99% of the time, or a security requirement, such as protection from system
penetration.

6.1.3 Quality Attributes of Software Requirements Specification

The following attributes are considered desirable for a well-written Software
Requirements Specification (SRS):

■ Correct. Each requirement is an accurate interpretation of the user’s needs.
■ Complete. The SRS includes every significant requirement. In addition, the SRS

needs to define the system’s response to every possible input, whether it is cor-
rect or incorrect. Finally, there should not be any “TBDs”.

■ Unambiguous. This means that every stated requirement has only one interpre-
tation. Vague statements must be replaced.

■ Consistent. This refers to ensuring that individual requirements do not conflict.
There might be conflicting terms, such as two terms that refer to the same con-
cept. There might be conflicting requirements, such as one requirement mak-
ing an incorrect assumption about a requirement upon which it depends. There
might also be problems when a new requirement is added at a later stage that
conflicts with an existing requirement.

■ Verifiable. The requirements specification is, in effect, a contract between the
developer and the customer organization. Software acceptance criteria are
developed from the requirements specification. It is therefore necessary that
every requirement can be tested to determine that system meets requirement.

■ Understandable by non-computer specialists. Because the users of the system
are likely to be non-computer specialists, it is important that the requirements
specification be written in a narrative text that is easily understood.

■ Modifiable. Because the requirements specification is likely to go through sev-
eral iterations and needs to evolve after the system has been deployed, it is nec-
essary for the requirements specification to be modifiable. To assist with this
goal, the requirements specification needs to have a table of contents, an index,
and cross-references. Each requirement should only be stated in one place; oth-
erwise, inconsistencies could creep into the specification.

■ Traceable. The requirements specification needs to be traceable backwards to
the system level requirements and to the user needs. It also needs to be traceable
forwards to the design component(s) that satisfy each requirement and to the
code components that implement each requirement.
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Frequently, dilemmas arise in the process of developing a requirements spec-
ification because some of these goals are conflicting. For example, to make the
requirements specification understandable might conflict with the goals of mak-
ing it consistent and unambiguous. User involvement is required at all stages of
the requirements specification process to ensure that user needs are incorporated
into the requirements specification. Ideally, users should be on the requirements
specification team. Several reviews need to be held with users. Developing a throw-
away prototype can be helpful to clarify user requirements, as described in Chap-
ter 3. Prototyping is especially useful for automating a manual system when users
might have little idea of what an automated system would be like. An overview of
quality attributes is given in Chapter 4, and a detailed description is presented in
Chapter 20.

6.2 USE CASES

In the use case modeling approach, functional requirements are described in terms
of actors, which are users of the system, and use cases. A use case defines a sequence
of interactions between one or more actors and the system. In the requirements
phase, the use case model considers the system as a black box and describes the
interactions between the actor(s) and the system in a narrative form consisting
of user inputs and system responses. The use case model describes the functional
requirements of the system in terms of the actors and use cases. The system is treated
as a black box – that is, dealing with what the system does in response to the actor’s
inputs, not the internals of how it does it. During subsequent analysis modeling (see
Chapter 8), the objects that participate in each use case are determined.

A use case always starts with input from an actor. A use case typically consists
of a sequence of interactions between the actor and the system. Each interaction
consists of an input from the actor followed by a response from the system. Thus, an
actor provides inputs to the system and the system provides responses to the actor.
The system is always considered as a black box, so that its internals are not revealed.
Whereas a simple use case might involve only one interaction between an actor and
the system, a more typical use case will consist of several interactions between the
actor and the system. More complex use cases might also involve more than one
actor.

Consider a simple banking example in which an automated teller machine
(ATM) allows customers to withdraw cash from their bank accounts. There is one
actor, the ATM Customer, and one use case, Withdraw Funds, as shown in Figure 6.1.
The Withdraw Funds use case describes the sequence of interactions between the

ATM Customer

Withdraw Funds

Figure 6.1. Example of actor and use case
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customer and the system; the use case starts when the customer inserts an ATM
card into the card reader, then responds to the system’s prompt for the PIN, and
eventually receives the cash dispensed by the ATM machine.

6.2.1 A Simple Use Case

As an example of a very simple use case, consider View Alarms from the Emergency
Monitoring System. There is one actor, the Monitoring Operator, who can request
to view the status of all alarms. The essentials of the use case description consist of
the following:

■ The name of the use case, View Alarms.
■ The name of the actor, Monitoring Operator.
■ A one-sentence use case summary, which provides a brief description.
■ The description of the main sequence of events. For this use case, the first step

is the operator request and the second step is the system response.
■ The description of any alternative to the main sequence. For this use case, there

could be an alternative at step 2, which would be executed if there is a monitoring
emergency.

Use case name: View Alarms
Summary: The monitoring operator views outstanding alarms.
Actor: Monitoring Operator
Main sequence:

1. The monitoring operator requests to view the outstanding alarms.
2. The system displays the outstanding alarms. For each alarm, the sys-

tem displays the name of the alarm, alarm description, location of
alarm, and severity of alarm (high, medium, low).

Alternative sequences:
Step 2: Emergency situation. System displays emergency warning message
to operator.

A more comprehensive approach to documenting a use case description is given
in Section 6.5, and a more detailed example is presented in Section 6.6.

Monitoring Operator

View Alarms

Figure 6.2. Example of simple use case
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6.3 ACTORS

An actor characterizes an external user (i.e., outside the system) that interacts with
the system (Rumbaugh et al. 2005). In the use case model, actors are the only exter-
nal entities that interact with the system; in other words, actors are outside the sys-
tem and not part of it.

6.3.1 Actors, Roles, and Users

An actor represents a role played in the application domain, typically by a human
user. A user is an individual, whereas an actor represents the role played by all users
of the same type. For example, there are several customers in the Banking System,
who are all represented by the ATM Customer actor. Thus, ATM Customer actor models
a user type, and individual customers are instances of the actor.

An actor is very often a human user. For this reason, in UML, an actor is
depicted using a stick figure. In many information systems, humans are the only
actors. In other systems, however, there are other types of actors in addition to or
in place of human actors. Thus, it is possible for an actor to be an external system
that interfaces to the system. In some applications, an actor can also be an external
I/O device or a timer. External I/O device and timer actors are particularly preva-
lent in real-time embedded systems, in which the system interacts with the external
environment through sensors and actuators.

6.3.2 Primary and Secondary Actors

A primary actor initiates a use case. Thus, the use case starts with an input from
the primary actor to which the system has to respond. Other actors, referred to as
secondary actors, can participate in the use case. A primary actor in one use case
can be a secondary actor in another use case. At least one actor must gain value
from the use case; usually, this is the primary actor.

An example of primary and secondary actors is shown in Figure 6.3. The Remote
System actor initiates the Generate Monitoring Data use case, in which the remote
system sends monitoring data that is displayed to monitoring operators. In this
use case, the Remote System is the primary actor that initiates the use case, and
the Monitoring Operator is a secondary actor who receives the monitoring data and,
hence, gains value from the use case.

Remote System

(primary actor)

Generate Monitoring 

Data

Monitoring Operator

«external system actor»

(secondary actor)

«human actor»

Figure 6.3. Example of primary and secondary actors, as
well as external system actor
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Monitoring Sensor

(primary actor)

Generate Alarm

Monitoring Operator

«input device actor»

(secondary actor)

«human actor»

Figure 6.4. Example of input device actor

6.3.3 Modeling Actors

A human actor typically uses various I/O devices to physically interact with the sys-
tem. Frequently, a human actor interacts with the system via standard I/O devices,
such as a keyboard, display, or mouse. In some cases, however, a human actor might
interact with the system via nonstandard I/O devices, such as various sensors. In all
these cases, the human is the actor and the I/O devices are not actors. Thus, the
actor is an end-user.

Consider some examples of human actors. In the Emergency Response System,
an example of an actor is the Monitoring Operator who interacts with the system
via standard I/O devices, as shown in Figure 6.2. Another example of a human actor
is an ATM customer (Figure 6.1) who interacts with the Banking System by using
several I/O devices, including a card reader, cash dispenser, and receipt printer, in
addition to a keyboard and display.

An actor can also be an external system actor that either initiates (as primary
actor) or participates (as secondary actor) in the use case. An example of an exter-
nal system actor is the Remote System in the Emergency Monitoring System. The
Remote System initiates the Generate Monitoring Data use case, as shown in Fig-
ure 6.3. The remote system sends monitoring data that is displayed to monitoring
operators.

In some case, an actor can be an input device actor or an input/output device
actor. This can happen when there is no human involvement with the use case and
the actor providing external input to the system is an input device or I/O device.
Typically, the input device actor interacts with the system via a sensor. An exam-
ple of an input device actor is Monitoring Sensor, which provides sensor input to the
Generate Alarm use case shown in Figure 6.4. The Monitoring Operator is also a sec-
ondary actor in this use case.

An actor can also be a timer actor that periodically sends timer events to the
system. Periodic use cases are needed when certain information needs to be output
by the system on a regular basis. An example of a timer actor is given in Figure 6.5.

Report Timer

Display Weekly Report

User

«timer actor»

(secondary actor)(primary actor)

«human actor»

Figure 6.5. Example of timer actor
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Remote Sensor

Monitoring Sensor Remote System

Figure 6.6. Generalization and specialization of actors

The Report Timer actor initiates the Display Daily Report use case, which periodically
(e.g., at noon every day) prepares a daily report and displays it to the user. In this
example, the timer is the primary actor and the user is the secondary actor. In use
cases in which a timer is the primary actor, it is usually the secondary actor (the user
in this example) who gains value from the use case.

If it is possible for a human user to play two or more independent roles, this
is represented by a different actor for each role. For example, the same user might
play, at different times, both an ATM Operator role (when replenishing the ATM cash
dispenser with cash) and an ATM Customer role (when withdrawing cash) and thus
be modeled by two actors.

In some systems, different actors might have some roles in common but other
roles that are different. In this situation, the actors can be generalized, so that the
common part of their roles is captured as a generalized actor and the different parts
by specialized actors. As an example, consider the Emergency Response System
(Chapter 23), in which two actors, a Monitoring Sensor actor and a Remote System
actor, behave in a similar way by monitoring remote sensors and sending sensor data
and alarms to the system. This similar behavior can be modeled by a generalized
actor, Remote Sensor, which represents the common role (i.e., the behavior that is
common to both the specialized actors), as shown in Figure 6.6.

6.3.4 Who Is the Actor?

Sometimes it is not clear who the actor is. In fact, the first assessment may not be
correct. For example, in the use case Report Stolen Card, in which a user actor
phones the bank to inform them that the ATM card has been stolen, it would seem
obvious that the customer is the actor. However, if the customer in fact talks over
the phone to a bank clerk, who actually enters the information into the system, then
it is the clerk who is the actor.

6.4 IDENTIFYING USE CASES

To determine the use cases in the system, it is useful to start by considering the actors
and the interactions they have with the system. Each use case describes a sequence
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ATM Customer

Withdraw Funds

Query Account

Transfer Funds

Figure 6.7. Banking System actor and use cases

of interactions between the actor and the system. In this way, the functional
requirements of the system are described in terms of the use cases, which consti-
tute a functional specification of a system. However, when developing use cases, it
is important to avoid a functional decomposition in which several small use cases
describe small individual functions of the system rather than describe a sequence of
events that provides a useful result to the actor.

Let us consider the banking example again. In addition to withdrawing cash from
the ATM, the ATM Customer actor is also allowed to query an account or transfer
funds between two accounts. Because these are distinct functions initiated by the
customer with different useful results, the query and transfer functions should be
modeled as separate use cases, rather than being part of the original use case. Thus,
the customer can initiate three use cases, as shown in Figure 6.7: Withdraw Funds,
Query Account, and Transfer Funds.

The main sequence of the use case describes the most common sequence of inter-
actions between the actor and the system. There may also be branches off the main
sequence of the use case that describe less frequent interactions between the actor
and the system. These alternative sequences are deviations from the main sequence
that are executed only under certain circumstances – for example, if the actor makes
an incorrect input to the system. Depending on the application requirements, an
alternative sequence through the use case can sometimes join up later with the main
sequence. The alternative sequences are also described in the use case.

In the Withdraw Funds use case, the main sequence is the sequence of steps for
successfully achieving a withdrawal. Alternative sequences are used to address var-
ious error cases, such as when the customer enters the wrong PIN and must be re-
prompted, when an ATM card is not recognized or has been reported stolen, and so
on.

Each sequence through the use case is called a scenario. A use case usu-
ally describes several scenarios, one main sequence and a number of alternative
sequences. Note that a scenario is a complete sequence through the use case, so a
scenario could start out executing the main sequence and then follow an alterna-
tive branch at the decision point. For example, one of the Withdraw Funds scenarios
starts with the main sequence of the customer inserting the ATM card into the card
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reader, entering the PIN number in response to the prompt but then receiving an
error message because the PIN was incorrect, and then entering the correct PIN.

6.5 DOCUMENTING USE CASES IN THE USE CASE MODEL

Each use case in the use case model is documented in a use case description, as
follows:

Use case name: Each use case is given a name.
Summary: A brief description of the use case, typically one or two sen-
tences.
Dependency: This optional section describes whether the use case depends
on other use cases – that is, whether it includes or extends another use
case.
Actors: This section names the actors in the use case. There is always a pri-
mary actor that initiates the use case. In addition, there may be secondary
actors that also participate in the use case. For example in the Withdraw
Funds use case, the ATM Customer is the only actor.
Preconditions: One or more conditions that must be true at the start of use
case, from the perspective of this use case; for example, the ATM machine
is idle, displaying a “Welcome” message.
Description of main sequence: The bulk of the use case is a narrative
description of the main sequence of the use case, which is the most usual
sequence of interactions between the actor and the system. The description
is in the form of the input from the actor, followed by the response of the
system.
Description of alternative sequences: Narrative description of alternative
branches off the main sequence. There may be several alternative branches
from the main sequence. For example, if the customer’s account has insuffi-
cient funds, display apology and eject card. The step in the use case at which
the alternative sequence branches off from the main sequence is identified
as well as a description of the alternative.
Nonfunctional requirements: Narrative description of nonfunctional
requirements, such as performance and security requirements.
Postcondition: Condition that is always true at the end of the use case (from
the perspective of this use case) if the main sequence has been followed; for
example, customer’s funds have been withdrawn.
Outstanding questions: During development, questions about the use case
are documented for discussions with users.

6.6 EXAMPLE OF USE CASE DESCRIPTION

An example of a use case is given in this section for Make Order Request, which is
one of the use cases from the Online Shopping System. Figure 6.8 shows a use case
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Browse Catalog

Make Order 
Request

Customer

View
Order Status

Figure 6.8. Online Shopping System actor and use cases

diagram for the customer-initiated use cases in the Online Shopping System. There
is one actor – namely, the Customer, who browses a catalog and requests to purchase
items – and three use cases that are the major functions initiated by the actor, which
are Browse Catalog, to browse the catalog and select items, Make Order Request, to
provide the account and credit card information for the purchase, and View Order,
to view the status of the order. In the main sequence of the Make Order Request use
case, the customer makes an order request to purchase items from an online catalog
and has sufficient credit to pay for the items. The alternative sequences deal with
other situations, which occur less frequently: the customer has no account and has
to create one, or the customer has an invalid credit card.

Use case name: Make Order Request
Summary: Customer enters an order request to purchase items from the
online shopping system. The customer’s credit card is checked for sufficient
credit to pay for the requested catalog items.
Actor: Customer
Precondition: The customer has selected one or more catalog items.
Main sequence:

1. Customer provides order request and customer account Id to pay for
purchase.

2. System retrieves customer account information, including the cus-
tomer’s credit card details.

3. System checks the customer’s credit card for the purchase amount
and, if approved, creates a credit card purchase authorization num-
ber.

4. System creates a delivery order containing order details, customer
Id, and credit card authorization number.

5. System confirms approval of purchase and displays order informa-
tion to customer.



82 Software Modeling

Alternative sequences:
Step 2: If customer does not have account, the system creates an account.
Step 3: If the customer’s credit card request is denied, the system prompts
the customer to enter a different credit card number. The customer can
either enter a different credit card number or cancel the order.
Postcondition: System has created a delivery order for the customer.

6.7 USE CASE RELATIONSHIPS

When use cases get too complex, dependencies between use cases can be defined
by using the include and extend relationships. The objective is to maximize exten-
sibility and reuse of use cases. Inclusion use cases are determined to identify com-
mon sequences of interactions in several use cases, which can then be extracted and
reused.

Another use case relationship provided by the UML is the use case generaliza-
tion. Use case generalization is similar to the extend relationship because it is also
used for addressing variations. However, users often find the concept of use case
generalization confusing, so in the COMET method, the concept of generalization
is confined to classes. Use case variations can be adequately handled by the extend
relationship.

6.8 THE INCLUDE RELATIONSHIP

After the use cases for an application are initially developed, common sequences
of interactions between the actor and the system can sometimes be determined that
span several use cases. These common sequences of interactions reflect functionality
that is common to more than one use case. A common sequence of interactions can
be extracted from several of the original use cases and made into a new use case,
which is called an inclusion use case. An inclusion use case is usually abstract; that
is, it cannot be executed on its own. An abstract use case must be executed as part
of a concrete – that is, executable – use case.

When this common functionality is separated into an inclusion use case, this use
case can now be reused by other use cases. It is then possible to define a more concise
version of the old use case, with the common interaction sequence removed. This
concise version of the old use case is referred to as a base use case (or concrete use
case), which includes the inclusion use case.

Inclusion use cases always reflect functionality that is common to more than one
use case. When this common functionality is separated into an inclusion use case,
the inclusion use case can be reused by several base (executable) use cases. Inclusion
use cases can often be developed only after an initial iteration in which several use
cases have been developed. Only then can repeated sequences of interactions be
observed that form the basis for the inclusion use cases.
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Figure 6.9. Example of an inclusion use case and include relationships

An inclusion use case is executed in conjunction with a base use case, which
includes and, hence, executes the inclusion use case. In programming terms, an
inclusion use case is analogous to a library routine, and a base use case is analo-
gous to a program that calls the library routine.

An inclusion use case might not have a specific actor. The actor is, in fact, the
actor of the base use case that includes the inclusion use case. Because different
base use cases use the inclusion use case, it is possible for the inclusion use case to
be used by different actors.

6.8.1 Example of Include Relationship and Inclusion Use Cases

As an example of an inclusion use case, consider a Banking System (see Banking
System case study described in Chapter 21). There is one actor, the ATM Customer.
Initial analysis of the system identifies three use cases, which are the major functions
initiated by the actor – the Withdraw Funds, Query Account, and Transfer Funds use
cases. In the Withdraw Funds use case, the main sequence involves reading the ATM
card, validating the customer’s PIN, checking that the customer has enough funds in
the requested account, and then – providing the validation is successful – dispensing
cash, printing a receipt, and ejecting the card. Further analysis of these three use
cases reveals that the first part of each use case – namely, reading the ATM card
and validating the customer’s PIN – is identical. There is no advantage to repeating
this sequence in each use case, so instead, the PIN validation sequence is split off
into a separate inclusion use case called Validate PIN, which is used by the (revised)
Withdraw Funds, Query Account, and Transfer Funds use cases. The use case diagram
for this example is shown in Figure 6.9. The relationship between the two types of
use cases is an include relationship; the Withdraw Funds, Query Account, and Transfer
Funds use cases include the Validate PIN use case.
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The main parts of the use case descriptions are given for the inclusion use case,
Validate PIN, and a base use case, Withdraw Funds, that includes the Validate PIN use
case:

Validate PIN Inclusion Use Case

Use case name: Validate PIN
Summary: System validates customer PIN.
Actor: ATM Customer
Precondition: ATM is idle, displaying a “Welcome” message.
Main sequence:

1. Customer inserts the ATM card into the card reader.
2. If system recognizes the card, it reads the card number.
3. System prompts customer for PIN.
4. Customer enters PIN.
5. System checks the card’s expiration date and whether the card has

been reported as lost or stolen.
6. If card is valid, system then checks whether the user-entered PIN

matches the card PIN maintained by the system.
7. If PIN numbers match, system checks what accounts are accessible

with the ATM card.
8. System displays customer accounts and prompts customer for

transaction type: withdrawal, query, or transfer.
Alternative sequences: (Description of alternatives as given in Chapter 21.)

Withdraw Funds Base Use Case

Use case name: Withdraw Funds
Summary: Customer withdraws a specific amount of funds from a valid
bank account.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a “Welcome” message.
Main sequence:

1. Include Validate PIN use case.
2. Customer selects Withdrawal.
3. (Continue with withdrawal description as given in Chapter 21.)

6.8.2 Structuring a Lengthy Use Case

The include relationship can also be used to structure a lengthy use case. The
base use case provides the high-level sequence of interactions between actor(s) and
system. Inclusion use cases provide lower-level sequences of interactions between
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Figure 6.10. Example of multiple inclusion use cases and include relationships

actor(s) and system. An example of this is the Manufacture High-Volume Part use
case (Figure 6.10), which describes the sequence of interactions in manufacturing
a part. This process involves receiving the raw material for the part to be manu-
factured (described in the Receive Part use case), executing a manufacturing step
at each factory workstation (described in the Process Part at High-Volume Worksta-
tion use case), and shipping the manufactured part (described in the Ship Part use
case).

6.9 THE EXTEND RELATIONSHIP

In certain situations, a use case can get very complex, with many alternative
branches. The extend relationship is used to model alternative paths that a use
case might take. A use case can become too complex if it has too many alterna-
tive, optional, and exceptional sequences of interactions. A solution to this problem
is to split off an alternative or optional sequence of interactions into a separate use
case. The purpose of this new use case is to extend the old use case, if the appropri-
ate condition holds. The use case that is extended is referred to as the base use case,
and the use case that does the extending is referred to as the extension use case.

Under certain conditions, a base use case can be extended by a description given
in the extension use case. A base use case can be extended in different ways, depend-
ing on which condition is true. The extend relationship can be used as follows:

■ To show a conditional part of the base use case that is executed only under cer-
tain circumstances

■ To model complex or alternative paths.

It is important to note that the base use case does not depend on the extension
use case. The extension use case, on the other hand, depends on the base use case
and executes only if the condition in the base use case that causes it to execute is
true. Although an extension use case usually extends only one base use case, it is
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possible for it to extend more than one. A base use case can be extended by more
than one extension use case.

6.9.1 Extension Points

Extension points are used to specify the precise locations in the base use case at
which extensions can be added. An extension use case may extend the base use case
only at these extension points (Fowler 2004; Rumbaugh et al. 2005).

Each extension point is given a name. The extension use case has one insertion
segment for the extension point. This segment is inserted at the location of its exten-
sion point in the base use case. The extend relationship can be conditional, meaning
that a condition is defined that must be true for the extension use case to be invoked.
Thus, it is possible to have more than one extension use case for the same extension
point, but with each extension use case satisfying a different condition.

A segment defines a behavior sequence to be executed when the extension point
is reached. When an instance of the use case is executed and reaches the extension
point in the base use case, if the condition is satisfied, then execution of the use case
is transferred to the corresponding segment in the extension use case. Execution
transfers back to the base use case after completion of the segment.

An extension point with multiple extension use cases can be used to model sev-
eral alternatives in which each extension use case specifies a different alternative.
The extension conditions are designed such that only one condition can be true and,
hence, only one extension use case selected, for any given situation.

The value of the extension condition is set during runtime execution of the use
case because, at any one time, one extension use case could be chosen and, at a
different time, an alternative extension use case could be chosen. In other words,
the extension condition is set and changes during runtime of the use case.

Although it is possible for an extension use case to extend a use case at more than
one extension point, this approach is only recommended if the extension points are
extended in the identical way by the extension use case. In particular, use of multiple
insertion segments within one extension use case is tricky and, therefore, considered
error-prone.

6.9.2 Example of Extension Point and Extension Use Cases

Consider the following example for a supermarket system (Figure 6.11). An exten-
sion point called payment is declared in a base use case called Checkout Customer.
The base use case deals with checking out a customer purchase. Three extension
use cases deal with the type of payment made: Pay by Cash, Pay by Credit Card, and
Pay by Debit Card. A selection condition is provided for each extension use case. The
extend relationship is annotated with the extension point name and the selection
condition – for example, «extend» (payment) [cash payment], as depicted in Figure
6.11. The mutually exclusive selection conditions are [cash payment], [credit card
payment], and [debit card payment], respectively. During execution of the use case,
depending on how the customer chooses to pay, the appropriate selection condition
is set to true.
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Figure 6.11. Example of an extend relationship and extension use cases

Checkout Customer Base Use Case

Use case name: Checkout Customer
Summary: System checks out customer.
Actor: Customer
Precondition: Checkout station is idle, displaying a “Welcome” message.
Main sequence:

1. Customer scans selected item.
2. System displays the item name, price, and cumulative total.
3. Customer repeats steps 1 and 2 for each item being purchased.
4. Customer selects payment.
5. System prompts for payment by cash, credit card, or debit card.
6. «payment»
7. System displays thank-you screen.

In this base use case description, at step 6 «payment» is a placeholder that identi-
fies the location at which the appropriate extension use case is executed. For the Pay
by Cash extension use case, the extension condition is a selection condition called
[cash payment]. This extension use case is executed if the condition [cash payment]
is true.

Pay by Cash Extension Use Case

Use case name: Pay by Cash
Summary: Customer pays by cash for items purchased.
Actor: Customer
Dependency: Extends Checkout Customer.
Precondition: Customer has scanned items but not yet paid for them.
Description of insertion segment:

1. Customer selects payment by cash.
2. System prompts customer to deposit cash in bills and/or coins.
3. Customer enters cash amount.
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4. System computes change.
5. System displays total amount due, cash payment, and change.
6. System prints total amount due, cash payment, and change on

receipt.

For the Pay by Credit Card extension use case, the selection condition is called
[credit card payment] (see Figure 6.11). This extension use case is executed if the
[credit card payment] condition is true, meaning that the user chose to pay by credit
card. Of course, if the user chose instead to pay by cash, then the Pay by Cash use
case would be executed instead.

Pay by Credit Card Extension Use Case

Use case name: Pay by Credit Card
Summary: Customer pays by credit card for items purchased.
Actor: Customer
Dependency: Extends Checkout Customer.
Precondition: Customer has scanned items but not yet paid for them.
Description of of insertion segment:

1. Customer selects payment by credit card.
2. System prompts customer to swipe card.
3. Customer swipes card.
4. System reads card ID and expiration date.
5. System sends transaction to authorization center containing

card ID, expiration date, and payment amount.
6. If transaction is approved, authorization center returns positive

confirmation.
7. System displays payment amount and confirmation.
8. System prints payment amount and confirmation on receipt.

The use case description for the Pay by Debit Card extension use case is handled
in a similar way, except that the customer also needs to enter a PIN. Pay by Cash has
a selection condition called [debit card payment].

6.10 USE CASE STRUCTURING GUIDELINES

Careful application of use case relationships can help with the overall organization
of the use case model; however, use case relationships should be employed judi-
ciously. It should be noted that small inclusion use cases corresponding to individ-
ual functions (such as Dispense Cash, Print Receipt, and Eject Card) should not
be considered. These functions are too small, and making them separate use cases
would result in a functional decomposition with fragmented use cases in which the
use case descriptions would be only a sentence each and not a description of a
sequence of interactions. The result would be a use case model that is overly com-
plex and difficult to understand – in other words, a problem of not being able to
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see the forest (the overall sequence of interactions) for the trees (the individual
functions)!

6.11 SPECIFYING NONFUNCTIONAL REQUIREMENTS

Nonfunctional requirements can be specified in a separate section of the use case
description, in much the same way that alternative sequences are specified. For
example, for the Validate PIN use case, there could be a security requirement that
the card number and PIN must be encrypted. There could also be a performance
requirement that the system must respond to the actor inputs within 5 seconds. If
the nonfunctional requirements apply to a group of related use cases, then they can
be documented as such, as described in the next section.

The nonfunctional requirements can be specified in a separate section of the use
case. For the Validate PIN use case, they would be described as follows:

Security requirement: System shall encrypt ATM card number and PIN.
Performance requirement: System shall respond to actor inputs within 5
seconds.

6.12 USE CASE PACKAGES

For large systems, having to deal with a large number of use cases in the use case
model often gets unwieldy. A good way to handle this scale-up issue is to introduce
a use case package that groups together related use cases. In this way, use case pack-
ages can represent high-level requirements that address major subsets of the func-
tionality of the system. Because actors often initiate and participate in related use
cases, use cases can also be grouped into packages based on the major actors that
use them. Nonfunctional requirements that apply to a group of related use cases
could be assigned to the use case package that contains those use cases.

For example, in the Emergency Monitoring System, the major actors of the sys-
tem are the Remote Sensor, Monitoring Operator, and Emergency Manager, each of
whom initiates and participates in several use cases. Figure 6.12 shows an example of
a use case package for the Emergency Monitoring System – namely, the Emergency
Monitoring Use Case Package, which encompasses four use cases. The Monitoring
Operator is the primary actor of the View Alarms and View Monitoring Data use cases
and a secondary actor of the other use cases. The Remote Sensor is the primary actor
of the Generate Alarm and Generate Monitoring Data use cases.

6.13 ACTIVITY DIAGRAMS

An activity diagram is a UML diagram depicting the flow of control and sequenc-
ing among activities. An activity diagram shows the sequence of activities, decision
nodes, loops, and even concurrent activities. Activity diagrams are widely used in
workflow modeling – for example, for service-oriented applications.
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A use case model can also be described using an activity diagram. How-
ever, to depict a use case, a subset of the activity diagram capabilities is suf-
ficient. In particular, it is not necessary to model concurrent activities for use
cases.

An activity diagram can be used to represent the sequential steps of a use case,
including the main sequence and all the alternative sequences. An activity diagram
can therefore be used to provide a more precise description of the use case, because
it shows exactly where in the sequence and what the condition is for an alterna-
tive sequence to diverge from the main sequence. An activity node can be used to
represent one or more sequential steps of the use case. A high-level activity node
can be used to represent a use case, which can then be decomposed into a separate
activity diagram. Activity diagrams can also be used to depict sequencing among use
cases.

For depicting a use case, an activity diagram uses activity nodes, decision
nodes, arcs to join sequential activity nodes, and loops. An activity node is used
to depict one or more steps in the use case description. A decision node is used
to depict a situation in which, based on the result of the decision, an alterna-
tive sequence could branch off from the main sequence. Depending on the use
case, the alternative sequence could rejoin the main sequence – for example, by
looping back to a previous activity node or rejoining the main sequence further
down.

Activity nodes can be aggregate nodes that are hierarchically decomposed to
give a lower-level activity diagram. This concept can be used to depict inclusion
and extension use cases. Thus, an activity node in a base use case can be used to
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represent a link to an inclusion (or extension) use case, which is then depicted on a
separate lower-level activity diagram.

An example of an activity diagram is given in Figure 6.13 for the Make Order
Request use case of the Online Shopping System (see Section 6.6). This use case
consists of a main sequence in which the customer makes an order request to pur-
chase items from an online catalog and has sufficient credit to pay for the items. The
alternative sequences are for creating a new customer account and for an invalid
credit card. Each decision point that results in an alternative scenario is explicitly
depicted. In the example, the customer enters the order request information, system
gets account information (with an alternative sequence to create a new account),
and requests credit card authorization. If the credit card is valid, the system creates
a new delivery order and displays the order. If the credit card is invalid, the system
displays an invalid credit card prompt.
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6.14 SUMMARY

This chapter provided an overview of requirements analysis and specification and
described the use case approach to defining the functional requirements of the sys-
tem. It described the concepts of actor and use cases. It also described use case
relationships, particularly the extend and include relationships.

The use case model has a strong influence on subsequent software development;
thus, use cases are realized in the analysis model during dynamic interaction model-
ing, as described in Chapters 9 and 11. For each use case, the objects that participate
in the use case are determined by using the object structuring criteria described in
Chapter 8, and the sequence of interactions between the objects is defined. Software
can be incrementally developed by selecting the use cases to be developed in each
phase of the project, as described in Chapter 5. Integration and system test cases
should also be based on use cases. Statecharts can also be used to depict the states
and transitions for a state-dependent use case, as described in Chapter 10.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a use case?
(a) A case study involving users
(b) A sequence of interactions between

the user and the system
(c) A sequence of interactions between

the user and the objects in the
system

(d) A sequence of user inputs to the
system

2. What is an actor in a use case?
(a) An object inside the system
(b) A person who performs on stage
(c) An external entity that interacts

with the system
(d) The customer to whom the system

will be delivered
3. What is a primary actor?

(a) The actor who goes on stage first
(b) The actor that starts the use case
(c) An actor that participates in the use

case
(d) An object inside the system

4. What is a secondary actor?
(a) The actor who goes on stage second
(b) The actor that starts the use case
(c) An actor that participates in the use

case
(d) An object inside the system

5. What is an alternative sequence in a use
case?

(a) A sequence that describes an error
case

(b) A sequence that is different from
the main sequence

(c) A sequence that describes interac-
tions with a secondary actor

(d) A sequence that describes interac-
tions with a primary actor

6. What can an inclusion use case be used
for?
(a) To describe an inclusive use case
(b) To describe a lengthy interaction

with an actor
(c) To describe functionality that is

common to more than one use case
(d) To describe a use case that includes

other use cases
7. What can an extension use case be used

for?
(a) To describe a lengthy interaction

with an actor
(b) To describe functionality that is

common to more than one use case
(c) To describe the functionality of a

use case that is extended by another
use case(s)

(d) To describe a conditional part of a
different use case that is only exe-
cuted under certain circumstances

8. What can an activity diagram be used
for in use case modeling?
(a) To depict the sequence of activities

executed by all the use cases in the
system
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(b) To depict the sequence of external
activities that the use case interacts
with

(c) To depict the sequence of active
objects in a use case

(d) To depict the activities in the main
and alternative sequences of a use
case

9. How can a nonfunctional requirement
be described in a use case model?
(a) In a separate section of the use case

description

(b) As a use case precondition
(c) As a use case postcondition
(d) In a separate document

10. What is a use case package?
(a) A package describing the actors in

the system
(b) A package describing the use cases

in the system
(c) A group of related use cases
(d) The package of objects that partici-

pate in the use case
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Static Modeling

The static model addresses the static structural view of a problem, which does not
vary with time. A static model describes the static structure of the system being
modeled, which is considered less likely to change than the functions of the system.
In particular, a static model defines the classes in the system, the attributes of the
classes, the relationships between classes, and the operations of each class. In this
chapter, static modeling refers to the modeling process and the UML class diagram
notation is used to depict the static model.

The concepts of objects, classes, and class attributes are described in Chapter 4.
This chapter describes the relationships between classes. Three types of relation-
ships are described: associations, whole/part (composition and aggregation) rela-
tionships, and generalization/specialization (inheritance) relationships. In addition,
this chapter addresses special considerations in static modeling of the problem
domain, including static modeling of the total system context and software system
context, as well as static modeling of entity classes. Design of class operations is
deferred to the design phase, and is addressed during class design, as described in
Chapter 14.

Static models are depicted on class diagrams, as described in this chapter. Sec-
tion 7.1 describes the different kinds of associations between classes. Section 7.2
describes whole/part relationships, particularly composition and aggregation hier-
archies. Section 7.3 describes generalization/specialization hierarchies. Section 7.4
provides an overview of constraints. Section 7.5 describes static modeling with
UML, in which the initial emphasis is on modeling the physical classes and entity
classes. The next topic, covered in Section 7.6, is static modeling of the scope of
the total system (hardware and software) and the scope of the software system in
order to determine the border between the total system and the external environ-
ment, and then the border between the software system and the external environ-
ment. Section 7.7 describes the categorization of classes using UML stereotypes,
and Section 7.8 describes how UML stereotypes can be applied to modeling exter-
nal classes. Static modeling of the entity classes, which are data-intensive classes, is
described in Section 7.9.

94
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7.1 ASSOCIATIONS BETWEEN CLASSES

An association defines a relationship between two or more classes, denoting a static,
structural relationship between classes. For example, Employee Works in Depart-
ment, where Employee and Department are classes and Works in is an association.
The classes are nouns, whereas the association is usually a verb or verb phrase.

A link is a connection between instances of the classes (objects) and represents
an instance of an association between classes. For example, Jane Works in Manu-
facturing, where Jane is an instance of Employee and Manufacturing is an instance of
Department. A link can exist between two objects if, and only if, there is an associa-
tion between their corresponding classes.

Associations are inherently bidirectional. The name of the association is in the
forward direction: Employee Works in Department. There is also an implied oppo-
site direction of the association (which is often not explicitly stated): Department
Employs Employee. Associations are most often binary – that is, representing a rela-
tionship between two classes. However, they can also be unary (self-associations),
ternary, or higher order.

7.1.1 Depicting Associations on Class Diagrams

On class diagrams, an association is shown as an arc joining the two class boxes, with
the name of the association next to the arc. An example is given in Figure 7.1 of the
association Company Is led by CEO.

In class diagrams, association names usually read from left to right and top to
bottom. However, on a large class diagram with many classes, classes are usually in
different positions relative to each other. To avoid ambiguity when reading UML
class diagrams, COMET uses the UML arrowhead notation to point in the direction
in which the association name should be read, as shown in Figure 7.1.

name: String

address: String

businessSector: String

Company

name: String

employeeId: String

address: String

phoneNumber: Integer

CEO

1

1

Is led by

Figure 7.1. Example of one-to-one association
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7.1.2 Multiplicity of Associations

The multiplicity of an association specifies how many instances of one class can
relate to a single instance of another class. The multiplicity of an association can
be as follows:

■ One-to-one association. In a one-to-one association between two classes, the
association is one-to-one in both directions. Thus, an object of either class has
a link to only one object of the other class. For example, in the association
Company Is led by CEO (i.e., Chief Executive Officer), a particular company has
only one CEO, and a CEO is leader of only one company. An example is the
company Apple with its CEO Steve Jobs. The static modeling notation for a one-
to-one association is illustrated in Figure 7.1.

■ One-to-many association. In a one-to-many association, there is a one-to-many
association in one direction between the two classes and a one-to-one associ-
ation between them in the opposite direction. For example, in the association,
Bank Administers Account, an individual bank administers many accounts, but an
individual account is administered by only one bank. The static modeling nota-
tion for a one-to-many association is illustrated in Figure 7.2.

■ Numerically specified association. A numerically specified association is an asso-
ciation that refers to a specific number. For example, in the association Car Is
entered through Door, one car has two doors or four doors (depicted as 2, 4) but
never one, three, or five doors. The association in the opposite direction is still
one-to-one – that is, a door belongs to only one car. Note that a particular car
manufacturer makes the decision of how many doors a car can have; another
manufacturer might make a different decision. A numerically specified associa-
tion is illustrated in Figure 7.3.

■ Optional association. In an optional association, there might not always be a
link from an object in one class to an object in the other class. For example, in
the association Customer owns Debit Card, customers can choose whether or not
they have a debit card. The optional (zero or one) association is shown in Fig-
ure 7.4. It is also possible to have a zero, one, or more association. For example,
in the association Customer Owns Credit Card, a customer could have no credit

bankName: String

bankAddress: String

Bank

accountNumber: Integer

balance: Real

Account

1..*

1

Administers

Figure 7.2. Example of one-to-many association
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1
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Figure 7.3. Numerically specified association

cards, one credit card, or many credit cards, as shown in Figure 7.5. Note that
in both these examples, the association in the opposite direction is one-to-one
(e.g., Credit Card Owned by Customer).

■ Many-to-many association. A many-to-many association is an association be-
tween two classes with a one-to-many association in each direction. For exam-
ple, in the association Course Is attended by Student, Student Enrolls in Course,
there is a one-to-many association between a course and the students who attend
it, because a course is attended by many students. There is also a one-to-many
association in the opposite direction, because a student could enroll in many
courses. This is illustrated in Figure 7.6, which shows the association in each
direction.

An example of classes and their associations in a banking application is given
in Figure 7.7. The Bank class has a one-to-many association with the Customer class
and with the Debit Card class. Thus, a bank provides a service for many customers

customerName: String

customerId: String

customerAddress: String

Customer

cardId: Integer

PIN: String

startDate: Date

expirationDate: Date

status: Integer

limit: Real

total: Real

DebitCard

0..1

1

Owns

Figure 7.4. Optional (zero or one) association
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customerName: String

customerId: String

customerAddress: String

Customer

cardType: Integer

cardId: Integer

startDate: Date

expirationDate: Date

status: Integer

CreditCard

0..*

1

Owns

Figure 7.5. Optional (zero, one, or many) association

courseId: String

courseName: String

section#: Integer

semester: String

Course

studentName: String

studentId: String

studentAddress: String

studentType: String

Student

1..*

*

Is attended byEnrolls in

Figure 7.6. Many-to-many association

President Bank

DebitCard

Customer

Account

1 1

Managed by

1

1..*

Provides access to

1..*

1..*

Owns

* ..*

Provides service for

0..1

Owns

1

1

1..*

Administers

1

Figure 7.7. Example of associations on a class diagram
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Account

accountNumber : Integer

balance : Real

President

name : String

employeeId : String

address : String

phoneNumber : Integer

DebitCard

cardId : String

PIN : String

startDate : Date

expirationDate : Date

status : Integer

limit : Real

total : Real

Customer

customerName : String

customerId : String

customerAddress : String

Bank

bankName : String

bankAddress : String

Figure 7.8. Example of class attributes

and administers many debit cards. Customer has a many-to-many association with
Account, so a customer might own more than one account, and an account could
be a joint account belonging to more than one customer. Customer has an optional
association with Debit Card, so a given customer might or might not own a debit card,
but a debit card must belong to a customer. Bank has a one-to-one association with
President, so a bank can have only one president, and a president can be president
of only one bank. The attributes of these classes are shown in Figure 7.8.

7.1.3 Ternary Associations

A ternary association is a three-way association among classes. An example of a
ternary association is among the classes Buyer, Seller, and Agent. The association is
that the Buyer negotiates a price with the Seller through an Agent. This is illustrated
in Figure 7.9. The ternary association is shown as a diamond joining the three classes.
A higher-order association, which is an association among more than three classes,
is quite rare.

7.1.4 Unary Associations

A unary association, also referred to as a self-association, is an association between
an object of one class and another object in the same class. Examples are Person

name: String

address: String

phoneNumber: Integer

movingDateTarget: String

homePriceTarget: Integer

Buyer

name: String

address: String

phoneNumber: Integer

sellingPrice: Integer

Seller

name: String

address: String

company: String

workPhoneNumber: String

homePhoneNumber: String

Agent

Negotiates

price

Figure 7.9. Example of ternary association



100 Software Modeling

Person

Is child of

Figure 7.10. Example of unary association

Is child of Person (Figure 7.10), Person Is married to Person, and Employee Is boss of
Employee.

7.1.5 Association Classes

An association class is a class that models an association between two or more
classes. The attributes of the association class are the attributes of the association. In
a complex association between two or more classes, it is possible for an association
to have attributes. This happens most often in many-to-many associations, where an
attribute does not belong to any of the classes but belongs to the association.

For an example of an association class, consider the many-to-many association
between Project and Employee classes. In this association, a project is staffed by many
employees and an employee can work on many projects:

Project Is staffed by Employee
Employee Works on Project

Figure 7.11 illustrates the two classes, Employee and Project, as well as an associ-
ation class called Hours, whose attribute is hours Worked. The attribute hours Worked
is not an attribute of either the Employee or Project classes. It is an attribute of the
association between Employee and Project because it represents the hours worked
by a specific employee (of which there are many) on a specific project (an employee
works on many projects).

7.2 COMPOSITION AND AGGREGATION HIERARCHIES

Both composition and aggregation hierarchies address a class that is made up of
other classes. Composition and aggregations are special forms of a relationship in
which classes are connected by the whole/part relationship. In both cases, the rela-
tionship between the parts and the whole is an Is part of relationship.

employeeName: String

employeeId: String

employeeAddress: String

level: String

Employee

projectId: String

projectName: String

startDate: Date

endDate: Date

customer: String

Project

**
Works on

hoursWorked: Real

Hours

Is staffed by

Figure 7.11. Example of association class
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ATM

ATMCustomer

KeypadDisplay CardReader CashDispenser ReceiptPrinter

1 1
1

1

Figure 7.12. Example of composition hierarchy

A composition is a stronger relationship than an aggregation, and an aggregation
is a stronger relationship than an association. In particular, a composition relation-
ship is a stronger relationship between the parts and the whole than an aggregation
relationship. A composition is also a relationship among instances. Thus, the part
objects are created, live, and die together with the whole. The part object can belong
to only one whole.

A composite class often involves a physical relationship between the whole and
the parts. Thus, the ATM is a composite class consisting of four parts: a Card Reader,
a Cash Dispenser, a Receipt Printer, and the ATM Customer Keypad Display classes (as
shown in Figure 7.12). The ATM composite class has a one-to-one association with
each of its four part classes.

The aggregation hierarchy is a weaker form of whole/part relationship. In an
aggregation, part instances can be added to and removed from the aggregate whole.
For this reason, aggregations are likely to be used to model conceptual classes rather
than physical classes. In addition, a part could belong to more than one aggregation.
An example of an aggregation hierarchy is a College in a university (Figure 7.13),
whose parts are an Admin Office, several Departments, and several Research Centers.
New departments can be created, and old departments are occasionally removed or
merged with other departments. Research centers can also be created, removed, or
merged.

In both composition and aggregation, attributes are propagated from the whole
to the part. Thus, each ATM has an ATM Id that also identifies the specific card

collegeName: String

dean: String

College

location: String

phone#: String

administrator: String

Admin Office

deptName: String

deptLocation: String

deptPhone#: String

chairPerson: String

secretary: String

Department

name: String

location: String

phone#: String

head: String

funding: Real

foundingDate: Date

renewalDate: Date

Research Center

1 1..* 1..*

Figure 7.13. Example of aggregation hierarchy
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accountNumber: Integer

balance: Real

Account

lastDepositAmount: Real

CheckingAccount

interest: Real

SavingsAccount

Figure 7.14. Generalization/specialization hierarchy

reader, cash dispenser, and customer keypad/display, which are part of the ATM
composite class.

7.3 GENERALIZATION/SPECIALIZATION HIERARCHY

Some classes are similar but not identical. They have some attributes in common
and others that are different. In a generalization/specialization hierarchy, common
attributes are abstracted into a generalized class, which is referred to as a superclass.
The different attributes are properties of the specialized class, which is referred to
as a subclass. There is an Is a relationship between the subclass and the superclass.
The superclass is also referred to as a parent class or ancestor class. The subclass is
also referred to as a child class or descendent class.

Each subclass inherits the properties of the superclass but then extends these
properties in different ways. The properties of a class are its attributes or opera-
tions. Inheritance allows the adaptation of the superclass to form the subclass. The
subclass inherits the attributes and the operations from the superclass. The sub-
class could then add attributes, add operations, or redefine operations. Each sub-
class could itself also be a superclass, which is specialized further to develop other
subclasses. Designing superclass and subclass operations is described in Chapter 14.

Consider the example of bank accounts given in Figure 7.14. Checking accounts
and savings accounts have some attributes in common and others that are differ-
ent. The attributes that are common to all accounts – namely, account Number and
balance – are made the attributes of an Account superclass. Attributes specific to a
savings account, such as the interest accumulated (in this bank, checking accounts
do not accumulate any interest), are made the attributes of the subclass Savings
Account. Attributes specific to a checking account, such as the last Deposit Amount,
are made the attributes of the subclass Checking Account.

Savings Account Is a Account
Checking Account Is a Account

A discriminator is an attribute that indicates which property of the object is
being abstracted by the generalization relationship. For example, the discriminator
in the Account generalization just given, account Type, discriminates between Check-
ing Account and Savings Account, as shown in Figure 7.15. The discriminator does
not need to be an attribute of the generalized or specialized classes. Thus, it is not
an attribute of the Account superclass or the two subclasses.
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accountNumber: Integer

balance: Real

Account

lastDepositAmount: Real

CheckingAccount

interest: Real

SavingsAccount

accountType

Figure 7.15. Discriminator in generalization/specialization

7.4 CONSTRAINTS

A constraint specifies a condition or restriction that must be true (Rumbaugh,
Booch, and Jacobson 2005). A constraint is expressed in any textual language. The
UML also provides a constraint language, the Object Constraint Language (OCL)
(Warmer and Kleppe 1999), which can optionally be used.

One kind of constraint is a restriction on the possible values of an attribute.
Consider the following: in the banking example, it might be stipulated that accounts
are not allowed to have a negative balance. This can be expressed as a constraint on
the attribute balance of the Account class to state that the balance is not allowed to
be negative, {balance >= 0}. On a class diagram, the constraint on the attribute is
shown next to the attribute to which it applies, as illustrated in Figure 7.16.

Another kind of constraint is a restriction on an association link. Usually objects
on the “many” side of an association have no order. However, in some cases, objects
in the problem domain might have an explicit order that is desirable to model. Con-
sider, for example, the one-to-many association Account Modified by ATM Trans-
action. In this association, ATM transactions are ordered by time; hence, the con-
straint can be expressed as {ordered by time}. This constraint can be depicted on a
class diagram, as shown in Figure 7.17.

7.5 STATIC MODELING AND THE UML

The approach used in COMET is to have a conceptual static model early in the
analysis phase that is used to model and help understand the problem domain. The
goal is to focus on those parts of the problem domain that benefit most from static
modeling, particularly the physical classes and the data-intensive classes, which are
called entity classes. This section describes the initial conceptual static modeling
carried out during analysis; the more detailed static modeling carried out during
design is described in Chapter 14.

accountNumber: Integer

balance: Real {balance >= 0}

Account

Figure 7.16. Example of constraints on objects
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accountNumber: Integer

balance: Real

Account

transactionId: Integer

cardId: Integer

PIN: String

date: Date

time: Time

status: Integer

ATMTransaction

* {ordered by time}

1

Modified by

Figure 7.17. Example of ordering in an association

7.5.1 Static Modeling of the Problem Domain

In static modeling of the problem domain, the initial emphasis is on modeling phys-
ical classes and entity classes. Physical classes are classes that have physical char-
acteristics – that is, they can be seen and touched. Such classes include physical
devices (which are often part of the problem domain in embedded applications),
users, external systems, and timers. Entity classes are conceptual data-intensive
classes that are often persistent – that is, long-living. Entity classes are particularly
prevalent in information systems (e.g., in a banking application, examples include
accounts and transactions).

In embedded systems, in which there are several physical devices such as sensors
and actuators, class diagrams can help with modeling these real-world devices. For
example, in the Banking System, in which the ATM is an embedded subsystem, it
is useful to model real-world devices, their associations, and the multiplicity of the
associations. Composite classes are often used to show how a real-world class is
composed of other classes (e.g., the ATM depicted in Figure 7.18).

Consider the static model of the problem domain for the banking application. A
bank provides a service for several ATMs, as shown on Figure 7.18. Each ATM is a
composite class consisting of a Card Reader, a Cash Dispenser, a Receipt Printer, and an
ATM Customer Keypad Display. The ATM Customer actor inserts the card into the Card
Reader and interacts though the ATM Customer Keypad Display. The Cash Dispenser
dispenses cash to the ATM Customer actor. The Receipt Printer prints a receipt for
the ATM Customer actor. The physical entities represent classes in the problem
domain for which there will need to be a conceptual representation in the software
system. These decisions are made during object and class structuring, as described
in Chapter 8. In addition, the Operator actor is a user whose job is to maintain
the ATM.

7.6 STATIC MODELING OF THE SYSTEM CONTEXT

It is very important to understand the scope of a computer system – in particular,
what is to be included inside the system and what is to be left outside the system.
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Bank

1..*

1

Provides service for

ATM
1 1

Maintains

ATMCustomer

KeypadDisplay CardReader CashDispenser ReceiptPrinter

1

1

Inserts card into

1

1

Dispenses cash to

1

1

Prints receipt for

1 1
1

1

ATM Operator

ATM Customer

1

1

Interacts through

Figure 7.18. Conceptual static model for Banking System

Context modeling explicitly identifies what is inside the system and what is outside.
Context modeling can be done at the total system (hardware and software) level
or at the software system (software only) level. A diagram that explicitly shows the
border between the system (hardware and software), which is treated as a black box,
and the external environment is called a system context diagram. A diagram that
explicitly shows the border between the software system, also treated as a black
box, and the external environment (which now includes the hardware) is called a
software system context diagram. These views of the border around the system are
more detailed than those usually provided by a use case diagram.

In developing the system context diagram, it is helpful to consider the context of
the total hardware/software system (i.e., both hardware and software) before con-
sidering the context of the software system. This is particularly useful in situations in
which hardware/software tradeoffs need to be made. In considering the total hard-
ware/software system, only users (i.e., human actors) and external systems are out-
side the system. I/O devices are part of the hardware of the system and therefore
appear inside the total system.

As an example, consider the total hardware/software system for the Banking
System. From a total hardware/software system perspective, the ATM Customer and
ATM Operator actors, shown in Figure 7.18, are outside the system, as shown in Figure
7.19. All the others entities shown in Figure 7.18, in particular the I/O devices, which
include the card reader, cash dispenser, receipt printer, and the ATM Customer
keypad/display, are part of the total hardware/software system (Figure 7.19).

From the total system perspective – that is, both hardware and software – the
ATM Customer and ATM Operator actors are external to the system, as shown in
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«system»
Banking
System

ATM
Customer

ATM
Operator

11..*

Interacts

with 1..*1

Interacts

with

Figure 7.19. Banking hardware/software system context class diagram

Figure 7.19. The ATM Operator interacts with the system via a keypad and display.
The ATM Customer actor interacts with the system via four I/O devices, which are
the card reader, cash dispenser, receipt printer, and ATM Customer keypad/display.
From a total hardware/software system perspective, these I/O devices are part of the
system. From a software perspective, the I/O devices are external to the software
system. On the software system context class diagram, the I/O devices are modeled
as external classes, as shown on Figure 7.20.

The software system context class diagram can be determined by static mod-
eling of the external classes that connect to the system. In particular, the physi-
cal classes described in the previous section are often I/O devices that are exter-
nal classes to the software system. Alternatively, the software system context class
diagram can be determined from the use cases by considering the actors and what
devices they use to interface to the system. Both approaches are described in
Section 7.8.

7.7 CATEGORIZATION OF CLASSES USING UML STEREOTYPES

The dictionary definition of category is “a specifically defined division in a system
of classification.” In class structuring, the COMET method advocates categoriz-
ing classes in order to group together classes with similar characteristics. Whereas
classification based on inheritance is an objective of object-oriented modeling, it is

CardReader

ReceiptPrinter

ATMCustomer

KeypadDisplay

CashDispenser

Banking
System

Operator

ATM
Customer

ATM
Operator

1

1 1

1

1

1

1

1

1

1

1

1..*

Outputs
to

1
1..*

Outputs
to

1

1..*

Interacts
with

1

1..*

Outputs to

1..*1

Interacts
with

Inputs
to

Figure 7.20. Banking software system context class diagram
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«external I/O device»

CardReader

«external output device»

CashDispenser

«entity»

Account

«external output device»

ReceiptPrinter

«entity»

Customer

Figure 7.21. Example of UML classes and their stereotypes

essentially tactical in nature. Thus, classifying the Account class into a Checking
Account and a Savings Account is a good idea because Checking Account and Sav-
ings Account have some attributes and operations in common and others that differ.
Categorization, however, is a strategic classification – a decision to organize classes
into certain groups because most software systems have these kinds of classes and
because categorizing classes in this way helps to better understand the system being
developed.

In UML, stereotypes are used to distinguish among the various kinds of classes.
A stereotype is a subclass of an existing modeling element (e.g., an application or
external class) that is used to represent a usage distinction (e.g., the kind of applica-
tion or external class). In the UML notation, a stereotype is enclosed by guillemets,
like this: «entity». In software applications, a class is categorized by the role it plays
in the application. Application classes are categorized according to their role in the
application, such as «entity» class or «boundary» class, as will be described in
Chapter 8. External classes are categorized on the basis of their characteristics in
the external environment, such as «external system» or «external user», as will be
described in Section 7.8.

Examples shown in Figure 7.21 from the Banking System are the external I/O
device Card Reader, the external output devices Cash Dispenser and Receipt Printer,
and the entity classes Account and Customer.

7.8 MODELING EXTERNAL CLASSES

Using the UML notation for the static model, the system context is depicted showing
the hardware/software system as an aggregate class with the stereotype «system»,
and the external environment is depicted as external classes to which the system has
to interface, as shown in Figure 7.19. In the case of a software system, the context
is depicted showing the software system as an aggregate class with the stereotype
«software system», and the external environment is depicted as external classes to
which the software system has to interface, as shown in Figure 7.20.

Figure 7.22 shows the classification of external classes, which are categorized by
stereotype (see Section 7.7); thus, stereotypes are used to distinguish among the
various kinds of external classes. In Figure 7.22, each box represents a different
category of external class, and the relationships between them are inheritance rela-
tionships. Thus, an external class is classified as an «external user» class, an «external
device» class, an «external system» class, or an «external timer» class. Only exter-
nal users and external systems are actually external to the total system. Hardware
devices and timers are part of the total system but are external to the software
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«external system»«external user»

«external output 

device»

«external class»

«external input 

device»

«external input / 

output device»

«external 

device»
«external timer»

Figure 7.22. Classification of external classes by stereotype

system; thus, Figure 7.22 classifies external classes from the perspective of the soft-
ware system.

As depicted in Figure 7.22, an external device is classified further as follows:

■ External input device. A device that only provides input to the system – for
example, a sensor

■ External output device. A device that only receives output from the system – for
example, an actuator

■ External I/O device. A device that both provides input to the system and receives
output from the system – for example, an ATM card reader

A human user often interacts with the software system by means of standard I/O
devices such as a keyboard/display and mouse. The characteristics of these standard
I/O devices are of no interest because they are handled by the operating system.
The interface to the user is of much greater interest in terms of what information
is being output to the user and what information is being input by the user. For
this reason, an external user interacting with the software system via standard I/O
devices is depicted as an «external user».

A general guideline is that a human user should be represented as an external
user class only if the user interacts with the system via standard I/O devices. On the
other hand, if the user interacts with the software system via application-specific I/O
devices, these I/O devices should be represented as external device I/O classes.

For a real-time embedded system, it is desirable to identify low-level external
classes that correspond to the physical I/O devices to which the software system
must interface. These external classes are depicted with the stereotype «external
I/O device». Examples are the Arrival Sensor external input device and the Motor
external output device in the Automated Guided Vehicle System.

An «external system» class is needed when the system interfaces to other sys-
tems, to either send data or receive data. Thus, in the Automated Guided Vehi-
cle System, the software system interfaces to two external systems: the Supervisory
System and the Display System.

An «external timer» class is used if the application needs to keep track of time
and/or if it needs external timer events to initiate certain actions in the system.
External timer classes are most frequently needed in real-time systems. An example
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from the Automated Guided Vehicle System is the Clock. It is needed because the
software system needs external timer events to initiate various periodic activities.
Sometimes the need for periodic activities only becomes apparent during design.

The associations between the software system aggregate class and the external
classes are depicted on the software system context class diagram, showing in partic-
ular the multiplicity of the associations. The standard association names on software
system context class diagrams are Inputs to, Outputs to, Communicates with, Inter-
acts with, and Signals. These associations are used as follows:

external input device» Inputs to « software system»
«software system» Outputs to «external output device»
«external user» Interacts with « software system»
«external system» Communicates with « software system»
«external timer» Signals « software system»

Examples of associations on software system context class diagrams are as follows:

Card Reader Inputs to Banking System
Banking System Outputs to Cash Dispenser
Operator Interacts with Banking System
Supervisory System Communicates with Automated Guided Vehicle System
Clock Signals Automated Guided Vehicle System

7.8.1 Examples of Developing a Software System Context Class
Diagram from External Classes

An example of a software system context class diagram is shown in Figure 7.20,
which shows the external classes to which the Banking System has to interface.
The external classes are determined directly from the static model of the problem
domain as described previously. Furthermore, the external classes are categorized
by stereotype, as described next.

In this example, three of these I/O devices are categorized as external device
classes: the Card Reader, the Receipt Printer, and the Cash Dispenser. The ATM Cus-
tomer Keypad/Display external class is categorized as an external user class because
it is a standard I/O device. The Operator external class is also categorized as an
external user class for the same reason. Because there is one instance of each of
these external classes for each ATM and there are many ATMs, there is a one-to-
many association between each external class and the Banking System. The software
system context class diagram in which external classes are depicted using stereo-
types is shown in Figure 7.23. Depicting the external class stereotype explicitly on
the software system context class diagram visually describes the role played by each
external class of the system. Thus, it is immediately obvious which classes represent
external output devices and which classes represent external users.

Another example of a software system context class diagram is given for the
Automated Guided Vehicle System, which is shown in Figure 7.24. This software
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Figure 7.23. Banking System software context class diagram with stereotypes

system has six external classes: there are two external systems (Supervisory System
and Display System), one external input device (Arrival Sensor), two external output
devices (Robot Arm and Motor), and one external timer (Clock).

7.8.2 Actors and External Classes

Consider next how to derive the software system context class diagram by analyz-
ing the actors that interact with the system. Actors are a more abstract concept
than external classes. The relationship between actors and external classes is as
follows:

■ An I/O device actor is equivalent to an external I/O device class. This means the
I/O device actor interfaces to the system via an external I/O device class.

■ An external system actor is equivalent to an external system class.

«software

system»

Automated 

Guided Vehicle

System

«external system»

Supervisory

System

«external input 

device»

ArrivalSensor

«external timer»

Clock

«external output 

device»
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1

1

Outputs to

1

1 Outputs to

1

1 Communicates with

11 Inputs to

1

1

Signals

«external system»

Display

System

1

1

Communicates with

Figure 7.24. Automated Guided Vehicle System software system con-
text class diagram with external class stereotypes
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■ A timer actor interfaces to the system via an external timer class, which provides
timer events to the system.

■ A human user actor has the most flexibility. In the simplest case, the user actor
interfaces to the system via standard user I/O devices, such as keyboard, visual
display, and mouse. The external class is given the name of its user actor because
what is of interest is the logical information coming from the user. However, in
more complex use cases, it is possible for a human actor to interface with the
system through a variety of external classes. An example of this is the customer
actor in the Banking System, in which the actor interfaces with the system via
several external I/O devices, as described in Section 7.8.3.

7.8.3 Example of Developing a Software System Context Class
Diagram from Actors

In order to determine the external classes from the actors, it is necessary to under-
stand the characteristics of each actor and how each actor interacts with the system,
as described in the use cases. Consider a situation in which all the actors are human
users. In the Banking System, there are two actors, both of whom are human users:
the ATM Customer and the ATM Operator, as shown in the system context class dia-
gram of Figure 7.19.

Figure 7.23 shows the software system context class diagram for the Banking
System, with the Banking System as one aggregate class and external classes that
interface to it. The ATM operator actor interfaces to the system via a standard user
I/O device and so is depicted as an «external user» class called Operator, because in
this case the user’s characteristics are more important than those of the I/O devices.
However, the customer actor actually interfaces to the system via one standard
user I/O device representing the keyboard/display and three application-specific I/O
devices. The application-specific I/O devices are an «external I/O device», the Card
Reader, and two «external output devices», the Receipt Printer and the Cash Dispenser.
These five external classes all have one-to-many associations with the Banking
System.

7.9 STATIC MODELING OF ENTITY CLASSES

Entity classes are conceptual data-intensive classes – that is, their main purpose
is to store data and provide access to this data. In many cases, entity classes are
persistent, meaning that the data is long-living and would need to be stored in a
file or database. Whereas some approaches advocate static modeling of all soft-
ware classes during analysis, the COMET approach emphasizes static modeling of
entity classes, in order to take advantage of the strengths of the static modeling nota-
tion for expressing classes, attributes, and relationships among classes. Entity classes
are particularly prevalent in information systems; however, many real-time and dis-
tributed systems have significant data-intensive classes. Concentrating on modeling
entity classes is similar to modeling a logical database schema. Entity classes are
often mapped to a database in the design phase, as described in Chapter 15.

The main difference between object-oriented static modeling and entity-
relationship modeling, which is frequently used for logical database design, is that
whereas both approaches model classes, attributes of each class, and relationships
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Figure 7.25. Entity class model for online shopping application

among classes, object-oriented static modeling also allows class operations to be
specified. During static modeling of the problem domain, the COMET emphasis is
on determining the entity classes that are defined in the problem, their attributes,
and their relationships. Specifying operations is deferred until design modeling, as
described in Chapter 14. Static modeling of entity classes is referred to as entity
class modeling.

One example of entity class modeling comes from an online shopping applica-
tion, in which customers, accounts, and catalogs are all mentioned in the problem
description. Each of these real-world conceptual entities is modeled as an entity
class and depicted with the stereotype «entity». The attributes of each entity class
are determined, and the relationships among the entity classes are defined.

The example of an entity class model for the online shopping application is
shown in Figure 7.25. Because this static model depicts only entity classes, all the
classes have the «entity» stereotype to depict the role they play in the application.
Figure 7.25 shows the Customer entity class, which has a one-to-one association with
the Customer Account class, which in turn has a one-to-many association with the
Delivery Order class. The latter class is an aggregation of the Item class, which in turn
has a many-to-one association with the Catalog class (in which the item is described)
and an optional association with Inventory (in which the item is stored; the zero is
because the inventory may be out of a specific item). This example is described in
more detail in the Online Shopping System case study (Chapter 22).

7.9.1 Modeling Class Attributes

An important consideration in modeling entity classes is to define the attributes
of each entity class. An entity class is data-intensive, meaning that it has several
attributes. If an entity class appears to have only one attribute, then it is question-
able whether it really is an entity class. Instead, it is more likely that this doubtful
entity should be modeled as an attribute of a different class.
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Figure 7.26. Entity class attributes for online shopping application

Consider the attributes of the entity classes that are shown in Figure 7.26. Each
class has several attributes that provide information that distinguishes this class from
other classes. Furthermore, each instance of the class has specific values of these
attributes to differentiate it from other instances of the class. Thus, the Customer
class is characterized by attributes that describe the information needed to identify
an individual customer, including a customer Id, the customer’s name, address, tele-
phone number, fax number, and email address. On the other hand, the Customer
Account class contains attributes that provide details of the account.

7.10 SUMMARY

This chapter described some of the basic concepts of static modeling, includ-
ing the relationships between classes. Three types of relationships have been
described: associations, composition/aggregation relationships, and generalization/
specialization relationships. In addition, this chapter described how static modeling
is used to model the structural views of the problem domain. This consists of static
modeling of the total system context, which depicts the classes external to the total
hardware/software system; static modeling of the software system context, which
depicts the classes external to the software system; and static modeling of the entity
classes, which are conceptual data-intensive classes.

Static modeling of the solution domain is deferred to the design phase. Although
static modeling also includes defining the operations of each class, it is easier
to determine the operations of a class after dynamic modeling. Because of this,
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determining the operations of a class is deferred to class design, as described in
Chapter 14.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a class?
(a) A course
(b) An object instance
(c) A client or server in the system
(d) A collection of objects with the

same characteristics
2. What is an attribute?

(a) A relationship between two classes
(b) A parameter of an operation or

method
(c) A data value held by an object in a

class
(d) The return value from an operation

3. What is an association?
(a) A relationship between two classes
(b) A relationship between two objects
(c) A link between two classes
(d) A link between two objects

4. What is meant by the multiplicity of an
association?
(a) The number of associations in a

class
(b) The number of associations be-

tween two classes
(c) How many instances of one class

relate to how many instances of
another class

(d) How many instances of one class
relate to a single instance of
another class.

5. What is an association class?
(a) A class with multiple associations
(b) A class with one association
(c) A class that models an association

between two or more classes
(d) A class that models an association

between two or more objects

6. What is a generalization/specialization
hierarchy?
(a) A whole/part relationship
(b) An inheritance relationship
(c) An association between a general-

ized class and a specialized class
(d) A layered hierarchy

7. What is a composition hierarchy?
(a) A weak form of a generalization/

specialization hierarchy
(b) A strong form of a generalization/

specialization hierarchy
(c) A weak form of a whole/part rela-

tionship
(d) A strong form of a whole/part rela-

tionship
8. What is an aggregation hierarchy?

(a) A weak form of a generalization/
specialization hierarchy

(b) A strong form of a generaliza-
tion/specialization hierarchy

(c) A weak form of a whole/part rela-
tionship

(d) A strong form of a whole/part rela-
tionship

9. What does the system context class dia-
gram define?
(a) The entity classes in the system
(b) How the system interfaces to other

systems
(c) The boundary between the system

and the external environment
(d) The context classes in the system

10. What is an entity class?
(a) A class on an entity/relationship

diagram
(b) A class that stores data
(c) A class that interfaces to an exter-

nal entity
(d) An external class
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Object and Class Structuring

After defining the use cases and developing a static model of the problem domain,
the next step is to determine the software objects in the system. At this stage,
the emphasis is on software objects that model real-world objects in the problem
domain.

Software objects are determined from the use cases and from the static model
of the problem domain. This chapter provides guidelines on how to determine the
objects in the system. Object structuring criteria are provided, and the objects are
categorized by using stereotypes. The emphasis is on problem domain objects to be
found in the real world and not on solution domain objects, which are determined
at design time.

The static modeling described in Chapter 7 was used to determine the exter-
nal classes, which were then depicted on a software system context class diagram.
These external classes are used to help determine the software boundary classes,
which are the software classes that interface to and communicate with the external
environment. The entity classes and their relationships were also determined dur-
ing static modeling. In this chapter, the objects and classes needed in the software
system are determined and categorized. In particular, the focus is on the additional
software objects and classes that were not determined during the static modeling of
the problem domain.

The static relationship between classes is considered in the static model, as
described in the previous chapter, and the dynamic relationship between the objects
is considered in the dynamic model, as described in Chapters 9, 10, and 11.

Section 8.1 gives an overview of object and class structuring, and Section 8.2
describes modeling application classes and objects. Section 8.3 presents an overview
of object and class structuring categories. Section 8.4 describes external classes
(first introduced in Chapter 7) and their relationship to software boundary classes,
whereas Section 8.5 describes the different kinds of boundary classes and objects.
Section 8.6 describes entity classes and objects, which were first introduced in
Chapter 7. Section 8.7 describes the different kinds of control classes and objects.
Section 8.8 describes application logic classes and objects.

115
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8.1 OBJECT AND CLASS STRUCTURING CRITERIA

There is no one unique way to decompose a system into objects, because the deci-
sions made are based on the judgment of the analyst and the characteristics of the
problem. Whether objects are in the same class or in a different class depends on
the nature of the problem. For example, in an automobile catalog, cars, vans, and
trucks might all be objects of the same class. For a vehicle manufacturer, however,
cars, vans, and trucks might all be objects of different classes. The reason for this
might be that for an automobile catalog, the same type of information is needed
for each vehicle, whereas for the vehicle manufacturer, more detailed information
is needed, which is different for the different types of vehicles.

Object and class structuring criteria are provided to assist the designer in struc-
turing a system into objects. The approach used for identifying objects is to look
for real-world objects in the problem domain and then design corresponding soft-
ware objects that model the real world. After the objects have been identified, the
interactions among objects are depicted in the dynamic model on communication
diagrams or sequence diagrams, as described in Chapters 9 and 11.

8.2 MODELING APPLICATION CLASSES AND OBJECTS

Section 7.9 described static modeling of entity classes, which benefit most from
static modeling in the analysis phase because they are information-intensive. Entity
classes, however, are only one kind of software class within the system. Before
dynamic modeling can be undertaken, as described in Chapters 9, 10, and 11, it is
necessary to determine what software classes and objects are needed to realize each
use case. Identification of software objects and classes can be greatly assisted by
applying object and class structuring criteria, which provide guidance on structuring
an application into objects. This approach categorizes software classes and objects
by the roles they play in the application.

In this step, classes are categorized in order to group together classes with simi-
lar characteristics. Figure 8.1 shows the categorization of application classes. Stereo-
types (see Section 7.7) are used to distinguish among the various kinds of application

«proxy»
«device

I/O»
«user

interaction»

«application class»

«boundary» «entity» «control»
«application

logic»

«input/
output»

«output»«input»

«coordinator»
«state dependent 

control»
«timer» «algorithm»«business

logic»
«service»

Figure 8.1. Classification of application classes by stereotype
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classes. Because an object is an instance of a class, an object has the same stereotype
as the class from which it is instantiated. Thus, the categorization described in this
section applies equally to classes and objects.

In Figure 8.1, each box represents a different category of application class, and
the relationships between them are inheritance relationships. Therefore, an appli-
cation class is classified as an entity class, a boundary class, a control class, or an
application logic class. These stereotypes are classified further, as shown in Figure
8.1 and described here.

This classification process is analogous to classifying books in a library, with
major classes such as fiction and nonfiction, and further classification of fiction into
classics, mysteries, adventure, and so on, and nonfiction into biography, autobiogra-
phy, travel, cooking, history, and other categories. It is also analogous to the taxon-
omy of the animal kingdom, which is divided into major categories (mammal, bird,
fish, reptile, and so on) that are further divided into subclasses (e.g., cat, dog, and
monkey are subclasses of mammal).

8.3 OBJECT AND CLASS STRUCTURING CATEGORIES

Objects and classes are categorized according to the roles they play in the applica-
tion. There are four main object and class structuring categories, as shown in Figure
8.1: boundary objects, entity objects, control objects, and application logic objects.
Most applications will have objects from each of the four categories. However, dif-
ferent types of applications will have a greater number of classes in one or other
category. Thus, information-intensive systems will have several entity classes, which
is why static modeling is so vital for these systems. On the other hand, real-time sys-
tems are likely to have several device I/O boundary classes to interface to the various
sensors and actuators. They are also likely to have complex state-dependent control
classes because these systems are highly state-dependent. These object structuring
categories are summarized in the following list and described in detail in Sections
8.4 through 8.7.

The four main object and class structuring categories (Figure 8.1) are as
follows:

1. Entity object. A software object, in many cases persistent, which encapsulates
information and provides access to the information it stores. In some case, an
entity object could be accessed via a service object.

2. Boundary object. Software object that interfaces to and communicates with
the external environment. Boundary objects are further categorized as:
� User interaction object. Software object that interacts with and interfaces

to a human user.
� Proxy object. Software object that interfaces to and communicates with an

external system or subsystem.
� Device I/O boundary object. Software object that receives input from

and/or outputs to a hardware I/O device.
3. Control object. Software object that provides the overall coordination for

a collection of objects. Control objects may be coordinator objects, state-
dependent control objects, or timer objects.
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4. Application logic object. Software object that contains the details of the
application logic. Needed when it is desirable to hide the application logic
separately from the data being manipulated because it is considered likely
that the application logic could change independently of the data. For infor-
mation systems, application logic objects are usually business logic objects,
whereas for real-time, scientific, or engineering applications, they are usually
algorithm objects. Another category is service objects, which provide services
for client objects, typically in service-oriented architectures and applications.

In most cases, what category an object fits into is usually obvious. However, in
some cases, it is possible for an object to satisfy more than one of the aforemen-
tioned criteria. For example, an object could have characteristics of both an entity
object, in that it encapsulates some data, and an algorithm object, in that it executes
a significant algorithm. In such cases, allocate the object to the category it seems to
fit best. Note that it is more important to determine all the objects in the system than
to be unduly concerned about how to categorize a few borderline cases.

For each object structuring criterion, there is an object behavioral pattern, which
describes how the object interacts with its neighboring objects. It is useful to under-
stand the object’s typical pattern of behavior, because when this category of object
is used in an application, it is likely to interact with the same kinds of neighboring
objects in a similar way. Each behavioral pattern is depicted on a UML communi-
cation diagram.

8.4 EXTERNAL CLASSES AND SOFTWARE BOUNDARY CLASSES

As described in Section 7.8, external classes are classes that are outside the software
system and that interface to the system. Boundary classes are classes inside the sys-
tem that interface to and communicate with the external classes. To help determine
the boundary classes in the system, it is necessary to consider the external classes to
which they are connected.

Identifying the external classes that communicate with and interface to the
system helps identify some of the classes in the system itself, namely, the boundary
classes. Each of the external classes communicates with a boundary class in the
system. There is usually a one-to-one association between the external class (assum-
ing it has been identified correctly) and the internal boundary class with which it
communicates. External classes interface to software boundary classes as follows:

■ An external user class interfaces to and interacts with a user interaction class.
■ An external system class interfaces to and communicates with a proxy class.
■ An external device class provides input to and/or receives output from a device

I/O boundary class. Continuing with this classification:
� An external input device class provides input to an input class.
� An external output device class receives output from an output class.
� An external I/O device class provides input to and receives output from an I/O

class.
■ An external timer class signals to a software timer class.
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An external device class represents an I/O device type. An external I/O device
object represents a specific I/O device, that is, an instance of the device type. In
the next section, we consider the internal objects that interface to and communicate
with the external objects.

8.5 BOUNDARY CLASSES AND OBJECTS

This section describes the characteristics of the three different kinds of boundary
objects: user interaction objects, proxy objects, and device I/O boundary objects. In
each case, an example is given of a boundary class, followed by an example of a
behavioral pattern in which an instance of the boundary class, that is, a boundary
object, communicates with neighboring objects in a typical interaction sequence.

8.5.1 User Interaction Objects

A user interaction object communicates directly with the human user, receiving
input from the user and providing output to the user via standard I/O devices such as
the keyboard, visual display, and mouse. Depending on the user interface technol-
ogy, the user interface could be very simple (such as a command line interface) or
it could be more complex (such as a graphical user interface [GUI] object). A user
interaction object may be a composite object composed of several simpler user inter-
action objects. This means that the user interacts with the system via several user
interaction objects. Such objects are depicted with the «user interaction» stereotype.

An example of a simple user interaction class called Operator Interaction is
depicted in Figure 8.2a. An instance of this class is the Operator Interaction object
(see Figure 8.2b), which is depicted in a typical behavioral pattern for user inter-
action objects. The object accepts operator commands from the operator actor;
requests sensor data from an entity object, Sensor Data Repository; and displays
the data it receives to the operator. More complex user interaction objects are
also possible. For example, the Operator Interaction object could be a composite
user interaction object composed of several simpler user interaction objects. This
would allow the operator to receive dynamic updates of workstation status in one
window, receive dynamic updates of alarm status in another window, and conduct
an interactive dialog with the system in a third window. Each window is composed
of several GUI widgets, such as menus, buttons, and simpler windows.

«user interaction»

Operator

Interaction

«user interaction»

: Operator

Interaction

«entity»

: SensorData

Repository

: Operator

1: Operator

Command

4: Display 

Data

2: Sensor

Request

a)

b)

3: Sensor Data

Figure 8.2. Example of user interaction class and object
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Figure 8.3. Example of proxy class and object

8.5.2 Proxy Objects

A proxy object interfaces to and communicates with an external system. The proxy
object is the local representative of the external system and hides the details of
“how” to communicate with the external system.

An example of a proxy class is a Pick & Place Robot Proxy class. An example of
a behavioral pattern for a proxy object is given in Figure 8.3, which depicts a Pick
& Place Robot Proxy object that interfaces to and communicates with the External
Pick & Place Robot. The Pick & Place Robot Proxy object sends pick and place robot
commands to the External Pick & Place Robot. The real-world robot responds to the
commands.

Each proxy object hides the details of how to interface to and communicate with
the particular external system. A proxy object is more likely to communicate by
means of messages to an external, computer-controlled system, such as the robot
in the preceding example, rather than through sensors and actuator, as is the case
with device I/O boundary objects. However, these issues are not addressed until the
design phase.

8.5.3 Device I/O Boundary Objects

A device I/O boundary object provides the software interface to a hardware I/O
device. Device I/O boundary objects are needed for nonstandard application-
specific I/O devices, which are more prevalent in real-time systems, although they
are often needed in other systems as well. Standard I/O devices are typically han-
dled by the operating system, so special-purpose device I/O boundary objects do not
need to be developed as part of the application.

A physical object in the application domain is a real-world object that has some
physical characteristics – for example, it can be seen and touched. For every real-
world physical object that is relevant to the problem, there should be a corre-
sponding software object in the system. In the Automated Guided Vehicle System,
for example, the vehicle motor and arm are relevant real-world physical objects,
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Figure 8.4. Example of input class and object

because they interact with the software system. On the other hand, the vehicle chas-
sis and wheels are not relevant real-world objects, because they do not interact with
the software system. In the software system, the relevant real-world physical objects
are modeled by means of software objects, such as the vehicle motor and arm soft-
ware objects.

Real-world physical objects usually interface to the system via sensors and actu-
ators. These real-world objects provide inputs to the system via sensors or receive
outputs from the system via actuators. Thus, to the software system, the real-world
objects are actually I/O devices that provide inputs to and receive outputs from
the system. Because the real-world objects correspond to I/O devices, the software
objects that interface to them are referred to as device I/O boundary objects.

For example, in the Automated Guided Vehicle System, the station arrival indi-
cator is a real-world object that has a sensor (input devices) that provides inputs to
the system. The motor and arm are real-world objects that are controlled by means
of actuators (output devices) that receive outputs from the system.

An input object is a device I/O boundary object that receives input from an
external input device. Figure 8.4 shows an example of an input class Temperature
Sensor Interface and an instance of this class, an input object, on a communication
diagram. An input object, a Temperature Sensor Interface object, receives tempera-
ture sensor input from an external real-world hardware object, a Real-World Temper-
ature Sensor input device. Figure 8.4 also shows the hardware/software boundary, as
well as the stereotypes for the hardware «external input device» and the software
«input» objects. Thus, the input object provides the software system interface to the
external hardware input device.

An output object is a device I/O boundary object that sends output to an external
output device. Figure 8.5 shows an example of an output class called Red Light Inter-
face, as well as an instance of this class, the Red Light Interface object, which sends
outputs to an external real-world object, the Red Light Actuator external output
device. The Red Light Interface software object sends On and Off Light commands
to the hardware Red Light Actuator. Figure 8.5 also shows the hardware/software
boundary.
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Figure 8.5. Example of output class and object

A hardware I/O device can also be a device that both sends inputs to the sys-
tem and receives outputs from the system. The corresponding software class is an
I/O class, and a software object that is instantiated from this class is an I/O object.
An input/output (I/O) object is a device I/O boundary object that receives input
from and sends output to an external I/O device. This is the case with the ATM Card
Reader Interface class shown in Figure 8.6a and its instance, the ATM Card Reader
Interface object (see Figure 8.6b), which receives ATM card input from the external
I/O device, the ATM Card Reader. In addition, ATM Card Reader Interface sends eject
and confiscate output commands to the card reader.

In some applications, there are many real-world objects of the same type. These
are modeled by means of one device I/O object for each real-world object, in which
all the objects are instances of the same class. For example, the Factory Automation
System, which controls many automated guided vehicles, has many vehicle motors
of the same type and many robotic arms of the same type. There is one instance
of the Motor Interface class and one instance of the Arm Interface class for each
automated guided vehicle.
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Figure 8.6. Example of I/O class and object
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8.5.4 Depicting External Classes and Boundary Classes

Chapter 7 discussed how to determine the scope of the system and how to develop
a software system context class diagram, which shows all the external classes that
interface to and communicate with the system. It is useful to expand this diagram to
show the boundary classes that communicate with the external classes. The bound-
ary classes are software classes inside the system that are at the boundary between
the system and the external environment. The system is shown as an aggregate class,
and the boundary classes, which are part of the system, are shown inside the aggre-
gate class. Each external class, which is external to the system, has a one-to-one asso-
ciation with a boundary class. Thus, starting with the external classes, as depicted on
the software system context class diagram, helps determine the boundary classes.

Starting with the software system context class diagram for the Banking System,
we determine that each external class communicates with a boundary class (Fig-
ure 8.7). The software system is depicted as an aggregate class, which contains the
boundary classes that interface to the external classes. In this application, there are
three device I/O boundary classes and two user interaction classes. The device I/O
boundary classes are the Card Reader Interface, through which ATM cards are read,
the Cash Dispenser Interface, which dispenses cash, and the Receipt Printer Interface,
which prints receipts. The Customer Interaction class is a user interaction class, which
displays textual messages and prompts to the customer and receives the customer’s
inputs. The Operator Interaction class provides the user interface to the ATM opera-
tor, who replenishes the ATM machine with cash. There is one instance of each of
these boundary classes for each ATM.

8.6 ENTITY CLASSES AND OBJECTS

An entity object is a software object that stores information. Entity objects are
instances of entity classes, whose attributes and relationships with other entity
classes are determined during static modeling, as described in Chapter 7. Entity
objects store data and provide limited access to that data via the operations they
provide. In some cases, an entity object might need to access other entity objects in
order to update the information it encapsulates.
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Figure 8.8. Example of entity class and object

In many information system applications, the information encapsulated by entity
objects is stored in a file or database. In these cases, the entity object is persistent,
meaning that the information it contains is preserved when the system is shut down
and then later powered up. In some applications, such as real-time systems, entity
objects are often stored in main memory. These issues are addressed during the
design phase, as described in Chapter 14.

An example of an entity class from the banking application is the Account class
(Figure 8.8). The stereotype «entity» is shown to clearly identify what kind of class
it is. Instances of the Account class are entity objects (as shown in Figure 8.8), which
are also identified by the stereotype «entity». The attributes of Account are account
Number and balance. The object an Account is a persistent (long-living) object that
is accessed by several objects that realize various use cases. These use cases include
customer use cases for account withdrawals, inquiries, and transfers at various ATM
machines, as well as human teller use cases to open and close the account and to
credit and debit the account. The account is also accessed by objects that realize a
use case that prepares and prints monthly statements for customers.

An example of an entity class from a sensor monitoring example is the Sen-
sor Data class (Figure 8.9). This class stores information about analog sensors. The
attributes are sensor Name, sensor Value, upper Limit, lower Limit, and alarm Status.
An example of an instance of this class is the temperature Sensor Data object.

8.7 CONTROL CLASSES AND OBJECTS

A control object provides the overall coordination of the objects that realize a use
case. Simple use cases do not need control objects. However, in a more complex
use case, a control object is usually needed. A control object is analogous to the
conductor of an orchestra, who orchestrates (controls) the behavior of the other
objects that participate in the use case, notifying each object when and what it should
perform. Depending on the characteristics of the use case, the control object may
be state-dependent. There are several kinds of control objects, which are described
in the sections that follow.

sensorName: String

sensorValue: Real

upperLimit: Real

lowerLimit: Real

alarmStatus: Boolean

«entity»

SensorData «entity»

temperature

SensorData

Figure 8.9. Example of entity class and object
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Figure 8.10. Example of coordinator class and object

8.7.1 Coordinator Objects

A coordinator object is an overall decision-making object that determines the over-
all sequencing for a collection of related objects. A coordinator object is often
required to provide the overall sequencing for execution of a use case. It makes
the overall decisions and decides when, and in what order, other objects partici-
pate in the use case. A coordinator object makes its decision based on the input
it receives and is not state-dependent. Thus, an action initiated by a coordinator
object depends only on the information contained in the incoming message and not
on what previously happened in the system.

An example of a coordinator class is the Bank Coordinator, which is depicted in
Figure 8.10a. The instance of this class, the Bank Coordinator object receives ATM
transactions from a client ATM. Depending on the transaction type, the Bank Coor-
dinator directs the transaction to the appropriate transaction-processing object to
execute the transaction. In the Banking System, these are a Withdrawal Transaction
Manager object, a Transfer Transaction Manager object, a Query Transaction Manager
object, or a PIN Validation Transaction Manager object (see Figure 8.10b).

Another kind of coordinator is a coordinator object in a service-oriented appli-
cation, which coordinates the interaction between a user interaction object and one
or more service objects. An example of this is described in Section 8.8.3.

8.7.2 State-Dependent Control Objects

A state-dependent control object is a control object whose behavior varies in each
of its states. A finite state machine is used to define a state-dependent control object
and is depicted by using a statechart. Statecharts, which were originally conceived by
Harel (1988, 1998), can be either flat (nonhierarchical) or hierarchical, as described
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Figure 8.11. Example of state-dependent control class and object

in Chapter 10. This section gives only a brief overview of state-dependent control
objects, which are described in much more detail in Chapters 10 and 11.

A state-dependent control object receives incoming events that cause state tran-
sitions and generates output events that control other objects. The output event gen-
erated by a state-dependent control object depends not only on the input received
by the object but also on the current state of the object. An example of a state-
dependent control object is the ATM Control object (Figure 8.11), which is defined by
means of the ATM Control statechart. In the example, ATM Control is shown control-
ling two other output boundary objects, Receipt Printer Interface and Cash Dispenser
Interface.

In a control system, there are usually one or more state-dependent control
objects. It is also possible to have multiple state-dependent control objects of the
same type. Each object executes an instance of the same finite state machine
(depicted as a statechart), although each object is likely to be in a different state. An
example of this is the Banking System, which has several ATMs, where each ATM
has an instance of the state-dependent control class, ATM Control, which is also shown
in Figure 8.11. Each ATM Control object executes its own instance of the ATM Control
statechart and keeps track of the state of the local ATM. Another example is from
the Automated Guided Vehicle System, in which the control and sequencing of the
vehicle is modeled by means of a state-dependent control object, Vehicle Control,
and defined by means of a statechart. Consequently, each vehicle has a vehicle
control object. More information about state-dependent control objects is given in
Chapter 11.

8.7.3 Timer Objects

A timer object is a control object that is activated by an external timer – for example,
a real-time clock or operating system clock. The timer object either performs some
action itself or activates another object to perform the desired action.
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Figure 8.12. Example of a timer class and object

An example of a timer class, Report Timer, is given in Figure 8.12. An instance
of this class, the timer object Report Timer, is activated by a timer event from an
external timer, the Digital Clock. The timer object then sends a Prepare message to
the Weekly Report object.

8.8 APPLICATION LOGIC CLASSES AND OBJECTS

This section describes the three kinds of application logic objects, namely, business
logic objects, algorithm objects, and service objects. As with control objects, appli-
cation logic objects are more likely to be considered when the dynamic model, not
the initial conceptual static model, is being developed.

8.8.1 Business Logic Objects

A business logic object defines the business-specific application logic for processing
a client request. The goal is to encapsulate (hide) business rules that could change
independently of each other into separate business logic objects. Another goal is to
separate the business rules from the entity data that they operate on, because the
business rules can change independently of the entity data. Usually a business logic
object accesses various entity objects during its execution.

Business logic objects are only needed in certain situations. Sometimes, there is
a choice between encapsulating the business logic in a separate business logic object
or, if the business logic is sufficiently simple, having it as an operation of an entity
object. The guideline is that if the business rule can be executed only by accessing
two or more entity objects, there should be a separate business logic object. On the
other hand, if accessing one entity object is sufficient to execute the business rule, it
could be provided by an operation of that object.

An example of a business logic class is the Withdrawal Transaction Manager class,
which is shown in Figure 8.13. An instance of this class, the Withdrawal Transaction
Manager business logic object, services withdrawal requests from ATM customers.
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Figure 8.13. Example of business logic class and object

It encapsulates the business rules for processing an ATM withdrawal request. For
example, the first business rule is that the customer must have a minimum balance
of $50 after the withdrawal takes place; the second business rule is that the cus-
tomer is not allowed to withdraw more than $250 per day with a debit card. The
Withdrawal Transaction Manager object accesses an Account object to determine if
the first business rule will be satisfied. It accesses the Debit Card object, which main-
tains a running total of the amount withdrawn by an ATM customer on this day, to
determine if the second business rule will be satisfied. If either business rule is not
satisfied, the withdrawal request is rejected.

A business logic object usually has to interact with entity objects in order to
execute its business rules. In this way, it resembles a coordinator object. However,
unlike a coordinator object, whose main responsibility is to supervise other objects,
the prime responsibility of a business logic object is to encapsulate and execute the
business rules.

8.8.2 Algorithm Objects

An algorithm object encapsulates an algorithm used in the problem domain. This
kind of object is more prevalent in real-time, scientific, and engineering domains.
Algorithm objects are used when there is a substantial algorithm used in the prob-
lem domain that can change independently of the other objects. Simple algorithms
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Figure 8.14. Example of algorithm class and object

are usually operations of an entity object that operate on the data encapsulated in
the entity. In many scientific and engineering domains, algorithms are refined iter-
atively because they are improved independently of the data they manipulate (e.g.,
for improved performance or accuracy).

An example from a Train Control System is the Cruiser algorithm class. An
instance of this class, the Cruiser object, calculates what adjustments to the speed
should be made by comparing the current speed of the train with the desired cruis-
ing speed (Figure 8.14). The algorithm is complex because it must provide gradual
accelerations or decelerations of the train when they are needed, so as to have min-
imal effect on the passengers.

An algorithm object frequently encapsulates data it needs for computing its algo-
rithm. These data may be initialization data, intermediate result data, or threshold
data, such as maximum or minimum values.

An algorithm object frequently has to interact with other objects in order to
execute its algorithm (e.g., Cruiser). In this way, it resembles a coordinator object.
Unlike a coordinator object, however, whose main responsibility is to supervise
other objects, the prime responsibility of an algorithm object is to encapsulate and
execute the algorithm.

8.8.3 Service Objects

A service object is an object that provides a service for other objects. They are
usually provided in service-oriented architectures and applications, as described in
Chapter 16. Client objects can request a service from the service object, which the
service object will respond to. A service object never initiates a request; however,
in response to a service request it might seek the assistance of other service objects.
Service objects play an important role in service-oriented architectures, although
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Figure 8.15. Example of service class and object

they are used in other architectures as well, such as client/server architectures and
component-based software architectures. A service object might encapsulate the
data it needs to service client requests or access another entity object(s) that encap-
sulate the data.

An example of a service class is the Catalog Service class given in Figure 8.15a. An
example of executing an instance of this class, the Catalog Service object, is shown
in Figure 8.15b. The Catalog Service object provides support for viewing various cat-
alog items from the supplier’s catalog and selecting items from the catalog. The
Customer Coordinator assists the Customer Interaction object in finding a supplier cat-
alog, provided by the Catalog Service object, and making selections from the catalog.
In addition to service classes and objects, coordinator classes and objects are also
frequently used in service-oriented architectures and applications, as described in
Chapter 16.

8.9 SUMMARY

This chapter described how to determine the software objects and classes in the sys-
tem. Object and class structuring criteria were provided, and the objects and classes
were categorized by using stereotypes. The emphasis is on problem domain objects
and classes, which are to be found in the real world, and not on solution domain
objects, which are determined at design time. The object and structuring criteria
are usually applied to each use case in turn during dynamic interaction modeling,
as described in Chapters 9 and 11, to determine the objects that participate in each
use case. The sequence of interaction among the objects is then determined. Sub-
system structuring criteria are described in Chapter 13. The design of the operations
provided by each class is described in Chapter 14.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a boundary object?
(a) An external object

(b) An object that stores data
(c) An object that communicates with

an external object
(d) An object that controls other

objects
2. What is a control object?
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(a) An object that depends on other
objects

(b) An object that communicates with
an external object

(c) An object that controls other
objects

(d) An object that is controlled by
other objects

3. What is a state-dependent control ob-
ject?
(a) An object that depends on a state

machine
(b) An object that communicates with

a state machine
(c) An object that controls a state

machine
(d) An object that executes a state

machine
4. What is a coordinator object?

(a) A manager object
(b) An object that makes decisions

based on a state machine
(c) A decision-making object
(d) An object that decides which entity

object to interact with
5. How would you determine a boundary

class from the context diagram?
(a) By looking at it
(b) By selecting the external classes on

the context diagram
(c) By determining the software clas-

ses that communicate with the
external classes

(d) By drawing the boundary between
the hardware and software clas-
ses

6. What is a timer object?
(a) An external clock

(b) An internal clock
(c) An object that is awakened by an

external timer
(d) An object that interacts with a

clock
7. What do class structuring criteria help

with?
(a) Structuring an application into

classes
(b) Defining the attributes of a class
(c) Defining the associations of a class
(d) Defining the operations of a class

8. What is the classification process for
application classes analogous to?
(a) Categorizing books in a library
(b) Deciding how many copies of a

book are needed
(c) Finding the classrooms in a school
(d) Identifying what labs the school

has
9. What is the purpose of a stereotype in

class structuring?
(a) To label a class according to its

class structuring criterion
(b) To identify the objects that belong

to the same class
(c) To distinguish between external

objects and software objects
(d) To identify the association bet-

ween two classes
10. What is a business logic object?

(a) An object used in business applica-
tions

(b) An object that defines business-
specific application logic

(c) The internal logic of an object
(d) A business object that determines

whether a client request is logical
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Dynamic Interaction Modeling

Dynamic modeling provides a view of a system in which control and sequencing are
considered, either within an object (by means of a finite state machine) or between
objects (by analysis of object interactions). This chapter addresses dynamic interac-
tion between objects.

Dynamic interaction modeling is based on the realization of the use cases devel-
oped during use case modeling. For each use case, it is necessary to determine how
the objects that participate in the use case dynamically interact with each other.
The object structuring criteria described in Chapter 8 are applied to determine the
objects that participate in each use case. This chapter describes how, for each use
case, an interaction diagram is developed to depict the objects that participate in
the use case and the sequence of messages passed between them. The interaction
is depicted on either a communication diagram or a sequence diagram. A narrative
description of the object interaction is also provided in a message sequence descrip-
tion. Please note that all references to system in this chapter are to the software
system.

This chapter first describes object interaction modeling using communication
diagrams and sequence diagrams before describing how they are used in dynamic
interaction modeling. It then describes the details of the dynamic interaction model-
ing approach for determining how objects collaborate with each other. This chapter
describes stateless dynamic interaction modeling, also referred to as basic dynamic
interaction modeling. Chapter 11 describes state-dependent dynamic interaction
modeling, which, unlike stateless dynamic interaction modeling, involves state-
dependent communication controlled by a statechart.

Section 9.1 presents an overview of object interaction modeling and describes
the two kinds of interaction diagrams, communication and sequence diagrams.
Section 9.2 describes message sequence numbering on interaction diagrams. Sec-
tion 9.3 introduces dynamic interaction modeling, and Section 9.4 describes state-
less dynamic interaction modeling. Section 9.5 provides two examples of stateless
dynamic interaction modeling.

132
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View Alarms

Monitoring 
Operator

Figure 9.1. Use case diagram for the View Alarms use case

9.1 OBJECT INTERACTION MODELING

For each use case, the objects that realize the use case dynamically cooperate with
each other and are depicted on either a UML communication diagram or a UML
sequence diagram, as described in this section.

9.1.1 Communication Diagrams

A communication diagram is a UML interaction diagram that depicts a dynamic
view of a group of objects interacting with each other by showing the sequence
of messages passed among them. During analysis modeling, a communication dia-
gram is developed for each use case; only objects that participate in the use case are
depicted. On a communication diagram, the sequence in which the objects partici-
pate in each use case is depicted by means of message sequence numbers. The mes-
sage sequencing on the communication diagram should correspond to the sequence
of interactions between the actor and the system already described in the use case.

As an example of using a communication diagram to depict the objects that par-
ticipate in a use case, consider the View Alarms use case from the Emergency Mon-
itoring System case study (Figure 9.1), in which a Monitoring Operator views out-
standing alarms. The communication diagram (Figure 9.2) for this simple use case

«user interaction»

: OperatorInteraction

«service»

: AlarmService

A1: Operator

Request

A1.3: Display 

Info

A1.1: Alarm

Request A1.2: Alarm

: Monitoring

Operator

Figure 9.2. Communication diagram for the View Alarms use case
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consists of only two objects: a user interaction object and a service object. The user
interaction object is called Operator Interaction. The service object is called Alarm
Service.

The communication diagram for this use case depicts the user interaction object,
Operator Interaction, making a request to the service object, Alarm Service and receiv-
ing a response (see Figure 9.2).

9.1.2 Sequence Diagrams

The interaction among objects can also be shown on a sequence diagram, which
shows object interactions arranged in time sequence. A sequence diagram shows the
objects participating in the interaction and the sequence in which messages are sent.
Sequence diagrams can also depict loops and iterations. Sequence diagrams and
communication diagrams depict similar (although not necessarily identical) infor-
mation, but in different ways. Usually either communication diagrams or sequence
diagrams are used to describe a dynamic view of a system, but not both.

Because the sequence diagram shows the order of messages sent sequentially
from the top to the bottom of the diagram, numbering the messages is not essen-
tial. In the following example, however, the messages on the sequence diagram are
numbered to show their correspondence to the communication diagram.

An example of a sequence diagram for the View Alarms use case is shown in Fig-
ure 9.3. This sequence diagram conveys the same information as the communication
diagram shown in Figure 9.2.

9.1.3 Analysis and Design Decisions in Object Interaction Modeling

In the analysis model, messages represent the information passed between objects.
Interaction diagrams (communication diagrams or sequence diagrams) help in
determining the operations of the objects because the arrival of a message at an
object usually invokes an operation. In COMET, however, the emphasis during

«user interaction»
: Operator
Interaction

«service»
: AlarmService

: Monitoring
Operator

A1: Operator Request

A1.3: Display Info

A1.1: Alarm Request

A1.2: Alarm

Figure 9.3. Sequence diagram for the View Alarms use case



Dynamic Interaction Modeling 135

analysis modeling is on capturing the information passed between objects, rather
than on the operations invoked. During design, we might decide that two differ-
ent messages arriving at an object invoke different operations or, alternatively, the
same operation, with the message name being a parameter of the operation. How-
ever, these decisions should be postponed to the design phase. The kind of message
passed between objects – synchronous or asynchronous – is a design decision that
is also postponed to the design phase. At the analysis stage, all messages passed
between objects are shown as simple messages.

In the analysis phase, no decision is made about whether an object is active or
passive; this decision is also deferred to the design phase.

9.1.4 Sequence Diagram versus Communication Diagram

Either a sequence diagram or a communication diagram can be used to depict the
object interaction and sequence of messages passed among objects. In its sequen-
tial form, the sequence diagram clearly shows the order in which messages are
passed between objects, but seeing how the objects are connected to each other is
more difficult. However, using iterations (such as do-while) and decision statements
(if-then-else) can obscure the sequence of object interactions.

The communication diagram shows the layout of the objects, particularly how
the objects are connected to each other. The message sequence is shown on both
diagrams. Because the message sequence depicted on the communication diagram
is less readily visible than on the sequence diagram, the message sequence is num-
bered. However, even with the message numbering on the communication diagram,
it sometimes takes longer to see the sequence of messages. On the other hand, if
an interaction involves many objects, a sequence diagram can become difficult to
read. The diagram might have to be shrunk to fit on a page, or it might span several
pages.

The COMET preference is to use communication diagrams rather than sequence
diagrams, because an important step in the transition to design is the integration of
the communication diagrams to create the initial software architecture of the sys-
tem, as described in Chapter 13. This integration is much easier with communication
diagrams than with sequence diagrams. If the analysis started with sequence dia-
grams, it would be necessary to convert each sequence diagram to a communication
diagram before the integration could be done. Sometimes, however, the sequence
diagram is very helpful, in particularly for very complex and lengthy interactions.

9.1.5 Use Cases and Scenarios

A scenario is one specific path through a use case. Thus, a particular message
sequence depicted on an interaction diagram actually depicts a scenario and not
a use case. To show all the alternatives through a use case, development of more
than one interaction diagram is often necessary.

By using conditions, it is possible to depict alternatives on an interaction diagram
and, hence, to depict the whole use case on a single interaction diagram. However,
such comprehensive interaction diagrams are usually more difficult to read. In prac-
tice, depicting an individual scenario on an interaction diagram is usually clearer.
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By using a sequence diagram with loops and branches, it is also possible to depict
the interaction sequence of the whole use case consisting of the main sequence and
all the alternative sequences. This is described in more detail in Section 9.5.

9.1.6 Generic and Instance Forms of Interaction Diagrams

The two forms of an interaction (sequence or communication) diagram are the
generic form and the instance form. The instance form describes a specific scenario
in detail, depicting one possible sequence of interactions among object instances.
The generic form describes all possible interactions in which the objects might par-
ticipate, and so can include loops, branches, and conditions. The generic form of an
interaction diagram can be used to describe both the main sequence and the alter-
natives of a use case. The instance form is used to depict a specific scenario, which
is one instance of the use case. Using the instance form might require several inter-
action diagrams to depict a given use case, depending on how many alternatives are
described in the use case. Examples of instance and generic forms of interaction
diagrams, both communication diagrams and sequence diagrams, are given in the
examples in Section 9.5.

For all but the simplest use cases, an interaction diagram is usually much clearer
when it depicts an instance form rather than a generic form of interaction. It can
rapidly become too complicated if several alternatives are depicted on the same
diagram. In the instance form of the sequence diagram, time moves down the page,
so that it is easy to follow the message sequence. However, in the generic form –
with loops, branches, and conditions – this is no longer the case, making the message
sequence more difficult to follow.

9.2 MESSAGE SEQUENCE NUMBERING ON INTERACTION DIAGRAMS

Messages on a communication diagram or sequence diagram are given message
sequence numbers. This section provides some guidelines for numbering message
sequences. These guidelines follow the general UML conventions; however, they
have been extended to better address concurrency, alternatives, and large message
sequences. These conventions are followed in the examples given in this chapter (see
Section 9.5 for more examples) and in the case studies in Chapters 20 through 24.

9.2.1 Message Labels on Interaction Diagrams

A message label on a communication or sequence diagram has the following syntax
(only those parts of the message label that are relevant in the analysis phase are
described here):

[sequence expression]: Message Name (argument list)

where the sequence expression consists of the message sequence number and an
indicator of recurrence.

■ Message sequence number. The message sequence number is described as fol-
lows: The first message sequence number represents the event that initiates the
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message sequence depicted on the communication diagram. Typical message
sequences are 1, 2, 3, . . . ; A1, A2, A3, . . .

A more elaborate message sequence can be depicted with the Dewey classi-
fication system, such that A1.1 precedes A1.1.1, which in turn precedes A1.2. In
the Dewey system, a typical message numbering sequence would be A1, A1.1,
A1.1.1, A1.2.

■ Recurrence. The recurrence term is optional and represents conditional or iter-
ative execution. The recurrence term represents zero or more messages that are
sent, depending on the conditions being met.
1. ∗ [iteration-clause]. An asterisk (∗) is added after the message sequence num-

ber to indicate that more than one message is sent. The optional iteration
clause is used to specify repeated execution, such as [j := 1,n]. An exam-
ple of an iteration by putting an asterisk after the message sequence number
is 3∗.

2. [condition-clause]. A condition is specified in square brackets to indicate
a branch condition. The optional condition clause is used for specifying
branches – for example, [x < n] – meaning that the message is sent only if
the condition is true. Examples of conditional message passing by showing a
condition after the message sequence number are 4[x < n] and 5[Normal]. In
each case, the message is sent only if the condition is true.

■ Message name. The message name is specified.
■ Argument list. The argument list of the message is optional and specifies any

parameters sent as part of the message.

There can also be optional return values from the message sent. However, it is
recommended to use only simple messages during the analysis phase, in which case
there are no return values, and to postpone to the design phase the decision about
which kind of message to use.

9.2.2 Message Sequence Numbering on Interaction Diagrams

On a communication diagram supporting a use case, the sequence in which the
objects participate in each use case is described and depicted by message sequence
numbers. A message sequence number for a use case takes the following form:

[first optional letter sequence] [numeric sequence] [second optional

letter sequence]

The first optional letter sequence is an optional use case ID and identifies a spe-
cific concrete use case or abstract use case. The first letter is an uppercase letter and
might be followed by one or more upper- or lowercase letters if a more descriptive
use case ID is desired.

The simplest form of message sequencing is to use a sequence of whole num-
bers, such as M1, M2, and M3. However, in an interactive system with several exter-
nal inputs from the actor, it is often helpful to include a numeric sequence that
includes decimal numbers – that is, to number the external events as whole num-
bers followed by decimal numbers for the ensuing internal events. For example, if
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the actor’s inputs were designated as A1, A2, and A3, the full message sequence
depicted on the communication diagram would be A1, A1.1, A1.2, A1.3, . . . , A2,
A2.1, A2.2, . . . , and A3, A3.1, A3.2, . . . .

An example is V1, where the letter V identifies the use case and the number
identifies the message sequence within the communication diagram supporting the
use case. The object sending the first message – V1 – is the initiator of the use case–
based communication. Thus, in the communication and sequence diagram examples
in Figures 9.2 and 9.3, respectively, the input from the actor is V1. Subsequent mes-
sage numbers following this input message are V1.1, V1.2, and V1.3. If the dialog
were to continue, the next input from the actor would be V2.

9.2.3 Concurrent and Alternative Message Sequences

The second optional letter sequence is used to depict special cases of branches –
either concurrent or alternative – in the message sequence numbering.

Concurrent message sequences may also be depicted on a communication
diagram. A lowercase letter represents a concurrent sequence; in other words,
sequences designated as A3 and A3a would be concurrent sequences. For exam-
ple, the arrival of message A2 at an object X might result in the sending of two
messages from object X to two objects Y and Z, which could then execute in par-
allel. To indicate the concurrency in this case, the message sent to object Y would
be designated as A3, and the one to object Z, as A3a. Subsequent messages in the
A3 sequence would be A4, A5, A6, . . . , and subsequent messages in the indepen-
dent A3a sequence would be A3a.1, A3a.2, A3a.3, and so on. Because the sequence
numbering is more cumbersome for the A3a sequence, use A3 for the main mes-
sage sequence and A3a and A3b for the supporting message sequences. An alter-
native way to show two concurrent sequences is to avoid A3 altogether and use
the sequence numbers A3a and A3b; however, this can lead to a more cumber-
some numbering scheme if A3a initiates another concurrent sequence, so the former
approach is preferred.

Alternative message sequences are depicted with the condition indicated after
the message. An uppercase letter is used to name the alternative branch. For exam-
ple, the main branch may be labeled 1.4[Normal], and the other, less frequently used
branch could be named 1.4A[Error]. The message sequence numbers for the normal
branch would be 1.4[Normal], 1.5, 1.6, and so on. The message sequence numbers
for the alternative branch would be 1.4A[Error], 1.4A.1, 1.4A.2, and so on.

9.2.4 Message Sequence Description

A message sequence description is supplementary documentation, which is use-
ful to provide with an interaction diagram. It is developed as part of the dynamic
model and describes how the analysis model objects participate in each use case
as depicted on an interaction diagram. The message sequence description is a nar-
rative description, describing what happens when each message arrives at a des-
tination object depicted on a communication diagram or sequence diagram. The
message sequence description uses the message sequence numbers that appear
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on the communication diagram. It describes the sequence of messages sent from
source objects to destination objects and describes what each destination object
does with a message it receives. The message sequence description usually pro-
vides additional information that is not depicted on the object interaction diagram.
For example, every time an entity object is accessed, the message sequence descrip-
tion can provide additional information, such as which attributes of the object are
referenced.

Examples of message sequence descriptions are given in Section 9.5.

9.3 DYNAMIC INTERACTION MODELING

Dynamic interaction modeling is an iterative strategy to help determine how the
analysis model objects interact with each other to support the use cases. Dynamic
interaction modeling is carried out for each use case. A first attempt is made to
determine the objects that participate in a use case, using the object structuring
criteria described in Chapter 8. Then the way in which these objects collaborate
to execute the use case is analyzed. This analysis might show a need for additional
objects and/or additional interactions to be defined.

Dynamic interaction modeling can be either state-dependent or stateless,
depending on whether the object communication is state-dependent. This chapter
describes stateless dynamic interaction modeling. State-dependent dynamic interac-
tion modeling is described in Chapter 11.

9.4 STATELESS DYNAMIC INTERACTION MODELING

The main steps in the stateless dynamic interaction modeling approach are as fol-
lows, starting with the use case. Next consider the objects needed to realize the use
case, then determine the sequence of message communication among the objects.

1. Develop use case model. This step is described in Chapter 6. For dynamic
modeling, consider each interaction between the primary actor and the sys-
tem. Remember that the actor starts the interaction with the system through
an external input. The system responds to this input with some internal exe-
cution and then typically provides a system output. The sequence of actor
inputs and system responses is described in the use case. Start by developing
the communication sequence for the scenario described in the main path of
the use case. Consider each interaction in sequence between the actor and the
system.

2. Determine objects needed to realize use case. This step requires applying the
object structuring criteria (see Chaper 8) to determine the software objects
needed to realize the use case, both boundary objects (2a below) and internal
software objects (2b below).

2a. Determine boundary object(s). Consider the actor (or actors) that partici-
pates in the use case; determine the external objects (external to the sys-
tem) through which the actor communicates with the system, and the software
objects that receive the actor’s inputs.
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Start by considering the inputs from the external objects to the system.
For each external input event, consider the software objects required to pro-
cess the event. A software boundary object (such as an input object or user
interaction object) is needed to receive the input from the external object. On
receipt of the external input, the boundary object does some processing and
typically sends a message to an internal object.

2b. Determine internal software objects. Consider the main sequence of the use
case. Using the object structuring criteria, make a first attempt at determining
the internal software objects that participate in the use case, such as control
or entity objects.

3. Determine message communication sequence. For each input event from the
external object, consider the communication required between the boundary
object that receives the input event and the subsequent objects – entity or
control objects – that cooperate in processing this event. Draw a communica-
tion diagram or sequence diagram showing the objects participating in the use
case and the sequence of messages passing between them. This sequence typ-
ically starts with an external input from the actor (external object), followed
by a sequence of internal message between the participating software objects,
through to an external output to the actor (external object). Repeat this pro-
cess for each subsequent interaction between the actor(s) and the system. As a
result, additional objects may be required to participate, and additional mes-
sage communication, along with message sequence numbering, will need to
be specified.

4. Determine alternative sequences. Consider the different alternatives, such as
error handling, which are described in the Alternatives section of the use case.
Then consider what objects need to participate in executing the alternative
branches and the sequence of message communication among them.

9.5 EXAMPLES OF STATELESS DYNAMIC INTERACTION MODELING

Two examples are given of stateless dynamic interaction modeling. The first exam-
ple starts with the use case for View Alarms, and the second example starts with the
use case for Process Delivery Order.

9.5.1 View Alarms Example

As an example of stateless dynamic interaction modeling, consider View Alarms
use case from the Emergency Monitoring System case study. This example follows
the four steps for dynamic modeling described in Section 9.4, although because it is
a simple example, there are no alternative sequences.

1. Develop Use Case Model
There is one actor in the View Alarms use case, the monitoring operator, who

can request to view the status of alarms, as shown in Figure 9.1. The use case descrip-
tion is briefly described as follows:
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Use case name: View Alarms
Actor: Monitoring Operator
Summary: The monitoring operator views outstanding alarms and
acknowledges that the cause of an alarm is being addressed.
Precondition: The monitoring operator is logged in.
Main sequence:

1. The Monitoring Operator requests to view the outstanding alarms.
2. The system displays the outstanding alarms. For each alarm, the

system displays the name of the alarm, alarm description, lo-
cation of alarm, and severity of alarm (high, medium, low).

Postcondition: Outstanding alarms have been displayed.

2. Determine Objects Needed to Realize Use Case
Because View Alarms is a simple use case, only two objects participate in the use

case, as shown in Figure 9.2. The required objects can be determined by a careful
reading of the use case. These are a user interaction object called Operator Interac-
tion, which receives inputs from and sends outputs to the actor, and a service object
called Alarm Service, which provides access to the alarm repository and responds to
alarm requests.

3. Determine Message Communication Sequence
The communication diagram for this use case depicts the user interaction object,

the Operator Interaction object, making a request to the service object, Alarm Service,
which responds with the desired information (see Figure 9.2). The message sequence
corresponds to the interaction sequence between the actor and the system described
in the use case, and is described as follows:

A1: The Monitoring Operator requests an alarm handling service – for exam-
ple, to view alarms or to subscribe to receive alarm messages of a specific
type. The request is sent to Operator Interaction.

A1.1: Operator Interaction sends the alarm request to Alarm Service.
A1.2: Alarm Service performs the request – for example, reads the list of

current alarms or adds the name of this user interaction object to the
subscription list – and sends a response to the Operator Interaction object.

A1.3: Operator Interaction displays the response – for example, alarm infor-
mation – to the operator.

9.5.2 Make Order Request Example

The second example of stateless dynamic interaction modeling is from the online
shopping service-oriented system. This example follows the four steps for dynamic
modeling described in Section 9.4.
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Make Order Request

Customer

Figure 9.4. Use case diagram for the Make Order Request use case

1. Develop Use Case Model
In the Make Order Request use case, a customer actor enters the order request

information; the system then gets the account information and requests credit card
authorization. If the credit card is authorized, the system creates a new delivery
order and displays the order. The use case diagram is depicted in Figure 9.4 and the
use case description is as follows:

Use case name: Make Order Request
Summary: Customer enters an order request to purchase items from the
online shopping system. The customer’s credit card is checked for validity
and sufficient credit to pay for the requested catalog items.
Actor: Customer
Precondition: Customer has selected one or more catalog items.
Main sequence:

1. Customer provides order request and customer account Id to pay for
purchase.

2. System retrieves customer account information, including the cus-
tomer’s credit card details.

3. System checks the customer’s credit card for the purchase amount
and, if approved, creates a credit card purchase authorization
number.

4. System creates a delivery order containing order details, customer
Id, and credit card authorization number.

5. System confirms approval of purchase and displays order information
to customer.

6. System sends email confirmation to customer.

Alternative sequences:

Step 2: If customer does not have account, the system prompts the cus-
tomer to provide information in order to create a new account. The cus-
tomer can either enter the account information or cancel the order.
Step 3: If authorization of the customer’s credit card is denied (e.g., invalid
credit card or insufficient funds in the customer’s credit card account),
the system prompts the customer to enter a different credit card number.
The customer can either enter a different credit card number or cancel
the order.

Postcondition: System has created a delivery order for the customer.
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aCustomer

«user interaction»

: Customer 

Interaction

M1: Order Request

M10: Customer Output

M2: Order Request

«coordinator»

aCustomerCoordinator

M9: Order Confirmation

«service»

: CustomerAccountService

M3: Account Request 

M4: Account Info

M5: Authorize Credit Card Request
«service»

: CreditCard 

Service
M6: Credit Card Approved

«service»

: DeliveryOrderService

M7: Store Order M8: Order Confirmation

«service»

: EmailService

M9a: Send Order

Confirmation Email

Figure 9.5. Communication diagram for the Make Order Request use case: main sequence

2. Determine Objects Needed to Realize Use Case
As before, the objects needed to realize this use case can be determined by a

careful reading of the use case, as shown in bold type. Given the customer actor,
there will need to be a user interaction object, Customer Interaction. Service objects
are needed for the four services needed to realize this use case, Customer Account
Service, Credit Card Service, Delivery Order Service, and Email Service. There will also
need to be a coordinator object, Customer Coordinator, to coordinate the interactions
between Customer Interaction and the four service objects.

3. Determine Message Communication Sequence
Next consider the sequence of interactions among these objects, as depicted in

Figure 9.5. The interaction sequence among the objects needs to reflect the inter-
action sequence between the actor and the system, as described in the use case.
The use case description (step 1) indicates that the customer requests to create an
order. To realize this use case step, Customer Interaction makes an order request to
Customer Coordinator (messages M1 and M2 in the communication diagram). In step
2 of the use case, the system retrieves the account information. To realize this use
case step, Customer Coordinator needs to request account information from Customer
Account Service (messages M3 and M4 in the communication diagram). In step 3 of
the use case, the system checks the customer’s credit card. To realize this use case
step, Customer Coordinator needs to request credit card authorization from Credit
Card Service (message M5 in the communication diagram). In the main sequence of
the use case, the credit card authorization request is approved, as given by message
M6 on the communication diagram. In step 4 of the use case, the system creates
a delivery order. To realize this use case step, Customer Coordinator needs to store
the order at Delivery Order Service (messages M7 and M8 in the communication dia-
gram). Next in the use case, the system confirms the order to the user (messages M9
and M10), and sends a confirmation email via the email service (concurrent message
M9a).
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The communication diagram for the Make Order Request use case is depicted in
Figure 9.5. The message descriptions are as follows:

M1: The customer provides order request to Customer Interaction.
M2: Customer Interaction sends the order request to Customer Coordinator.
M3, M4: Customer Coordinator sends the account request to Customer

Account Service and receives the account information, including the cus-
tomer’s credit card details.

M5: Customer Coordinator sends the customer’s credit card information to
Credit Card Service.

M6: Credit Card Service sends a credit card approval to Customer Coordinator.
M7, M8: Customer Coordinator sends order request to Delivery Order Service.
M9, M9a: Customer Coordinator sends the order confirmation to Customer

Interaction and sends an email of the order confirmation to the customer
via the Email Service.

M10: Customer Interaction outputs the order confirmation to the customer.

The sequence diagram for the same scenario, namely, the main sequence of the
Make Order Request use case, is depicted in Figure 9.6, which shows the message
sequence from top to bottom of the page.

4. Determine Alternative Sequences
Alternative scenarios for this use case are that the customer does not have an

account, in which case a new account will be created, or that the credit card autho-
rization is denied, in which case the customer has the option of selecting a different
card. Both of these alternative scenarios are analyzed.

The new account alternative scenario is depicted in Figure 9.7. This scenario
diverges from the main scenario at step M4A. The alternative response to the
account request of step M3 is M4A [no account]: Account does not exist. M4A is a
conditional message, which is only sent if the Boolean condition [no account] con-
dition is true. The message sequence for this alternative scenario is M4A through
M4A.8, which is described as follows:

M4A: Customer Account Service returns message to Customer Coordinator
indicating customer has no account.

M4A.1, M4A.2: Customer Coordinator sends a new account request to cus-
tomer via Customer Interaction.

M4A.3, M4A.4: Customer inputs account information to Customer Interac-
tion, which forwards the message to Customer Coordinator.

M4A.5: Customer Coordinator requests Customer Account Service to create a
new account.

M4A.6, M4A.7, M4A.8: Customer Account Service confirms new account,
which is returned to the customer via Customer Coordinator and Customer
Interaction.
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aCustomer

«user interaction»
: Customer 
Interaction

«coordinator»
aCustomer

Coordinator

«service»
: Customer

AccountService

M1: Order Request

M2: Order Request

M3: Account Request

M4A[No account]: Account Not Exist

M4A.1: Account Required
M4A.2: Customer Output

M4A.3: Account Input
M4A.4: Account Info

M4A.5: Create Account

M4A.6: Account Created
M4A.7: Account Confirmation

M4A.8: Customer Output

[No account]

Figure 9.7. Sequence diagram for the Make Order Request use case: alternative sequence for
Create New Account

The credit card denied alternative scenario is depicted in Figure 9.8. This sce-
nario diverges from the main scenario at step M6A. The alternative response to the
authorize credit card request of step M5 is M6A [denied]: Credit card denied. M6A
is a conditional message, which is only sent if the Boolean condition [denied] is true.
The message sequence for this alternative scenario is M6A through M6A.2, which
is described as follows:

M6A: Credit Card Service sends message to Customer Coordinator denying
authorization of credit card.

M6A.1: Customer Coordinator notifies Customer Interaction of credit card
denial.

M6A.2: Customer Interaction informs customer of denial and prompts for
different credit card.

aCustomer

«user interaction»
: Customer 
Interaction

M1: Order Request

M6A.2: Customer Output

M2: Order Request

«coordinator»
aCustomerCoordinator

M6A.1: Credit Card Denied

«service»
: CustomerAccountService

M3: Account Request 

M4: Account Info

M5: Authorize Credit Card Request
«service»

: CreditCard 
Service

M6A [Denied]: Credit Card Denied

Figure 9.8. Communication diagram for the Make Order Request use case: alternative
sequence for Credit Card Denied



M
9
a:

 S
en

d
 O

rd
er

C
o
n
fi

rm
at

io
n
 E

m
ai

l

aC
u
st

o
m

er

«
u
se

r 
in

te
ra

ct
io

n
»

: 
C

u
st

o
m

er
 

In
te

ra
ct

io
n

M
1
: 

O
rd

er
 R

eq
u
es

t

M
4
A

.3
: 
A

cc
o
u
n

t 
In

p
u

t

M
4
A

.2
, 
M

4
A

.8
, 

M
6
A

.2
, 
M

1
0
:

C
u

st
o

m
er

 O
u

tp
u

t M
2
: 

O
rd

er
 R

eq
u
es

t

M
4
A

.4
: 
A

cc
o
u
n
t 

In
fo «

co
o
rd

in
at

o
r»

aC
u

st
o

m
er

C
o
o
rd

in
at

o
r

M
4
A

.1
: 
A

cc
o
u

n
t 

R
eq

u
ir

ed

M
4
A

.7
: 
A

cc
o
u
n
t 

C
o
n
fi

rm
at

io
n

M
6
A

.1
: 

C
re

d
it

 C
ar

d
 D

en
ie

d

M
9
: 

O
rd

er
 C

o
n

fi
rm

at
io

n

M
3
: 
A

cc
o

u
n
t 

R
eq

u
es

t

M
4
A

.5
: 

C
re

at
e 

A
cc

o
u
n
t

M
5

: 
A

u
th

o
ri

ze
 C

re
d

it
 C

ar
d

 R
eq

u
es

t
«
se

rv
ic

e»

: 
C

re
d
it

C
ar

d
 

S
er

v
ic

e
M

6
 [

A
p
p

ro
v
ed

]:
 C

re
d
it

 C
ar

d
 A

p
p
ro

v
ed

M
6
A

 [
D

en
ie

d
]:

 C
re

d
it

 C
ar

d
 D

en
ie

d

«
se

rv
ic

e»

: 
D

el
iv

er
y
O

rd
er

S
er

v
ic

e

M
7
: 

S
to

re
 O

rd
er

M
8
: 

O
rd

er
 C

o
n
fi

rm
at

io
n

«
se

rv
ic

e»

: 
E

m
ai

lS
er

v
ic

e

M
4

 [
A

cc
o

u
n

t 
ex

is
ts

]:
 A

cc
o

u
n

t 
In

fo

M
4
A

 [
N

o
 a

cc
o

u
n
t]

: 
A

cc
o
u
n

t 
N

o
t 

E
x

is
t

M
4
A

.6
: 
A

cc
o
u
n
t 

C
re

at
ed

«
se

rv
ic

e»

: 
C

u
st

o
m

er
A

cc
o
u
n
tS

er
v
ic

e

Fi
gu

re
9

.9
.

G
en

er
ic

co
m

m
un

ic
at

io
n

di
ag

ra
m

fo
r

th
e

M
ak

e
Or

de
r

Re
qu

es
t

us
e

ca
se

:
m

ai
n

an
d

al
te

rn
at

iv
e

se
qu

en
ce

s

147



148 Software Modeling

The sequence diagram in Figure 9.6 and the communication diagrams in Figures
9.5, 9.7, and 9.8 all depict individual scenarios (main or alternative) of the Make Order
Request use case. It is possible to combine several scenarios onto a generic inter-
action diagram. Figure 9.9 depicts a generic communication diagram for the three
scenarios depicted on Figure 9.5 (main sequence) and Figures 9.7 and 9.8 (alterna-
tive sequences). Note the use of alternative message sequence numbering for the
different scenarios. The alternatives to the M3 account request message are the two
alternatives given by M4 [account exists] and M4A [no account]. The alternatives to
the M5 authorize credit card request message are the two alternatives given by M6
[approved] and M6A [denied].

The same three scenarios of the Make Order Request use case are depicted
on the generic sequence diagram in Figure 9.10. The sequence diagram depicts
the two alternative sequences for account creation and the other for credit card
approval. The first alt segment depicts the two alternatives of [account exists] and
[no account]. The second alt segment depicts the two alternatives of [approved]
and [denied]. In each case, a dashed line is the separator between the alternatives.
The message sequence numbering is optional on the sequence diagram; however,
it is explicitly depicted to illustrate the correspondence with the communication
diagram.

9.6 SUMMARY

This chapter discussed dynamic modeling, in which the objects that participate in
each use case are determined, as well as the sequence of their interactions. This
chapter first described communication diagrams and sequence diagrams before
explaining how they are used in dynamic modeling. It then described the details
of the dynamic interaction modeling approach for determining how objects collab-
orate with each other. State-dependent dynamic interaction modeling involves a
state-dependent communication controlled by a statechart (as described in Chapter
11), and stateless dynamic interaction modeling does not.

During design, the communication diagrams corresponding to each use case
are synthesized into an integrated communication diagram, which represents the
first step in developing the software architecture of the system, as described in
Chapter 13. During analysis, all message interactions are depicted as simple mes-
sages, because no decision has yet been made about the characteristics of the mes-
sages. During design, the message interfaces are defined as described in Chapters 12
and 13.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What does an interaction diagram
depict?
(a) The state and transitions inside a

control object
(b) Classes and their relationships

(c) Software objects and the sequence
of their interactions

(d) The external objects communicat-
ing with the system

2. How is an actor depicted on an interac-
tion diagram?
(a) An actor has an association with

the interaction diagram.
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(b) An actor can provide input to or
receive output from a boundary
object.

(c) An actor can provide input to or
receive output from a boundary
class.

(d) An instance of an actor can provide
input to or receive output from a
boundary object.

3. What does a sequence diagram depict?
(a) The sequence of external objects

communicating with each other
(b) Classes and their relationships
(c) Software objects and the sequence

of their interactions
(d) The external objects communicat-

ing with the system
4. What does a communication diagram

depict?
(a) The sequence of external objects

communicating with each other
(b) Classes and their relationships
(c) Software objects and the sequence

of their interactions
(d) The external objects communicat-

ing with the system
5. What is the instance form of an interac-

tion diagram?
(a) Depicts several object instances

interacting with each other
(b) Depicts one possible sequence

of interactions among object
instances

(c) Depicts all possible interactions
among object instances

(d) Depicts all object instances and
their links to each other

6. What is the generic form of an interac-
tion diagram?
(a) Depicts several objects interacting

with each other
(b) Depicts one possible sequence of

interactions among objects
(c) Depicts all possible interactions

among objects

(d) Depicts all classes and their associ-
ations with each other

7. During dynamic interaction modeling,
use cases are realized as follows:
(a) Determine objects that participate

in each use case and the sequence
of interactions among them.

(b) Determine external objects and the
sequence in which they provide
inputs to and receive outputs from
each use case.

(c) Determine sequence of interac-
tions among use cases.

(d) Determine how a use case is
depicted through internal states
and transitions between them.

8. Which of the following interactions
could happen on an interaction dia-
gram?
(a) An external user sends a message

to a user interaction object.
(b) An external user sends a message

to an entity object.
(c) An external user sends a message

to an I/O object.
(d) An external user sends a message

to a printer object.
9. Which of the following interactions is

NOT likely to happen on an interaction
diagram?
(a) A user interaction object sends a

message to an entity object.
(b) An input object sends a message to

a state-dependent control object.
(c) An input object sends a message to

a printer object.
(d) A user interaction object sends a

message to a proxy object.
10. What kind of object would be the first

object to receive an input from an
external object?
(a) A user interaction object
(b) A proxy object
(c) An entity object
(d) A boundary object
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Finite State Machines

Finite state machines are used for modeling the control and sequencing view of a sys-
tem or object. Many systems, such as real-time systems, are highly state-dependent;
that is, their actions depend not only on their inputs but also on what has previously
happened in the system. Notations used to define finite state machines are the state
transition diagram, statechart, and state transition table. In highly state-dependent
systems, these notations can help greatly by providing insight into understanding
the complexity of these systems.

In the UML notation, a state transition diagram is referred to as a state machine
diagram. The UML state machine diagram notation is based on Harel’s statechart
notation (Harel 1988; Harel and Politi 1998). In this book, the terms statechart and
state machine diagram are used interchangeably. We refer to a traditional state tran-
sition diagram, which is not hierarchical, as a flat statechart and use the term hierar-
chical statechart to refer to the concept of hierarchical state decomposition. A brief
overview of the statechart notation is given in Chapter 2 (Section 2.6).

This chapter starts by considering the characteristics of flat statecharts and then
describes hierarchical statecharts. To show the benefits of hierarchical statecharts,
this chapter starts with the simplest form of flat statechart and gradually shows how
it can be improved upon to achieve the full modeling power of hierarchical state-
charts. Several examples are given throughout the chapter from two case studies,
the Automated Teller Machine and Microwave Oven finite state machines.

Section 10.1 describes events and states in finite state machines. Section 10.2
introduces the statechart examples. Section 10.3 describes events and guard condi-
tions, and Section 10.4 describes statechart actions. Section 10.5 describes hierar-
chical statecharts. Section 10.6 provides guidelines for developing statecharts. The
process of developing statecharts from use cases is then described in Section 10.7.

10.1 FINITE STATE MACHINES AND STATE TRANSITIONS

A finite state machine (also referred to as state machine) is a conceptual machine
with a finite number of states. The state machine can be in only one state at any
one time. A state transition is a change in state that is caused by an input event. In

151
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response to an input event, the finite state machine might transition to a different
state. Alternatively, the event might have no effect, in which case the finite state
machine remains in the same state. The next state depends on the current state, as
well as on the input event. Optionally, an output action might result from the state
transition.

Although a whole system can be modeled by means of a finite state machine,
in object-oriented analysis and design, a finite state machine is encapsulated inside
one object. In other words, the object is state-dependent and is always in one of the
states of the finite state machine. The object’s finite state machine is depicted by
means of a statechart. In an object-oriented model, the state-dependent view of a
system is defined by means of one or more finite state machines, in which each finite
state machine is encapsulated inside its own object. This section describes the basic
concepts of events and states before giving some examples of statecharts.

10.1.1 Events

An event is an occurrence at a point in time; it is also known as a discrete event,
discrete signal, or stimulus. An event is an atomic occurrence (not interruptible) and
conceptually has zero duration. Examples of events are Card Inserted, Pin Entered,
and Door Opened.

Events can depend on each other. For example, the event Card Inserted always
precedes Pin Entered for a given sequence of events. In this situation, the first event
(Card Inserted) causes a transition into the state (Waiting for PIN), whereas the next
event (Pin Entered) causes the transition out of that state; the precedence of the two
events is reflected in the state that connects them, as shown in Figure 10.1.

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Figure 10.1. Example of main sequence of statechart
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An event can originate from an external source, such as Card Inserted (which is
the result of the user inserting the card into the card reader), or can be internally
generated by the system, such as Valid PIN.

10.1.2 States

A state represents a recognizable situation that exists over an interval of time.
Whereas an event occurs at a point in time, a finite state machine is in a given state
over an interval of time. The arrival of an event at the finite state machine usually
causes a transition from one state to another. Alternatively, an event can have a null
effect, in which case the finite state machine remains in the same state. In theory, a
state transition is meant to take zero time to occur. In practice, the time for a state
transition to occur is negligible compared to the time spent in the state.

Some states represent the state machine waiting for an event from the external
environment; for example, the state Waiting for PIN is the state in which the state
machine is waiting for the customer to enter the PIN, as shown in Figure 10.1. Other
states represent situations in which the state machine is waiting for a response from
another part of the system. For example, Validating PIN is the state in which the
customer PIN is being checked by the system; the next event will indicate whether
the validation succeeded or not.

The initial state of a state machine is the state that is entered when the state
machine is activated. For example, the initial state in the ATM statechart is the
Idle state, as identified in UML by the arc originating from the small black circle in
Figure 10.1.

10.2 EXAMPLES OF STATECHARTS

The use of flat statecharts is illustrated by means of two examples, an ATM state-
chart and a Microwave Oven statechart.

10.2.1 Example of ATM Statechart

Consider an example, shown in Figure 10.1, of a partial statechart for an automated
teller machine. The initial state of the ATM statechart is Idle. Consider the scenario
consisting of the customer inserting the card into the ATM, entering the PIN, and
then selecting cash withdrawal. When the Card Inserted event arrives, the ATM stat-
echart transitions from the Idle state to the Waiting for PIN state, during which time
the ATM is waiting for the customer to input the PIN. When the PIN Entered event
arrives, the ATM transitions to the Validating PIN state. In this state the bank system
determines whether the customer-entered PIN matches the stored PIN for this card,
and whether the ATM card has been reported lost or stolen. Assuming that the card
and PIN validation is successful (event Valid PIN), the ATM transitions into Waiting
for Customer Choice state.

It is possible to have more than one transition out of a state, with each transition
caused by a different event. Consider the alternative transitions that could result
from PIN validation. Figure 10.2 shows three possible state transitions out of the
Validating PIN state. If the two PIN numbers match, the ATM makes the Valid PIN
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Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Confiscating

Invalid PIN

Third Invalid PIN,

Card Stolen, Card Expired

Figure 10.2. Example of alternative events on statechart

transition to the Waiting for Customer Choice state. If the PIN numbers do not match,
the ATM makes the Invalid PIN transition to re-enter the Waiting for PIN state and
prompts the customer to enter a different PIN number. If the customer-entered PIN
is invalid after the third attempt, the ATM makes the Third Invalid PIN transition
to the Confiscating state, which results in the card being confiscated. The ATM also
transitions to the same state if the ATM card is reported lost or stolen during card
validation, or if the card has expired.

In some cases, it is also possible for the same event to occur in different states and
have the same effect; an example is given in Figure 10.3. The customer may decide
to enter Cancel in any of the three states Waiting for PIN, Validating PIN, or Waiting
for Customer Choice, which results in the statechart entering the Ejecting state, the
ATM card being ejected, and the transaction terminated.

It is also possible for the same event to occur in a different state and have a dif-
ferent effect. For example, if the PIN Entered event arrives in Idle state, it is ignored.

Next consider the case in which, after successful PIN validation, the customer
decides to withdraw cash from the ATM, as shown in Figure 10.4. From the Waiting
for Customer Choice state, the customer makes a selection – for example, the cus-
tomer selects withdrawal. The statechart then receives a Withdrawal Selected event,
upon which the Processing Withdrawal state is entered. If the withdrawal is approved,
the statechart goes into the Dispensing state, where the cash is dispensed. When the
Cash Dispensed event arrives, the ATM transitions to the Printing state to print the
receipt. When the receipt is printed, the Ejecting state is entered. When the card has
been ejected, as indicated by the Card Ejected event, the Terminating state is entered.
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Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Confiscating

Invalid PIN

Third Invalid PIN,

Card Stolen, Card Expired Ejecting

Cancel

Cancel

Cancel

Figure 10.3. Example of same event occurring in different states

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Ejecting

After (Elapsed Time)

Withdrawal Selected

Terminating

Printing

Dispensing
Processing 

Withdrawal
Withdrawal Approved

Cash Dispensed

Receipt Printed

Card Ejected

Figure 10.4. Example of complete ATM scenario: cash withdrawal scenario
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Cooking

Door Shut Door Open

Door Open
With Item

Door Shut 
With Item

Ready To Cook

Door Opened

Door Closed

Item Placed Item Removed

Door OpenedDoor Closed

Door Opened

Cooking Time Entered

Timer Expired

Start

Cooking Time Entered

Figure 10.5. Simplified statechart for Microwave Oven Control

From the Terminating state, a timer event causes a transition back to the Idle
state. The timer event is depicted by after (Elapsed Time), where Elapsed Time is the
time spent in the Terminating state (from entry into the state until exit from the state
caused by the timer event).

10.2.2 Example of Microwave Oven Statechart

As a second example of a statechart, consider a simplified version of the Microwave
Oven Control statechart, which is shown in Figure 10.5. The statechart shows the
different states for cooking food. The initial state is Door Shut. Consider a scenario
that starts when the user opens the door. As a result, the statechart transitions into
the Door Open state. The user then places an item in the oven, causing the statechart
to transition into the Door Open with Item state. When the user closes the door, the
statechart then transitions into the Door Shut with Item state. After the user inputs
the cooking time, the Ready to Cook state is entered. Next the user presses the Start
button, which causes the statechart to transition into the Cooking state. When the
timer expires, the statechart leaves the Cooking state and reenters the Door Shut with
Item state. If instead the door were opened during cooking, the statechart would
enter the Door Open with Item state.
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10.3 EVENTS AND GUARD CONDITIONS

It is possible to make a state transition conditional through the use of a guard con-
dition. This can be achieved by combining events and guard conditions in defining
a state transition. The notation used is Event [Condition]. A condition is a Boolean
expression with a value of True or False, which holds for some time. When the event
arrives, it causes a state transition, provided that the guard condition given in square
brackets is True. Conditions are optional.

In some cases, an event does not cause an immediate state transition, but its
impact needs to be remembered because it will affect a future state transition. The
fact that an event has occurred can be stored as a condition that can be checked
later.

Examples of guard conditions in Figure 10.6 are Zero Time and Time Remaining
in the microwave statechart. The two transitions out of the Door Open with Item
state are Door Closed [Zero Time] and Door Closed [Time Remaining]. Thus the tran-
sition taken depends on whether the user has previously entered the time or not
(or whether timer previously expired). If the condition Zero Time is true, the stat-
echart transitions to Door Shut with Item, waiting for the user to enter the time. If
the condition Time Remaining is true, the statechart transitions to the Ready to Cook
state.

Door Open

Door Open
with Item

Door Shut 
with Item

Ready To Cook

Item Placed Item Removed

Door OpenedDoor Closed [Zero Time]

Cooking Time Entered

Cooking Time Entered

Door Opened

Door Closed [Time Remaining]

Figure 10.6. Example of events and conditions
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10.4 ACTIONS

Associated with a state transition is an optional output action. An action is a com-
putation that executes as a result of a state transition. Whereas an event is the cause
of a state transition, an action is the effect of the transition. An action is triggered at
a state transition. It executes and then terminates itself. The action executes instan-
taneously at the state transition; thus conceptually an action is of zero duration.
In practice, the duration of an action is very small compared to the duration of a
state.

Actions can be depicted on state transitions, as described in Section 10.4.1. Cer-
tain actions can be depicted more concisely as being associated with the state rather
than with the transition into or out of the state. These are entry and exit actions.
Entry actions are triggered when the state is entered, as described in Section 10.4.2,
and exit actions are triggered on leaving the state, as described in Section 10.4.3.

10.4.1 Actions on State Transitions

A transition action is an action that is a result of a transition from one state to
another – it could also happen if the state transitions to itself. To depict a transition
action on a statechart, the state transition is labeled Event/Action or Event [Condi-
tion]/Action.

As an example of actions, consider the ATM statechart. When the Card Inserted
event arrives, the ATM statechart transitions from the Idle state to the Waiting for
PIN state (Figure 10.2). The action that takes place at the transition into this state is
Get PIN, which is a prompt the state machine outputs to the customer to enter the

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered /

Validate PIN

Valid PIN / 

Display Menu

Figure 10.7. Example of actions in main sequence
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PIN. This example is shown in Figure 10.7, which shows the partial statechart for
the ATM (originally shown in Figure 10.1) with the actions added. In the Waiting
for PIN state, the ATM is waiting for the customer to input the PIN. When the PIN
Entered event arrives, the ATM transitions to the Validating PIN state and the action
Validate PIN is executed. This state transition is labeled PIN entered / Validate PIN. In
the Validating PIN state, the system determines whether the customer-entered PIN
matches the stored PIN for this card, and whether the ATM card has been reported
lost or stolen. Assuming that the card and PIN validation is successful (event Valid
PIN), the ATM transitions into Waiting for Customer Choice state.

More than one action can be associated with a transition. Because the actions
all execute simultaneously, there must not be any interdependencies between the
actions. For example, it is not correct to have two simultaneous actions such as Com-
pute Change and Display Change. Because there is a sequential dependency between
the two actions, the change cannot be displayed before it has been computed. To
avoid this problem, introduce an intermediate state called Computing Change. The
Compute Change action is executed on entry to this state, and the Display Change
action is executed on exit from this state.

An example of a statechart with alternative actions is shown in Figure 10.8. Many
actions are possible as a result of PIN validation. If the PIN is valid, the statechart
transitions to the Waiting for Customer Choice state and the action is to display the
selection menu. If the PIN is invalid, the statechart transitions back to the Waiting
for PIN state and the action is the Invalid PIN Prompt. If the PIN is invalid for the
third time, or the card is stolen or has expired, then the statechart transitions to the
Confiscating state and the action is to confiscate the card. Another situation is that

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered /

Validate PIN

Valid PIN / 

Display Menu

Confiscating

Invalid PIN / Invalid PIN Prompt

Third Invalid PIN,

Card Stolen, Card Expired / 

Confiscate

Figure 10.8. Example of alternative state transitions and actions



160 Software Modeling

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered /

Validate PIN

Valid PIN / 

Display Menu

Confiscating

Invalid PIN / Invalid PIN Prompt

Third Invalid PIN,

Card Stolen, Card Expired / 

Confiscate
Ejecting

Cancel / Eject

Cancel / Eject

Cancel / Eject

Figure 10.9. Example of same event and action on different state transitions

the same event can cause transitions out of several states, with the same action in
each case. An example of this is given in Figure 10.9. In any of the three states, Wait-
ing for PIN, Validating PIN, and Waiting for Customer Choice, the customer may decide
to enter Cancel, which results in the system ejecting the ATM card and entering
Ejecting state.

10.4.2 Entry Actions

An entry action is an instantaneous action that is performed on transition into the
state. An entry action is represented by the reserved word entry and is depicted
as entry/Action inside the state box. Whereas transition actions (actions explicitly
depicted on state transitions) can always be used, entry actions should only be used
in certain situations. The best time to use an entry action is when the following
occur:

■ There is more than one transition into a state.
■ The same action needs to be performed on every transition into this state.
■ The action is performed on entry into this state and not on exit from the previous

state.

In this situation, the action is only depicted once inside the state box, instead of on
each transition into the state. On the other hand, if an action is only performed on
some transitions into the state and not others, then the entry action should not be
used. Instead, transition actions should be used on the relevant state transitions.
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Entry / 
Start Cooking

Cooking

Door Shut with
Item

Ready to Cook

Minute Pressed/ 
Start Minute

Start / 
Start Timer

Cooking

Door Shut with 
Item

Ready to Cook

Minute Pressed / 
Start Cooking,
Start Minute

Start / 
Start Cooking,

Start Timer

(b)

(a)

Figure 10.10. Example of entry action: (a) Actions on state transitions (b) Entry actions.

An example of an entry action is given in Figure 10.10. In Figure 10.10a, actions
are shown on the state transitions. If the Start button is pressed (resulting in the
Start event) while the microwave oven is in the Ready to Cook state, the statechart
transitions to the Cooking state. There are two actions – Start Cooking and Start
Timer. On the other hand, if the user presses the Minute Plus button (to cook the
food for one minute) while in Door Shut with Item state, the statechart will also
transition to the Cooking state. In this case, however, the actions are Start Cooking
and Start Minute. Thus, in the two transitions into Cooking state, one action is the
same (Start Cooking) but the second is different. An alternative decision is to use
an entry action for Start Cooking as shown in Figure 10.10b. On entry into Cook-
ing state, the entry action Start Cooking is executed because this action is executed
on every transition into the state. However, the Start Timer action is shown as an
action on the state transition from Ready to Cook state into Cooking state. This is
because the Start Timer action is only executed on that specific transition into Cook-
ing state and not on the other transition. Thus, on the transition from Door Shut with
Item state into Cooking state, the transition action is Start Minute. Figures 10.10a
and 10.10b are semantically equivalent to each other but Figure 10.10b is more
concise.

10.4.3 Exit Actions

An exit action is an instantaneous action that is performed on transition out of
the state. An exit action is represented by the reserved word exit and is depicted
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Cooking

Door Open with 
Item

Door Shut with 
Item

Door Opened / 
Stop Cooking,

Stop Timer

Timer Expired / 
Stop Cooking

Exit /
Stop Cooking

Cooking

Door Open with 
Item

Door Shut with 
Item

Door Opened / 
Stop Timer

Timer Expired

(a)

(b)

Figure 10.11. Example of exit action. (a) Actions on state transitions. (b) Exit actions

as exit/Action inside the state box. Whereas transition actions (actions explicitly
depicted on state transitions) can always be used, exit actions should only be used
in certain situations. The best time to use an exit action is when the following
occur:

■ There is more than one transition out of a state.
■ The same action needs to be performed on every transition out of the state.
■ The action is performed on exit from this state and not on entry into the next

state.

In this situation, the action is only depicted once inside the state box, instead of on
each transition out of the state. On the other hand, if an action is only performed on
some transitions out of the state and not others, then the exit action should not be
used. Instead, transition actions should be used on the relevant state transitions.

An example of an exit action is given in Figure 10.11. In Figure 10.11a, actions
are shown on the state transitions out of Cooking state. Consider the action Stop
Cooking. If the timer expires, the microwave oven transitions from the Cooking state
to the Door Shut with Item state and the action Stop Cooking is executed (Figure
10.11a). If the door is opened, the oven transitions out of the Cooking state into Door
Open with Item state. In this transition, two actions are executed – Stop Cooking and
Stop Timer. Thus, in both transitions out of Cooking state (Figure 10.11a), the action
Stop Cooking is executed. However, when the door is opened and the transition is to
Door Open with Item state, there is an additional Stop Timer action. An alternative
design is shown in Figure 10.11b, in which an exit action Stop Cooking is depicted.
This means that whenever there is a transition out of Cooking state, the exit action
Stop Cooking is executed. In addition, in the transition to Door Open with Item state,
the transition action Stop Timer will also be executed. Having the Stop Cooking action
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as an exit action instead of an action on the state transition is more concise, as shown
in Figure 10.11b. The alternative of having transition actions, as shown in Figure
10.11a, would require the Stop Cooking action to be explicitly depicted on each of the
state transitions out of the Cooking state. Figures 10.11a and 10.11b are semantically
equivalent to each other but Figure 10.11b is more concise.

10.5 HIERARCHICAL STATECHARTS

One of the potential problems of flat statecharts is the proliferation of states and
transitions, which makes the statechart very cluttered and difficult to read. A very
important way of simplifying statecharts and increasing their modeling power is to
introduce composite states, which are also known as superstates, and the hierarchical
decomposition of statecharts. With this approach, a composite state at one level of
a statechart is decomposed into two or more substates on a lower-level statechart.

The objective of hierarchical statecharts is to exploit the basic concepts and
visual advantages of state transition diagrams, while overcoming the disadvantages
of overly complex and cluttered diagrams, through hierarchical structuring. Note
that any hierarchical statechart can be mapped to a flat statechart, so for every hier-
archical statechart there is a semantically equivalent flat statechart.

10.5.1 Hierarchical State Decomposition

Statecharts can often be significantly simplified by the hierarchical decomposition of
states, in which a composite state is decomposed into two or more interconnected
sequential substates. This kind of decomposition is referred to as sequential state
decomposition. The notation for state decomposition also allows both the compos-
ite state and the substates to be shown on the same diagram or, alternatively, on
separate diagrams, depending on the complexity of the decomposition.

An example of hierarchical state decomposition is given in Figure 10.12a, where
the Processing Customer Input composite state consists of the Waiting for PIN, Val-
idating PIN, and Waiting for Customer Choice substates. (On the hierarchical stat-
echart, the composite state is shown as the outer rounded box, with the name of
the composite state shown at the top left of the box. The substates are shown as
inner rounded boxes.) When the system is in Processing Customer Input composite
state, it is in one (and only one) of the Waiting for PIN, Validating PIN, and Waiting
for Customer Choice substates. Because the substates are executed sequentially, this
kind of hierarchical state decomposition is referred to as resulting in a sequential
statechart.

10.5.2 Composite States

Composite states can be depicted in two ways on statecharts, as described next. A
composite state can be depicted with its internal substates, as shown for the Process-
ing Customer Input composite state in Figure 10.12a. Alternatively, a composite state
can be depicted as a black box without revealing its internal substates, as shown in
Figure 10.12b. It should be pointed out that when a composite state is decomposed
into substates, the transitions into and out of the composite state must be preserved.
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Waiting for PIN

Entry / 
Display Welcome

Idle

Validating PIN

Waiting for 
Customer Choice
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Figure 10.12. Example of hierarchical statechart

Thus, there is one state transition into the Processing Customer Input composite state
and two transitions out of it, as shown in Figures 10.12a and 10.12b.

Each transition into the composite state Processing Customer Input is, in fact, a
transition into one (and only one) of the substates on the lower-level statechart.
Each individual transition out of the composite state has to actually originate from
one (and only one) of the substates on the lower-level statechart. Thus. the input
event Card Inserted causes a transition to the Waiting for PIN substate within the
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Processing Customer Input composite state, as shown in Figure 10.12a. The tran-
sition out of the Processing Customer Input composite state into the Confiscat-
ing state actually originates from the Validating PIN substate, as shown in Fig-
ure 10.12a. The case of the Cancel transition into Ejecting state is described in the
next section.

10.5.3 Aggregation of State Transitions

The hierarchical statechart notation also allows a transition out of every one of the
substates on a statechart to be aggregated into a transition out of the composite
state. Careful use of this feature can significantly reduce the number of state transi-
tions on a statechart.

Consider the following example in which aggregation of state transitions would
be useful. In the flat statechart shown in Figure 10.9, it is possible for the customer
to press the Cancel button on the ATM machine in any of the three states Waiting
for PIN, Validating PIN, and Waiting for Customer Choice. In each case, the Cancel event
transitions the ATM to Ejecting state. This is depicted by a Cancel arc leaving each
of these states and entering the Ejecting state.

This can be expressed more concisely on a hierarchical statechart. From each of
the three substates of the Processing Customer Input composite state, the input event
Cancel causes a transition to the Ejecting state. Because the Cancel event can take
place in any of the three Processing Customer Input substates, a Cancel transition
could be shown leaving each substate. However, it is more concise to show one
Cancel transition leaving the Processing Customer Input composite state, as shown in
Figure 10.12a. The transitions out of the substates are not shown (even though an
individual transition would actually originate from one of the substates). This kind
of state transition, in which the same event causes a transition out of several states
to another state, usually results in a plethora of arcs on flat statecharts and state
transition diagrams.

In contrast, because the Third Invalid event only occurs in Validating PIN state
(Figure 10.12a), it is shown leaving this substate only and not from the composite
state.

10.5.4 Orthogonal Statecharts

Another kind of hierarchical state decomposition is orthogonal state decomposition,
which is used to model different views of the same object’s state. With this approach,
a high-level state on one statechart is decomposed into two (or more) orthogonal
statecharts. The two orthogonal statecharts are shown separated by a dashed line.
When the higher-level statechart is in the composite state, it is simultaneously in
one of the substates on the first lower-level orthogonal statechart and in one of the
substates on the second lower-level orthogonal statechart.

Although orthogonal statecharts can be used to depict concurrent activity within
the object containing the statechart, it is better to use this kind of decomposition to
show different parts of the same object that are not concurrent. Designing objects
with only one thread of control is much simpler and is strongly recommended. When
true concurrency is required, use separate objects and define each object with its
own statechart.
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The use of orthogonal statecharts to depict conditions can be seen in the ATM
example. This case is illustrated in Figure 10.13, where the statechart for the ATM
Machine, ATM Control, is now decomposed into two orthogonal statecharts, one for
ATM Sequencing and one for Closedown Request Condition. The two statecharts are
depicted on a high-level statechart, with a dashed line separating them. The ATM
Sequencing statechart is in fact the main statechart of the ATM, which depicts the
states the ATM goes through while processing a customer request.

Note that, at any one time, the ATM Control composite state is in one of the
substates of the ATM Sequencing statechart and one of the substates of the Closedown
Request Condition statechart. Closedown Request Condition is a simple statechart with
two states reflecting whether closedown has been requested or not, with Closedown
Not Requested as the initial state. The Closedown event causes a transition to the
state Closedown Was Requested, and the Startup event causes a transition back to
Closedown Not Requested. The ATM Control statechart is the union of the Closedown
Request Condition and the ATM Sequencing statecharts. The Closedown Was Requested
and Closedown Not Requested states of the Closedown Request Condition statechart
(see Figure 10.13) are the conditions checked on the ATM Sequencing statechart,
when the after (Elapsed Time) event is received in Terminating state (Figure 10.17).
Note that the Closed Down state is actually a state on the ATM Sequencing statechart.

10.6 GUIDELINES FOR DEVELOPING STATECHARTS

The following guidelines apply to developing either flat or hierarchical statecharts,
unless otherwise explicitly stated:

■ A state name must reflect an identifiable situation or an interval of time when
something is happening in the system. Thus, a state name is often an adjective
(e.g., Idle), a phrase with an adjective (e.g., ATM Idle), a gerund (e.g., Dispensing),
or a phrase with a gerund (e.g., Waiting for PIN). The state name should not
reflect an event or action such as ATM Dispenses or Dispense Cash, respectively.

■ On a given statechart, each state must have a unique name. It is usually ambigu-
ous to have two states with the same name. In theory, a substate within one
composite state could have the same name as a substate of a different composite
state; however, this is confusing and should therefore be avoided.

■ It must be possible to exit from every state. It is not necessary for a statechart to
have a terminating state, because the statechart might exist for the duration of
the system or object.

■ On a sequential statechart, the statechart is in only one state at a time. Two states
cannot be active simultaneously (e.g., Waiting for PIN and Dispensing). One state
must follow sequentially from the other.

■ Do not confuse events and actions. An event is the cause of the state transition,
and the action is the effect of the state transition.

■ An event happens at a moment in time. The event name indicates that something
has just happened (e.g., Card Inserted, Door Closed) or the result of an action such
as Valid PIN or Third Invalid.

■ An action is a command – for example, Dispense Cash, Start Cooking, Eject.
■ An action executes instantaneously. It is possible to have more than one

action associated with a state transition. All these actions conceptually execute
simultaneously; hence, no assumptions can be made about the order in which the
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actions are executed. Consequently, no interdependencies must exist between
the actions. If a dependency does exist, it is necessary to introduce an intermedi-
ate state.

■ A condition is a Boolean value. If a state transition is labeled event [condition],
a state transition takes place only if, at the moment the event happens, the con-
dition is true. A condition is true for some interval of time. The state transition
Door Closed [Time Remaining] is only taken if there is a finite time remaining when
the door is closed. The state transition will not take place if there is no time left
when the door is closed.

■ Actions and conditions are optional. They should only be used when necessary.

10.7 DEVELOPING STATECHARTS FROM USE CASES

To develop a statechart from a use case, start with a typical scenario given by the use
case – that is, one particular path through the use case. Ideally, this scenario should
be the main sequence through the use case, involving the most usual sequence of
interactions between the actor(s) and the system. Now consider the sequence of
external events given in the scenario. Usually, an input event from the external
environment causes a transition to a new state, which is given a name correspond-
ing to what happens in that state. If an action is associated with the transition, the
action occurs in the transition from one state to the other. Actions are determined
by considering the response of the system to the input event, as given in the use case
description.

Initially, a flat statechart is developed that follows the event sequence given in
the main scenario. The states depicted on the statechart should all be externally
visible states – that is, the actor should be aware of each of these states. In fact,
the states represent consequences of actions taken by the actor, either directly or
indirectly. This is illustrated in the detailed example given in the next section.

To complete the statechart, determine all the possible external events that could
be input to the statechart. You do this by considering the description of alternative
paths given in the use case. Several alternatives describe the reaction of the system
to alternative inputs from the actor. Determine the effect of the arrival of these
events on each state of the initial statechart; in many cases, an event could not occur
in a given state or will have no impact. In other states, however, the arrival of an
event will cause a transition to an existing state or some new state that needs to be
added to the statechart. The actions resulting from each alternative state transition
also need to be considered. These actions should already be documented in the use
case description as the system reaction to an alternative input event.

In some applications, one statechart can participate in more than one use case.
In such situations, there will be one partial statechart for each use case. The partial
statecharts will need to be integrated to form a complete statechart. The implication
is that there is some precedence in the execution of (at least some of) the use cases
and their corresponding statecharts. To integrate two partial statecharts, it is neces-
sary to find one or more common states. A common state might be the last state of
one statechart and the first state of the next statechart. However, other situations
are possible. The integration approach is to integrate the partial statecharts at the
common state, in effect superimposing the common state of the second statechart
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on top of the same state on the first statechart. This can be repeated as necessary,
depending on how many partial statecharts need to be integrated.

Given the complete flat statechart, the next step is to develop hierarchical state-
charts where possible. There are actually two main approaches to developing hier-
archical statecharts. The first approach is a top-down approach to determine major
high-level states, sometimes referred to as modes of operation. For example, in an
airplane control statechart, the modes might be Taking Off, In Flight, and Landing.
Within each mode, there are several states, some of which might in turn be com-
posite states. This approach is more likely to be used in complex real-time systems,
which are frequently highly state-dependent. The second approach is to first develop
a flat statechart and then identify states that can be aggregated into composite states,
as described in Section 10.8.4.

10.8 EXAMPLE OF DEVELOPING A STATECHART FROM A USE CASE

To illustrate how to develop a statechart from a use case, consider the ATM Control
statechart from the Banking System case study.

10.8.1 Develop Statechart for Each Use Case

The use cases for the Banking System are given in Chapter 21. In this example, we
will consider the use cases for Validate PIN and Withdraw Cash. Both use cases
describe the sequence of interactions between the actor – the ATM Customer – and
the system, in which PIN validation precedes withdrawing cash. For each use case,
a statechart is constructed as illustrated in Figures 10.14 and 10.15. Figure 10.14

Waiting for PIN

Entry / 

Display Welcome

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered / 

Validate PIN

Valid PIN /

Display Menu, 

Update Status

Figure 10.14. Statechart for ATM Control: Validate PIN use case
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Entry / 
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Processing 

Withdrawal
Dispensing

Printing

Ejecting

Terminating

Withdrawal Selected / 

Request Withdrawal, 

Display Wait

Withdrawal Approved /

Dispense Cash,

Update Status 

Cash Dispensed /

Print Receipt,

Display Cash Dispensed,

Confirm Cash Dispensed

Receipt Printed /

Eject

Card Ejected /

Display Ejected

After (Elapsed Time) [Closedown Not Requested]

Figure 10.15. Statechart for ATM Control: Withdraw Funds use case

shows the statechart for the main sequence of the Validate PIN use case depicting
the scenario in which the PIN is valid, as described in Section 10.4.1. This statechart
starts in Idle state and ends in Waiting for Customer Choice state.

Figure 10.15 shows the statechart for the Withdraw Funds use case correspond-
ing to the main scenario of the use case. This statechart starts in Waiting for Customer
Choice state. In the main scenario, withdrawal is selected (resulting in transition
into Processing Withdrawal state), withdrawal is approved (resulting in transition to
Dispensing state), cash is dispensed (resulting in transition to Printing state), a receipt
is printed (resulting in transition to Ejecting state), the card is ejected, transition into
Terminating state for a fixed period, and finally return to Idle state, when the period
elapses.

In this example, the states of the ATM statechart are all externally visible; that
is, the actor is aware of each of these states. In fact, the states depict consequences
of actions taken by the actor, either directly or indirectly.

10.8.2 Consider Alternative Sequences

After the first version of the statechart is completed, further refinements can be
made. To complete the statechart, it is necessary to consider the effect of each alter-
native sequence described in the Alternatives section of the use cases. Figure 10.9
shows the Validate PIN statechart with the alternative sequences added to the main
sequence, as described in Section 10.4.1. Figure 10.16 shows the Withdraw Funds
statechart with the alternative sequences added to the main sequence. Thus, in
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Entry / 
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Terminating
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Closed Down
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Eject

Figure 10.16. Statechart for ATM Control: Withdraw Funds use case with alternatives

addition to the main sequence for the scenario in which cash is dispensed, there are
two additional scenarios: withdrawal transaction rejected (transition directly from
Processing Withdrawal state to Ejecting State) and insufficient cash in ATM (transi-
tion from Dispensing state to Closed Down State).

10.8.3 Develop Integrated Statechart

The integrated statechart consists of the integration of the use case–based state-
charts, after consideration of alternatives. Thus, the statecharts depicted in Figures
10.9 (Validate PIN use case with alternatives) and 10.16 (Withdraw Cash use case
with alternatives) are combined with the statecharts for the other use cases. This
statechart would represent the main sequence through each use case together with
the alternatives.

Figure 10.17 shows the integrated statechart from the Validate PIN and With-
draw Cash statecharts, with main and alternatives sequences. The main statechart
integration point is Waiting for Customer Choice state, the end state for Vali-
date PIN statechart, and the initial state for Withdraw Funds (and also Transfer
Funds and Query Account) statechart. However, other statechart integration points
are the Ejecting and Confiscating states for the alternative scenarios of Validate
PIN.
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Figure 10.17. Statechart for ATM Control: integrated statechart for Validate PIN and Withdraw
Funds use case with alternatives

10.8.4 Develop Hierarchical Statechart

It is usually easier to initially develop a flat statechart. After enhancing the flat state-
chart by considering alternative events, look for ways to simplify the statechart by
developing a hierarchical statechart. Look for states that can be aggregated because
they constitute a natural composite state. In particular, look for situations in which
the aggregation of state transitions simplifies the statechart.

The hierarchical statechart for ATM Control is shown in Figures 10.18 through
10.21. Three states on Figure 10.18 are composite states: Processing Customer Input
(decomposed into three substates on Figure 10.19), Processing Transaction (decom-
posed into three substates on Figure 10.20), and Terminating Transaction (decom-
posed into five substates on Figure 10.21). Aggregation of state transitions is the
main reason for the Processing Customer Input composite state (Figure 10.18). In
particular, the Cancel event is aggregated into a transition out of the composite
state instead of the three substates. Aggregation of state transitions is also used for
the Processing Transaction composite state (Figure 10.19), with the Rejected event
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Figure 10.18. Top-level statechart for ATM Control
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Figure 10.19. Statechart for ATM Control: Processing Customer Input composite state
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Figure 10.20. Statechart for ATM Control: Processing Transaction composite state
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Figure 10.21. Statechart for ATM Control: Terminating Transaction composite state
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aggregated from a transition out of each substate to a transition out of the composite
state. In the case of the Terminating Transaction composite state, it contains substates
that deal with finishing the transaction, such as dispensing cash, printing the receipt,
and ejecting the ATM card. It also has substates for canceling the transaction
and terminating the transaction. This statechart is described in more detail in
Section 21.6.

10.9 SUMMARY

This chapter described the characteristics of flat statecharts and hierarchical state-
charts. Guidelines for developing statecharts were given. The process of developing
a statechart from a use case was then described in detail. It is possible for a state-
chart to support several use cases, with each use case contributing to some subset
of the statechart. Such cases can also be addressed by considering the statechart in
conjunction with the object interaction model, in which a state-dependent control
object executes the statechart, as described in Chapter 11. Examples of statecharts
are also given in the Banking System and Automated Guided Vehicle System case
studies.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a state in a state machine?
(a) A recognizable situation that exists

over an interval of time
(b) A condition that is True or False
(c) An input from the external envi-

ronment
(d) An output from the system

2. What is an event in a state machine?
(a) A discrete signal that causes a

change of state
(b) An input from the external envi-

ronment
(c) An input that is True or False
(d) The result of a state transition

3. What is an action in a state machine?
(a) An occurrence at a point in time
(b) A cause of a state transition
(c) An interval between two successive

events
(d) A computation that executes as a

result of a state transition
4. What is an entry action in a state

machine?
(a) An action that is performed when

the state is entered
(b) An action that is performed when

the state is left

(c) An action that starts executing
when the state is entered and com-
pletes executing when the state is
left

(d) An action that executes as a result
of a state transition

5. What is an exit action in a state
machine?
(a) An action that is performed when

the state is entered
(b) An action that is performed when

the state is left
(c) An action that starts executing

when the state is entered and com-
pletes executing when the state is
left

(d) An action that executes as a result
of a state transition

6. What is a condition used for in a state
machine?
(a) A conditional action
(b) A conditional state
(c) A conditional state transition
(d) A conditional event

7. What is a state transition into a compos-
ite state equivalent to?
(a) A transition into only one of the

substates
(b) A transition into each of the sub-

states
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(c) A transition into none of the sub-
states

(d) A transition into any one of the
substates

8. What is a state transition out of a com-
posite state equivalent to?
(a) A transition out of only one of the

substates
(b) A transition out of each of the sub-

states
(c) A transition out of none of the sub-

states
(d) A transition out of any one of the

substates
9. How does a composite state relate to a

substate?
(a) A composite state is decomposed

into substates.

(b) Composite states are composed
into substates.

(c) A composite state transitions to a
substate.

(d) A substate transitions to a compos-
ite state.

10. If two actions are shown on a given
state transition, which of the following
is true?
(a) The two actions are dependent on

each other.
(b) The two actions are independent of

each other.
(c) One action provides an input to the

other action.
(d) The second action executes when

the first action completes execu-
tion.
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State-Dependent Dynamic
Interaction Modeling

State-dependent dynamic interaction modeling deals with situations in which object
interactions are state-dependent. State-dependent interactions involve at least one
state-dependent control object that, by executing a statechart (as described in Chap-
ter 10), provides the overall control and sequencing of its interactions with other
objects.

Chapter 9 describes basic dynamic interaction modeling, which is stateless and,
hence, does not involve any state-dependent interactions. During object structur-
ing, the objects that participate in the realization of a use case are determined. If at
least one of the objects is a state-dependent control object, then the interaction is
defined as state-dependent and the term state-dependent dynamic interaction mod-
eling should be used, as described in this chapter. State-dependent dynamic interac-
tion modeling is a strategy to help determine how objects interact with each other in
dynamic interactions involving at least one state-dependent control object. In more
complex interactions, it is possible to have more than one state-dependent control
object. Each state-dependent control object is defined by means of a statechart.

Section 11.1 describes the steps in state-dependent dynamic interaction mod-
eling. Section 11.2 describes how to model interaction scenarios on interaction
(both communication and sequence) diagrams and statecharts. Section 11.3 gives a
detailed example of state-dependent dynamic interaction modeling from the Bank-
ing System.

11.1 STEPS IN STATE-DEPENDENT DYNAMIC
INTERACTION MODELING

In state-dependent dynamic interaction modeling, the objective is to determine the
interactions among the following objects:

■ The state-dependent control object, which executes the state machine
■ The objects, usually software boundary objects, which send events to the control

object. These events cause state transitions in the control object’s internal state
machine.
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■ The objects that provide the actions and activities, which are triggered by the
control object as a result of the state transitions

■ Any other objects that participate in realizing the use case

The interaction among these objects is depicted on a communication diagram or
sequence diagram.

The main steps in the state-dependent dynamic interaction modeling strategy
are presented in the following list. The sequence of interactions needs to reflect the
main sequence of interactions described in the use case.

1. Determine the boundary object(s). Consider the objects that receive the
inputs sent by the external objects in the external environment.

2. Determine the state-dependent control object. There is at least one control
object, which executes the statechart. Others might also be required.

3. Determine the other software objects. These are software objects that interact
with the control object or boundary objects.

4. Determine object interactions in the main sequence scenario. Carry out this
step in conjunction with step 5 because the interaction between the state-
dependent control object and the statechart it executes needs to be deter-
mined in detail.

5. Determine the execution of the statechart.
6. Consider alternative sequence scenarios. Perform the state-dependent

dynamic analysis on scenarios described by the alternative sequences of the
use case.

11.2 MODELING INTERACTION SCENARIOS USING INTERACTION
DIAGRAMS AND STATECHARTS

This section describes how interaction diagrams – in particular, communication
diagrams and sequence diagrams – can be used with statecharts to model state-
dependent interaction scenarios (steps 4 and 5 above).

A message on an interaction diagram consists of an event and the data that
accompany the event. Consider the relationship between messages and events in
the case of a state-dependent control object that executes a statechart. When a mes-
sage arrives at the control object on a communication diagram, the event part of the
message causes the state transition on the statechart. The action on the statechart
is the result of the state transition and corresponds to the output message depicted
on the communication diagram. In general, a message on an interaction diagram
(communication or sequence diagram) is referred to as an event on a statechart; in
descriptions of state-dependent dynamic scenarios, however, for conciseness only
the term event is used.

A source object sends an event to the state-dependent control object. The arrival
of this input event causes a state transition on the statechart. The effect of the state
transition is one or more output events. The state-dependent control object sends
each output event to a destination object. An output event is depicted on the state-
chart as an action, which can be a state transition action, an entry action, or an exit
action.
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To ensure that the communication diagram and statechart are consistent with
each other, the equivalent communication diagram message and statechart event
must be given the same name. Furthermore, for a given state-dependent scenario
it is necessary to use the same message-numbering sequence on both diagrams.
Using the same sequence ensures that the scenario is represented accurately on both
diagrams and can be reviewed for consistency. These issues are illustrated in the
following section.

11.3 EXAMPLE OF STATE-DEPENDENT DYNAMIC INTERACTION
MODELING: BANKING SYSTEM

As an example of state-dependent dynamic interaction modeling, consider the fol-
lowing example from the Banking System, the Validate PIN use case. The objects
that participate in the realization of this use case are determined by using the object
structuring criteria (described in Chapter 8). First, the main sequence is considered,
followed by the alternative sequences.

11.3.1 Determine Main Sequence

Consider the main sequence of the Validate PIN use case. It describes the customer
inserting the ATM card into the card reader, the system prompting for the PIN,
and the system checking whether the customer-entered PIN matches the PIN main-
tained by the system for that ATM card number. In the main sequence, the PIN
number is valid.

Consider the objects needed to realize this use case. We first determine the need
for the Card Reader Interface object to read the ATM card. The information read off
the ATM card needs to be stored temporarily, so we identify the need for an entity
object to store the ATM Card information. The Customer Interaction object is used
for interacting with the customer via the keyboard/display – in this case, to prompt
for the PIN. The information to be sent to the Banking Service subsystem for PIN
validation is stored in an ATM Transaction. For PIN validation, the transaction infor-
mation needs to contain the PIN number and the ATM card number. To control the
sequence in which actions take place, we identify the need for a control object, ATM
Control. Because the actions of this control object vary depending on what happened
previously, the control object needs to be state-dependent and, therefore, execute a
statechart.

This use case starts when the customer inserts the ATM card into the card
reader. The message sequence number starts at 1, which is the first external event
initiated by the Customer Actor, as described in the Validate PIN use case. Sub-
sequent numbering in sequence, representing the objects in the system reacting to
the actor, is 1.1, 1.2, 1.3, ending with 1.4, which is the system’s response displayed to
the actor. The next input from the actor is the external event, numbered 2, and so
on. The scenario for a valid ATM card and PIN card is shown as a communication
diagram in Figure 11.1 and as a sequence diagram in Figure 11.2.

The message sequencing on the object interaction diagrams is faithful to the use
case description for the main sequence of the use case. The message sequence from
1 to 1.4 starts with the card being read by the Card Reader Interface (message 1),
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«user interaction»
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Interaction

«I/O»
: CardReader

Interface

«state dependent 
control»

: ATMControl

«entity»
: ATMTransaction
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: ATMCard

«external I/O 
device»

: CardReader

«subsystem»
: BankingService

1.2: Card Inserted

2.5: PIN Entered
(PIN Validation Transaction)

1.1: Card Id, 
Start Date, 
Expiration Date

2.2: Card Id,
Start Date,
Expiration Date

2.1: Card
Request

2.3: Card Id, PIN,
Start Date, Expiration Date

2.8a: Update
Status (PIN Valid)

2.7 [Valid]:
Valid PIN 
(Account #s)

2.6: Validate PIN
(PIN Validation Transaction)

1.3: Get PIN,
2.8: Display Menu 
(Account #s)

1: Card
Reader
Input

2: PIN Input

1.4: PIN Prompt,
2.9: Selection Menu

«subsystem»
: ATMClient

«external user»
: ATMCustomer
KeypadDisplay

2.4: PIN Validation Transaction

PIN Validation Transaction = {transactionId, transactionType, cardId, PIN, startDate, expirationDate}

Figure 11.1. Communication diagram for Validate PIN use case: Valid PIN scenario
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«external I/O 
device»

: CardReader

«external 
user»
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2.4: PIN Validation Transaction
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Figure 11.2. Sequence diagram for Validate PIN use case: Valid PIN scenario
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Waiting for PIN

Entry / 

Display Welcome

Idle

Validating PIN

Waiting for 

Customer Choice

1.2: Card Inserted / 

1.3: Get PIN

2.5: PIN Entered / 

2.6: Validate PIN 

2.7 [Valid]: Valid PIN /

2.8: Display Menu, 

2.8a: Update Status

Figure 11.3. Validate PIN statechart: Valid PIN scenario

followed by card data stored (1.1), sending the card inserted event to the ATM Con-
trol object (1.2), which results in the state change and the Get PIN action (1.3) sent to
Customer Interaction, which outputs the PIN prompt to the customer display (1.4).
The message sequence from 2 to 2.9 starts with the user entering the PIN (message
2) to Customer Interaction, followed by retrieving card data (2.1, 2.2), preparing PIN
Validation transaction (2.3, 2.4), and sending the transaction to ATM Control (2.5)
and from there to Banking Service (2.6). The message sequence from 1 through 2.6
is grouped into a PIN Validation segment on the sequence diagram (shown in the
box entitled sd PIN Validation) in Figure 11.2 for future reference. In this scenario,
the Banking Service sends a Valid PIN response (message 2.7) to ATM Control, which
eventually leads to Customer Interaction displaying the selection menu to the cus-
tomer (2.8 and 2.9).

A message arriving at the ATM Control object causes a state transition on the
ATM Control statechart (Figure 11.3). For example, Card Reader Interface sends the
Card Inserted message (message 1.2 in Figures 11.1 and 11.2) to ATM Control. As a
result of this Card Inserted event (event 1.2 corresponds to message 1.2 in Figures
11.1 and 11.2, with the number 1.2 emphasizing the correspondence between the
message and the event), the ATM Control statechart transitions from Idle state (the
initial state) to Waiting for PIN state. The output event associated with this transition
is Get PIN (event 1.3). This output event corresponds to message 1.3, Get PIN, sent by
ATM Control to Customer Interaction.

A concurrent sequence is shown in Figure 11.1 with messages 2.8 and 2.8a. ATM
Control sends these two messages at the same state transition, so the two message
sequences may execute concurrently, one to Customer Interaction and the other to
ATM Transaction.
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The message sequence description, which describes the messages on the commu-
nication diagram (see Figure 11.1) and the messages on the sequence diagram (see
Figure 11.2), is described in the Banking System case study in Section 21.5.

11.3.2 Determine Alternative Sequences

Next, consider the alternative sequences of the Validate PIN use case. The main
sequence, as described in the previous section, assumes that the ATM card and PIN
are valid. Consider the various alternatives of the Validate PIN use case in dealing
with invalid cards and incorrect PIN numbers. These can be determined from the
Alternatives section of the use case (given in full in Chapter 21).

Consider the Validate Pin message sent to the Banking Service (message 2.6).
Several alternative responses are possible from the Banking Service. At the stage in
the message sequencing where alternative sequences are possible, each alternative
sequence is shown with a different uppercase letter. Thus, the alternative messages
to message 2.7 Valid PIN are messages 2.7A, 2.7B, 2.7C. Each of these alternative
scenarios can be depicted on a separate interaction diagram. Consider the main and
alternative scenarios as described in the following sections.

11.3.3 Main Sequence: Valid PIN

A valid card and PIN were entered. This case, which corresponds to the main
sequence, is given the condition [Valid]:

2.7 [Valid]: Valid PIN

In this case, the Banking Service sends the Valid PIN message. The main scenario
is depicted on the interaction diagrams (see Figures 11.1 and 11.2) and statechart
(see Figure 11.3).

11.3.4 Alternative Sequence: Invalid PIN

An incorrect PIN was entered. This alternative is given the condition [Invalid]:

2.7A∗ [Invalid]: Invalid PIN

In this case, the Banking Service sends the Invalid PIN message.
Figure 11.4 depicts on a sequence diagram the alternative scenario of an invalid

PIN entered. Messages in the message sequence 1 through 2.6 (originally shown in
Figure 11.2) are unchanged and are inside the PIN Validation segment in Figure
11.4. In the Invalid PIN scenario, the guard condition [Invalid] is true, indicating
that message 2.7A: Invalid PIN is sent from the Banking Service. The use of the ∗

indicates that the Invalid PIN message may be sent more than once (in this scenario,
it can be sent twice). The iteration of messages, namely, the sequence 2.7A through
2.7A.11 (Invalid PIN through to resend Validate PIN message), is inside the loop
segment on Figure 11.4. If an Invalid PIN message is sent a second time, the sequence
of messages from 2.7A through 2.7A.11 is repeated.

The scenario shown in Figure 11.4 is for the user to enter the correct PIN number
on the second or third attempt. In this case, the response from the Banking Service
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«I/O»
: CardReader

Interface

«entity»
: ATMCard

«state dependent 
control»

: ATMContro l

«user interaction»
: Customer
Interaction

«entity»
: ATMTransaction

«subsystem»
: BankingService

2.7A* [Invalid]: Invalid PIN

2.7A.1: Update Status

2.7A.3: Invalid PIN Prompt

«external I/O 
device»

: CardReader

«external user»
: ATM

Customer
Keypad
Display

2.7A.4: Invalid PIN Prompt

2.7A.5: PIN Input

2.7A.6: Card Request

2.7A.7: Card Id, Start Date, Expiration Date

2.7A.8: Card Id, Start Date, Expiration Date, PIN

2.7A.10: PIN Entered (PIN Validation Transaction)

2.7A.11: Validate PIN (PIN Validation Transaction)

loop

2.7 [Valid]: Valid PIN (Account #s)

2.8: Display Menu (Account #s)

2.8a: Update Status (PIN Valid)

2.9: Selection Menu

[Invalid PIN AND i < 3]

2.7A.9: PIN Validation Transaction

ref PIN Validation

2.7A.2: Invalid PIN

Figure 11.4. Sequence diagram for Validate PIN use case: Invalid PIN scenario

is Pin Valid and the guard condition [Valid] is true. The message sequence from 2.7
to 2.9 at the bottom of Figure 11.4 is the same as that shown in Figure 11.2.

11.3.5 Alternative Sequence: Third Invalid PIN

An incorrect PIN was entered three times. This alternative sequence is also given
the condition [Invalid]. However, it is then determined at the ATM Client, which
maintains the invalid PIN count in the ATM Transaction entity object, that the
count has reached three; consequently, this is the Third Invalid PIN scenario.

2.7B [Third Invalid]: Third Invalid PIN

In this scenario, the Banking Service sends the Invalid PIN message to ATM Control
three times.

The Third Invalid PIN scenario starts on the sequence diagram (Figure 11.5)
with the message sequence for the PIN validation segment followed by looping twice
in the loop segment, which starts with the Invalid PIN message (2.7A) from Banking
Service. The Update Status message (2.7A.1) to ATM Transaction is followed by a
response that indicates the PIN Status is Invalid PIN (2.7A.2), looping twice. This is
followed by an exit from the loop and then a third 2.7A: Invalid PIN message from
Banking Service. This time the response to the Update Status message (2.7A.1) is
2.7B [Third Invalid]: Third Invalid PIN, because the Third Invalid condition is True,
in which case the card is confiscated (message sequence 2.7B–2.7B.2).
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Interface

«entity»
: ATMCard

«state dependent 
control»

: ATMControl

«user interaction»
: Customer
Interaction

«entity»
: ATMTransaction

«subsystem»
: BankingService

«external I/O 
device»

: CardReader

«external user»
: ATM

Customer
Keypad

Display

ref PIN Validation

2.7A* [Invalid]: Invalid PIN
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2.7A.5: PIN Input

2.7A.6: Card Request

2.7A.7: Card Id, Start Date, Expiration Date

2.7A.8: Card Id, Start Date, Expiration Date, PIN

2.7A.10: PIN Entered (PIN Validation Transaction)

2.7A.11: Validate PIN (PIN Validation Transaction)

loop

2.7A.9: PIN Validation Transaction

2.7A.2: Invalid PIN

2.7A [Invalid]: Invalid PIN

2.7B.1: Confiscate

2.7B.2: Confiscate Card

2.7A.1: Update Status

2.7B [ThirdInvalid]: Third Invalid PIN

[Invalid PIN AND i < 3]

Figure 11.5. Sequence diagram for Validate PIN use case: Third invalid PIN scenario

11.3.6 Alternative Sequence: Stolen or Expired Card

The card was stolen or the card has expired.

2.7C [Stolen OR expired]: Card stolen, Card expired

In the case of either a stolen card or an expired card, the message sequence is
the same, resulting in confiscation of the card.

This alternative sequence is depicted on the sequence diagram in Figure 11.6.
It depicts when the ATM card has expired or been reported as stolen (message
sequence 2.7C–2.7C.2). These two scenarios are handled in the same way: Banking

«I/O»
: CardReader

Interface

«entity»
: ATMCard

«state dependent 
control»

: ATMControl

«user interaction»
: Customer
Interaction

«entity»
: ATMTransaction

«subsystem»
: BankingService

«external I/O 
device»

: CardReader

«external user»
: ATM

Customer
Keypad
Display

2.7C [Stolen OR Expired]: Card Stolen, Card Expired

2.7C.1: Confiscate

2.7C.1a: Update Status2.7C.2: Confiscate Card

ref PIN Validation

Figure 11.6. Sequence diagram for Validate PIN use case: Stolen or expired card scenario
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Service sends the Card stolen or Card expired message (2.7C) to ATM Control, which
in turn sends a Confiscate message (2.7C.1) to Card Reader Interface, which results in
the confiscation of the ATM card.

11.3.7 Generic Interaction Diagram with all Scenarios

It is possible to show all these alternatives on a generic interaction diagram, either
on a generic communication diagram (Figure 11.7) or generic sequence diagram.
The generic communication diagram for the use case covers the main sequence
as well as all the alternative sequences. Although all the alternatives are shown
on the same diagram, resulting in a compact depiction of the object interactions,
the generic diagram is more difficult to read than single scenario diagrams, which
depict each scenario (main or alternative) separately. A generic communication or
sequence diagram (depicting all the alternatives) should be used only if the alterna-
tives can be clearly depicted. If the generic communication or sequence diagram is
too cluttered, use a separate communication diagram or sequence diagram for each
alternative.

11.3.8 Sequencing on Control Object and Statechart

The control object ATM Control, shown in Figures 11.1 through 11.7, executes the
statecharts depicted in Figure 11.8 and Figure 11.9 (which depicts the substates of
the Validating PIN composite state). The statechart shows the various states during
the execution of the main and alternative sequences of the Validate PIN use case.
Thus, when the PIN Entered event (event 2.5) is received from Customer Interaction,
ATM Control transitions to Validating PIN composite state (Validating PIN and Card
substate) and sends the Validate PIN message to the Banking Service. The possible
responses from the Banking Service are shown in Figure 11.7. The resulting states
and actions are shown in Figures 11.8 and 11.9, and the resulting interactions with
the controlled objects are shown in Figure 11.7. The Valid PIN response (event 2.7)
results in a transition to Waiting for Customer Choice. The Invalid PIN response (event
2.7A) results in transitioning of the statechart to the Checking PIN Status substate
(Figure 11.9). A second Invalid PIN response (event 2.7A.1) results in the transition
back to the Waiting for PIN state and triggering of the Invalid PIN Prompt action (event
2.7A.3) in the Customer Interaction object. The Third Invalid PIN (2.7B) response
results in transitioning of the statechart to the Confiscating state and triggering of
the Confiscate action (event 2.7B.1) in the Card Reader Interface object. A Card Stolen
response (event 2.7C) is treated in the same way. Finally, if the customer decides
to Cancel (event 2A.1) instead of re-entering the PIN, the statechart transitions to
Ejecting state and triggers the Eject action (event 2A.2) in the Card Reader Interface
object. Because the customer can Cancel while ATM Control is in any of the substates
Waiting for PIN, Validating PIN, or Waiting for Customer Choice, the state transition is
shown out of the composite state Processing Customer Input (Figure 11.8.)

The statechart also initiates concurrent action sequences, which are triggered
at the same state transition. Thus, all actions that occur at a given transition are
executed in an unconstrained, nondeterministic order. For example, the actions 2.8:
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Display Welcome

Idle

Validating PIN
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Customer Choice

1.2: Card Inserted / 
1.3: Get PIN

2.5, 2.7A.10: PIN Entered / 
2.6, 2.7A.11: Validate PIN
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2.7C: Card Stolen, Card Expired / 
2.7C.1: Confiscate,

2.7C.1a: Update Status

Figure 11.8. Statechart for ATM Control for Validate PIN use case, showing alternatives

Display Menu and 2.8a: Update Status, which result from the Valid Pin state transition
(see Figure 11.8), execute concurrently, as also depicted in Figure 11.7.

11.4 SUMMARY

This chapter described state-dependent interaction modeling, in which object inter-
actions are state-dependent. A state-dependent interaction involves at least one

Waiting for 
PIN

Validating PIN
and Card

Validating
PIN

2.5, 2,7A.10: PIN Entered /

2.6, 2,7A.11: Validate PIN

Checking PIN 
Status

Waiting for 
Customer 

Choice

Confiscating

2.7[Valid]: Valid PIN /
2.8: Display Menu,
2.8a: Update Status

2.7C: Card Stolen, Card Expired /
2.7C.1: Confiscate,

2.7C.1a: Update Status

2.7A: Invalid PIN /
2.7A.1: Update Status

2.7A.2: Invalid PIN /
2.7A.3: Invalid PIN Prompt

2.7B: Third Invalid PIN /
2.7B.1: Confiscate

Figure 11.9. Statechart for ATM Control Validating PIN composite state
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state-dependent control object, which executes a statechart (as described in Chap-
ter 10) that provides the overall control and sequencing of the interactions. This
chapter built on the stateless dynamic interaction modeling, described in Chapter 9,
which does not involve any state-dependent interactions.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What does a state-dependent interac-
tion involve?
(a) A control object
(b) A state-dependent entity object
(c) A state-dependent control object
(d) A state-dependent user interaction

object
2. Which kind of object executes a state

machine
(a) Any software object
(b) An entity object
(c) A state-dependent control object
(d) A statechart

3. An input message to a state-dependent
control object corresponds to:
(a) An event on the internal state

machine
(b) An action on the internal state

machine
(c) A condition on the internal state

machine
(d) A state on the internal state

machine
4. An output message from a state-

dependent control object corresponds
to:
(a) An event on the internal state

machine
(b) An action on the internal state

machine
(c) A condition on the internal state

machine
(d) A state on the internal state

machine
5. An interaction diagram should be

developed for:
(a) Only the main sequence of the use

case
(b) The main sequence and every

alternative sequence of the use
case

(c) The main sequence and a represen-
tative alternative sequence of the
use case

(d) The alternative sequences of the
use case

6. Which of the following could happen on
an interaction diagram?
(a) A state-dependent control object

sends a message to an entity object.
(b) A state-dependent control object

sends a message to a coordinator
object.

(c) A state-dependent control object
sends a message to a printer object.

(d) All of the above
7. If the same state machine is used in

more than one use case, how is this
modeled on interaction diagrams?
(a) Develop one state-dependent con-

trol object for each use case.
(b) Develop one state-dependent con-

trol object containing states from
each use case.

(c) Develop a hierarchical state
machine.

(d) Develop a coordinator object.
8. How would two state-dependent con-

trol objects communicate with each
other?
(a) By sending messages to each other
(b) By transitioning to the same state
(c) Through an entity object
(d) Through a proxy object

9. An object can send alternative mes-
sages a or b to a state-dependent con-
trol object. How is this handled in the
state machine?
(a) One state with a different transi-

tion out of it for each incoming
message

(b) One state for each of the alterna-
tive messages

(c) A composite state to handle the
alternative messages

(d) A substate for each alternative
message
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10. In a system in which a client object exe-
cutes a state machine and communi-
cates with a service, which of the follow-
ing is true?
(a) The client has a state-dependent

control object but the service does
not.

(b) The service has a state-dependent
control object but the client does
not.

(c) Both the client and the service have
state-dependent control objects.

(d) Neither the client nor the ser-
vice has a state-dependent control
object.
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Overview of Software Architecture

The software architecture separates the overall structure of the system, in terms of
subsystems and their interfaces, from the internal details of the individual subsys-
tems. A software architecture is structured into subsystems, in which each subsys-
tem should be relatively independent of other subsystems. This chapter presents an
overview of software architecture, which is also referred to as a high- level design.
The concepts of software architecture and multiple views of a software architecture
were first introduced in Chapter 1. The concepts of design patterns, components,
and interfaces were introduced in Chapter 4.

In this chapter, Section 12.1 describes the concepts of software architecture and
component-based software architecture. Section 12.2 then describes how having
multiple views of a software architecture helps with both its design and understand-
ing. Section 12.3 introduces the concept of software architectural patterns as a basis
for developing software architectures, whereas Section 12.4 describes how to docu-
ment such patterns. Section 12.5 describes the concept of software components and
interfaces. Finally, Section 12.6 provides an overview of designing software archi-
tectures, as described in Chapters 14 through 20.

12.1 SOFTWARE ARCHITECTURE AND COMPONENT-BASED
SOFTWARE ARCHITECTURE

A software architecture is defined by Bass, Clements, and Kazman (2003) as follows:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.”

Thus, a software architecture is considered primarily from a structural per-
spective. In order to fully understand a software architecture, however, it is also
necessary to study it from several perspectives, including both static and dynamic
perspectives, as described in Section 12.2. It is also necessary to address the architec-
ture from functional (functionality provided by the architecture) and nonfunctional
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perspectives (quality of the functionality provided). The software quality attributes
of an architecture are described in Chapter 20.

12.1.1 Component-Based Software Architecture

A structural perspective on software architecture is given by the widely held concept
of component-based software architecture. A component-based software architec-
ture consists of multiple components in which each component is self-contained
and encapsulates certain information. A component is either a composite object
composed of other objects or a simple object. A component provides an inter-
face through which it communicates with other components. All information that
is needed by one component to communicate with another component is contained
in the interface, which is separate from the implementation. Thus, a component can
be considered a black box, because its implementation is hidden from other compo-
nents. Components communicate with each other in different ways using predefined
communication patterns.

A sequential design is a program in which the components are classes and com-
ponent instances are objects (instances of the classes); the components are passive
classes without a thread of control. A component is self-contained; therefore, it can
be compiled separately, stored in a library, and then subsequently instantiated and
linked into an application. In a sequential design, the only communication pattern
is call/return, as described in Section 12.3.2.

In a concurrent or distributed design, the components are active (concurrent)
and capable of being deployed to different nodes in a distributed environment. In
this design, concurrent components can communicate with each other using several
different communication patterns (see Section 12.3), such as synchronous, asyn-
chronous, brokered, or group communication. An underlying middleware frame-
work is typically provided to allow components to communicate.

12.1.2 Architecture Stereotypes

In UML 2, a modeling element can be described with more than one stereotype.
During analysis modeling, one stereotype was used to represent the role character-
istic of a modeling element (class or object), During design modeling, a different
stereotype can be used to represent the architectural characteristic of a modeling
element. This capability is very useful, and the COMET method takes full advantage
of it. In particular, one stereotype is used to describe the role played by the mod-
eling element, such as whether it is a boundary or entity class. A second stereotype
can be used in design modeling to represent the architectural structuring element
such as subsystem (Chapter 12), component (Chapter 17), service (Chapter 16), or
concurrent task (Chapter 18). It is important to realize that for a given class, the
role stereotype and the architectural structuring stereotype are orthogonal – that is,
independent of each other.

12.2 MULTIPLE VIEWS OF A SOFTWARE ARCHITECTURE

The design of the software architecture can be depicted from different perspectives,
referred to as different views. The structural view of the software architecture is
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depicted on class diagrams, as described in Section 12.2.1. The dynamic view of
the software architecture is depicted on communication diagrams, as described in
Section 12.2.2. The deployment view of the software architecture is depicted on
deployment diagrams, as described in Section 12.2.3. Another architectural view,
the component-based software architecture view, is described in Chapter 17.

12.2.1 Structural View of a Software Architecture

The structural view of a software architecture is a static view, which does not change
with time. At the highest level, subsystems are depicted on a class diagram. In par-
ticular, a subsystem class diagram depicts the static structural relationship between
the subsystems, which are represented as composite or aggregate classes, and mul-
tiplicity of associations among them.

As an example of the structural view of a software architecture, consider the
design of a client/server software architecture, in which there are multiple clients
and a single service. An example of such an architecture is the Banking System, in
which there are multiple instances of the ATM Client subsystem and a single instance
of the Banking Service subsystem. In Figure 12.1, the client and service subsystems
are depicted on a class diagram, which provides a static view of the architecture.
Figure 12.1 depicts the static relationship between the Banking Service and the ATM
Client for the Banking System, particularly the name and direction of the associa-
tion ATM Client Requests Service From Banking Service, as well as the multiplicity
of the association, namely, the one-to-many association between the service and
the clients. Furthermore, both the client and service subsystems (depicted as aggre-
gate classes in Figure 12.1) are depicted with two stereotypes, the first is the role

«external output 
device»

ReceiptPrinter

«external I/O  
device»

CardReader

«external output device»
CashDispenser

«software system»
BankingSystem

«client»
«subsystem»
ATMClient

«service»
«subsystem»

BankingService

«external user»
Operator

«external user»
ATMCustomer

1

1

1

1

1

1

1

1

1

1

1

1..*

Requests Service 
From

Figure 12.1. Structural view of client/server software architecture: high-level
class diagram for Banking System
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stereotype, client or service, and the second is the architectural structuring stereo-
type, which, in this example, is subsystem for both.

12.2.2 Dynamic View of a Software Architecture

The dynamic view of a software architecture is a behavioral view, which is depicted
on a communication diagram. A subsystem communication diagram shows the sub-
systems (depicted as aggregate or composite objects) and the message communica-
tion between them. As the subsystems can be deployed to different nodes, they are
depicted as concurrent components, because they execute in parallel and communi-
cate with each other over a network.

An example of the dynamic view of the architecture is given for the Banking Sys-
tem client/server software architecture, which is depicted on a subsystem commu-
nication diagram in Figure 12.2. Figure 12.2 depicts two subsystems of the Banking
System: ATM Client, of which there are many instances, and Banking Service, of which
there is one instance. Each ATM Client sends transactions to and receives responses
from the Banking Service. The ATM Client and Banking Service are depicted as con-
current components, because each executes in parallel with the other, although at
times they need to communicate with each other. Thus, while one client is prepar-
ing to make a request to the service, the Banking Service can be servicing a different
client. While the service is processing the request of a given client, the client typically
waits for the response. This form of communication, synchronous message commu-
nication with reply, is described in more detail in Section 12.3.4. On UML commu-
nication diagrams such as Figure 12.2, the synchronous message (ATMTransaction)
is depicted with a black arrowhead and the reply (bankResponse) is depicted as a
dashed arrow with a stick arrowhead. An alternative notation for synchronous com-
munication is described in Section 12.3.4 and depicted in Figure 12.11.

«software system»

: BankingSystem

«service»

«subsystem»

: Banking 

Service

«external I/O 

device»

: CardReader

«external output 

device»

: ReceiptPrinter

«external output 

device»

: CardDispenser

cardReaderOutputcardReaderInput

customerInput

display

Information

operator

Input

operator

Information

printer

Output

dispenser

Output

«external user»

: Operator

«external user»

: ATMCustomer

KeypadDisplay
«client»

«subsystem»

: ATMClient

ATMTransaction

bankResponse

Figure 12.2. Dynamic view of client/server software architecture: high-level
communication diagram for Banking System
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A subsystem communication diagram is a generic communication diagram, be-
cause it depicts all possible interactions between objects (see Section 9.1.5). Because
it depicts all possible scenarios, message sequence numbers are not used. Further-
more, because generic communication diagrams depict generic instances (which
means that they depict potential instances rather than actual instances), they use
the UML 2 convention of not underlining the object names.

In addition to being generic, a subsystem communication diagram is also concur-
rent because it depicts objects executing concurrently (see Section 2.8 for descrip-
tion of UML notation). Thus, Figure 12.2 depicts two concurrent subsystems, the
ATM Client and Banking Service, which are geographically distributed.

12.2.3 Deployment View of a Software Architecture

The deployment view of the software architecture depicts the physical configura-
tion of the software architecture, in particular how the subsystems of the architec-
ture are allocated to physical nodes in a distributed configuration. A deployment
diagram can depict a specific deployment with a fixed number of nodes. Alterna-
tively, it can depict the overall structure of the deployment – for example, identifying
that a subsystem can have many instances, each deployable to a separate node, but
not depicting the specific number of instances. An example of this view is given in
Figure 12.3 for the Banking System client/server software architecture. In this
deployment, each ATM Client instance is allocated to its own physical node,
whereas the centralized Banking Service is allocated to a single node. In addition,
the nodes are connected by means of a wide area network.

Banking
Service

{server node}

«wide area network»

ATM
Client3

{client node}

ATM
Client2

{client node}

ATM
Client1

{client node}

Figure 12.3. Deployment view of client/server software architecture:
deployment diagram
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12.3 SOFTWARE ARCHITECTURAL PATTERNS

Chapter 4 introduced the concept of software patterns and the different kinds of pat-
terns, including software architectural patterns and software design patterns. Soft-
ware architectural patterns provide the skeleton or template for the overall software
architecture or high-level design of an application. Shaw and Garlan (1996) referred
to architectural styles or patterns of software architecture, which are recurring archi-
tectures used in a variety of software applications (see also Bass, Clements, and
Kazman 2003). These include such widely used architectures as client/server and
layered architectures.

Software architectural patterns can be grouped into two main categories: archi-
tectural structure patterns, which address the static structure of the architecture,
and architectural communication patterns, which address the dynamic communica-
tion among distributed components of the architecture. This chapter introduces the
concept of software architectural patterns and describes one architectural structure
pattern, the Layers of Abstraction pattern (Section 12.3.1). It also describes three
architectural communication patterns – the Call/Return pattern (Section 12.3.2),
the Asynchronous Message Communication pattern (Section 12.3.3), and the Syn-
chronous Message Communication with Reply pattern (Section 12.3.4). Other pat-
terns are described in later chapters. Tables 12.1, 12.2, and 12.3 summarize where
the patterns are described.

12.3.1 Layers of Abstraction Architectural Pattern

The Layers of Abstraction pattern (also known as the Hierarchical Layers or Levels
of Abstraction pattern) is a common architectural pattern that is applied in many
different software domains (Buschmann et al. 1996). Operating systems, database
management systems, and network communication software are examples of soft-
ware systems that are often structured as hierarchies.

As Parnas (1979) pointed out in his seminal paper on designing software for
ease of extension and contraction (see also Hoffman and Weiss 2001), if software is
designed in the form of layers, it can be extended by the addition of upper layers that
use services provided by lower layers and contracted by the removal of upper layers.

With a strict hierarchy, each layer uses services in the layer immediately below it
(e.g., layer 3 can only invoke services provided by layer 2). With a flexible hierarchy,
a layer does not have to invoke a service at the layer immediately below it, but it

Table 12.1. Software architectural structure patterns

Software architectural structure patterns Chapter

Centralized Control Pattern Chapter 18, Section 18.3.1
Distributed Control Pattern Chapter 18, Section 18.3.2
Hierarchical Control Pattern Chapter 18, Section 18.3.3
Layers of Abstraction Pattern Chapter 12, Section 12. 3.1
Multiple Client/Multiple Service Pattern Chapter 15, Section 15.2.2
Multiple Client/Single Service Pattern Chapter 15, Section 15.2.1
Multi-tier Client/Service Pattern Chapter 15, Section 15.2.3
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Table 12.2. Software architectural communication patterns

Software architectural communication patterns Chapter

Asynchronous Message Communication Pattern Chapter 12, Section 12.3.3
Asynchronous Message Communication with Callback

Pattern
Chapter 15, Section 15.3.2

Bidirectional Asynchronous Message Communication Chapter 12, Section 12.3.3
Broadcast Pattern Chapter 17, Section 17.6.1
Broker Forwarding Pattern Chapter 16, Section 16.2.2
Broker Handle Pattern Chapter 16, Section 16.2.3
Call/Return Chapter 12, Section 12.3.2
Negotiation Pattern Chapter 16, Section 16.5
Service Discovery Pattern Chapter 16, Section 16.2.4
Service Registration Chapter 16, Section 16.2.1
Subscription/Notification Pattern Chapter 17, Section 17.6.2
Synchronous Message Communication with Reply

Pattern
Chapter 12, Section 12.3.4;

Chapter 15, Section 15.3.1
Synchronous Message Communication without Reply

Pattern
Chapter 18, Section 18.8.3

can invoke services at more than one layer below (e.g., layer 3 could directly invoke
services provided by layer 1).

The Layers of Abstraction architectural pattern is used in the TCP/IP, which is
the most widely used protocol on the Internet (Comer 2008). Each layer deals with
a specific characteristic of network communication and provides an interface, as a
set of operations, to the layer above it. For each layer on the sender node, there is
an equivalent layer on the receiver node. TCP/IP is organized into five conceptual
layers, as shown in Figure 12.4 and enumerated here:

Layer 1: Physical layer. Corresponds to the basic network hardware, including
electrical and mechanical interfaces, and the physical transmission medium.

Layer 2: Network interface layer. Specifies how data are organized into frames
and how frames are transmitted over the network.

Layer 3: Internet layer, also referred to as the Internet Protocol (IP) layer. Spec-
ifies the format of packets sent over the Internet and the mechanisms for for-
warding packets through one or more routers from a source to a destination
(Figure 12.5). The router node in Figure 12.5 is a gateway that interconnects a
local area network to a wide area network.

Layer 4: Transport layer (TCP). Assembles packets into messages in the order
they were originally sent. The Transmission Control Protocol, or TCP, uses
the IP network protocol to carry messages. It provides a virtual connection

Table 12.3. Software architectural transaction patterns

Software architectural transaction patterns Chapter

Compound Transaction Pattern Chapter 16, Section 16.4.2
Long-Living Transaction Pattern Chapter 16, Section 16.4.3
Two-Phase Commit Protocol Pattern Chapter 16, Section 16.4.1
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Layer 5 

Layer 4 

Layer 3 

Layer 2 

Layer 1 

Application Layer

Transport Layer

(TCP)

Internet Layer

(IP)

Network Interface

Layer

Physical Layer

Figure 12.4. Layers of Abstraction architectural pattern:
example of the Internet (TCP/IP) reference model

from an application on one node to an application on a remote node, hence
providing what is termed an end-to-end protocol (see Figure 12.5).

Layer 5: Application layer. Supports various network applications, such as file
transfer (FTP), electronic mail, and the World Wide Web.

An interesting characteristic of the layered architecture is that it is straightfor-
ward to replace the upper layers of the architecture with different layers that use
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Figure 12.5. Layers of Abstraction architectural pattern: Internet communication with TCP/IP
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the unchanged services provided by the lower layers. Another interesting charac-
teristic of the layered architecture is shown in Figure 12.5. The router node uses the
lower three layers of the TCP/IP protocol, whereas the application nodes use all five
layers.

An example of a strict layered software architecture from one of the case studies
in the book is the Online Shopping System described in Chapter 22 and depicted in
Figure 12.6. At the lowest layer is the Service Layer, which provides services that are
used by higher layers. The top layer is a User Layer consisting of user interaction
objects. The middle layer is a Coordination Layer that coordinates user requests to
the services.

12.3.2 Call/Return Pattern

The simplest form of communication between objects uses the Call/Return pattern.
A sequential design consists of passive classes, which are instantiated as passive
objects. The only possible form of communication between objects in a sequential
design is operation (also known as method) invocation, which is also referred to
as the Call/Return pattern. In this pattern, a calling operation in the calling object
invokes a called operation in the called object, as depicted in Figure 12.7a. Control
is passed from the calling operation to the called operation at the time of operation
invocation. Any input parameters are passed from the calling operation to the called
operation at the same time that control is passed. When the called operation finishes
executing, it returns control and any output parameters to the calling operation. On
UML communication diagrams such as Figure 12.7a, the Call/Return pattern uses
the UML notation for synchronous communication (arrow with black arrowhead).

As an example of the Call/Return pattern, consider the example of a sequential
design with instance of the checking account and savings account classes (Figure
12.7b). Each object provides credit and debit operations, which can be invoked by
the Withdrawal Transaction Manager or Transfer Transaction Manager objects. The
Withdrawal Transaction Manager invokes the debit operation of either account object
with input parameters consisting of the account# and the withdrawal amount. When
called, another operation, readBalance, returns the account balance after withdrawal.
To process a transfer request, the Transfer Transaction Manager invokes the debit
operation of one account (with account# and debit amount as parameters) and
the credit operation of the other account (with account# and credit amount as
parameters).

12.3.3 Asynchronous Message Communication Pattern

In concurrent and distributed designs, other forms of communication are possi-
ble. With the Asynchronous (also referred to as Loosely Coupled) Message Com-
munication pattern, the producer component sends a message to the consumer
component (Figure 12.8) and does not wait for a reply. The producer continues
because it either does not need a response or has other functions to perform before
receiving a response. The consumer receives the message; if the consumer is busy
when the message arrives, the message is queued. Because the producer and con-
sumer components proceed asynchronously (i.e., at different speeds), a first-in, first-
out (FIFO) message queue can build up between producer and consumer. If no
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(a) Call/Return pattern

(b) Example of Call/Return pattern
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debit(account#,
amount),
credit(account#,
amount),

readBalance

Figure 12.7. Call/return pattern

message is available when the consumer requests one, the consumer is suspended.
The consumer is then reawakened when a message arrives. In distributed environ-
ments, the Asynchronous Message Communication pattern is used wherever possi-
ble for greater flexibility. This approach can be used if the sender does not need a
response from the receiver.

Figure 12.8 is a UML instance communication diagram because it shows a par-
ticular scenario consisting of a producer sending an asynchronous message to a con-
sumer. On UML communication diagrams such as Figure 12.8, the Asynchronous
Message Communication pattern uses the UML notation for asynchronous commu-
nication (arrow with stick arrowhead).

An example of the Asynchronous Message Communication pattern in a dis-
tributed environment is given on the generic communication diagram depicted in
Figure 12.9 for the Automated Guided Vehicle System, in which all communication

1: sendAsynchronousMessage (in message)

aProducer aConsumer

Figure 12.8. Asynchronous Message Communication pattern
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arriving (station#)

moveToStation

(station#)

: SupervisorySystem

Proxy

: VehicleControl

: ArrivalSensor

Component

Figure 12.9. Example of the Asynchronous Message Communi-
cation pattern: Automated Guided Vehicle System

between the components is asynchronous. Both the Supervisory System Proxy and
the Arrival Sensor Component send asynchronous messages to Vehicle Control, which
are queued first-in-first-out. Vehicle Control has one input message queue from which
it receives whichever message arrives first, move message or arriving message.

It is also possible to have peer-to-peer communication between two compo-
nents, which send asynchronous messages to each other. This kind of communica-
tion is referred to as bidirectional asynchronous communication and is depicted in
Figure 12.10. Examples of bidirectional asynchronous communication are given in
Chapters 16 and 18.

12.3.4 Synchronous Message Communication with Reply Pattern

With the Synchronous (also referred to as Tightly Coupled) Message Communica-
tion with Reply pattern, the client component sends a message to the service com-
ponent and then waits for a reply from the service (Figure 12.11). When the mes-
sage arrives, the service accepts it, processes it, generates a reply, and then sends
the reply. The client and service then both continue. The service is suspended if no
message is available. Although there might only be one client and one service, it is
more likely that synchronous message communication involves multiple clients and
one service. Because this pattern is fundamental to client/server architectures, it is
described in more detail in Chapter 15.

Figure 12.11 is a UML instance communication diagram because it shows a par-
ticular scenario consisting of a producer sending a synchronous message to a con-
sumer and receiving a response. On UML communication diagrams such as Figure
12.11, the Synchronous Message Communication pattern uses the UML notation
for synchronous message communication with reply (arrow with black arrowhead),
the outgoing request is the input parameter message, and the reply is the output
parameter response.

1: sendAsynchronousMessage (in message)

2: sendAsynchronousResponse (in response)

aProducer aConsumer

Figure 12.10. Bidirectional Asynchronous Message Communication pattern
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1: sendSynchronousMessagewithReply
(in message, out response)

aClient aService

Figure 12.11. Synchronous Message Communication with Reply pattern

12.4 DOCUMENTING SOFTWARE ARCHITECTURAL PATTERNS

Whatever the category of pattern, it is very useful to have a standard way of describ-
ing and documenting a pattern so that it can be easily referenced, compared with
other patterns, and reused. Three important aspects of a pattern that need to be cap-
tured (Buschmann et al. 1996) are the context, problem, and solution. The context
is the situation that gives rise to a problem. The problem refers to a recurring prob-
lem that arises in this context. The solution is a proven resolution to the problem.
A template for describing a pattern usually also addresses its strengths, weaknesses,
and related patterns. A typical template looks like this:

■ Pattern name
■ Aliases. Other names by which this pattern is known.
■ Context. The situation that gives rise to this problem.
■ Problem. Brief description of the problem.
■ Summary of solution. Brief description of the solution.
■ Strengths of solution
■ Weaknesses of solution
■ Applicability. When you can use the pattern.
■ Related patterns
■ Reference. Where you can find more information about the pattern.

An example of documenting a pattern is given next for the Layered Pattern. The
complete set of patterns described in this book are documented with this standard
template in Appendix A.

Pattern name Layers of Abstraction
Aliases Hierarchical Layers, Levels of Abstraction
Context Software architectural design
Problem A software architecture that encourages design for ease of

extension and contraction is needed.
Summary of solution Components at lower layers provide services for components at

higher layers. Components may use only services provided by
components at lower layers.

Strengths of solution Promotes extension and contraction of software design
Weaknesses of solution Could lead to inefficiency if too many layers need to be traversed
Applicability Operating systems, communication protocols, software product

lines
Related patterns Kernel can be lowest layer of Layers of Abstraction architecture.

Variations of this pattern include Flexible Layers of Abstraction.
Reference Chapter 12, Section 12.3.1; Hoffman and Weiss 2001; Parnas

1979.
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12.5 INTERFACE DESIGN

An important goal of both object-oriented design and component-based software
architecture is the separation of the interface from the implementation. An interface
specifies the externally visible operations of a class, service, or component without
revealing the internal structure (implementation) of the operations. The interface
can be considered a contract between the designer of the external view of the class
and the implementer of the class internals. It is also a contract between a class that
requires (uses) the interface (i.e., invokes the operations provided by the interface)
and the class that provides the interface.

Following the concept of information hiding (Section 4.2), class attributes are
private and the public operations provided by a class constitute the interface. In
static modeling using class diagram notation, the interface (class operations) is
depicted in the third compartment of the class. An example of this is in Figure 12.12,
which shows the class Account, with two private attributes depicted in the second
compartment of the class (“minus” sign depicts private in UML) and the interface
consisting of the five public operations depicted in the third compartment of the
class (“plus” sign depicts public in UML).

Because the same interface can be implemented in different ways, it is useful
to depict the design of the interface separately from the component that realizes
(i.e., implements) the interface. Furthermore, interfaces can be realized in wider
contexts than classes. Thus, interfaces for subsystems, distributed components, and
passive classes can all be depicted using the same interface notation.

An interface can be depicted with a different name from the class or component
that realizes the interface. By convention, the name starts with the letter “I.” In
UML, an interface can be modeled separately from a component that realizes the
interface. An interface can be depicted in two ways: simple and expanded. In the
simple case, the interface is depicted as a little circle with the interface name next
to it. The class or component that provides the interface is connected to the small
circle, as shown in Figure 12.13a. In the expanded case, the interface is depicted
in a rectangular box with the static modeling notation, as shown in Figure 12.13b,
with the stereotype «interface» and the interface name in the first compartment. The
operations of the interface are depicted in the third compartment. The second com-
partment is left blank (note that in other texts, interfaces are sometimes depicted
with the middle compartment omitted).

An example of an interface is IBasicAlarmService, which provides two operations,
one to read alarm data and one to post new alarms, as follows:

Account

- accountNumber : Integer

- balance : Real

+ readBalance () : Real

+ credit (amount : Real)

+ debit (amount : Real)

+ open (accountNumber : Integer)

+ close ()

Figure 12.12. Example of class with public interface and private attributes
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IBasicAlarmService

out alarmData)

«interface»
IBasicAlarmService

IBasicAlarmService

BasicAlarm
Service

OperatorInteraction

IBasicAlarmService

BasicAlarm
Service

IBasicAlarmService

OperatorInteraction

BasicAlarm
Service

a) component with provided 
Interface

d) component with required 
interface

b) specification of interface

c) component realizing interface

e) requiring component uses 
interface of providing component

alarmRequest(in request, 

post(in alarm)

Figure 12.13. Example of interface and class that realizes interface

Interface: IBasicAlarmService
Operations provided:

� alarmRequest (in request, out alarmData)
� post (in alarm)

The component that realizes the interface is called BasicAlarmService, which pro-
vides the implementation of the interface. In UML, the realization relationship is
depicted as shown in Figure 12.13c (dashed arrow with a triangular arrowhead),
which shows the component BasicAlarmService realizing the IBasicAlarmService inter-
face. A required interface is depicted with a small semicircle notation with the inter-
face name next to it. The class or component that requires the interface is con-
nected to the semicircle, as shown in Figure 12.13d. To show that a component
with a required interface uses a component with a provided interface, the semicir-
cle (sometimes referred to as a socket) with the required interface is drawn around
the circle (sometimes referred to as a ball) with the provided interface, as shown in
Figure 12.13e.

12.6 DESIGNING SOFTWARE ARCHITECTURES

During software design modeling, design decisions are made relating to the charac-
teristics of the software architecture. The following chapters describe the design of
different kinds of software architectures:
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■ Object-oriented software architectures. Chapter 14 describes object-oriented
design using the concepts of information hiding, classes, and inheritance. This
results in the design of a sequential object-oriented software architecture, which
would be implemented as a sequential program with one thread of control. This
chapter describes the design of object-oriented software architectures, to clearly
distinguish how object-oriented concepts are applied, before considering other
important concepts that are usually needed in designing software architectures.

■ Client/server software architectures. Chapter 15 describes the design of client/
server software architectures. A typical design consists of one service and mul-
tiple clients. Decisions need to be made about the design of both the client and
server architectures: whether they should be designed as sequential or concur-
rent subsystems, and what patterns to use for the design of the individual sub-
systems. Client/server software architectures and architecture patterns are so
widespread in software systems that it is worthwhile understanding the funda-
mental concepts and issues in designing these systems.

■ Service-oriented architectures. Chapter 16 describes the design of service-
oriented architectures, which typically consist of multiple distributed autono-
mous services that can be composed into distributed software applications. This
chapter describes how to design service-oriented architectures, including how
to design services, how to coordinate different services, and how to reuse ser-
vices. Service-oriented architectures, which are increasingly being used, incorpo-
rate concepts from client/server and distributed component-based systems. The
architectural issues dealing with service-oriented architecture are addressed in
this chapter.

■ Distributed component-based software architectures. Chapter 17 describes the
design of component-based software architectures. It describes the component
structuring criteria for designing components that can be deployed to execute
on distributed platforms in a distributed configuration. The design of component
interfaces is described, with component ports that have provided and required
interfaces and connectors that join compatible ports. The component-based soft-
ware architecture is depicted with the UML 2 notation for composite structure
diagrams. Distributed applications are usually component-based, in which the
exact nature of the systems depends on the component technology used. How-
ever, there are important architectural concepts for developing these systems,
which are addressed in this chapter.

■ Concurrent and real-time software architectures. Chapter 18 describes the
design of real-time software architectures, which are concurrent architectures
usually having to deal with multiple streams of input events. They are typi-
cally state-dependent, with either centralized or decentralized control. For these
systems, a concurrent software architecture is developed in which the system
is structured into concurrent tasks, and the interfaces and interconnections
between the concurrent tasks are defined. Real-time embedded software sys-
tems are an important domain of software applications. Many of the concepts
described for the other types of software architectures, such as information
hiding and concurrency, can also be applied in real-time design. This chapter
addresses other important issues in designing real-time software architectures.
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■ Software product line architectures. Chapter 19 describes the design of software
product line architectures, which are architectures for families of products that
need to capture both the commonality and variability in the family. The prob-
lems of developing individual software architectures are scaled upwards when
developing software product line architectures because of the increased com-
plexity due to variability management. Software product line concepts can be
applied to all the different architectures described in previous chapters, because
they address issues of commonality and variability in software families. They are
also a natural way to explicitly model evolving systems, in which each version
can be considered a member of the software family.

Chapter 20 describes the quality attributes of software architectures that address
nonfunctional requirements of software, which can have a profound effect on the
quality of a software product. Many of these attributes can be addressed and evalu-
ated at the time the software architecture is developed. Software quality attributes
include maintainability, modifiability, testability, traceability, scalability, reusability,
performance, availability, and security.

12.7 SUMMARY

This chapter presented an overview of software architecture. It described the mul-
tiple views of a software architecture, particularly the static, dynamic, and deploy-
ment views. In designing the overall software architecture, it helps to consider apply-
ing the software architectural patterns, both architectural structure patterns and
architectural communication patterns. Architectural structure patterns are applied
to the design of the overall structure of the software architecture, which addresses
how the system is structured into subsystems. One architectural structure pattern,
the Layers of Abstraction pattern, was described. Architectural communication pat-
terns address the ways in which subsystems communicate with each other. Three
architectural communication patterns, the Call/Return pattern, the Asynchronous
Message Communication pattern, and the Synchronous Message Communication
with Reply pattern, were described. Each subsystem is designed such that its inter-
face is explicitly defined in terms of the operations it provides, as well as the oper-
ations it uses. Communication between distributed subsystems can be synchronous
or asynchronous.

During software design modeling, design decisions are made relating to the char-
acteristics of the software architecture. Chapter 13 describes the transition from
analysis to design and the structuring of the system into subsystems. Chapter 14
describes object-oriented design using the concepts of information hiding, classes,
and inheritance. Chapter 15 describes the design of client/server software architec-
tures, in which a typical design consists of one server and multiple clients. Chap-
ter 16 describes the design of service-oriented architectures, which typically consist
of multiple distributed autonomous services that can be composed into distributed
software applications. Chapter 17 describes the design of component-based soft-
ware architectures, including the design of component interfaces, with component



210 Architectural Design

ports that have provided and required interfaces, and connectors that join compati-
ble ports. Chapter 18 describes the design of real-time software architectures, which
are concurrent architectures usually having to deal with multiple streams of input
events. Chapter 19 describes the design of software product line architectures, which
are architectures for families of products that need to capture both the commonality
and variability in the family.

Chapter 20 describes the software quality attributes of a software architecture
and how they are used to evaluate the quality of the software architecture. Chapters
21 to 24 provide case study examples of applying COMET/UML to the modeling
and design of different software architectures.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What does the software architecture
describe?
(a) The software inside a building
(b) The structure of a client/server sys-

tem
(c) The overall structure of a software

system
(d) The software classes and their rela-

tionships
2. Which of the following statements is

NOT true for a component?
(a) A composite object composed of

other objects
(b) An operation
(c) A simple object
(d) Provides an interface

3. What is a structural view of a software
architecture?
(a) A view in terms of a module hierar-

chy
(b) A view in terms of components and

connectors
(c) A view of the physical configura-

tion in terms of nodes and intercon-
nections

(d) A view in terms of objects and mes-
sages

4. What is a dynamic view of a software
architecture?
(a) A view in terms of a module hierar-

chy
(b) A view in terms of components and

connectors
(c) A view of the physical configura-

tion in terms of nodes and intercon-
nections

(d) A view in terms of objects and mes-
sages

5. What is a deployment view of a software
architecture?
(a) A static view in terms of a module

hierarchy
(b) A static view in terms of compo-

nents and connectors
(c) A view of the physical configura-

tion in terms of nodes and intercon-
nections

(d) A dynamic interaction view in
terms of objects and messages

6. What is a software architectural pat-
tern?
(a) The structure of the major subsys-

tems of a system
(b) The components and connectors in

a software architecture
(c) A small group of collaborating

objects
(d) A recurring architecture used in a

variety of systems
7. What happens in a Layers of Abstrac-

tion pattern?
(a) Each layer uses services in the layer

immediately below it.
(b) Each layer uses services in the layer

immediately above it.
(c) Each layer uses services in the lay-

ers immediately above it and below
it.

(d) Each layer is independent of the
other layers.

8. What happens in a Call/Return pattern?
(a) A calling operation in the calling

object sends a message to an oper-
ation (a.k.a. method) in the called
object.
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(b) A calling operation in the calling
object invokes an operation (a.k.a.
method) in the called object.

(c) The calling object waits for a res-
ponse from the called object.

(d) The calling object does not wait for
a response from the called object.

9. A producer sends a message to a con-
sumer. Which one of the following is
asynchronous message communication?
(a) The producer waits for a response

from the consumer.
(b) The producer does not wait for a

response from the consumer.

(c) The producer goes to sleep.
(d) The producer waits for a timeout.

10. A producer sends a message to a con-
sumer. Which one of the following
is synchronous message communication
with reply?
(a) The producer waits for a response

from the consumer.
(b) The producer does not wait for a

response from the consumer.
(c) The producer goes to sleep.
(d) The producer waits for a time-

out.
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Software Subsystem Architectural Design

During analysis modeling, the problem is analyzed by breaking it down and studying
it on a use case–by–use case basis. During design modeling, the solution is synthe-
sized by designing a software architecture that defines the structural and behavioral
properties of the software system. To successfully manage the inherent complexity
of a large-scale software system, it is necessary to provide an approach for decom-
posing the system into subsystems and developing the overall software architecture
of the system. After performing this decomposition, each subsystem can then be
designed independently, as described in subsequent chapters.

Section 13.1 describes issues in software architectural design. To design the soft-
ware architecture, it is necessary to start with the analysis model. Several decisions
need to be made in designing the software architecture:

■ Integrate the use case–based interaction models into an initial software architec-
ture, as described in Section 13.2.

■ Determine the subsystems using separation of concerns and subsystem structur-
ing criteria, as described in Sections 13.3 and 13.4, respectively.

■ Determine the precise type of message communication among the subsystems,
as described in Section 13.5.

13.1 ISSUES IN SOFTWARE ARCHITECTURAL DESIGN

In the analysis of the problem domain and structuring a system into subsystems,
the emphasis is on functional decomposition, such that each subsystem addresses a
distinctly separate part of the system (as discussed in Section 13.3). The design goal
is for each subsystem to perform a major function that is relatively independent
of the functionality provided by other subsystems. A subsystem can be structured
further into smaller subsystems, consisting of a subset of the functionality provided
by the parent subsystem. After the interface between subsystems has been defined,
subsystem design can proceed independently.

Some subsystems can be determined relatively easily because of geographical
distribution or server responsibility. One of the most common forms of geographical

212
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sendATMTransaction 
(in transaction, out response)

«service»
«subsystem»

: BankingService

«client»
«subsystem»
: ATMClient

Figure 13.1. High-level software architecture: Banking System

distribution involves clients and services, which are allocated to different subsys-
tems: a client subsystem and a service subsystem. Thus, the software architecture of
the Banking System illustrated in Figure 13.1 consists of a client subsystem called
ATM Client, which is located at each ATM machine, and a service subsystem called
Bank Service. This is an example of geographical subsystem structuring, in which the
geographical distribution of the system is given in the problem description. In such
cases, subsystem structuring can be done early in the design process.

In other applications, it is not so obvious how to structure the system into sub-
systems. Because one of the goals of subsystem structuring is to have objects that
are functionally related and highly coupled in the same subsystem, a good place to
start is with the use cases. Objects that participate in the same use case are candi-
dates to be grouped into the same subsystem. Because of this, subsystem structuring
is often done after the interaction among the constituent objects of each use case
has been determined during dynamic modeling (see Chapter 9). In particular, it can
be carried out early in the design phase, as described in this chapter.

A subsystem provides a larger-grained information hiding solution than an
object. To structure the system into subsystems, start with the use cases. Objects
that realize the same use case have higher coupling because they communicate
with each other (as depicted on the use case–based interaction diagram) and have
lower (or no) coupling with objects in other use cases. Whereas an object can par-
ticipate in more than one use case, it can only be part of one subsystem; thus, an
object that participates in more than one use case needs to be allocated to a sin-
gle subsystem, usually the subsystem with which it is most highly coupled. In some
cases, a subsystem might incorporate the objects from more than one use case, most
probably when the use cases share common objects because they are functionally
related. However, there are also situations in which objects that participate in the
same use case need to be assigned to different subsystems (e.g., because they are
located in separate geographical locations). These issues are addressed further in
Section 13.3.

13.2 INTEGRATED COMMUNICATION DIAGRAMS

To transition from analysis to design and to determine the subsystems, it is nec-
essary to synthesize an initial software design from the analysis carried out so far.
This is done by integrating the use case–based interaction diagrams developed as
part of the dynamic model. Although dynamic interaction between objects can be
depicted on either sequence diagrams or communication diagrams, this integra-
tion uses communication diagrams because they visually depict the interconnection
between objects, as well as the messages passed between them.
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In the analysis model, at least one communication diagram is developed for each
use case. The integrated communication diagram is a synthesis of all the communi-
cation diagrams developed to support the use cases. The integrated communication
diagram is, in effect, a merger of the communication diagrams, and its development
is described next.

Frequently, there is a precedence order in which use cases are executed. The
order of the synthesis of the communication diagrams should correspond to the
order in which the use cases are executed. From a visual perspective, the integra-
tion is done in the following manner. Start with the communication diagram for the
first use case and superimpose the communication diagram for the second use case
on top of the first to form a integrated diagram. Next, superimpose the third dia-
gram on top of the integrated diagram of the first two, and so on. In each case, add
new objects and new message interactions from each subsequent diagram onto the
integrated diagram, which gradually gets bigger as more objects and message inter-
actions are added. Objects and message interactions that appear on more than one
communication diagram are only shown once.

It is important to realize that the integrated communication diagram must show
all message communication derived from the individual use case–based communi-
cation diagrams. Communication diagrams often show the main sequence through
a use case, but not all the alternative sequences. In the integrated communication
diagram, it is necessary to show the messages that are sent as a result of executing
the alternative sequences in addition to the main sequence through each use case.
An example was given in Chapter 11 of interaction diagrams supporting the main
sequence and several alternative sequences for the Validate PIN use case in the
Banking System. All these additional messages need to appear on the integrated
communication diagram, which is intended to be a complete description of all mes-
sage communication among objects.

The integrated communication diagram is a synthesis of all relevant use case–
based communication diagrams showing all objects and their interactions. The inte-
grated communication diagram is represented as a generic UML communication
diagram (see Section 12.2.2), which means that it depicts all possible interactions
between the objects. On the integrated communication diagram, objects and mes-
sages are shown, but the message sequence numbering does not need to be shown
because this would only add clutter. As with the use case–based communication dia-
grams, messages on the integrated communication diagram are depicted as simple
messages, before the decision on type of message communication (synchronous or
asynchronous) is made, as described in Section 13.5.

An example of an integrated communication diagram for the ATM Client subsys-
tem of the Banking System is given in Figure 13.2. This consists of the integration of
the communication diagrams that realize the seven use cases of the Banking System,
including the main and alternative sequences for each use case. The integrated com-
munication diagram is a generic diagram, so the object names are not underlined.

The integrated communication diagram can get very complicated for a large
system; therefore, it is necessary to have ways to reduce the amount of informa-
tion. One way to reduce the amount of information on the diagram is to aggregate
the messages – that is, if one object sends several individual messages to another,



«e
xt

er
na

l I
/O

de
vi

ce
»

: C
ar

dR
ea

de
r

«I
/O

»
: C

ar
dR

ea
de

r
In

te
rf

ac
e

«e
nt

ity
»

: A
T

M
C

ar
d

«u
se

r 
in

te
ra

ct
io

n»
: C

us
to

m
er

In
te

ra
ct

io
n

«s
ta

te
 d

ep
en

de
nt

 
co

nt
ro

l»
: A

T
M

C
on

tr
ol

«e
nt

ity
»

: A
T

M
T

ra
ns

ac
tio

n

«s
er

vi
ce

» 
«s

ub
sy

st
em

»
: B

an
ki

ng
S

er
vi

ce

«o
ut

pu
t»

: R
ec

ei
pt

P
rin

te
r

In
te

rf
ac

e

«e
xt

er
na

l o
ut

pu
t 

de
vi

ce
»

: R
ec

ei
pt

P
rin

te
r

«e
nt

ity
»

: A
T

M
C

as
h

«u
se

r 
in

te
ra

ct
io

n»
: O

pe
ra

to
r

In
te

ra
ct

io
n

«o
ut

pu
t»

: C
as

h
D

is
pe

ns
er

In
te

rf
ac

e

«e
xt

er
na

l 
ou

tp
ut

 d
ev

ic
e»

: C
as

h
D

is
pe

ns
er

«c
lie

nt
»

«s
ub

sy
st

em
»

: A
T

M
C

lie
nt

B
an

k
R

es
po

ns
es

A
T

M
T

ra
ns

ac
tio

ns

C
ar

d 
In

se
rt

ed
, 

C
ar

d 
E

je
ct

ed
,

C
ar

d 
C

on
fis

ca
te

d

E
je

ct
,

C
on

fis
ca

te

D
is

pe
ns

e 
C

as
h 

(C
as

h 
de

ta
ils

)

C
as

h
D

is
pe

ns
ed

S
ta

rt
 U

p,
C

lo
se

do
w

n
C

as
h

A
dd

ed

C
as

h 
R

es
po

ns
e

D
is

pe
ns

er
O

ut
pu

t

O
pe

ra
to

r
In

fo
rm

at
io

n

P
rin

te
r

O
ut

pu
t

R
ec

ei
pt

P
rin

te
d

P
rin

t
R

ec
ei

pt

T
ra

ns
ac

tio
n

D
at

a

O
pe

ra
to

r
In

pu
t

T
ra

ns
ac

tio
n

R
eq

ue
st

T
ra

ns
ac

tio
n

D
et

ai
ls

C
us

to
m

er
 In

fo
,

C
us

to
m

er
 S

el
ec

tio
nD

is
pl

ay
P

ro
m

pt
s

U
pd

at
e

T
ra

ns
ac

tio
n

S
ta

tu
s

(C
as

h 
de

ta
ils

),
U

pd
at

e
P

IN
 S

ta
tu

s

C
us

to
m

er
 

E
ve

nt
s

(T
ra

ns
ac

tio
n

de
ta

ils
)

C
ar

d 
R

eq
ue

st
C

ar
d 

D
at

a

C
ar

d
In

pu
t

D
at

a

C
ar

d
R

ea
de

r
O

ut
pu

t

C
ar

d
R

ea
de

r
In

pu
t

C
us

to
m

er
 

In
pu

t

D
is

pl
ay

In
fo

rm
at

io
n

C
as

h 
W

ith
dr

aw
al

A
m

ou
nt

«e
xt

er
na

l u
se

r»
: A

T
M

C
us

to
m

er
K

ey
pa

dD
is

pl
ay

«e
xt

er
na

l u
se

r»
: O

pe
ra

to
r

Fi
gu

re
1

3
.2

.
In

te
gr

at
ed

co
m

m
un

ic
at

io
n

di
ag

ra
m

fo
r

AT
M

C
lie

nt
su

bs
ys

te
m

215



216 Architectural Design

Table 13.1. Aggregate message composed of simple messages

Aggregate message Consists of simple messages

Display Prompts Get PIN, Invalid PIN Prompt, Display Menu,
Display Cancel, Display Menu, Display
Confiscate, Display Eject

instead of showing all these messages on the diagram, use one aggregate mes-
sage. The aggregate message is a useful way of grouping messages to reduce clut-
ter on the diagram. It does not represent an actual message sent from one object
to another; rather, it represents messages sent at different times between the same
pair of objects. For example, the messages sent by the ATM Control object to the
Customer Interaction object in Figure 13.2 can be aggregated into an aggregate mes-
sage called Display Prompts. A message dictionary is then used to define the contents
of Display Prompts, as shown in Table 13.1. Other examples of aggregate message
names in Figure 13.2 are ATM Transactions, Bank Responses, and Customer Events.
This example of the integrated communication diagram is described in more detail
in the Banking System case study in Chapter 21.

Furthermore, showing all the objects on one diagram might not be practical. A
solution to this problem is to develop integrated communication diagrams for each
subsystem and develop a higher-level subsystem communication diagram to show
the interaction between the subsystems, as described next.

The dynamic interactions between subsystems can be depicted on a subsys-
tem communication diagram, which is a high-level integrated communication dia-
gram, as shown in Figure 13.1 for the Banking System. The structure of an indi-
vidual subsystem can be depicted on an integrated communication diagram, which
shows all the objects in the subsystem and their interconnections, as depicted in
Figure 13.2.

13.3 SEPARATION OF CONCERNS IN SUBSYSTEM DESIGN

Some important structuring decisions need to be made when designing subsystems.
The following design considerations, which address separation of concerns, should
be made when structuring the system into subsystems. The goal is to make sub-
systems more self-contained, so that different concerns are addressed by different
subsystems.

13.3.1 Composite Object

Objects that are part of the same composite object should be in the same subsys-
tem and separate from objects that are not part of the same composite object. As
described in Chapter 7, both aggregation and composition are whole/part relation-
ships; however, composition is a stronger form of aggregation. With composition,
the composite object (the whole) and its constituent objects (the parts) are created
together, live together, and die together. Thus, a subsystem consisting of a compos-
ite object and its constituent objects is more strongly coupled than one consisting of
an aggregate object and its constituent objects.
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ATM

ATMCustomer

KeypadDisplay CardReader CashDispenser ReceiptPrinter

1 1
1

1

Figure 13.3. Example of composite class: ATM

A subsystem supports information hiding at a higher level of abstraction than
an individual object does. A software object can be used to model a real-world
object in the problem domain. A composite object models a composite real-world
object in the problem domain. A composite object is typically composed of a group
of related objects that work together in a coordinated fashion. This arrangement is
analogous to the assembly structure in manufacturing. Often, multiple instances of
a composite object (and hence, multiple instances of each of its constituent objects)
are needed in an application. The relationship between a composite class and its
constituent classes is best depicted in the static model because the class diagram
depicts the multiplicity of the association between each constituent class and the
composite class.

An example of a composite class is the ATM class (Figure 13.3). The ATM is a
composite class that consists of an ATM card reader, a cash dispenser, a receipt
printer, and an ATM Customer keypad/display. There are several instances of the
ATM composite class in the Banking System – one for each ATM.

It is possible for an aggregate subsystem to be a higher-level subsystem that con-
tains composite subsystems (components). An aggregate subsystem contains objects
grouped by functional similarity, which might span geographical boundaries. These
aggregate objects are grouped together because they are functionally similar or
because they interact with each other in the same use case(s). Aggregate subsys-
tems can be used as a convenient higher-level abstraction than composite subsys-
tems, particularly when there are many components in a highly distributed applica-
tion. In a software architecture that spans multiple organizations, it can be useful to
depict each organization as an aggregate subsystem. A layered architecture can also
be structured, with each layer designed as an aggregate subsystem. Each layer might
itself consist of multiple composite subsystems (designed as components or services)
that are geographically distributed. The Emergency Monitoring System case study
is an example of a software architecture with each layer (user, monitoring, service)
designed as an aggregate subsystem, as depicted in Figure 13.4 and described in
Chapter 23. Each layer contains one or more composite subsystems (components
or services). Thus, the Monitoring Layer has two components, Monitoring Sensor
Component and Remote System Proxy, and the Service Layer has two services, Alarm
Service and Monitoring Data Service.

13.3.2 Geographical Location

If two objects could potentially be physically separated in different geographical
locations, they should be in different subsystems. In a distributed environment,
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Proxy

«input»

«component»

MonitoringSensor

Component

{Layer 3}

{Layer 2}

{Layer 1}

Figure 13.4. Layered architecture with aggregate and composite subsystems: Emergency
Monitoring System

component-based subsystems communicate only by means of messages that can
be sent from one subsystem to another. In the Emergency Monitoring System
shown on the deployment diagram in Figure 13.5, there are several instances of the
Monitoring Sensor component, several instances of the Remote System Proxy, and sev-
eral instances of the Operator Presentation component. In addition, there are two ser-
vice components, Alarm Service and Monitoring Data Service. Each instance of these
components could physically reside on a separate microcomputer node located in a
different geographical location, connected by a wide area network.

«wide area network»

Alarm Service
{1 node}

Monitoring Data 
Service
{1 node}

Remote System 
Proxy

{1 node per remote
system}

Monitoring Sensor

Component

{1 node per

monitoring location} 

Operator 
Presentation
{1 node per
operator}

Figure 13.5. Example of geographical distribution: Emergency Monitoring System
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«user interaction»

«component»

OperatorPresentation

«user interaction»

AlarmWindow

«user interaction»

OperatorInteraction

«user interaction»

EventMonitoring 

Window

Figure 13.6. Example of user interaction subsystem

13.3.3 Clients and Services

Clients and services should be in separate subsystems. This guideline can be viewed
as a special case of the geographical location rule because clients and services
are usually at different locations. For example, the Banking System shown in
Figures 13.1 has many ATM Client subsystems of the same type, which reside at phys-
ical ATMs distributed around the country. Bank Service is located at a centralized
location, perhaps in New York City. In the Emergency Monitoring System shown in
Figure 13.4, there are two services, Alarm Service and Monitoring Data Service, which
are in separate subsystems from their clients.

13.3.4 User Interaction

Users often use their own PCs as part of a larger distributed configuration, so
the most flexible option is to keep user interaction objects in separate subsystems.
Because user interaction objects are usually clients, this guideline can be viewed as
a special case of the client/service guideline. Furthermore, a user interaction object
may be a composite graphical user interaction object composed of several simpler
user interaction objects. The Operator Presentation component in Figure 13.6 is an
example composite graphical user interaction object, which contains three simple
graphical user interaction objects, an Operator Interaction object, an Alarm Window,
and an Event Monitoring Window, as described in more detail in Chapter 17.

13.3.5 Interface to External Objects

A subsystem deals with a subset of the actors shown in the use case model and a
subset of the external real-world objects shown on the context diagram. An external
real-world object should interface to only one subsystem. An example is given for
the ATM Client subsystem in Figure 13.7, in which the ATM Client interfaces to several
external real-world classes, including the Card Reader, Cash Dispenser, and Receipt
Printer, which in turn only interface to the ATM Client.

13.3.6 Scope of Control

A control object and all the entity and I/O objects it directly controls should all
be part of one subsystem and not split among subsystems. An example is the ATM



220 Architectural Design

«external output device»

ReceiptPrinter

«external input/output 

device»

CardReader

«external output device»

CashDispenser

«software system»

BankingSystem

«client»

«subsystem»

ATMClient

«service»

«subsystem»

BankingService

«external user»

Operator

«external user»

ATMCustomer

1

1

1

1

1

1

1

1

1

1

1

1..*

Requests Service 

From

Figure 13.7. Example of interfacing to external classes

Control object within the ATM Client Subsystem, shown in Figures 13.2, which pro-
vides the overall control of the objects in the ATM Client subsystem, including sev-
eral internal I/O objects (such as Card Reader Interface and Cash Dispenser Interface),
user interaction objects (such as Customer Interaction), and entity objects (such as
ATM Transaction).

13.4 SUBSYSTEM STRUCTURING CRITERIA

The design considerations described in the previous section can be formalized as
subsystem structuring criteria, which help ensure that subsystems are designed effec-
tively. The subsystem structuring criteria are described in this section with exam-
ples. A subsystem can satisfy more than one of the structuring criteria. Subsys-
tems are generally depicted with the stereotype «subsystem». For certain software
architectures consisting of distributed component-based subsystems, the stereo-
type «component» is used for such a subsystem, and in service-oriented architec-
ture consisting of service subsystems, the stereotype «service» is used for a service
subsystem.
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13.4.1 Client Subsystem

A client subsystem is a requester of one or more services. There are many differ-
ent types of clients; some may be wholly dependent on a given service, and some
may be only partially dependent. The former only communicate with one service,
whereas the latter might communicate with more than one service. Client subsys-
tems include user interaction subsystems, control subsystems, and I/O subsystems,
which are described in more detail in Sections 13.4.2, 13.4.4, and 13.4.6, respectively.
In some applications, a client subsystem combines more than one role. For example,
the ATM Client subsystem depicted in Figures 13.1, which is a client of Bank Service,
has both user interaction and control characteristics.

In the Emergency Monitoring System shown in Figure 13.4, there are two ser-
vice subsystems, Alarm Service and Monitoring Data Service. The Monitoring Sensor
Component, Remote System Proxy, and Operator Presentation components are clients
of Alarm Service and Monitoring Data Service.

13.4.2 User Interaction Subsystem

A user interaction subsystem provides the user interface and performs the role of a
client in a client/server system, providing user access to services. There may be more
than one user interaction subsystem – one for each type of user. A user interaction
subsystem is usually a composite object that is composed of several simpler user
interaction objects. It may also contain one or more entity objects for local storage
and/or caching, as well as control objects for overall sequencing of user input and
output.

With the proliferation of graphical workstations and personal computers, a
subsystem providing a user interaction role might run on a separate node and
interact with subsystems on other nodes. A user interaction subsystem can provide
rapid responses to simple requests supported completely by the node, and relatively
slower responses to requests requiring the cooperation of other nodes. This kind of
subsystem usually needs to interface to specific user I/O devices, such as graphical
displays and keyboards. The ATM Client subsystem in Figure 13.1 satisfies this
criterion.

A user interaction client subsystem could support a simple user interface, con-
sisting of a command line interface or a graphical user interface that contains mul-
tiple objects. A simple user interaction client subsystem would have a single thread
of control.

A more complex user interaction subsystem would typically involve multiple
windows and multiple threads of control. For example, a Windows client consists
of multiple windows that operate independently, with each window supported by a
concurrent object with its own separate thread of control. The concurrent objects
might access some shared data.

Figure 13.8 shows an example of a user interaction subsystem from a basic Emer-
gency Monitoring System. Basic Operator Presentation is a user interaction subsys-
tem, which has several instances. Each instance sends requests to the Alarm Ser-
vice and the Monitoring Data Service subsystems. The Basic Operator Presentation



«
sy

st
em

»

: 
B

as
ic

 E
m

er
g

en
cy

M
o

n
it

o
ri

n
g

S
y

st
em

: 
M

o
n

it
o

ri
n

g

O
p

er
at

o
r

A
la

rm
 I

n
fo

E
v
en

t 
In

fo

«
se

rv
ic

e»

: 
A

la
rm

S
er

v
ic

e

«
se

rv
ic

e»

: 
M

o
n

it
o

ri
n

g
D

at
a

S
er

v
ic

e

m
o

n
it

o
ri

n
g

R
eq

u
es

t

(i
n

re
q

u
es

t,

ou
t

m
o

n
it

o
ri

n
g

D
at

a)

E
v
en

t 
R

eq
u

es
t

A
la

rm
 R

eq
u

es
t

«
u

se
r 

in
te

ra
ct

io
n
»

: 
A

la
rm

W
in

d
o
w

«
u

se
r 

in
te

ra
ct

io
n

»

: 
E

v
en

tM
o

n
it

o
ri

n
g

 

W
in

d
o
w

al
ar

m
R

eq
u

es
t

(i
n

re
q

u
es

t,

ou
t

al
ar

m
D

at
a)

«
u

se
r 

in
te

ra
ct

io
n
»

«
co

m
p

o
n

en
t»

: 
B

as
ic

O
p

er
at

o
rP

re
se

n
ta

ti
o

n

Fi
gu

re
1

3
.8

.
Ex

am
pl

es
of

us
er

in
te

ra
ct

io
n

su
bs

ys
te

m
w

ith
m

ul
tip

le
w

in
do

w
s

222



Software Subsystem Architectural Design 223

subsystem has one internal user interaction object to display alarms in an Alarm
Window and a second internal user interaction object to display monitoring status in
an Event Monitoring Window.

13.4.3 Service Subsystem

A service subsystem provides a service for client subsystems. It responds to requests
from client subsystems, although it does not initiate any requests. A service subsys-
tem is any subsystem that provides a service, servicing client requests. Service sub-
systems are usually composite objects that are composed of two or more objects.
These include entity objects, coordinator objects that service client requests and
determine what object should be assigned to handle them, and business logic objects
that encapsulate application logic. Frequently, a service is associated with a data
repository or a set of related data repositories, or it might provide access to a
database. Alternatively, the service might be associated with an I/O device or a set
of related I/O devices, such as a file service or line printer service.

A service subsystem is often allocated its own node. A data service supports
remote access to a centralized database or file store. An I/O service processes
requests for a physical resource that resides at that node. Examples of data service
subsystems are the Alarm Service and the Monitoring Data Service subsystem shown
in Figures 13.8 and 13.9, which store current and historical alarm and sensor data,

«user interaction» 

«component»

: Operator 

Presentation

«service»

: Monitoring

DataService

«service»

: AlarmService

post (alarm)

post (event)

alarmRequest

(in request, out alarmData)

monitoringRequest

(in request, 

out monitoringData)post (event)

{Layer 3}

{Layer 2}

{Layer 1}

«input»

«component»

: MonitoringSensor 

Component

«proxy»

«component»

: RemoteSystem

Proxy

post (alarm)

Figure 13.9. Examples of service subsystems



224 Architectural Design

respectively. Monitoring Data Service receives new sensor data from the Monitoring
Sensor and Remote System Proxy subsystems. Sensor data are requested by other
subsystems, such as the Operator Presentation subsystem, which displays the data.

13.4.4 Control Subsystem

A control subsystem controls a given part of the system. The subsystem receives its
inputs from the external environment and generates outputs to the external environ-
ment, usually without any human intervention. A control subsystem is often state-
dependent, in which case it includes at least one state-dependent control object. In
some cases, some input data might be gathered by some other subsystem(s) and
used by this subsystem. Alternatively, this subsystem might provide some data for
use by other subsystems.

A control subsystem might receive some high-level commands from another sub-
system that gives it overall direction, after which it provides the lower-level control,
sending status information to other nodes, either on an ongoing basis or on demand.

An example of a control subsystem is ATM Client subsystem in Figure 13.1, which
combines the roles of control and user interaction. There are multiple instances of
the ATM Client, one for each ATM; however, each instance is independent of the
others and only communicates with the Banking Service subsystem. The control role
of the ATM Client is to sequence the interactions with the ATM customer, commu-
nicating with the Banking Service subsystem, and controlling the I/O devices that
dispense cash, print the receipt, and read and eject (or confiscate) the ATM card.
The control role is explicitly depicted in the ATM statechart, in which the statechart
actions trigger actions in the controlled objects.

Another example of a control subsystem is from the Automated Guided Vehicle
System and is given in Figure 13.10, in which the control is provided by an internal
state-dependent control object, Vehicle Control (not shown), which receives move

Vehicle AckMove Command

Vehicle Status

«user interaction» 

«subsystem»
: DisplaySystem

«coordinator»

«subsystem»
: SupervisorySystem

«control»

«subsystem»
: AutomatedGuidedVehicle

System 

Figure 13.10. Example of control and coordinator subsystems in Fac-
tory Automation System
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commands from a Supervisory System and controls the motor component (to start
and stop moving along the track) and the arm component (to load and unload parts),
as described in more detail in Chapter 24. Automated Guided Vehicle System sends
vehicle acknowledgements to the Supervisory System and vehicle status to the Display
System.

13.4.5 Coordinator Subsystem

Coordinator subsystems coordinate the execution of other subsystems, such as con-
trol subsystems or service subsystems. Both kinds of coordination are described
next.

In software architectures with multiple control subsystems, it is sometimes neces-
sary to have a coordinator subsystem that coordinates the control subsystems. If the
multiple control subsystems are completely independent of each other, as with the
ATM Clients in Figure 13.1, no coordination is required. In other situations, control
subsystems can coordinate activities among themselves. Such distributed coordina-
tion is usually possible if the coordination is relatively simple. If the coordination
activity is relatively complex, however, it is usually more advantageous to have a
hierarchical control system with a separate coordinator subsystem overseeing the
control subsystems. For example, the coordinator subsystem might decide what item
of work a control subsystem should do next. An example of a coordinator subsystem
assigning jobs to control subsystems is given for the Factory Automation System, in
which the Supervisory System (Figure 13.10) is a coordinator that assigns jobs to the
individual Automated Guided Vehicle Systems to move to a factory station, pick up a
part, and transport it to a different station.

Another kind of coordinator subsystem decides the execution sequence (also
known as workflow) of multiple service subsystems, which is described in more
detail in Chapter 16. An example of coordination in service-oriented architectures
is given for the Customer Coordinator in the online shopping system. The Customer
Coordinator receives shopping requests from the Customer Interaction component. It
then interacts with several service subsystems, including Catalog Service, Customer
Account Service, Credit Card Service, and Email Service, as shown in Figure 13.11.

13.4.6 Input/Output Subsystem

An input, output, or input/output subsystem is a subsystem that performs input
and/or output operations on behalf of other subsystems. It can be designed to be
relatively autonomous. In particular, “smart” devices are given greater local auton-
omy and consist of the hardware plus the software that interfaces to and controls the
device. An I/O subsystem typically consists of one or more device interface objects,
and it may also contain control objects to provide localized control and entity objects
to store local data.

An example of an input subsystem is the Monitoring Sensor Component in the
Emergency Monitoring System in Figure 13.9, which receives sensor inputs from
external sensors. It is a client of two services, posting alarms to Alarm Service and
events to Monitoring Data Service.
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Figure 13.11. Example of coordinator subsystem in service-oriented architectures

13.5 DECISIONS ABOUT MESSAGE COMMUNICATION
BETWEEN SUBSYSTEMS

In the transition from the analysis model to the design model, one of the most impor-
tant decisions relates to what type of message communication is needed between the
subsystems. A second related decision is to determine more precisely the name and
parameters of each message ( i.e., the interface specification). In the analysis model,
no decisions are made about the type of message communication. In addition, the
emphasis is on the information passed between objects, rather than on precise mes-
sage names and parameters. In design modeling, after the subsystem structure is
determined (as described in Section 13.4), a decision has to be made about the pre-
cise semantics of message communication, such as whether message communication
will be synchronous or asynchronous ( see Chapters 4 and 12).

Message communication between two subsystems can be unidirectional or bidi-
rectional. Figure 13.12a depicts an analysis model example of unidirectional mes-
sage communication between a producer and a consumer, as well as an example
of bidirectional message communication between a client and a service. All mes-
sages in the analysis model are depicted with one notation (the stick arrowhead)
because no decision has yet been made about the type of message communication.
This decision is made during design, so the designer now needs to decide what type
of message communication is required in both of these examples. (For an overview
of the UML notation for message communication, see Chapter 2, Section 2.8.1.)
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aProducer aConsumer

Message
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aClient aService

sendAsynchronousMessage (in

message)

sendSynchronousMessagewithReply (in message, out
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(1) Unidirectional message communication between producer and
consumer

(2) Bidirectional message communication between client and service

(b) Design Model - after decisions about concurrency and message communication 
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(3) Asynchronous message communication between concurrent producer and concurrent 
consumer

(4) Synchronous message communication between concurrent client and 
concurrent service

Response

aProducer aConsumer

aClient aService

Figure 13.12. Transition from analysis to design: decisions about concurrency
and message communication

Figure 13.12b shows the result of two design decisions. First, the four analysis
model objects in Figure 13.12a are designed as concurrent subsystems in Figure
13.12b. Second, the design decision is made about the type of message commu-
nication between the subsystems. Figure 13.12b depicts the decision to use asyn-
chronous message communication between the producer and consumer, and syn-
chronous message communication between the client and service. In addition, the
precise name and parameters of each message are determined. The asynchronous
message (in UML 2, the stick arrowhead means asynchronous communication)
has the name send Asynchronous Message and content called message. The syn-
chronous message (in UML 2, the black arrowhead means synchronous communi-
cation) has the name send Asynchronous Message With Reply, with the input content
called message and the service’s reply called response.

The aforementioned decisions concerning asynchronous and synchronous com-
munication are formalized into architectural communication patterns, as described
in Chapter 12. Thus, the Asynchronous Message Communication pattern is applied
to the unidirectional message between the producer and consumer and the Syn-
chronous Message Communication with Reply pattern is applied to the message
and response between the client and service.
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13.6 SUMMARY

This chapter described software architectural design. The overall design of the soft-
ware architecture was described, including the design decisions that need to be
made when in the transition from analysis modeling to design modeling. Subsys-
tems are categorized according to the roles they play in the software architecture.
Several examples of such architectures will be given in the case studies described in
Chapters 21 through 24.

In designing the overall software architecture, it helps to consider applying the
software architectural patterns, both architectural structure patterns and architec-
tural communication patterns. Architectural structure patterns are applied to design
of the overall structure of the software architecture, which addresses how the system
is structured into subsystems. Architectural communication patterns address the
ways in which subsystems communicate with each other. Each subsystem is designed
such that its interface is explicitly defined in terms of the operations it provides, as
well as the operations it uses. Communication between distributed subsystems can
be synchronous or asynchronous.

During software design modeling, design decisions are made relating to the
characteristics of the software architecture. Chapter 14 describes object-oriented
design using the concepts of information hiding, classes, and inheritance. Chap-
ter 15 describes the design of client/server software architectures, in which a typ-
ical design consists of one service and multiple clients. Chapter 16 describes the
design of service-oriented architectures, which typically consist of multiple dis-
tributed autonomous services that can be composed into distributed software appli-
cations. Chapter 17 describes the design of component-based software architectures,
including the design of component interfaces, with component ports that have pro-
vided and required interfaces, and connectors that join compatible ports. Chapter 18
describes the design of real-time software architectures, which are concurrent archi-
tectures usually having to deal with multiple streams of input events. Chapter 19
describes the design of software product line architectures, which are architectures
for families of products that need to capture both the commonality and variability
in the family.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is an integrated communication
diagram?
(a) A communication diagram formed

by combining objects
(b) A synthesis of all the communica-

tion diagrams developed to support
the use cases

(c) A communication diagram depict-
ing the objects that realize a use
case

(d) A communication diagram that
integrates the entity objects from
the static model

2. Which of the following objects should
be assigned to the same subsystem?
(a) Objects that are part of the same

composite object
(b) Client and server objects
(c) User interface and entity objects
(d) Objects that are associated with

each other
3. Objects that are in geographically dif-

ferent locations should be:
(a) In the same subsystem
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(b) In different subsystems
(c) In a composite subsystem
(d) In layered subsystems

4. If scope of control is used in subsystem
structuring, then:
(a) A user interface object is placed

in the same subsystem as an entity
object it updates.

(b) A state-dependent control object is
placed in the same subsystem as the
objects it controls.

(c) A state-dependent control object
is placed in a different subsystem
from the objects it controls.

(d) A user interface object is placed
in a different subsystem from an
entity object it updates.

5. How should an external object be
designed to interface to the system?
(a) It should interface to one subsys-

tem.
(b) It should interface to several sub-

systems.
(c) It should interface to every subsys-

tem.
(d) It should interface to none of the

subsystems.
6. A user interface subsystem is a type of:

(a) Control subsystem
(b) Service subsystem
(c) Client subsystem
(d) I/O subsystem

7. Which of the following objects are NOT
likely to be in the same subsystem?

(a) User interface object and entity
object

(b) State-dependent control object and
coordinator object

(c) Business logic object and entity
object

(d) I/O object and state-dependent
control object

8. Which of the following subsystems is
NOT likely to be a client subsystem?
(a) Control subsystem
(b) User interaction subsystem
(c) Service subsystem
(d) I/O subsystem

9. When is a coordinator subsystem re-
quired?
(a) If the subsystem needs to coordi-

nate several internal objects
(b) If the subsystem needs to coordi-

nate multiple I/O devices
(c) If the subsystem receives messages

from multiple client subsystems
(d) If the subsystem needs to coordi-

nate the execution of other subsys-
tems

10. When is a control subsystem required?
(a) If the subsystem needs to control

several internal objects
(b) If the subsystem needs to control

multiple I/O devices
(c) If the subsystem needs to control

multiple client subsystems
(d) If the subsystem needs to control

the execution of other subsystems
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Designing Object-Oriented
Software Architectures

Object-oriented concepts are fundamental to software design. Object-oriented
design refers to software systems that are designed using the concepts of informa-
tion hiding, classes, and inheritance. Objects are instantiated from classes and are
accessed through operations, which are also referred to as methods.

A class is designed using the information hiding concept to encapsulate differ-
ent kinds of information, such as details of a data structure or state machine. These
classes are originally determined during the object and class structuring phase of
analysis modeling, as described in Chapter 8. In particular, this chapter describes
the design of class interfaces and the operations provided by each class. This chapter
also describes the use of inheritance in software design. An introduction to informa-
tion hiding, classes, and inheritance was given in Chapter 4. As pointed out in Chap-
ter 4, the term operation refers to both the specification and the implementation of
a function performed by an object.

Section 14.1 gives an overview of the concepts, architectures, and patterns used
in designing sequential object-oriented architectures. Section 14.2 describes impor-
tant issues in the design of information hiding classes. Section 14.3 describes the
design of the class interface and operations, as well as how they are determined
from the dynamic model. The following sections describe the design of different
kinds of information hiding classes: Section 14.4 describes the design of data abstrac-
tion classes, which encapsulate data structures; Section 14.5 describes the design of
state machine classes, which encapsulate finite state machines; Section 14.6 describes
the design of graphical user interaction classes, which hide details of the user inter-
face; and Section 14.7 describes the design of business logic classes, which encap-
sulate business rules. Section 14.8 describes inheritance in object-oriented design,
including the design of class hierarchies, abstract classes, and subclasses. Section 14.9
describes the design of class interface specifications, which includes the specification
of class operations. Section 14.10 describes the detailed design of information hiding
classes. Section 14.11 describes polymorphism and dynamic binding. Section 14.12
describes the implementation of classes with an example of class implementation in
Java.

230
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14.1 CONCEPTS, ARCHITECTURES, AND PATTERNS

Information hiding is a fundamental design concept in which a class encapsulates
some information, such as a data structure, that is hidden from the rest of the system.
The designer of the class needs to decide what information should be hidden inside
the class and what information should be revealed in the class interface. Another
important concept is the separation of the interface from the implementation, such
that the interface forms a contract between the provider of the interface and the user
of the interface. See Chapter 4 for more details about information hiding concepts.

This chapter describes the design of sequential object-oriented software archi-
tectures, which are typically implemented as a sequential program with one thread
of control. Object-oriented concepts have also been applied and extended in the
design of distributed and component-based software architectures, concurrent and
real-time software architectures, service-oriented architectures, and software prod-
uct line architectures, as described in future chapters. For communication between
objects, the Call/Return pattern is the only pattern of communication in a sequential
architecture, as described in Chapter 12.

14.2 DESIGNING INFORMATION HIDING CLASSES

In design modeling, information hiding classes are categorized by stereotype.
Classes determined from the analysis model (Chapter 8) – that is, those determined
from the problem domain – are categorized as entity classes, boundary classes, con-
trol classes, and application logic classes. Because some of these classes are more
likely to be designed as active (concurrent) classes, as described in future chapters,
this chapter concentrates on those classes that are more likely to be designed as
passive classes.

■ Entity classes. Classes determined in the analysis model that encapsulate data.
On class diagrams, they are depicted with the stereotype «entity». Entity objects,
which are instances of entity classes, are usually long-lasting objects that store
information. For database-intensive applications, it is likely that, in some cases,
the encapsulated data will need to be stored in a database. In this situation,
the entity class will actually provide an interface to the database rather than
encapsulating the data. Thus, during class design, entity classes are further cat-
egorized as data abstraction classes, which encapsulate data structures, and
wrapper classes. A wrapper class hides the details of how to interface to an
existing system or legacy system, which might be to access data stored in a file
management system or a database management system. A database wrapper
class hides how data is accessed if it is stored in a database, usually a relational
database. A wrapper class can also hide the details of how to interface to a legacy
system. Wrapper classes are described in Chapter 15.

■ Boundary classes. Communicate with and interface to the external environment.
Boundary classes, such as device I/O classes and proxy classes, are often active
(concurrent) classes and are therefore described in Chapter 18. One passive
boundary class described in this section is the graphical user interaction class,
which interfaces to human users and presents information to them.
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■ Control classes. Provide the overall coordination for a collection of objects. Con-
trol classes are often active (concurrent) classes and are therefore also described
in Chapter 18. One passive control class described in this chapter is the state-
machine class, which encapsulates a finite state machine. Coordinator classes and
timer classes are assumed to be active classes (tasks) and so are not discussed in
this section.

■ Application logic classes. Encapsulate application-specific logic and algorithms.
Categorized as business logic classes, service classes, or algorithm classes. Busi-
ness logic classes are described in this chapter. Service classes are described in
Chapter 16 on service-oriented architectures. Algorithm classes are often active
and are described in Chapter 18.

14.3 DESIGNING CLASS INTERFACE AND OPERATIONS

As described in Chapter 13, the class interface consists of the operations provided
by each class. Each operation can have input parameters, output parameters, and
(if it is a function) a return value. The operations of a class can be determined
from either the static model or the dynamic model. Although the static model is
intended to show each class’s operations, it is usually easier to determine operations
from the dynamic model, particularly the communication diagrams or sequence dia-
grams. This is because the dynamic model shows the message interaction between
objects, and, hence, operations being invoked at the destination object receiving the
message. Message passing between passive objects consists of an operation in one
object invoking an operation provided by another object. Several examples of class
design are given in this chapter.

14.3.1 Designing Class Operations from the Interaction Model

This section describes how to use the object interaction model to help determine
each class’s operations. Either sequence diagrams or communication diagrams may
be used for this purpose. Thus, a class’s operations are determined by considering
how an object instantiated from the class interacts with other objects. In particular,
when two objects interact, one object provides an operation that is used by the other
object. This section describes the design of class operations, starting from interaction
diagrams, and then depicts the operation designs on a class diagram.

If two objects interact, it is necessary to know which of the two objects invokes an
operation on the other object. This information cannot usually be determined from
a class diagram in the static model because it only shows the static relationships
between classes. On the other hand, the dynamic interaction model does show the
direction in which one object sends a message to the other. If the objects are mapped
to a sequential program, the sender object invokes an operation on the receiver
object. In this situation, the message is mapped to an operation call. The name of
the message is mapped to the name of the operation and the parameters of the
message are mapped to the parameters of the operation.

An object’s operations can be determined directly from the interaction dia-
grams on which it appears. In the analysis model, the emphasis is on capturing the
information passed between objects and not on the precise syntax of the operation;
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therefore, the message shown on the communication diagram may be either a
noun, reflecting the data that are passed, or a verb, reflecting an operation to be
executed.

In the design model, the class’s operations are specified. If the message is shown
as a noun, it is now necessary to define the operation of the object that will receive
this information. If the message is shown as a verb, the verb represents the name
of the operation. It is important that the name given to the operation in the design
model reflect a service provided by the class.

It is also necessary to consider whether the operation has any input and/or out-
put parameters. In the analysis model, messages on the communication diagrams
are usually depicted as simple messages sent by sender objects to receiver objects. In
some cases, a simple message represents a response to a previous message. All mes-
sages that invoke operations are depicted as synchronous messages on the design
model communication diagrams. Simple messages depicted in the analysis model
that actually represent responses – that is, data returned by an operation – are
mapped to a return parameter of the operation.

In addition to passing a variable as a parameter of an operation, it is also possible
to pass an object as a parameter. Once an object has been created, it can be passed
as the parameter of an operation call to another object. An example of this is in
the Banking System, which has an ATM Transaction entity class. Once a transaction
has been created, such as the PIN Validation Transaction, it is a passed from the ATM
Client to the Banking Service as a parameter of the ATM Transaction.

14.3.2 Example of Designing Class Operations
from the Interaction Model

As an example of designing class operations from the object interaction model, con-
sider the ATM Card class (a data abstraction class as described in Section 14.4),
which encapsulates the information read off an ATM card. By examining the analy-
sis model communication diagram in Figure 14.1a, it can be seen that the Card Reader
Interface object sends three data items: Card Id, Start Date, and Expiration Date (pre-
viously read off the ATM Card) to be stored in the ATM Card entity object. The
Customer Interaction object later sends a Card Request message to ATM Card, which
returns these same three data items. During design, the precise class interface is
designed. Because these three data items are written to ATM Card, in the design
model (see Figure 14.1b), an operation of the ATM Card data abstraction object
called write is designed, which has three input parameters (cardId, startDate, and
expirationDate). The Card Request message sent by Customer Interaction is designed
as a read operation provided by ATM Card. The three data items returned by ATM
Card are designed to be output parameters (cardId, startDate, and expirationDate)
returned by the read operation. The operation calls are depicted, using the UML
synchronous message notation.

After the object’s operations have been determined from the communication
diagram, the operation is specified in the static model, together with the class that
provides the operation. Thus, proceeding in tandem with determining the class oper-
ations from the communication diagrams and depicting them on the class diagrams
is beneficial. This approach is used throughout this chapter.
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«entity»

: ATMCard

«I/O»
: CardReader

Interface

«user interaction»
: Customer

Interaction

W1: Card Id, Start Date,

(a)

(c)

(b)

Expiration Date

R1: Card Request
R1.1: Card Id, Start Date,
Expiration Date

«data 

abstraction»
: ATMCard

W1: write(cardId, startDate,
expirationDate)

R1: read(out cardId, out startDate,
out expirationDate)

«I/O»
: CardReader

Interface

«user interaction»
: Customer

Interaction

+ write (in cardId, in startDate, in expirationDate)
+ read (out cardId, out startDate, out expirationDate)

- atmCardId: String
- atmStartDate: Date
- atmExpirationDate: Date

«data abstraction»
ATMCard

Figure 14.1. Example of data abstraction class: (a) Analysis model: com-
munication diagram. (b) Design model: communication diagram. (c) Design
model: class diagram

Thus, Figure 14.1c depicts the ATM Card data abstraction class. The attributes are
encapsulated in the ATM Card class. They are depicted as private attributes; there-
fore, they are not visible outside the class. These attributes are stored by the write
operation and accessed by the read operation. The class interface is defined in terms
of the public read and write operations and the parameters of each operation.

14.3.3 Designing Class Operations from the Static Model

Determining a class’s operations from the class diagrams of the static model is pos-
sible, particularly for the entity classes. Standard operations are create, read, update,
delete. However, it is often possible to tailor operations to more specific needs of the
specific data abstraction class by defining the services provided by the class. This will
be illustrated by several examples of the design of class operations in the following
sections.

14.4 DATA ABSTRACTION CLASSES

Each entity class in the analysis model that encapsulates data is designed as a data
abstraction class. An entity class stores some data and provides operations to access
the data and to read or write to the data. The data abstraction class is used to encap-
sulate the data structure, thereby hiding the internal details of how the data struc-
ture is represented. The operations are designed as access procedures or functions
whose internals, which define how the data structure is manipulated, are also hidden.
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The information on the attributes encapsulated by the data abstraction class
should be available from the static model of the problem domain (discussed in
Chapter 7). The operations of the data abstraction class are determined by con-
sidering the needs of the client objects that use the data abstraction object in order
to indirectly access the data structure. This can be determined by analyzing how the
data abstraction object is accessed by other objects, as given in the communication
model. This is best illustrated by means of an example, which is presented in the
next section.

14.4.1 Example of Data Abstraction Class

As an example of a data abstraction class, consider the analysis model communi-
cation diagram shown in Figure 14.2a, which consists of two objects that need to
access the ATM Cash data abstraction object. The attributes of ATM Cash are given
in the static model. ATM Cash stores the amount of cash maintained by the ATM
cash dispenser, in twenty-, ten-, and five-dollar bills; therefore, it has internal vari-
ables to maintain the number of five-dollar bills, the number of ten-dollar bills, and
the number of twenty-dollar bills. Based on this, an ATM Cash class is designed that
encapsulates four variables – cashAvailable, fives, tens, and twenties – whose initial
values are all set to zero.

«entity»
: ATMCash

«user 
interaction»
: Operator
Interaction

«output»
: CashDispenser

Interface

A1: Cash Added

W1.1: Cash Response

e

W1: Cash

(a)

(c)

(b)

Withdrawal
Amount

«data 
abstraction»
: ATMCash

A1: addCash
(in fivesAdded,
in tensAdded,
in twentiesAdded)

W1: withdrawCash
(in cashAmount,
out fivesToDispense,
out tensToDispense,
out twentiesToDispense)

«user
interaction»
: Operator
Interaction

«output»
: CashDispenser

Interface

+ addCash (in fivesAdded, in tensAdded, in twentiesAdded)
+ withdrawCash (in cashAmount, out fivesToDispense, out
tensToDispense, out twentiesToDispense)

- cashAvailable: Integer = 0
- fives: Integer = 0
- tens: Integer = 0
- twenties: Integer = 0

«data abstraction»
ATMCash

Figure 14.2. Example of data abstraction class: (a) Anal-
ysis model: communication diagram. (b) Design model:
communication diagram. (c) Design model: class diagram.
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In addition to knowing what messages are sent to ATM Cash, it is also impor-
tant to know the sequence in which the messages are sent. Thus, in the analysis
model, when ATM Cash receives a Cash Withdrawal Amount message from the Cash
Dispenser Interface object, containing the amount in dollars to be dispensed, it needs
to compute how many bills of each denomination need to be dispensed to satisfy
the request. In the analysis model, ATM Cash sends this information in a response
message, Cash Response.

ATM Cash receives another kind of message from the Operator Interaction object.
The real-world ATM operator replenishes the ATM cash dispenser with new dollar
bills of each denomination. This information needs to be stored in ATM Cash. After
adding the cash to the dispenser, the operator confirms this to the Operator Interac-
tion object, which then sends a Cash Added message to the ATM Cash object, as shown
in Figure 14.2a.

From the previous discussion, the operations of the ATM Cash class can be spec-
ified, as depicted in the Design Model communication diagram shown in Figure
14.2b. Two operations are needed to addCash and withdrawCash. The operation with-
drawCash has one input parameter, cashAmount, and three output parameters to
identify the number of bills of each denomination: fivesToDispense, tensToDispense,
and twentiesToDispense. Correspondingly, the addCash operation has three input
parameters to indentify the number of bills of each denomination added: fivesAdded,
tensAdded, and twentiesAdded. The class interface (depicted in Figure 14.2c) consists
of the public operations, addCash and withdrawCash,and the parameters of the oper-
ations:

withdrawCash (in cashAmount, out fivesToDispense, out tensToDispense, out
twentiesToDispense)

addCash (in fivesAdded, in tensAdded, in twentiesAdded)

An invariant maintained by objects of this class is that the total cash available
for dispensing is equal to the sum of the value of the number of five dollar bills, the
number of ten dollar bills, and the number of twenty dollar bills:

cashAvailable = 5 ∗ fives + 10 ∗ tens + 20 ∗ twenties

Insufficient cash is an error case that needs to be detected. Such error situations
are usually handled as exceptions.

14.5 STATE-MACHINE CLASSES

A state-machine class encapsulates the information contained on a statechart.
During class design, the state-machine class determined in the analysis model is
designed. The statechart executed by the state-machine object is encapsulated in
a state transition table. Thus the state-machine class hides the contents of the state
transition table and maintains the current state of the object.

The state-machine class provides the operations that access the state transition
table and change the state of the object. In particular, one or more operations
are designed to process the incoming events that cause state changes. One way of
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+ processEvent (in event, out action)

+ currentState () : State

«state machine»

ATMStateMachine

Figure 14.3. Example of state-machine control class

designing the operations of a state-machine class is to have one operation for each
incoming event. This means that each state-machine class is designed explicitly for
a particular statechart. However, it is desirable to make a state-machine class more
reusable.

A reusable state-machine class hides the contents of the state transition table
as before; however, it provides two reusable operations that are not application-
specific, processEvent and currentState. The processEvent operation is called when
there is a new event to process, with the new event passed in as an input parameter.
The currentState operation is optional; it returns the ATM control state and is only
needed in applications in which the current state needs to be known by clients of the
state-machine class. The two operations are

processEvent (in event, out action)
currentState (): State

When called to process a new event, the processEvent operation looks up the
state transition table to determine the impact of this event, given the current state of
the state machine and any specified conditions that must hold. The table identifies
what the new state is (if any) and whether any actions are to be performed. The
processEvent operation then changes the state of the object and returns the actions
to be performed as an output parameter.

A state-machine class is a reusable class in that it can be used to encapsulate
any state transition table. The contents of the table are application-dependent and
are defined at the time the state-machine class is instantiated and/or initialized. The
initial value of the current state of the state machine (which is set to the ATM initial
state) is also defined at initialization time.

An example of a state-machine class from the Banking System is the ATM State
Machine state-machine class, shown in Figure 14.3. The class encapsulates the ATM
state transition table (which is mapped from the ATM statechart, as depicted in
Chapters 10 and 21) and provides the processEvent and currentState operations.

14.6 GRAPHICAL USER INTERACTION CLASSES

A graphical user interaction (GUI) class hides from other classes the details of the
interface to the user. In a given application, the user interface might be a simple
command line interface or a sophisticated graphical user interface. A command line
interface is typically handled by one user interaction class. However, the design of
a graphical user interface typically necessitates the design of several GUI classes.
Low-level GUI classes, such as windows, menus, buttons, and dialog boxes, are
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+ clear()
+ displayPINWindow (out PIN)

PINWindow

+ clear()
+ displayMenu (out selection)

«GUI»

MenuWindow

+ clear()
+ displayWithdrawalWindow 
(out accountNumber, out
amount)

«GUI»

WithdrawalWindow

+ clear()
+ displayQueryWindow (out
accountNumber)

«GUI»

QueryWindow

+ clear()
+ displayTransferWindow (out
fromAccountNumber, out
toAccountNumber, out
amount)

«GUI»

TransferWindow

+ clear()
+ displayPrompt (in
promptText)

«GUI»

PromptWindow

«GUI»

Figure 14.4. Example of graphical user interaction (GUI) classes

typically stored in a user interface component library. Higher-level composite user
interaction classes (passive or active classes, as described in Chapter 18) are often
created that contain these lower-level GUI classes.

In the analysis model, the emphasis should be on identifying the composite user
interaction classes and capturing the information that needs to be entered by the
user and the information that needs to be displayed to the user. Individual GUI
screens can also be designed as part of the analysis model. In the design model for a
GUI-based application, the GUI classes required for each of the individual screens
are designed.

Examples of user interaction classes from a banking application are classes used
in designing the GUI. These GUI classes are designed for each of the windows used
for interacting with the customer (Figure 14.4): the main Menu Window, the PIN
Window, the Withdrawal Window, the Transfer Window, the Query Window, and the
Prompt Window classes. A GUI class has operations for the window it displays and
through which it interacts with the customer. Each class has a clear operation to
make the screen blank (clear) and at least one operation related to the output func-
tion it provides (displayPINWindow for the PIN Window class, displayWithdrawalWin-
dow for the Withdrawal Window class, displayTransferWindow for the Transfer Window
class, and displayQueryWindow for the Query Window class), as well as displayMenu for
the main menu. For each display window, the display operation outputs a prompt to
the user, and then receives the user’s input, which it returns as the output parame-
ter(s) of the operation. For example, Figure 14.4 depicts the Menu Window GUI class,
which provides the operation displayMenu (out selection). When called, displayMenu
outputs a prompt with the menu selections for the customer: withdraw, query, or
transfer. The customer selects an option (e.g., withdraw), which displayMenu returns
as the selection output parameter. In the case of the Withdrawal Window class, the
displayWithdrawalWindow (out accountNumber, out amount) operation prompts the
user for the account number and withdrawal amount. After the user enters this data,
the account number and withdrawal amount are returned as the output parameters
of the operation.

There is also an operation for a smaller window used to display prompts and
information messages to the customer, where no customer input is expected. The
input parameter of this operation identifies the specific prompt or message that
should be displayed. Figure 14.4 depicts the Prompt Window class, which has an
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operation to clear the prompt window and an operation to displayPrompt (in
promptText).

14.7 BUSINESS LOGIC CLASSES

A business logic class defines the decision-making, business-specific application
logic for processing a client’s request. The goal is to encapsulate business rules that
could change independently of each other into separate business logic classes. Usu-
ally a business logic object accesses various entity objects during its execution.

An example of a business logic class is the Withdrawal Transaction Manager class
(shown in Figure 14.5), which encapsulates the rules for processing an ATM with-
drawal request. It has operations to initialize, withdraw, confirm, and abort. The oper-
ation initialize is called at initialization time; withdraw is called to withdraw funds
from a customer account; confirm is called to confirm that the withdrawal transac-
tion was successfully completed; and abort is called if the transaction was not suc-
cessfully completed (e.g., if the cash was not dispensed at the ATM). The operations
are determined by careful study of the Banking Service analysis model communica-
tion diagram, as shown in Figure 14.5a, and the message sequence descriptions that
identify the contents of the messages (see Chapter 19). From this, the design model
communication diagram shown in Figure 14.5b and the class diagram shown in Fig-
ure 14.5c are determined.

14.8 INHERITANCE IN DESIGN

Inheritance can be used when designing two similar, but not identical, classes – in
other words, classes that share many, but not all, characteristics. During architec-
tural design, the classes need to be designed with inheritance in mind so that code
sharing and adaptation can be exploited in detailed design and coding. Inheritance
can also be used when adapting a design for either maintenance or reuse purposes.
Used in this way, the biggest benefit is from using inheritance as an incremental
modification mechanism.

14.8.1 Class Hierarchies

Class hierarchies (also referred to as generalization/specialization hierarchies and
inheritance hierarchies) can be developed either top-down, bottom-up, or by some
combination of the two approaches. Using a top-down approach, a class is designed
that captures the overall characteristics of a set of classes. Specializing the class to
form variant subclasses separates the differences among the classes. Alternatively,
it can be recognized that an initial design contains classes that have some common
properties (operations and/or attributes) as well as some variant properties. In this
case, the common properties can be generalized into a superclass; these attributes
and/or operations are inherited by the variant subclasses.

It should be noted that when designing with inheritance, the internals of the
parent classes are visible to the subclasses. For this reason, design and reuse by
subclasses is referred to as white box reuse. Thus, inheritance breaks the encapsu-
lation (i.e., information hiding) concept. The implementation of the child class is



«c
oo

rd
in

at
or

»
: B

an
kT

ra
ns

ac
tio

n 
C

oo
rd

in
at

or

«b
us

in
es

s 
lo

gi
c»

: W
ith

dr
aw

al
T

ra
ns

ac
tio

n 
M

an
ag

er

W
ith

dr
aw

,
C

on
fir

m
,

A
bo

rt

W
ith

dr
aw

 R
es

po
ns

e

(a
)

(c
)

(b
)

«c
oo

rd
in

at
or

»
: B

an
kT

ra
ns

ac
tio

n 
C

oo
rd

in
at

or

«b
us

in
es

s 
lo

gi
c»

: W
ith

dr
aw

al
 

T
ra

ns
ac

tio
nM

an
ag

er

w
ith

dr
aw

 (
 in

 a
cc

ou
nt

N
um

be
r,

 in
 a

m
ou

nt
, o

u
t 

re
sp

on
se

),
co

nf
irm

 (
ac

co
un

tN
um

be
r,

 a
m

ou
nt

),
ab

or
t (

ac
co

un
tN

um
be

r,
 a

m
ou

nt
)

+
 in

iti
al

iz
e 

()
+

 w
ith

dr
aw

 (
in

 a
cc

ou
nt

N
um

be
r,

 in
am

ou
nt

, o
u

t 
re

sp
on

se
)

+
 c

on
fir

m
 (

ac
co

un
tN

um
be

r,
 a

m
ou

nt
)

+
 a

bo
rt

 (
ac

co
un

tN
um

be
r,

 a
m

ou
nt

)

«b
us

in
es

s 
lo

gi
c»

W
it

h
d

ra
w

al
T

ra
n

sa
ct

io
n

M
an

ag
e

r

Fi
gu

re
1

4
.5

.
Ex

am
pl

e
of

bu
si

ne
ss

lo
gi

c
cl

as
s:

(a
)A

na
ly

si
s

m
od

el
:c

om
m

un
ic

at
io

n
di

ag
ra

m
.(

b)
D

es
ig

n
m

od
el

:c
om

m
un

ic
at

io
n

di
ag

ra
m

.
(c

)
D

es
ig

n
m

od
el

:
cl

as
s

di
ag

ra
m

240



Designing Object-Oriented Software Architectures 241

bound up with the implementation of the parent class, which can lead to ripple-
effect problems with deep inheritance hierarchies. Thus, an error made to a class
high up in the inheritance hierarchy will be inherited by its descendent classes at all
lower levels in the hierarchy. For this reason, it is advisable to limit the depth of class
hierarchies.

14.8.2 Abstract Classes

An abstract class is a class with no instances. Because an abstract class has no
instances, it is used as a template for creating subclasses instead of as a template for
creating objects. Thus, it is used only as a superclass and defines a common inter-
face for its subclasses. An abstract operation is an operation that is declared in an
abstract class but not implemented. An abstract class must have at least one abstract
operation.

An abstract class defers all or some of its operation implementations to opera-
tions defined in subclasses. Given the interface provided by the abstract operation, a
subclass can define the implementation of the operation. Different subclasses of the
same abstract class can define different implementations of the same abstract opera-
tion. An abstract class can thus define an interface in the form of abstract operations.
The subclasses define the implementation of the abstract operations and may extend
the interface by adding other operations.

Some of the operations may be implemented in the abstract class, especially in
cases in which some or all of the subclasses need to use the same implementation.
Alternatively, the abstract class may define a default implementation of an opera-
tion. A subclass may choose to override an operation defined by a parent class by
providing a different implementation for the same operation. This approach can be
used when a particular subclass has to deal with a special case that requires a differ-
ent implementation of the operation.

14.8.3 Example of Abstract Classes and Subclasses

This example of abstract classes and subclasses is for a Banking System, which pro-
vides different kinds of accounts. Initially, checking accounts and saving accounts
are provided, although later other types of accounts, such as money market
accounts, could be added. The starting point for the design is the generalization/
specialization class diagram (Figure 14.6) developed during static modeling, as

accountNumber: Integer

balance: Real

Account

lastDepositAmount: Real

CheckingAccount

interest: Real

SavingsAccount

Figure 14.6. Example of abstract superclass and subclasses: analysis model
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described in Chapter 7, which depicts the Account superclass and the two subclasses,
Checking Account and Savings Account. The next step is to design the class opera-
tions.

An abstract class is designed called Account, which encapsulates the two general-
ized attributes that are needed by all accounts: accountNumber and balance. Because
it is necessary to be able to open and close accounts, read the account balance, and
credit and debit the account, the following generalized operations are specified for
the Account class:

■ open (accountNumber : Integer)
■ close ()
■ readBalance () : Real
■ credit (amount : Real)
■ debit (amount : Real)

Initially, the Banking System handles two types of accounts: checking accounts
and savings accounts. Account is a good candidate for using inheritance, with a gen-
eralized account superclass and specialized subclasses for checking account and sav-
ings account. At this stage, we need to ask these questions: What should be the
generalized operations and attributes of the account superclass? What are the spe-
cialized operations and attributes of the checking account and savings account sub-
classes? Should the account class be an abstract class; that is, which of the operations
should be abstract, if any?

Before we can answer these questions, we need to understand in what ways
checking and savings accounts are similar and in what ways they differ. First con-
sider the attributes. It is clear that both checking and saving accounts need account-
Number and balance attributes, so these attributes can be generalized and made
attributes of the Account class, to be inherited by both the Checking Account and
Savings Account subclasses. One requirement for checking accounts is that it is
desirable to know the last amount deposited in the account. Checking Account thus
needs a specialized attribute called lastDepositAmount. On the other hand, in this
bank, savings accounts accrue interest but checking accounts do not. We need to
know the accumulated interest on a savings account, so the attribute cumulativeIn-
terest is declared as an attribute of the Savings Account subclass. In addition, only
three debits are allowed per month from a savings account without a bank charge,
so the attribute debitCount is also declared as an attribute of the Savings Account
subclass.

Two additional static class attributes are declared for Savings Account; these are
attributes for which only one value exists for the whole class, which is accessible
to all objects of the class. The static attributes are maxFreeDebits (the maximum
number of free debits, which is initialized to 3) and bankCharge (the amount the
bank charges for every debit over the maximum number of free debits, which is
initialized to $2.50).

Both Checking Account and Savings Account will need the same operations as
the Account class – namely, open, close, readBalance, credit, and debit. The interface
of these operations is defined in the Account superclass, so the two subclasses will
inherit the same interface from Account. The open and close operations are done
in the same way on checking and savings accounts, so the implementation of these
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operations can also be defined in Account and then inherited. The credit and debit
operations are handled differently for checking and savings accounts. For this rea-
son, the credit and debit operations are designed as abstract operations with the
interface for the operations specified in the superclass but the implementations of
the operations deferred to the subclasses.

In the case of the Checking Account subclass, the implementation of the debit
operation needs to deduct amount from balance. The implementation of the credit
operation needs to increment balance by amount and then set lastDepositAmount
equal to amount. For Savings Account, the implementation of the credit operation
needs to increment balance by amount. The implementation of the debit operation
must, in addition to debiting the balance of the savings account, increment debit-
Count and deduct bankCharge for every debit in excess of maxFreeDebits. There is
also a need for an additional clearDebitCount operation, which reinitializes debit-
Count to zero at the end of each month.

At first glance, the read operations for checking and savings accounts appear
to be identical; however, a more careful examination reveals that this is not the
case. When we read a checking account, we wish to read the balance and the last
deposit amount. When we read a savings account, we wish to read the balance and
the accumulated interest. The solution is to have more than one read operation. The
generalized read operation is the readBalance operation, which is inherited by both
Checking Account and Savings Account. A specialized read operation, readCumula-
tiveInterest, is then added in the Savings Account subclass; and a specialized read
operation, readLastDepositAmount, is added to the Checking Account subclass.

The design of the Account generalization/specialization hierarchy is depicted in
Figure 14.7 and described next. This figure uses the UML convention of depicting
abstract class names in italics.

«entity»
CheckingAccount

- lastDepositAmount : Real = 0

+ credit (amount : Real)
+ debit (amount : Real)
+ readLastDepositAmount() : Real

«entity»
Account {abstract}

# accountNumber : Integer
# balance : Real = 0

+ open (accountNumber : Integer)
# credit (amount : Real) {abstract} 
# debit (amount : Real) {abstract}
+ readBalance () : Real
+ close ()

«entity»
SavingsAccount

- cumulativeInterest : Real = 0
- debitCount : Integer = 0
- maxFreeDebits : Integer = 3
- bankCharge : Real = 2.50

+ credit (amount : Real)
+ debit (amount : Real)
+ clearDebitCount()
+ addInterest (interestRate : Real)
+ readCumulativeInterest () : Real

Figure 14.7. Example of an abstract superclass and subclasses: design model
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14.8.4 Abstract Superclass and Subclass Design

Design of the Account Abstract Superclass
■ Attributes:

� Specifies the attributes accountNumber and balance. Both attributes are
declared as protected in the Account superclass; hence, they are visible to the
subclasses.

■ Operations:
� Defines the specification and implementation of the operations open, close,

and readBalance.
� Defines the specification of the abstract operations credit and debit.

Design of the Checking Account Subclass
■ Attributes:

� Inherits the attributes accountNumber and balance.
� Adds the attribute lastDepositAmount.

■ Operations:
� Inherits the specification and implementation of the operations open, close,

and readBalance.
� Inherits the specification of the abstract operation credit; defines the imple-

mentation to add amount to balance as well as to set lastDepositAmount equal
to amount.

� Inherits the specification of the abstract operation debit; defines the imple-
mentation to deduct amount from balance.

� Adds the operation readLastDepositAmount (): Real.

Design of the Savings Account Subclass
■ Attributes:

� Inherits the attributes accountNumber and balance.
� Adds the attributes cumulativeInterest and debitCount.
� Adds the static class attributes maxFreeDebits and bankCharge. Static attributes

are underlined in UML, as shown in Figure 13.9.
■ Operations:

� Inherits both the specification and implementation of the operations open,
close, and readBalance.

� Inherits the specification of the abstract operation debit; defines the imple-
mentation to deduct amount from balance, increment debitCount, and deduct
bankCharge from balance if maxFreeDebits is greater than debitCount.

� Inherits the specification of the abstract operation credit; defines the imple-
mentation to add amount to balance.

� Adds the following operations:
� addInterest (interestRate : Real), which adds interest on a daily basis
� readCumulativeInterest () : Real, which returns the cumulative interest of a

savings account.
� clearDebitCount (), which reinitializes debitCount to zero at the end of each

month.
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14.9 CLASS INTERFACE SPECIFICATIONS

A class interface specification defines the interface of the information hiding class,
including the specification of the operations provided by the class. It defines the
following:

■ Information hidden by information hiding class: for example, data structure(s)
encapsulated, in the case of a data abstraction class.

■ Class structuring criteria used to design this class
■ Assumptions made in specifying the class: for example, whether one operation

needs to be called before another.
■ Anticipated changes. This is to encourage consideration of design for change.
■ Superclass (if applicable)
■ Inherited operations (if applicable)
■ Operations provided by the class. For each operation, define

� Function performed
� Precondition (a condition that must be true when the operation is invoked)
� Postcondition (a condition that must be true at the completion of the opera-

tion)
� Invariant (a condition that must be true at all times: before, during, and after

execution of the operation)
� Input parameters
� Output parameters
� Operations used from other classes

14.9.1 Example of Class Interface Specification

An example of a class interface specification for an information hiding class is now
given for the Checking Account class depicted in Figure 14.9 and described in
Section 14.8.

Information Hiding Class: CheckingAccount
Information Hidden: Encapsulates checking account attributes and their current

values.
Class structuring criterion: Data abstraction class
Assumptions: Checking accounts do not have interest.
Anticipated changes: Checking accounts may be allowed to earn interest.
Superclass: Account
Inherited operations: open, credit, debit, readBalance, close
Operations provided:

1. credit (in amount : Real)

Function: Adds the amount credited to the current balance and stores
it as the amount last deposited.

Precondition: Account has been created.
Postcondition: Checking account has been credited.
Input parameters: amount – funds to be added to account
Operations used: None
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2. debit (in amount : Real)

Function: Deducts amount from balance.
Precondition: Account has been created.
Postcondition: Checking account has been debited.
Input parameters: amount – funds to be deducted from account
Output parameters: None
Operations used: None

3. readLastDepositAmount (): Real

Function: Returns the amount last deposited into the account.
Precondition: Account exists.
Invariant: Values of account attributes remain unchanged.
Postcondition: Amount last deposited into the account has been read.
Input parameter: None
Output parameters: Amount last deposited into the account
Operations used: None

14.10 DETAILED DESIGN OF INFORMATION HIDING CLASSES

During detailed design of the information hiding classes, the internal algorithmic
design of each operation is determined. The operation internals are documented
in pseudocode, which is also known as Structured English. The concept is that
the algorithmic design is programming language–independent but can be readily
mapped to the implementation language. The pseudocode uses structured program-
ming constructs for decision statements (such as If-Then-Else, loops, and case state-
ments) and English language for sequential statements. An example of an algorith-
mic design using pseudocode is given next for the Account class.

14.10.1 Detailed Design of the Account Abstract Superclass

■ Attributes:

accountNumber, balance

■ Operations:
� open (in accountNumber : Integer)

begin;

create new account;
assign accountNumber;
set balance to zero;

end.

� close ()

begin; close the account; end.

■ readBalance () : Real
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begin; return value of balance; end.

■ credit (in amount : Real)

Defer implementation to subclass.

■ debit (in amount : Real)

Defer implementation to subclass.

14.10.2 Detailed Design of the Checking Account Subclass

■ Attributes:
� Inherit: accountNumber, balance
� Declare: lastDepositAmount

■ Operations:
� Inherit specification and implementation: open, close, readBalance
� Inherit specification and define implementation:

credit(in amount : Real);

begin;

Add amount to balance;
Set lastDepositAmount equal to amount;

end.

� Inherit specification and define implementation of:

debit (in amount : Real);

begin;

Deduct amount from balance;

end.

� Add operation:

readLastDepositAmount () : Real

begin;

return value of lastDepositAmount;

end.

14.10.3 Detailed Design of the Savings Account Subclass

■ Attributes:
� Inherit: accountNumber, balance
� Declare: cumulativeInterest, debitCount
� Declare static class attributes: maxFreeDebits, bankCharge

■ Operations:
� Inherit specification and implementation: open, close, and readBalance.
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� Inherit specification and redefine implementation:

debit (in amount : Real);

begin

Deduct amount from balance;
Increment debitCount;
if maxFreeDebits > debitCount

then deduct bankCharge from balance;

end.

� Inherit specification and redefine implementation:

credit(in amount : Real);
begin; add amount to balance; end.

� Declared operations:

addInterest (interestRate : Real)

begin

Compute dailyInterest = balance * interestRate;
Add dailyInterest to cumulativeInterest and to balance;

end.

� readCumulativeInterest () : Real

begin; return value of cumulativeInterest; end.

� clearDebitCount (),

begin; Reset debitCount to zero; end.

14.11 POLYMORPHISM AND DYNAMIC BINDING

Polymorphism is Greek for “many forms.” In object-oriented design, polymorphism
is used to mean that different classes may have the same operation name. The spec-
ification of the operation is identical for each class; however, classes can implement
the operation differently. This allows objects with identical interfaces to be substi-
tuted for each other at run-time.

Dynamic binding is used in conjunction with polymorphism and is the run-time
association of a request to an object and one of its operations. With compile-time
binding, the typical form of binding used with a procedural language, association of
a request to an operation is done at compile time and cannot be changed at run-time.
Dynamic binding means that the association of a request to an object’s operation is
done at run-time and can thus change from one invocation to the next. Looking
at it from the requestor’s point of view, a variable may reference objects of differ-
ent classes at different times and invoke an operation of the same name on these
different objects.
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14.11.1 Example of Polymorphism and Dynamic Binding

Now consider the instantiation of objects from these classes, as well as an example
of the use of polymorphism and dynamic binding:

begin
private anAccount: Account;
Prompt customer for account type and withdrawal amount
if customer responds checking

then – assign customer’s checking account to anAccount
. . .
anAccount := customerCheckingAccount;
. . .

elseif customer responds savings
then – assign customer’s savings account to anAccount
. . .
anAccount := customerSavingsAccount;
. . .

endif;
. . .
– debit an Account, which is a checking or savings account
anAccount.debit (amount);
. . .

end;

In this example, if the account type is a checking account, anAccount is assigned
a Checking Account object. Executing anAccount.debit will invoke the debit oper-
ation of the Checking Account object. If, on the other hand, the account is a sav-
ings account, executing anAccount.debit will invoke the debit operation of a Savings
Account object. A different variant of the debit operation is executed for savings
accounts than for checking accounts, because the specialized variant operation for
savings accounts has an additional bank charge if the maximum number of free deb-
its has been exceeded.

It should be noted that an object of type Checking Account or type Savings
Account can be assigned to an object of type Account but not vice versa. This
is because every Checking Account subclass is a(n) Account superclass and every
Savings Account subclass is a(n) Account superclass. However, the reverse is not
possible, because not every account is a checking account – it might be a savings
account!

14.12 IMPLEMENTATION OF CLASSES IN JAVA

This section describes the implementation of classes with an example of how classes
are implemented in Java. The class operations are implemented as Java meth-
ods. Consider the ATMCash class depicted in Figure 14.2 and described in Section
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14.4.1. As shown below, after the declaration of the public class name comes the
declaration of the private variables, the amount of cash available, the number of
five-, ten-, and twenty-dollar bills, all of which are initialized to zero. This is fol-
lowed by the declaration of the public methods, addCash and withdrawCash.

The addCash method has three integer input parameters – the number five-, ten-,
and twenty-dollar bills to be added. In the implementation, the count of new bills of
each denomination is added to the bill counts already stored in the ATM. The value
of the cashAvailable variable is then computed by adding the total cash value of the
bills of each denomination.

In the withdrawCash method, the amount desired to withdraw is the first param-
eter cashAmount. The second parameter is the integer array in which are returned
the number of five-, ten-, and twenty-dollar bills to dispense.

public class ATMCash {
private int cashAvailable = 0;

int fives = 0;
int tens = 0;
int twenties = 0;

public void addCash(int fivesAdded, int tensAdded, int twentiesAdded) {
// increment the number of bills of each denomination
fives = fives + fivesAdded;
tens = tens + tensAdded;
twenties = twenties + twentiesAdded;
// set the total cash in the ATM
cashAvailable = 5 * fives + 10 * tens + 20 * twenties;

}
public int withdrawCash(int cashAmount, int [] bills) {}
// given the cash amount to withdraw, return the number of bills of
each denomination

14.13 SUMMARY

This chapter described the design of object-oriented software architectures using the
concepts of information hiding, classes, and inheritance. This chapter described the
design of information hiding classes, from which the passive objects are instantiated.
These classes were originally determined during the object and class structuring
step in analysis modeling, as described in Chapter 8. This chapter also described the
design of the operations of each class and the design of the class interfaces, as well
as the use of inheritance in software design. For more information on the design of
classes and inheritance and on the use of preconditions, postconditions, and invari-
ants in software construction, an excellent reference is Meyer (2000). Another infor-
mative reference that describes these topics from a UML perspective is Page-Jones
(2000).

The object-oriented design concepts described in this chapter result in the design
of a sequential object-oriented software architecture, which would be implemented
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as a sequential program with one thread of control. An example of the design of a
sequential object-oriented software architecture is the Banking Service subsystem
in the Banking System case study described in Chapter 21.

Object-oriented concepts are also applied and extended in the design of more
advanced software architectures, including client-server software architectures
(Chapter 15), service-oriented architectures (Chapter 16), component-based soft-
ware architectures (Chapter 17), concurrent and real-time software architectures
(Chapter 18), and software product line architectures (Chapter 19).

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is an information hiding object?
(a) An active object that encapsulates

data
(b) A passive object that encapsulates

data
(c) A class that encapsulates data
(d) A task that encapsulates data

2. What is a class interface?
(a) Specifies the internals of the opera-

tions of a class
(b) Specifies the externally visible

operations of a class
(c) Specifies the parameters of a class

operation.
(d) Specifies the signature of a class

operation
3. Which of the following is NOT an

object-oriented concept?
(a) Information hiding
(b) Class
(c) Subclass
(d) Subroutine

4. Which of the following is a class that
realizes an interface?
(a) The class calls the interface.
(b) The class implements the interface.
(c) The class is called by the interface.
(d) The class is independent of the

interface.
5. Which of the following is an entity

class?
(a) An information hiding class
(b) A subclass
(c) A control class
(d) A data abstraction class

6. What does a state machine class encap-
sulate?
(a) A state transition table

(b) A statechart
(c) The current state of the machine
(d) A state transition table and the cur-

rent state of the machine
7. Which of the following is unlikely to be

a graphical user interface class?
(a) A menu
(b) A window
(c) A button
(d) A pin

8. Which of the following is unlikely to be
encapsulated in a business logic class?
(a) A business rule
(b) Calls to operations of an entity

class
(c) Deny cash withdrawal if balance of

account is less than $10
(d) A dialog box

9. Which of the following is NOT allowed
through inheritance?
(a) Subclass inherits attributes from

superclass.
(b) Subclass inherits operations from

superclass.
(c) Subclass redefines attributes inher-

ited from superclass.
(d) Subclass redefines operations

inherited from superclass.
10. Which of the following is true for an

abstract class?
(a) It is used as a template for creating

objects.
(b) It is used as a template for creating

subclasses.
(c) It is used as a template for creating

classes.
(d) It is used as a template for creating

superclasses.
11. In object-oriented design, polymor-

phism means that:
(a) Different classes may have the same

name.
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(b) Different classes may have the same
interface name.

(c) Different classes may have the same
superclass name.

(d) Different classes may have the same
operation name.

12. With polymorphism and dynamic bind-
ing, an object can:

(a) Invoke operation of different names
on the same objects.

(b) Invoke operations of different
names on different objects.

(c) Invoke an operation of the same
name on the same object.

(d) Invoke an operation of the same
name on different objects.
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Designing Client/Server Software
Architectures

This chapter describes the design of software architectures for client/server systems.
In these systems, a client is a requester of services and a server is a provider of
services. Typical servers are file servers, database servers, and line printer servers.
Client/server architectures are based on client/service architectural patterns, the
simplest of which consists of one service and multiple clients. This pattern has sev-
eral variations, which will be described in this chapter. In addition, certain deci-
sions need to be considered about the design of client/server architectures, such as
whether the server should be designed as a sequential or concurrent subsystem, what
architectural structure patterns to use for the design of the client/server architecture,
and what architectural communication patterns to use for interaction between the
clients and the services.

This chapter differentiates between a server and a service. A server is a hard-
ware/software system that provides one or more services for multiple clients. A ser-
vice in a client/server system is an application software component that fulfills the
needs of multiple clients. Because services execute on servers, there is sometimes
confusion between the two terms, and the two terms are sometimes used inter-
changeably. Sometimes, a server will support just one service or perhaps more than
one; on the other hand, a large service might span more than one server node. In
client/server systems, the service executes on a fixed server node(s) and the client
has a fixed connection to the server.

Section 15.1 describes concepts, architectures, and patterns for client/server
architectures. Sections 15.2 and 15.3 describe client/service software architectural
patterns, and Section 15.4 provides an overview of middleware technology in
client/server systems. Section 15.5 describes the design of sequential service subsys-
tems and concurrent service subsystems. Because servers are frequently database-
intensive, Section 15.6 describes wrapper classes, which leads into the discussion
of the database wrapper classes. This is followed by a description of the logical
database design for client/server systems in Section 15.7.

253
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15.1 CONCEPTS, ARCHITECTURES, AND PATTERNS
FOR CLIENT/SERVER ARCHITECTURES

This chapter describes client/server software architectures in which there are mul-
tiple clients and one or more services, and addresses the characteristics of both
sequential and concurrent services. Chapter 16 describes service-oriented software
architectures, which builds on the concept of loosely coupled services that can be
discovered and linked to by clients with the assistance of service brokers. Chap-
ter 17 describes a more general component-based software architecture in which all
classes are designed as components.

The simplest client/server architecture has one service and many clients. More
complex client/server systems might have multiple services. Section 15.2 describes a
variety of client/service architectural structure patterns, including Multiple Client/
Single Service pattern and Multiple Client/Multiple Service pattern. Section 15.3
describes architectural communication patterns for client/server architectures,
including Synchronous Message Communication with Reply and Asynchronous
Message Communication with Callback.

15.2 CLIENT/SERVICE SOFTWARE ARCHITECTURAL
STRUCTURE PATTERNS

This section describes a variety of client/service software architectural structure
patterns ranging from multiple clients with a single service to multiple clients with
multiple services and multi-tier client/server architectures.

15.2.1 Multiple Client/Single Service Architectural Pattern

The Multiple Client/Single Service architectural pattern consists of several clients
that request a service and a service that fulfills client requests. The simplest and
most common client/server architecture has one service and many clients, and for
this reason the Multiple Client/Single Service architectural pattern is also known as
the Client/Server or Client/Service pattern. The Multiple Client/Single Service archi-
tectural pattern can be depicted on a deployment diagram, as in Figure 15.1, which
shows multiple clients connected to a service that executes on a server node via a
local area network.

An example of this pattern comes from the Banking System, as depicted on the
class diagram in Figure 15.2. This system contains multiple ATMs and one banking
service. For each ATM there is one ATM Client Subsystem, which handles customer
requests by reading the ATM card and prompting for transaction details at the key-
board/display. For an approved withdrawal request, the ATM dispenses cash, prints
a receipt, and ejects the ATM card. The Banking Service maintains a database of
customer accounts and customer ATM cards. It validates ATM transactions and
either approves or rejects customer requests, depending on the status of the cus-
tomer accounts.

The Multiple Client/Single Service architectural pattern can also be depicted on
a communication diagram, as shown in Figure 15.3 for the Banking System and
described in more detail in Chapter 19. The clients are ATM Client components,
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Service
{1 server node}

«local area network»

Client3
{1 client node}

Client2
{1 client node}

Client1
{1 client node}

Figure 15.1. Multiple Client/Single Service architectural pattern
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Figure 15.2. Example of Multiple Client/Single Service architectural pattern: Banking System
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1: sendATMTransaction  ( in transaction, out response)

«client»
: ATMClient

«service»
: BankingService

Figure 15.3. Example of Multiple Client/Single Service architectural pattern:
Banking System communication diagram

which send synchronous messages to the Banking Service. Each client is tightly cou-
pled with the service, because it sends a message and then waits for a response.
After receiving the message, the service processes the message, prepares a reply,
and sends the reply to the client. After receiving the response, the client resumes
execution.

15.2.2 Multiple Client/Multiple Service Architectural Pattern

More complex client/server systems might support multiple services. In the Multiple
Client/Multiple Service pattern, in addition to clients requesting a service, a client
might communicate with several services, and services might communicate with
each other. The Multiple Client/Multiple Service pattern is depicted on the deploy-
ment diagram in Figure 15.4, in which each service resides on a separate server node,
and both services can be invoked by the same client. With this pattern, a client could
communicate with each service sequentially or could communicate with multiple
services concurrently.

An example of the Multiple Client/Multiple Service architectural pattern is
a banking consortium consisting of multiple interconnected banks, such as the

Service1
{1 server node}

«local area network»

Client3
{1 client node}

Client2
{1 client node}

Client1
{1 client node}

Service2
{1 server node}

Figure 15.4. Multiple Client/Multiple Service architectural pattern
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Sunrise Bank 
Service

{1 server node}

«wide area network»

Sunrise
ATM Client3

{1 client node}

Sunset
ATM Client2

{1 client node}

Sunrise
ATM Client1

{1 client node}

Sunset Bank 
Service

{1 server node}

Sunset
ATM Client4

{1 client node}

Figure 15.5. Example of Multiple Client/Multiple Service architectural pattern:
Banking Federation System

Banking Federation System shown in Figure 15.5. Continuing with the ATM exam-
ple, besides several ATM clients accessing the same bank service, it is possible for
one ATM client to access multiple bank services. This feature allows customers to
access their own bank service from a different bank’s ATM client. In this example,
ATM customers from Sunrise bank can withdraw funds from Sunset bank in addi-
tion to their own Sunrise bank, and vice versa. Figure 15.5 depicts the two bank
services, Sunrise Bank Service and Sunset Bank Service, as well as two instances of
each of the clients, Sunrise ATM Client and Sunset ATM Client.

15.2.3 Multi-tier Client/Service Architectural Pattern

The Multi-tier Client/Service pattern has an intermediate tier (i.e., layer) that pro-
vides both a client and a service role. An intermediate tier is a client of its service
tier and also provides a service for its clients. It is possible to have more than one
intermediate tier. When viewed as a layered architecture, the client is considered
to be at a higher layer than the service because the client depends on and uses the
service.

ATMClient BankingService DatabaseService

Figure 15.6. Example of the Multi-tier Client/Service architectural pattern: a
three-tier Banking System
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An example of a three-tier client/service pattern for the banking system is given
in Figure 15.5. The Banking Service tier provides a service to the ATM Client tier but
is itself a client of the Database Service tier. Because the third tier is provided by a
COTS database management system, it is not part of the application software and
so is not explicitly depicted in the application-level communication diagram shown
in Figure 15.3. Furthermore, the Bank Service and Database Service might execute on
the same server node.

15.3 ARCHITECTURAL COMMUNICATION PATTERNS
FOR CLIENT/SERVER ARCHITECTURES

In client/server communication, there is usually a request from a client to a ser-
vice, and a response from the service. In some cases, there might not be a ser-
vice response, for example, when data are being updated instead of requested. The
nature of the communication between the client and service affects the communica-
tion patterns used. However, several software architectural communication patterns
can be used, as summarized below:

■ Synchronous Message Communication with Reply, as described in Section 15.3.1
■ Asynchronous Message Communication, as described in Chapter 12
■ Asynchronous Message Communication with Callback, as described in Section

15.3.2
■ Synchronous Communication without Reply, as described in Chapter 18
■ Broker patterns, as described in Chapter 16
■ Group communication patterns, as described in Chapter 17

15.3.1 Synchronous Message Communication with Reply Pattern

The most common form of software architectural communication pattern for
client/server communication is Synchronous Message Communication with Reply,
also known as the request/response pattern.

Synchronous Message Communication with Reply (Figure 15.7) can involve a
single client sending a message to a service and then waiting for a reply, in which
case no message queue develops between the client and the service. However, it is
more likely to involve multiple clients interacting with a single service, as described
next. In the typical client/server situation, each client sends a request message to a
service and waits for a response from it. In this pattern, because there are several
clients sending service requests, a message queue can build up at the service. The
client uses synchronous message communication and waits for a response from the
service.

«component»
aClient

1: sendSynchronousMessageWithReply (in request, 
out response)

aClient aService

Figure 15.7. Synchronous Message Communication with Reply pattern
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1: sendBankingTransaction  (in transaction, out response)

«user interaction»
: UserClient

«service»
: BankingService

«client»
: ATMClient

2: sendATMTransaction
(in transaction, out response)

Figure 15.8. Examples of the Synchronous Message Communication with
Reply pattern: Banking application

Whether the client uses synchronous or asynchronous message communica-
tion with the service depends on the application and does not affect the design of
the service. Indeed, some of a service’s clients may communicate with it via syn-
chronous message communication and others via asynchronous message communi-
cation. An example of Multiple Client/Single Service message communication using
synchronous message communication with reply is shown in Figure 15.8, in which
the Banking Service responds to service requests from multiple clients, both user
clients and ATM clients. Banking Service has a message queue of incoming syn-
chronous requests from the multiple clients. Each ATM Client component sends a
synchronous message to Banking Service and then waits for the response. The ser-
vice processes each incoming transaction message on a FIFO basis and then sends a
synchronous response message to the client.

If the client and server are to have a dialog that involves several messages and
responses, a connection can be established between them. Messages are then sent
and received over the connection.

15.3.2 Asynchronous Message Communication with Callback Pattern

The Asynchronous Message Communication with Callback pattern is used between
a client and a service when the client sends a request to the service and can continue
executing without needing to wait for the service response; however, it does need
the service response later (Figure 15.9). The callback is an asynchronous response
to a client request message sent previously. This pattern allows the client to exe-
cute asynchronously but still follows the client/service paradigm in which a client
sends only one message at a time to the service and receives a response from the
service.

1: sendAsynchronousMessage
( in message, in callbackHandle)

2: sendCallbackResponse ( in response)

aClient aService

Figure 15.9. Asynchronous Message Communication with Callback pattern
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Operating System

Service Application Software 

Middleware

Communication Software

Operating System, Database 

Management System

Figure 15.10. Example of middleware in client and server nodes

With the callback pattern, the client sends a remote reference or handle, which is
then used by the service to respond to the client. A variation on the callback pattern
is for the service to delegate the response to another component by forwarding to it
the callback handle.

15.4 MIDDLEWARE IN CLIENT/SERVER SYSTEMS

Middleware is a layer of software that sits above the heterogeneous operating sys-
tem to provide a uniform platform above which distributed applications, such as
client/server systems, can run (Bacon 1997). An early form of middleware was the
remote procedure call (RPC). Other examples of middleware technology (Szyper-
ski 2003) are Distributed Computing Environment (DCE), which uses RPC technol-
ogy; Java remote method invocation (RMI); Component Object Model (COM); Jini
Java 2 Platform Enterprise Edition (J2EE); and Common Object Request Broker
Architecture (CORBA) .

An example of middleware in a client/server configuration is shown in Fig-
ure 15.10. On the client node is the client application, which uses a graphical
user interface (GUI). There is a standard operating system, such as Windows, and
network communication software, such as TCP/IP (Transmission Control Proto-
col/Internet Protocol), which is the most widely used protocol on the Internet. A
middleware layer sits above the operating system and the network communica-
tion software. On the server node is the service application software, which makes
use of the middleware services that reside on top of the operating system (e.g.,
UNIX, Linux, or Windows), and the network communication software. A file or
database management system, usually relational, is used for long-term information
storage.

15.4.1 Platforms for Client/Server Systems

Communication in the client/server architecture is frequently synchronous commu-
nication, which is typically provided by middleware technology such as the remote
procedure call (RPC) or remote method invocation (RMI). With RPC, procedures
are located in the address space of the servers and are invoked by remote procedure
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calls from clients. The server receives a request from a client, invokes the appropri-
ate procedure, and returns a reply to the client.

15.4.2 Java Remote Method Invocation

The Java programming environment supports a middleware technology called Java
remote method invocation (RMI) to allow distributed Java objects to communicate
with each other. With RMI, instead of sending a message to a specific procedure
(as with RPC), the client object sends the message to a specific service object and
invokes the object’s method (procedure or function).

A client object on the client node makes a remote method invocation to a service
object on the server node. A remote method invocation is similar to a local method
invocation, so the fact that the service object is on a remote server node is hidden
from the client.

A client proxy provides the same interface to the client object as the service
object and hides all the details of the communication from the client. On the server
side, a service proxy hides all the details of the communication from the service
object. The service proxy invokes the service object’s method. If the service object
is not present, the service proxy instantiates the service object.

The local method called by the client is provided by the client proxy. The client
proxy takes the local request and any parameters, packs them into a message (this
process is often referred to as marshalling), and sends the message to the server
node. At the server node, the service proxy unpacks the message (referred to
as unmarshalling) and calls the appropriate service method (which represents the
remote method invocation), passing it any parameters. When the service method
finishes processing the request, it returns any results to the service proxy. The ser-
vice proxy packs the results into a response message, which it sends to the client
proxy. The client proxy extracts the results from the message and returns them as
output parameters to the client object.

Thus, the role of the client and service proxies is to make the remote method in-
vocation appear like a local method invocation to both the client and service, as
illustrated in Figure 15.11. Figure 15.11a depicts one object making a local method
invocation to another object. Figure 15.11b depicts a communication diagram show-
ing the message sequence for the distributed solution to the same problem, in which
an object on the client node makes a remote method invocation to a service object
on the server node. The local method invocation is to the client proxy (1), which
marshals the method name and parameters into the message, and then sends the
message over the network (2). The service proxy on the remote node receives the
message, unmarshals the message, and calls the remote method of the service object
(3). For the service response (4), the service proxy marshals the response and sends
it over the network (5). The client proxy unmarshals the response and passes it back
to the client object (6).

15.5 DESIGN OF SERVICE SUBSYSTEMS

A service subsystem provides a service for multiple clients. As pointed out in Sec-
tion 15.2.3, it is very common for services to need access to a database in which
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aClient

aService

2: serviceResponse
1: serviceRequest 

(in inputParam)

Client node

(a)

(b) Server node

2:  requestMessage 5: responseMesage

«network»

aClient
aService

aClientProxy aServiceProxy

1: serviceRequest 
(in inputParam)

4: serviceResponse3: serviceRequest 
(in inputParam)

6: serviceResponse

Figure 15.11. Remote method invocation (RMI)

persistent data are stored. Section 15.7 describes the design of relational databases,
and Section 15.6 describes the design of wrapper classes to provide an object-
oriented interface to the database.

A simple service does not initiate any requests for services but responds to
requests from clients. There are two kinds of service components: sequential and
concurrent.

15.5.1 Sequential Service Design

A sequential service processes client requests sequentially; that is, it completes one
request before it starts servicing the next. A sequential service is designed as one
concurrent object (thread of control) that responds to requests from clients to access
the service. For example, a simple sequential service responds to requests from
clients to update or read data from a passive data abstraction object. When the ser-
vice receives a message from a client, it invokes the appropriate operation provided
by the passive data abstraction object – for example, to credit or debit an account
object in a banking application.

The service typically has a message queue of incoming service requests. There is
one message type for each operation provided by the service. The service coordina-
tor unpacks the client’s message and, depending on the message type, invokes the
appropriate operation provided by a service object. The parameters of the message
are used as the parameters of the operation. The service object processes the client’s
request and returns the appropriate response to the service coordinator, which then
prepares a service response message and sends it to the client.
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15.5.2 Example of Sequential Service Design

An example of a sequential service is given for the Banking Service of the Banking
System. The integrated communication diagram for the Banking Service, consist-
ing of the integration of the use case–based communication diagrams (see Chap-
ter 13), shows all the objects contained in the service and their interactions. Because
all communication between objects is by means of operation invocation, the object
interfaces are designed to show the synchronous operation invocation as well as
the input and output parameters for each operation (using the guidelines given in
Chapter 14), as shown in Figure 15.12.

In Figure 15.12, the Banking Service sequentially services ATM transactions from
clients requesting PIN validation, withdrawals from accounts, transfers between
accounts, and account queries. Banking Service services the transaction, invokes the
service operation, returns a bankResponse message to the client, and then services
the next transaction. Each transaction is executed to completion before the next
transaction is started. The sequential service design should only be used if the server
node can adequately handle the transaction rate.

The service is designed using the layers of abstraction pattern. Because the ser-
vice data are stored in a relational database, at the lowest level of the architecture
are database wrapper objects (see Section 15.6), which encapsulate how the data
are accessed from the database. At the next layer are the business logic objects,
which encapsulate the business rules for processing client requests. At the highest
layer is the coordinator object, which uses the façade pattern to provide a uniform
interface for clients. The façade is provided by a coordinator object that presents a
common interface to clients. During execution, the coordinator (the object provid-
ing the façade) delegates each incoming client request to the appropriate business
logic object, which in turn interacts with the database wrapper objects that access
the database, where the account and debit card data are stored.

Thus, when an ATM Client sends a PIN validation request to the Banking Ser-
vice, the request is received by the Bank Transaction Coordinator, which delegates it
to the PIN Validation Transaction Manager. This business logic object will then access
both the Debit Card and Card Account database wrapper objects to carry out the val-
idation and return the validation response to the coordinator, which in turn sends a
synchronous response to the client request. This example is described in more detail
in the Client/Server Banking System design described in Chapter 21.

15.5.3 Concurrent Service Design

In a concurrent service design, the service functionality is shared among several con-
current objects. If the client demand for services is high enough that the sequential
service could potentially become a bottleneck in the system, an alternative approach
is for the services to be provided by a concurrent service consisting of several con-
current objects. This approach assumes that improved throughput can be obtained
by objects providing concurrent access to the data – for example, if the data are
stored on secondary storage.

An example of a concurrent service design is given in Figure 15.13. This shows an
alternative design for the Banking Service, in which the Bank Transaction Coordinator
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and each transaction manager is designed as a separate concurrent object. The Bank
Transaction Coordinator delegates individual transactions to the individual trans-
action managers to allow concurrent processing of transactions. More than one
instance of each transaction manager could also be executed. Access to the database
wrapper objects (not shown) also needs to be synchronized.

In this example, the clients communicate with the service by using the Asyn-
chronous Message Communication with Callback pattern (see Section 15.2.1). This
means that the clients do not wait and can do other things before receiving the ser-
vice response. In this case, the service response is handled as a callback. With the
callback approach, the client sends an operation handle with the original request.
The service uses the handle to remotely call the client operation (the callback)
when it finishes servicing the client request. In the example illustrated in Fig-
ure 15.13, Bank Transaction Coordinator passes the ATM Client’s callback handle to
the appropriate transaction manager. On completion, the transaction manager con-
current object remotely invokes the callback, which is depicted as the appropriate
service response message sent to the ATM client.

15.6 DESIGN OF WRAPPER CLASSES

Although many legacy applications cannot be easily integrated into a new applica-
tion, one approach is to develop wrapper classes. A wrapper class is a server class
that handles the communication and management of client requests to legacy appli-
cations (Tanenbaum and Van Steen 2006).

Most legacy applications were developed as stand-alone applications. In some
cases, the legacy code is modified so that the wrapper class can access it. However,
such modification is often impractical because there is often little or no documen-
tation and the original developers are no longer present. Consequently, wrapper
classes often interface to legacy code through crude mechanisms such as files, which
might be purely sequential or indexed sequential files. The wrapper class reads or
updates files maintained by the legacy application. If the legacy application uses a
database, the database could be accessed directly through the use of database wrap-
per classes that would hide the details of how to access the database. For example,
with a relational database, the database wrapper would use Structured Query Lan-
guage (SQL) statements to access the database.

Developers can integrate legacy code into a client/server application by placing
a wrapper around the legacy code and providing an interface to it. The wrapper
converts external requests from clients into calls to the legacy code. The wrapper
also converts outputs from the legacy code into responses to the client.

15.6.1 Design of Database Wrapper Classes

In the analysis model, an entity class is designed that encapsulates data. During
design, a decision has to be made whether the encapsulated data are to be man-
aged directly by the entity class or whether the data are actually to be stored in a
database. The former case is handled by data abstraction classes, which encapsulate
data structures, as described in Section 14.4. The latter case is handled by database
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wrapper classes, which hide how the data are accessed if stored in a database, and
they are described in this section. In client/server systems, data abstraction classes
are more likely to be designed on the client side, but they might also be needed
on the server side. However database wrapper classes are much more likely to be
designed on the server side, because that is where the database support is provided.

Most databases in use today are relational databases, so the database wrapper
class provides an object-oriented interface to the database. If a relational database
is being used, any entity class defined in the static model that is to be mapped to
a relational database needs to be determined and designed as a database wrapper
class. Sometimes, data retrieved from a database via a database wrapper class are
stored temporarily in a data abstraction class.

The attributes of the analysis model entity class are mapped to a database rela-
tional table (as described in Section 15.7), and the operations to access the attributes
are mapped to a database wrapper class.

The database wrapper class hides the details of how to access the data main-
tained in the relational table, so it hides all the SQL statements. A database wrapper
class usually hides the details of access to one relational table. However, a database
wrapper class might also hide a database view; that is, a SQL join of two or more
relations (Silberschatz, Korth, and Sudarshan 2010).

15.6.2 Example of Database Wrapper Class

An example of a database wrapper class is given in Figure 15.14. In the Banking
System example, all persistent data are stored in a relational database. Hence, each
entity class maintained at the bank server is mapped to both a database relational

cardID : String

PIN : String

startDate : Date

(a)

(b)

expirationDate : Date

status : Integer

limit : Real

total : Real

«entity»

DebitCard

+ create (cardID)

+ validate (in cardID, in PIN, out status)

+ updatePIN (cardID, PIN)

+ checkDailyLimit (cardID, amount)

+ updateDailyTotal (cardID, amount)

+ updateExpirationDate (cardID, expirationDate)

+ updateCardStatus (cardID, status)

+ updateDailyLimit (cardID, newLimit)

+ clearTotal (cardID)

+ read (in cardID, out PIN, out expirationDate, out status, out limit, out total)

+ delete (cardID)

«database wrapper»

DebitCard

Figure 15.14. Example of database wrapper class: (a) Analysis model. (b) Design model
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table and a database wrapper class. For example, consider the Debit Card entity class
as depicted in the analysis model in Figure 15.14a. As the debit card data will actu-
ally be stored in a relational database, from a database perspective, the entity class
is mapped to a relational table. The attributes of the entity class are mapped to the
attributes of the relation.

It is also necessary to design the Debit Card database wrapper class (Fig-
ure 15.14b), which has the following operations: create, validate, checkDailyLimit,
clearTotal, update, read, and delete. These operations encapsulate the SQL state-
ments for accessing the Debit Card relational table. Note that because the class
attributes can be updated separately, different update operations are provided for
each of the attributes that are updated, such as the daily limit and the card status. A
call to each of the operations results in execution of a SQL statement.

15.7 FROM STATIC MODELS TO RELATIONAL DATABASE DESIGN

This section describes how the data contained in the entity classes of a static model
are mapped to a database. Most databases are relational databases; the objective is
therefore to carry out the logical design of the relational database from the concep-
tual static model, particularly for those entity classes that need to be persistent. For
other information on relational database design, such as normalization, the reader
should refer to a standard database textbook such as that by Silberschatz, Korth,
and Sudarshan (2010).

It is useful to refer to Chapter 7 for the details of entity class modeling, which is
the starting point for relational database design. The relational database design in-
volves the design of the relational tables and primary keys, design of foreign keys to
represent associations, design of association tables to represent association classes,
design of whole/part (aggregation) relationships, and design of generalization/
specialization relationships.

15.7.1 Relational Database Concepts

A relational database consists of several relational tables, each with a unique name.
In the simplest case, an entity class is designed as a relational table with the entity
class name corresponding to the name of the table. Each attribute of the entity class
maps to a column of the table. Each object instance maps to a row of the table.

For example, the entity class Account (Figure 15.15a) is designed as a relational
table of the same name. The attributes, accountNumber and balance, become the
columns of the table. Each instance of an account becomes a row of the table, as
shown in Table 15.1, which depicts an Account table with three individual accounts.

Table 15.1. Account relational table

accountNumber balance

1234 398.07
5678 439.72
1287 851.65
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15.7.2 Identifying Primary Keys

Each relational table in a relational database must have a primary key. In its simplest
form, the primary key is an attribute that is used to uniquely locate a row in a table.
For example, the account number is the primary key of the Account table, because
it uniquely identifies an individual account. The relational table can be expressed
using the following notation:

Account (accountNumber, balance)

With this notation, Account is the name of the table, and accountNumber and
balance are the attributes. The primary key is underlined. Thus, in the Account
table, accountNumber is the primary key.

In some tables, it is necessary to have a primary key that is a combination of more
than one attribute. For example, if the Account table stores both checking accounts
and savings accounts (with overlapping account numbers), a second attribute (the
account type) would also be needed as part of the primary key, to uniquely locate an
individual account. In this example, the primary key is a concatenated key consisting
of the attributes accountNumber and accountType.

Account (accountNumber, accountType, balance)

15.7.3 Mapping Associations to Foreign Keys

Associations in relational databases can be represented in different ways. The sim-
plest way is used for one-to-one and one-to-many associations, in which the associa-
tion is represented by a foreign key. A foreign key is a primary key of one table that
is embedded in another table and is used to represent the mapping of an association
between classes into a table. A foreign key allows navigation between tables.

For example, to depict the relationship between Customer and Account (as
shown in the class diagram in Figure 15.15), which is Customer Owns Account,
the primary key of the Customer table customerId is added as a foreign key to the

customerName: String

customerId: String

customerAddress: String

Customer

1..*

1

Owns

accountNumber: Integer

balance: Real

Account

Figure 15.15. Identifying primary and secondary keys
(one-to-many association)
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Table 15.2. Navigation between relational tables
Navigation from customerId (foreign key) in Account table . . .

accountNumber Balance customerId

1234 398.07 24193
5678 439.72 26537
1287 851.65 21849

. . . to customerId (primary key) in Customer Table
customerName customerId customerAddress

Smith 21849 New York
Patel 26537 Chicago
Chang 24193 Washington

Account table. The Account table is then depicted as follows with the primary key
underlined and the foreign key in italics.

Account (accountNumber, balance, customerId)

In this way, it is possible to navigate from a row in the Account table ( e.g.,
where the customerId foreign key is 26537) to the row in the Customer table where
the same customerId is the primary key, in order to retrieve more data about the
customer, as shown in Table 15.2.

15.7.3.1 Mapping One-to-One and Zero-or-One Associations
to Foreign Keys

In a one-to-one association between two classes, there is a choice of foreign key.
The primary key of either relational table can be designed as a foreign key in the
other relational table. In the case of a zero-or-one association between two classes,
the foreign key must be in the “optional” relational table to avoid null references,
which are considered undesirable by database designers.

For example, consider the zero-or-one association in the relationship Customer
Owns Debit Card, which is depicted in the static model (Figure 15.16). In the rela-
tional database design, customerId is chosen as the primary key of the Customer
table and cardId is chosen as the primary key of the Debit Card table.

Customer (customerName, customerId, customerAddress)

Because it is possible for a customer not to have a debit card (optional rela-
tionship), making cardId a foreign key in the Customer table would result in some
customers having a null value for card id. On the other hand, because each debit
card is always owned by a customer (one-to-one relationship), making customerId
a foreign key in the Debit Card table is a better solution because it would never
have a null value. customerId is therefore chosen as foreign key in Debit Card, as it
represents the association between Customer and Debit Card tables:

Debit Card (cardId, PIN, expirationDate, status, customerId)
(underline = primary key, italic = foreign key)



Designing Client/Server Software Architectures 271

customerName: String

customerId: String

customerAddress: String

Customer

cardId: Integer

PIN: String

startDate: Date

expirationDate: Date

status: Integer

limit: Real

total: Real

DebitCard

0..1

1

Owns

Figure 15.16. Identifying primary and secondary keys
(zero-or-one association)

15.7.3.2 Mapping One-to-Many Associations to Foreign Keys
A one-to-many association is designed as a relational structure such that the for-
eign key is in the “many” relational table. Consider the one-to-many association
Customer Owns Account, as depicted on the class diagram in Figure 15.15. In the
relational database design, the primary key of the “one” relational table (Customer)
is chosen as the foreign key in the “many” relational table (Account).

In this example, the customerId is chosen as primary key of the Customer table:

Customer (customerName, customerId, customerAddress)

The accountNumber is chosen as the primary key of the Account table.
customerId is also chosen to be the foreign key in the Account table:

Account (accountNumber, balance, customerId)

In this example, because every account has one customer (one-to-one re-
lationship), there will always be one value for the foreign key customerId. If the
foreign key was accountNumber in the Customer table, the foreign key would need
to be a list, because each customer can have many accounts (one-to-many relation-
ship). An attribute array within a relational table is not allowed, because it would
necessitate a hierarchy, which would violate the flat (nonhierarchical) table rule for
relational databases.

15.7.4 Mapping Association Classes to Association Tables

An association class models an association between two or more classes and is typi-
cally used to represent a many-to-many association. An association class is mapped
to an association table. An association table represents the association between two
or more relations. The primary key of an association table is the concatenated key
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employeeName: String

employeeId: String

employeeAddress: String

level: String

Employee

projectId: String

projectName: String

startDate: Date

endDate: Date

customer: String

Project

**
Works on

hoursWorked: Real

Hours

Is staffed by

Figure 15.17. Mapping association class to association table

formed from the primary key of each relational table that participates in the associ-
ation.

For example, in the static model in Figure 15.17, the Hours association class rep-
resents the association between the Project and Employee classes. The Hours class
has one attribute, hoursWorked, which is an attribute of the association, because it
represents the time worked by an individual employee on a specific project.

Each entity class is mapped to a relational table, including the Hours associa-
tion class, which is designed as the association table called Hours. In the relational
database design, projectId is selected as the primary key of the Project table and
employeeId is selected as the primary key of the Employee table. These two pri-
mary keys form a concatenated primary key (projectId, employeeId) of the Hours
association table. Each of these two attributes is also a foreign key: projectId allows
navigation from the Hours table to the Project table, whereas employeeId allows
navigation from the Hours table to the Employee table. The tables are designed
as follows:

Project (projectId, projectName)
Employee (employeeId, employeeName, employeeAddress)
Hours (projectId, employeeId, hoursWorked)

15.7.5 Mapping Whole/Part Relationship to Relational Database

A whole/part relationship is either a composite or aggregate relationship. It con-
sists of one entity class representing the composite or aggregate class, and two or
more entity classes representing the part classes. When mapping a whole/part rela-
tionship to a relational database, the aggregate or composite (the whole) class is
designed as a relational table and each part class is also designed as a relational
table.

The primary key of the whole (composite or aggregate) relational table is made
one of the following in the part relational table:

■ The primary key of the part table, in the case of a one-to-one association
between the whole class and the part class

■ Part of a concatenated primary key of the part table, in the case of a one-to-many
association between the whole class and the part class

■ A foreign key in the part table, if a concatenated primary key is not needed to
uniquely identify a row in the part table, in the case of a one-to-many association
between the whole class and the part class
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collegeName: String

dean: String

College

location: String

phone#: String

administrator: String

Admin Office

deptName: String

deptLocation: String

deptPhone#: String

chairPerson: String

secretary: String

Department

name: String

location: String

phone#: String

head: String

funding: Real

foundingDate: Date

renewalDate: Date

Research Center

1 1..* 1..*

Figure 15.18. Mapping whole/part relationship to relational tables

As an example, consider the aggregate relationship shown in the static model
(Figure 15.18), which consists of a Department aggregate (whole) class and three
part classes – Department, Admin Office, and Research Center. In the relational
database design, the primary key of the aggregate table is collegeName. For the
Admin Office part table, which has a one-to-one association with College, the pri-
mary key is also collegeName. For the Department part table, which has a one-
to-many association with College, it is assumed that departmentName uniquely
identifies the department, so collegeName is not needed as an attribute of a con-
catenated primary key. Instead, collegeName is added to become a foreign key,
because it allows navigation from the part table Department to the aggregate table
College:

College (collegeName)
Admin Office (collegeName, location)
Department (departmentName, collegeName, location)

15.7.6 Mapping Generalization/Specialization Relationship
to Relational Database

There are three different ways of mapping a generalization/specialization hierarchy
to a relational database:

■ The superclass and subclasses are each mapped to a relational table.
■ Only the subclasses are mapped to relational tables.
■ Only the superclass is mapped to a relational table.

15.7.6.1 Mapping Superclass and Subclasses to Relational Tables
The superclass is mapped to a relational table. Each subclass is also mapped to a
relational table. There is a shared attribute for the primary key; in other words, the
same primary key is used in the superclass and the subclass tables.

The main advantage of this approach is that it is clean and extensible, because
each class is mapped to a table. However, the main disadvantage is that super-
class/subclass navigation could be slow. In particular, every time the superclass table
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accountNumber: Integer

balance: Real

Account

lastDepositAmount: Real

CheckingAccount

interest: Real

SavingsAccount

accountType

Figure 15.19. Mapping generalization/specialization relation-
ship to relational tables

is accessed, one of the subclass tables will also need to be accessed (to access the
subclass attributes), thereby doubling the number of accesses to the database.

In addition, the discriminator, which is an attribute that identifies which property
is abstracted in the generalization relationship, is made an explicit attribute of the
superclass table. Although the static model does not explicitly use the discriminator
as an attribute, it is needed in the superclass table to determine which subclass table
to navigate to.

Consider the example of an Account superclass with Checking Account and
Savings Account subclasses, as shown in the Static Model (Figure 15.19). In the
relational database design, the attributes of the Account superclass become attri-
butes of the Account table, with the primary key of the Account table chosen to
be accountNumber. In addition, discriminator attribute accountType becomes an
attribute of the Account table. The primary key attribute of the superclass table is
also added to each subclass table and becomes the primary key of these tables. Thus,
both the Checking Account and Savings Account tables have the same primary key
attribute, accountNumber, as the Account table. Note that this solution assumes
that the account number is unique.

Account (accountNumber, accountType, balance)
Checking Account (accountNumber, lastDepositAmount)
Savings Account (accountNumber, interest)

15.7.6.2 Mapping Subclasses Only to Relational Tables
In the second case, subclasses only are mapped to relational tables. With this
approach, each subclass is designed as a table. However, there is no superclass table.
Instead, the superclass attributes are replicated in each subclass table. This approach
works particularly well if the subclass has many attributes and the superclass has few
attributes. In addition, the application would need to know which subclass to search.

Consider an example of subclasses only mapped to the relational database using
the Account Generalization/Specialization Hierarchy, as shown in the Static Model
(Figure 15.19). In the relational database design, there are two subclass tables,
Checking Account and Savings Account, but no superclass table. The two attributes
of the superclass, accountNumber and balance, are replicated in each of the sub-
class tables and accountNumber is made the primary key of both subclass tables.
Thus Checking Account table consists of the two inherited Account attributes
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(accountNumber and balance) plus the attribute specific to checking accounts,
lastDepositAmount. The Savings Account table consists of the two inherited
Account attributes plus the attribute specific to savings accounts, interest.

Checking Account (accountNumber, balance, lastDepositAmount)
Savings Account (accountNumber, balance, interest)

The approach of only mapping subclasses to a relational database is most often
used to speed up database performance, since it avoids having to navigate between
superclass and subclass tables as described in the previous subsection.

15.7.6.3 Mapping Superclass Only to Relational Tables
In the third case, only the superclass is mapped to a relational table and not the
subclasses. In this approach, there is one superclass table but no subclass tables.
Instead, all the subclass attributes are brought up to the superclass table. The dis-
criminator (accountType) is added as an attribute of the superclass table. Each row
in the superclass table uses the attributes relevant to the one subclass it represents
with the other attribute values set to null. This approach can be used if the super-
class has many attributes, each subclass has only a few attributes, and there are a
small number (two or three) of subclasses.

Consider an example of the superclass only mapped to a relational table, using
the Account Generalization / Specialization Hierarchy as shown in the Static Model
(see Figure 15.19). In the relational database design, there is only one table, an
Account table, and no separate subclass tables. The attributes of the two subclasses
Checking Account and Savings Account are integrated with the attributes of the
Account table. There is one primary key, accountNumber, for the Account table.
The balance attribute is also an attribute of this table. In addition, a new attribute
representing the discriminator, accountType, is added to differentiate between
accounts. The attribute from Checking Account subclass, lastDepositAmount, is
integrated into the single Account table. The attribute from Savings Account sub-
class, interest, is also integrated into the single Account table.

Account (accountNumber, accountType, balance, lastDepositAmount, interest)

15.8 SUMMARY

This chapter described the design of client/server software architectures. These
architectures are based on client/service architectural patterns, the simplest of which
consists of one service and multiple clients. There are several variations of this
pattern, which have been described in this chapter. In addition, there are design
decisions to be considered about the design of the client/server architecture, such
as whether a service should be designed as a sequential or concurrent subsystem,
and what communication patterns to use between the client and service subsystems.
Client/server architectures have been incorporated into service-oriented architec-
tures, as described in Chapter 16, and component-based software architectures,
as described in Chapter 17. A case study of the design of a client/server software
architecture, namely, the Banking System, is presented in Chapter 21. This chapter
has also described how static models are mapped to database wrapper classes and
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relational databases. Mapping a static model to a relational database is described in
more detail in Rumbaugh et al. (1991, 2005) and Blaha and Premerlani (1998). More
information on relational database design is given in standard database textbooks
such as the text by Silberschatz, Korth, and Sudarshan (2010).

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a server?
(a) A hardware/software system that

serves customers
(b) A subsystem that makes requests

and waits for the responses
(c) A subsystem that responds to

requests from clients
(d) A hardware/software system that

provides one or more services for
multiple clients

2. The basic client/single service architec-
tural pattern states that:
(a) Multiple clients request services,

and multiple services fulfill client
requests.

(b) Multiple clients request services,
and a service fulfills client requests.

(c) A client requests services, and a
service fulfills client requests.

(d) A client requests services, and mul-
tiple services fulfill client requests.

3. In a Multi-tier Client/Service architec-
tural pattern, which of the following is
true about an intermediate tier?
(a) An intermediate tier is a client tier.
(b) An intermediate tier is a service

tier.
(c) An intermediate tier is both a con-

trol tier and a service tier.
(d) An intermediate tier is both a client

tier and a service tier.
4. How is Multiple Client/Multiple Service

architectural pattern different from a
Multiple Client/Single Service architec-
tural pattern?
(a) A service can receive requests from

multiple clients.
(b) A client can send requests to multi-

ple services.
(c) A client can send requests to other

clients.
(d) A service can respond to requests

from multiple clients.

5. How is a sequential service designed?
(a) One object that responds to re-

quests from clients
(b) Multiple objects that respond to

requests from clients
(c) One subsystem that responds to

requests from clients
(d) Multiple subsystems that respond

to requests from clients
6. How is a concurrent service designed?

(a) One object that responds to re-
quests from clients

(b) Multiple objects that respond to
requests from clients

(c) One subsystem that responds to
requests from clients

(d) Multiple subsystems that respond
to requests from clients

7. What is a database wrapper class?
(a) A class that encapsulates a data

structure
(b) A class that encapsulates a data-

base
(c) A class that encapsulates the details

of how to access data in a data-
base

(d) A class that encapsulates a rela-
tional table

8. When designing an entity class as a rela-
tional table, which of the following is
NOT true?
(a) The relational table has multiple

primary keys.
(b) The relational table has multiple

foreign keys.
(c) The relational table has a primary

key.
(d) The relational table has a concate-

nated primary key.
9. When mapping an aggregation hierar-

chy to a relational table, which of the
following is NOT true?
(a) The aggregate and part tables have

different primary keys.
(b) The aggregate and part tables have

the same primary key.
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(c) The primary key of the aggregate
table is a foreign key of the part
table.

(d) The primary key of the part table is
a foreign key of the aggregate table.

10. When mapping a generalization/spe-
cialization relationship to a relational
database, which of the following is NOT
possible?

(a) The superclass and each subclass
are designed as relational tables.

(b) Only subclasses are designed as
relational tables.

(c) The aggregate and part classes are
designed as relational tables.

(d) Only the superclass is designed as a
relational table.
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Designing Service-Oriented Architectures

A service-oriented architecture (SOA) is a distributed software architecture that
consists of multiple autonomous services. The services are distributed such that they
can execute on different nodes with different service providers. With a SOA, the
goal is to develop software applications that are composed of distributed services,
such that individual services can execute on different platforms and be implemented
in different languages. Standard protocols are provided to allow services to commu-
nicate with each other and to exchange information. In order to allow applications
to discover and communicate with services, each service has a service description,
The service description defines the name of the service, the location of the service,
and its data exchange requirements (Erl 2006, 2009).

A service provider supports services used by multiple clients. Usually, a client
will sign up for a service provided by a service provider, such as an Internet, email,
or Voice over Internet Protocol (VoIP) service. Unlike client/server architectures,
in which a client communicates with a specific service provided on a fixed server
configuration, this chapter describes SOAs, which build on the concept of loosely
coupled services that can be discovered and linked to by clients (also referred to as
service consumers or service requesters) with the assistance of service brokers.

This chapter describes how to design SOAs, how to design services, and how to
reuse services. This chapter briefly describes technology support for SOA. How-
ever, as the technology is changing rapidly and concepts are longer lasting, this
chapter concentrates on architectural concepts, methods, and patterns for design-
ing SOA. This chapter describes software architectural patterns to support SOA,
service design, and service reuse.

Section 16.1 describes concepts, architectures, and patterns for SOA. Section
16.2 describes software architectural broker patterns, and Section 16.3 describes
technology support for SOAs, which are implemented as web services. Section 16.4
describes software architectural transaction patterns. Section 16.5 describes negotia-
tion patterns. Section 16.6 describes service interface design, Section 16.7 describes
service coordination, and Section 16.8 describes designing SOAs. Finally, Section
16.9 describes service reuse.

278
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16.1 CONCEPTS, ARCHITECTURES, AND PATTERNS FOR
SERVICE-ORIENTED ARCHITECTURE

An important goal of SOA is to design services as autonomous reusable compo-
nents. Services are intended to be self-contained and loosely coupled, meaning
that dependencies between services are kept to a minimum. Instead of one service
depending on another, coordination services are provided in situations in which
multiple services need to be accessed and access to them needs to be sequenced.
Several software architectural patterns are described for service-oriented applica-
tions: Broker patterns, including Service Registration, Service Brokering, and Ser-
vice Discovery (Section 16.2); Transaction patterns, including Two-Phase Commit,
Compound, and Long-Living Transaction patterns (Section 16.4); and Negotiation
patterns (Section 16.5).

16.1.1 Design Principles for Services

Services need to be designed according to certain key principles (Erl 2006, 2009).
Many of these concepts are good software engineering and design principles, which
have been incorporated into SOA design.

■ Loose coupling. Services should be relatively independent of each other. Thus, a
service should hold a minimum amount of information about other services and
ideally should not depend on other services.

■ Service contract. A service provides a contract, which a SOA application can rely
on. The contract is typically defined in the service interface in the form of a set of
operations. Each operation usually has input and output parameters, but it can
also include quality of service parameters such as response time and availabil-
ity. This principle builds on the object-oriented design concept of separating the
interface and the implementation, and establishing the interface as the contract
between the provider of the service and the user of the service.

■ Autonomy. Each service is self-contained, such that it can operate independently
without the need of other services. This concept can be achieved by separating
services from coordination, so that services do not directly communicate with
each other.

■ Abstraction. As with object-oriented design, the details of a service are hidden,
A service only reveals its interface in terms of the operations it provides, and for
each operation, the inputs it needs, and the outputs it returns.

■ Reusability. A key goal of SOA is to design services that are reusable. The pre-
ceding design goals of services are intended to facilitate reuse.

■ Composability. Services are designed to be capable of being assembled into
larger composite services. In some cases, a composite service also needs to pro-
vide coordination of the individual services.

■ Statelessness. Where possible, services maintain little or no information about
specific client activities.

■ Discoverability. A service provides an external description to help allow it to be
discovered by a discovery mechanism.
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16.2 SOFTWARE ARCHITECTURAL BROKER PATTERNS

In a SOA, object brokers act as intermediaries between clients and services. The
broker frees clients from having to maintain information about where a particular
service is provided and how to obtain that service. Sophisticated brokers provide
white pages (naming services) and yellow pages (trader services) so that clients can
locate services more easily.

In the Broker pattern (which is also known as the Object Broker or Object
Request Broker pattern), the broker acts as an intermediary between the clients
and services. Services register with the broker. Clients locate services through the
broker. After the broker has brokered the connection between client and service,
communication between client and service can be direct or via the broker.

The broker provides both location transparency and platform transparency.
Location transparency means that if the service is moved to a different location,
clients are unaware of the move and only the broker needs to be notified. Platform
transparency means that each service can execute on a different hardware/software
platform and does not need to maintain information about the platforms that other
services execute on.

With brokered communication, instead of a client having to know the location
of a given service, the client queries the broker for services provided. First, the ser-
vice has to register with a broker as described by the Service Registration pattern
in Section 16.2.1. The pattern of communication, in which the client knows the ser-
vice required but not the location, is referred to as white page brokering, analogous
to the white pages of the telephone directory, and is described by the Broker For-
warding pattern in Section 16.2.2 and the Broker Handle pattern in Section 16.2.3.
Yellow page brokering, in which the specific service is not known and has to be
discovered, is described in Section 16.2.4.

16.2.1 Service Registration Pattern

In the Service Registration pattern, the service needs to register service information
with the broker, including the service name, a description of the service, and the
location at which the service is provided. Service registration is carried out the first
time the service joins the brokering exchange (analogous to the stock exchange). On
subsequent occasions, if the service relocates, it needs to re-register with the broker
by providing its new location. The Service Registration pattern is illustrated in Fig-
ure 16.1, which depicts the service registering (or re-registering after a relocation) a
service with the broker in the following message sequence:

R1: The service sends a register Service request to the broker.
R2: The broker registers the service in the service registry and sends a reg-
istration acknowledgment to the service.

16.2.2 Broker Forwarding Pattern

There is more than one way for a broker to handle a client request. With
the Broker Forwarding pattern, a client sends a message identifying the service
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R1: 
register 
Service

R2: 
registrationAck

aBroker

aService

Figure 16.1. Service registration with Broker

required – for example, to withdraw cash from a given bank. The broker receives
the client request, determines the location of the service (the ID of the node the
service resides on), and forwards the message to the service at the specific location.
The message arrives at the service, and the requested service is invoked. The bro-
ker receives the service response and forwards it back to the client. The pattern is
depicted in Figure 16.2 and consists of the following message sequence:

1. The client (service requester) sends a service request to the broker.
2. The broker looks up the location of the service and forwards the request to

the appropriate service.
3. The service executes the request and sends the reply to the broker.
4. The broker forwards the reply to the client.

The Broker Forwarding pattern provides an intermediary for every message sent
between a client and a service. This pattern potentially provides a high level of secu-
rity because each message can be vetted. However, this security comes at the cost
of performance compared with the basic Client/Service pattern (see Section 15.1)
because the message traffic is doubled, with four messages required for communi-
cation from the client to the service via the broker, compared to two messages for
direct communication between the client and the service.

1: serviceRequest 2: forwardedRequest

3:serviceReply
4: forwardedReply

aBroker

aServiceRequester aService

Figure 16.2. Broker Forwarding (white pages) pattern
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B1: serviceRequest

B4: serviceReply

B3: serviceRequestWithHandle

B2: serviceHandle

aBroker

aServiceRequester aService

Figure 16.3. Broker Handle (white pages) pattern

16.2.3 Broker Handle Pattern

The Broker Handle pattern keeps the benefit of location transparency while adding
the advantage of reducing message traffic. Instead of forwarding each client message
to the service, the broker returns a service handle to the client, which is then used
for direct communication between client and service. This pattern is particularly
useful when the client and service are likely to have a dialog and exchange several
messages between them. The pattern is depicted in Figure 16.3 and consists of the
following message sequence:

B1: The client (service requester) sends a service request to the broker.
B2: The broker looks up the location of the service and returns a service

handle to the client.
B3: The client uses the service handle to make the request to the appropri-

ate service.
B4: The service executes the request and sends the reply directly to the

client.

This approach is more efficient than Broker Forwarding if the client and service
are likely to have a dialog that results in the exchange of several messages. The
reason is that with Broker Handle, the interaction with the broker is only done once
at the start of the dialog instead of every time, as with Broker Forwarding. Most
commercial object brokers use a Broker Handle design. With this approach, it is the
responsibility of the client to discard the handle after the dialog is over. Using an
old handle is liable to fail because the service might have moved in the interval. If
the service does move, it needs to inform the broker so that the broker can update
the name table.

16.2.4 Service Discovery Pattern

The brokered patterns of communication described in the preceding sections, in
which the client knows the service required but not the location, are referred to as
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1: queryServices

6: serviceReply

5: serviceRequestWithHandle
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aService

2: serviceList

aBroker

aService 
Requester aService

Figure 16.4. Service Discovery (yellow pages) pattern

white page brokering. A different brokering pattern is yellow page brokering, anal-
ogous to the yellow pages of the telephone directory, in which the client knows the
type of service required but not the specific service. This pattern, which is shown
in Figure 16.4, is also known as the Service Discovery pattern because it allows
the client to discover new services. The client sends a query request to the bro-
ker, requesting all services of a given type. The broker responds with a list of all
services that match the client’s request. The client, possibly after consultation with
the user, selects a specific service. The broker returns the service handle, which the
client uses for communicating directly with the service. The pattern interactions, in
which a yellow pages request is followed by a white pages request, are described in
more detail as follows:

1. The client (service requester) sends a yellow pages request to the broker
requesting information about all services of a given type.

2. The broker looks up this information and returns a list of all services that
satisfy the query criteria.

3. The client selects one of the services and sends a white pages request to the
broker.

4. The broker looks up the location of the service and returns a service handle
to the client.

5. The client uses the service handle to request the appropriate service.
6. The service executes the request and sends the response directly to the client.

16.3 TECHNOLOGY SUPPORT FOR SERVICE-ORIENTED
ARCHITECTURE

Although SOAs are conceptually platform-independent, they are currently pro-
vided very successfully on Web service technology platforms. A web service is a
service that is accessed using standard Internet and XML-based protocols. This sec-
tion provides a brief description of technology support for SOA implemented as
Web services.
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16.3.1 Web Service Protocols

Application clients and services need to have a communication protocol for inter-
component communication. Extensible Markup Language (XML) is a technology
that allows different systems to interoperate through exchange of data and text. The
Simple Object Access Protocol (SOAP), which is a lightweight protocol developed
by the World Wide Web Consortium (W3C), builds on XML and HTTP to per-
mit exchange of information in a distributed environment. SOAP defines a unified
approach for sending XML-encoded data and consists of three parts: an envelope
that defines a framework for describing what is in a message and how to process it, a
set of encoding rules for expressing instances of application-defined data types, and
a convention for representing remote procedure calls and responses.

16.3.2 Web Services

Applications provide services for clients. One example of application services is
Web services, which use the World Wide Web for application-to-application com-
munication. From a software perspective, Web services are the application program-
ming interfaces (APIs) that provide a standard means of communication among dif-
ferent software applications on the World Wide Web. From a business application
perspective, a Web service is business functionality provided by a company in the
form of an explicit service over the Internet for other companies or programs to use.
A Web service is provided by a service provider and may be composed of other ser-
vices to form new services and applications. An example of a Web client invoking a
Web service is given in Figure 16.5.

Several component technologies exist to support the building of applications
by means of component technology and Web services, including.NET, J2EE, Web-
Sphere, and WebLogic.

16.3.3 Registration Services

A registration service is provided for services to make their services available to
clients. Services register their services with a registration service – a process referred

Web Service
Requester node

Web Service 
Provider node

1: webService
Request

2: webService 
Response

«network»

aWebService 
Requester

aWebService

Figure 16.5. Web client and Web service in a World Wide Web services
application
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Web Service 
Requester node

Web Service 
Provider node

3: webService 
Request

4: webService 
Response

«network»

aWebService 
Requester

aWebServices 
Broker

aWebService

Web Services Broker 
node

2: webServiceDiscovery 
Response

1: webServiceDiscovery 
Request

Figure 16.6. Example of a Web services broker

to as publishing or registering the service. Most brokers, such as CORBA and Web
service brokers, provide a registration service. For Web services, a service registry is
provided to allow services to be published and located via the World Wide Web. Ser-
vice providers register their services together with service descriptions in a service
registry. Clients searching for a service can look up the service registry to find a suit-
able service. The Web Services Description Language (WSDL) is an XML-based
language used to describe what a service does, where it resides, and how to invoke it.

16.3.4 Brokering and Discovery Services

In a distributed environment, an object broker is an intermediary in interactions
between clients and services. An example of brokering technology is a Web services
broker. Information about a Web service can be defined by the Universal Descrip-
tion, Discovery, and Integration (UDDI) framework for Web services integration.
A UDDI specification consists of several related documents and an XML schema
that defines a SOAP-based protocol for registering and discovering Web services.
A Web services broker can use the UDDI framework to provide a mechanism for
clients to dynamically find services on the Web.

Figure 16.6 shows an example of a Web client making a Web services discovery
request to a Web services broker, which uses the Broker Handle pattern (1). The
broker responds by identifying a particular Web service that matches the client’s
needs (2). The Web client then sends a request to the Web service for the discovered
service (3).

16.4 SOFTWARE ARCHITECTURAL TRANSACTION PATTERNS

A service often encapsulates data or provides access to data that need to be read or
updated by clients. Many services need to provide coordinated update operations.
This section describes how transactions and transaction patterns are used for this
purpose.

A transaction is a request from a client to a service that consists of two or more
operations that perform a single logical function and that must be completed in its
entirety or not at all. Transactions are generated at the client and sent to the service
for processing. For transactions that need to be atomic (i.e., indivisible), services
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are needed to begin the transaction, commit the transaction, or abort the transac-
tion. Transactions are typically used for updates to a distributed database that needs
to be atomic – for example, transferring funds from an account at one bank to an
account at a different bank. With this approach, updates to the distributed database
are coordinated such that they are either all performed (commit) or all rolled back
(abort).

A transaction must be completed in its entirety or not at all. Consider an inter-
bank electronic funds transfer. For a transaction to be considered complete, all its
operations must be performed successfully. If any operation of the transaction can-
not be performed, the transaction must be aborted. This means that individual oper-
ations that have been completed need to be undone, so the effect of an aborted
transaction is as if it never occurred.

Transactions have the following properties, sometimes referred to as ACID
properties:

■ Atomicity (A). A transaction is an indivisible unit of work. It is either entirely
completed (committed) or aborted (rolled back).

■ Consistency (C). After the transaction executes, the system must be in a consis-
tent state.

■ Isolation (I). A transaction’s behavior must not be affected by other transactions.
■ Durability (D). Changes are permanent after a transaction completes. These

changes must survive system failures. This is also referred to as persistence.

16.4.1 Two-Phase Commit Protocol Pattern

The Two-Phase Commit Protocol pattern addresses the problem of managing
atomic transactions in distributed systems. Consider two examples of banking trans-
actions:

1. Withdrawal transaction. A withdrawal transaction can be handled in one
operation. A semaphore is needed for synchronization to ensure that access
to the customer account record is mutually exclusive. The transaction proces-
sor locks the account record for this customer, performs the update, and then
unlocks the record.

2. Transfer transaction. Consider a transfer transaction between two accounts –
for example, from a savings account to a checking account – in which the
accounts are maintained at two separate banks (services). In this case, it is
necessary to debit the savings account and credit the checking account. There-
fore, the transfer transaction consists of two operations that must be atomic –
a debit operation and a credit operation – and the transfer transaction must
be either committed or aborted:
� Committed. Both credit and debit operations occur.
� Aborted. Neither the credit nor the debit operation occurs.

One way to achieve this result is to use the Two-Phase Commit Protocol, which
synchronizes updates on different nodes in distributed applications. The result of the
Two-Phase Commit Protocol is that either the transaction is committed (in which
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fromAccount toAccount

1a: prepareTo 
Commit

1a.1: lock
1a.2: debit

1b.1: lock
1b.2: credit

1a.3: readyTo 
Commit

1b: prepareTo 
Commit

1b.3: readyTo 
Commit

: CommitCoordinator

firstBankService secondBankService

Figure 16.7. Example of the first phase of the Two-Phase Commit Protocol:
bank transfer

case all updates succeed) or the transaction is aborted (in which case all updates
fail).

Coordination of the transaction is provided by the Commit Coordinator. There is
one participant service for each node. There are two participants in the bank trans-
fer transaction: first Bank Service, which maintains the account from which money
is being transferred (from Account), and second Bank Service, which maintains the
account to which money is being transferred (to Account). In the first phase of the
Two-Phase Commit Protocol (Figure 16.7), Commit Coordinator sends a prepare To
Commit message (1a, 1b) to each participant service. Each participant service locks
the record (1a.1, 1b.1), performs the debit or credit update (1a.2, 1b.2), and then
sends a ready To Commit message (1a.3, 1b.3) to Commit Coordinator. If a participant
service is unable to perform the update, it sends a refuse To Commit message. Commit
Coordinator waits to receive responses from all participants.

When all participant services have responded, Commit Coordinator proceeds to
the second phase of the Two-Phase Commit Protocol (Figure 16.8). If all partici-
pants have sent ready To Commit messages, Commit Coordinator sends the commit
message (2a, 2b) to each participant service. Each participant service makes the
update permanent (2a.1, 2b.1), unlocks the record (2a.2, 2b.2), and sends a commit
Completed message (2a.3, 2b.3), to Commit Coordinator. Commit Coordinator waits for
all commit Completed messages.

If a participant service responds to the prepare To Commit message with a ready
To Commit message, it is committed to completing the transaction. The participant
service must then complete the transaction even if a delay occurs (e.g., even if it
goes down after it has sent the ready To Commit message). If, on the other hand,
any participant service responds to the prepare To Commit message with a refuse To
Commit message, the Commit Coordinator sends an abort message to all participants.
The participants then roll back the update.
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fromAccount toAccount

2a: Commit

2a.1: confirmDebit
2a.2: unlock

2b.1: confirmCredit
2b.2: unlock

2a.3: Commit 
Completed

2b: Commit

2b.3: Commit 
Completed

: CommitCoordinator

firstBankService secondBankService

Figure 16.8. Example of the second phase of the Two-Phase Commit Pro-
tocol: bank transfer

16.4.2 Compound Transaction Pattern

The previous bank transfer transaction is an example of a flat transaction, which has
an “all-or-nothing” characteristic. A compound transaction, in contrast, might need
only a partial rollback. The Compound Transaction pattern can be used when the
client’s transaction requirement can be broken down into smaller flat atomic trans-
actions, in which each atomic transaction can be performed separately and rolled
back separately. For example, if a travel agent makes an airplane reservation, fol-
lowed by a hotel reservation and a rental car reservation, it is more flexible to treat
this reservation as consisting of three flat transactions. Treating the transaction as a
compound transaction allows part of a reservation to be changed or canceled with-
out the other parts of the reservation being affected.

The example of the travel agent, which is depicted in Figure 16.9, illustrates the
Compound Transaction pattern. The travel agent plans a trip for a client consisting
of separate reservations for an airline (1, 2), a hotel (3, 4), and a rental car (5, 6). If
the three parts of the trip are treated as separate flat transactions, each transaction
can be handled independently. Thus, the hotel reservation could be changed from
one hotel to another independently of the airline and car rental reservations. In
certain cases, of course – for example, if the trip is postponed or canceled – all three
reservations have to be changed.

16.4.3 Long-Living Transaction Pattern

A long-living transaction is a transaction that has a human in the loop and that could
take a long and possibly indefinite time to execute, because individual human behav-
ior is unpredictable. With transactions involving human interaction, it is undesirable
to keep records locked for a relatively long time while the human is considering vari-
ous options. For example, in an airline reservation using a flat transaction, the record
would be locked for the duration of the transaction. With human involvement in the
transaction, the record could be locked for several minutes. In this case, it is better
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1: flightReservation

2: flightConfirmation

3: hotelReservation

4: hotelConfirmation

5: carReservation

6: carConfirmation

worldWide
TravelAgent

airline
ReservationService

hotel
ReservationService

vehicle
RentalService

Figure 16.9. Example of the Compound Transaction pattern

to use the Long-Living Transaction pattern, which splits a long-living transaction
into two or more separate transactions (usually two) so that human decision making
takes place between the successive pairs (such as first and second) of transactions.

For the airline reservation example, first a query transaction displays the avail-
able seats. The query transaction is followed by a reserve transaction. With this
approach, it is necessary to recheck seat availability before the reservation is made.
A seat available at query time might no longer be available at reservation time
because several agents might be querying the same flight at the same time. If only
one seat is available, the first agent will get the seat but not the others. Note that this
problem still applies even if the airline allows seat overbooking, although the upper
limit would then be the number of actual seats on the aircraft plus the number of
seats allowed to be overbooked on the flight.

This approach is illustrated in the travel agent example depicted in Figure 16.10.
The travel agent first queries the airline reservation services (1a, 1b, 1c) to deter-
mine available flights. The three reservation services all respond positively with
seat availability (1a.1, 1b.1, 1c.1). After considering the options and consulting the
client, the travel agent makes a reserve request (2) to the Unified Airlines reserva-
tion service. Because no lock was placed on the record, however, the reservation is
no longer available, so the reservation service responds with a reject response (3).
The travel agent then reserves a flight with the second choice, Britannic Airways (4).
This time the reservation service responds with a confirmation that the reservation
was accepted (5).

16.5 NEGOTIATION PATTERN

In some SOAs, the coordination between services involves negotiations between
software agents so that they can cooperatively make decisions. In the Negotiation
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2: reserve

1a.1:
response

4:
reserve

5: confirm

1c: query
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worldWide

TravelAgent

unifiedAirlines
ReservationService

brittanicAirways

ReservationService

virtualAtlantic
ReservationService

Figure 16.10. Example of the Long-Living Transaction pattern

pattern (also known as the Agent-Based Negotiation or Multi-Agent Negotiation
pattern), a client agent acts on behalf of the user and makes a proposal to a
service agent. The service agent attempts to satisfy the client’s proposal, which
might involve communication with other services. Having determined the available
options, the service agent then offers the client agent one or more options that come
closest to matching the original client agent proposal. The client agent may then
request one of the options, propose further options, or reject the offer. If the service
agent can satisfy the client agent request, it accepts the request; otherwise, it rejects
the request.

To allow software agents to negotiate with each other, the following communi-
cation services are provided (Pitt et al. 1996):

The client agent, who acts on behalf of the client, may do any of the following:

■ Propose a service. The client agent proposes a service to the service agent. This
proposed service is negotiable, meaning that the client agent is willing to consider
counteroffers.

■ Request a service. The client agent requests a service from the service agent. This
requested service is nonnegotiable, meaning that the client agent is not willing to
consider counteroffers.

■ Reject a service offer. The client agent rejects an offer made by the service agent.

The service agent, who acts on behalf of the service, may do any of the following:

■ Offer a service. In response to a client proposal, a service agent offers a counter-
proposal.

■ Reject a client request/proposal. The service agent rejects the client agent’s pro-
posed or requested service.

■ Accept a client request/proposal. The service agent accepts the client agent’s
proposed or requested service.



Designing Service-Oriented Architectures 291
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Figure 16.11. Example of Negotiation pattern

16.5.1 Example of Negotiation Pattern

Consider the following example involving negotiation between a client agent and a
software travel agent that follows a scenario similar to that between a human client
and a human travel agent. This example used the Negotiation pattern and the Long-
Living Transaction pattern. In this travel agency example, the client agent discovers
an appropriate service travel agent – for our purposes, the world Wide Travel Agent –
via the object broker’s yellow pages (Figure 16.4). The client agent then initiates the
negotiation on behalf of a user who wishes to take an airplane trip from Washington,
D.C., to London, departing on October 14 and returning on October 21, for a price
of less than $700. The negotiation process is depicted on a communication diagram
(see Figure 16.11) and described next:

1. The Client Agent uses the propose service to propose the trip to London with
the stipulated constraints.

2. The world Wide Travel Agent determines that three airlines, Britannic Airways
(BA), Unified Airlines (UA), and Virtual Atlantic (VA), service the Wash-
ington D.C.-to-London route. It sends a flight Query to the three respective
services – UA Service (2a), BA Service (2b), and VA Service (2c) – for flights on
those dates. It receives responses from all three services with the times and
prices of the flights.

3. The world Wide Travel Agent sends an offer message to the Client Agent con-
sisting of the available flights at the proposed price. If only more expensive
flights are available, the world Wide Travel Agent offers the cheapest it can
find. In this case, it determines that the two best offers for the proposed dates
are from UA for $750 and BA for $775. There is no flight below $700, so it



292 Architectural Design

offers the available flight that come closest to the proposed price. It therefore
sends the offer message for the UA flight at $750 to the Client Agent.

4. The Client Agent displays the choice to the user. The Client Agent may then
request a service (i.e., request one of the choices offered by the service agent).
Alternatively, the Client Agent may reject the service offer if the user does not
like any of the options and propose a service on a different date. In this case,
the user selects the UA offer and the Client Agent sends the request UA flight
message to the world Wide Travel Agent.

5. The world Wide Travel Agent makes a reserve request to the UA Service.
6. Assuming the flight is no longer available, the UA Service rejects the reser-

vation.
7. Since the flight is no longer available, the world Wide Travel Agent responds to

the Client Agent’s request with a reject message.
8. The Client Agent makes a request for the next best offer, the BA flight at $775,

and sends the request BA flight message to the world Wide Travel Agent.
9. The world Wide Travel Agent makes a reserve request to the BA Service.

10. Assuming the flight is still available, the BA Service confirms the reser-
vation.

11. The world Wide Travel Agent responds to the Client Agent’s request with an
accept message.

In this example, note that the world Wide Travel Agent plays a service role when
communicating with the Client Agent and a client role when communicating with the
airline services.

16.6 SERVICE INTERFACE DESIGN IN SERVICE-ORIENTED
ARCHITECTURE

New services are designed by applying the COMET method, initially by using the
object structuring criteria described in Chapter 8. During dynamic interaction mod-
eling, the interaction between client objects and service objects is determined. The
approach taken for designing service operations is similar to that used in class inter-
face design, as described in Chapter 14. The messages arriving at a service form the
basis for designing the service operations. The messages are analyzed to determine
the name of the operation, as well as to determine the input and output parameters.

As an example, consider the online shopping system SOA case study described
in Chapter 22. Figure 16.12 shows an example in which customers purchase items
from suppliers. In the figure, which depicts a communication diagram for the real-
ization of the Process Delivery Order use case, two services are involved, a Delivery
Order Service and an Inventory Service.

The operations of each service are determined by analyzing the message requests
made to each service. In the object interactions depicted in Figure 16.12 for the
Process Delivery Order communication diagram, there is message sent (D5) to the
Inventory Service to check the inventory to determine that the items in the deliv-
ery order are available. This request is designed as a checkInventory operation with
the itemId as an input parameter and inventoryStatus as output parameter, corre-
sponding to message D6. A second request to the Inventory Service is made to
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aSupplier

«service»

: Inventory 

Service

«coordinator»

aSupplierCoordinator

«user interaction»

: SupplierInteraction
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: DeliveryOrder 
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D1, D9: Supplier Input
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D5: Check Inventory

D11: Reserve Items

D6: Item Info

D12: Items Reserved

D7: Order Info,

D13: Inventory Status

D8: Order Output,

D14: Inventory Output

Figure 16.12. Communication diagram for the Process Delivery Order use case

reserve inventory (message D11). This request is designed as a reserveInventory
operation with itemId and amount as input parameters. This reservation operation
is equivalent to prepare to commit inventory, which is the first phase of a two-phase
commit protocol. The partial communication diagram in Figure 16.13 depicts some
of the objects for the subsequent Confirm Shipment and Bill Customer use case.
There is a message to commit inventory (message S9), which leads to updating
the inventory to confirm that the items were removed, packed, and shipped. This
request is designed as a commitInventory operation with itemId and amount as input
parameters, and it corresponds to the second phase of the two-phase commit pro-
tocol. Inventory Service also needs additional operations to abort the inventory (if
the order is cancelled and inventory released prior to shipment) and update the
inventory (to replenish inventory). Figure 16.14 depicts the interface for Inventory
Service (called IInventoryService), which consists of the checkInventory, reserveIn-
ventory, and commitInventory operations, in addition to the update and abortInven-
tory operations. Inventory Service, as depicted in Figure 16.14, has a provided port

S2: Ready For Shipment

aSupplier

«coordinator»

aSupplierCoordinator

«user interaction»

: SupplierInteraction

S9: Commit

Inventory

S1: Supplier

Input

«service»

: Inventory 

Service

S11: Confirmation

Response

S12: Supplier

Output

S10: Commit

Completed

Figure 16.13. Partial communication diagram for the Confirm Shipment and Bill
Customer use case
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«service»

Inventory

Service

IInventoryService

PInventoryService

«interface»

IInventoryService

checkInventory (in itemId, in amount, out inventoryStatus)

update (in itemId, in amount)

reserveInventory (in itemId, in amount, out inventoryStatus)

commitInventory (in itemId, in amount, out inventoryStatus)

abortInventory (in itemId, in amount, out inventoryStatus)

Figure 16.14. Service interface for Inventory Service

(see Chapter 17) called PInventoryService, which supports the provided interface
called IInventoryService. A similar analysis would be used to determine the opera-
tions of the other services. The full case study description is given in Chapter 22.

16.7 SERVICE COORDINATION IN SERVICE-ORIENTED
ARCHITECTURE

In SOA applications that involve multiple services, coordination of these services
is usually required. To ensure loose coupling among the services, it is often better
to separate the details of the coordination from the functionality of the individual
services. In any complex activity involving multiple services, coordination is usually
needed to sequence the access to the individual services. In SOA, different types
of coordination are provided, including orchestration and choreography. Orches-
tration consists of centrally controlled workflow coordination logic for coordinating
multiple participant services. This allows the reuse of existing services by incorpo-
rating them into new service applications. Choreography provides distributed coor-
dination among services, and it can be used when coordination is needed between
different business organizations. Thus, choreography can be used for collaboration
between services from different service providers provided by different business
organizations. Whereas orchestration is centrally controlled, choreography involves
distributed control.

Because the terms orchestration and choreography are often used interchange-
ably, this chapter will use the more general term coordination to describe the con-
trol and sequencing of different services as needed by a SOA application, whether
they are centrally controlled or involve distributed control. Transaction patterns, as
described in Section 16.4 can also be used for service coordination.

The goal is for services to be stateless so that they can be more reusable. In some
cases, when state information is needed (e.g., the status of the delivery order), this
state information is saved in the delivery order record and stored in a database.
When the delivery order status is needed, it is read (and updated, if necessary) from
the delivery order record. The sequencing of multiple service invocations, whether it
is sequential or concurrent, and whether or not it is state-dependent, is encapsulated
inside the coordinator.

An example of a coordinator object is given in Figures 16.12 and 16.13, in which
the Supplier Coordinator object coordinates the interactions of the Supplier Interac-
tion object with the Delivery Order Service and Inventory Service objects. Supplier
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readyForShipment (in orderId)

confirmShipment (in orderId)

requestOrder  (in supplierId, out orderId)

reserveInventory (in orderId, out inventoryInfo)

«interface»

ISupplierCoordinator

Figure 16.15. Coordinator interface for Supplier Coordinator

Coordinator provides the overall control and sequencing, which is also referred to as
the workflow.

Supplier Coordinator receives supplier requests from Supplier Interaction via the
provided interface called ISupplierCoordinator. Supplier Coordinator is a client of the
Inventory Service and thus has a required interface IInventoryService (Figure 16.14),
and a client of Delivery Order Service. The requests Supplier Coordinator receives from
Supplier Interaction are to:

1. Request a new delivery order to process (message D2 in Figure 16.12), which
is mapped to the requestOrder operation,

2. Reserve order items from inventory (message D10 in Figure 16.12), which is
mapped to the reserveInventory operation,

3. Identify that order is ready for shipment (message S2 in Figure 16.13), which
is mapped to the readyForShipment operation, and

4. Order has been shipped (message S14 in Figure 16.13), which is mapped to
the confirmShipment operation.

The interface ISupplierCoordinator consists of the four operations just described,
which are the requestOrder, reserveInventory, readyForShipment, and confirmShip-
ment operations, as depicted in Figure 16.15.

16.8 DESIGNING SERVICE-ORIENTED ARCHITECTURES

After determining the service and coordinator interfaces as described in the pre-
vious two sections, the integrated communication diagram can be developed. For
SOA, this diagram is both concurrent and distributed. The concurrent commu-
nication diagrams show the dynamic message sequencing in which the services
participate, and the interaction between services and coordinator components
and user interaction components. A concurrent communication diagram is devel-
oped by integrating the use case–based communication diagrams (as described in
Chapter 13) and then defining the message communication interfaces between the
components and services. For communication with a service, synchronous commu-
nication is most common, because the service needs a request/response communi-
cation. However, it is also possible to use Asynchronous Message Communication
with Callback (Chapter 15). For peer-to-peer communication, such as between two
coordinators, asynchronous communication can be used.

A concurrent communication diagram for the online shopping system is given
in Figure 16.16, which shows the dynamic message communication between each
user interaction component (Customer Interaction and Supplier Interaction) with the
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«interface»

ICreditCardService

authorizeCharge (in creditcardId, in amount, out authorizationResponse) 

commitCharge (in creditcardId, in amount, out chargeResponse)

abortCharge (in creditcardId, in amount, out chargeResponse) 

«service»

CreditCard

Service

ICreditCardService

PCreditCardService

«service»

Email

Service

IEmailService

PEmailService

«interface»

IEmailService

sendEmail (in emailId, in emailText)

Figure 16.17. Service interfaces for Credit Card Service and Email Service

appropriate coordinator components (Customer Coordinator, Supplier Coordinator,
and Billing Coordinator), and then with the six services. The online shopping case
study is described in Chapter 22. Most of the communication between the com-
ponents and the services is Synchronous Message Communication with Reply, the
communication pattern most commonly used in SOA because for each request a
response is needed. This pattern is used particularly between user interaction com-
ponents and coordinators (e.g., between Customer Interaction and Customer Coordi-
nator), and between coordinators and services (e.g., between Customer Coordinator
and Catalog Service). However, between the coordinators (Supplier Coordinator and
Billing Coordinator), peer-to-peer asynchronous message communication is used, so
that the coordinator does not have to wait for a response; if a response is needed, it
is also asynchronous.

16.9 SERVICE REUSE

Once services have been designed, they can be reused. Although a service could
invoke an operation on a different service, this can make the service less reusable,
because it is now dependent on another service. To encourage software reuse, it is
recommended that services only have provided interfaces and not have any required
interfaces (unless asynchronous communication with callback is used). This makes
the service more self-contained. All the services depicted in Figure 16.16 follow this
guideline by only having provided interfaces and no required interfaces.

Each of the services described could be used in different applications. In each
case, new coordinator objects would be created to control and sequence the desired
application workflow, taking full advantage of the provided services. If a service is
reused, then the interface is already known and it is up to the component invoking
the service, be it client or coordinator, to ensure that it invokes the service cor-
rectly, using the operations as defined, including the appropriate input and output
parameters. It may also be necessary to follow any specified constraints on calling
the operations; for example, if one operation needs to be called before another.
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In the online shopping system, two external services are reused, namely, the
Credit Card Service and the Email Service. The Email Service is the simpler of the
two, with only one operation invoked to send an email. The operation invoked is
sendEmail (recipient, message). In the case of the Credit Card Service, two operations
need to be invoked and follow a predefined sequence, first to authorize the transac-
tion (authorizeCharge) and second to charge the transaction (commitCharge). There
is a third operation to abort the transaction, abortCharge.

16.10 SUMMARY

This chapter described how to design SOAs, including how to design services and
then how to reuse services. This chapter also briefly described technology support
for SOA but concentrated on architectural concepts, methods, and patterns for
designing SOA – the technology is changing rapidly, but the concepts last longer.
Services can also be designed to be part of a distributed component-based software
architecture, as described in the next chapter. A case study of designing a SOA, the
online shopping system, is given in Chapter 22.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a service-oriented architecture
(SOA)?
(a) A distributed software architecture

consisting of multiple related ser-
vices

(b) A distributed software architecture
consisting of multiple autonomous
services

(c) A distributed client/service archi-
tecture

(d) A distributed software architecture
2. Which of the following properties

DOES NOT apply to a service?
(a) Reusable
(b) Discoverable
(c) Fixed
(d) Autonomous

3. In a SOA, which of the following is
NOT true?
(a) A client communicates with a spe-

cific service provided on a fixed
server configuration.

(b) A client discovers and links to a ser-
vice.

(c) Multiple clients communicate with
a service.

(d) Standard protocols are provided to
allow clients to communicate with
services.

4. What is an object broker?
(a) An object that breaks into a system
(b) An object that sends requests to

other objects
(c) An object that handles requests

sent by other objects
(d) An object that mediates interac-

tions between clients and services
5. Why does a service register with a bro-

ker?
(a) So that service requesters can dis-

cover it
(b) So that a service can interrogate the

broker
(c) So that the registry is up to date
(d) So that the service can relocate

6. When is it particularly useful to use the
Broker Handle pattern in place of the
Broker Forwarding pattern?
(a) If the client only communicates

with the service once
(b) If the client needs to have a dialog

with the service
(c) If the client knows the type of ser-

vice required but not the specific
service

(d) If the client needs to provide the
broker with a handle
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7. Yellow pages brokering is useful when
a service requester:
(a) Needs to discover the location of

the service
(b) Knows the type of service required

but not the specific service
(c) Knows the specific service required

but not the type of service
(d) Needs to discover the broker

8. What is a transaction?
(a) Consists of two or more operations
(b) Consists of one operation
(c) Consists of two or more operations

that are indivisible
(d) Consists of two or more operations

that are divisible
9. What is a compound transaction?

(a) The compound transaction is indi-
visible.

(b) The compound transaction is ato-
mic.

(c) The compound transaction is de-
composed into atomic transac-
tions.

(d) The compound transaction is de-
composed into subatomic transac-
tions.

10. With a Negotiation pattern, which of
the following is NOT true?
(a) The client agent can propose a ser-

vice.
(b) The service agent can offer a ser-

vice in response to a client agent
proposal.

(c) The client agent can request a ser-
vice.

(d) The service agent can offer a ser-
vice in response to a client agent
request.
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Designing Component-Based
Software Architectures

In distributed component-based software design, the component-based software
architecture for the distributed application is developed. The software application
is structured into components, and the interfaces between the components are
defined. To assist with this process, guidelines are provided for determining the
components. Components are designed to be configurable so that each component
instance can be deployed to a different node in a geographically distributed envi-
ronment.

Components are initially designed using the subsystem structuring criteria
described in Chapter 12. Additional component configuration criteria are used to
ensure that components are indeed configurable – in other words, that they can be
effectively deployed to distributed physical nodes in a distributed environment.

Section 17.1 describes concepts, architectures, and patterns for distributed
component-based software architectures. Section 17.2 describes the steps in design-
ing distributed component-based software architectures. Section 17.3 describes
the concepts and design of composite subsystems and components. Section 17.4
describes how components can be modeled and designed with UML. Section 17.5
describes component structuring criteria for structuring a distributed application
into configurable distributed components. Section 17.6 describes group communi-
cation patterns, including Broadcast Message Communication and Subscription/
Notification Message Communication patterns. Finally, Section 17.7 describes appli-
cation deployment.

17.1 CONCEPTS, ARCHITECTURES, AND PATTERNS FOR
COMPONENT-BASED SOFTWARE ARCHITECTURES

In Chapter 12, the term component was introduced in a general way. This chapter
describes the design of distributed components as used in distributed component-
based software architectures. It describes the component structuring criteria for
designing components that can be deployed to execute on distributed platforms in
a distributed configuration. The design of component interfaces is described, with
component ports that have provided and required interfaces, and connectors that

300
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join compatible ports. The component-based software architectures are depicted
with the UML notation for composite structure diagrams.

Architectural communication patterns described previously can be used for
these architectures, including Synchronous, Asynchronous, and Broker patterns. In
addition, group communication patterns can be used as described in Section 17.6.

An important goal of a component-based software architecture is to provide
a concurrent message-based design that is highly configurable. In other words, the
objective is that the same software architecture should be capable of being deployed
to many different distributed configurations. Thus, a given software application
could be configured to have each component-based subsystem allocated to its own
separate physical node, or, alternatively, to have all or some of its components allo-
cated to the same physical node. To achieve this flexibility, it is necessary to design
the software architecture in such a way that the decision about how components will
be mapped to physical nodes is not made at design time but is made later, at system
deployment time.

A component-based development approach, in which each subsystem is de-
signed as a distributed self-contained component, helps achieve the goal of a dis-
tributed, highly configurable, message-based design. A distributed component is a
concurrent object with a well-defined interface, which is a logical unit of distribution
and deployment. A well-designed component is capable of being reused in applica-
tions other than the one for which it was originally developed. A component can be
either a composite component or a simple component. A composite component is
composed of other part components. A simple component has no part components
within it.

Services can be integrated into distributed component-based software architec-
tures. Services are designed with provided interfaces that can be discovered by com-
ponents using the Service Discovery pattern and then communicated with using a
Broker pattern, such as the Broker Handle pattern, as described in Chapter 16.

Because components can be allocated to different nodes in a geographically dis-
tributed environment, all communication between components must be restricted to
message communication. Thus, a source component on one node sends a message
over the network to a destination component on a different node.

17.2 DESIGNING DISTRIBUTED COMPONENT-BASED
SOFTWARE ARCHITECTURES

A distributed application consists of distributed components that can be configured
to execute on distributed physical nodes. To successfully manage the inherent com-
plexity of large-scale distributed applications, it is necessary to provide an approach
for structuring the application into components in which each component can poten-
tially execute on its own node. After this design is performed and the interfaces
between the components are carefully defined, each component can be designed
independently.

The three main steps in designing a component-based software architecture for
a distributed application are:

1. Design distributed software architecture. Structure the distributed applica-
tion into constituent components that potentially could execute on separate
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nodes in a distributed environment. Because components can reside on sep-
arate nodes, all communication between components must be restricted to
message communication. The interfaces between components are defined.
The subsystem structuring criteria, as described in Section 13.8, are used to
initially determine the components. Additional component structuring cri-
teria are used to ensure that the components are designed as configurable
components that can be effectively mapped to physical nodes, as described in
Section 17.5.

2. Design constituent components. Because, by definition, a simple component
can execute on only one node, the internals of each simple component can be
designed by means of a design method for sequential object-oriented software
architectures, as described in Chapter 14.

3. Deploy the application. After a distributed application has been designed,
instances of it can be defined and deployed. During this stage, the component
instances of the application are defined, interconnected, and mapped onto a
hardware configuration consisting of distributed physical nodes.

17.3 COMPOSITE SUBSYSTEMS AND COMPONENTS

A composite subsystem is a component and adheres to the principle of geograph-
ical distribution. Thus, objects that are part of a composite subsystem must reside
at the same location, but objects in different geographical locations are never in
the same composite subsystem. As described in Chapter 13, however, objects in dif-
ferent composite subsystems can be combined into an aggregate subsystem – for
example, in a layered architecture, in which each layer is designed as an aggregate
subsystem consisting of one or more composite subsystems.

A composite subsystem is a component that encapsulates the internal compo-
nents (objects) it contains. The component is both a logical and a physical container,
but it adds no further functionality; thus, a component’s functionality is provided
entirely by the part components it contains. An example of a composite component
with internal components is depicted in Figure 17.1, in which the composite Operator
Presentation user interaction component contains three internal simple components,
Operator Interaction, Alarm Window, and Event Monitoring Window. Components are
usually concurrent, so they are depicted with the UML active class notation.

«user interaction»
«component»
OperatorPresentation

«user interaction»

AlarmWindow

«user interaction»

OperatorInteraction

«user interaction»
EventMonitoring

Window

Figure 17.1. Example of composite component with nested simple components
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Incoming messages to a component are passed through to the appropriate inter-
nal destination component, and outgoing messages from an internal component are
passed through to the appropriate external destination component. The exact pass-
through mechanisms are implementation-dependent. This is a view of whole/part
relationships (Buschmann et al. 1996) that is shared by many component-based sys-
tems (Bass, Clements, and Kazman 2003; Magee, Kramer, and Sloman 2006; Selic,
Gullekson, and Ward 1994; Shaw and Garlan 1996; Szyperski 2003). An example of
a software architecture with composite components is the Emergency Monitoring
System, as described in Chapter 23.

17.4 MODELING COMPONENTS WITH UML

This section describes the design of component interfaces, an important issue in soft-
ware architecture, which was first introduced in Chapter 12. It describes how inter-
faces are specified before describing provided and required interfaces, ports (and
how they are specified in terms of provided and required interfaces), connectors that
interconnect components, and guidelines on designing components for component-
based software architectures.

Components can be effectively modeled in UML with structured classes and
depicted on composite structure diagrams. Structured classes have ports with pro-
vided and required interfaces. Structured classes can be interconnected through
their ports via connectors that join the ports of communicating classes. This sec-
tion describes how component-based software architectures are designed with the
UML notation.

17.4.1 Design of Component Interfaces

An interface specifies the externally visible operations of a class or component with-
out revealing the internal structure (implementation) of the operations, as described
in Chapter 12. Although many components are designed with one interface, it is pos-
sible for a component to provide more than one interface. If different components
use a component differently, it is possible to design a separate interface for each
component that requires a different interface.

An example of a component that provides more than one interface is Alarm
Service. Two interfaces from the Emergency Monitoring System will be used in the
examples that follow. Each interface consists of one or more operations, as follows:

1. Interface: IAlarmService
Operations provided:
� alarmRequest (in request, out alarmData)
� alarmSubscribe (in request, in notificationHandle, out ack)

2. Interface: IAlarmStatus
Operation provided: post (in alarm)

3. Interface: IAlarmNotification
Operation provided: alarmNotify (in alarm)

The interface of a component can be depicted with the static modeling nota-
tion (see Chapter 12), as shown in Figure 17.2 for the preceding example, with the
stereotype «interface».
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«interface»
IAlarmService

alarmRequest (in request, out alarmData)
alarmSubscribe (in request, in notificationHandle, out ack)

«interface»
IAlarmStatus

post (in alarm)

«interface»
IAlarmNotification

alarmNotify (in alarm) 

Figure 17.2. Example of component interfaces

17.4.2 Provided and Required Interfaces

To provide a complete definition of the component-based software architecture for
a software application, it is necessary to specify the interface(s) provided by each
component and the interface(s) required by each component. A provided interface
specifies the operations that a component must fulfill. A required interface describes
the operations that other components provide for this component to operate prop-
erly in a particular environment.

A component has one or more ports through which it interacts with other com-
ponents. Each component port is defined in terms of provided and/or required inter-
faces. A provided interface of a port specifies the requests that other components
can make of this component. A required interface of a port specifies the requests
that this component can make of other components. A provided port supports a
provided interface. A required port supports a required interface. A complex port
supports both a provided interface and a required interface. A component can have
more than one port. In particular, if a component communicates with more than one
component, it can use a different port for each component with which it communi-
cates. Figure 17.3 shows an example of components with ports, as well as provided
and required interfaces.

By convention, the name of a component’s required port starts with the letter
R to emphasize that the component has a required port. The name of a compo-
nent’s provided port starts with the letter P to emphasize that the component has
a provided port. In Figure 17.3, the Monitoring Sensor Component has one required
port, called RAlarmStatus, which supports a required interface called IAlarmStatus,
as defined in Figure 17.2. The Operator Alarm Presentation component is a client
component, which has a required port with a required interface (IAlarmService)
and a provided port with a provided interface IAlarmNotification. Alarm Service has
two provided ports called PAlarmStatus and PAlarmService, and one required port
RAlarmNotification. The port PAlarmStatus provides an interface called IAlarmStatus,
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«user interaction»

«component»

OperatorAlarmPresentation

«input»

«component»

MonitoringSensor

Component

«service»

Alarm

Service

PAlarm

Service
PAlarmStatus

IAlarmStatus IAlarmService IAlarmNotification

RAlarm

Notification

RAlarmStatus

IAlarm

Status
IAlarm

Notification

PAlarm

Notification
RAlarmService

IAlarmService

Port

Provided Interface

Required Interface

Concurrent

Component

Key:

Figure 17.3. Examples of component ports, with provided and required interfaces

through which alarm status messages are sent. The port PAlarmService provides the
main interface through which clients request alarm services (provided interface
IAlarmService). Alarm Service sends alarm notifications through its RAlarmNotifica-
tion port.

17.4.3 Connectors and Interconnecting Components

A connector joins the required port of one component to the provided port of
another component. The connected ports must be compatible with each other. This
means that if two ports are connected, the required interface of one port must be
compatible with the provided interface of the other port; that is, the operations
required in one component’s required interface must be the same as the operations
provided in the other component’s provided interface. In the case of a connector
joining two complex ports (each with one provided interface and one required inter-
face), the required interface of the first port must be compatible with the provided
interface of the second port, and the required interface of the second port must be
compatible with the provided interface of the first port.

Figure 17.4 shows how the three components (Monitoring Sensor Component,
Operator Alarm Presentation, and Alarm Service) are interconnected. The first con-
nector is unidirectional (as shown by the direction of the arrow representing the
connector) and joins Monitoring Sensor Component’s RAlarmStatus required port
to Alarm Service’s PAlarmStatus provided port. Figure 17.3 shows that these ports
are compatible because it results in the IAlarmStatus required interface being con-
nected to the IAlarmStatus provided interface. The second connector is also uni-
directional and joins Operator Alarm Presentation’s required port RAlarmService to
Alarm Service’s provided port PAlarmService. Examination of the port design in Fig-
ure 17.3 shows that these ports are also compatible, with the required IAlarmService
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«user interaction»
«component»

Operator Alarm
Presentation

«input»
«component»

MonitoringSensor
Component

«service»
Alarm
Service

PAlarm
ServicePAlarmStatus

RAlarmStatus

RAlarmService
PAlarm

Notification

RAlarm
Notification

Figure 17.4. Example of components, ports, and connectors in a software
architecture

interface connected to the provided interface of the same name. The third connec-
tor is also unidirectional and joins Alarm Service’s RAlarmNotification required port to
Operator Alarm Presentation’s PAlarmNotification provided port and is through which
alarm notifications are sent via the IAlarmNotification interface.

17.4.4 Designing Composite Components

A composite component is structured into part components, which are also depicted
as UML structured classes. A component with no internal components is referred
to as a simple component. The part components within a composite component are
depicted as instances because it is possible to have more than one instance of the
same part within the composite component.

Figure 17.5 shows an example of a composite component, the Display compo-
nent, which contains two simple components: a concurrent component called Dis-
play Interface and a passive component called Display Prompts. The provided port of
the composite Display component is connected directly to the provided port of the
internal Display Interface component. The connector joining the two ports is called
a delegation connector, which means that the outer delegating port provided by
Display forwards each message it receives from Display Producer to the inner port
provided by Display Interface. The two ports are given the same name, PDisplay,
because they provide the same interface.

Only distributed components can be deployed to the physical nodes of a dis-
tributed configuration. Passive components cannot be independently deployed, nor
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«output»

«component»

Display

«output»

DisplayInterface

«control»

«component»

DisplayProducer

«entity»

DisplayPrompts

RDisplay

PDisplay

PDisplay

RDisplayPrompt

PDisplayPrompt

Figure 17.5. Design of composite component

can any component that directly invokes the operations of a passive component; in
that situation, only the composite component (which contains the passive compo-
nent) can be deployed. Thus, in Figure 17.5, only the Display composite component
can be deployed. By a COMET convention, only the deployable components are
depicted with the component stereotype.

17.5 COMPONENT STRUCTURING CRITERIA

A distributed application needs to be designed with an understanding of the dis-
tributed environments in which it is likely to operate. The component structuring
criteria provide guidelines on how to structure a distributed application into config-
urable distributed components, which can be mapped to geographically distributed
nodes in a distributed environment. The actual mapping of components to physical
nodes is done later, when an individual target system is instantiated and deployed.
However, it is necessary to design the components as configurable components,
which are indeed capable of later being effectively mapped to distributed physi-
cal nodes. Consequently, the component structuring criteria need to consider the
characteristics of distributed environments.

In a distributed environment, a component might be associated with a particular
physical location or constrained to execute on a given hardware resource. In such a
case, a component is constrained to execute on the node at that location or on the
given hardware.

17.5.1 Proximity to the Source of Physical Data

In a distributed environment, the sources of data might be physically distant from
each other. Designing the component so that it is close to the source of physical data
ensures fast access to the data, which is particularly important if data access rates are
high. An example of a component designed to be in close proximity to the source of
physical data is the Remote System Proxy component in the Emergency Monitoring
System, as shown in Figure 17.6.
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«service»

Monitoring

DataService

«proxy»

«component»

RemoteSystem

Proxy

PMonitoring

Status

RMonitoring

Status

PMonitoring

Service

REvent

Notification

Figure 17.6. Example of component proximity to the source of physical data

17.5.2 Localized Autonomy

A distributed component often performs a specific site-related service, where the
same service is performed at multiple sites. Each instance of the component resides
on a separate node, thereby providing greater local autonomy. Assuming that a
component on a given node operates relatively independently of other nodes, it can
be operational even if the other nodes are temporarily unavailable. An example of
an autonomous local component is the Automated Guided Vehicle System component
of the Factory Automation System in Figure 17.7.

The example of localized autonomy from the Automated Guided Vehicle
System is depicted in more detail in Figure 17.8. Control is provided by a control

«coordinator» 
«component»

SupervisorySystem

RAGVSystem

«control» 
«component» 

AutomatedGuided
VehicleSystem 

PAGVSystem

RDisplaySystem

«user interaction» 
«component»

DisplaySystem

PDisplaySystem

Figure 17.7. Example of component localized autonomy
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component, Vehicle Control, which receives move commands from a Supervisory Sys-
tem Proxy component, and controls the Motor Component, to start and stop moving
along the track, and Arm Component, to load and unload parts. It also receives inputs
from an Arrival Sensor Component, to indicate arrival at a station.

17.5.3 Performance

If a time-critical function is provided within a node, better and more-predictable
component performance can often be achieved. In a given distributed application, a
real-time component can perform a time-critical service at a given node, with non–
real-time or less time-critical services performed elsewhere. An example of a com-
ponent that satisfies this criterion is the Automated Guided Vehicle System component
in Figure 17.7.

17.5.4 Specialized Hardware

A component might need to reside on a particular node because it supports special-
purpose hardware, such as a vector processor, or because it has to interface to
special-purpose peripherals, sensors, or actuators that are connected to a specific
node. Instances of the Monitoring Sensor Component (Figure 17.4) interface to
special-purpose sensors. Both the Arm Component and Motor Component (Figure
17.8) interface to special-purpose actuators.

17.5.5 I/O Component

An I/O component can be designed to be relatively autonomous and in close prox-
imity to the source of physical data. In particular, “smart” devices are given greater

«output»
«component

Arm
Component

PArm

«output»
«component»

Motor
Component

PMotor

«input»
«component»
ArrivalSensor
Component

RAGVCtrl

«proxy»
«component»

SupervisorySystem
Proxy

RAGVCtrl

PAGVSystem

«control»
«component»

Vehicle Control

RAGVStatus

RMotorRArm

PAGVCtrl

Figure 17.8. Example of control and I/O components



310 Architectural Design

local autonomy and consist of the hardware plus the software that interfaces to and
controls the device. An I/O component typically consists of one or more device
interface objects, and it may also contain control objects to provide localized con-
trol and entity objects to store local data.

I/O component is a general name given to components that interact with the
external environment; they include input components, output components, I/O
components (which provide both input and output), network interface components,
and system interface components.

In the Automated Guided Vehicle example illustrated in Figure 17.8, Arrival Sen-
sor Component is an example of an input component; and Arm Component and Motor
Component are examples of output components.

17.6 GROUP MESSAGE COMMUNICATION PATTERNS

The message communication patterns described so far have involved one source
component and one destination component. A desirable property in some dis-
tributed applications is group communication. This is a form of one-to-many mes-
sage communication in which a sender sends one message to many recipients.
Two kinds of group message communication (sometimes referred to as groupcast
communication) supported in distributed applications are broadcast and multicast
communication.

17.6.1 Broadcast Message Communication Pattern

With the Broadcast (or Broadcast Communication) pattern, an unsolicited mes-
sage is sent to all recipients, perhaps informing them of a pending shutdown. Each
recipient must then decide whether it wishes to process the message or discard
it. An example of the Broadcast pattern is given in Figure 17.9. Alarm Handling

B2a: alarmBroadcast

B2b: alarmBroadcast

B2c: alarmBroadcast

B1: alarm

«service»

: AlarmHandlingService

«user interaction»

«component»

firstOperatorInteraction

«user interaction»

«component»

secondOperatorInteraction

«input»

«component»

: EventMonitor

«user interaction»

«component»

thirdOperatorInteraction

Figure 17.9. Example of Broadcast pattern
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Service sends alarm Broadcast messages to all instances of the Operator Interaction
component. Each recipient must decide whether it wishes to take action in response
to the alarm or to ignore the message. The pattern interactions are described in
more detail as follows:

B1: Event Monitor sends an alarm message to Alarm Handling Service.
B2a, B2b, B2c: Alarm Handling Service broadcasts the alarm as an alarm

Broadcast message to all the Operator Interaction components. Each
recipient decides whether to take action or discard the message.

17.6.2 Subscription/Notification Message Communication Pattern

Multicast communication provides a more selective form of group communication,
in which the same message is sent to all members of a group. The Subscription/
Notification pattern uses a form of multicast communication in which components
subscribe to a group and receive messages destined for all members of the group. A
component can subscribe to (request to join) or unsubscribe from (leave) a group
and can be a member of more than one group. A sender, also referred to as a pub-
lisher, sends a message to the group without having to know who all the individual
members are. The message is then sent to all members of the group. Sending the
same message to all members of a group is referred to as multicast communication.
A message sent to a subscriber is also referred to as an event notification. While on
a subscription list, a member can receive several event notification messages. The
Subscription/Notification pattern is popular on the Internet.

An example of the Subscription/Notification pattern is shown in Figure 17.10.
First, three instances of the Operator Interaction component send a subscribe message
to Alarm Handling Service to request to receive alarms of a certain type. Every time
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N2a: alarmNotify
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s3: subscribe

N2b: alarmNotify

N2c: alarmNotify

N1: alarm

«service»
: AlarmHandlingService

«input»
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«component»

firstOperatorInteraction

«user interaction»
«component»

secondOperatorInteraction

«user interaction»
«component»

thirdOperatorInteraction

Figure 17.10. Example of the Subscription/Notification pattern
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the Alarm Handling Service receives a new alarm message of this type, it multicasts
the alarm Notification message to all subscriber Operator Interaction components.
The pattern interactions are described in more detail as follows:

S1, S2, S3: Operator Interaction components subscribe to receive alarm noti-
fications.

N1: Event Monitor sends an alarm message to Alarm Handling Service.
N2a, N2b, N2c: Alarm Handling Service looks up the list of subscribers who

have requested to be notified of alarms of this type. It multicasts the
alarm Notification message to the appropriate subscriber Operator Inter-
action components. Each recipient takes appropriate action in response
to the alarm notification.

A variation on the Subscription/Notification pattern is to have only one sub-
scriber. This arrangement is useful in peer-to-peer situations in which the producer
does not know who the consumer is and the consumer might be optional. The con-
sumer can subscribe to the producer, sending it a handle, which the producer then
uses for sending messages to the consumer. This is useful for reversing a depen-
dency, because, by virtue of the subscription, the consumer is dependent on the
producer rather than vice versa.

17.6.3 Concurrent Service Design with Subscription and Notification

An example of a concurrent service design is shown in Figure 17.11, which con-
sists of a news archive service that supports the Subscription/Notification pattern
(see Section 17.6.2). This concurrent service consists of a news archive, multiple
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Data
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E4: event
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S3: subscribe

E6: event 
Subscribers

Figure 17.11. Example of a concurrent service: subscription/notification
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instances of services, including News Archive Service and News Update Service, and
provides a subscription/notification service to its clients. Subscription Service main-
tains a subscription list of clients that wish to be notified of news events. When a
Correspondent posts a news event, News Update Service updates a news archive and
informs Notification Service of the event arrival. Notification Service queries the Sub-
scription List to determine the clients who have subscribed to receive events of this
type, and then notifies those clients of the news event.

The concurrent communication diagram in Figure 17.11 shows three separate
interactions: a simple query interaction, a news event subscription interaction, and a
news event notification interaction. In the query interaction (which does not involve
a subscription),a client makes a request to News Service Coordinator, which in turn
sends a news archive query to News Archive Service. The latter queries the News
Archive and sends the response directly to Client. Because multiple services could be
accessing the news archive and subscription list concurrently, access synchroniza-
tion would need to be provided, either through the underlying database or by the
services that access the data.

The three event sequences are given different prefixes to differentiate them:

Query interaction (Q prefix):

Q1: A client sends a query to News Service Coordinator – for example,
requesting news events over the past 24 hours.

Q2: News Service Coordinator forwards the query to an instance of News
Archive Service.

Q3: News Archive Service sends the appropriate archive data – for example,
news events over the past 24 hours – to the client.

Event subscription interaction (S prefix):

S1: News Service Coordinator receives a subscription request from a client.
S2: News Service Coordinator sends a subscribe message to Subscription Ser-

vice.
S3: Subscription Service adds this client to the Subscription List.
S4: Subscription Service confirms the subscription by sending a subscription

service Response message to the client.

Event notification interaction (E prefix):

E1: A news correspondent client sends a news update request to News Ser-
vice Coordinator.

E2: News Service Coordinator forwards the update request to News Update
Service.

E3, E4: News Update Service updates the News Archive and sends an event
Arrival message to Notification Service.
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E5, E6: Notification Service queries Subscription List to get the list of event
subscribers (i.e., clients that have subscribed to receive events of this
type).

E7: Notification Service multicasts an event Notification message to all
clients that have subscribed for this event.

17.7 APPLICATION DEPLOYMENT

After a distributed application has been designed and implemented, instances of
it can be defined and deployed. During system deployment, an instance of the dis-
tributed application – referred to as a target application – is defined and mapped to a
distributed configuration consisting of multiple geographically distributed physical
nodes connected by a network.

17.7.1 Application Deployment Issues

During application deployment, a decision is made about what component instances
are required. In addition, it is necessary to determine how the component instances
should be interconnected and how the component instances should be allocated to
nodes. Specifically, the following activities need to be performed:

■ Define instances of the component. For each component that can have multiple
instances, it is necessary to define the instances desired. For example, in a dis-
tributed Emergency Monitoring System, it is necessary to define the number of
instances of components required in the target application. It is also necessary
to define one Monitoring Sensor Component instance for each sensor, one Remote
System Proxy instance for each remote system, and one instance of the Operator
Interaction component for each operator. Each component instance must have
a unique name so that it can be uniquely identified. For components that are
parameterized, the parameters for each instance need to be defined. Examples
of component parameters are instance name (such as remote proxy Id or opera-
tor Id), sensor names, sensor limits, and alarm names.

■ Interconnect component instances. The application architecture defines how
components communicate with one another. At this stage, the component ins-
tances are connected. In the distributed Emergency Monitoring System in Fig-
ure 17.12, for example, each instance of the Monitoring Sensor Component is con-
nected to the Alarm Service and the Monitoring Data Service. When Alarm Service
sends an alarm notification message to Operator Presentation, it must identify to
which operator it is sending the message.

■ Map the component instances to physical nodes. For example, two components
could be deployed such that each one could run on a separate physical node.
Alternatively, they could both run on the same physical node. The physical con-
figuration of the target application is depicted on a deployment diagram.

17.7.2 Example of Application Deployment

As an example of application deployment, consider the distributed Emergency
Monitoring System. The application configuration is depicted on a deployment
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Figure 17.12. Example of a distributed Emergency Monitoring System

diagram as shown in Figure 17.13. Each instance of Monitoring Sensor Component
(one per sensor) is deployed to a separate node to achieve localized autonomy and
adequate performance. Thus, the failure of one sensor node will not affect other
nodes. Each instance of Remote System Proxy (one per remote system) is deployed
to a separate node because of proximity to the source of physical data. Loss of a
remote system node means that the specific remote system will not be serviced, but
other nodes will not be affected. Alarm Service and Monitoring Data Service are each
deployed to a separate node for performance reasons, so that they can be responsive

«wide area network»

Alarm Service

{1 node}

Monitoring Data 

Service

{1 node}

Remote System 

Proxy

{1 node per remote 

system}

Monitoring Sensor 

Component

{1 node per 

monitoring location}

Operator

Presentation

{1 node per 

operator}

Figure 17.13. Example of a distributed application deployment: Emergency
Monitoring System
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to service requests. Finally, each instance of the Operator Presentation component is
deployed to a separate operator node because of localized autonomy.

17.8 SUMMARY

This chapter described the design of component-based software architectures. It
described the component structuring criteria for designing components that can be
deployed to execute on distributed platforms in a distributed configuration. Also
discussed was the design of component interfaces, with component ports that have
provided and required interfaces, and connectors that join compatible ports. The
component-based software architecture was depicted with the UML 2 notation for
composite structure diagrams. Considerations and tradeoffs in component design
were also discussed. A case study of designing a component-based software archi-
tecture, the Emergency Monitoring System, is given in Chapter 23. Distributed com-
ponents can also be integrated into service-oriented architectures, as described in
the Online Shopping System case study in Chapter 22.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. In a distributed component-based soft-
ware architecture, which of the follow-
ing statements is the most complete
description of component deployment?
(a) Component instances can be de-

ployed to different nodes in a
geographically distributed environ-
ment.

(b) Component instances can be de-
ployed to different nodes in a
geographically distributed environ-
ment before design.

(c) Component instances can be de-
ployed to different nodes in a
geographically distributed environ-
ment before implementation.

(d) Component instances can be de-
ployed to different nodes in a
geographically distributed environ-
ment after design and implementa-
tion.

2. What does a component interface con-
sist of?
(a) The externally visible operations of

a component
(b) The operations provided by a com-

ponent
(c) The operations required by a com-

ponent

(d) The operations that a component
supports

3. What does a component’s provided
interface consist of?
(a) The operations that a component

must fulfill
(b) The operations inside a component
(c) The operations that a component

uses
(d) The operations of a component

4. What does a component’s required
interface consist of?
(a) The operations that a component

must fulfill
(b) The operations inside a component
(c) The operations that a component

uses
(d) The visible operations of a compo-

nent
5. What does a connector join?

(a) The provided port of one compo-
nent to the required port of another
component

(b) The provided port of one com-
ponent to the provided port of
another component

(c) The required port of one com-
ponent to the provided port of
another component

(d) The required port of one compo-
nent to the required port of another
component
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6. What does a delegation connector join?
(a) An outer provided port to an inner

provided port
(b) An outer provided port to an inner

required port
(c) An outer required port to an inner

provided port
(d) An outer provided port to an outer

required port
7. What is broadcast message communica-

tion?
(a) A message sent to several recipi-

ents
(b) A message sent to a specific recipi-

ent
(c) A message sent to all recipients
(d) A message sent to recipients who

are members of a group
8. What are the communication character-

istics of subscription/notification?
(a) A message sent to several recipients

(b) A message sent to a specific recipi-
ent

(c) A message sent to all recipients
(d) A message sent to recipients who

have joined a group
9. During application deployment:

(a) The application is executed.
(b) Component instances are executed.
(c) Component instances are assigned

to hardware nodes.
(d) Component instances are instanti-

ated.
10. What is an advantage of localized

autonomy in component-based design?
(a) If a component goes down, other

components can continue to exe-
cute.

(b) Components execute concurrently.
(c) Components are distributed.
(d) Components communicate using

messages.
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Designing Concurrent and Real-Time
Software Architectures

This chapter describes the design of concurrent and real-time software architectures.
Real-time software architectures are concurrent architectures that usually have to
deal with multiple streams of input events. They are typically state-dependent, with
either centralized or decentralized control. Thus, the design of finite state machines,
as described in Chapter 10, state-dependent interaction modeling, as described in
Chapter 11, and the control patterns, as described in this chapter, are very important
in the design of real-time software architectures.

Section 18.1 describes concepts, architectures, and patterns for designing concur-
rent and real-time software architectures. Section 18.2 describes the characteristics
of real-time systems. Section 18.3 describes control patterns for real-time software
architectures. Section 18.4 describes the concurrent task structuring criteria. Sec-
tion 18.5 describes the I/O task structuring criteria, and Section 18.6 describes the
internal task structuring criteria. Section 18.7 describes the steps in developing the
concurrent task architecture. Section 18.8 describes designing the task interfaces
using task communication and synchronization. Section 18.9 describes documenting
task interface and behavior specifications. Section 18.10 describes concurrent task
implementation in Java using threads.

18.1 CONCEPTS, ARCHITECTURES, AND PATTERNS FOR
CONCURRENT AND REAL-TIME SOFTWARE ARCHITECTURES

An important activity in designing real-time software architectures is to design con-
current objects, which are referred to as concurrent tasks in this chapter. Chapter 14
described the design of passive objects, which do not have threads of control. Con-
currency concepts were introduced in Chapter 4. The design of concurrent and real-
time software architectures consists of designing the concurrent tasks, as described
in this chapter, and designing the information hiding classes from which passive
objects are instantiated, as described in Chapter 14. Real-time software architec-
tures can also be distributed; for this reason they can be considered a special case
of component-based software architectures. In this context, a task is equivalent to

318
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a simple component, as described in Chapter 17, and the two terms are used inter-
changeably in this chapter.

During concurrent software design, a concurrent software architecture is devel-
oped in which the system is structured into concurrent tasks, and the interfaces
and interconnections between the concurrent tasks are defined. To help determine
the concurrent tasks, concurrent task structuring criteria are provided to assist in
mapping an object-oriented analysis model of the system to a concurrent software
architecture. These criteria are a set of heuristics, also referred to as guidelines,
that capture expert designer knowledge in the software design of concurrent
and real-time systems. Concurrent tasks also participate in software architectural
patterns; thus, they can participate in patterns already described, such as Layered
patterns (Chapter 12) and Client/Service patterns (Chapter 15), in which both
the client and service could be designed as concurrent software architectures. In
addition, it is possible for concurrent tasks to participate in various control patterns,
as described in Section 18.3.

18.2 CHARACTERISTICS OF REAL-TIME SYSTEMS

Real-time systems (Figure 18.1) are concurrent systems with timing constraints.
They have widespread use in industrial, commercial, and military applications.
The term real-time system usually refers to the whole system, including the real-
time application, real-time operating system, and the real-time I/O subsystem, with
special-purpose device drivers to interface to the various sensors and actuators.
Because the emphasis in this chapter is on designing applications, we use the term
real-time application and not real-time system. However, this section describes real-
time applications in the broader context of real-time systems.

Real-time systems are often complex because they have to deal with multiple
independent streams of input events and produce multiple independent outputs.
These events have arrival rates that are often unpredictable, although they must
be subject to timing constraints specified in the system requirements. Frequently,
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Figure 18.1. Real-time system
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the order of incoming events is not predictable. Also, the input load might vary
significantly and unpredictably with time.

Real-time systems are frequently classified as hard real-time systems or soft real-
time systems. A hard real-time system has time-critical deadlines that must be met
to prevent a catastrophic system failure. In a soft real-time system, missing deadlines
occasionally is considered undesirable but not catastrophic, so it can be tolerated.

18.3 CONTROL PATTERNS FOR REAL-TIME SOFTWARE
ARCHITECTURES

Many real-time systems have a control function. This section describes the different
kinds of control patterns that could be used for this purpose: centralized control
patterns, distributed control patterns, and hierarchical control patterns. To make
the patterns applicable to component-based software architectures as well as real-
time software architectures, the «component» stereotype is used in these patterns.

18.3.1 Centralized Control Architectural Pattern

In the Centralized Control architectural pattern, there is one control component,
which conceptually executes a statechart and provides the overall control and
sequencing of the system. The control component receives events from other com-
ponents with which it interacts. These include events from various input components
and user interface components that interact with the external environment – for
example, through sensors that detect changes in the environment. An input event to
a control component usually causes a state transition on its statechart, which results
in one or more state-dependent actions. The control component uses these actions
to control other components, such as output components, which output to the exter-
nal environment – for example, to switch actuators on and off. Entity objects are also
used to store any temporary data needed by the other objects.

Examples of this pattern can be found in the Cruise Control System (Gomaa
2000) and the Microwave Oven Control System case study (Gomaa 2005). Figure
18.2 gives an example of the Centralized Control architectural pattern from the
latter case study, in which the concurrent components are depicted on a generic
communication diagram. The Microwave Control component is a centralized con-
trol component, which executes the statechart that provides the overall control and
sequencing for the microwave oven. Microwave Control receives messages from three
input components – Door Component, Weight Component, and Keypad Component –
when they detect inputs from the external environment. Microwave Control actions
are sent to two output components, Heating Element Component (to switch the heat-
ing element on or off) and Microwave Display (to display information and prompts
to the user).

18.3.2 Distributed Control Architectural Pattern

The Distributed Control pattern contains several control components. Each of these
components controls a given part of the system by conceptually executing a state-
chart. Control is distributed among the various control components, with no single
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Figure 18.2. Example of the Centralized Control architectural pattern

component in overall control. To notify each other of important events, the control
components communicate through peer-to-peer communication. They also interact
with the external environment as in the Centralized Control pattern (see Section
12.2.6).

An example of the Distributed Control pattern is given in Figure 18.3, in which
the control is distributed among the several distributed controller components. Each
distributed controller executes a state machine, receiving inputs from the external
environment through sensor components and controlling the external environment
by sending outputs to actuator components. Each distributed controller communi-
cates with the other distributed controller components by means of messages con-
taining events.

18.3.3 Hierarchical Control Architectural Pattern

The Hierarchical Control pattern (also known as the Multilevel Control pattern)
contains several control components. Each component controls a given part of a
system by conceptually executing a state machine. In addition, a coordinator com-
ponent provides the overall system control by coordinating several control com-
ponents. The coordinator provides high-level control by deciding the next job

«control» 

«component»

: Distributed

Controller

«control» 

«component»

: Distributed

Controller

event event

event event
sensor

Input actuator

Output
sensor

Input
actuator

Output

sensor

Input

actuator

Output

«output» 

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«input» 

«component»

: SensorCmpt

«input» 

«component»

: SensorCmpt

«control» 

«component»

: Distributed

Controller

«input» 

«component»

: SensorCmpt

Figure 18.3. Example of the Distributed Control architectural pattern



322 Architectural Design

response

command

sensor

Input

actuator

Output
sensor

Input

actuator

Output
sensor

Input

actuator

Output

command

command response

response

«control» 

«component»

: Distributed

Controller

«control» 

«component»

: Distributed

Controller

«coordinator» 

«component»

: Hierarchical

Controller

«output»

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«input» 

«component»

: SensorCmpt

«input» 

«component»

: SensorCmpt

«input» 

«component»

: SensorCmpt

«control 

component»

: Distributed

Controller

Figure 18.4. Example of the Hierarchical Control architectural pattern

for each control component and communicating that information directly to the
control component. The coordinator also receives status information from the con-
trol components.

One example of the Hierarchical Control pattern is given in Figure 18.4, in which
the Hierarchical Controller sends high-level commands to each of the distributed
controllers. The distributed controllers provide the low-level control, interacting
with sensor and actuator components, and respond to the Hierarchical Controller
when they have finished. They may also send progress reports to the Hierarchical
Controller.

18.4 CONCURRENT TASK STRUCTURING

A concurrent task is an active object, also referred to as a process or thread. In this
chapter, the term concurrent task is used to refer to an active object with one thread
of control. In some systems, a concurrent task would be implemented as a single-
threaded process; in other systems, it might be implemented as a thread (lightweight
process) within a heavyweight process (Gomaa 2000).

The concurrent structure of a system is best understood by considering the
dynamic aspects of the system. In the analysis model, the system is represented as a
collection of collaborating objects that communicate by means of messages. During
the concurrent task structuring phase, the concurrent nature of the system is for-
malized by defining the concurrent tasks and the communication/synchronization
interfaces between them.

The objects in the analysis model are analyzed to determine which of these may
execute concurrently and which need to execute sequentially. Hence, the deter-
mination is made as to which of the analysis model objects should be active and
which should be passive. In addition, a composite concurrent task can contain pas-
sive objects, whose operations are executed sequentially within the thread of control
of the composite task.

Following the approach used in Chapter 8 for object structuring, stereotypes are
used to depict the different kinds of concurrent tasks. Each task is depicted with two



Designing Concurrent and Real-Time Software Architectures 323

stereotypes: the first is the object role criterion, which is determined during object
structuring, as described in Chapter 8; and the second stereotype is used to depict
the type of concurrency. During concurrent task structuring, if an object in the anal-
ysis model is determined to be active, it is categorized further to show its concurrent
task characteristics. For example, an active «I/O» object is concurrent and is cate-
gorized further using a second stereotype as one of the following: an «event driven»
task, a «periodic» task, or a task activated on «demand». Stereotypes are also used
to depict the kinds of devices to which the concurrent tasks interface. Thus, an
«external input device» is further classified, depending on its characteristics, into
an «event-driven» external input device or a «passive» external input device.

18.5 I/O TASK STRUCTURING CRITERIA

This section describes the various I/O task structuring criteria. An important factor
in deciding on the characteristics of an I/O task is to determine the characteristics of
the I/O device to which it has to interface.

18.5.1 Event Driven I/O Tasks

An event driven I/O task is needed when there is an event driven (also referred to as
interrupt driven) I/O device to which the system has to interface. The event driven
I/O task (referred to as asynchronous I/O task in [Gomaa 2000]) is activated by
an interrupt from the event driven device. During task structuring, each device I/O
object in the analysis model that interfaces to an event driven I/O device is designed
as an event driven I/O task.

An event driven I/O task is constrained to execute at the speed of the I/O device
with which it is interacting. Thus an input task might be suspended indefinitely
awaiting an input. However, when activated by an interrupt, the input task often
has to respond to a subsequent interrupt within a few milliseconds to avoid any loss
of data. After the input data is read, the input task processes the data and then
passes it on, e.g., it sends the data to be processed by another task. This frees the
input task to respond to another interrupt that might closely follow the first.

Another kind of event driven I/O task is the event driven proxy task, which inter-
faces to an external system instead of an I/O device. An event driven proxy task
usually interacts with an external system by using messages.

As an example of an event driven I/O task, consider the Door Sensor Interface
input object shown on the analysis model communication diagram in Figure 18.5a.
The Door Sensor Interface object receives door inputs from the real-world door,
which is depicted as an external input device. The Door Sensor Interface object then
converts the input to an internal format and sends the door request to the Microwave
Control object. For task structuring, it is given that the door is an event driven input
device, depicted on the design model concurrent communication diagram (Figure
18.5b) with the stereotypes «event driven» «external input device», which generates
an interrupt when the door is opened or closed. The Door Sensor Interface object is
designed as an event driven input task of the same name, depicted on the concur-
rent communication diagram with the stereotype «event driven» «input». When the
task is activated by the Door Interrupt, it reads the Door Input, converts the input to
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Figure 18.5. Example of event driven I/O task: (a) Analysis model: communication
diagram. (b) Design model: concurrent communication diagram

an internal format, and sends it as a Door Request message to the Microwave Control
task. In the design model, the interrupt is depicted as an asynchronous event.

18.5.2 Periodic I/O Tasks

Unlike an event driven I/O task, which deals with an event driven I/O device, a
periodic I/O task deals with a passive I/O device, in which the device is polled on a
regular basis. In this situation, the activation of the task is periodic but its function is
I/O-related. The periodic I/O task is activated by a timer event sent by an external
timer, performs an I/O action, and then waits for the next timer event. The task’s
period is the time between successive activations.

Periodic I/O tasks are often used for simple I/O devices that, unlike event driven
I/O devices, do not generate interrupts when I/O is available. Thus, they are often
used for passive sensor devices that need to be sampled periodically. The concept
of a periodic I/O task is used in many sensor-based industrial systems. Such sys-
tems often have a large number of digital and analog sensors. A periodic I/O task is
activated on a regular basis, scans the sensors, and reads their values.

Consider a passive digital input device – for example, the engine sensor. This
is handled by a periodic I/O task. The task is activated by a timer event and then
reads the status of the device. If the value of the digital sensor has changed since
the previous time it was sampled, the task indicates the change in status. In the case
of an analog sensor – a temperature sensor, for example – the device is sampled
periodically and the current value of the sensor is read.

As an example of a periodic I/O task, consider the Temperature Sensor
Interface object shown in Figure 18.6a. In the analysis model depicted on the
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«external input 
device»

: Temperature
Sensor

«input»
: Temperature

Sensor
Interface

: Temperature
Data

1: Temperature
Input
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Hardware / software boundary

«passive»
«external input

device»
: Temperature
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1: read
(out temperatureInput)

2: update (in current
Temperature)

Hardware / software boundary

«external timer»
: DigitalClock

0: timerEvent

: Temperature
Data

«periodic»
«input»

: Temperature
SensorInterface

(a)

(b)

(Note: the dashed line for the hardware/software boundary is for illustrative purposes only and does not conform to 
the UML notation.)

Figure 18.6. Example of a periodic I/O task: (a) Analysis model: communication
diagram. (b) Design model: concurrent communication diagram

communication diagram, the Temperature Sensor Interface object is an «input» object
that receives temperature inputs from the real-world Temperature Sensor, depicted
with the stereotype «external input device». Because the Temperature Sensor is a
passive device, it is depicted on the concurrent communication diagram with the
stereotypes «passive» «external input device» (see Figure 18.6b). Because a pas-
sive device does not generate an interrupt, an event driven input task cannot be
used. Instead, this case is handled by a periodic input task, the Temperature Sen-
sor Interface task, which is activated periodically by an external timer to sample the
value of the temperature sensor. Thus, the Temperature Sensor Interface object is
designed as the Temperature Sensor Interface «periodic» «input» task, as depicted
on the concurrent communication diagram. To activate the Temperature Sensor
Interface task periodically, it is necessary to add an «external timer» object, the
Digital Clock, as depicted in Figure 18.6b. When activated, the Temperature Sen-
sor Interface task samples the temperature sensor, updates the Temperature Data
entity object with the current value of temperature, and then waits for the next
timer event. The timer event is depicted as an asynchronous event in the design
model.

18.5.3 Demand Driven I/O Tasks

Demand driven I/O tasks (referred to as passive I/O task in Gomaa [2000]) are used
when dealing with passive I/O devices that do not need to be polled and, hence,
do not need periodic I/O tasks. In particular, they are used when it is considered
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(Note: the dashed line for the hardware/software boundary is for illustrative purposes only and does not conform to 
the UML notation.)

Figure 18.7. Example of a demand driven output task: (a) Analysis model: commu-
nication diagram. (b) Design model: concurrent communication diagram

desirable to overlap computation with I/O. A demand driven I/O task is used in
such a situation to interface to the passive I/O device. Consider the following cases:

■ In the case of input, overlap the input from the passive device with the compu-
tational task that receives and consumes the data. This is achieved by using a
demand driven input task to read the data from the input device when requested
to do so.

■ In the case of output, overlap the output to the device with the computational
task that produces the data. This is achieved by using a demand driven output
task to output to the device when requested to do so, usually via a message.

Demand driven I/O tasks are used more often with output devices than with
input devices, because the output can be overlapped with the computation more
often, as shown in the following example. Usually, if the I/O and computation are
to be overlapped for a passive input device, a periodic input task is used.

Consider a demand driven output task that receives a message from a producer
task. A demand driven task is depicted with the stereotype «demand». Overlap-
ping computation and output is achieved as follows: the consumer task outputs the
data contained in the message to the passive output device, the display, while the
producer is preparing the next message. This case is shown in Figure 18.7. The Sen-
sor Statistics Display Interface is a demand driven output task. It accepts a mes-
sage to display from the Sensor Statistics Algorithm task, and it displays the sensor
statistics while the Sensor Statistics Algorithm task is computing the next set of values
to display; thus, the computation is overlapped with the output. The Sensor Statistics
Display Interface task is depicted on the concurrent communication diagram with the
stereotypes «demand» «output» task.
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«external timer»
: DigitalClock

«timer»
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Timer

«entity»
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: Microwave
Control
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3: Timer 
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2.1: Time
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«periodic»
«timer»

: Microwave
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: DigitalClock

«entity»
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1: timerEvent
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Expired

2: decrementTime
(out timeLeft)

: Microwave
Control

(a)

(b)

Figure 18.8. Example of a periodic task: (a) Analysis model: com-
munication diagram. (b) Design model: concurrent communication
diagram

18.6 INTERNAL TASK STRUCTURING CRITERIA

Whereas the I/O task structuring criteria are used to determine I/O tasks, the inter-
nal task structuring criteria are used to determine internal (i.e., non I/O) tasks.

18.6.1 Periodic Tasks

Many real-time and concurrent systems have activities that need to be executed on
a periodic basis – for example, computing the distance traveled by the car or the
current speed of the car. These periodic activities are typically handled by periodic
tasks. Although periodic I/O activities are structured as periodic I/O tasks, periodic
internal activities are structured as periodic tasks. Internal periodic tasks include
periodic algorithm tasks.

An activity that needs to be executed periodically (i.e., at regular, equally spaced
intervals of time) is structured as a separate periodic task. The task is activated by a
timer event, performs the periodic activity, and then waits for the next timer event.
The task’s period is the time between successive activations.

As an example of a periodic task, consider the Microwave Timer object shown in
Figure 18.8a. The Microwave Timer object is activated by a timer event every second.
It then requests the Oven Data object to decrement the cooking time by one second
and return the time left. If the cooking time has expired, then the Microwave Timer
object sends a Timer Expired message to Microwave Control. The Microwave Timer
object is designed as a periodic task (Figure 18.8b) that, when activated periodi-
cally, requests the Oven Data object to decrement the cooking time. The Microwave
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Timer task is depicted on the concurrent communication diagram with the stereo-
type «periodic» task. Oven Data is a passive object. The timer event is depicted as an
asynchronous event.

18.6.2 Demand Driven Tasks

Many real-time and concurrent systems have activities that need to be executed on
demand. These demand-driven activities are typically handled by means of demand
driven tasks. Whereas event driven I/O tasks are activated by the arrival of external
interrupts, demand driven internal tasks (also referred to as aperiodic tasks) are
activated on demand by the arrival of internal messages or events.

An object that is activated on demand (i.e., when it receives an internal message
or event sent by a different task) is structured as a separate demand driven task.
The task is activated on demand by the arrival of the message or event sent by
the requesting task, performs the demanded request, and then waits for the next
message or event. Internal demand driven tasks include demand driven algorithm
and tasks. A demand driven task is depicted with the stereotype «demand».

An example of a demand driven task is given in Figure 18.9. In the analysis
model, the Gas Flow Algorithm object is activated on demand by the arrival of a
Pump Command message from the Pump Control object. It then executes an algorithm

«state dependent 
control»

: PumpControl

«algorithm»
: GasFlow
Algorithm

«entity»
: GasPrice

«entity»
: GasFlow

1: Pump 
Command

2: Read 2.1: Gas Price

«output»
: PumpDisplay

Interface

3: Read

3.1: Current Gas Flow

4: Display Total Gallons, 
Price

«entity»
: GasPrice

«entity»
: GasFlow

1: pump 
Command

2: read 
(out gasPrice)

3: read(out currentGasFlow)

4: display(gallons, price)

«demand»
«algorithm»
: GasFlow
Algorithm

«state dependent 
control»

: PumpControl

«output»
: PumpDisplay

Interface

(a)

(b)

Figure 18.9. Example of a demand driven task: (a) Analysis model: commu-
nication diagram. (b) Design model: concurrent communication diagram
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to read the current gas flow and the gas price and compute the total gallons pumped
and total price, which are then sent to the Pump Display Interface object (Figure
18.9a). In the design model, the Gas Flow Algorithm object is structured as a demand
driven algorithm task with the same name, which is activated by the arrival of a
Pump Command message. The Gas Flow Algorithm task is depicted on the concurrent
communication diagram with the stereotypes «demand» «algorithm» task (Figure
18.9b). The Pump Control and Pump Display Interface objects are also structured as
tasks. The Gas Flow and Gas Price entity objects are passive objects.

18.6.3 Control Tasks

In the analysis model, a state-dependent control object executes a statechart. Using
the restricted form of statecharts whereby concurrency within an object is not per-
mitted, it follows that the execution of a statechart is strictly sequential. Hence, a
task, whose execution is also strictly sequential, can perform the control activity. A
task that executes a sequential statechart (typically implemented as a state transi-
tion table) is referred to as a state-dependent control task. A control task is usually a
demand driven task that is activated on demand by a message sent by another task.
A state-dependent control task is depicted with the stereotype «state-dependent
control».

An example of a control task is shown in Figure 18.10. The state-dependent con-
trol object Microwave Control (Figure 18.10a), which executes the Microwave Control
statechart, is structured as the Microwave Control task (Figure 18.10b) because exe-
cution of the statechart is strictly sequential. The task is depicted on the concurrent
communication diagram with the stereotypes «demand» «state-dependent control»
task.

It is possible to have many objects of the same type. Each object is designed as a
task, in which all the tasks are instances of the same task type. In the case of a state-
dependent control object, each object executes an instance of the same sequential
statechart, although each object is likely to be in a different state. This is addressed
by having one state-dependent control task for each control object, in which the task
executes the statechart.

An example of multiple control tasks of the same type comes from the Eleva-
tor Control System, as shown in Figure 18.11. The control aspects of a real-world

«input»
: DoorSensor

Interface

«state dependent 
control»

: Microwave
Control

1: Door Request
: Heating
Element
Interface

2: Microwave
Command

«demand»
«state dependent 

control»
: Microwave

Control

1: doorRequest
: Heating
Element
Interface

2: microwave
Command«event driven»

«input»
: DoorSensor

Interface

(a)

(b)

Figure 18.10. Example of a control task: (a) Analysis model: communica-
tion diagram. (b) Design model: concurrent communication diagram
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«state dependent 
control»

: Elevator
Control

«demand»
«state dependent 

control»
: Elevator
Control

(a) (b)

Figure 18.11. Example of multiple control tasks of same type: (a) Analysis
model: control object (multiple instances). (b) Design model: one task for
each elevator

elevator are modeled by means of a state-dependent control object, Elevator Con-
trol, and defined by means of a sequential statechart. During task structuring, the
Elevator Control object is designed as an Elevator state-dependent Control task. In
a multiple-elevator system, there is one elevator task for each Elevator Control
object. The tasks are identical, and each task executes an instance of the same
statechart. However, each elevator is likely to be in a different state on its state-
chart. In both Figures 18.11a and 18.11b the multiple instances of the Elevator Con-
trol object and Elevator Control task are depicted using the UML multiple instance
notation.

In addition to state-dependent control objects, coordinator objects from the
analysis model are designed as coordinator tasks. In this case, the job of the task
is to control other tasks, although it is not state-dependent.

18.6.4 User Interaction Tasks

A user typically performs a set of sequential actions. Because the user’s interaction
with the system is a sequential activity, this can be handled by a user interaction task.
The speed of this task is frequently constrained by the speed of user interaction. As
its name implies, a user interaction object in the analysis model is designed as a user
interaction task. User interaction tasks are usually event driven because they are
awakened by inputs from the external user.

A user interaction task usually interfaces with various standard I/O devices, such
as the input keyboard, output display, and mouse, that are typically handled by the
operating system. Because the operating system provides a standard interface to
these devices, it is usually not necessary to develop special-purpose I/O tasks to
handle them.

The concept of one task per user is typical in many multiuser operating systems.
For example, in the UNIX operating system, there is one task (process) per user.
If, on the other hand, the user engages in several activities concurrently, one user
interaction task is allocated for each sequential activity. Thus, in the UNIX oper-
ating system, users can spawn background tasks. All the user interaction tasks that
belong to the same user execute concurrently.

The concept of one task per sequential activity is also used on modern worksta-
tions with multiple windows. Each window executes a sequential activity, so there
is one task for each window. In the Windows operating system, it is possible for the
user to have Word executing in one window and PowerPoint executing in another
window. There is one user interaction task for each window, and each of these tasks
can spawn other tasks (e.g., to overlap printing with editing).
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Figure 18.12. Example of a user interaction task: (a) Analysis model:
communication diagram. (b) Design model: concurrent communication
diagram with one task. (c) Design model: concurrent communication
diagram with two tasks.

An example of a user interaction task is given in Figure 18.12. The object
Operator Interface accepts operator commands, reads from the Sensor Data Repos-
itory entity object, and displays data to the operator (Figure 18.12a). Because all
operator interactions are sequential in this example, the Operator Interface object
is structured as a user interaction task (Figure 18.12b). The task is depicted on
the concurrent communication diagram with the stereotypes «event driven» «user
interaction» task. It is activated by an input from the user.

In a multiple-window workstation environment, a factory operator might view
factory status in one window (supported by one user interaction task) and acknowl-
edge alarms in another window (supported by a different user interaction task). An
example of this is given in Figure 18.12c. Two user interaction tasks, Factory Status
Window and Factory Alarm Window, are active concurrently. The Factory Status Win-
dow task interacts with the passive Factory Status Repository object while the Factory
Alarm Window task interacts with the passive Factory Alarm Repository object.

18.7 DEVELOPING THE CONCURRENT TASK ARCHITECTURE

The task structuring criteria may be applied to the analysis model in the following
order. In each case, one must first decide whether the analysis model object should
be designed as an active object (task) or a passive object in the design model. It is
possible to have multiple tasks of the same type.
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Table 18.1. Mapping from analysis model objects to design model tasks

Analysis model (Object) Design model (Task)

User interaction Event driven user interaction
Input/Output (input, output, I/O) Event driven I/O (input, output, I/O)

Periodic I/O (input, output, I/O)
Demand driven I/O (usually output)

Proxy Event driven proxy
Timer Periodic timer
State-dependent control Demand driven state-dependent control
Coordinator Demand driven coordinator
Algorithm Demand driven algorithm

Periodic algorithm

1. I/O tasks. Start with the device I/O objects that interact with the outside
world. Determine whether the object should be structured as an event driven
I/O task, a periodic I/O task, or a demand driven I/O task.

2. Control tasks. Analyze each state-dependent control object and coordinator
object. Structure this object as a (usually demand driven) state-dependent
control or coordinator task.

3. Periodic tasks. Analyze the internal periodic activities, which are structured
as periodic tasks.

4. Other internal tasks. For each internal task activated by an internal event,
structure this task as a demand driven task.

The guidelines for mapping analysis model objects to design model tasks are sum-
marized in Table 18.1.

18.7.1 Initial Concurrent Communication Diagram

After structuring the system into concurrent tasks, an initial concurrent communica-
tion diagram is drawn, showing all the tasks in the system. On this initial concurrent
communication diagram, the interfaces between the tasks are still simple messages
as depicted on the analysis model communication diagrams. An example of an ini-
tial concurrent communication diagram is given in Figure 18.13 for the ATM Client
subsystem of the Banking System case study. The design of the ATM Client is
described in detail in Chapter 21. Designing task interfaces is described next.

18.8 TASK COMMUNICATION AND SYNCHRONIZATION

After structuring the system into concurrent tasks, the next step is to design the
task interfaces. At this stage, the interfaces between tasks are still simple messages
as depicted on the analysis model communication diagrams. It is necessary to map
these interfaces to task interfaces in the form of message communication, event syn-
chronization, or access to information hiding objects.

The UML notation for message communication is described in Chapter 2. Mes-
sage communication patterns for concurrent components are described in Chapters
12 and 15. In the communication diagrams developed for the analysis model and in
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«demand»
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control»
: Microwave

Control

1: microwave
Request

«event driven»
«input»

: DoorSensor
Interface

Figure 18.14. Example of Asynchronous Message Communication

the preliminary concurrent communication diagram for the design model, all com-
munication is shown using simple messages. In this step of the design modeling,
the task interfaces are defined and depicted on revised concurrent communication
diagrams.

Message interfaces between tasks are either asynchronous (loosely coupled) or
synchronous (tightly coupled), as introduced in Chapter 4 and described in more
detail in Chapter 12. For synchronous message communication, two possibilities
exist: synchronous message communication with reply and synchronous message
communication without reply.

18.8.1 Asynchronous (Loosely Coupled) Message Communication

Asynchronous message communication, also referred to as loosely coupled message
communication, between concurrent tasks is based on the Asynchronous Message
Communication pattern described in Section 12.3.3. The producer sends a message
to the consumer and continues without waiting for a response.

Consider the concurrent communication diagram (Figure 18.14), which depicts
the Door Sensor Interface task sending a message to the Microwave Control task. It is
desirable to design this message interface as using asynchronous message communi-
cation. The Door Sensor Interface task sends the message and does not wait for it to
be accepted by the Microwave Control task. This allows the Door Sensor Interface task
to quickly service any new external input that might arrive. Asynchronous message
communication also provides the greatest flexibility for the Microwave Control task,
because it can wait on a queue of messages that arrive from multiple sources. It then
accepts the first message that arrives, whatever the source.

18.8.2 Synchronous (Tightly Coupled) Message Communication
with Reply

Synchronous message communication with reply, also referred to as tightly coupled
message communication with reply, between concurrent tasks is based on the Syn-
chronous Message Communication with Reply pattern described in Section 12.3.4.
The producer sends a message to the consumer and then waits for a reply.

Although used in client/server systems (Chapter 15), Synchronous Message
Communication with Reply can also involve a single producer sending a message
to a consumer and then waiting for a reply, in which case no message queue devel-
ops between the producer and the consumer. An example of Synchronous Message
Communication with Reply involving a producer and consumer is from the Auto-
mated Guided Vehicle System, in which the producer task, Vehicle Control, sends
start and stop messages to the consumer task, Motor Interface, and waits for a reply,
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«demand»

«state dependent 
control»

: AGVControl

«demand»
«output»

: MotorInterface

1: startMotor

2: started

Figure 18.15. Example of Synchronous Message Communication with Reply

as depicted on the concurrent communication diagram (Figure 18.15). The producer
needs to be tightly coupled with the consumer, because it sends a message and then
waits for a response. After receiving the message, the consumer processes the mes-
sage, prepares a reply, and sends the reply to the producer. The notation for Syn-
chronous Message Communication with Reply on the concurrent communication
diagram (Figure 18.15) shows a synchronous message sent from the producer to the
consumer with a dashed message, representing the response, sent by the consumer
back to the producer.

18.8.3 Synchronous (Tightly Coupled) Message Communication
without Reply

Synchronous message communication without reply, also referred to as tightly cou-
pled message communication without reply, between concurrent tasks is based on
the Synchronous Message Communication without Reply pattern. The producer
sends a message to the consumer and then waits for acceptance of the message
by the consumer. When the message arrives, the consumer accepts the message,
thereby releasing the producer. The producer and consumer then both continue.
The consumer is suspended if no message is available.

An example of Synchronous Message Communication without Reply is shown
in Figure 18.16. The Sensor Statistics Display Interface is a demand output task. It
accepts a message to display from the Sensor Statistics Algorithm task, as depicted on
the concurrent communication diagram (Figure 18.16). It displays the sensor statis-
tics while the Sensor Statistics Algorithm task is computing the next set of values to
display. Thus, the computation is overlapped with the output.

The producer task, the Sensor Statistics Algorithm task, sends temperature and
pressure statistics to the consumer task, the Sensor Statistics Display Interface, which
then displays the information. In this example, the decision made is that there is
no point in having the Sensor Statistics Algorithm task compute temperature and
pressure statistics if the Sensor Statistics Display Interface cannot keep up with
displaying them. Consequently, the interface between the two tasks is designed as
a Synchronous Message Communication without Reply interface, as depicted on

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

1: temperature
andPressure

Statistics «demand»
«output»

: SensorStatistics
DisplayInterface

Figure 18.16. Example of Synchronous Message Communication without Reply
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the revised concurrent communication diagram (Figure 18.16). The Sensor Statistics
Algorithm computes the statistics, sends the message, and then waits for the accep-
tance of the message by the Sensor Statistics Display Interface before resuming exe-
cution. The Sensor Statistics Algorithm is held up until the Sensor Statistics Display
Interface finishes displaying the previous message. As soon as the Sensor Statistics
Display Interface accepts the new message, the Sensor Statistics Algorithm is released
from its wait and computes the next set of statistics while the Sensor Statistics Dis-
play Interface displays the previous set. By this means, computation of the statistics
(a compute-bound activity) can be overlapped with displaying of the statistics (an
I/O bound activity), while preventing an unnecessary message queue build-up of
statistics at the display task. Thus, the synchronous interface between the two tasks
acts as a brake on the producer task.

18.8.4 Event Synchronization

Three types of event synchronization are possible: an external event, a timer event,
and an internal event. An external event is an event from an external object, typi-
cally an interrupt from an external I/O device. An internal event represents inter-
nal synchronization between a source task and a destination task. A timer event
represents a periodic activation of a task. Events are depicted in UML, using the
asynchronous message notation to depict an event signal.

An example of an external event, typically a hardware interrupt from an input
device, is given in Figure 18.17. The Door Sensor «event driven» «external input
device» generates an interrupt when it has door Input. The interrupt activates the
Door Sensor Interface «event driven» «input» task, which then reads the doorInput.
This interaction could be depicted as an event signal input from the device, fol-
lowed by a read by the task. However, it is more concise to depict the interaction as
an asynchronous event signal sent by the device, with the input data as a parameter,
as depicted on the concurrent communication diagram (Figure 18.17).

An example of a timer event is given in Figure 18.18. The digital clock, which
is an external timer device, generates a timer event to awaken the Microwave Timer
«periodic» task. The Microwave Timer task then performs a periodic activity – in
this case, decrementing the cooking time by one second and checking whether the
cooking time has expired (see Figure 18.8). The timer event is generated at fixed
intervals of time.

«event driven»
«external input

device»
: DoorSensor

1: doorInterrupt 
(doorInput)

Hardware / software boundary

«event driven»
«input»

: DoorSensorInterface

(Note: the dashed line for the hardware/software boundary is for illustrative 
purposes only and does not conform to the UML notation.)

Figure 18.17. Example of external event
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«periodic»
«timer»

: Microwave
Timer

«external timer»
: DigitalClock

1: timerEvent

Figure 18.18. Example of timer event

Internal event synchronization is used when two tasks need to synchronize their
actions without communicating data between the tasks. The source task signals the
event. The destination task waits for the event and is suspended until the event is
signaled. It is not suspended if the event has previously been signaled. The event
signal is depicted in UML by an asynchronous message that does not contain any
data. An example of this is shown in Figure 18.19, in which the pick-and-place robot
task signals the event partReady. This awakens the drilling robot, which operates on
the part and then signals the event partCompleted, which the pick-and-place robot is
waiting to receive.

18.8.5 Task Interaction via Information Hiding Object

It is also possible for tasks to exchange information by means of a passive informa-
tion hiding object. Access to information hiding objects was previously described in
Chapter 14. An example of task access to a passive information hiding object is given
in Figure 18.20, in which the Sensor Statistics Algorithm task reads from the Sensor
Data Repository entity object, and the Sensor Interface task updates the entity object.
On the initial concurrent communication diagram, the Sensor Statistics Algorithm
task sends a simple message, Read, to the entity object and receives a Sensor Data
response, which is also depicted as a simple message (Figure 18.20a). Because the
task is reading from a passive information hiding object, this interface corresponds
to an operation call. The entity object provides a read operation, which is called by
the Sensor Statistics Algorithm task. The sensorData response is an output parameter
of the call. The read operation is executed in the thread of control of the task. On
the revised concurrent communication diagram (Figure 18.20b), the call to the read
operation is depicted by using the synchronous message notation. The sensor Data
response is depicted as the output parameter of the read synchronous message. The
Sensor Interface task calls a write operation provided by the Sensor Data Repository
entity object, with the sensorData as an input parameter.

It is important to realize how the synchronous message notation used between
two concurrent tasks differs from that used between a task and a passive object.
The notation looks the same in the UML: an arrow with a filled-in arrowhead. The
semantics are different, however. The synchronous message notation between two
concurrent tasks represents a producer task waiting for a consumer task to either

«demand»
«state dependent 

control»
pick&Place

Robot

«demand»
«state dependent 

control»
drillingRobot

1: partReady

2: partCompleted

Figure 18.19. Example of internal events
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W1: Sensor Data
«entity»

: SensorData
Repository

R1: Read

R1.1: Sensor Data

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

«periodic»
«input»
: Sensor
Interface

W1: write
(in sensorData)

«entity»
: SensorData
Repository

R1: read (out 
sensorData)

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

«periodic»
«input»
: Sensor
Interface

(a)

(b)

Figure 18.20. Example of tasks invoking operations of passive object:
(a) Initial concurrent communication diagram with simple messages.
(b) Revised concurrent communication diagram with tasks invoking
operations of passive object

respond to or accept the producer’s message, as shown in Figures 18.15 and 18.16.
The synchronous message notation between a task and a passive object represents
an operation call, as shown in Figures 18.20.

18.8.6 Revised Concurrent Communication Diagram

After having determined the task interfaces, the initial concurrent communication
diagram is revised to depict the various types of task interface. An example of the
revised concurrent communication diagram is given for the ATM Client subsystem
of the Banking System case study, as shown in Figure 18.21, in which the initial
concurrent communication diagram of Figure 18.13 is updated to show all the task
interfaces. The design of the ATM Client is described in detail in Chapter 21.

18.9 TASK INTERFACE AND TASK BEHAVIOR SPECIFICATIONS

A task interface specification (TIS) describes a concurrent task’s interface. It is an
extension of the class interface specification with additional information specific to
a task, including task structure, timing characteristics, relative priority, and errors
detected. A task behavior specification (TBS) describes the task’s event sequenc-
ing logic. The task’s interface defines how it interfaces to other tasks. The task’s
structure describes how its structure is derived, using the task structuring criteria.
The task’s timing characteristics address frequency of activation and estimated exe-
cution time. This information is used for real-time scheduling purposes and is not
discussed further in this textbook.

The TIS is introduced with the task architecture to specify the characteristics of
each task. The TBS is defined later, during detailed software design, and describes
the task event sequencing logic, which is how the task responds to the input events
it receives.

A task (active class) differs from a passive class in that it should be designed with
only one operation (in Java, this can be implemented as the run method). For this
reason, the TIS only has a specification of one operation, instead of several for a
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typical passive class. The TIS is defined as follows, with the first five items identical
to the class interface specification:

■ Name
■ Information hidden
■ Structuring criteria: For class structuring criteria, only the role criterion (e.g.,

input) is used; for concurrent tasks, the concurrency criterion (e.g., event driven)
needs to be added.

■ Assumptions
■ Anticipated changes
■ Task interface: The task interface should include a definition of

� Messages inputs and outputs. For each message interface (input or output)
there should be a description of
◦ Type of interface: asynchronous, synchronous with reply, or synchronous

without reply
◦ For each message type supported by this interface: message name and mes-

sage parameters
� Events signaled (input and output), name of event, type of event: external,

internal, timer
� External inputs or outputs. Define the inputs from and outputs to the external

environment.
� Passive objects referenced

■ Errors detected by this task

This section describes the possible errors that could be detected during execution
of this task.

The TBS describes the task’s event sequencing logic, which is how the task
responds to each of its message or event inputs, in particular, what output is gen-
erated as a result of each input. The event sequencing logic is defined during the
detailed software design step. Examples of task event sequencing logic are given in
the Banking System case study in Chapter 21.

18.9.1 Example of TIS for Banking Service Task

The TIS for the Banking Service task (described in Chapter 21 and illustrated in
Figure 18.21) is described here:

Name: BankingService
Information hidden: Details of how BankingService processes ATM transactions
Structuring criteria: role criterion: service; concurrency criterion: demand driven
Assumptions: Transactions are processed sequentially.
Anticipated changes: Possible addition of further transactions; possible change

from sequential service to concurrent service processing
Task interface:

Task inputs:

Synchronous message communication with reply:
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Messages:
� validatePIN

Input parameters: cardId, PIN
Reply: PINValidationResponse

� withdraw

Input parameters: cardId, account#, amount
Reply: withdrawalResponse

� query

Input parameters: cardId, account#
Reply: queryResponse

� transfer

Input parameters: cardId, fromAccount#,
toAccount#, amount
Reply: transferResponse

Task outputs:

Message replies as described previously.
Errors detected: Unrecognized message

18.9.2 Example of TIS for Card Reader Interface Task

The task interface specification for the Card Reader Interface task (Chapter 21 and
Figure 18.21) is described here:

Name: CardReaderInterface
Information hidden: Details of processing input from and output to card reader
Structuring criteria: role criterion: input/output; concurrency criterion: event

driven
Assumptions: only one ATM card input and output is handled at one time.
Anticipated Changes: Possible additional information will need to be read from

ATM card.
Task interface:

Task inputs:
Event input: Card reader external interrupt to indicate that a card has been

input.
External input: cardReaderInput.
Synchronous message communication without reply:

� eject
� confiscate

Task outputs:
External output: cardReaderOutput
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Asynchronous message communication:
� cardInserted
� cardEjected
� cardConfiscated

Passive objects accessed: ATMCard
Errors detected: Unrecognized card, Card reader malfunction.

18.10 IMPLEMENTATION OF CONCURRENT TASKS IN JAVA

As an example of task implementation, consider implementation in Java, in which
tasks are implemented as threads. The simplest way to design a thread class in Java
is to inherit from the Java Thread class, which has one method called run. The new
thread class must then implement the run method, which, when invoked, will exe-
cute independently with its own thread of control. In the example below, the ATM
Control class is designed to be a thread. The body of the thread is contained in the
run method. Typically, the body of the task is a loop, in which the task would either
wait for an external event (from an external device or timer) or wait for a message
from a producer task.

public class ATMControl extends Thread{}
public void run (){
while (true)
//task body
}

18.11 SUMMARY

During the task structuring phase, the system is structured into concurrent tasks and
the task interfaces are defined. To help determine the concurrent tasks, task struc-
turing criteria are provided to assist in mapping an object-oriented analysis model of
the system to a concurrent tasking architecture. The task communication and syn-
chronization interfaces are also defined. Each task is determined by using the task
structuring criteria. A case study of designing a real-time software architecture is
given for the Automated Guided Vehicle System described in Chapter 24. In addi-
tion, an example of concurrent software design is the design of the ATM Client
subsystem in the Banking System case study in Chapter 21.

More information on UML modeling for real-time and embedded systems is
given in MARTE, the UML profile for Modeling and Analysis of Real-Time and
Embedded Systems (Espinoza et al 2009). More information about designing real-
software architectures is given in Gomaa (2000). To make concurrent task design
more efficient (i.e., less demanding of resources), a group of related tasks can be
combined into one clustered task by applying task clustering criteria, such as sequen-
tial, temporal, or control clustering (Gomaa 2000).
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EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is the difference between an
active object and a passive object?
(a) An active object controls a passive

object.
(b) An active object does not have a

thread of control; a passive object
has a thread of control.

(c) An active object executes in a dis-
tributed system; a passive object
executes in a centralized system.

(d) An active object has a thread of
control; a passive object does not
have a thread of control.

2. What is an event-driven input task?
(a) A task that executes every few sec-

onds
(b) A task that controls other tasks
(c) A task that receives inputs from an

external device when it generates
interrupts

(d) A task that checks whether there
is new input from an external de-
vice

3. What is a periodic task?
(a) A task that responds to each mes-

sage it receives
(b) A task that is activated by a timer

event
(c) A task that is activated by an exter-

nal event
(d) A task that is activated by an input

event
4. What is a demand-driven task?

(a) A task that responds to each mes-
sage it receives

(b) A task that is activated by an inter-
nal message or event from another
task

(c) A task that is activated by an exter-
nal event

(d) A task that is activated by an input
event

5. What is a control task?
(a) A task that control other tasks
(b) A task that executes a statechart
(c) A task that executes on demand

(d) A task that controls I/O devices
6. What is a user interaction task?

(a) A task that interacts with I/O
devices

(b) A task that interacts with users
(c) A task that interacts with a user

sequentially
(d) A task that interacts with a user

concurrently
7. Which of the following is true for a Cen-

tralized Control architectural pattern?
(a) Control is divided among various

control components.
(b) It provides the overall control and

sequencing of the system.
(c) It provides overall control by coor-

dinating several control compo-
nents.

(d) It provides overall control over var-
ious I/O objects.

8. Which of the following is true for a Dis-
tributed Control architectural pattern?
(a) Control is divided among various

control components.
(b) It responds to multiple requests

from client subsystems.
(c) It provides overall control by coor-

dinating several control compo-
nents.

(d) It provides distributed control over
various I/O objects.

9. Which of the following is true for a
Hierarchical Control architectural pat-
tern?
(a) Control is divided among various

control components.
(b) It provides overall control over sev-

eral client subsystems.
(c) It provides overall control by coor-

dinating several control compo-
nents.

(d) It provides overall control over var-
ious I/O objects.

10. Which of the following is NOT a case of
event synchronization?
(a) External event
(b) Internal event
(c) Timer event
(d) User event
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Designing Software Product Line
Architectures

A software product line (SPL) consists of a family of software systems that have
some common functionality and some variable functionality (Clements and Northop
2002; Parnas 1979; Weiss and Lai 1999). Software product line engineering involves
developing the requirements, architecture, and component implementations for a
family of systems, from which products (family members) are derived and config-
ured. The problems of developing individual software systems are scaled upwards
when developing SPLs because of the increased complexity due to variability
management.

As with single systems, a better understanding of a SPL can be obtained by consi-
dering the multiple views, such as requirements models, static models, and dynamic
models of the product line. A graphical modeling language such as UML helps in
developing, understanding, and communicating the different views. A key view in
the multiple views of a SPL is the feature modeling view. The feature model is cru-
cial for managing variability and product derivation because it describes the product
line requirements in terms of commonality and variability, and defines the product
line dependencies. Furthermore, it is desirable to have a development approach that
promotes software evolution, such that original development and subsequent main-
tenance are both treated using feature-driven evolution.

This chapter gives an overview of designing SPL architectures using the Prod-
uct Line UML-based Software) engineering (PLUS) method. PLUS builds on the
COMET method by considering the added dimension of variability in each of the
modeling views. Designing SPLs is covered in considerable detail in the author’s
book on this topic (Gomaa 2005a). Section 19.1 describes the evolutionary software
process model for SPL Engineering. Section 19.2 describes use case modeling and
feature modeling for SPLs. Section 19.3 describes static and dynamic modeling for
SPLs. Section 19.4 describes how variability is handled in statecharts. Section 19.5
describes variability management in design models.

19.1 EVOLUTIONARY SOFTWARE PRODUCT LINE ENGINEERING

The software process model for SPL engineering is a highly iterative software pro-
cess that eliminates the traditional distinction between software development and

344
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Software Product
Line (Domain)
Engineering

Software
Application
Engineering

Product Line 
Engineer

Application
Engineer

Product Line Use Case Model
Product Line Analysis Model,

Product Line Software Architecture,
Reusable Component Types

Application
Requirements

Product Line
Requirements

Executable
Application

Customer

Unsatisfied Requirements, Errors, Adaptations

Software Product
Line Repository

Figure 19.1. Evolutionary software process model for software product lines

maintenance. Furthermore, because new software systems are outgrowths of exist-
ing ones, the process takes a SPL perspective; it consists of two main processes (Fig-
ure 19.1):

1. SPL Engineering (also referred to as domain engineering). A product line
multiple-view model that addresses the multiple views of a SPL is developed.
The product line multiple-view model, product line architecture, and reusable
components (referred to as core assets in Clements and Northop [2002]) are
developed and stored in the product line repository.

2. Software Application Engineering. A software application multiple-view
model is an individual product line member derived from the SPL multiple-
view model. The user selects the required features for the individual product
line member. Given the features, the product line model and architecture are
adapted and tailored to derive the application architecture. The architecture
determines which of the reusable components are needed for deriving and
configuring the executable application.

19.2 REQUIREMENTS MODELING FOR SOFTWARE PRODUCT LINES

For single systems, use case modeling is the primary vehicle for describing software
functional requirements. For SPLs, feature modeling is an additional important part
of requirements modeling. The strength of feature modeling is in differentiating
between the functionality provided by the different family members of the prod-
uct line in terms of common functionality, optional functionality, and alternative
functionality.

19.2.1 Use Case Modeling for Software Product Lines

The functional requirements of a system are defined in terms of use cases and actors
(see Chapter 6). For a single system, all use cases are required. In a SPL, only some
of the use cases, which are referred to as kernel use cases, are required by all mem-
bers of the family. Other use cases are optional, in that they are required by some
but not all members of the family. Some use cases might be alternatives to each other



346 Architectural Design

«kernel»

Validate PIN

«kernel»

Transfer Funds

«optional»

Deposit 

Funds

«include» «include» «include»

«kernel»

Query 

Account

«kernel»

Withdraw 

Funds

«optional»

Print 

Statement

«include»

[deposit 

option]

«include»

[ministatement

option]

Figure 19.2. Software product line use cases

(i.e., different versions of the use case are required by different members of the fam-
ily). In UML, the use cases are labeled with the stereotype «kernel», «optional» or
«alternative» (Gomaa 2005a). In addition, variability can be inserted into a use case
through variation points, which specify locations in the use case where variability
can be introduced (Gomaa 2005a; Jacobson, Griss, and Jonsson 1997; Webber and
Gomaa 2004).

Examples of kernel and optional product line use cases for a Banking SPL are
given in Figure 19.2. The kernel of this SPL consists of the use cases that allow a
customer to validate PIN, withdraw funds, query balance of account, and transfer
funds between accounts (as described in Chapters 6 and 21). Optional use cases
are provided for printing a statement (Print Statement) and cash deposit (Deposit
Funds). Additional optional use cases are the ATM operator maintenance use cases
to Startup, Shutdown, and Add Cash to the ATM (although not shown in Figure 19.2,
these use cases are described in the case study in Chapter 21).

Variation points are provided for both the kernel and optional use cases. One
variation point concerns the display prompt language. Since the Banking System
family members will be deployed in different countries, a given bank can choose the
prompt language. The default language is English, with alternative languages being
French, Spanish, and German. An example of a variation point is for all steps that
involve displaying information to the customer in the Validate PIN use case. This
variation point is of type mandatory alternative, which means that a selection among
the alternative choices must be made.

Variation point in Validate PIN use case:
Name: Display Language.
Type of functionality: Mandatory alternative.
Step number(s): 3, 8.
Description of functionality: There is a choice of language for displaying
messages. The default is English. Alternative mutually exclusive languages
are French, Spanish, and German.

19.2.2 Feature Modeling

Feature modeling is an important modeling view for product line engineering (Kang
et al. 1990), because it addresses SPL variability. Features are analyzed and cat-
egorized as common features (must be supported in all product line members),
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optional features (only required in some product line members), alternative fea-
tures (a choice of feature is available), and prerequisite features (dependent upon
other features). The emphasis in feature modeling is capturing the product line vari-
ability, as given by optional and alternative features, because these features differ-
entiate one member of the product family from the others.

Features are used widely in product line engineering but are not typically used
in UML. In order to effectively model product lines, it is necessary to incorporate
feature modeling concepts into UML. Features are incorporated into UML in the
PLUS method using the meta-class concept, in which features are modeled using
the UML static modeling notation and given stereotypes to differentiate between
«common feature», «optional feature», and «alternative feature» (Gomaa 2005a).
Feature dependencies are depicted as associations with the name requires (e.g., the
Greeting feature requires the Language feature). Furthermore, feature groups, which
place a constraint on how certain features can be selected for a product line member,
such as mutually exclusive features, are also modeled using meta-classes and given
stereotypes (e.g., «zero-or-one-of feature group» or «exactly-one-of feature group»)
(Gomaa 2005a). A feature group is modeled as an aggregation of features, because
a feature is part of a feature group.

The feature model for the Banking SPL is shown in Figure 19.3. The common
feature is the Banking System Kernel, which provides the core functionality of the
ATM corresponding to the four kernel use cases in Figure 19.2. The Deposit fea-
ture, which corresponds to the optional Deposit Funds use case in Figure 19.2, is
an optional feature that requires the kernel feature. Similarly, Statement is also an
optional feature that corresponds to the optional Print Statement use case. Lan-
guage is an exactly-one-of feature group, which corresponds to the Language vari-
ation point in the use case model. This feature group consists of the default feature
English and the alternative features of Spanish, French, or German. There is a param-
eterized feature for Max PIN Attempts, which sets the maximum number of invalid
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Figure 19.3. Features and feature groups in UML
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PIN attempts at an ATM and has a default value of 3. Another optional feature
is the Greeting feature, which depends on the Language feature and corresponds to
the Greeting variation point. The ATM can output an optional greeting message to
customers that needs to be displayed in the appropriate language.

In single systems, use cases are used to determine the functional requirements
of a system; they can also serve this purpose in product families. Griss (Griss,
Favaro, and d’Alessandro 1998) has pointed out that the goal of the use case analysis
is to get a good understanding of the functional requirements, whereas the goal of
feature analysis is to enable reuse. Use cases and features complement each other;
thus, optional and alternative use cases are mapped to optional and alternative fea-
tures, respectively, whereas use case variation points are also mapped to features
(Gomaa 2005a).

The relationship between use cases and features can be explicitly depicted in a
feature/use case relationship table, as shown in Table 19.1. For each feature, the
use case it relates to is depicted. In the case of a feature derived from a variation
point, the variation point name is listed. The Banking System Kernel feature is related
to the Validate PIN, Query Account, Transfer Funds, and Withdraw Funds kernel use
cases. The Deposit and Statement optional features correspond to the Deposit Funds
and Print Statement optional use cases, respectively. The Maintenance feature cor-
responds to the ATM operator maintenance use cases to Startup, Shutdown, and
Add Cash to the ATM. The optional Greeting feature and the parameterized Max
PIN Attempts feature correspond to variation points in the Validate PIN use case.
The English, French, German, and Spanish alternative language features are associ-
ated with the Language variation point in all use cases of the Banking System SPL.
This variation point affects all display prompts of an ATM.

Table 19.1 Feature/use case relationship table

Feature
Use case /
variation Variation point

Feature name Category Use case name point (vp) name

Banking System
Kernel

Common Validate PIN
Query Account
Transfer Funds
Withdraw Funds

Kernel
Kernel
Kernel
Kernel

Deposit Optional Deposit Funds Optional
Statement Optional Print Statement Optional
Maintenance Optional Startup Optional

Shutdown Optional
Add Cash Optional

English Default All use cases vp Display Language
Spanish Alternative All use cases vp Display Language
French Alternative All use cases vp Display Language
German Alternative All use cases vp Display Language
Greeting Optional Validate PIN vp Greeting
Max PIN
Attempts

Parameterized Validate PIN vp PIN Attempts
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Figure 19.4. Role and reuse stereotypes in product line classes

19.3 ANALYSIS MODELING FOR SOFTWARE PRODUCT LINES

As with single systems, analysis modeling consists of both static and dynamic model-
ing. However, both modeling approaches need to address modeling SPL variability.

19.3.1 Static Modeling for Software Product Lines

In single systems, a class is categorized by the role it plays. Application classes are
classified according to their role in the application using stereotypes (see Chapter
8), such as «entity class», «control class», or «boundary class». In modeling SPLs,
each class can also be categorized according to its reuse characteristic using the
stereotypes «kernel», «optional», and «variant». In UML, a modeling element can
be described with more than one stereotype. Thus, one stereotype can be used to
represent the reuse characteristic, whereas a different stereotype is used to repre-
sent the role played by the modeling element (Gomaa 2005a). The role a class plays
in the application and the reuse characteristic are orthogonal.

Examples of kernel, optional, and variant entity classes are given in Figure 19.4.
ATM Card and ATM Cash are kernel entity classes because they are needed in every
SPL member. The ATM Greeting entity class is optional because it corresponds to the
optional Greeting feature. For the Language feature group, there is an abstract ker-
nel superclass Display Prompts, with variant subclasses, which contain the language-
specific prompts corresponding to each Language feature. Each class is depicted
with two stereotypes: the role stereotype, which is entity for the classes, and the
reuse stereotype, which is kernel, optional, or variant.

19.3.2 Dynamic Interaction Modeling for Software Product Lines

Dynamic modeling for SPLs uses an iterative strategy called evolutionary dynamic
analysis to help determine the dynamic impact of each feature on the software archi-
tecture. This results in new components being added or existing components having
to be adapted. The kernel system is a minimal member of the product line. In some
product lines, the kernel system consists of only the kernel objects; for other prod-
uct lines, some default objects may be needed in addition to the kernel objects. The
kernel system is developed by considering the kernel use cases, which are required
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by every member for the product line. For each kernel use case, a communication
diagram is developed depicting the objects needed to realize the use case (using
the approach described in Chapters 9 and 11). The kernel system is determined by
integrating the kernel use case–based communication diagrams (using the approach
described in Chapter 13) to depict all the objects in the kernel system and the mes-
sage communication between them. The next step is to determine the classes from
which these objects are instantiated.

The software product line evolution approach starts with the kernel system and
considers the impact of optional and/or alternative features (Gomaa 2005a). This
results in the addition of optional or variant objects to the product line architec-
ture. This analysis is done by considering the variable (optional and alternative) use
cases, as well as any variation points in the kernel or variable use cases. For each
optional or alternative use case, an interaction diagram is developed consisting of
new optional or variant objects. The variant objects are kernel or optional objects
that are impacted by the variable scenarios and therefore need to be adapted.

An example of evolutionary dynamic analysis for the ATM client side of the
Banking SPL is given in Figure 19.5. Figure 19.5a depicts two of the software objects
that realize the Validate PIN use case (ATM Control and Customer Interaction). Con-
sider the impact of the Greeting and Language features on the use case–based com-
munication diagram for Validate PIN (Figure 19.5b). The optional ATM Greeting entity
object is added, as is the appropriate variant Display Prompts entity object (e.g.,
French Display Prompts). Both of these objects are accessed by the Customer Inter-
action object. ATM Control sends Customer Interaction the prompt name. Customer
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Figure 19.5. Evolutionary dynamic analysis of Greeting and Language features on
Validate PIN communication diagram
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Table 19.2. Feature/class dependency table for Banking SPL

Feature Class reuse
Feature name category Class name category Class parameter

Banking System
Kernel

Common Card Reader Interface Kernel

ATM Card Kernel
ATM Control Kernel,

parameterized
Customer Interaction Kernel,

parameterized
Display Prompts Kernel abstract
ATM Transaction Kernel abstract
ATM Cash Kernel
Receipt Printer
Interface

Kernel

Cash Dispenser
Interface

Kernel

Deposit Optional ATM Control Kernel,
parameterized

Deposit condition

Cash Reader Interface
Deposit Transaction

Optional
Optional

Statement Optional ATM Control Kernel,
parameterized

Statement
condition

Statement Transaction Optional
Maintenance Optional ATM Control

Operator Interaction

Kernel,
parameterized
Optional

Maintenance
condition

English Default English Display
Prompts

Default

Spanish Alternative Spanish Display
Prompts

Variant

French Alternative French Display
Prompts

Variant

German Alternative German Display
Prompts

Variant

Greeting Optional ATM Greeting Optional
Customer Interaction Kernel,

parameterized
Greeting
condition

Max PIN
Attempts

Parameterized ATM Transaction Kernel,
parameterized

PIN attempts

Interaction then requests the prompt text from the Display Prompts object, which
it then displays to the customer. For the prompt greeting, Customer Interaction will
request the greeting text from the ATM Greeting object and display the greeting when
the ATM is idle.

The relationship between features and the classes can be depicted on a feature/
class dependency table, which shows for each feature the classes that realize the fea-
ture, as well as the class reuse category (kernel, optional, or variant), and, in the case
of a parameterized class, the class parameter. This table is developed after the
dynamic impact analysis has been carried out using evolutionary dynamic analysis.
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19.4 DYNAMIC STATE MACHINE MODELING
FOR SOFTWARE PRODUCT LINES

When variable classes are developed, there are two main approaches to consider,
specialization or parameterization. Specialization is effective when there are a rela-
tively small number of changes to be made, so that the number of specialized classes
is manageable. In product line development, however, there can be a large degree
of variability. Consider the issue of variability in state-dependent control classes,
which are modeling using state machines and depicted on statecharts as described
in Chapter 10. This variability can be handled by using either parameterized state
machines or specialized state machines. Depending on whether the product line uses
a centralized or decentralized approach, it is likely that there will be several differ-
ent state-dependent control classes, each modeled by its own state machine. The
following discussion relates to the variability within a given state-dependent class.

To capture state machine variability and evolution, it is necessary to specify
optional states, events and state transitions, and actions. A further decision that
needs to be made is whether to use state machine inheritance or parameterization.
The problem with using inheritance is that a different state machine is needed to
model each alternative or optional feature, or feature combination, which rapidly
leads to a combinatorial explosion of inherited state machines. For example, with
only three features that could impact the state machine, there would be eight pos-
sible feature combinations, resulting in eight variant state machines. With 10 fea-
tures, there would be over 1000 variant state machines. However, 10 features can
be easily modeled on a parameterized state machine as 10 feature-dependent state
transitions, states, or actions.

It is often more effective to design a parameterized state machine, in which there
are feature-dependent states, events, and transitions. Optional state transitions are
specified by having an event qualified by a Boolean feature condition, which guards
entry into the state. Optional actions are also guarded by a Boolean feature con-
dition, which is set to True if the feature is selected and False if the feature is not
selected for a given SPL member.

Examples of feature-dependent state transitions and actions are given for an
extract from a Microwave Oven product line. Figure 19.6 depicts three states (Cook-
ing, Ready to Cook, and Door Shut with Item) from the Microwave Oven statechart.
(The kernel statechart for this example is the same as that described in Chapter
10, Section 10.2.2.) Minute Plus is an optional microwave oven feature that cooks
food for a minute. In the statechart, Minute Pressed is a feature-dependent state
transition from Door Shut with Item state to Cooking state. This state transition is
guarded by the feature condition minuteplus in Figure 19.6, which is True if the
feature is selected. There are also feature-dependent actions, such as Switch On
(entry action in Cooking state) and Switch Off (transition action out of Cooking state)
in Figure 19.6, which are only enabled if the light feature condition is True, and the
Beep action (exit action in Cooking state), which is only enabled if the beeper fea-
ture condition is True. Thus, the feature condition is True if the optional feature
is selected for a given product line member (meaning that the transition or action
is enabled), and False if the feature is not selected (meaning that the transition or
action is disabled). The impact of feature interactions can be modeled very precisely
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Figure 19.6. Feature-dependent state transitions and actions

using state machines through the introduction of alternative states or transitions.
Designing parameterized statecharts is often more manageable than designing spe-
cialized statecharts.

19.5 DESIGN MODELING FOR SOFTWARE PRODUCT LINES

In design modeling, variability is handled by developing variant and parameterized
components. Certain software architectural patterns are particularly appropriate for
SPLs because they encourage variability and evolution.

19.5.1 Modeling Component-Based Software Architectures

A software component’s interface is specified separately from its implementation,
and, unlike a class, the component’s required interface is designed explicitly in addi-
tion to the provided interface. This is particularly important for architecture-centric
evolution, because it is necessary to know the impact of the change to a component
on all components that interface to it.

This capability for modeling component-based software architectures is partic-
ularly valuable in product line engineering, to allow the development of kernel,
optional and variant components, “plug-compatible” components, and component
interface inheritance. There are various ways to design components. It is highly
desirable, where possible, to design components that are plug-compatible, so that
the required port of one component is compatible with the provided ports of other
components to which it needs to connect (Gomaa 2005a). Consider the case in
which a producer component needs to be able to connect to different alternative
consumer components in different product line members, as shown in Figure 19.7.
The most desirable approach, if possible, is to design all the consumer components
with the same provided interface, so that the producer can be connected to any con-
sumer without changing its required interface. In Figure 19.7, Customer Interaction
can be connected to any variant version of the Display Prompts component, such as
English Display Prompts and French Display Prompts (which correspond, respectively,
to the default English and alternative French features in Figure 19.3). The compo-
nent interface is shown in Figure 19.7, which specifies three operations, to initialize
the component, read prompt text given the prompt Id, and add new prompt.
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Each default or variant component, such as English Display Prompts or French Dis-
play Prompts, that realizes the interface inherits the component interface from the
abstract Display Prompts component and provides the language specific implemen-
tation.

It is possible for a component to connect to different components and have dif-
ferent interconnections such that in one case it communicates with one component
and in a different case it communicates with two different components. This flexibil-
ity helps in evolving the software architecture. When plug-compatible components
are not practical, an alternative component design approach is component interface
inheritance. Consider a component architecture that evolves in such a way that the
interface through which the two components communicate needs to be specialized
to allow for additional functionality. In this case, both the component that provides
the interface and the component that requires the interface have to be modified –
the former to realize the new functionality, and the latter to request it. The above
approaches can be used to complement compositional approaches for developing
component-based software architectures.

19.5.2 Software Architectural Patterns

Software architectural patterns (see Chapter 12) provide the skeleton or template
for the overall software architecture or high-level design of an application. These
include such widely used architectures as client/server and layered architectures.
Basing the software architecture of a product line on one or more software archi-
tectural patterns helps in designing the original architecture as well as evolving the
architecture.

Most software systems and product lines can be based on well-understood over-
all software architectures; for example, the client/server software architecture is
prevalent in many software applications. There is the basic client/service architec-
tural pattern (see Chapter 15), with one service and many clients, but there are
also many variations on this theme, such as the Multiple Client/Multiple Service
architectural patterns and Broker patterns (see Chapter 16). Furthermore, with a
client/service pattern, services can evolve with the addition of new services that are
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discovered and invoked by clients. New clients can be added that discover services
provided by one or more service providers.

An architectural pattern that is worth considering because of its desirable prop-
erties for SPLs is the Layered architectural pattern (see Chapter 12). A layered
architectural pattern allows for ease of extension and contraction because compo-
nents can be added to or removed from higher layers, which use the services pro-
vided by components at lower layers of the architecture.

In addition to the aforementioned architectural structure patterns, certain archi-
tectural communication patterns also encourage evolution. In SPLs, it is often desir-
able to decouple components. The Broker, Discovery, and Subscription/Notification
patterns encourage such decoupling. With the Broker patterns (see Chapter 16), ser-
vices register with brokers, and clients can then discover new services; thus, a prod-
uct line can evolve with the addition of new clients and services. A new version of a
service can replace an older version and register itself with the broker. Clients com-
municating via the broker would automatically be connected to the new version of
the service. The Subscription/Notification pattern (see Chapter 17) also decouples
the original sender of the message from the recipients of the message.

19.6 SUMMARY

This chapter presented an overview of designing SPL architectures. It described how
use case modeling, static modeling, dynamic interaction modeling, dynamic state
machine modeling, and design modeling can be extended and applied to modeling
SPLs. It was also noted that feature modeling is the unifying model for relating vari-
ability in requirements to variability in the SPL architecture. For more information
on this topic, considerable detail is provided in the author’s book on designing SPLs
with UML (Gomaa 2005a).

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a software product line (SPL)?
(a) A family of systems with some com-

mon components and some vari-
able components

(b) An assembly line
(c) A family of identical systems
(d) The software products marketed by

a company
2. What is an optional use case?

(a) A use case with some optional steps
(b) A use case that does not need to be

developed
(c) A use case that is required by

some product line members but not
others

(d) A use case that can be chosen in
place of a different use case in a
SPL member

3. What is a use case variation point?
(a) A variable use case
(b) A location in the use case at which

change can occur
(c) An alternative use case
(d) A location in the use case where an

alternative path can start
4. What is a SPL feature?

(a) A requirement or characteristic
that is provided by one or more
SPL members

(b) A marketing need
(c) A class provided by the SPL
(d) A SPL use case

5. What is a SPL feature group?
(a) A collection of features
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(b) A group of features with a partic-
ular constraint on their usage in a
SPL member

(c) A group of mutually exclusive fea-
tures

(d) A group of optional features with a
particular constraint on their usage
in a SPL member

6. What is a kernel class in a SPL?
(a) An entity class in the SPL
(b) A SPL class that stores essential

data
(c) A class that is required by all mem-

bers of the SPL
(d) An external class to the SPL

7. What two categories of stereotypes are
used in modeling SPL classes?
(a) Kernel and optional stereotypes
(b) Optional and variant stereotypes
(c) Common and variant stereotypes
(d) Reuse and application role stereo-

types
8. How are feature conditions used in a

SPL state machine?
(a) A guard condition
(b) A condition that is True or False

(c) To identify if a feature is selected or
not in the state machine

(d) To allow state machine inherit-
ance

9. What is a kernel system in a SPL?
(a) A member of the SPL only com-

posed of kernel classes
(b) A member of the SPL composed

of kernel classes and possibly some
default classes

(c) A member of the SPL composed
of kernel classes and possibly some
optional classes

(d) A member of the SPL composed
of kernel classes and possibly some
entity classes

10. What does the SPL software architec-
ture describe?
(a) The software inside a family of

buildings
(b) The structure of a client/server pro-

duct family
(c) The overall structure of the soft-

ware product line
(d) The software product line classes

and their relationships
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Software Quality Attributes

Software quality attributes (Bass, Clements, and Kazman 2003) refer to the non-
functional requirements of software, which can have a profound effect on the quality
of a software product. Many of these attributes can be addressed and evaluated at
the time the software architecture is developed. Software quality attributes include
maintainability, modifiability, testability, traceability, scalability, reusability, perfor-
mance, availability, and security. An introduction to software quality attributes is
given in Section 4.6. This section describes each of these attributes and discusses
how they are supported by the COMET design method.

Some software quality attributes are also system quality attributes because they
need both the hardware and software to achieve high quality. Examples of these
quality attributes are performance, availability, and security. Other software quality
attributes are purely software in nature because they rely entirely on the quality of
the software. Examples of these quality attributes are maintainability, modifiability,
testability, and traceability.

20.1 MAINTAINABILITY

Maintainability is the extent to which software is capable of being changed after
deployment. Software may need to be modified for the following reasons:

■ Fix remaining errors. These are errors that were not detected during testing of
the software prior to deployment.

■ Address performance issues. Performance problems may not become apparent
until after the software application has been deployed and is operational in the
field.

■ Changes in software requirements. The biggest reason for software change is
changes in software requirements.

In many cases, software maintenance is actually a misnomer for software evolu-
tion. In particular, unanticipated changes in software requirements necessitate mod-
ifications to the software that could be extensive. To cope with future evolution,
software should be designed for change and adaptability. Quality must be built into

357
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the original product to make it maintainable, which means using a good software
development process and providing comprehensive documentation of the product.
The documentation should be kept up to date as the software is modified. Design
rationale should be provided to explain the design decisions that were made. Other-
wise, maintainers will have no option but to work with undocumented code, which
might well be poorly structured.

COMET supports maintainability by providing comprehensive documentation
of the design. Design decisions are actually captured in the design through the use
of stereotypes, which allow design structuring decisions to be included in the design.
With the use case–based development approach, the effect of a change to a require-
ment can be traced from use case to software design and implementation. In addi-
tion, the COMET support for modifiability and testability greatly assists in the main-
tainability of the product.

As an example of how maintainability is provided in COMET, consider a change
in requirements that necessitates that the Banking System become available in
South America, Europe, and Africa. In particular, this requires that prompts be dis-
played in different languages. Every use case that provides prompts to the customer
is potentially affected by this change. An analysis of the design reveals that the only
object that interfaces to the customer is Customer Interaction. A good design solution
would attempt to limit the design change to a minimum. A change to achieve this
goal is that all prompts sent by the ATM Control object to the Customer Interaction
object have a prompt Id instead of the prompt text. If Customer Interaction already
has the prompt messages hardcoded, the prompts would need to be removed and
placed in a prompt table. The prompt table would have one column for prompt
Ids and a second column for the corresponding prompt text. A simple table lookup
would, given the prompt Id, return the prompt text. At system initialization time, the
prompt table for the desired language would be loaded. The default prompt table
would be in English. For the South American market (apart from Brazil) and for
the Spanish market, the Spanish prompt table would be loaded. For France, Que-
bec, and large parts of West Africa, the French prompt table would be loaded at
initialization time. An example of a prompt table with English prompts is given in
Table 20.1.

20.2 MODIFIABILITY

Modifiability is the extent to which software is capable of being modified during and
after initial development. A modular design consisting of modules with well-defined

Table 20.1. Example of maintainability in worldwide system: Prompt table with
language-specific prompts

Prompt Id Prompt text

Get-PIN Please enter your PIN:
Invalid-PIN-Prompt The PIN is invalid. Please re-enter your PIN:
Display-Confiscate There is a problem with your request. Your card has been

confiscated. Please contact your bank.
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interfaces is essential. Parnas advocated design for change based on the information
hiding concept, in which change is anticipated and managed by each information
hiding module hiding a secret that could change independently of other parts of the
software. Information hiding is a fundamental design concept (see Chapter 4) and
forms the basis of object-oriented design (see Chapter 14).

COMET supports modifiability by providing support for information hiding at
the class and component levels, and providing support for separation of concerns at
the subsystem level. Decisions such as encapsulating (a) each finite state machine
within a separate state machine class, (b) each interface to a separate external
device, system, or user within a separate boundary class, and (c) each separate
data structure within a separate data abstraction class, assist with modifiability. At
the architecture level, the COMET component-based software architectural design
approach leads to the design of components that can be deployed to different dis-
tributed nodes at software deployment time, so that the same architecture can be
deployed to many different configurations in support of different instances of the
application.

To continue with the prompt table example, using COMET, the design of the
prompt table would affect the static and dynamic models. For a start, the prompt
table would be encapsulated in a prompt class. Because support for different lan-
guages is required, a good approach is to design a superclass called Display Prompts
and design subclasses for each language. The initial requirement is for English
(default), French, Italian, Spanish, and German language prompts (Figure 20.1);
however, the design should allow for extension to other languages. The solution
is to design the Display Prompts class as an abstract class with a common interface
consisting of a read operation to read prompts from the prompt table and an update
operation, in order to update the prompt table and add a new prompt. The language-
specific prompt subclasses would inherit the interface unchanged and then provide
the language-specific implementation. An alternative solution to this problem using
software product line concepts is described in Chapter 19.

«entity»

DisplayPrompts

«entity»

English
DisplayPrompts

«entity»

French
DisplayPrompts

«entity»

Spanish
DisplayPrompts

«entity»

German
DisplayPrompts

Figure 20.1. Example of modifiability: abstract Display Prompts
superclass and language-specific subclasses
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20.3 TESTABILITY

Testability is the extent to which software is capable of being tested. It is impor-
tant to develop a software test plan early in the software life cycle and to plan on
developing test cases in parallel with software development. The following para-
graphs describe how the different stages of software testing can be integrated with
the COMET method. A comprehensive description of software testing is given by
Ammann and Offutt (2008).

During the requirements phase, it is necessary to develop functional (black box)
test cases. These test cases can be developed from the use case model, particularly
the use case descriptions. Because the use case descriptions describe the sequence
of user interactions with the system, they describe the user inputs that need to be
captured for the test cases and the expected system output. A test case needs to be
developed for each use case scenario, one for the main sequence and one for each
alternative sequence of the use case. Using this approach, a test suite can be deve-
loped to test the functional requirements of the system.

During software architectural design, it is necessary to develop integration test
cases, which test the interfaces between the components that communicate with
each other. A testing approach called scenario-based testing can be used to test the
software using a sequence of scenarios that correspond to the realization of the use
case scenarios on interaction models (diagrams), which show the sequence of objects
communicating with each other and messages passed between the objects. Thus, an
integration test case(s) would be developed for each object interaction scenario.

During detailed design and coding, in which the internal algorithms for each
component are developed, white box test cases can be developed that test the com-
ponent internals using well-known coverage criteria such as executing every line of
code and the outcome of every decision. By this means, it is possible to develop unit
test cases to test the individual units, such as components.

An example of a black box test case based on the Validate PIN use case in the
Banking System would consist of inserting the card, prompting for the PIN, and
validating the card Id/PIN combination. Initially, a test stub object could be devel-
oped that simulates the card reader and provides the inputs read off the simulated
card: card Id, start date, and expiration date. The system then prompts for the PIN
(another test stub simulating the user provides the PIN Id), and then sends the card
and PIN information to the Banking Service subsystem (or server stub during devel-
opment). A test environment could be set up with the Debit Card entity class imple-
mented as a relational table. This would allow the main sequence of the use case
(valid PIN) as well as all the alternative sequences to be tested (invalid PIN, third
invalid PIN, card lost or stolen, etc.).

20.4 TRACEABILITY

Traceability is the extent to which products of each phase can be traced back to
products of previous phases. Requirements traceability is used to ensure that each
software requirement has been designed and implemented. Each requirement is
traced to the software architecture and to the implemented code modules. Require-
ments traceability tables are a useful tool during software architecture reviews for
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analyzing whether the software architecture has addressed all the software require-
ments.

It is possible to build traceability into the software development method, as is the
case with the COMET method. COMET is a use case–based development approach
that starts with use cases and then determines the objects required to realize each
use case. Each use case described in the software requirements is elaborated into
a use case–based interaction diagram, which describes the sequence of object com-
munication resulting from an external input, as described in the use case, through
to system output. These interaction diagrams are integrated into the software archi-
tecture. This means that each requirement can be traced from use case to software
design and implementation. The impact of a change to a requirement can therefore
be determined by following the trace from requirement through to design.

As an example of traceability, consider the Validate PIN use case from the Bank-
ing System. This is realized in the dynamic model by the Validate PIN communication
diagram. The change required by the addition of the prompt language requirement
(see section 20.1) can be determined by an impact analysis, which reveals that the
prompt object would need to be accessed by the Customer Interaction object prior
to displaying the prompt, as shown in Figure 20.2. Figure 20.2a shows the original
design with Customer Interaction outputting directly to the display, whereas Figure
20.2b shows the modified design with Customer Interaction reading the prompt text
from the Display Prompts object before outputting to the display. An alternative solu-
tion to this problem using software product line concepts is described in Chapter 19.

20.5 SCALABILITY

Scalability is the extent to which the system is capable of growing after its initial
deployment. There are system and software factors to consider in scalability. From
a system perspective, there are issues of adding hardware to increase the capacity
of the system. In a centralized system, the scope for scalability is limited, such as
adding more memory, disk, or an additional CPU. A distributed system offers much
more scope for scalability, by adding more nodes to the configuration.

From a software perspective, the application needs to be designed in such a way
that it is capable of growth. A distributed component-based software architecture is
much more capable of scaling upwards than a centralized design. Components are
designed such that multiple instances of each component can be deployed to differ-
ent nodes in a distributed configuration. An elevator control system that supports
multiple elevators and multiple floor can have an elevator component and a floor
component, such that there is one instance for each elevator and one instance for
each floor. Such a software architecture can be deployed to execute in a small build-
ing, in a large hotel, or in a skyscraper. A service-oriented architecture can scaled
up by adding more services or additional instances of existing services. New clients
can be added to the system as needed. Clients can discover new services and take
advantage of their offerings.

COMET addresses scalability by providing the capability of designing dis-
tributed component-based software architectures and service-oriented architectures
that can be scaled up after deployment. For example, the Emergency Monitoring
System can be expanded by adding more remote sensors, in the form of additional
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«wide area network»

Alarm Service
{1 node per 

region}

Monitoring Data 
Service

{1 node per 
region}

Remote System 
Proxy

{1 node per remote 
system}

Monitoring Sensor 
Component
{1 node per 

monitoring location}

Operator
Presentation
{1 node per 
operator}

Weather Service
{1 node}

Reporting Service
{1 node}

Figure 20.3. Scale-up in Emergency Monitoring System

sensors or additional external systems, as well as more instances of the services
Monitoring Data Service and the Alarm Service. It would also be possible to add more
services, such as Reporting Service and Weather Service, as well as more instances
of these services. The deployment diagram for the Emergency Monitoring System
(Figure 20.3) shows how the component-based software architecture could be scaled
up.

The Online Shopping System could be expanded by adding more services. The
catalog service could be extended to support multiple vendors (suppliers). These
different suppliers would then be added to the system. Each supplier could operate
quite differently but would need to conform to the interface specified by the service-
oriented architecture.

20.6 REUSABILITY

Software reusability is the extent to which software is capable of being reused. In
traditional software reuse, a library of reusable code components is developed – for
example, a statistical subroutine library. This approach requires the establishment
of a library of reusable components and of an approach for indexing, locating, and
distinguishing between similar components (Prieto-Diaz and Freeman 1987). Prob-
lems with this approach include managing the large number of components that
such a reuse library is likely to contain and distinguishing among similar, though not
identical, components.

When a new design is being developed, the designer is responsible for design-
ing the software architecture – that is, the overall structure of the program and the
overall flow of control. Having located and selected a reusable component from
the library, the designer must then determine how this component fits into the new
architecture.

Instead of reusing an individual component, it is much more advantageous to
reuse a whole design or subsystem that consists of the components and their inter-
connections. This means reuse of the control structure of the application. Archi-
tecture reuse has much greater potential than component reuse because it is large-
grained reuse, which focuses on reuse of requirements and design.

The most promising approach for architecture reuse is to develop a software
product line architecture (Gomaa 2005a) which explicitly captures the commonal-
ity and variability in the family of systems that constitutes the product line. The
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architecture for a software product line, which is the architecture for a family of
products, needs to describe both the commonality and variability in the family.
Depending on the development approach used (functional or object-oriented), the
product line commonality is described in terms of common modules, classes, or com-
ponents, and the product line variability is described in terms of optional or variant
modules, classes, or components.

The term application engineering refers to the process of tailoring and configur-
ing the product family architecture and components to create a specific application,
which is a member of the product family.

PLUS is an extension of COMET to design software product line architectures.
An overview of PLUS is given in Chapter 19, with a complete and detailed descrip-
tion given in Gomaa (2005a). The example of how the Display Prompts superclass
and language-specific subclasses could be designed using a software product line
approach is described in Chapter 19.

20.7 PERFORMANCE

Performance is also an important consideration in many systems. Performance mod-
eling of a system at design time is important to determine whether the system
will meet its performance goals, such as throughput and response times. Perfor-
mance modeling methods include queuing modeling (Gomaa and Menasce 2001;
Menasce and Gomaa 2000) and simulation modeling. Performance modeling is par-
ticularly important in real-time systems, in which failing to meet a deadline could
be catastrophic. Real-time scheduling in conjunction with event sequence modeling
is an approach for modeling real-time designs that are executing on given hardware
configurations.

In COMET/RT, performance analysis of software designs is achieved by apply-
ing real-time scheduling theory. Real-time scheduling is an approach that is par-
ticularly appropriate for hard real-time systems that have deadlines that must be
met (Gomaa 2000). With this approach, the real-time design is analyzed to deter-
mine whether it can meet its deadlines. A second approach for analyzing the per-
formance of a design is to use event sequence analysis and to integrate this with the
real-time scheduling theory. Event sequence analysis is used to analyze scenarios
of communicating tasks and annotate them with the timing parameters for each of
the participating tasks, in addition to considering system overhead for interobject
communication and context switching (Gomaa 2000).

Consider the Banking System described in Chapter 21 and depicted on the
deployment diagram in Figure 20.4, which has the Banking Service executing on
a server node. Performance measurements for a banking service would include
response time to ATM Client requests and the transaction-processing rate in trans-
actions per second. A queuing model could be developed to estimate the perfor-
mance of the Banking System under different ATM transaction workloads and,
hence, to plan for the capacity required for the server, in terms of CPU, main
memory, and secondary storage, as well as the network bandwidth required. Esti-
mates can also be made for the amount of disk space required based on estimates
of the number and size of customer and account records. Performance comparisons
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Figure 20.4. Experiments with different hardware configurations
for Banking System

could be made with different hardware configurations, including single-processor
and dual-processor configurations. Performance comparisons could be made with
alternative software designs and hardware configurations – for example, a sequen-
tial Banking Service on one node and a concurrent Banking Service on two nodes.

20.8 SECURITY

Security is an important consideration in many systems. There are many potential
threats to distributed application systems, such as electronic commerce and banking
systems. There are several textbooks that address computer, information, and net-
work security, including Bishop (2004) and Pfleeger (2006). Some of the potential
threats are as follows:

■ System penetration. An unauthorized person tries to gain access to an applica-
tion system and execute unauthorized transactions.

■ Authorization violation. A person authorized to use an application system mis-
uses or abuses it.

■ Confidentiality disclosure. Secret information such as card numbers and bank
accounts are disclosed to an unauthorized person.

■ Integrity compromise. An unauthorized person changes application data in
database or communication data.

■ Repudiation. A person who performs some transaction or communication activ-
ity later falsely denies that the transaction or activity occurred.

■ Denial of service. Legitimate access to application systems is deliberately dis-
turbed.

COMET extends the use case descriptions to allow the description of nonfunc-
tional requirements, which include security requirements. An example of the exten-
sion of use cases to allow nonfunctional requirements is given in Chapter 6.
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The following list describes how these potential threats can be addressed for
the Banking System (note that not all of these threats can be addressed solely by
software means):

■ System penetration. The solution to this problem is to encrypt the messages at
source, particularly transactions originating at the ATM Client and the responses
sent by the Banking Service, and then to decrypt the messages at the desti-
nation.

■ Authorization violation. A person authorized to use an application system mis-
uses or abuses it. A log of all access to the system needs to be maintained, so
that cases of misuse or abuse can be tracked down, so that any abuse can be
corrected.

■ Confidentiality disclosure. Secret information, such as card numbers and bank
accounts, needs to be protected by an access control method that only allows
users with the appropriate privileges to access the data.

■ Integrity compromise. An access control method needs to be enforced to ensure
that unauthorized persons are prevented from making changes to application
data in the database or communication data.

■ Repudiation. A log needs to be maintained of all transactions so that a claim that
the transaction or activity did not occur can be verified by analyzing the log.

■ Denial of service. An intrusion detection capability is required so that the system
can detect unauthorized intrusions and act to reject them.

20.9 AVAILABILITY

Availability addresses system failure and its impact on users or other systems. There
are times when the system is not available to users for scheduled system mainte-
nance; this planned unavailability is not usually counted in measures of availabil-
ity. However, unplanned system maintenance necessary as a result of system fail-
ure is always counted. Some systems need to be operational at all times; thus, the
effect of a system failure on a system controlling an airplane or spacecraft could be
catastrophic.

Fault-tolerant systems have recovery built into them so that the system can
recover from failure automatically. However, such systems are typically very expen-
sive, requiring such capabilities as triple redundancy and voting systems. Other less
expensive solutions are possible, such as a hot standby, which is a machine ready
for usage very soon after the failure of the system. The hot standby could be for a
server in a client/server system. It is possible to design a distributed system without
a single point of failure, such that the failure of one node results in reduced service,
with the system operational in a degraded mode. This is usually preferable to having
no service whatsoever.

From a software design perspective, support for availability necessitates the
design of systems without single points of failure. COMET supports availability by
providing an approach for designing distributed component-based software archi-
tectures that can be deployed to multiple nodes with distributed control, data, and
services, so that the system does not fail if a single node goes down but can operate
in a degraded mode.
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Figure 20.5. Example of system with no single hardware point of failure

For the case study examples, the hot standby could be used for the Banking
System, which is a centralized client/server system in which the Bank Server is a
single point of failure (Figure 20.4). A hot standby is a backup server that can be
rapidly deployed if the main server goes down. An example of a distributed system
without a single hardware point of failure is the Emergency Monitoring System, in
which the user I/O components, the monitoring and alarm services, and the operator
interaction components can all be replicated. There are several instances of each of
the client components, so if a component goes down, the system can still operate.
The services can be replicated so that there are multiple instances of Monitoring
Data Service and Alarm Service. This is illustrated in the deployment diagram in
Figure 20.5. It is assumed that the network used is the Internet, in which there might
be local failures but not a global failure, so that individual nodes or even regional
subnets might be unavailable at times but other regions would still be operational.

20.10 SUMMARY

This chapter described the software quality attributes of a software architecture and
how they are used to evaluate the quality of the software architecture. The soft-
ware quality attributes described in this chapter include maintainability, modifia-
bility, testability, traceability, scalability, reusability, performance, availability, and
security. Software quality attributes are described in more detail in Bass, Clements,
and Kazman (2003) and Taylor, Medvidovic, and Dashofy (2009).

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What do software quality attributes
address?
(a) Software functional requirements
(b) Software nonfunctional require-

ments
(c) Software performance require-

ments
(d) Software availability requirements

2. What is maintainability?
(a) The extent to which software is

capable of being changed before
deployment

(b) The extent to which software is
capable of being changed after
deployment

(c) The extent to which software is
capable of being changed during
development

(d) The extent to which software is
capable of being changed after
development
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3. What is modifiability?
(a) The extent to which software is

capable of being modified after
deployment

(b) The extent to which software is
capable of being modified after ini-
tial development

(c) The extent to which software is
capable of being modified during
and after initial development

(d) The extent to which software is
capable of being changed before
deployment

4. What is testability?
(a) The extent to which software is

capable of being developed
(b) The extent to which software is

capable of being tested before
deployment

(c) The extent to which software is cap-
able of being tested after deploy-
ment

(d) The extent which the software is
understood

5. Traceability is the extent to which a
product:
(a) Can be traced back to products of

previous phases
(b) Traced back to the requirements
(c) Traced forward to implementa-

tion
(d) Deployed to a hardware configura-

tion
6. What is scalability?

(a) The extent to which an application
can grow

(b) The extent to which the system is
capable of growing after its initial
deployment

(c) The extent to which the system is
capable of growing during develop-
ment

(d) The extent to which the system is
capable of being scaled

7. What is reusability?
(a) The extent to which software imp-

lementation is reusable
(b) The extent to which software is

capable of being reused
(c) The extent to which SPL technol-

ogy can be introduced
(d) The extent to which the soft-

ware is common among a program
family

8. Which of the following is not perfor-
mance-related?
(a) System response time
(b) System throughput
(c) System availability
(d) System capacity

9. Which of the following is not addressed
by a secure system?
(a) System penetration
(b) Denial of service
(c) System scalability
(d) System authorization

10. Which of the following system problems
does availability address?
(a) Denial of service
(b) Single point of failure
(c) System throughput
(d) System penetration



PART IV

Case Studies





21

Client/Server Software Architecture
Case Study

Banking System

This chapter describes how the COMET/UML software modeling and design
method is applied to the design of a client/server software architecture (see Chapter
15): a Banking System. In addition, the design of the ATM Client is an example of
concurrent software design (see Chapter 18), and the design of the Banking Service
is an example of sequential object-oriented software design (see Chapter 14).

The problem description is given in Section 21.1. Section 21.2 describes the use
case model for the Banking System. Section 21.3 describes the static model, covering
static modeling of both the system context and entity classes. Section 21.4 describes
how to structure the system into objects. Section 21.5 describes dynamic model-
ing, in which interaction diagrams are developed for each of the use cases. Section
21.6 describes the ATM statechart. Sections 21.7 through 21.14 describe the design
model for the Banking System.

21.1 PROBLEM DESCRIPTION

A bank has several automated teller machines (ATMs) that are geographically dis-
tributed and connected via a wide area network to a central server. Each ATM
machine has a card reader, a cash dispenser, a keyboard/display, and a receipt
printer. By using the ATM machine, a customer can withdraw cash from either a
checking or savings account, query the balance of an account, or transfer funds from
one account to another. A transaction is initiated when a customer inserts an ATM
card into the card reader. Encoded on the magnetic strip on the back of the ATM
card are the card number, the start date, and the expiration date. Assuming the card
is recognized, the system validates the ATM card to determine that the expiration
date has not passed, that the user-entered personal identification number, or PIN,
matches the PIN maintained by the system, and that the card is not lost or stolen.
The customer is allowed three attempts to enter the correct PIN; the card is confis-
cated if the third attempt fails. Cards that have been reported lost or stolen are also
confiscated.

If the PIN is validated satisfactorily, the customer is prompted for a withdrawal,
query, or transfer transaction. Before a withdrawal transaction can be approved,
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the system determines that sufficient funds exist in the requested account, that the
maximum daily limit will not be exceeded, and that there are sufficient funds at the
local cash dispenser. If the transaction is approved, the requested amount of cash is
dispensed, a receipt is printed that contains information about the transaction, and
the card is ejected. Before a transfer transaction can be approved, the system deter-
mines that the customer has at least two accounts and that there are sufficient funds
in the account to be debited. For approved query and transfer requests, a receipt
is printed and the card ejected. A customer may cancel a transaction at any time;
the transaction is terminated, and the card is ejected. Customer records, account
records, and debit card records are all maintained at the server.

An ATM operator may start up and close down the ATM to replenish the ATM
cash dispenser and for routine maintenance. It is assumed that functionality to open
and close accounts and to create, update, and delete customer and debit card records
is provided by an existing system and is not part of this problem.

21.2 USE CASE MODEL

The use cases are described in the use case model. There are two actors, namely,
the ATM Customer and the Operator, who are the users of the system. The customer
can withdraw funds from a checking or savings account, query the balance of the
account, and transfer funds from one account to another.

The customer interacts with the system via the ATM card reader and the key-
board. It is the customer who is the actor, not the card reader and keyboard; these
input devices provide the means for the customer to initiate the use case and res-
pond to prompts from the system. The printer and cash dispenser are output devices;
they are not actors, because it is the customer who benefits from the use cases.

The ATM operator can shut down the ATM, replenish the ATM cash dispenser,
and start the ATM. Because an actor represents a role played by a user, there can
be multiple customers and operators.

Consider the ATM operator use cases. One option is to have one operator use
case in which the operator shuts down the ATM, adds cash, and then starts up the
ATM. However, because it is possible to shut down the machine for a hardware
problem without adding cash, and to start up the machine after it goes down unex-
pectedly, it is more flexible to have three separate use cases instead of one. These
use cases are to Add Cash (in order to replenish the ATM cash locally), Startup, and
Shutdown, as shown in Figure 21.1.

Consider the use cases initiated by the ATM Customer. One possibility is to have
one use case for all customer interactions. However, there are three separate, quite
distinct transaction types for withdrawal, query, and transfer that can be initiated by
a customer.

We therefore start by considering three separate use cases: Withdraw Funds,
Query Account, and Transfer Funds, one for each transaction type. Consider the
Withdraw Funds use case. In this use case, the main sequence assumes a successful
cash withdrawal by the customer. This involves reading the ATM card, validating
the customer’s PIN, checking that the customer has enough funds in the requested
account, and then – providing the validation is successful – dispensing cash, printing
a receipt, and ejecting the card.
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Figure 21.1. Banking System use case model

However, by comparing the three use cases, it can be seen that the first part of
each use case – namely, reading the ATM card and validating the customer’s PIN –
is common to all three use cases. This common part of the three use cases is factored
out as an inclusion use case called Validate PIN.

The Withdraw Funds, Query Account, and Transfer Funds use cases can then each
be rewritten more concisely as concrete use cases that include the Validate PIN inclu-
sion use case. The relationship between the use cases is shown in Figure 21.1. The
concrete Withdraw Funds use case starts by including the description of the Vali-
date PIN inclusion use case and then continues with the Withdraw Funds description.
The concrete Transfer Funds use case also starts with the description of the Validate
PIN inclusion use case, but then continues with the Transfer Funds description. The
revised concrete Query Account use case is similarly organized. The inclusion use
case and concrete use cases are described next.

The main sequence of the Validate PIN use case deals with reading the ATM
card, validating the customer’s PIN and card. If validation is successful, the system
prompts the customer to select a transaction: withdrawal, query, or transfer. The
alternative branches deal with all the possible error conditions, such as the customer
enters the wrong PIN and must be re-prompted, or an ATM card is not recognized
or has been reported stolen, and so on. Because these can be described quite simply
in the alternative sequences, splitting them off into separate extension use cases is
not necessary.
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21.2.1 Validate PIN Use Case

Use case name: Validate PIN
Summary: System validates customer PIN
Actor: ATM Customer
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:

1. Customer inserts the ATM card into the card reader.
2. If system recognizes the card, it reads the card number.
3. System prompts customer for PIN.
4. Customer enters PIN.
5. System checks the card’s expiration date and whether the card has

been reported as lost or stolen.
6. If card is valid, system then checks whether the user-entered PIN

matches the card PIN maintained by the system.
7. If PIN numbers match, system checks what accounts are accessible

with the ATM card.
8. System displays customer accounts and prompts customer for

transaction type: withdrawal, query, or transfer.
Alternative sequences:
Step 2: If the system does not recognize the card, the system ejects the
card.
Step 5: If the system determines that the card date has expired, the system
confiscates the card.
Step 5: If the system determines that the card has been reported lost or
stolen, the system confiscates the card.
Step 7: If the customer-entered PIN does not match the PIN number for
this card, the system re-prompts for the PIN.
Step 7: If the customer enters the incorrect PIN three times, the system
confiscates the card.
Steps 4–8: If the customer enters Cancel, the system cancels the transaction
and ejects the card.
Postcondition: Customer PIN has been validated.

21.2.2 Withdraw Funds Concrete Use Case

Use case name: Withdraw Funds
Summary: Customer withdraws a specific amount of funds from a valid
bank account.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.
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Main sequence:
1. Include Validate PIN use case.
2. Customer selects Withdrawal, enters the amount, and selects the

account number.
3. System checks whether customer has enough funds in the account

and whether the daily limit will not be exceeded.
4. If all checks are successful, system authorizes dispensing of cash.
5. System dispenses the cash amount.
6. System prints a receipt showing transaction number, transaction type,

amount withdrawn, and account balance.
7. System ejects card.
8. System displays Welcome message.

Alternative sequences:
Step 3: If the system determines that the account number is invalid, then it
displays an error message and ejects the card.
Step 3: If the system determines that there are insufficient funds in the
customer’s account, then it displays an apology and ejects the card.
Step 3: If the system determines that the maximum allowable daily with-
drawal amount has been exceeded, it displays an apology and ejects the
card.
Step 5: If the ATM is out of funds, the system displays an apology, ejects
the card, and shuts down the ATM.
Postcondition: Customer funds have been withdrawn.

21.2.3 Query Account Concrete Use Case

Use case name: Query Account
Summary: Customer receives the balance of a valid bank account.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:

1. Include Validate PIN use case.
2. Customer selects Query, enters account number.
3. System reads account balance.
4. System prints a receipt that shows transaction number, transaction

type, and account balance.
5. System ejects card.
6. System displays Welcome message.

Alternative sequence:
Step 3: If the system determines that the account number is invalid, it dis-
plays an error message and ejects the card.
Postcondition: Customer account has been queried.
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21.2.4 Transfer Funds Concrete Use Case

Use case name: Transfer Funds
Summary: Customer transfers funds from one valid bank account to
another.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:

1. Include Validate PIN use case.
2. Customer selects Transfer and enters amount, from account, and to

account.
3. If the system determines the customer has enough

funds in the from account, it performs the transfer.
4. System prints a receipt that shows transaction number, transaction

type, amount transferred, and account balance.
5. System ejects card.
6. System displays Welcome message.

Alternative sequences:
Step 3: If the system determines that the from account number is invalid, it
displays an error message and ejects the card.
Step 3: If the system determines that the to account number is invalid, it
displays an error message and ejects the card.
Step 3: If the system determines that there are insufficient funds in the
customer’s from account, it displays an apology and ejects the card.
Postcondition: Customer funds have been transferred.

21.3 STATIC MODELING

This section begins by considering the problem domain and the system context, and
then continues with a discussion of static modeling of the entity classes. Refer also
to Chapter 7, which describes static modeling in detail with some examples from the
Banking System.

21.3.1 Static Modeling of the Problem Domain

The conceptual static model of the problem domain is given in the class diagram
depicted in Figure 21.2. A bank has several ATMs. Each ATM is modeled as a
composite class consisting of a Card Reader, a Cash Dispenser, a Receipt Printer, and
a keyboard/display through which the user interacts, the ATM Customer Keyboard
Display. The ATM Customer actor inserts the card into the Card Reader and responds
to system prompts though the ATM Customer Keyboard Display. The Cash Dispenser
dispenses cash to the ATM Customer actor. The Receipt Printer prints a receipt for the
ATM Customer actor. In addition, the Operator actor is a user whose job is to maintain
the ATM.
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Figure 21.2. Conceptual static model for problem domain

21.3.2 Static Modeling of the System Context

The software system context class diagram, which uses the static modeling nota-
tion, is developed to show the external classes to which the Banking System, shown
as one aggregate class, has to interface. We develop the context class diagram by
considering the physical classes determined during static modeling of the problem
domain, as described in detail in Chapter 7.

From the total system perspective – that is, both hardware and software – the
ATM Customer and ATM Operator actors are external to the system, as shown in Figure
7.19. The ATM Operator interacts with the system via a keypad and display. The ATM
Customer actor interacts with the system via four I/O devices, which are the card
reader, cash dispenser, receipt printer, and ATM Customer keypad/display. From a
total hardware/software system perspective, these I/O devices are part of the system.
From a software perspective, the I/O devices are external to the software system. On
the software system context class diagram, the I/O devices are modeled as external
classes, as shown on Figure 21.3.

The four external classes used by the ATM Customer actor are the Card Reader,
the Cash Dispenser, the Receipt Printer, and the ATM Customer Keypad/Display; the
Operator interacts with the system via a keyboard/display. Both Customer Keypad/
Display and Operator are modeled as external users, as described in Chapter 7. There
is one instance of each of these external classes for each ATM. The software system
context class diagram for the Banking System (see Figure 21.3) depicts the software
system as one aggregate class that receives input from and provides output to the
external classes.
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Figure 21.3. Banking System software context class diagram

21.3.3 Static Modeling of the Entity Classes

The static model of the entity classes, referred to as the entity class model, is shown
in Figure 21.4. The attributes of each entity class are given in Figures 21.5, 21.6,
and 21.7.

Figure 21.4 shows the Bank entity class, which has a one-to-many relationship
with the Customer class and the Debit Card class. The Bank class is unusual in that it
will only have one instance; its attributes are the bank Name, bank Address, and bank
Id. The Customer has a many-to-many relationship with Account. Because there are
both checking accounts and savings accounts, which have some common attributes,
the Account class is specialized to be either a Checking Account or a Savings Account.
Thus, some attributes are common to all accounts, namely, the account Number,
account Type, and balance. Other attributes are specific to Checking Account (e.g.,
last Deposit Amount) and Savings Account (e.g., the accumulated interest).

An Account is modified by an ATM Transaction, which is specialized to depict the
different types of transactions as a Withdrawal Transaction, Query Transaction, Trans-
fer Transaction, or PIN Validation Transaction. The common attributes of a transaction
are in the superclass ATM Transaction and consist of transaction Id (which actually
consists of four concatenated attributes – bank Id, ATM Id, date, and time), transaction
Type, card Id, PIN, and status. Other attributes are specific to the particular type of
transaction. Thus, for the Withdrawal Transaction, the specific attributes maintained
by the subclass are account Number, amount, and balance. For a Transfer Transac-
tion, the attributes maintained by the subclass are from Account Number (checking
or savings), to Account Number (savings or checking), and amount.

There is also a Card Account association class. Association classes are needed
in cases in which the attributes are of the association, rather than of the classes
connected by the association. Thus, in the many-to-many association between Debit
Card and Account, the individual accounts that can be accessed by a given debit card
are attributes of the Card Account association class and not of either Debit Card or
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customerName: String
customerId: String
customerAddress: String

«entity»
Customer

lastDepositAmount: Real

«entity»
CheckingAccount

cardId: String
PIN: String
startDate: Date
expirationDate: Date
status: Integer
limit: Real
total: Real

«entity»
DebitCard

interest: Real

«entity»
SavingsAccountAccount

accountNumber: String
accountType: String
balance: Real

Bank

bankName: String
bankAddress: String
bankId: Real

«entity»

«entity»

Figure 21.5. Conceptual static model for Banking System: class attributes

startDate: Date
expirationDate: Date

«entity»
PINValidationTransaction

«entity»
ATMTransaction

bankId: String
ATMId: String
date: Date
time: Time
transactionType: String
cardId: String
PIN: String
status: Integer

«entity»
WithdrawalTransaction

accountNumber: String
amount: Real
balance: Real

«entity»
QueryTransaction

accountNumber: String
balance: Real
lastDepositAmount: Real

«entity»
TransferTransaction

fromAccountNumber: String
toAccountNumber: String
amount: Real

Figure 21.6. Conceptual static model for Banking System: class attributes (continued)

cashAvailable: Integer
fives: Integer
tens: Integer
twenties: Integer

«entity»
ATMCash

cardId: String
startDate: Date
expirationDate: Date

«entity»
ATMCard

CardAccount

cardId: String
accountNumber: String
accountType: String

ATMInfo

bankId: String
ATMId: String
ATMLocation: String
ATMAddress: String

«entity» «entity»

Figure 21.7. Conceptual static model for Banking System: class attributes (continued)
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Account. The attributes of Card Account are Card Id, account Number, and account
Type.

Entity classes are also required to model other information described in Sec-
tion 21.2. These include ATM Card, which represents the information read off the
magnetic strip on the plastic card. ATM Cash holds the amount of cash maintained
at an ATM, in five-, ten-, and twenty-dollar bills. The Receipt holds information
about a transaction, and because it holds similar information to the Transaction class
described earlier, a separate entity class is unnecessary.

21.4 OBJECT STRUCTURING

We next consider structuring the system into objects in preparation for defining
the dynamic model. The object structuring criteria help determine the objects in
the system. After the objects and classes have been determined, a communication
diagram or sequence diagram is developed for each use case to show the objects that
participate in the use case and the dynamic sequence of interactions between them.

21.4.1 Client/Server Subsystem Structuring

Because the Banking System is a client/server application, some of the objects are
part of the ATM client and some objects are part of the banking service, so we start
by identifying subsystems, which are aggregate or composite objects. In client/server
systems, the subsystems are often easily identifiable. Thus, in the Banking System,
there is a client subsystem called ATM Client Subsystem, of which one instance is
located at each ATM machine. There is also a service subsystem, the Banking Ser-
vice Subsystem, of which there is one instance (Figure 21.8). This is an example of
geographical subsystem structuring, in which the geographical distribution of the

«software system»
BankingSystem

«external user»
Operator1

1

«subsystem»
«client»

ATMClient
Subsystem

11..*

Requests service from «service»
«subsystem»

BankingService
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«external user»
ATMCustomer
KeypadDisplay

1

1

«external output 
device»

CashDispenser

1

1

«external I/O 
device»

CardReader

11

«external output 
device»

ReceiptPrinter

1

1

Figure 21.8. Banking System: major subsystems
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Figure 21.9. Banking System external classes and boundary classes

system is given in the problem description. Both subsystems are depicted as aggre-
gate classes, with a one-to-many association between the Banking Service Subsystem
and the ATM Client Subsystem. All the external classes interface to and communicate
with the ATM Client Subsystem.

21.4.2 ATM Client Object and Class Structuring: Boundary Objects

The next step is to determine the software objects and classes at the ATM Client. First,
consider the boundary objects and classes. The boundary classes are determined
from the software system context diagram, as shown in Figure 21.9, which shows the
Banking System as an aggregate class.

We design one boundary class for each external class. The device I/O classes
are the Card Reader Interface, through which ATM cards are read, the Cash Dis-
penser Interface, which dispenses cash, and the Receipt Printer Interface, which prints
receipts. There is also Customer Interaction, which is the user interaction class that
interacts with the customer via the keyboard/display, displaying textual messages,
prompting the customer, and receiving the customer’s inputs. The Operator Inter-
action class is a user interaction class that interacts with the ATM operator, who
replenishes the ATM machine with cash. There is one instance of each of these
boundary classes for each ATM.

21.4.3 ATM Client Object and Class Structuring: Objects Participating
in Use Cases

Next, consider the individual use cases and determine the objects that participate
in them. First, consider the Validate PIN inclusion use case, which describes the cus-
tomer inserting the ATM Card into the card reader, the system prompting for the
PIN, and the system checking whether the customer-entered PIN matches the PIN
maintained by the system for that ATM card number. From this use case, we first
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determine the need for the Card Reader Interface object to read the ATM card. The
information read off the ATM card needs to be stored, so we identify the need for
an entity object to store the ATM Card information. The Customer Interaction object
is used for interacting with the customer via the keyboard/display, in this case to
prompt for the PIN. The information to be sent to the Banking Service Subsystem for
PIN validation is stored in an ATM Transaction. For PIN validation, the transaction
information needs to contain the PIN number and the ATM Card number. To con-
trol the sequence in which actions at the ATM take place, we identify the need for
a control object, ATM Control.

Next consider the objects in the Withdraw Funds use case, which is entered if
the PIN is valid and the customer selects withdrawal. In this use case, the cus-
tomer enters the amount to be withdrawn and the account to be debited, the sys-
tem checks whether the withdrawal should be authorized, and if positive, dispenses
the cash, prints the receipt, and ejects the card. For this use case, additional objects
are needed. The information about the customer withdrawal, including the account
number and withdrawal amount, needs to be stored in the ATM Transaction object.
To dispense the cash, a Cash Dispenser Interface object is needed. We also need to
maintain the amount of cash in the ATM, so we identify the need for an entity
object called ATM Cash, which is decremented every time there is a cash withdrawal.
Finally, we need a Receipt Printer Interface object to print the receipt. As before, the
ATM Control object controls the sequencing of the use case.

Inspecting the other use cases reveals that one additional object is needed,
namely, the Operator Interaction object, which participates in all use cases initiated
by the Operator actor. The Operator Interaction object needs to send startup and shut-
down events to ATM Control, because operator maintenance and ATM customer
activities are mutually exclusive.

Given the preceding analysis, Figure 21.10 shows the classes in the ATM Client
Subsystem, which is depicted as an aggregate class. In addition to the three device
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ATMClient

«output»

CashDispenser

Interface

«user interaction»

Customer

Interaction
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Figure 21.10. ATM Client subsystem classes
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I/O classes and two user interaction classes depicted in Figure 21.9, there are also
three entity classes and one state-dependent control class.

21.4.4 Object Structuring in Service Subsystem

Several entity objects are bank-wide and need to be accessible from any ATM. Con-
sequently, these objects must be stored in the Banking Service subsystem at the
server. These objects include Customer objects that hold information about bank
customers, Account objects (both checking and saving) that hold information about
individual bank accounts, and Debit Card objects that hold information about all the
debit cards maintained at the bank. The classes from which these objects are instan-
tiated all appear on the static model of the entity classes depicted in Figure 21.4.

In the Banking Service Subsystem, the entity classes are Customer, the Account
superclass, Checking Account and Savings Account subclasses, and Debit Card. There
is also the ATM Transaction object, which migrates from the client to the server. The
client sends the transaction request to the Banking Service, which sends a response to
the client. The transaction is also stored at the server as an entity object in the form
of a Transaction Log, so that a transaction history is maintained. The transient data
sent as part of the ATM Transaction message might differ from the persistent trans-
action data; for example, transaction status is known at the end of the transaction
but not during it.

Business logic objects are also needed at the server to define the business-specific
application logic for processing client requests. In particular, each ATM transac-
tion type needs a transaction manager to specify the business rules for handling the
transaction. The business logic objects are the PIN Validation Transaction Manager,
the Withdrawal Transaction Manager, the Query Transaction Manager, and the Transfer
Transaction Manager. For example, the business rules maintained by the Withdrawal
Transaction Manager are that (1) the account must always have a balance greater or
equal to zero after each withdrawal, and that (2) there is a maximum amount that
can be withdrawn each day, which is given by the attribute limit in the entity class
Debit Card.

21.5 DYNAMIC MODELING

The dynamic model depicts the interaction among the objects that participate in
each use case. The starting point for developing the dynamic model is the use cases
and the objects determined during object structuring. The sequence of interobject
message communication to satisfy the needs of a use case is depicted on either a
sequence diagram or a communication diagram. Usually one or the other of the
diagrams suffices. In this example, both diagrams are developed for the client sub-
system to allow a comparison of the two approaches.

Because the Banking System is a client/server system, the decision was made
earlier to structure the system into client and service subsystems, as shown in Figure
21.8. The communication diagrams are structured for client and service subsystems.

The communication diagrams depicted in Figures 21.11 and 21.16 are for the
realizations of the Validate PIN and Withdraw Funds use cases on the ATM client.
Communication diagrams are also needed to realize the Transfer Funds and Query
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Account use cases on the ATM client, as well as for the use cases initiated by the
operator.

The Validate PIN and Withdraw Funds communication diagrams for the ATM
client are state-dependent. The state-dependent parts of the interactions are defined
by the ATM Control object, which executes the ATM statechart. The state-dependent
dynamic analysis approach is used to determine how the objects interact with each
other. Statecharts are shown for the two use cases in Figures 21.13 and 21.18, respec-
tively. The dynamic analysis for these two client-side use cases is described in Sec-
tions 21.5.1 and 21.5.3, respectively.

The Banking Service processes transactions from multiple ATMs in the order it
receives them. The processing of each transaction is self-contained; thus, the bank-
ing service part of the use cases is not state-dependent. Consequently, a stateless
dynamic analysis is needed for these use cases. The communication diagrams for
the server side Validate PIN and Withdraw Funds use cases are given in Figures 21.14
and 21.19. The dynamic analysis for these two server-side use cases is given in Sec-
tions 21.5.2 and 21.5.4, respectively.

Consider how the objects interact with each other. A detailed example is given
for the Validate PIN and Withdraw Funds use cases. On the client side, both commu-
nication diagram and sequence diagrams are shown. The same message sequence
numbering and message sequence description applies to both the sequence diagram
and the communication diagram.

21.5.1 Message Sequence Description for Client-Side Validate PIN
Interaction Diagram

The client-side Validate PIN interaction diagram starts with the customer inserting
the ATM card into the card reader. The message sequence number starts at 1,
which is the first external event initiated by the actor. Subsequent numbering in
sequence, representing the messages arriving at software objects in the system, is
1.1, 1.2, 1.3 and ends with 1.4, the system’s response displayed to the actor. The
next input from the actor is the external event numbered 2, followed by the internal
events 2.1, 2.2, and so on. The following message sequence description corresponds
to the communication diagram shown in Figure 21.11 and the sequence diagram in
Figure 21.12.

Because the Validate PIN interaction diagram is state-dependent, it is also neces-
sary to consider the ATM statechart, which is executed by the ATM Control object.
In particular, the interaction between the statechart (shown in Figure 21.13) and
ATM Control (depicted on the communication diagram) needs to be considered. The
following message sequence description also addresses the states and transitions on
the statechart that correspond to the events on the communication diagram in Fig-
ure 21.11 and the events on the sequence diagram in Figure 21.12. The message
sequence description is as follows:

1: The ATM Customer actor inserts the ATM card into the Card Reader. The
Card Reader Interface object reads the card input.
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Figure 21.11. Communication diagram: ATM client Validate PIN use case

1.1: The Card Reader Interface object sends the card input data, containing
Card Id, Start Date, Expiration Date to the entity object ATM Card.

1.2: Card Reader Interface sends the Card Inserted message to ATM Control.
The equivalent Card Inserted event causes the ATM Control statechart to
transition from Idle state (the initial state) to Waiting for PIN state. The
output event associated with this transition is Get PIN.

1.3: ATM Control sends the Get PIN message to Customer Interaction.
1.4: Customer Interaction displays the PIN Prompt to the ATM Customer

actor.
2: ATM Customer inputs the PIN number to the Customer Interaction object.
2.1: Customer Interaction requests card data from ATM Card.
2.2: ATM Card provides the card data to the Customer Interaction.
2.3: Customer Interaction sends Card Id, PIN, Start Date, Expiration Date, to

the ATM Transaction entity object.
2.4: ATM Transaction entity object sends the PIN Validation Transaction to

Customer Interaction.
2.5: Customer Interaction sends the PIN Entered (PIN Validation Transaction)

message to ATM Control. The PIN Entered event causes the ATM Control
statechart to transition from Waiting for PIN state to Validating PIN state.
The output event associated with this transition is Validate PIN.

2.6: ATM control sends a Validate PIN (PIN Validation Transaction) request to
the Banking Service.

2.7: Banking Service validates the PIN and sends a Valid PIN response to ATM
Control. As a result of this event, ATM Control transitions to Waiting for
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Waiting for PIN

Entry / 

Display Welcome

Idle

Validating PIN

Waiting for 

Customer Choice

1.2: Card Inserted / 

1.3: Get PIN

2.5: PIN Entered / 

2.6: Validate PIN 

2.7 [Valid]: Valid PIN /

2.8: Display Menu, 

2.8a: Update Status

Figure 21.13. Statechart for ATM Control: Validate PIN use case

Customer Choice state. The output events for this transition are Display
Menu and Update Status, which correspond to the output messages sent
by ATM Control.

2.8: ATM Control sends the Display Menu message to Customer Interaction.
2.8a: ATM Control sends an Update Status message to the ATM Transaction.
2.9: Customer Interaction displays a menu showing the Withdraw, Query,

and Transfer options to the ATM Customer.

The dynamic modeling of the alternative scenarios, corresponding to the alter-
native sequences through the Validate PIN use case, is described in Chapter 11. The
alternative scenarios are depicted on interaction diagrams and statecharts.

21.5.2 Message Sequence Description for Server-Side Validate PIN
Interaction Diagram

Consider the interaction diagram for the server side Validate PIN inclusion use case.
To validate the PIN at the server, the Debit card entity object, which contains all
the information pertinent to all debit cards that belong to the bank, needs to be
accessed. If PIN validation is successful, the Card Account entity object needs to be
accessed to retrieve the account numbers of the accounts that can be accessed by
this debit card.
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«client»

«subsystem»

: ATMClient

«business logic»

: PINValidation

TransactionManager

«entity»

: DebitCard

«entity»

: CardAccount

V1: Validate PIN

(PIN ValidationTransaction)

V7: Valid PIN

(Account #s)

V2: Validat e

(Card Id, PIN)

V3: Valid PI N

V4: Read

(Card Id) V5: Account #s

«service»

«subsystem»

: BankingService

«entity»

: TransactionLog

V6: Log 

Transaction

Figure 21.14. Communication diagram: Banking Service Validate PIN use case

In addition, each transaction has a business logic object that encapsulates the
business application logic to manage the execution of the transaction. The business
logic object receives the transaction request from the ATM Control object at the client
and then interacts with the entity objects to determine what response to return to
ATM Control. For example, the business logic object for the PIN Validation transac-
tion is the PIN Validation Transaction Manager.

The following message sequence description for the server side Validate PIN
interaction diagram corresponds to the communication diagram shown in Fig-
ure 21.14 and the sequence diagram shown in Figure 21.15.

«business logic»
: PINValidation

TransactionManager

«subsystem»
: ATMClient

«entity»
: DebitCard

«entity»
: CardAccount

V1: Validate PIN
(PIN Validation Transaction)

V2: Validate
(Card Id, PIN)

V3: Valid PIN

V4: Read (Card Id)

V5: Account #s

V7: Valid PIN
(Account #s)

«entity»
: TransactionLog

V6: Log Transaction

Figure 21.15. Sequence diagram: Banking Service Validate PIN use case
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V1: ATM Client sends the incoming Validate PIN request to the PIN Validation
Transaction Manager. The PIN Validation Transaction Manager contains the
business logic to determine whether the customer-entered PIN matches
the PIN stored in the Banking Service database.

V2: PIN Validation Transaction Manager sends a Validate (Card Id, PIN)
message to the Debit Card entity object, requesting it to validate this cus-
tomer’s debit card, given the card Id and customer-entered PIN.

V3: Debit Card checks that customer-entered PIN matches the Debit Card
record PIN, that card Status is okay (not reported missing or stolen), and
that Expiration Date has not passed. If card passes all checks, Debit Card
sends PIN Validation Transaction Manager a Valid PIN response.

V4: If validation is positive, PIN Validation Transaction Manager sends a mes-
sage to the Card Account entity object requesting it to return the account
numbers that may be accessed for this card Id.

V5: Card Account responds with the valid account numbers.
V6: PIN Validation Transaction Manager logs the transaction with the Trans-

action Log.
V7: PIN Validation Transaction Manager sends a Valid PIN response to the

ATM Client. If the PIN validation checks are satisfactory, the account
numbers are also sent.

21.5.3 Message Sequence Description for Client-Side Withdraw
Funds Interaction Diagram

The message sequence description for the client-side Withdraw Funds interaction
diagram addresses the messages on the communication diagram (Figure 21.16) and
the sequence diagram (Figure 21.17). It also describes the relevant states and transi-
tions on the ATM statechart ( Figure 21.18). The message numbering is a continua-
tion of that described for the client-side Validate PIN interaction diagram in Section
21.5.1.

3: ATM Customer actor inputs Withdrawal selection to Customer Interaction,
together with the account number for checking or savings account and
withdrawal amount.

3.1: Customer Interaction sends the customer selection to ATM Transaction.
3.2: ATM Transaction responds to Customer Interaction with the Withdrawal

Transaction details. Withdrawal Transaction contains transaction Id, trans-
action Type, card Id, PIN, account number, and amount.

3.3: Customer Interaction sends the Withdrawal Selected (Withdrawal Trans-
action) request to ATM Control. ATM Control transitions to Processing
Withdrawal state. Two output events are associated with this transition,
Request Withdrawal and Display Wait.
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Entry / 

Display Welcome

Idle

Waiting for 

Customer Choice

Processing 

Withdrawal
Dispensing

Printing

Ejecting

Terminating

3.3: Withdrawal Selected / 

3.4: Request Withdrawal, 

3.4a: Display Wait

3.5: Withdrawal Approved /

3.6: Dispense Cash,

3.6a: Update Status

3.10: Cash Dispensed /

3.11: Print Receipt,

3.11a: Display Cash Dispensed,

3.11b: Confirm Cash Dispensed

3.15: Receipt Printed /

3.16: Eject

3.18: Card Ejected /

3.19: Display Ejected

After (Elapsed Time) [Closedown not Requested]

Figure 21.18. Statechart for ATM Control: Withdraw Funds use case

3.4: ATM Control sends a Request Withdrawal transaction containing the
Withdrawal Transaction to the Banking Service.

3.4a: ATM Control sends a Display Wait message to Customer Interaction.
3.4a.1: Customer Interaction displays the Wait Prompt to the ATM Customer.
3.5: Banking Service sends a Withdrawal Approved (Amount, Balance)

response to ATM Control. This event causes ATM Control to transition to
Dispensing state. The output events are Dispense Cash and Update Status.

3.6: ATM Control sends a Dispense Cash (Amount) message to Cash Dispenser
Interface.

3.6a: ATM Control sends an Update Status (Amount, Balance) message to ATM
Transaction.

3.7: Cash Dispenser Interface sends the Withdraw (Amount) to ATM Cash.
3.8: ATM Cash sends a positive Cash Response to the Cash Dispenser Interface,

identifying the number of bills of each denomination to be dispensed.
3.9: Cash Dispenser Interface sends the Dispenser Output command to the

Cash Dispenser external output device to dispense cash to the customer.
3.10: Cash Dispenser Interface sends the Cash Dispensed message to ATM Con-

trol. The equivalent Cash Dispensed event causes ATM Control to transition
to Printing state. The three output events associated with this transition
are Print Receipt, Display Cash Dispensed, and Confirm Cash Dispensed.

3.11: ATM Control sends Print Receipt message to Receipt Printer Interface.
3.11a: ATM Control sends Customer Interaction the Display Cash Dispensed

message.
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3.11a.1: Customer Interaction displays Cash Dispensed prompt to ATM Cus-
tomer.

3.11b: ATM Control sends a Confirm Cash Dispensed message to the Banking
Service.

3.12: Receipt Printer Interface requests transaction data from ATM Transac-
tion.

3.13: ATM Transaction sends the transaction data to the Receipt Printer Inter-
face.

3.14: Receipt Printer Interface sends the Printer Output to the Receipt Printer
external output device.

3.15: Receipt Printer Interface sends the Receipt Printed message to ATM
Control. As a result, ATM Control transitions to Ejecting state. The output
event is Eject.

3.16: ATM Control sends the Eject message to Card Reader Interface.
3.17: Card Reader Interface sends the Card Reader Output to the Card Reader

external I/O device.
3.18: Card Reader Interface sends the Card Ejected message to ATM Control.

ATM Control transitions to Terminated state. The output event is Display
Ejected.

3.19: ATM Control sends the Display Ejected message to the Customer Inter-
action.

3.20: Customer Interaction displays the Card Ejected prompt to the ATM Cus-
tomer.

21.5.4 Message Sequence Description for Server-Side Withdraw
Funds Interaction Diagram

The business logic object that participates in the server-side Withdraw Funds use case
is the Withdrawal Transaction Manager, which encapsulates the logic for determining
whether the customer is allowed to withdraw funds from the selected account. The
other business logic objects that participate in the server use cases are the Transfer
Transaction Manager, which encapsulates the logic for determining whether the cus-
tomer can transfer funds from one account to another, and the Query Transaction
Manager. The latter is sufficiently simple that a separate business logic object is not
strictly necessary; the functionality could be handled by the read operation of the
Account object. However, to be consistent with the other business logic objects, it is
kept as a separate object.

A detailed analysis is given for the server-side Withdraw Funds use case. A similar
approach is needed for the server-side Transfer Funds and server-side Query Account
use cases. The following message sequence description corresponds to the commu-
nication diagram shown in Figure 21.19 for the server-side Withdraw Funds use case
and sequence shown in Figure 21.20.

W1: ATM Client sends the Request Withdrawal request to the Withdrawal
Transaction Manager, which contains the business logic for determin-
ing whether a withdrawal can be allowed. The incoming withdrawal
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Figure 21.19. Communication diagram: Banking Service Withdraw Funds
use case

transaction consists of transaction Id, transaction Type, card Id, PIN,
account Number, and amount.

W2: Withdrawal Transaction Manager sends a Check Daily Limit (Card Id,
Amount) message to Debit Card, with the card Id and amount requested.
Debit Card checks whether the daily limit for cash withdrawal has been

«subsystem»
: ATMClient

«business logic»
: Withdrawal
Transaction

Manager

«entity»
: Account

«entity»
: DebitCard

«entity»
: Transaction

Log

W1: Request Withdrawal
(Withdrawal Transaction)

W2: Check Daily Limit
(Card Id, Amount)

W3: Status

W4: Debit (Account#, Amount)

W5: Withdrawal Approved (Amount, Balance)

W6: Update Daily Total
(Card Id, Amount)

W7: Log Transaction
W8: Withdrawal Approved
(Amount, Balance)

Figure 21.20. Sequence diagram: Banking Service Withdraw Funds use case
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exceeded for this card Id. Debit Card determines if: Total Withdrawn
Today + Amount Requested ≤ Daily Limit

W3: Debit Card responds to Withdrawal Transaction Manager with a positive
or negative Daily Limit Response.

W4: If the response is positive, Withdrawal Transaction Manager sends a
message to Account (which is an instance of either Checking Account or
Savings Account), requesting it to debit the customer’s account if there
are sufficient funds in the account. Account determines whether there
are sufficient funds in the account:

Account Balance – Amount Requested ≥ 0

If there are sufficient funds, Account decrements the balance by the
Amount Requested.

W5: Account responds to Withdrawal Transaction Manager with either With-
drawal Approved (Amount, Balance) or Withdrawal Denied.

W6: If the account was debited satisfactorily, the Withdrawal Transaction
Manager sends an Update Daily Total (Card Id, Amount) to Debit Card so it
increments the total withdrawn today by the amount requested.

W7: Withdrawal Transaction Manager logs the transaction with the Transac-
tion Log.

W8: Withdrawal Transaction Manager returns Withdrawal Approved
(Amount, Balance) or Withdrawal Denied to the ATM Client.

21.6 ATM STATECHART

Because there is one control object, ATM Control, a statechart needs to be defined
for it. Partial statecharts are shown corresponding to the Validate PIN and Withdraw
Funds use cases in Figures 21.14 and 21.18, respectively. It is necessary to develop
similar statecharts for the other use cases, and to develop states and transitions for
the alternative paths of the use cases, which in this application address error situ-
ations. Flat statecharts are used initially for the use cases. Integration of the stat-
echarts for the individual use cases and design of the hierarchical ATM Control
statechart are described in Chapter 10. One of the advantages of a hierarchical stat-
echart is that it can be presented in stages, as is shown for the ATM statechart in
Figures 21.21 through 21.24. The event sequence numbers shown on these figures
correspond to the object interactions previously described.

Five states are shown on the top-level statechart in Figure 21.21: Closed Down
(which is the initial state), Idle, and three composite states, Processing Customer
Input, Processing Transaction, and Terminating Transaction. Each composite state
is decomposed into its own statechart, as shown on Figures 21.22, 21.23, and 21.24,
respectively.

At system initialization time, given by the event Startup, the ATM transitions
from the initial Closed Down state to Idle state. The event Display Welcome is triggered
on entry into Idle state. In Idle state, the ATM is waiting for a customer-initiated
event.
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Entry / Display 
Welcome
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Processing 
Transaction

Processing 
Customer

Input

Entry / Display 
System Down

Closed Down

Terminating 
TransactionCancel / Eject,
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Card Stolen, Card Expired/
Confiscate, Update Status 

Rejected / 
Eject,
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Query Approved /
Print Receipt,
Update Status

Transfer Approved /
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Update Status

 Withdrawal Approved /
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 Update Status
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[Closedown Was Requested]
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Cash Eject,
Abort Cash
Dispensed 
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 Request Withdrawal,

 Display Wait
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Request Query, Display Wait

Transfer Selected / 
Request Transfer,

Display Wait

Card Inserted / 
 Get PIN

ClosedownStartup

Third Invalid PIN / Confiscate

Figure 21.21. Top-level statechart for ATM Control

21.6.1 Processing Customer Input Composite State

The Processing Customer Input composite state (Figure 21.22) is decomposed into
three substates – Waiting for PIN, Validating PIN, and Waiting for Customer Choice:

1. Waiting for PIN. This substate is entered from Idle state when the customer
inserts the card in the ATM, resulting in the Card Inserted event. In this state,
the ATM waits for the customer to enter the PIN.

2. Validating PIN. This substate is entered when the customer enters the PIN.
In this substate, the Banking Service validates the PIN.

3. Waiting for Customer Choice. This substate is entered as a result of a Valid PIN
event, indicating a valid PIN was entered. In this state, the customer enters a
selection: Withdraw, Transfer, or Query.

The statechart is developed by considering the different states of the ATM as the
customer actor proceeds through each of the use cases, starting with the Validate PIN
use case. When a customer inserts an ATM card, the event Card Inserted causes the
ATM to transition to the Waiting for PIN substate of the Processing Customer Input
composite state (see Figure 21.22a). During this time, the ATM is waiting for the
customer to input the PIN. The output event, Get PIN, results in a display prompt
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Figure 21.22. Statechart for ATM Control: Processing Customer Input composite state
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to the customer. When the customer enters the PIN number, the PIN Entered event
causes a transition to the Validating PIN substate, during which the Banking Service
determines whether the customer-entered PIN matches the PIN stored by the Bank-
ing System for this particular card. There are three possible state transitions out
of the Validating PIN state. If the two PIN numbers match, the Valid PIN transition
is taken to the Waiting for Customer Choice state. If the PIN numbers do not match,
the Invalid PIN transition is taken to re-enter the Waiting for PIN state and allow
the customer to enter a different PIN number. If the customer-entered PIN is still
invalid after the third attempt, the Third Invalid transition is taken to the Confiscating
substate of the Terminating Transaction composite state.

The Validating PIN substate is itself a composite state consisting of two substates:
Validating PIN and Card as well as Checking PIN Status (see Figure 21.22b). In the first
substate, the card Id (read off card) and PIN (entered by customer) combination are
validated by comparing them with the card Id/PIN combination stored in the Card
Account entity object. In addition, the card Id is checked to ensure that the card is
not lost or stolen. If the validation is successful, the ATM transitions to Waiting for
Customer Choice. If the card is lost or stolen, the ATM transitions to Confiscating
state. However, if the PIN is invalid, an additional check needs to be made to deter-
mine whether this is the third time that the PIN is incorrect. It is better to store the
Invalid PIN count at the client rather than the server, because this is a local ATM
concern. An invalid PIN count is therefore stored in ATM Transaction. This count is
updated and checked after each invalid PIN response from the server – if the count
is less than three, then the ATM transitions back to Waiting for PIN. If the count is
Third Invalid PIN, then the ATM transitions to Confiscating state.

The customer can also press the Cancel button on the ATM machine in any of
the three Processing Customer Input substates. The Cancel event transitions the ATM
to the Ejecting substate of the Terminating Transaction composite state. Because the
Cancel event can occur in any of the three substates of the Processing Customer Input
composite state, it is more concise to show the Cancel transition leaving the compos-
ite state.

21.6.2 Processing Transaction Composite State

The Processing Transaction composite state (Figure 21.23) is also decomposed into
three substates, one for each transaction: Processing Withdrawal, Processing Transfer,

Processing Transaction

Withdrawal Selected / 
 Request Withdrawal,

Display Wait

Query Selected /
Request Query,

Display Wait

Transfer Selected / 
Request Transfer,

Display Wait

Waiting for 
Customer 

Choice

Processing 
Transfer

Processing 
Query

Processing 
Withdrawal

Ejecting

Rejected / 
Eject,

Display Apology

Printing

Dispensing

Query Approved /
Print Receipt,
Update Status

Transfer Approved /
Print Receipt, Update Status

Withdrawal Approved / 
Dispense Cash,

Update Status

Figure 21.23. Statechart for ATM: Processing Transaction composite state
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Processing 
Customer

Input

Processing 
Transaction

Ejecting

Confiscating

Cancel / Eject,

Display Cancel

Stolen Card, Expired Card /

Confiscate, Update Status

Rejected / Eject,

Display Apology
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Closed Down

Receipt Printed / 

Eject

Card Ejected / 

Display Ejected

Cash Dispensed / 

Print Receipt,

Display Cash Dispensed,

Confirm Cash Dispensed

Card Confiscated / 
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After(Elapsed Time)[Closedown Was Requested]

Insufficient

Cash /

Eject,

Abort

Cash

Dispensed

Third Invalid PIN /

Confiscate

Figure 21.24. Statechart for ATM Control: Terminating Transaction composite state

and Processing Query. Depending on the customer’s selection – for example, with-
drawal – the appropriate substate within Processing Transaction – for example, Pro-
cessing Withdrawal – is entered, during which the customer’s request is processed.

From Waiting for Customer Choice state, the customer may select Withdraw,
Query, or Transfer and enter the appropriate substate within the Processing
Transaction composite state (see Figure 21.23) – for example, Processing Withdrawal.
When a Withdrawal transaction is completed, the event Withdrawal Approved is
issued if the customer has enough funds, and the Dispensing substate of the Ter-
minating Transaction composite state is entered (Figure 21.24). Alternatively, if the
customer has insufficient funds or has exceeded the daily withdrawal limit, a Rejected
event is issued.

21.6.3 Terminating Transaction Composite State

The Terminating Transaction composite state (see Figure 21.24) has substates for
Dispensing, Printing, Ejecting, Confiscating, and Terminating.
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The actions associated with the transition to Dispensing state are to Dispense Cash
and Update Status. After the Cash Dispensed event has taken place, the ATM tran-
sitions to Printing state to print the receipt. The action Print Receipt is executed at
the transition. When the receipt is printed, the state Ejecting is entered and the Eject
action is executed. When the card has been ejected (event Card Ejected), the Termi-
nating state is entered.

For the Query and Transfer transactions, the sequence of states following
approval of the transaction is similar, except that no cash is dispensed, as can be
seen on the ATM statecharts.

21.7 DESIGN OF BANKING SYSTEM

Next, the analysis model of the Banking System is mapped to a design model. The
steps in this process are as follows:

1. Integrate the communication model. Develop integrated communication dia-
grams.

2. Structure the Banking System into subsystems. Define the interfaces of the
subsystems.

3. For each subsystem, structure the system into concurrent tasks.
4. For each subsystem, design the information hiding classes.
5. Develop the detailed software design.

21.8 INTEGRATING THE COMMUNICATION MODEL

Because the Banking System is a client/server system (Section 21.4), a decision was
made earlier to structure the system into client and service subsystems, as shown in
Figure 21.8. The communication diagrams are also structured for client and service
subsystems.

The communication diagrams for the client-side Validate PIN and Withdraw Funds
use cases are depicted in Figures 21.11 and 21.16. Communication diagrams are also
needed for the client-side Transfer Funds and Query Account use cases, as well as for
the use cases initiated by the operator. The integrated communication diagram for
the ATM Client Subsystem (Figure 21.25) is the result of the merger of all these use
case–based communication diagrams, as described in Chapter 13. To be complete,
the integration must consist of communication scenarios for the main and alterna-
tive sequences through each use case.

Some objects participate in all the client-side communications, such as ATM Con-
trol, but others participate in as few as one, such as the Cash Dispenser Interface.
Some of the messages depicted on the integrated communication diagram are aggre-
gate messages, such as Customer Events and Display Prompts. The integrated diagram
must also include messages from all the alternative sequences, as described in Chap-
ter 13. Thus, the Confiscate and Card Confiscated messages originate from alternative
sequences in which the customer transaction is unsuccessful. Similarly, the aggre-
gate Display Prompts messages include messages dealing with incorrect PIN entry,
insufficient cash in the customer account, and so on.
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Figure 21.26. Integrated communication diagram for Banking Service subsystem

Now consider the Banking Service Subsystem. Figures 21.14 and 21.19 are the
communication diagrams for the server-side Validate PIN and Withdraw Funds use
cases. Additional communication diagrams are needed for the server-side Transfer
Funds and Query Account use cases. The integrated communication diagram for the
Banking Service Subsystem is shown in Figure 21.26. For each transaction, there is a
transaction manager object that encapsulates the business logic for the transaction.
These are the PIN Validation Transaction Manager, Withdrawal Transaction Manager,
Query Transaction Manager, and Transfer Transaction Manager objects. In addition,
it is decided at design time that there is a need for a coordinator object, the Bank
Transaction Coordinator, which receives client requests and delegates them to the
appropriate transaction manager, as described in Chapter 15.

21.9 STRUCTURING THE SYSTEM INTO SUBSYSTEMS

In the case of the Banking System, the step of structuring the system into subsystems
is straightforward. The Banking System is a classic client/server architecture that
is based around the multiple client/single service architectural pattern. There are
two subsystems, the multiple instances of the ATM Client Subsystem and the Banking
Service Subsystem, as initially depicted in Figure 21.8. The two subsystems might
also be depicted on a high-level communication diagram, as shown in Figure 21.27.
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Figure 21.27. Subsystem design: high-level communication diagram for
Banking System

Figure 21.27 is an analysis-level communication diagram showing the two sub-
systems and simple messages passed between them. The ATM Client Subsystem
sends ATM Transactions to the Banking Service Subsystem, which responds with Bank
Responses. ATM Transactions is an aggregate message consisting of the PIN Valida-
tion, Withdraw, Query, Transfer, Confirm, and Abort messages. The Bank Responses
are responses to these messages.

The next step is to consider the distributed nature of the application and define
the distributed message interfaces. Because this is a client/server subsystem, there
are multiple instances of the client subsystem and one instance of the service subsys-
tem. Each subsystem instance executes on its own node. In the design model, each of
these subsystems is a concurrent subsystem, consisting of at least one task. The mes-
sage interface is synchronous message communication with reply. Each ATM client
sends a message to the Banking Service and then waits for a response. Because the
Banking Service can receive messages from several ATM clients, a message queue
can build up at the Banking Service, which processes incoming messages on a FIFO
basis. The design model communication diagram is depicted in Figure 21.28.

The next step is to structure each subsystem into concurrent tasks. In the fol-
lowing sections, the design of the ATM Client Subsystem and then the design of the
Banking Service Subsystem are considered.

21.10 DESIGN OF ATM CLIENT SUBSYSTEM

To determine the tasks in a system, it is necessary to understand how the objects in
the application interact with each other. This is best depicted on the analysis model
communication diagram, which shows the sequence of messages passed between
objects in support of a given use case. For the ATM Client Subsystem, consider the
communication diagrams for the Client Validate PIN and Client Withdraw Funds use
cases in addition to the integrated communication diagram for this subsystem. The
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Figure 21.28. Subsystem interfaces: high-level concurrent communication
diagram for Banking System

task design described in this section leads to the concurrent communication diagram
shown in Figure 21.29.

21.10.1 Design the ATM Subsystem Concurrent Task Architecture

Consider the communication diagram supporting the Validate PIN use case (see Fig-
ure 21.11). The first object to participate in the communication is the Card Reader
Interface object, which is an I/O object that interfaces to the real-world card reader.
The characteristics of the Card Reader external I/O device are that it is an event
driven I/O device that generates an interrupt when some input is available. The Card
Reader Interface object is structured as an event driven I/O task, as shown in Figure
21.29. Initially, the task is dormant. It is activated by an interrupt, reads the card
reader input, and converts it into an internal format. It then writes the contents of
the card to the ATM Card entity object. ATM Card is a passive object and thus does
not need a separate thread of control. It is further categorized as a data abstraction
object.

The Card Reader Interface task then sends a Card Inserted message to ATM Con-
trol, which is a state-dependent control object that executes the ATM Control stat-
echart. ATM Control is structured as a demand driven state-dependent control task
because it needs to have a separate thread of control to allow it to react to incoming
messages from a variety of sources. Initially, it is idle until it is activated on demand
by the arrival of a control request message. On receiving the Card Inserted message,
ATM Control executes the statechart and transitions to Waiting for PIN substate (see
Figures 21.21 and 21.22). The action associated with the state transition is to send
a Get PIN message to Customer Interaction, which is a user interaction object that
interacts with the user, providing outputs to the display and receiving inputs from
the keypad. Customer Interaction is structured as an event driven user interaction
task with its own separate thread of control. It prompts the customer for the PIN,
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receives the PIN, reads the card information from ATM Card, and then writes the
card and PIN information to ATM Transaction, which is also a passive data abstrac-
tion object. Because the ATM Card and ATM Transaction data abstraction objects are
each accessed by more than one task, they are both placed outside any task.

Next, consider the communication diagram supporting the Withdraw Funds use
case, which has many of the same objects as the Validate PIN communication dia-
gram. The additional objects are Receipt Printer Interface, Cash Dispenser Interface,
and ATM Cash.

The external Cash Dispenser is a passive output device, so it does not need an
event driven output task. Instead, the Cash Dispenser Interface object is structured as
a demand driven output task, which is activated on demand by message arrival from
ATM Control. Similarly, the Receipt Printer Interface object is structured as a demand
driven output task, which is activated by message arrival from the ATM Control task.

The Operator Interaction user interaction object (see Figure 21.24), which partic-
ipates in the three operator-initiated use cases, is also mapped to an event driven
user interaction task (see Figure 21.29). The ATM Cash entity object is a passive data
abstraction object and thus does not need a separate thread of control, which is
accessed by both the Cash Dispenser Interface and Operator Interaction tasks.

To summarize, there is one event driven I/O task, Card Reader Interface, one
demand driven state-dependent control task, ATM Control, two demand driven out-
put tasks, Cash Dispenser Interface and Receipt Printer Interface, and two event driven
user interaction tasks, Customer Interaction and Operator Interaction. There are three
passive entity objects, ATM Card, ATM Transaction, and ATM Cash, which are all cate-
gorized further as data abstraction objects.

21.10.2 Define the ATM Subsystem Task Interfaces

To determine the task interfaces, it is necessary to analyze the way the objects
(active or passive) interact with each other. First, consider the interaction of the
tasks just determined with the passive data abstraction objects. In each case, the
task calls an operation provided by the passive object. This has to be a synchronous
call, because the operation executes in the thread of control of the task. Similarly,
all other operations of the data abstraction objects are invoked as synchronous calls.
Because each of these passive objects is invoked by more than one task, it is nec-
essary for the operations to synchronize the access to the data. The operations pro-
vided by these passive objects are described in the next section.

Next consider the message interaction between the tasks. Consider the interface
between the Card Reader Interface and ATM Control tasks. It is desirable for Card
Reader Interface task to be able to send a message to ATM Control and not have to
wait for it to be accepted. For this to be the case, an asynchronous message interface
is needed, as shown in Figure 21.30. This means that there is also a message interface
in the opposite direction because ATM Control sends Eject and Confiscate messages to
the Card Reader Interface task. This is designed as a synchronous message interface
without reply because, after sending a message to ATM Control, the Card Reader Inter-
face waits for an Eject or Confiscate return message. This means that ATM Control can
send a synchronous message and not have to wait for Card Reader Interface to accept
the message. The latter task’s responses are asynchronous, providing the greatest
flexibility in the interface between the Card Reader Interface and ATM Control tasks.
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Consider the interface between Customer Interaction and ATM Control. Should it
be asynchronous or synchronous? First, consider a synchronous with response sce-
nario. Customer Interaction sends a Withdrawal request to ATM Control, which then
sends the transaction to the Banking Service. After receiving the Server’s response,
ATM Control sends a display prompt to Customer Interaction. In the meantime, it
is not possible for Customer Interaction to have any interaction with the customer,
because it is suspended, waiting for the response from the ATM Control. This is unde-
sirable from the customer’s viewpoint. Consider, instead, an asynchronous inter-
face, as shown in Figure 21.30. With this approach, Customer Interaction sends the
Withdrawal request to ATM Control and does not wait for a response. In this case,
Customer Interaction can respond to customer inputs such as a Cancel request before
a response is received from the server. Customer Interaction receives responses from
ATM Control as a separate asynchronous message interface. Customer Interaction is
designed to be capable of receiving inputs from either the customer or ATM Control.
It processes whichever input comes first.

The Operator Interaction task’s interface is also asynchronous. The operator
actor’s requests are independent of the customer’s requests, so messages from the
customer and the operator could arrive in any order at ATM Control. To allow for
this, ATM Control receives all incoming messages on a message queue and processes
them on a FIFO basis.

The two output tasks, Cash Dispenser Interface and Receipt Printer Interface, are
activated by messages arriving from ATM Control on demand. In each case, the out-
put task is idle prior to the arrival of the message, so a synchronous interface is
acceptable because it will not hold up ATM Control. In Figure 21.30, the concur-
rent communication diagram is updated to show the task interfaces.

21.10.3 Design the ATM Client Information Hiding Classes

The objects and classes for the Banking System are initially determined in the
analysis model. Further categorization of passive classes is possible during design;
for example, entity classes are categorized further as data abstraction classes or
database wrapper classes. During class design, the class interfaces are designed, as
described in Chapter 14. To determine the class interfaces, it is necessary to consider
how the objects on the communication diagrams interact with each other.

First, consider the design of the entity classes in the ATM Client Subsystem.
Because there is no database in the ATM Client Subsystem, all the entity classes
encapsulate their own data and are therefore categorized further as data abstrac-
tion classes. The ATM Client Subsystem has three data abstraction classes: ATM
Card, ATM Transaction, and ATM Cash. The attributes of data abstraction classes are
determined during the conceptual static modeling of the entity classes, as described
in Section 21.3. The operations of these classes are determined by analyzing the way
they are used on the communication diagrams.

The designs of the ATM Cash and ATM Card classes are described in Chapter 14.
For the ATM Transaction class, the attributes are also determined from the static
model, but its operations are determined from the way it is accessed by other objects,
as given on the communication diagrams. The operations are update Customer Infor-
mation, update Customer Selection, update PIN Status, update Transaction Status, and
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read. The first two operations are invoked by the Customer Interaction task. The next
two operations are invoked by the ATM Control task. The read operation is invoked
by the Receipt Printer Interface task prior to printing the receipt.

There is one state-machine class, namely, ATM State Machine, which is internal
to the ATM Control task and encapsulates the ATM statechart, which is implemented
as a state transition table. The operations are process Event and current State, which
are standard operations for a state-machine class.

The design of the classes is shown in more detail in Figure 21.31, which shows
the attributes and operations of the classes.

21.11 DESIGN OF BANKING SERVICE SUBSYSTEM

Because the bank server holds the centralized database for the Banking System,
we start the design of the Banking Service Subsystem by considering some impor-
tant design decisions concerning the static model. The conceptual static model of
the entity classes (see Figures 21.4–21.7) contains several entity classes that actually
reside at the bank server. A design decision is made that the entity classes at the
server, which were originally depicted in the static model of the problem domain
(see Figure 21.4), are to be stored as relational tables in a relational database. Thus,
during design we determine that the entity classes at the server do not actually
encapsulate any data but rather encapsulate the interface to the relational database
and are actually database wrapper classes. The design of the database wrapper
classes and the mapping of the entity class model to the relational database are
described later in this section.

21.11.1 Design the Banking Service Subsystem Concurrent
Task Architecture

Now consider the Banking Service Subsystem design. A decision is made to use a
sequential service. As long as the throughput of the server is fast enough, this is
not a problem. In a sequential service, the service is designed as one task; thus, it is
designed as one program with one thread of control. Each transaction is received on
a FIFO message queue and is processed to completion before the next transaction
is started.

The Banking Service Subsystem is designed as one sequential service task, which
is activated on demand. Inside the task are the coordinator object (the Bank Trans-
action Coordinator), the business logic objects (PIN Validation Transaction Manager,
Withdrawal Transaction Manager, Query Transaction Manager, and Transfer Transac-
tion Manager), and the entity classes, now categorized further as database wrapper
classes. The initial task design for the service subsystem, consisting of one task, is
shown in Figure 21.32.

The Bank Transaction Coordinator task receives the incoming transaction mes-
sages and replies with the bank responses. It delegates the transaction processing
to the transaction managers, which in turn access the database wrapper objects.
All communication internal to the Banking Service Subsystem is synchronous, corre-
sponding to operation calls, as described next.
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«database wrapper»

Account {abstract}

+ readBalance (accountNumber) : Rea l
+ credit (accountNumber, amount){abstract}
+ debit (accountNumber, amount){abstract}
+ open (accountNumber )
+ close (accountNumber)

«database wrapper»

CheckingAccount

+ credit (accountNumber, amount)
+ readLastDepositAmount  

(accountNumber) : Real

«database wrapper»

SavingsAccount

+ debit (accountNumber, account)
+ clearDebitCount (accountNumber)
+ addInterest (accountNumber, 

interestRate)
+ readCumulativeInterest   

(accountNumber) : Real

«database wrapper»

DebitCard

+ create (cardID)
+ validate (in cardID, in PIN, out status)
+ updatePIN (cardID, PIN)
+ checkDailyLimit (cardID, amount)
+ updateDailyTotal (cardID, amount)
+ updateExpirationDate (cardID, 

expirationDate)
+ updateCardStatus (cardID, status)
+ updateDailyLimit (cardID, newLimit)
+ clearTotal (cardID)
+ read (in cardID, out PIN, 

out expirationDate, out status, 
out limit, out total)

+ delete (cardID)

+ read (out transaction)
+ log (in transaction)

«database wrapper»

TransactionLog

+ read (in cardID, out accountNumber)
+ update (in cardID, in accountNumber)

«database wrapper»

CardAccount

Figure 21.33. Banking Service database wrapper classes

21.11.2 Design the Banking Service Information Hiding Classes

Chapter 15 describes the design of database wrapper classes as well as the mapping
of analysis model entity classes to design model database wrapper classes and rela-
tional tables (flat files) for a relational database. At the Banking Service, the database
wrapper classes are Account, Checking Account, Savings Account, Debit Card, Card
Account, and Transaction Log, as shown in Figure 21.33. Each of these classes encap-
sulates an interface to a database relation. Because a relational database consists
of flat files and does not support class hierarchies, from a database perspective, the
Account generalization/specialization hierarchy is flattened so that the attributes of
the Account superclass are assigned to the Checking Account and Savings Account
relations (as described in Chapter 15). However, in the Banking Service class design
of the database wrappers, the Account generalization/specialization hierarchy is pre-
served so that the Checking Account and Savings Account database wrapper classes
inherit generalized operations from the abstract Account superclass.

There are also four business logic classes whose interfaces need to be designed.
These are the PIN Validation Transaction Manager, the Withdrawal Transaction



414 Case Studies

«business logic»

TransferTransactionManager

+ initialize ()

+ transfer (in fromAccountNumber, 

in toAccountNumber, in amount, 

out t_response)

«business logic»

PinValidationTransactionManager

+ initialize ()

+ validatePIN (in cardID, in PIN, 

out v_response)

«business logic»

QueryTransactionManager

+ initialize ()

+ query (in accountNumber, 

out q_response) 

«business logic»

WithdrawalTransactionManager

+ initialize ()

+ withdraw (in accountNumber, in amount,

out w_response)

+ confirm (accountNumber, amount)

+ abort (accountNumber, amount)

Figure 21.34. Banking Service business logic classes

Manager, the Query Transaction Manager, and the Transfer Transaction Manager, as
shown in Figure 21.34. Each transaction manager handles an atomic transaction.
For example, the Withdrawal Transaction Manager provides a withdraw operation,
which is called to handle a customer request to withdraw funds, as well as two other
operations. The confirm operation is called when an ATM Client confirms that the
cash was dispensed to the client. The abort operation is called when an ATM Client
aborts the transaction, for example, because the cash dispenser failed to dispense
the cash or the customer cancelled the transaction.

21.11.3 Design the Banking Service Interfaces

The Banking Service is a sequential service subsystem with one thread of control. In
particular, the design of the Banking Service task needs to be considered at this stage.
The task is a composite task composed of passive objects. The Bank Transaction
Coordinator receives incoming transactions and delegates them to the business logic
objects, namely, the PIN Validation Transaction Manager, the Withdrawal Transaction
Manager, the Query Transaction Manager, and the Transfer Transaction Manager.
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The Bank Transaction Coordinator actually receives the messages FIFO from the
ATM Clients. For each message, it determines the type of the transaction and then
delegates the transaction processing to the appropriate transaction manager. Each
transaction is processed to completion, with the response returned to the Bank Trans-
action Coordinator, which in turn sends the response to the appropriate ATM Client.
The Bank Transaction Coordinator then processes the next transaction message.

Figure 21.32 shows the initial design of the Banking Service Subsystem In the ini-
tial concurrent communication diagram for the Banking Service, all interfaces are
simple messages. Figure 21.35 shows the final version of the Banking Service Sub-
system concurrent communication diagram. Communication between the multiple
instances of the ATM Client and the Banking Service is synchronous with reply. All
internal interaction within the Banking Service is between passive objects; hence,
all internal interfaces are defined in terms of operation calls (depicted by using the
synchronous message notation).

21.12 RELATIONAL DATABASE DESIGN

This section describes the logical design of the bank’s relational database, starting
from the conceptual entity class model described in Section 21.3.3 and depicted in
Figures 21.4 through 21.7. All the entity classes depicted on the class diagram (Fig-
ure 21.4) reside on the bank server. The data held by these entity classes need to
be persistent and therefore need to be stored in a database. As described in Section
21.12, the entity classes are designed as database wrapper classes, whereas the con-
tents of the entity classes (as defined by the attributes of the entity classes) need to
be stored in relational tables in the database. In the following description, primary
keys are underlined and foreign keys are shown in italics: (underline = primary key,
italic = foreign key).

The guidelines for designing a relational database from a static model are
described in Section 15.5. Consider the entity classes in Figure 21.4. Each of the
Bank, ATM Info, Customer, and Debit Card entity classes is mapped to a relational
table. In each case, an attribute that uniquely locates a row of the respective table is
made the primary key, such as the primary key customerId for the Customer table.
Foreign keys are chosen to allow navigation between the tables.

For the Account generalization/specialization hierarchy, the decision is made to
flatten the hierarchy by replicating the attributes of the superclass in the subclass
tables Checking Account and Savings Account. Although account type (savings
or checking) is an attribute of the Account classes, it is assumed that the account
type can be determined from the Account Number; therefore, the primary key for
both Checking Account and Savings Account tables is accountNumber. The asso-
ciation class Card Account (explicitly depicted in Figure 21.4) is designed as an
association table, which represents the many-many relationship between Card and
Account. Customer Account is also designed as an association table, representing
the many-many relationship between Customer and Account. Even though a Cus-
tomer Account association class is not explicitly modeled in the static mode (it is not
needed by the ATM transactions), it is necessary in the relational database.

For the ATM Transaction generalization/specialization hierarchy, the same
decision is made to flatten the hierarchy and only provide relational tables for the
transaction subclasses. The primary key for an ATM transaction is the transaction
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Id, which consists of a concatenated key: bankId, ATMId, date, time. bankId
and ATMId are also foreign keys because they allow navigation to the Bank and
ATMInfo tables. ATMInfo has a concatenated primary key consisting of bankId,
ATMId, with bankId also a foreign key. The attributes date and time provide a time
stamp to uniquely identify a transaction.

Bank (bankName, bankAddress, bankId)
Customer (customerName, customer Id, customerAddress)
Debit Card (cardId, PIN, startDate, expirationDate, status, limit, total,

customerId)
Checking Account (accountNumber, accountType, balance,

lastDepositAmount)
Savings Account (accountNumber, accountType, balance, interest)
Card Account (cardId, accountNumber)
Customer Account (customerId, accountNumber)
ATM Info (bankId, ATMId, ATMLocation, ATMAddress)
Withdrawal Transaction (bankId, ATMId, date, time, transactionType, cardId,

PIN, accountNumber, amount, balance)
Query Transaction (bankId, ATMId, date, time, transactionType, cardId, PIN,

accountNumber, balance)
Transfer Transaction (bankId, ATMId, date, time, transactionType, cardId, PIN,

fromAccountNumber, toAccountNumber, amount)
PIN Validation Transaction (bankId, ATMId, date, time, transactionType,

cardId, PIN, startDate, expirationDate)

21.13 DEPLOYMENT OF BANKING SYSTEM

Because this is a client/server system, there are multiple instances of the client sub-
system and one instance of the service subsystem. Each subsystem instance executes
on its own node, as depicted in the deployment diagram in Figure 21.36. Thus, each
instance of the ATM Client executes on an ATM node, and the one instance of the
Banking Service executes on the server node.

: ATMClient
{1 node per ATM}

«wide area network»

: BankingService
{1 server node}

: ATMClient
{1 node per ATM}

: ATMClient
{1 node per ATM}

Figure 21.36. Deployment diagram for Banking System
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21.14 ALTERNATIVE DESIGN CONSIDERATIONS

An alternative design decision is to design the Banking Service as a concurrent ser-
vice, in which the Bank Transaction Coordinator and each of the business logic objects
are designed as separate demand driven tasks that are activated on demand. With
this concurrent service design, the Bank Transaction Coordinator delegates a trans-
action to a business logic object and then immediately accepts the next transaction;
thus, multiple transactions would be processed concurrently at the server. This solu-
tion should be adopted if the sequential service design is inadequate for handling the
transaction load. For more information on the design of concurrent services, refer
to Chapter 15.

21.15 DETAILED DESIGN

The detailed design of the Banking System is described in terms of the task event
sequencing logic. Examples of task behavior specifications for the Card Reader Inter-
face and ATM Control tasks in the ATM Client Subsystem and for the Banking Service
task in the Banking Service Subsystem are given in Chapter 18. This section describes
the event sequencing logic for these tasks.

21.15.1 Example of Event Sequencing Logic for Card Reader
Interface Task

The Card Reader Interface task (see Figure 21.30) is awakened by a card reader exter-
nal event, reads the ATM card input, writes the card contents to the ATM Card object,
sends a cardInserted message to the ATM Control, and then waits for a message. If the
message sent by the ATM Controller is eject, the card is ejected, and if it is confiscate,
the card is confiscated. The passive data abstraction object, ATM Card, is outside the
task and is used to store the contents of the card.

All message communication in the Banking System is through calls to the operat-
ing system. Thus, the message queue, ATMControlMessageQ, between the Card Reader
Interface task (producer) and ATM Control (consumer) is provided by the operat-
ing system, as is the synchronous communication between ATM Control and the Card
Reader Interface task (see Figure 21.32). A synchronous message from ATM Control
is received in a message buffer called cardReaderMessageBuffer.

Initialize card reader;
loop
-- Wait for external interrupt from card reader
wait (cardReaderEvent);
Read card data held on card’s magnetic strip;
if card is recognized
then -- Write card data to ATM Card object;

ATMCard.write (cardID, startDate, expirationDate);
-- send card Inserted message to ATM Control;
send (ATMControlMessageQ, cardInserted);
-- Wait for message from ATM Control;
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receive (cardReaderMessageBuffer, message);
if message = eject
then

Eject card;
-- Send card Ejected message to ATM Control;
send (ATMControlMessageQ, cardEjected);

elseif message = confiscate
then
Confiscate card;
-- Send card Confiscated message to ATM Control;
send (ATMControlMessageQ, cardConfiscated);

else error condition;
end if;

else -- card was not recognized so eject;
Eject card;

end if;
end loop;

21.15.2 Example of Event Sequencing Logic for ATM Control Task

The ATM Control task is at the heart of the ATM Client subsystem (see Figure 21.30)
and interacts with several tasks. ATM Control has an input message queue called ATM-
ControlMessageQ, from which it receives messages from its three producers – Card
Reader Interface, Customer Interaction, and Operator Interaction. ATM Control sends
messages to several tasks. It sends synchronous messages without reply to the Card
Reader Interface. It sends synchronous messages with reply to the Cash Dispenser
Interface and Receipt Printer Interface tasks. It sends asynchronous messages to the
Customer Interaction task on the promptMessageQueue message queue. It sends syn-
chronous messages with reply to the Banking Service.

Because it is state-dependent, the ATM Control task does not process incom-
ing events but rather the state-dependent actions as given by the statechart. The
implementation of the statechart is encapsulated in the ATM State Machine state-
machine object, which is nested inside ATM Control. Given the new event, the process
Event operation returns the action(s) to be performed. Most events are received on
the ATM Control input message queue, although there are three exceptions to this.
Because the communication with the Banking Service is synchronous, the response is
received as the output parameter of the send message. Because of the synchronous
communication with the Cash Dispenser Interface and the Receipt Printer Interface
tasks, the dispense Cash and print Receipt actions are synchronous messages with
reply, which return whether the respective dispensing and printing actions were suc-
cessful.

When an event is generated internally as a result of a response to a synchronous
message, the variable newEvent is set to the value of this event and the Boolean
variable outstandingEvent is set to True. Examples of such internal events are with-
drawalResponse (several synchronous bank responses are possible, as described in
the next section in the event sequencing logic for the Banking Service) or cash
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Dispensed. The event sequencing logic is given below, which describes most of the
actions executed by ATM Control. After the execution of each action case, the next
execution step is a transfer to the end of the pseudocode case block (for brevity,
the transfer is not explicitly shown below). The pseudocode for the ATM Control task
follows:

loop
-- Messages from all senders are received on Message Queue
Receive (ATMControlMessageQ, message);
-- Extract the event name and any message parameters
-- Given the incoming event, lookup state transition table;
-- change state if required; return action to be performed;
newEvent = message.event
outstandingEvent = true;

while outstandingEvent do
ATMStateMachine.processEvent (in newEvent, out action);
outstandingEvent = false;
-- Execute action(s) as given on ATM Control statechart

case action of
Get PIN: -- Prompt for PIN;

send (promptMessageQueue, displayPINPrompt);
Validate PIN: --Validate customer entered PIN at Banking Service;

send (Banking Service, in validatePIN, out
validationResponse);

newEvent = validationResponse; outstandingEvent = true;
Display Menu: -- Display selection menu to customer;

send (promptMessageQueue,displayMenu);
ATMTransaction.updatePINStatus (valid);

Invalid PIN Action: -- Display Invalid PIN prompt;
send (promptMessageQueue, displayInvalidPINPrompt);
ATMTransaction.updatePINStatus (invalid);

Request Withdrawal: -- Send withdraw request to Banking
Service;

send (promptMessageQueue, displayWait);
send (Banking Service, in withdrawalRequest, out

withdrawalResponse);
newEvent = withdrawalResponse; outstandingEvent = true;

Request Query: -- Send query request to Banking Service;
send (promptMessageQueue, displayWait);
send (Banking Service, in queryRequest, out queryResponse);
newEvent = queryResponse; outstandingEvent = true;

Request Transfer: -- Send transfer request to Banking Service;
send (promptMessageQueue, displayWait);
send (Banking Service, in transferRequest, out

transferResponse);
newEvent = transferResponse; outstandingEvent = true;
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Dispense: -- Dispense cash and update transaction status;
ATMTransaction.updateTransactionStatus (withdrawalOK);
send (cashDispenserInterface, in cashAmount, out dispenseStatus);

newEvent = cashDispensed; outstandingEvent = true;
Print: -- Print receipt and send confirmation to Banking

Service;
send (promptMessageQueue, displayCashDispensed);
send (Banking Service, in confirmRequest);
send (receiptPrinterInterface, in receiptInfo, out

printStatus);
newEvent = receiptPrinted; outstandingEvent = true;

Eject: -- Eject ATM card;
send (cardReaderInterface, eject);

Confiscate: -- Confiscate ATM card;
send (cardReaderMessageBuffer, confiscate);
ATMTransaction.updatePINStatus (status);

Display Ejected: -- Display Card Ejected prompt;
send (promptMessageQueue, displayEjected);

Display Confiscated: -- Display Card Confiscated prompt;
send (promptMessageQueue, displayConfiscated);

. . .
end case;

end while;
end loop;

21.15.3 Example of Event Sequencing Logic for Banking Service Task

The Banking Service receives messages from all the ATM Clients (see Figure 21.36).
Although the communication is synchronous with reply, a message queue can build
up at the Banking Service as it receives messages from multiple ATM clients. In this
sequential solution, the Banking Service is a sequential service task, which processes
each request to completion before starting the next.

loop
receive (ATMClientMessageQ, message) from Banking Service Message Queue;
Extract message name and message parameters from message;
case Message of
Validate PIN:

-- Check that ATM Card is valid and that PIN entered by
-- customer matches PIN maintained by Server;
PINValidationTransactionManager.ValidatePIN

(in CardId, in PIN, out validationResponse);
-- If successful, validation Response is valid and return
-- Account Numbers accessible by this debit card;
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-- otherwise validation Response is invalid,
-- third Invalid, or stolen;
reply (ATMClient, validationResponse);

Withdrawal:
-- Check that daily limit has not been exceeded and that
-- customer has enough funds in account to satisfy request.
-- If all checks are successful, then debit account.
WithdrawalTransactionManager.withdraw

(in AccountNumber, in Amount, out withdrawalResponse);
-- If approved, then withdrawal Response is
-- {successful, amount, currentBalance};
-- otherwise withdrawalResponse is {unsuccessful};
reply (client, withdrawalResponse);

Query:
-- Read account balance
queryTransactionManager.query
(in accountNumber, out queryresponse);
-- Query Response = Current Balance and either Last Deposit
-- Amount (checking account) or Interest (savings acount);
reply (client, queryResponse);

Transfer:
-- Check that customer has enough funds in From Account to
-- satisfy request. If approved, then debit From Account
-- and credit To Account;
transferTransactionManager.transfer (in fromAccount#,

in toAccount#, in amount, out transferResponse);
-- If approved, then transfer Response is
-- {successful, amount, Current Balance of From Account};
-- otherwise Transfer Response is {unsuccessful};
reply (client, transferResponse);

Confirm:
-- Confirm withdrawal transaction was completed successfully
withdrawalTransactionManager.confirm (in accountNumber, in amount);

Abort:
-- Abort withdrawal transaction
withdrawalTransactionManager.abort (in accountNumber, in amount);

end case;
end loop;
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Service-Oriented Architecture Case Study

Online Shopping System

The Online Shopping System case study is a highly distributed World Wide Web–
based system that provides services for purchasing items such as books or clothes.
The solution uses a service-oriented architecture with multiple services; coordina-
tor objects are used to facilitate the integration of the services. In addition, object
brokers are used to provide service registration, brokering, and discovery. Services
include a catalog service, an inventory service, a customer account service, a delivery
order service, an email service, and a credit card authorization service.

The problem is described in Section 22.1. Section 22.2 describes the use case
model for the Online Shopping System. Section 22.3 describes the static model,
which includes the system context model that depicts the boundary between the
system and the external environment. This section also describes the use of broker
technology in this system before going on to describe static modeling of the entity
classes. Section 22.4 describes how to structure the system into objects. Section 22.5
describes dynamic modeling, in which communication diagrams are developed for
each of the use cases. Section 22.6 describes the design model for the system, which
is designed as a layered architecture based on the Layers of Abstraction pattern
consisting of services and components.

22.1 PROBLEM DESCRIPTION

In the Web-based Online Shopping System, customers can request to purchase
one or more items from the supplier. The customer provides personal details, such
as address and credit card information. This information is stored in a customer
account. If the credit card is valid, then a delivery order is created and sent to the
supplier. The supplier checks the available inventory, confirms the order, and enters
a planned shipping date. When the order is shipped, the customer is notified and the
customer’s credit card account is charged.

424
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Browse Catalog Process Delivery 

Order

Confirm
Shipment
and Bill

Customer

Make Order 
Request

Customer
Supplier

View Order

Figure 22.1. Web-based Online Shopping System: use cases

22.2 USE CASE MODELING

The use case model for Web-based Online Shopping System is depicted in Fig-
ure 22.1. There are two actors: Customer, who browses a catalog and requests to
purchase items, and Supplier, who provides the catalog and services customer pur-
chase requests. The customer initiates three use cases, which are Browse Catalog, to
browse the catalog and select items; Make Order Request, to make a purchase request;
and View Order. The supplier initiates two use cases, namely, Process Delivery Order,
to service the customer’s order, and Confirm Shipment and Bill Customer, to finalize
the purchase.

In the Browse Catalog use case, the customer browses a World Wide Web catalog,
views various catalog items from a given supplier’s catalog, and selects items from
the catalog. In the Make Purchase Request use case, the customer enters personal
details. The system creates a customer account if one does not already exist. The
customer’s credit card is checked for validity and sufficient credit to pay for the
requested catalog items. If the credit card check shows that the credit card is valid
and has sufficient credit, then the customer purchase is approved and the system
sends the purchase request to the supplier. In View Order, the customer requests to
view the details of the delivery order.

The supplier-initiated use cases are Process Delivery Order and Confirm Shipment
and Bill Customer. In the Process Delivery Order use case, the supplier requests a
delivery order, determines that the inventory is available to fulfill the order, and
displays the order.

In the Confirm Shipment and Bill Customer use case, the supplier prepares the
shipment manually and confirms that the shipment is ready for shipment. The sys-
tem then retrieves the customer’s credit card details from the customer account and
bills the customer’s credit card.

The use cases are described in detail, except for the very simple View Order use
case. Each use case is described textually and is depicted using an activity diagram.
Activity diagrams are popular in business process modeling. They can be integrated
into the analysis and design of service-oriented applications to model the sequence
of use case activities. In particular, they describe more precisely the main and



426 Case Studies

alternative sequences of the use case, depicting exactly how they diverge from each
other.

22.2.1 Use Case Description for Browse Catalog

Use case name: Browse Catalog
Summary: Customer browses World Wide Web catalog, views various cat-
alog items from the supplier’s catalog, and selects items from the catalog.
Actor: Customer
Precondition: Customer browser is linked to supplier catalog Web site.
Main sequence:

1. Customer requests to browse catalog.
2. System displays catalog information to customer.
3. Customer selects items from catalog
4. System displays an itemized list containing each item description and

price, as well as the total price.
Alternative sequence: Step 3: Customer does not select item and exits.
Postcondition: System has displayed list of selected catalog items.

The activity diagram describing the sequence of use case activities for Browse
Catalog, which corresponds to the preceding description of the main sequence of
the use case, is depicted in Figure 22.2.

22.2.2 Use Case Description for Make Order Request

Use case name: Make Order Request
Summary: Customer enters an order request to purchase catalog items.
The customer’s credit card is checked for validity and sufficient credit to
pay for the requested catalog items.
Actor: Customer
Precondition: Customer has selected one or more catalog items
Main sequence:

1. Customer provides order request and customer account Id to pay for
purchase.

2. System retrieves customer account information, including the cus-
tomer’s credit card details.

3. System checks the customer’s credit card for the purchase amount
and, if approved, creates a credit card purchase authorization num-
ber.

4. System creates a delivery order containing order details, customer
Id, and credit card authorization number.
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Request

Catalog Information

Request

Catalog Items

Display Catalog

Items

Request Items

from Catalog

Select Items

from Catalog

Display Items and

Total Price

Figure 22.2. Activity diagram for Browse Catalog use case

5. System confirms approval of purchase and displays order informa-
tion to customer.

Alternative sequences:
Step 2: If customer does not have an account, the system prompts the cus-
tomer to provide information in order to create a new account. The cus-
tomer can either enter the account information or cancel the order.
Step 3: If authorization of the customer’s credit card is denied (e.g., invalid
credit card or insufficient funds in the customer’s credit card account), the
system prompts the customer to enter a different credit card number. The
customer can either enter a different credit card number or cancel the
order.
Postcondition: System has created a delivery order for the customer.
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Receive

Order Request

Get

Account Information

Authorize

Credit Card

Display

Invalid Credit Card
Create

New Delivery Order

Email and Display

Order Confirmation

Create

New Account

[account does not exist]

[account exists]

[valid]

[invalid]

Figure 22.3. Activity diagram for Make Order Request use case

The activity diagram for Make Order Request (Figure 22.3) depicts the activities
that correspond to the main sequence of the use case, for making an order and
authorizing the credit card, as well as the two alternatives that deal with creating a
new account and denying credit card authorization.

22.2.3 Use Case Description for Process Delivery Order

Summary: Supplier requests a delivery order; system determines that the
inventory is available to fulfill the order, and displays the order.
Actor: Supplier
Precondition: Supplier needs to process a delivery order and a delivery
order exists.
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Main sequence:
1. Supplier requests next delivery order.
2. System retrieves and displays delivery order.
3. Supplier requests inventory check on items for delivery order.
4. System determines that items are available in inventory to satisfy

delivery order and reserves items.
5. System displays inventory information to Supplier and confirms that

items are reserved.
Alternative sequence: Step 4: If item is out of stock, system displays warn-
ing message.
Postcondition: System has reserved inventory items for delivery order.

The activity diagram for Process Delivery Order (Figure 22.4) depicts the activ-
ities corresponding to the main sequence of the use case, for viewing and reserving
inventory items, as well the alternative sequence dealing with inventory item(s) out
of stock.

Receive

Delivery Order

Request

Retrieve and Display

Delivery Order

Check Inventory

for Order Items

Reserve

Order Items

Display

Inventory Information

Display

Items Out of Stock

[items available]

[items not available]

Figure 22.4. Activity diagram for Process Delivery Order use case
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22.2.4 Use Case Description for Confirm Shipment and Bill Customer

Summary: Supplier prepares the shipment manually and then confirms that
the delivery order is ready for shipment. System notifies customer that
order is being shipped. System charges customer’s credit card for purchase
and commits inventory items removal.
Actor: Supplier
Precondition: Inventory items have been reserved for customer delivery
order.
Main sequence:

1. Supplier prepares shipment manually and identifies that delivery
order is ready to ship.

2. System retrieves customer account information, including the
invoice and customer’s credit card details.

3. System updates inventory to confirm purchase.
4. System charges customer’s credit card for purchase and creates a

credit card charge confirmation number.
5. System updates delivery order information with credit card charge

confirmation.
6. System sends email confirmation to customer.
7. System displays confirmation to the supplier to complete shipment

of the delivery order.
Postcondition: System has committed inventory, charged customer, and
sent confirmation.

The activity diagram for Confirm Shipment and Bill Customer (Figure 22.5)
depicts the activities corresponding to the main sequence of the use case.

22.2.5 Activity Diagram for View Order Use Case

In this simple use case, the customer requests to view an order. The activity diagram
for the View Order use case is depicted in Figure 22.6.

22.3 STATIC MODELING

This section describes the static model, which consists of the system context model
and the entity class model. This section also discusses the use of brokering technol-
ogy in online shopping service-oriented architectures.

22.3.1 Software System Context Modeling

The software system context model depicts two external user classes that are de-
picted as actors: the Customer and Supplier classes. The context diagram (Figure 22.7)
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Receive
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Charge
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Update Delivery
Order

Email and  Display 
Confirmation to

Customer

Figure 22.5. Activity diagram for Confirm Shipment and Bill Customer use case

is very similar to the use case diagram because the external classes correspond to the
actors on the use case diagram.

22.3.2 Static Entity Class Modeling of the Problem Domain

A static model of the problem domain is developed and depicted on a class diagram
(Figure 22.8). Because this is a data-intensive application, the emphasis is on the
entity classes. The static entity class model shows the entity classes and the rela-
tionships among these classes. The classes include customer classes (Customer and
Customer Account), supplier classes (Supplier, Inventory, and Catalog), and classes
that deal with the customer’s order such as Delivery Order, which is an aggregation
of Item. The attributes for the classes are shown in Figure 22.9. This example is also
described in more detail in Chapter 7.
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Figure 22.6. Activity diagram for View Order use case
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Figure 22.7. Online Shopping System Software System Context class diagram

«entity»

Customer

«entity»

Inventory

«entity»

Item

«entity»

DeliveryOrder

«entity»

CustomerAccount

«entity»

Supplier

1 1

1

1

1

1..*

1..*

Uses Authorizes

Described in

Stored in

Maintains

0..1

1..*

1

1..*

«entity»

Catalog

*

1

Views

Provides

1

1

Figure 22.8. Conceptual static model for Online Shopping System entity classes
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customerId : Integer

customerName : String

address : String

telephoneNumber : String

faxNumber : String

emailId : EmailType

«entity»

Customer

orderId : Integer

orderStatus : OrderstatusType

accountId : Integer

amountDue: Real

authorizationId: Integer

supplierId : Integer

creationDate : Date

plannedShipDate : Date

actualShipDate : Date

paymentDate: Date

«entity»

DeliveryOrder

itemId : Integer

unitCost : Real

quantity : Integer

«entity»

Item

itemID : Integer

itemDescription : String

quantity : Integer

price : Real

reorderTime : Date

«entity»

Inventory

itemId : Integer

itemDescription : String

unitCost : Real

supplierId : Integer

itemDetails : linkType

«entity»

Catalog

supplierId : Integer

supplierName: String

address : String

telephoneNumber : String

faxNumber : String

email : EmailType

«entity»

Supplier

accountId : Integer

cardId : String

cardType : String

expirationDate: Date

«entity»

CustomerAccount

Figure 22.9. Entity classes for the Online Shopping System

22.4 OBJECT AND CLASS STRUCTURING

The entity classes determined in the previous section are integrated into a
service-oriented architecture by means of service classes. Catalog Service, Customer
Account Service, Delivery Order Service, and Inventory Service are service classes
that provide access to the entity classes (Figure 22.10). Catalog Service uses the
Catalog and Supplier entity classes. Customer Account Service uses the Customer

«service»

DeliveryOrderService

«entity»

DeliveryOrder

«entity»

Item

«service»

InventoryService

«entity»

Inventory

«service»

CatalogService

«entity»

Catalog

«entity»

Supplier

«service»

CustomerAccountService

«entity»

Customer

«entity»

CustomerAccount

Figure 22.10. Service and entity classes for the Online Shopping System
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Account and Customer entity classes. Delivery Order Service uses the Delivery Order
and Item entity classes. The Inventory Service uses the Inventory entity class.

There is also a service class, Credit Card Service, which deals with credit card
authorization and charging. In this way, the credit card billing is integrated with the
customer purchasing and supplier delivery. Another service class is Email Service,
which enables the Online Shopping System to send email messages to customers.

User interaction classes are needed to interact with the external users – in partic-
ular, Customer Interaction and Supplier Interaction, which correspond to the actors
in the use cases. In addition, to coordinate and sequence the customer and supplier
access to the online shopping services, two coordinator objects, Customer Coordina-
tor and Supplier Coordinator, are provided,. A third autonomous coordinator, Billing
Coordinator, is needed to deal with billing customers. The classes in the Online Shop-
ping System are depicted in Figure 22.11.

22.5 DYNAMIC MODELING

For each use case, a communication diagram is developed that depicts the objects
that participate in the use case and the sequence of messages passed between them.

22.5.1 Dynamic Modeling for Browse Catalog

In the communication diagram for the Browse Catalog use case (Figure 22.12),
Customer Interaction interacts with Customer Coordinator, which in turn communi-
cates with Catalog Service. The message descriptions are as follows:

B1: The customer makes a catalog request via Customer Interaction.
B2: Customer Coordinator is instantiated to assist the customer. On the basis

of the customer’s request, Customer Coordinator selects a catalog for the
customer to browse.

B3: Customer Coordinator requests information from Catalog Service.
B4: Catalog Service sends catalog information to Customer Coordinator.
B5: Customer Coordinator forwards the information to Customer Interac-

tion.
B6: Customer Interaction displays the catalog information to the customer.
B7: The customer makes a catalog selection through Customer Interaction.
B8: Customer Interaction passes the request on to Customer Coordinator.
B9: Customer Coordinator requests the catalog selection from Catalog Ser-

vice.
B10: Catalog Service confirms the availability of the catalog items and sends

the item prices to Customer Coordinator.
B11: Customer Coordinator forwards the information to Customer Interac-

tion.
B12: Customer Interaction displays the catalog information to the customer,

including item prices and total.
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B6, B12: Catalog Output

B1,B7: Customer Input

«user interaction»

: CustomerInteraction

«coordinator»

aCustomerCoordinator

B2: Catalog Request

B8: Catalog Selection

B5: Catalog Info

B11: Selection Confirmation

«service»

: CatalogService

B3: Catalog Request

B9: Catalog Selection

B4: Catalog Info

B10: Selection Confirmation

aCustomer

Figure 22.12. Communication diagram for the Browse Catalog use case

22.5.2 Dynamic Modeling for Make Order Request

In the communication diagram for the Make Order Request use case (Figure 22.13),
a customer provides the account information, which is used to access the Customer
Account Service. Credit card details are sent by Customer Coordinator to the Credit
Card Service for approval. The Customer Coordinator then sends a new order request
to Delivery Order Service and a confirmation email to the Email Service. The message
descriptions are as follows:

M1: The customer provides order request to Customer Interaction.
M2: Customer Interaction sends the order request to Customer Coordinator.
M3, M4: Customer Coordinator sends the account request to Customer

Account Service and receives the account information, including the
customer’s credit card details.

aCustomer

«user interaction»

: Customer 

Interaction

M1: Order Request

M10: Customer Output

M2: Order Request

«coordinator»

aCustomerCoordinator

M9: Order Confirmation

«service»

: CustomerAccountService

M3: Account Request 

M4: Account Info

M5: Authorize Credit Card Request
«service»

: CreditCard 

Service
M6: Credit Card Approved

«service»

: DeliveryOrderService

M7: Store Order M8: Order Confirmation

«service»

: EmailService

M9a: Send Order

Confirmation Email

Figure 22.13. Communication diagram for the Make Order Request use case
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aSupplier

«service»

: Inventory 

Service

«coordinator»

aSupplierCoordinator

«user interaction»

: SupplierInteraction

«service»

: DeliveryOrder 

Service

D1, D9: Supplier Input
D2: Order Request,

D10: Reserve Inventory

D3: Select Order

D13a: Prepare To

Commit

D4: Selected Order

D5: Check Inventory

D11: Reserve Items

D6: Item Info

D12: Items Reserved

D7: Order Info,

D13: Inventory Status

D8: Order Output,

D14: Inventory Output

Figure 22.14. Communication diagram for the Process Delivery Order use case

M5: Customer Coordinator sends the customer’s credit card information and
charge authorization request to Credit Card Service (this is equivalent to
a Prepare to Commit message).

M6: Credit Card Service sends a credit card approval to Customer Coordinator
(this is equivalent to a Ready to Commit message).

M7, M8: Customer Coordinator sends order request to Delivery Order Service.
M9, M9a: Customer Coordinator sends the order confirmation to Customer

Interaction and sends an email of the order confirmation to the customer
via the Email Service.

M10: Customer Interaction outputs the order confirmation to the customer

Alternative scenarios for this use case are that the customer does not have an
account, in which case a new account will be created, or that the credit card autho-
rization is denied, in which case the customer has the option of selecting a different
card. These alternative scenarios are described in Chapter 9.

22.5.3 Dynamic Modeling for Process Delivery Order

In the communication diagram for the next use case, Process Delivery Order (Figure
22.14), Supplier Coordinator requests Delivery Order Service for a new delivery order,
and Delivery Order Service selects a delivery order. Supplier Coordinator requests
Inventory Service to check the inventory and sends the order and inventory infor-
mation to the supplier via the user interaction object. The message descriptions are
as follows:

D1: The supplier requests a new delivery order.
D2: Supplier Interaction sends the supplier request to Supplier Coordinator.
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D3: Supplier Coordinator requests Delivery Order Service to select a delivery
order.

D4: Delivery Order Service sends the delivery order to Supplier Coordinator.
D5: Supplier Coordinator requests inventory item check.
D6: Inventory Service returns item information.
D7: Supplier Coordinator sends order status to Supplier Interaction.
D8: Supplier Interaction displays the delivery order information to the sup-

plier.
D9: Supplier requests the system to reserve the items in inventory.
D10: Supplier Interaction sends the supplier request to reserve inventory to

Supplier Coordinator.
D11: Supplier Coordinator requests Inventory Service to reserve the items in

inventory (this is equivalent to a Prepare to Commit message)
D12: Inventory Service confirms reservation of items to Supplier Coordinator

(this is equivalent to a Ready to Commit message).
D13: Supplier Coordinator sends the inventory status to Supplier Interaction.
D14: Supplier Interaction displays the inventory information to the supplier.

An alternative scenario for this use case (not shown in figure) is that the item is
out of stock, in which case Inventory Service returns an Out of Stock message, which
is then displayed to the supplier.

22.5.4 Dynamic Modeling for Confirm Shipment and Bill Customer

In the communication diagram for the Confirm Shipment and Bill Customer use case
(Figure 22.15), the supplier prepares the shipment manually. The supplier then
sends the Ready for Shipment message to the Supplier Coordinator, which requests
Inventory Service to commit the inventory and send a Ready for Shipment message
to Billing Coordinator. The Billing Coordinator retrieves the invoice from the Delivery
Order Service, account information from Customer Account Service, and charges the
customer through Credit Card Service. The updates to the credit card, delivery order,
and inventory are coordinated using the two-phase commit protocol (see Chapter
16). The message descriptions are as follows:

S1: The supplier inputs the shipping information.
S2: Supplier Interaction sends the Ready for Shipment request to Supplier

Coordinator.
S3: Supplier Coordinator sends the Order Ready for Shipment message to

Billing Coordinator.
S4: Billing Coordinator sends Prepare to Commit order to Delivery Order

Service.
S5: Delivery Order Service replies with Ready to Commit message and

invoice containing order Id, account Id, and amount.
S6, S7: Billing Coordinator sends account request to Customer Account Ser-

vice, which responds with account information.
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S8: Account

Billed

aSupplier

«coordinator»

aSupplierCoordinator

«user interaction»

: SupplierInteraction

«service»

: DeliveryOrder 

Service

S9: Commit

Inventory

S2: Ready For 

Shipment

S1: Supplier

Input

«coordinator»

aBilling

Coordinator

S3: Order Ready

For Shipment

«service»

: Inventory 

Service

S11: Confirmation

Response

S12: Supplier

Output

S4: Prepare To Commit

S8b: Commit Payment

«service»

: EmailService

«service»

: CreditCard

Service

«service»

: CustomerAccount

Service

S8c: Send Shipping

Confirmation Email

S8a: Commit

Charge

S6: Account

Request

S5: Invoice

S7: Account

Info

S10: Commit

Completed

Figure 22.15. Communication diagram for the Confirm Shipment and Bill Customer use case

S8, S8a, S8b, S8c: Billing Coordinator sends Commit Charge message to Credit
Card Service, Commit Payment message to Delivery Order Service, confirma-
tion email to customer through Email Service, and Account Billed message
to Supplier Coordinator.

S9, S10: Supplier Coordinator sends Commit Inventory message to Inventory
Service, which responds that commit is completed.

S11, S12: Supplier Coordinator sends confirmation response to Supplier
Interaction, which in turn sends the shipping confirmation message to
the supplier.

22.5.5 Dynamic Modeling for View Order

In the communication diagram for the View Order use case (Figure 22.16), Customer
Interaction interacts with Customer Coordinator, which in turn communicates with
Delivery Order Service. The message descriptions are as follows:

V1, V2: The customer makes an order invoice request via Customer Inter-
action.

V3: Customer Coordinator makes an order request to Delivery Order Service.
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aCustomer

«service»

: DeliveryOrder

Service

«coordinator»

aCustomer

Coordinator

«user 

interaction»

: Customer

Interaction

V4: Order Invoice

V2: Order RequestV1: Customer Input
V3: Order Request

V5: Order InvoiceV6: Customer Output

Figure 22.16. Communication diagram for the View Order use case

V4: Delivery Order Service sends order invoice information to Customer Coor-
dinator.

V5: Customer Coordinator forwards the information to Customer Interac-
tion.

V6: Customer Interaction displays the order information to the customer.

22.6 BROKER AND WRAPPER TECHNOLOGY SUPPORT
FOR SERVICE-ORIENTED ARCHITECTURE

Several legacy databases are used in the Online Shopping System. Many of the
entity classes in the static model represent persistent data stored in legacy databases.
Each legacy database is a stand-alone database that resides on a mainframe. These
databases need to be integrated into the application, by means of a broker and wrap-
per technology. Chapter 15 provides information on database wrapper classes, and
Chapter 16 provides information on Broker patterns.

Although different legacy databases exist, object broker and wrapper technol-
ogy provide a systematic way of integrating the disparate legacy databases into a
service-oriented architecture. The legacy databases in the supplier organization are
the catalog database, the inventory database, the customer account service, and the
delivery order database.

Database wrapper classes are designed to provide an object-oriented interface to
the legacy databases that hides the details of how to read and update the individual
databases. To integrate these databases into the online shopping application, ser-
vice classes are designed that access the legacy databases through database wrapper
classes.

22.7 DESIGN MODELING

This section describes the architectural structure and communication patterns used
in the design, the concurrent software design, service and component interface
design, and the design of the service-oriented architecture, which fully integrates
services and components.

22.7.1 Overview of Service-Oriented Architecture

In service-oriented architectures, services register their service name and location
with a broker. Clients can then discover new services by using the Service Discovery
pattern (also known as yellow pages) to query the broker for services of a given
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type. The client can then choose a service and make a white pages request to the
broker.

The Online Shopping System is designed as a layered architecture based on the
Layers of Abstraction architecture pattern. The software architecture consists of
three layers – a service layer, a coordinator layer, and a user interaction layer. Fur-
thermore, because this system needs to be highly flexible and distributed, the deci-
sion is made to design a service-oriented architecture, in which distributed compo-
nents can discover services and communicate with them.

Each component is depicted with the component stereotype (what kind of com-
ponent it is, as specified by the component structuring criteria). The design of the
component and service interfaces are determined by analysis of the communication
diagrams for each use case.

22.7.2 Layered Software Architecture

The components are structured into the layered architecture such that each com-
ponent is in a layer where it depends on components in the layers below but not
the layers above. This layered architecture is based on the Layers of Abstrac-
tion pattern (Chapter 12). The layered architecture facilitates future adaptation
of the online shopping software architecture. User interaction components at the
user interaction layer communicate only with coordinator components. Coordi-
nator components communicate with services. Applying the component struc-
turing criteria, the following components and services, organized by layer, are
determined, as depicted in Figure 22.17:

Layer 1: Service Layer. There are six services ; four are part of the application,
and two are external services. The application services are Catalog Service,
Delivery Order Service, Inventory Service, and Customer Account Service. The
external services are Credit Card Service (one for each credit card company,
such as Mastercard and Visa), which is used for charging customer purchases,
and Email Service, for sending email messages to customers.

Layer 2: Coordination Layer. There are three coordinator components: Supplier
Coordinator, Customer Coordinator, and Billing Coordinator.

Layer 3: User Layer. There are two user interaction components: Supplier Inter-
action and Customer Interaction.

22.7.3 Architectural Communication Patterns

To handle the variety of communication between the components in the software
architecture, several communication patterns are applied:

■ Synchronous Message Communication with Reply. This is the typical service-
oriented architecture pattern of communication and is used when the client
needs information from the service and cannot proceed before receiving the
response. This pattern is used between user interaction clients and coordinators.
It is also used between coordinators and various services.
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■ Broker Handle. Each service registers service information, including service
name, service description and location with the broker. The Broker Handle pat-
tern allows clients to query the broker to determine the services to which they
should be connected.

■ Service Discovery. Service Discovery patterns are used by service requesters to
discover new services. They could be used to discover new catalogs to browse.

■ Bidirectional Asynchronous Message Communication. This pattern is used for
communication between the Supplier Coordinator and Billing Coordinator to asyn-
chronously communicate with each other in both directions.

■ Two-Phase Commit. This pattern is used to ensure that updates to inventory,
credit card, and delivery order are atomic, so either all updates are committed
or all are aborted.

22.7.4 Concurrent Software Design

The service-oriented architecture is designed by integrating the use case–based
interaction diagrams described in Section 22.5, and then designing the message
interfaces. The concurrent software design is depicted on the concurrent commu-
nication diagram for the Online Shopping System (Figure 22.18), which depicts the
concurrent components and services. It represents the integrated communication
diagram determined from the individual communication diagrams supporting the
use cases. Furthermore, the design of the message interactions is also depicted.

To keep the design simple, the Synchronous Message Communication with
Reply pattern has been widely used in this case study. As described in Chapter
12, however, this approach has the disadvantage of suspending the client while it
awaits a response from the service. An alternative design to avoid suspending the
client is to use the Asynchronous Message Communication with Callback pattern,
as described in Chapter 15. The Bidirectional Asynchronous Communication pat-
tern is used for Supplier Coordinator and Billing Coordinator to communicate with
each other in both directions.

22.7.5 Service Interface Design

The service interfaces are designed as follows. Each service has one provided inter-
face through which the service operations are accessed. Figure 22.19 depicts the
service interfaces and ports. The clients of the service invoke the appropriate oper-
ations provided by the interface synchronously.

The service operations are designed by considering how each individual service
is accessed on the use case–based interaction diagrams. Typically, each service is
accessed in different ways corresponding to requests for different service operations.
The interaction diagrams depict the messages arriving at the service (corresponding
to service operation invocation and possible input parameters to the service) and
the service response (corresponding to data returned by the service), which is either
synchronous (as a synchronous message reply) or asynchronous (in a separate asyn-
chronous message).
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«service»

Catalog

Service

ICatalogService

PCatalogService

«service»

DeliveryOrder

Service

IDeliverOrderService

PDOService

«service»

Inventory

Service

IInventoryService

PInventoryService

«service»

CustomerAccountService

ICustomerAccountService

PCustAccountService

Figure 22.19. Component ports and interfaces for services

The Catalog Service has operations to request to view a catalog and to select
catalog items (Figure 22.20). These operations access data maintained in the
Catalog Info and Item Info entity classes. The access needs are determined from
the Browse Catalog communication diagram (see Figure 22.7) and static model (see
Figures 22.3 and 22.4). The requestCatalog operation returns catalog items of a given
type and is determined from message B3 in Figure 22.12. The catalog information
returned is given by the attributes of the Catalog entity class shown on Figures 22.9
and 22.20. The requestSelection operation is determined from message B9 in Figure
22.12, which returns (determined from message B10) the item information for the
specific item.

The Customer Account Service has operations to create a new account, update
the account, and read an account (Figure 22.21). These operations access data main-
tained in the Customer Account and Customer entity classes. The operations are deter-
mined from the Make Order Request communication diagram (see Figure 22.13).
The requestAccount operation corresponds to message M3 in Figure 22.13 and
message S6 in the Confirm Shipment and Bill Customer communication diagram
(see Figure 22.15). The createAccount and updateAccount operations correspond
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«service»

Catalog

Service

ICatalogService

PCatalogService

Books

Computers

Home

Toys

«enumeration»

CatalogType

«entity»

CatalogInfo

catalogId : Integer

catalogDescription : String

supplierId : Integer

catalogType: CatalogType

«entity»

ItemInfo

itemId : Integer

itemDescription : String

unitCost : Real

supplierId : Integer

itemDetails : URL

1..*

«interface»

ICatalogService

requestCatalog (in catalogType, out catalogInfo)

requestSelection (in itemId, out itemInfo)

Figure 22.20. Service interface for Catalog Service

to alternatives to the main sequence of Make Order Request, as described in
Section 22.5.2.

Confirm Shipment and Bill Customer (see Figure 22.8) also involves the
Delivery Order Service (to commit the payment), the Credit Card Service (to autho-
rize a charge), and the Email Service (to send a confirmation email).

The Make Order Request communication diagram also involves three other ser-
vices: Delivery Order Service, Credit Card Service, and Email Service.

Delivery Order Service has several operations (Figure 22.22), which are deter-
mined as follows. The operations access data maintained in the Delivery Order and
Item entity classes; the Invoice entity class contains data extracted from Delivery
Order. Message M7 (on Figure 22.13) to store the delivery order corresponds to
the store operation shown in Figure 22.22 for the Delivery Order Service. Message
D3 to select the delivery order in the Process Delivery Order communication dia-
gram (see Figure 22.14) corresponds to the select operation shown in Figure 22.22.
Further operations are determined from the Confirm Shipment and Bill Customer
(see Figure 22.15) communication diagram, particularly the Delivery Order Service
messages to Prepare to Commit (message S4) the order and Commit the Payment
(message S8b). The read operation is determined from message V3 on the View
Order communication diagram (see Figure 22.16). The service interface for Delivery
Order Service is depicted on Figure 22.22. The abort operation is invoked if the order
is cancelled prior to shipment.
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«service»

CustomerAccountService

ICustomerAccountService

customerId : Integer

customerName : String

address : String

telephoneNumber : String

faxNumber : String

email : EmailType

«entity»

Customer

accountId : Integer

cardId : String

cardType : String

expirationDate: Date

«entity»

CustomerAccount

«interface»

ICustomerAccountService

requestAccount (in accountId, out account)

createAccount (in cardId, in cardType, in expirationDate,

out accountld)

updateAccount (in accountId, in cardId, in cardType, in
expirationDate)

PCustAccountService

Figure 22.21. Service interface for Customer Account Service

Inventory Service needs operations to check inventory (determined from mes-
sage D5 on Figure 22.14); reserve inventory (determined from message D11 on the
same figure), which is equivalent to prepare to commit inventory; commit inventory
(message S9 in Confirm Shipment and Bill Customer in Figure 22.15); and update

«service»
DeliveryOrder

Service

IDeliverOrderService

PDOService

itemId : Integer
unitCost : Real
quantity : Integer

«entity»
Item

orderId : Integer
orderStatus : OrderStatus
accountId : Integer
amountDue: Real
authorizationId: Integer
supplierId : Integer
creationDate : Date
plannedShipDate : Date
actualShipDate : Date
paymentDate: Date

«entity»
DeliveryOrder

1..* NotYetShipped
PreparedForShipment
Shipped

«enumeration»
OrderStatus

«interface»
IDeliveryOrderService

store (in order, out orderId) 
select(in supplierId, out order) 
update(in orderId, in order, out orderStatus) 
orderShipped (in orderId, out orderStatus) 
confirmPayment (in orderId, in amount, out orderStatus)
read (in orderId, out order) 
requestInvoice (in orderId, out invoice)
prepareToCommitOrder (in orderId, out order)
commit (in orderId)
abort (in orderId)

orderId : Integer
accountId : Integer
amountDue : Real
actualShipDate : Date
authorizationId : Integer

«entity»
Invoice

Figure 22.22. Service interface for Delivery Order Service



448 Case Studies

«service»

Inventory

Service

IInventoryService

PInventoryService

itemID : Integer

itemDescription : String

quantity : Integer

quantityReserved: Integer

price : Real

reorderTime : Date

«entity»

Inventory

itemID : Integer

currentAmount:  Integer

quantityAfterShipped: Integer

reorderTime : Date

«entity»

InventoryStatus

«interface»

IInventoryService

checkInventory (in itemId, out inventoryStatus)

update (in itemId, in amount)

reserveInventory (in itemId, in amount)

commitInventory (in itemId, in amount)

abortInventory (in itemId, in amount)

Figure 22.23. Service interface for Inventory Service

inventory. The abort operation is invoked if the order is cancelled and inventory
released prior to shipment. The updateInventory service operation is needed when
the inventory is replenished. This example is described in more detail in Chapter 16,
Section 16.6.

Figure 22.15 shows the service interfaces for the external services: Credit Card
Service and Email Service. Both external services have provided interfaces in the
same way as the application services. The Credit Card Service supports one provided
interface consisting of two operations – one for authorizing a credit card purchase
(message M5 in Make Order Request) and the other for charging the credit card
(message S8a in Confirm Shipment and Bill Customer). The Email Service has one
provided interface with one operation to send an email message (message M9a in
Make Order Request and message S8c in Confirm Shipment and Bill Customer).

«interface»
ICreditCardService

authorizeCharge (in creditcardId, in amount, out authorizationResponse)  
commitCharge (in creditcardId, in amount, out chargeResponse)
abortCharge (in creditcardId, in amount, out chargeResponse) 

«service»
CreditCard

Service

ICreditCardService

PCreditCardService

«service»
Email

Service

IEmailService

PEmailService

«interface»
IEmailService

sendEmail (in emailId, in emailText) 

Figure 22.24. Service interfaces for Credit Card and Email services
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22.7.6 Design of Service-Oriented Software Architecture

This section describes the design of the service-oriented architecture for the Online
Shopping System, which is depicted on a composite structure diagram, as shown in
Figure 22.25. The service interface design has already been described in the previous
sections; the user interaction and coordinator objects are designed as components
and are described in the next section.

Each service has one port with one provided interface, whereas each coordinator
component has one or more ports, with provided interfaces, required interfaces, or
both. In the three-layer architecture, each client-user interaction component has one
required port, which supports a required interface. Each service has one provided
port, which supports a provided interface. The coordinators have ports with both
required and provided interfaces because they act as intermediaries between the
clients and services and need to communicate with several services. The provided
interfaces of the services and the required ports of the coordinators are explicitly
depicted in order to identify that services are intended to be discovered; thus, the
binding between the service provider and the service requester is dynamic.

For customer requests, Customer Interaction is a client and thus has only a
required port. Customer Coordinator has both required and provided ports. Customer
Interaction only communicates with the Customer Coordinator, whereas the Customer
Coordinator communicates with five services, of which there are two external ser-
vices (Credit Card Service and Email Service) and three application services (Catalog
Service, Delivery Order Service, and Customer Account Service).

For supplier requests, Supplier Interaction has a required port, and the Sup-
plier Coordinator component has both provided and required interfaces. Supplier
Interaction only communicates with the Supplier Coordinator, whereas the Supplier
Coordinator communicates with both Delivery Order Service and Inventory Service.
Supplier Coordinator also communicates with the Billing Coordinator. Billing Coor-
dinator communicates with four services, of which there are two external services
(Credit Card Service and Email Service) and two application services (Delivery Order
Service and Customer Account Service). Because all customer payment is made
by credit card, this necessitates the Credit Card Service, of which there could be
many service instances, one for each credit card company. Each service instance
is designed and implemented differently but must conform to the SOA credit card
interface.

22.7.7 Design of Component Ports and Interfaces

The ports and interfaces for the user interaction and coordination components are
described next. The Customer Interaction user interaction component has a required
port, which consists of a required interface, as does Supplier Interaction, as shown in
Figures 22.25 and 22.26,

The component ports and interfaces for Customer Coordinator are depicted in
Figure 22.27, which also depicts the component’s provided and required interfaces.
Customer Coordinator has five required ports and one provided port. The required
ports support required interfaces to Catalog Service, Customer Account Service, Deliv-
ery Order Service, Email Service, and Credit Card Service. The required interfaces are
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«user interaction 

component»

CustomerInteraction

RCustomerCoordinator

ICustomerCoordinator

«user interaction 

component»

Supplier 

Interaction

ISupplierCoordinator

RSupplierCoordinator

Figure 22.26. Component ports and interfaces for
Customer Interaction and Supplier Interaction

because Customer Coordinator is a client when communicating with services. Each
Customer Coordinator component has a provided port to communicate with Customer
Interaction.

The component ports and interfaces for Supplier Coordinator are depicted in Fig-
ure 22.28. Supplier Coordinator receives supplier requests from Supplier Interaction
via the PSupplierCoordinator port, which supports a provided interface called ISup-
plierCoordinator. Supplier Coordinator is a client of the Inventory Service and com-
municates with it via the required interface IInventoryService. It is also a client of
and has the same required interface IDeliveryOrderService to Delivery Order Service
as the Customer Coordinator. Supplier Coordinator also communicates with the Billing
Coordinator, as depicted in Figure 22.15, sending it a message (S3) when an order is
ready for shipment and billing. The interface for this communication is IShipment.

Billing Coordinator (see Figure 22.29) has required ports to communicate with
two external services (Credit Card Service and Email Service) and two application
services (Delivery Order Service and Customer Account Service). It also has a provided
interface IShipment.

22.8 SERVICE REUSE

With the service-oriented architecture paradigm, once the services have been
designed and their interfaces specified, the service interface information can be reg-
istered with a service broker. Services can be composed into new applications. This
case study has described an Online Shopping System. However, other electronic
commerce systems could be designed that would reuse the services provided by the

«coordinator»

«component»

Customer

Coordinator

PCustomerCoordinator

ICustomerCoordinator

RCatalog

Service

ICatalog

Service

RCustAccount

Service

«interface»

ICustomerCoordinator

requestCatalog(in selectedCatalog, out catalogInfo)

requestSelectionFromCatalog(in itemId, out itemInfo)

requestPurchase(in purchaseInfo, out orderInfo)

requestAccount(in accountId, out accountInfo)

requestOrderStatus(in orderId, out orderInfo)

RCreditCard

Service

ICreditCard

Service

RDOService

IDeliveryOrderService

IEmail

Service

REmail

Service

ICustomerAccount

Service

Figure 22.27. Component ports and interfaces for Customer Coordinator
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confirmShipment (in orderId) 
requestOrder  (in supplierId, out orderId)
checkInventory (in orderId, out inventoryInfo)
reserveInventory (in orderId, out inventoryInfo) 

«interface»
ISupplierCoordinator «coordinator» 

«component» 

Supplier 

Coordinator

PSupplierCoordinator

RInventoryServiceRDOService

ISupplierCoordinator

IDeliveryOrderService IInventoryService

IShipment

RInterCoordinator

Figure 22.28. Component ports and interfaces for Supplier Coordinator

«coordinator»

«component»

Billing

Coordinator

PInterCoordinator

IShipment

RCustAccount

Service

RCreditCard

Service

ICreditCard

Service

RDOService

IDeliveryOrderService
IEmail

Service

REmail

Service

«interface»

IShipment

orderReadyForShipment (in orderId, in
orderStatus)

ICustomerAccount

Service

Figure 22.29. Component ports and interfaces for Billing Coordinator

Online Shopping System, such as Catalog Service, Delivery Order Service, and Inven-
tory Service.

In a business to business (B2B) system, for example, instead of using customer
accounts, contracts would be established between business customers and suppliers.
Each contract would be between a specific business customer and a specific supplier,
would be of a specified duration, and would have a maximum fiscal amount in a
specified currency. A business customer would select items from the catalog, specify
the contract that should be used, and then send the delivery order. Once the order
shipment had been made, the payment to the supplier would be made through an
electronic funds transfer from the business customer bank to the supplier bank.

The B2B system would necessitate the creation of additional services as well
as different versions of the Customer and Supplier Coordinators. The Catalog, Deliv-
ery Order, and Inventory Services would be reused. However, new services would
be required for Contract Service, Invoice Service, and Accounts Payable Service. A
reusable service-oriented architecture for an Electronic Commerce software prod-
uct line, consisting of kernel, optional, and variant components and services, is
described in (Gomaa 2005a).
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Component-Based Software Architecture
Case Study

Emergency Monitoring System

This chapter describes how the COMET software modeling and architectural design
method is applied to the design of a component-based software architecture: an
Emergency Monitoring System.

The problem description is given in Section 23.1. Section 23.2 describes the use
case model for the Emergency Monitoring System. Section 23.3 describes the Emer-
gency Monitoring System static model, covering static modeling of both the system
context and entity classes. Section 23.4 describes dynamic modeling, in which com-
munication diagrams are developed for each of the use cases. Section 23.5 describes
the design model for the Emergency Monitoring System, which is designed as a
layered architecture based on the Layers of Abstraction pattern combined with
the client/service pattern and several architectural communication patterns. Section
23.6 describes software component deployment.

23.1 PROBLEM DESCRIPTION

An Emergency Monitoring System consists of several remote monitoring systems
and monitoring sensors that provide sensor input to the system. The status of the
external environment is monitored with a variety of sensors. Some of these sen-
sors are attached to remote monitoring systems, which send regular status input
that is stored at a monitoring service. In addition, from the sensor information,
alarms are generated concerning undesirable situations in the external environment
that require human intervention. Alarms are stored at an alarm service. Monitor-
ing operators view the status of the different sensors and view and update alarm
conditions.

23.2 USE CASE MODELING

This section describes the use case model for the Emergency Monitoring System.
From the problem description, three actors are determined. The system has one
human actor, Monitoring Operator, which initiates use cases to view sensor data
and alarms. There is an external input device actor, the Monitoring Sensor, and an

453
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View
Alarms

Generate Monitoring Data

Generate Alarm

View Monitoring Data
Monitoring
Operator

Remote
System

Monitoring 
Sensor

Remote
Sensor

Figure 23.1. Emergency Monitoring System use cases and actors

external system actor, the Remote System. Both these actors behave in a similar way
by monitoring remote sensors and sending sensor data and alarms to the system.This
similar behavior can be modeled by a generalized actor, Remote Sensor, which repre-
sents the common role – that is, the behavior that is common to both the specialized
actors, Monitoring Sensor and Remote System. The actors are depicted in Figure 23.1.
Remote Sensor is the primary actor for two of the use cases.

All four use cases involve Monitoring Operator, as either primary or secondary
actor, as depicted in Figure 23.1. An overview of the use cases is presented in the
following list:

1. View Alarms. The Monitoring Operator actor views outstanding alarms and
acknowledges that the cause of an alarm is being addressed. The operator
may also subscribe or unsubscribe to receive notification of alarms of a given
type.

2. View Monitoring Data. The Monitoring Operator actor requests to view the cur-
rent status of one or more sensors. Operator requests are made on demand.
The operator may also subscribe or unsubscribe to receive notification of
changes in monitoring status.

3. Generate Monitoring Data. Monitoring data are generated on an ongoing
basis by the generalized actor, Remote Sensor. Operators are notified of mon-
itoring status events to which they have subscribed.

4. Generate Alarm. If an alarm condition is detected by the Remote Sensor,
an alarm is generated. Operators are notified of alarms to which they have
subscribed.
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23.2.1 View Monitoring Data Use Case Description

Use case name: View Monitoring Data
Summary: The monitoring operator requests to view the current status of
one or more locations.
Actor: Monitoring Operator
Precondition: The monitoring operator is logged in.
Main sequence:

1. The monitoring operator requests to view the status of a monitoring
location.

2. The system displays the monitoring status as follows:
Sensor status for each sensor (value, upper limit, lower limit, alarm
status).

Alternative sequence:
Step 2: Emergency situation. System displays emergency warning message
to operator.
Postcondition: Monitoring status has been displayed.

23.2.2 View Alarms Use Case Description

Use case name: View Alarms
Summary: The monitoring operator views outstanding alarms and ack-
nowledges that the cause of an alarm is being addressed.
Actor: Monitoring Operator
Precondition: The monitoring operator is logged in.
Main sequence:

1. The monitoring operator requests to view the outstanding alarms.
2. The system displays the outstanding alarms. For each alarm, the sys-

tem displays the name of the alarm, alarm description, location of
alarm, and severity of alarm (high, medium, low).

Alternative sequence:
Step 2: Emergency situation. System displays emergency warning message
to operator.
Postcondition: Outstanding alarms have been displayed.

23.2.3 Generate Monitoring Data Use Case Description

Use case name: Generate Monitoring Data
Summary: Monitoring data is generated on an ongoing basis. Operators are
notified of new monitoring status to which they have subscribed
Actor: Remote Sensor (primary), Monitoring Operator (secondary)
Precondition: The remote system is operational.
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Main sequence:
1. The Remote Sensor sends new monitoring data to the system.
2. The system updates the monitoring status as follows: Sensor status

for each sensor (value, upper limit, lower limit, alarm status).
3. The system sends new monitoring status to monitoring operators

who have subscribed to receive status updates.
Alternative sequence:
Step 2: Emergency situation. System displays emergency warning message
to operator.
Postcondition: Monitoring status has been updated.

23.2.4 Generate Alarm Use Case Description

Use case name: Generate Alarm
Summary: If an alarm condition is detected, an alarm is generated. Opera-
tors are notified of new alarms to which they have subscribed.
Actor: Remote Sensor (primary), Monitoring Operator (secondary)
Precondition: The external sensor is operational.
Main sequence:

1. The Remote Sensor sends an alarm to the system.
2. The system updates the alarm data. The system stores the name of

the alarm, alarm description, location of alarm, and severity of alarm
(high, medium, low).

3. The system sends the new alarm data to monitoring operators who
have subscribed to receive alarm updates.

Alternative sequence:
Step 2: Emergency situation. System displays emergency warning message
to operator.
Step 3: If the alarm is severe, display flashing warning.
Postcondition: Alarm data have been updated.

23.3 Static Modeling

The static model for the Emergency Monitoring System consists of the software
system context class diagram. The external classes are determined from the use case
actors, such that there is a one-to-one correspondence between the use case actors
and the external classes.

23.3.1 Emergency Monitoring System Context Class Diagram

The context class diagram defines the boundary of the software system. For the
Emergency Monitoring System (see Figure 23.2), the external classes consist of one
external user (Monitoring Operator), one external system (Remote System), and one
external input device, Monitoring Sensor. Since there are multiple instances of each
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«software system»

EmergencyMonitoring

System

«external system»

RemoteSystem

«external input device»

MonitoringSensor

«external user»

MonitoringOperator

Communicates

with

Interacts with

1

1

1

1..*

1..*
1..*

Inputs to

Figure 23.2. Software system context class diagram for
Emergency Monitoring System

external class, each of the external classes has a one-to-many association with the
Emergency Monitoring System in Figure 23.2. The common behavior of Remote
System and Monitoring Sensor is captured by means of a generalized external class,
Remote Sensor, although it is not necessary to explicitly depict this in Figure 23.2.

23.4 DYNAMIC MODELING

In order to understand how the use cases are realized by the system, it is necessary to
analyze how the objects in the Emergency Monitoring System participate in the use
cases. The dynamic model for the system is depicted on communication diagrams.
There are four communication diagrams, one for each use case. Because object/class
structuring and dynamic modeling are iterative activities, both are described in this
section, the former in Section 23.4.1 and the latter in Sections 23.4.2 to 23.4.6. As
the event monitoring is not state dependent, there are no state dependent control
objects and consequently no state machine modeling.

23.4.1 Class and Object Structuring

During dynamic modeling, the objects that participate in each use case are deter-
mined, and then the sequence of interactions among the objects is analyzed. The
first step is to analyze how the Emergency Monitoring System is structured into
classes and objects.

Entity classes are usually persistent classes that store information. The entity
classes for the Emergency Monitoring System are Alarm Data Repository and
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Monitoring Data Repository, since there is a need to store both alarm data and mon-
itoring data. However, the entity classes are encapsulated inside services that are
accessed by various clients. For this reason, on the communication diagrams, the
entity objects are within the services: Alarm Service, and Monitoring Data Service.

For each of the human actors there needs to be a user interaction class. For this
system, there is one human actor, Monitoring Operator, and a corresponding user
interaction class, Operator Interaction. Because the operator uses a multi-windowing
interface, there are two supporting user interaction classes to display status and
alarm information that is updated dynamically, Event Monitoring Window and Alarm
Window, respectively (See section 23.5).

In addition, there is an input object, Monitoring Sensor Component, which receives
sensor inputs from the external monitoring sensors and sends status data to the Mon-
itoring Data Service object and alarms to the Alarm Service object. There is a proxy
object, Remote System Proxy, which receives sensor data from the external remote
systems and also sends status data to the Monitoring Data Service object and alarms
to the Alarm Service object. Finally, there is a boundary superclass, Remote Sen-
sor Component, which captures the common behavior of two boundary subclasses:
Monitoring Sensor Component and Remote System Proxy. The class structuring for
the Emergency Monitoring System is shown in Figure 23.3, which shows the classes
from which the objects are instantiated.

«software system»

EmergencyMonitoring

System

«external user»

MonitoringOperator

«external input 

device»

MonitoringSensor

«user interaction»

OperatorInteraction

«service»

AlarmService

«service»

MonitoringData

Service

«input»

MonitoringSensor

Component

«proxy»

RemoteSystem

Proxy

«external system»

RemoteSystem

1

1 1

1
Inputs to Communicates with

«external input 

device»

MonitoringSensor

«external system»

RemoteSystem

«external»

RemoteSensor

«input»

MonitoringSensor

Component

«proxy»

RemoteSystem

Proxy

«boundary»

RemoteSensor

Component

1 1Interacts with

Figure 23.3. Class structuring for Emergency Monitoring System
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«user interaction»

: OperatorInteraction

«service»

: AlarmService

S1: Operator

Request

S1.3: Display

Info 

S1.1: Alarm

Request S1.2: Alarm Info

: Monitoring

Operator

Figure 23.4. Communication diagram for the View Alarms use case

23.4.2 Communication Diagrams for Use Cases

After object structuring, dynamic modeling is carried out, such that a communica-
tion diagram is developed for each use case. In analyzing the object communication
for each use case, various architectural patterns are recognized for future reference
during design. Two of the communication diagrams apply the Multiple Client/Single
Service pattern (see Chapter 15), in which multiple instances of a client interact with
a single service. The two other communication diagrams also apply the Subscrip-
tion/Notification pattern (see Chapter 17), in which a client is notified of new events
previously subscribed to in one of the client/service use cases.

23.4.3 Communication Diagram for View Alarms Use Case

First consider the communication diagram for the View Alarms use case, depicted
in Figure 23.4. In this scenario based on the Multiple Client/Single Service pattern,
the client can request to view alarms or may subscribe to be notified of future alarm
events. The client is the Operator Interaction object, and the service is provided by
the Alarm Service object. The message sequence, which starts with input from the
primary actor, the Monitoring Operator, is as follows:

S1: The Monitoring Operator requests an alarm-handling service – for exam-
ple, to view alarms or to subscribe to receive alarm messages of a specific
type.

S1.1: Operator Interaction sends the alarm request to Alarm Service.
S1.2: Alarm Service performs the request – for example, reads the list of

current alarms or adds the name of this client to the subscription list –
and sends a response to the Operator Interaction object.

S1.3: Operator Interaction displays the response – for example, alarm infor-
mation – to the operator.
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«user interaction»

: OperatorInteraction

«service»

: MonitoringDataService

V1: Operator

Request

V1.3: Display

Info 

V1.1: Monitoring

Status Request 
V1.2: Monitoring

Info 

: Monitoring

Operator

Figure 23.5. Communication diagram for the View Monitoring Data use case

23.4.4 Communication Diagram for View Monitoring Data Use Case

The communication diagram for the View Monitoring Data use case (Figure 23.5) also
applies the Multiple Client/Single Service pattern and is very similar to the commu-
nication diagram for View Alarms (see Figure 20.4). The client is again the Operator
Interaction object, and the service is provided by the Monitoring Data Service object.
The client can request to view monitoring data or may subscribe to be notified of
future status events. The message sequence, which starts with input from the pri-
mary actor, the Monitoring Operator, is as follows:

V1: The Monitoring Operator requests a monitoring status service – for
example, to view the current status of a monitoring station.

V1.1: Operator Interaction sends a monitoring status request to Monitoring
Data Service.

V1.2: Monitoring Data Service responds – for example, with the requested
monitoring status data.

V1.3: Operator Interaction displays the monitoring status information to the
operator.

23.4.5 Communication Diagram for Generate Alarm Use Cases

Consider the communication diagram for the Generate Alarm use case, shown in Fig-
ure 23.6. This scenario applies the Subscription/Notification pattern, in which the
arrival of a new alarm results in subscribers being notified: Remote Sensor Compo-
nent (representing the common behavior of both Monitoring Sensor Component and
Remote System Proxy) sends alarms to the Alarm Service object, which then notifies
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«external»

: RemoteSensor

«boundary»

: RemoteSensorComponent

«service»

: AlarmService

«user interaction»

: AlarmWindow

: MonitoringOperator

M1: Sensor Input

M2: Alarm

M3: Alarm Notification

M4: Display Info

Figure 23.6. Communication diagram for the Generate Alarm use case

client objects (in this example, Alarm Window) of new events that they previously
subscribed to receive. The message sequence is as follows:

M1: Remote Sensor Component receives sensor input from the external sen-
sor, indicating an alarm condition.

M2: Remote Sensor Component sends an alarm to Alarm Service.
M3: Alarm Service sends a multicast message containing the alarm to all

subscribers registered to receive messages of this type.
M4: Alarm Window receives the alarm notification and displays the infor-

mation to the monitoring operator.

23.4.6 Communication Diagram for Generate Monitoring
Status Use Case

The communication diagram for the Generate Monitoring Status use case also applies
the Subscription/Notification pattern and is shown in Figure 23.7. In this scenario, as
in the previous one, Remote Sensor Component (as before, representing the common
behavior of both Monitoring Sensor Component and Remote System Proxy) sends
monitoring status to the Monitoring Data Service object, which then notifies client
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: RemoteSensorComponent

«service»
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Service

«user interaction»

: EventMonitoringWindow

: MonitoringOperator

N1: Sensor Input

N2: Monitoring 

Data

N3: Event 

Notification

N4: Display Info

Figure 23.7. Communication diagram for the Generate Monitoring
Status use case

objects (in this example, Event Monitoring Window) of new events that they previ-
ously subscribed to receive. The message sequence is as follows:

N1: Remote Sensor Component receives sensor input from the external
remote system, indicating a change in monitoring status.

N2: Remote Sensor Component sends a monitoring data message to Monitor-
ing Data Service.

N3: Monitoring Data Service sends a multicast message containing the new
event notification to all subscribers registered to receive messages of this
type.

N4: Event Monitoring Window receives the event notification message and
displays the information to the monitoring operator.

23.5 DESIGN MODELING

The software architecture for the Emergency Monitoring System is designed as a
distributed component-based software architecture that applies the software archi-
tectural patterns described in Chapters 12, 15, and 17. The Emergency Monitoring
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System is designed as a layered architecture based on the Layers of Abstraction
architectural pattern.

23.5.1 Integrated Communication Diagram

The first step in design modeling is to integrate the four use case–based communi-
cation diagrams to form the integrated communication diagram for the Emergency
Monitoring System, which depicts all the software objects, as shown on Figure 23.8.
The three user interaction objects are grouped into one composite user interaction
object, Operator Presentation, which contains the Alarm Window, Event Monitoring
Window, and Operator Interaction objects. Operator Interaction interacts with both
Alarm Service and Monitoring Data Service; Alarm Window receives alarm notification
from Alarm Service; and Event Monitoring Window receives event notification from
Monitoring Data Service. The multiple instances of the specialized boundary classes,
Monitoring Sensor Component and Remote System Proxy, are explicitly depicted. Both
of these client objects communicate with Alarm Service and Monitoring Data Service
to send alarms and monitoring data, respectively.

23.5.2 Layered Component-Based Architecture

Applying the subsystem structuring criteria to the integrated communication dia-
gram, the following components and services are determined:

■ Services. The services are Alarm Service and Monitoring Data Service.
■ User interaction components. The user interaction components are Operator

Interaction, Alarm Window, and Event Monitoring Window, which are grouped into
one composite user interaction object, Operator Presentation.

■ Proxy component. The proxy component is the Remote System Proxy.
■ Input component. The input component is the Monitoring Sensor Component.

Each component is depicted with the component stereotype, which identifies
what kind of component it is. The components are structured into the layered archi-
tecture such that each component is in a layer where it depends on components in
the layers below but not the layers above. This layered architecture is based on the
Flexible Layers of Abstraction pattern, which is a less restrictive variant of the Lay-
ers of Abstraction pattern, in which a layer can use the services of any of the layers
below it, not just the layer immediately below it. The main advantage of applying
this pattern is it allows for future software evolution by adding new components at
upper layers (or modifying components at those layers) which use services at lower
layers that are not affected by the change. Furthermore, additional services can be
added at the lowest layer, which can then be discovered by requestor components at
higher layers. This layered architecture, which is depicted in Figure 23.9, is described
as follows::

Layer 1: Service Layer. This layer consists of the services Alarm Service and Mon-
itoring Data Service.

Layer 2: Monitoring Layer. This layer consists of the Remote System Proxy and
Monitoring Sensor Component. The components require the two services at the
Service Layer.
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Figure 23.9. Layered architecture of the Emergency Monitoring System

Layer 3: User Layer. This layer consists of the user interaction component Oper-
ator Presentation and the components it contains.

If two layers do not depend on each other, such as layers 2 and 3 in the preceding
list, the choice of which layer should be higher is a design decision. In addition to
the Layers of Abstraction architectural patterns, one other architectural structure
pattern is also used:

■ Multiple Client/Multiple Service pattern. There are several examples of the
Multiple Client /Multiple Service pattern used in the architecture. Initially iden-
tified as the Multiple Client/Single Service pattern in the use case–based inter-
actions diagrams in which each client only interacted with one service, the full
picture given in the integrated communication diagram (see Figure 23.8) shows
that each client (such as Remote System Proxy) actually interacts with two services
(Alarm Service and Monitoring Data Service). In the Layers of Abstraction archi-
tecture, client components are designed to be at higher layers than the services
that they require. With the Flexible Layers of Abstraction architecture, a client
can be at any of the higher levels. For example, Operator Presentation, which is
a client user interaction component, is at layer 3, whereas the services it uses
(Alarm Service and Monitoring Data Service) are at layer 1.

23.5.3 Architectural Communication Patterns

The communication diagrams explicitly show the type of message communication –
synchronous or asynchronous. Message communication between the components
of the Emergency Monitoring System is shown on the concurrent communication
diagram in Figure 23.10. The communication patterns (see Chapters 12, 15, and 17)
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Figure 23.10. Concurrent communication diagram for the Emergency Monitoring System

used are Synchronous Message Communication with Reply, Asynchronous Mes-
sage Communication, and Subscription/Notification. In addition, the Broker and
Discovery patterns are also used.

To handle the variety of communication between the components in the soft-
ware architecture, several communication patterns are applied, as depicted on the
communication diagram in Figure 23.10:

■ Synchronous Message Communication with Reply. This pattern is the typical
client/service pattern of communication and is used when the client needs infor-
mation from the service and cannot proceed before receiving the response. This
pattern is used between the user interaction clients and services, because the
clients need a response from the service before they can continue. Thus, it is
used between Operator Presentation and Alarm Service, as well as between Opera-
tor Presentation and Monitoring Data Service (see Figure 23.10).

■ Asynchronous Message Communication. The Monitoring Sensor Component and
Remote System Proxy components send asynchronous messages to Alarm Ser-
vice to post new alarms. The Monitoring Sensor Component and Remote System
Proxy components also send asynchronous messages to Monitoring Data Service
(as shown in Figure 23.10). The reason for asynchronous communication is that
the Remote System Proxy and Monitoring Sensor Component components need



Component-Based Software Architecture Case Study 467

to post alarms and monitoring status on a regular basis; they need to continue
executing without delay, and they do not need a response.

■ Broker Handle. Broker patterns are used during system initialization. Services
register service information with the broker. The Broker Handle pattern allows
clients to query the broker to determine the services to which they should be
connected.

■ Service Discovery. The Service Discovery pattern is used to allow clients to dis-
cover services, which would also permit the system to evolve after deployment.

■ Subscription/Notification (Multicast). Operator Presentation has two patterns of
communication with Alarm Service and Monitoring Data Service (see Figure 23.10).
The first is the usual communication pattern in client/service situations, namely,
Synchronous message Communication with Reply pattern, which is used to
make alarm requests and receive responses. The second pattern is the Subscrip-
tion/Notification pattern, in which Operator Presentation subscribes to receive
alarms of a certain type (e.g., high-priority alarms). When the Monitoring Sensor
Component or Remote System Proxy posts an alarm of that type to Alarm Service,
the service notifies all subscriber Operator Presentation components of the new
alarm. The same approach is used for communication with Monitoring Data Ser-
vice, in which the client is notified of monitoring events.

23.5.4 Distributed Component-Based Software Architecture

The distributed component-based software architecture of the Emergency Monitor-
ing System is depicted in Figure 23.11, in which services are fully integrated. All the
concurrent components and services communicate through ports. The ports are pro-
vided ports that support provided interfaces or required ports that support required
interfaces. There are no complex ports that support both provided and required
interfaces. The interfaces are explicitly depicted in subsequent figures. By conven-
tion, the name of a port with a provided interface starts with the prefix P (e.g.,
PAlarmService), and the name of a port with a required interface starts with the pre-
fix R (e.g., RAlarmService).

The software architecture of the Emergency Monitoring System (Figure 23.11)
depicts two services that each support two provided ports with provided interfaces
and one required port with a required interface. Two client components, Remote
System Proxy and Monitoring Sensor Component, each support two required ports
with required interfaces. The third client component, Operator Presentation, has two
required ports, each with a required interface, and two provided ports, each with a
provided interface.

23.5.5 Component and Service Interface Design

The interface designs for the individual components and services are depicted in Fig-
ures 23.12 through 23.15, in which each component/service is depicted with the ports
and interfaces it provides and/or requires. Each interface is explicitly depicted in
terms of the operations it provides. Each operation specifies its name, input param-
eters, and output parameters.

Consider first an example of a service with its ports, interfaces, and operations;
consider also the clients that communicate with this service. The Alarm Service has
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Figure 23.11. Distributed component-based software architecture for Emergency Monitoring
System
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three ports: PAlarmStatus, PAlarmService, and RAlarmNotification (as shown in Figure
23.12). Alarm Service is designed with two provided ports because it has two dif-
ferent kinds of clients. There are clients, such as Operator Presentation, that make
synchronous client/service requests to view data or make subscription requests.
There are other clients, such as Monitoring Sensor Component, that post alarms
asynchronously. Clients that post alarms use the PAlarmStatus port, which consists
of one provided interface called IAlarmStatus, which in turn provides one operation
called post (in Alarm). Clients making synchronous requests that need a response
use the PAlarmService port, which has one provided interface (IAlarmService). The
required port, RAlarmNotification port, consists of one required interface (IAlarmNo-
tification), which is used to notify clients of new events as a result of an alarm being
posted. The interfaces and operations are specified as follows:

■ Provided interface: IAlarmService
Operations:
� alarmRequest (in request, out alarmData)
� alarmSubscribe (in request, in notificationHandle out ack)

■ Provided interface: IAlarmStatus
Operation: post (in alarm)

■ Required interface: IAlarmNotification
Operation: alarmNotify (in alarm)

These interfaces are used as follows:

■ The Operator Presentation component (see Figure 23.11) uses the IAlarmService
required interface (see Figure 23.12) via the RAlarmService required port to send
alarm requests and subscription requests to Alarm Service.

■ Remote System Proxy and Monitoring Sensor Component (see Figure 23.11) use
the IAlarmStatus required interface via the RAlarmStatus required port (e.g., see
Figure 23.12) to post new alarms at Alarm Service.

■ The Alarm Service (see Figures 23.11 and 23.12) sends alarm notifications to the
Operator Presentation component by using its IAlarmNotification required inter-
face via the RAlarmNotification required port (see Figure 23.12).

The Monitoring Data Service (Figure 23.13) is designed in a similar way to the
Alarm Service. It has two provided interfaces, one of which is connected to the
required interfaces of the client Monitoring Sensor Component and Remote System
Proxy components to receive new events; the other is connected to the required
interface of the Operator Presentation component to receive monitoring requests.
It has one required interface, which is connected to the provided interface of the
Operator Presentation component to send notification events.

Figure 23.14 depicts the three client components. Both Remote System Proxy and
Monitoring Sensor Component have two required ports, each with a required inter-
face, that are used to post events with the Monitoring Data Service and alarms with
the Alarm Service. Operator Presentation has two provided ports and two required
ports. The two required ports are used to communicate with the two services, Mon-
itoring Data Service and Alarm Service. The two provided ports receive event and
alarm notifications from Monitoring Data Service and Alarm Service, respectively.
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Figure 23.13. Component interfaces of Monitoring Data Service

Operator Presentation is a composite component that contains three simple user
interaction components, as depicted in Figure 23.15. The three simple components
are Operator Interaction, Alarm Window, and Event Monitoring Window. Consider the
provided ports: the provided ports of the composite Operator Presentation compo-
nent are connected directly to the provided ports of the internal Alarm Window and
Event Monitoring Window components. Each connector that joins an outer provided
port to an inner provided port is a delegation connector, through which the outer
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Figure 23.14. Component interfaces of client components
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Figure 23.15. Component interfaces of user interaction components

delegating port provided by Operator Presentation forwards each message it receives
to the inner port provided by the nested component, e.g., Alarm Window. By con-
vention, the two ports are given the same name (e.g., PAlarmNotification for both
Operator Presentation and Alarm Window), because they provide the same interface.
Similarly, the inner required ports (RAlarmService and RMonitoringService) of the
Operator Interaction component are connected directly to the similarly named outer
required ports of Operator Presentation.

23.6 SOFTWARE COMPONENT DEPLOYMENT

A typical deployment of the software components for the Emergency Monitoring
System is given in Figure 23.16. Each client component (of which there are mul-
tiple instances) and each service is assigned its own physical node, as shown in
Figure 23.16. The client components are Monitoring Sensor Component (one node
per monitoring location), Remote System Proxy (one node per remote system), and
Operator Presentation (one node per operator). The services are Monitoring Data Ser-
vice and Alarm Service (one node per service). The nodes are interconnected by
means of the Internet.

«wide area network»

Alarm Service

{1 node}

Monitoring Data 

Service

{1 node}

Remote System 

Proxy

{1 node per remote 

system}

Monitoring Sensor 

Component
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Figure 23.16. Deployment diagram for an Emergency Monitoring System



24

Real-Time Software Architecture
Case Study

Automated Guided Vehicle System

The Automated Guided Vehicle (AGV) System case study is an example of a real-
time system. Taken in conjunction with the other systems with which it interfaces,
the Supervisory System and the Display System, it is also an example of a distributed
system of systems. The Supervisory System and the Display System are existing sys-
tems to which the AGV System must interface.

The problem is described in Section 24.1. Section 24.2 describes the use case
model for the AGV System. Section 24.3 describes the static model, which includes
the system context model that depicts the boundary between the system and the
external environment. Section 24.4 describes the object structuring for the AGV
System. Section 24.5 describes dynamic state machine modeling, and Section 24.6
describes dynamic interaction modeling in which communication diagrams are
developed for each of the use cases. Section 24.7 describes the design model for the
AGV System, which involves the design of a component-based real-time software
architecture.

24.1 PROBLEM DESCRIPTION

An AGV System has the following characteristics:
A computer-based AGV can move along a track in the factory in a clockwise

direction, and start and stop at factory stations. The AGV has the following charac-
teristics:

1. A motor, which is commanded to Start Moving and Stop Moving. The motor
sends Started and Stopped responses.

2. An arrival sensor to detect when the AGV has arrived at a station, e.g.,
arrived at station x. If this is the destination station, the AGV should stop.
If it is not the destination station, the AGV should continue moving past the
station.

3. A robot arm for loading and unloading a part onto and off of the AGV.

The AGV system receives Move commands from an external Supervisory
System. It sends vehicle Acknowledgements (Acks) to the Supervisory System

472
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Move to Station

Send Vehicle Status

Supervisory System

Clock Display System

Arrival Sensor

Figure 24.1. Automated Guided Vehicle System: use cases

indicating that is has started moving, passed a station, or stopped at a station. The
AGV system also sends vehicle status to an external Display System every 30 sec-
onds.

It is given that the arrival sensor is an event-driven input device and that the
motor and arm are passive I/O devices. It is also given that the AGV system com-
municates with the Supervisory System and Display System by means of messages.

24.2 USE CASE MODELING

The use case model for the AGV System is depicted in Figure 24.1. From the prob-
lem description, it can be determined that there are two use cases, one dealing with
the vehicle moving to a station and the second dealing with sending vehicle status to
the display system. There are four actors: Supervisory System, Display System, Arrival
Sensor, and Clock. From the perspective of the AGV System, the Supervisory System
and Display System are external system actors. The Arrival Sensor is an input device
actor, whereas the Clock is a timer actor. The use case descriptions are given next.

24.2.1 Move to Station Use Case

The Supervisory System is a primary actor that initiates the Move to Station use case,
because it sends the move command to the AGV System. The Arrival Sensor is a
secondary actor that participates in the use case as it notifies the vehicle when it has
reached a station. The use case description is as follows:

Use case name: Move to Station
Summary: The AGV moves a part to a factory station
Actor: Supervisory System (primary), Arrival Sensor (secondary)
Precondition: The AGV is stationary.
Main sequence:

1. The Supervisory System sends a message to the AGV system
requesting it to move to a factory station and load a part.

2. The AGV System commands the motor to start moving.
3. The motor notifies the AGV System that the vehicle has started

moving.
4. The AGV System sends a Departed message to the Supervisory Sys-

tem.
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5. The arrival sensor notifies the AGV System that it has arrived at
factory station (#).

6. The AGV System determines that this station is the destination sta-
tion and commands the motor to stop moving.

7. The motor notifies the AGV System that the vehicle has stopped
moving.

8. The AGV System commands the robot arm to load the part.
9. The arm notifies the AGV System that the part has been loaded.

10. The AGV System sends an Arrived message to the Supervisory Sys-
tem.

Alternative sequences:
Step 6: If the vehicle arrives at a different station from the destination sta-
tion, the vehicle passes the station without stopping and sends a “Passed
factory station (#) without stopping” message to the Supervisory System.
Steps 8, 9: If the Supervisory System requests the AGV to move to a factory
station and unload a part, the AGV will unload the part after it arrives at
the destination station.
Postcondition: AGV has completed its mission and is at the destination
station.

24.2.2 Send Status Use Case

The Clock is a primary actor, which initiates the Send Vehicle Status use case, for
which the Display System is a secondary actor. The use case description is as follows:

Use case name: Send Vehicle Status
Summary: The AGV sends status information about its location and
idle/busy status to the display system.
Actor: Clock (primary), Display System (secondary)
Precondition: The AGV is operational.
Main sequence:

1. Clock notifies AGV System that the timer has expired.
2. AGV System reads the status information about AGV location and

idle/busy status.
3. AGV System sends the AGV status information to the Display Sys-

tem.
Postcondition: AGV system has sent status information

24.3 STATIC MODELING

This section describes the static model, which consists of the system context model
and the entity class model.
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Figure 24.2. Conceptual static model for the Automated Guided Vehicle
System

24.3.1 Conceptual Static Modeling

The conceptual static model is shown in Figure 24.2 using a class diagram. It depicts
a system of systems, consisting of the Supervisory System, the AGV System, and the
Display System. The AGV System is modeled as a composite class, which receives
commands from and sends acknowledgments to the Supervisory System, and sends
status to the Display System. The AGV System is composed of four classes: the
Arrival Sensor, the Motor, the Robot Arm, and the Clock.

24.3.2 Software System Context Modeling

The software system context diagram (Figure 24.3) is modeled from the perspective
of the software system to be developed, the AGV System. It therefore depicts two
external system classes (the Supervisory System and the Display System) and the Clock
external timer class, which were originally depicted as actors in the use case model.
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Figure 24.3. Software system context class diagram for Automated Guided
Vehicle System
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«state dependent
control»

VehicleControl
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«output»
Arm

Interface

«output»
Motor

Interface

«proxy»
DisplayProxy

«external output
device »
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«external system»
DisplaySystem

1

1

Inputs to 1

1

Signals

1

1
Outputs to

1

1
Outputs to

1

1
Communicates with

Figure 24.4. Object structuring for the Automated Guided Vehicle System

There is one external input device class, Arrival Sensor, and two external output
device classes, Motor and Robot Arm.

24.4 OBJECT AND CLASS STRUCTURING

Object structuring for the AGV System is depicted in Figure 24.4. For each exter-
nal class on the software system context diagram, there is a corresponding internal
software class. Thus, there are two proxy classes, Supervisory System Proxy and Dis-
play Proxy, which communicate with the two external systems, Supervisory System
and Display System, respectively. There is one input class, Arrival Sensor Interface,
which communicates with the Arrival Sensor external input device, and two output
classes, Motor Interface and Arm Interface, which communicate with the Motor and
Arm external output devices, respectively. There are two additional classes, a state-
dependent control class, Vehicle Control, which executes the vehicle state machine,
and an entity class, Vehicle Status, which contains data about the vehicle destination
and command. In addition, there is one timer class, Vehicle Timer.

24.5 DYNAMIC STATE MACHINE MODELING

Vehicle Control executes the vehicle state machine, which is depicted on the state-
chart in Figure 24.5. The state machine follows the states of the vehicle as it tran-
sitions from idle state to moving, arriving at destination, loading or unloading the
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part, and then restarting. The states are determined by following the main sequence
textually described in the Move to Station use case, and are as follows:

■ Idle. This is the initial state, in which the AGV is idle, waiting for a command
from the Supervisory System.

■ Starting. This state is entered when the AGV has received a Move to Station mes-
sage from the Supervisory System and has sent a start command to the motor.

■ Moving. The AGV is moving to the next station.
■ Checking Destination. The AGV has arrived at a station and is checking to

determine whether this is its destination.
■ Stopping to Load. This station is the destination, and the AGV is to load a part.

The AGV commands the motor to stop on entry to this state.
■ Part Loading. This robot arm is loading the part onto the AGV.
■ Stopping to Unload. This station is the destination, and the AGV is to unload a

part. The AGV commands the motor to stop on entry to this state.
■ Part Unloading. This robot arm is unloading the part off the AGV.

Note that the Stopping to Load and the Stopping to Unload states are kept
separate because the actions leaving these states are different (Load and Unload,
respectively).

24.6 DYNAMIC INTERACTION MODELING

For each use case, a communication diagram is developed that depicts the objects
that participate in the use case and the sequence of messages passed between them.
Several objects realize the main use case, Move to Station; however, only three soft-
ware objects are needed to realize the supporting use case, Send Vehicle Status.

24.6.1 Dynamic Modeling for Move to Station

In the communication diagram for the Move to Station use case (Figure 24.6), the
sequence of external inputs and external outputs on the communication diagram
corresponds to the sequence described in the use case and starts with the command
sent by the Supervisory System, which is the primary actor. The objects that real-
ize this use case are Supervisory System Proxy, which receives the inputs from the
Supervisory System; Vehicle Control, which controls the objects that participate in the
use case; Vehicle Status, for storing and retrieving destination location information;
Arm Interface and Motor Interface, for interfacing to the two external output devices;
and Arrival Sensor Interface, for receiving input from the arrival sensor. The message
sequence description is as follows for a scenario in which the vehicle goes past the
first station and stops at the second station to load a part:

1: The external Supervisory System sends a Move command message to the
AGV System requesting it to move to a factory station and load a part.

1.1: The Supervisory System Proxy, which receives the Move command,
sends a Move to Station message to Vehicle Control.



«
e
x
te

rn
a
l 
s
y
s
te

m
»

: 
S

u
p
e
rv

is
o
ry

S
y
s
te

m

«
e
x
te

rn
a
l 
in

p
u
t 

d
e
v
ic

e
»

: 
A

rr
iv

a
lS

e
n
s
o
r

«
p
ro

x
y
»

: 
S

u
p
e
rv

is
o
ry

S
y
s
te

m

P
ro

x
y

«
in

p
u
t»

: 
A

rr
iv

a
lS

e
n
s
o
r

In
te

rf
a
c
e

«
s
ta

te
 d

e
p
e
n
d
e
n
t 

c
o
n
tr

o
l»

: 
V

e
h
ic

le
C

o
n
tr

o
l

«
e
n
ti
ty

»

: 
V

e
h
ic

le

S
ta

tu
s

«
o
u
tp

u
t»

: 
A

rm

In
te

rf
a
c
e

«
o
u
tp

u
t»

: 
M

o
to

r

In
te

rf
a
c
e

«
e
x
te

rn
a
l 

o
u
tp

u
t 
d
e
v
ic

e
»

: 
A

rm

«
e
x
te

rn
a
l 
o
u
tp

u
t 

d
e
v
ic

e
»

: 
M

o
to

r

2
, 
3
: 
A

rr
iv

a
l 
S

e
n
s
o
r 

In
p
u
t

2
.1

, 
3
.1

: 
A

rr
iv

e
d
 a

t 
S

ta
ti
o
n

2
.3

: 
N

o
,

3
.3

: 
L
o
a

d

C
o
m

m
a
n

d

1
.2

a
: 

S
to

re
 D

e
s
ti
n
a
ti
o
n

,

2
.2

, 
3
.2

: 
C

h
e
c
k
 D

e
s
ti
n
a
ti
o
n

,

3
.1

2
a
: 
C

le
a
r

1
.2

: 
S

ta
rt

 M
o

to
r,

3
.4

: 
S

to
p
 M

o
to

r

1
.3

: 
S

ta
rt

 M
o
to

r 
O

u
tp

u
t,

3
.5

: 
S

to
p

 M
o
to

r 
O

u
tp

u
t

3
.8

: 
L
o
a
d

,

3
.8

A
: 
U

n
lo

a
d

3
.9

: 
A

rm
 O

u
tp

u
t

1
.5

: 
S

ta
rt

e
d
,

3
.7

: 
S

to
p

p
e

d

1
.4

: 
S

ta
rt

e
d
 A

c
k

,

3
.6

: 
S

to
p
p
e
d
 A

c
k

3
.1

0
: 
A

rm
 A

c
k

3
.1

1
: 
L
o
a
d
e
d
, 

3
.1

1
A

: 
U

n
lo

a
d
e

d

1
.6

: 
D

e
p
a
rt

e
d
,

2
.4

: 
P

a
s
s
e
d
,

3
.1

2
: 
A

rr
iv

e
d

1
.7

, 
2
.5

, 
3
.1

3
: 
A

G
V

 A
c

k

1
.1

: 
M

o
v
e
 t
o
 S

ta
ti
o
n

1
: 

M
o

v
e

 C
o

m
m

a
n

d

«s
o

ft
w

ar
e

sy
st

em
»

: 
A

u
to

m
at

e
d

G
u

id
ed

V
eh

ic
le

S
ys

te
m

Fi
gu

re
2

4
.6

.
C

om
m

un
ic

at
io

n
di

ag
ra

m
fo

r
th

e
M

ov
e

to
St

at
io

n
us

e
ca

se

479



480 Case Studies

1.2: Vehicle Control sends a Start Motor command to Motor Interface to
start moving.

1.2a: Vehicle Control stores destination and load/unload command in
Vehicle Status.

1.3: Motor Interface sends Start Motor command to external Motor.
1.4: Motor sends Started acknowledge message to Motor Interface.
1.5: Motor Interface notifies the Vehicle Control that the vehicle has

started moving.
1.6: Vehicle Control sends a Departed message to the Supervisory System

Proxy
1.7: Supervisory System Proxy forwards Departed message to the Supervi-

sory System.
2: The arrival sensor notifies the AGV system that it has arrived at factory

station (#).
2.1: Arrival Sensor Interface sends Arrived at Station message to Vehicle

Control.
2.2: Vehicle Control sends Check Destination message to Vehicle Status.
2.3: Vehicle Status indicates that this is not the destination.
2.4: Vehicle Control sends a Passed message to the Supervisory System

Proxy
2.5: Supervisory System Proxy forwards Passed message to the Supervisory

System.
3: The arrival sensor notifies the AGV System that it has arrived at factory

station (#).
3.1: Arrival Sensor Interface sends Arrived at Station message to Vehicle

Control.
3.2: Vehicle Control sends Check Destination message to Vehicle Status.
3.3: Vehicle Status indicates that this station is the destination station and

that the command is to load a part.
3.4: Vehicle Control sends Stop Motor message to Motor Interface.
3.5: Motor Interface sends Stop Motor command to external Motor.
3.6: Motor sends Stopped acknowledge message to Motor Interface.
3.7: Motor Interface notifies the Vehicle Control that the vehicle has

stopped moving.
3.8: Vehicle Control sends Load message to Arm Interface.
3.9: Arm Interface sends Load message to external Arm.
3.10: Arm sends acknowledgement message to Vehicle Control indicating

that the arm has finished.
3.11: Arm Interface sends Loaded message to Vehicle Control.
3.12: Vehicle Control sends an Arrived message to the Supervisory System

Proxy
3.13: Supervisory System Proxy forwards Arrived message to the Supervi-

sory System.

The messages into and out of Vehicle Control correspond to the events and
actions depicted on the statechart in Figure 24.7 and follow the same scenario given
in the preceding message sequence description.
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«external timer»
: Clock

«timer»
: VehicleTimer

«entity»
: VehicleStatus

«proxy»
: DisplayProxy

«external system»
: DisplaySystem

1: Timer Event

1.3: Update Status

1.4: AGV Status

1.2: Status

1.1: Read

«software
system»
: Automated
GuidedVehicle
System

Figure 24.8. Communication diagram for the Send
Vehicle Status use case

24.6.2 Dynamic Modeling for Send Vehicle Status

The communication diagram for the Send Vehicle Status use case is shown in Fig-
ure 24.8. The objects that realize this use case are the Vehicle Timer, which receives
clock inputs, Vehicle Status, which stores status information, and Display Proxy, which
sends vehicle status to the external Display System. The message sequence starts with
the external timer event from the external Clock and the message numbering is as
follows:

1: Clock sends Timer Event to Vehicle Timer.
1.1, 1.2: Vehicle Timer reads Vehicle Status.
1.3: Vehicle Timer sends Update Status message to Display Proxy.
1.4: Display Proxy sends Vehicle Status to external Display System.

24.7 DESIGN MODELING

The software architecture of the AGV System is designed around a centralized
control pattern. Centralized control is provided by the Vehicle Control component
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receiving inputs from the Supervisory System and the Arrival Sensor, and control-
ling the external environment by means of the Motor and Arm. When viewed from
the larger perspective of a factory automation system, the architecture is a based
around a hierarchical control pattern, with several instances of the AGV System
(each instance controlling an individual vehicle) operating under the overall direc-
tion of a Supervisory System, which provides hierarchical control of the individual
AGVs by sending move commands to each vehicle.

24.7.1 Integrated Communication Diagram

The initial attempt at design modeling involves developing the integrated commu-
nication diagram for the AGV System, which requires the integration of the two
use case–based communication diagrams shown in Figures 24.6 and 24.8. The inte-
grated communication diagram is depicted in Figure 24.9. The integration is quite
straightforward, because the only object that participates in both the use case–based
communication diagrams is Vehicle Status. The integrated communication diagram
is a generic communication diagram in that it depicts all possible communications
between the objects.

24.7.2 Component-Based Software Architecture
of Factory Automation System

The distributed software architecture for the Factory Automation System, which
is a system of systems, is shown on the system communication diagram in Fig-
ure 24.10. It depicts the three interacting distributed systems (designed as compo-
nents): the Supervisory System, the Automated Guided Vehicle (AGV) System, and
the Display System. There is one instance of the Supervisory System, and multiple
instances of the AGV System and the Display System. All communication between
the distributed components is asynchronous, which allows the greatest flexibility in
message communication. Communication between the Supervisory System and the
AGV System is an example of bidirectional asynchronous communication.

The component-based software architecture for the Factory Automation Sys-
tem is shown in Figure 24.11, in which the three systems are designed as distributed
components. The AGV System has a provided port for receiving messages from
the Supervisory System and a required port for sending messages to the Display
System. The provided port PAGVSystem is a complex port because it has both a
provided interface, IAGVSystem, for receiving command messages and a required
interface, ISupervisorySystem, for sending acknowledgement messages, as shown in
Figure 24.12. The required port RDisplaySystem supports a required interface,
IDisplaySystem, for sending AGV status messages to the Display System. The three
component interfaces are also defined in Figure 24.12.

The configuration of the Factory Automation System is depicted on the deploy-
ment diagram of Figure 24.13. There is one node for each of the Supervisory System,
one node per AGV System and one node for the Display System. The distributed nodes
are connected by a local area network in the factory.
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AGV AckMove Command

AGV Status
«component»

«control» 

: AutomatedGuided

VehicleSystem

«component»

«user interaction» 

: DisplaySystem

«component»

«coordinator» 

: SupervisorySystem

Figure 24.10. System communication diagram for Factory
Automation System

24.7.3 Software Architecture of Automatic Guided
Vehicle System

The AGV System is designed as a real-time component-based software archi-
tecture. A component-based design provides the advantages of a configurable
design and follows the concepts described in Chapter 17. The real-time design is
needed because of the characteristics of the application, and it follows the concur-
rent task structuring criteria and message-based task interface design described in
Chapter 18.

The design of the AGV System is based on the centralized control pattern for
real-time designs (see Chapter 18). One control component, Vehicle Control, pro-
vides the overall control of the system. In addition, the AGV System is designed as
a distributed component-based software architecture, which allows the option for
input and output components to reside on separate nodes that are connected by a

«component»

«coordinator» 

SupervisorySystem

«component»

«control»

AutomatedGuided

VehicleSystem

«component»

«user interaction»

DisplaySystem

RAGVSystem

PDisplaySystem

PAGVSystem

RDisplaySystem

Figure 24.11. Component-based software architec-
ture for Factory Automation System
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«component»
«coordinator»

SupervisorySystem

«component»
«control»

AutomatedGuided
VehicleSystem

«component»
«user interaction»

DisplaySystem

RAGVSystem

PDisplaySystem

PAGVSystem

RDisplaySystem

ISupervisorySystem IAGVSystem

ISupervisorySystem IAGVSystem

IDisplaySystem

IDisplaySystem

AGVAck (in status)

«interface»
ISupervisorySystem

moveCommand (in command) 

«interface»
IAGVSystem

displayAGVStatus (in AGVStatus) 

«interface»
IDisplaySystem

Figure 24.12. Composite component ports and interfaces for Factory Automation System

high-speed bus. At system deployment time, the type of configuration required –
centralized or distributed – is determined.

The concurrent software architecture for the AGV System is developed from
the integrated communication diagram by applying the task structuring criteria to
design the concurrent tasks and architectural communication patterns to design
the message communication between tasks. Next the component-based architecture
is designed. Finally, the provided and required interfaces of each component are
described. Each component port is defined in terms of its provided and/or required
interfaces.

SupervisorySystem

{1 node}

AutomatedGuided
VehicleSystem

{1 node per AGV}

DisplaySystem

{1 node}

«local area network»

Figure 24.13. Distributed system deployment for Factory Automa-
tion System



Real-Time Software Architecture Case Study 487

24.7.4 Concurrent Software Architecture

In this concurrent real-time design, the concurrent task structuring criteria are
applied to determine the tasks in the Automatic Guided Vehicle System. The con-
current task design (see Figure 22.14) is developed by starting from the integrated
communication diagram in Figure 24.9, which depicts all the objects in the AGV
System. All these objects are concurrent because they need to operate indepen-
dently, except Vehicle Status, which is a passive data abstraction object. Because the
goal is to design a concurrent component-based software architecture, the tasks are
all designed as simple concurrent components, each with its own single thread of
control. Thus, in this design, the terms task and simple component are synonymous.
The concurrent tasks are described in the following list.

■ Input tasks. Concurrent input tasks receive inputs from the external environ-
ment and send corresponding messages to the control task. Arrival Sensor Compo-
nent (Figure 24.14) is designed as an event-driven input task, which is awakened
by the arrival of an arrival sensor input. The input task consists of the individual
input device interface object depicted in the analysis model (see Figure 24.9):
Arrival Sensor Interface.

■ Proxy tasks. Supervisory System Proxy acts on behalf of the Supervisory System,
from which it receives Move commands that are forwarded to Vehicle Control,
and it sends AGV acknowledgements to Supervisory System. Supervisory System
Proxy is designed as an event-driven task, which is awakened by messages from
either the external Supervisory System or the internal Vehicle Control. Note that
if a task receives both external and internal messages, it is categorized as an
event driven task and not a demand driven task. Display Proxy acts on behalf of
the Display System, to which it forwards AGV status messages. Display Proxy
is designed as a demand driven task, awakened on demand by the arrival of a
message from Vehicle Timer.

■ Control task. Vehicle Control is the centralized state dependent control task for
the AGV system. It executes the Vehicle Control state machine and receives mes-
sages from other tasks that contain events, causing Vehicle Control to change state
and send action messages to other tasks. Vehicle Control is designed as a demand
driven task, which is awakened by arrival of a message from either Supervisory
System Proxy or Arrival Sensor Component.

■ Output tasks. The Arm Component interfaces to the external Arm. The Arm Inter-
face object from the analysis model is mapped to this output task (see Figures
24.9 and 24.14). Similarly, the Motor Component interfaces to the external Motor
and is designed from the analysis model Motor Interface object. Both of the out-
put tasks are designed as demand driven tasks, which are awakened on demand
by arrival of a message from Vehicle Control.

24.7.5 Architectural Communication Patterns

The concurrent communication diagram for the AGV System is shown in Figure
24.14, which depicts the concurrent tasks in the AGV software architecture. Next
the task interfaces are designed.
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The messages to be sent between the tasks in the AGV system are determined
from the integrated communication diagram in Figure 24.9. The actual type of mes-
sage communication – synchronous or asynchronous – still needs to be determined.
To handle the variety of communication between the tasks in the AGV System, four
communication patterns are applied:

1. Asynchronous Message Communication. The Asynchronous Message Com-
munication pattern is widely used in the AGV System because most com-
munication is one-way, and this pattern has the advantage of not letting the
consumers hold up the producers. The Vehicle Control task needs to be able to
receive messages from either of its two producers, Supervisory System Proxy
and Arrival Sensor Component, in any order. The best way to handle this
requirement for flexibility is through asynchronous message communication,
with one input message queue for the Vehicle Control task, so that Vehicle Con-
trol will receive whichever message arrives first, move command or station
arrival. The Vehicle Timer task sends asynchronous AGV status messages to
the Display Proxy task, which receives these messages on a message queue.

2. Bidirectional Asynchronous Communication. This communication pattern is
used between the Supervisory System Proxy and Vehicle Control, because con-
siderable time could elapse between Supervisory System Proxy sending the
move command to Vehicle Control and Vehicle Control sending the acknowl-
edge response to the Supervisory System Proxy (after the AGV has arrived at
its destination). Thus, move and acknowledge messages are decoupled.

3. Synchronous Message Communication without Reply. This pattern is used
when the producer needs to make sure that the consumer has accepted the
message before the producer continues. This pattern is used between the Vehi-
cle Control and Arm Component, as well as between Vehicle Control and Motor
Component. In both cases, the consumer task is idle until it accepts the mes-
sage, so the Vehicle Control producer is not held up after sending the message.

4. Call/Return. This pattern is used when AGV Control and Vehicle Timer
invoke the operations of the passive Vehicle Status (see Figure 24.14) data
abstraction object.

24.7.6 Component-Based Software Architecture

The component-based software architecture for the AGV System is given on Figure
24.15. Figure 24.15 depicts a UML composite structure diagram showing the AGV
System component ports and connectors. All the components are concurrent except
one and communicate with other components through ports. The overall architec-
ture and connectivity among components is determined from the AGV System con-
current communication diagram. Thus, the composite structure of the component
architecture depicted in Figure 24.15 is determined from the concurrent communi-
cation design shown in Figure 24.14.

The Automated Guided Vehicle System component is designed as a composite
component that contains eight simple part components; seven of these are concur-
rent components (Supervisory System Proxy, Arrival Sensor Component, Vehicle Con-
trol, Vehicle Timer, Arm Component, Motor Component, and Display Proxy), and the
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other is a passive data abstraction object (Vehicle Status). The seven simple concur-
rent components correspond to the tasks determined in Section 24.7.4 and depicted
on the concurrent communication diagram of Figure 24.14.

Figure 24.15 shows the decomposition of the Automatic Guided Vehicle Sys-
tem component into the seven simple concurrent components and the passive data
abstraction object described in the previous paragraph. The provided port of the
composite Automatic Guided Vehicle System component is connected directly to the
provided port of the simple Supervisory System Proxy component, and both ports
are given the same name (PAGV System) because they provide the same interface.
The connector joining the two ports is actually a delegation connector, meaning that
the outer port provided by Automatic Guided Vehicle System forwards each message
it receives to the inner port provided by Supervisory System Proxy. The required
ports of the Display Proxy component is also connected to the required port of the
composite Automatic Guided Vehicle System component, via delegation connectors.

Vehicle Control, which executes the vehicle state machine, has one provided
port, which supports a provided interface that receives all incoming messages from
Supervisory System Proxy and Arrival Sensor Component. In this way, Vehicle Con-
trol receives all incoming messages on a FIFO basis. Vehicle Status also has one
provided port and provided interface. Because Vehicle Status is passive, it provides
operations, which are invoked by Vehicle Control and Vehicle Timer. Vehicle Control
also has two required ports through which it communicates with Arm Component and
Motor Component.

Because the two producer components (Supervisory System Proxy and Arrival
Sensor Component) send messages to the Vehicle Control component in Figure 24.14,
each producer component is designed to have an output port, referred to as a
required port, which is joined by means of a connector to the control component’s
input port, referred to as a provided port, as shown in Figure 24.15. The name of the
required port on each producer component is RAGVCtrl; by a COMET convention,
the first letter of the port name is R to emphasize that the component has a required
port. The name of the provided port for Vehicle Control is PAGVCtrl; the first letter of
the port name is P to emphasize that the component has a provided port. Connec-
tors join the required ports of the two producer components to the provided port of
the control component.

24.7.7 Design of Component Interfaces

Each component port is defined in terms of its provided and/or required interfaces.
Some producer components – in particular, the input component – do not provide
a software interface, because they receive their inputs directly from the external
hardware input device. However, they require an interface provided by the control
component in order to send messages to the control component. Figure 24.16 depicts
the port and required interface for the input component Arrival Sensor Component.
This input component, as well as the Supervisory System Proxy component, has the
same required interface – IAGVControl, which is provided by the Vehicle Control
component.

The Vehicle Control component has three required ports from which it sends mes-
sages to the provided ports of the two output components depicted in Figure 24.14
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«data 

abstraction»

VehicleStatus

«event driven»

«proxy»

SupervisorySystem

Proxy

«event driven»

«input»

ArrivalSensor

Component

«demand»

«output»

Arm

Component

«demand»

«output»

Motor

Component

«periodic»

«timer»

VehicleTimer

«demand»

«proxy»

DisplayProxy

«demand»

«state dependent 

control»

VehicleControl

PDisplay

RDisplay

PAGVStatus

RAGVStatus

RAGVStatus

RMotor

PMotorPArm

RArm

PAGVCtrl

RAGVCtrlRAGVCtrl

IAGVCtrl

IAGVCtrlIAGVCtrlISupervisorySystem

ISupervisorySystem

IArm

IArm IMotor

IMotor

IAGVStatus

IAGVStatus

IAGVStatus

IDisplay

IDisplay

Figure 24.16. Automated Guided Vehicle System component ports and interfaces

(Arm Component and Motor Component), and it invokes operations on Vehicle Status
data abstraction object through its provided port.

The output components do not require a software interface because their out-
puts go directly to external hardware output devices. However, they need to provide
an interface to receive messages sent by the control component. Figure 24.16 depicts
the ports and provided interfaces for the two output components of the AGV Sys-
tem. Figure 24.17 also shows the specifications of the interfaces in terms of the oper-
ations they provide. The Arm Component and Motor Component output components
each have a provided port:

■ PArm for Arm Component, which provides the interface IArm
■ PMotor for Motor Component, which provides the interface IMotor

The Display Proxy component has a provided port called PDisplay, which in turn
provides an interface called IDisplay, as shown in Figure 24.16. Figure 24.17 shows
the specification of the interface.

Some components, such as control components, need to provide interfaces for
the producer components to use and require interfaces that are provided by output
components. The Vehicle Control component has several ports – one provided port
and three required ports – as shown in Figure 24.16. Each required port is used to
interface to a different consumer component and is given the prefix R – for exam-
ple, RArm. The provided port, which is called PAGVControl, provides the interface
IAGVControl, which is required by the producer components.

The Vehicle Control component (see Figures 24.14 and 24.15), which conceptu-
ally executes the AGV statechart, receives asynchronous control request messages
from two producer components. The provided interface IAGVControl is specified in
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initialize ()

load ()

unload ()

«interface»
IArm

moveToStation (in destination, in load/Unload)

 arrivingAtStation (in station#)

«interface»
IAGVControl

initialize ()

startMotor ()

stopMotor ()

«interface»
IMotor

displayAGVStatus (in
AGVStatus)

«interface»
IDisplay

«interface»
IAGVStatus

update (in destination, in loadUnload)

check (in currentStation#, out response)

read (out AGVid, out location,

out destination, out loadUnload)  
clear ()

Figure 24.17. Automated Guided Vehicle System component interface specifications

Figure 24.17. It is kept simple by having only one operation, processControlRequest,
which has an input parameter, controlRequest, that holds the name and contents of
the individual message. Having each control request as a separate operation would
make the interface more complicated when considering evolution of the system
because it would need the addition or deletion of operations rather than changing a
parameter.

The ports and interfaces of the periodic timer component are shown in Fig-
ures 24.16 and 24.17. The Vehicle Timer has two required ports with two required
interfaces. The first required interface is IAGVStatus, which allows it to read AGV
status information from the Vehicle Status data abstraction object. The second
required interface is IDisplay, which allows Vehicle Timer to send AGV status mes-
sages to Display Proxy.

- destination : Integer = 0
- AGVid : Integer = 0

- location : Integer = 0
- loadUnload : Boolean = unload

«data abstraction»
VehicleStatus

+ update (in destination, in loadUnload) 
+ check (in currentStation#, out response)
+ read (out AGVid, out location
out destination,out loadUnload)   
+ clear ()

«state machine»
VehicleStateMachine

+ processEvent (in event, out action) 

+ currentState () : State

Figure 24.18. Vehicle Status data abstraction class and Vehicle State Machine class
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The port and interface of the passive data abstraction object (Vehicle Status)
are shown in Figures 24.16 and 24.17. Vehicle Status provides one interface with
three operations. The update operation stores the next AGV destination and the
command to be executed there (load or unload). The check operation receives the
current station number and returns whether this is the destination or not; if it is
the destination, it also returns whether the station command is load or unload. The
read operation returns the location, destination, and load/unload command. The
attributes of the Vehicle Status data abstraction class are given in Figure 24.18. This
figure also depicts the state machine class design for Vehicle State Machine, which is
encapsulated inside the Vehicle Control component.



APPENDIX A

Catalog of Software Architectural Patterns

A template for describing a pattern typically addresses the following items from the
perspective of the prospective user of the pattern:

■ Pattern name
■ Aliases. Other names by which this pattern is known.
■ Context. The situation that gives rise to this problem.
■ Problem. Brief description of the problem.
■ Summary of solution. Brief description of the solution.
■ Strengths of solution. Use to determine if the solution is right for your design

problem.
■ Weaknesses of solution. Use to determine if the solution is wrong for your design

problem.
■ Applicability. Situations in which you can use the pattern.
■ Related patterns. Other patterns to consider for your solution.
■ Reference. Where you can find more information about the pattern.

The architectural structure patterns, architectural communication patterns, and
architectural transaction patterns are documented with this template in Sec-
tions A.1, A.2, and A.3, respectively. The patterns are summarized in the follow-
ing tables:

Table A.1. Software architectural structure patterns

Software architectural structure patterns Pattern description Reference chapter

Broker Pattern Section A.1.1 Chapter 16, Section 16.2
Centralized Control Pattern Section A.1.2 Chapter 18, Section 18.3.1
Distributed Control Pattern Section A.1.3 Chapter 18, Section 18.3.2
Hierarchical Control Pattern Section A.1.4 Chapter 18, Section 18.3.3
Layers of Abstraction Pattern Section A.1.5 Chapter 12, Section 12.3.1
Multiple Client/Multiple Service Pattern Section A.1.6 Chapter 15, Section 15.2.2
Multiple Client/Single Service Pattern Section A.1.7 Chapter 15, Section 15.2.1
Multi-tier Client/Service Pattern Section A.1.8 Chapter 15, Section 15.2.3

495
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Table A.2. Software architectural communication patterns

Software architectural
communication patterns

Pattern
description Reference chapter

Asynchronous Message
Communication Pattern

Section A.2.1 Chapter 12, Section 12.3.3

Asynchronous Message
Communication with Callback
Pattern

Section A.2.2 Chapter 15, Section 15.3.2

Bidirectional Asynchronous
Message Communication

Section A.2.3 Chapter 12, Section 12.3.3

Broadcast Pattern Section A.2.4 Chapter 17, Section 17.6.1
Broker Forwarding Pattern Section A.2.5 Chapter 16, Section 16.2.2
Broker Handle Pattern Section A.2.6 Chapter 16, Section 16.2.3
Call/Return Section A.2.7 Chapter 12, Section 12.3.2
Negotiation Pattern Section A.2.8 Chapter 16, Section 16.5
Service Discovery Pattern Section A.2.9 Chapter 16, Section 16.2.4
Service Registration Section A.2.10 Chapter 16, Section 16.2.1
Subscription/Notification Pattern Section A.2.11 Chapter 17, Section 17.6.2
Synchronous Message

Communication with
Reply Pattern

Section A.2.12 Chapter 12, Section 12.3.4;
Chapter 15, Section 15.3.1

Synchronous Message
Communication without Reply
Pattern

Section A.2.13 Chapter 18, Section 18.8.3

Table A.3. Software architectural transaction patterns

Software architectural transaction
patterns

Pattern
description Reference chapter

Compound Transaction Pattern Section A.3.1 Chapter 16, Section 16.4.2
Long-Living Transaction Pattern Section A.3.2 Chapter 16, Section 16.4.3
Two-Phase Commit Protocol Pattern Section A.3.3 Chapter 16, Section 16.4.1
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A.1 SOFTWARE ARCHITECTURAL STRUCTURE PATTERNS

This section describes the architectural structure patterns, which address the static
structure of the architecture, in alphabetical order, using the standard template.

A.1.1 Broker Pattern

Pattern name Broker
Aliases Object Broker, Object Request Broker
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register with broker. Clients send service requests
to broker. Broker acts as intermediary between client and
service.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in message
communication. Broker can become a bottleneck if there
is a heavy load at the broker. Client may keep outdated
service handle instead of discarding.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Broker Forwarding, Broker Handle
Reference Chapter 16, Section 16.2

Client

Broker

Service

Locates Service through

Registers with

1..*

1

1..*

1..*

1

1

Requests Service 

From

Figure A.1. Broker pattern
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A.1.2 Centralized Control Pattern

Pattern name Centralized Control
Aliases Centralized Controller, System Controller
Context Centralized application where overall control is needed
Problem Several actions and activities are state-dependent and need

to be controlled and sequenced.
Summary of solution There is one control component, which conceptually

executes a statechart and provides the overall control
and sequencing of the system or subsystem.

Strengths of solution Encapsulates all state-dependent control in one component
Weaknesses of solution Could lead to overcentralized control, in which case

decentralized control should be considered.
Applicability Real-time control systems, state-dependent applications
Related patterns Distributed Control, Hierarchical Control
Reference Chapter 18, Section 18.3.1

sendControlRequest(keypadEvent)

displayPrompt(promptId)

displayTime(time)
startCooking(level)

stopCooking()

sendControlRequest

(doorEvent) sendControlRequest

(weightEvent)

«control»

«component»

: MicrowaveControl

«input»

«component»

: DoorComponent

«input»

«component»

: WeightComponent

«output»

«component»

: MicrowaveDisplay

«output»

«component»

: HeatingElementComponent

«input»

«component»

: KeypadComponent

Figure A.2. Centralized Control pattern: Microwave Oven Control System example
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A.1.3 Distributed Control Pattern

Pattern name Distributed Control
Aliases Distributed Controller
Context Distributed application with real-time control requirement
Problem Distributed application with multiple locations where

real-time localized control is needed at several locations
Summary of solution There are several control components, such that each

component controls a given part of the system by
conceptually executing a state machine. Control is
distributed among the various control components; no
single component has overall control.

Strengths of solution Overcomes potential problem of overcentralized control.
Weaknesses of solution Does not have an overall coordinator. If this is needed,

consider using Hierarchical Control pattern.
Applicability Distributed real-time control, distributed state-dependent

applications
Related patterns Hierarchical Control, Centralized Control
Reference Chapter 18, Section 18.3.2
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Figure A.3. Distributed Control pattern
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A.1.4 Hierarchical Control Pattern

Pattern name Hierarchical Control
Aliases Multilevel Control
Context Distributed application with real-time control requirement
Problem Distributed application with multiple locations where both

real-time localized control and overall control are needed
Summary of solution There are several control components, each controlling a

given part of a system by conceptually executing a
statechart. There is also a coordinator component, which
provides high-level control by deciding the next job for
each control component and communicating that
information directly to the control component.

Strengths of solution Overcomes potential problem with Distributed Control
pattern by providing high-level control and coordination

Weaknesses of solution High-level coordinator may become a bottleneck when the
load is high and is a single point of failure.

Applicability Distributed real-time control, distributed state-dependent
applications

Related patterns Distributed Control, Centralized Control
Reference Chapter 18, Section 18.3.3
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Figure A.4. Hierarchical Control pattern
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A.1.5 Layers of Abstraction Pattern

Pattern name Layers of Abstraction
Aliases Hierarchical Layers, Levels of Abstraction
Context Software architectural design
Problem A software architecture that encourages design for ease of

extension and contraction is needed.
Summary of solution Components at lower layers provide services for

components at higher layers. Components may use only
services provided by components at lower layers.

Strengths of solution Promotes extension and contraction of software design
Weaknesses of solution Could lead to inefficiency if too many layers need to be

traversed
Applicability Operating systems, communication protocols, software

product lines
Related patterns Software kernel can be lowest layer of Layers of Abstraction

architecture. Variations of this pattern include Flexible
Layers of Abstraction.

Reference Chapter 12, Section 12. 3.1; Hoffman and Weiss 2001;
Parnas 1979
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Figure A.5. Layers of Abstraction pattern: TCP/IP example
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A.1.6 Multiple Client/Multiple Service Pattern

Pattern name Multiple Client/Multiple Service
Aliases Client/Service, Client/Server
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients require

services from multiple services
Summary of solution Client communicates with multiple services, usually

sequentially but could also be in parallel. Each service
responds to client requests. Each service handles
multiple client requests. A service may delegate a client
request to a different service.

Strengths of solution Good way for client to communicate with multiple services
when it needs different information from each service.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
any server.

Applicability Distributed processing: client/service and distribution
applications with multiple services

Related patterns Multiple Client/Single Service and Multi-tier Client/Service
Reference Chapter 15, Section 15.2.2

Service1

{1 server node}
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Client3
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Client2

{1 client node}
Client1

{1 client node}

Service2
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Figure A.6. Multiple Client/Multiple Service Pattern
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A.1.7 Multiple Client/Single Service Pattern

Pattern name Multiple Client/Single Service
Aliases Client/Service, Client/Server
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients require

services from a single service
Summary of solution Client requests service. Service responds to client requests

and does not initiate requests. Service handles multiple
client requests.

Strengths of solution Good way for client to communicate with service when it
needs a reply from service. Very common form of
communication in client/server applications.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
the server.

Applicability Distributed processing: client/service applications
Related patterns Multiple Client/Multiple Service and Multi-tier Client/Service
Reference Chapter 15, Section 15.2.1
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Figure A.7. Multiple Client/Single Service Pattern: Banking System example
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A.1.8 Multi-tier Client/Service Pattern

Pattern name Multi-tier Client/Service
Aliases Client/Service, Client/Server
Context Software architectural design, distributed systems
Problem Distributed application in which there is more than one tier

(layer) of service
Summary of solution Client requests service. Solution consists of more than one

tier of service. Intermediate tier provides both client and
service role. There can be more than one intermediate
tier.

Strengths of solution Good way of layering services if multiple services are
needed to handle an individual client’s request and one
service needs assistance of another service.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
the server.

Applicability Distributed processing: client/service and distribution
applications with multiple services

Related patterns Multiple Client/Single Service and Multiple Client/Multiple
Service

Reference Chapter 15, Section 15.2.3

ATMClient BankingService DatabaseService

Figure A.8. Multi-tier Client/Service Pattern: Banking System example
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A.2 SOFTWARE ARCHITECTURAL COMMUNICATION PATTERNS

This section describes the architectural communication patterns, which address
the dynamic communication among distributed components of the architecture, in
alphabetical order, using the standard template.

A.2.1 Asynchronous Message Communication Pattern

Pattern name Asynchronous Message Communication
Aliases Loosely Coupled Message Communication
Context Concurrent or distributed systems
Problem Concurrent or distributed application has concurrent

components that need to communicate with each other.
Producer does not need to wait for consumer. Producer
does not need a reply.

Summary of solution Use message queue between producer component and
consumer component. Producer sends message to
consumer and continues. Consumer receives message.
Messages are queued FIFO if consumer is busy.
Consumer is suspended if no message is available.
Producer needs timeout notification if consumer node is
down.

Strengths of solution Consumer does not hold up producer.
Weaknesses of solution If producer produces messages more quickly than

consumer can process them, the message queue will
eventually overflow.

Applicability Centralized and distributed environments: real-time
systems, client/server and distribution applications

Related patterns Asynchronous Message Communication with Callback
Reference Chapter 12, Section 12.3.3

1: sendAsynchronousMessage (in message)

aProducer aConsumer

Figure A.9. Asynchronous Message Communication pattern
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A.2.2 Asynchronous Message Communication with Callback Pattern

Pattern name Asynchronous Message Communication with Callback
Aliases Loosely Coupled Communication with Callback
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which concurrent

components need to communicate with each other. Client
does not need to wait for service but does need to
receive a reply later.

Summary of solution Use synchronous communication between clients and
service. Client sends request to service, which includes
client operation (callback) handle. Client does not wait for
reply. After service processes the client request, it uses
the handle to call the client operation remotely (the
callback).

Strengths of solution Good way for client to communicate with service when it
needs a reply but can continue executing and receive
reply later

Weaknesses of solution Suitable only if the client does not need to send multiple
requests before receiving the first reply

Applicability Distributed environments: client/server and distribution
applications with multiple servers

Related patterns Consider Bidirectional Asynchronous Message
Communication as alternative pattern.

Reference Chapter 15, Section 15.3.2

1: sendAsynchronousMessage 

(in message, in callbackHandle)

2: sendCallbackResponse (in response)

aClient aService

Figure A.10. Asynchronous Message Communication with Callback pattern
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A.2.3 Bidirectional Asynchronous Message Communication Pattern

Pattern name Bidirectional Asynchronous Message Communication
Aliases Bidirectional Loosely Coupled Message Communication
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which concurrent

components need to communicate with each other.
Producer does not need to wait for consumer, although it
does need to receive replies later. Producer can send
several requests before receiving first reply.

Summary of solution Use two message queues between producer component
and consumer component: one for messages from
producer to consumer, and one for messages from
consumer to producer. Producer sends message to
consumer on P→C queue and continues. Consumer
receives message. Messages are queued if consumer is
busy. Consumer sends replies on C→P queue.

Strengths of solution Producer does not get held up by consumer. Producer
receives replies later, when it needs them.

Weaknesses of solution If producer produces messages more quickly than consumer
can process them, the message (P→C) queue will
eventually overflow. If producer does not service replies
quickly enough, the reply (C→P) queue will overflow.

Applicability Centralized and distributed environments: real-time
systems, client/server and distribution applications

Related patterns Asynchronous Message Communication with Callback
Reference Chapter 12, Section 12.3.3

1: sendAsynchronousMessage (in message)

2: sendAsynchronousResponse (in response)

aProducer aConsumer

Figure A.11. Bidirectional Asynchronous Message Communication pattern
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A.2.4 Broadcast Pattern

Pattern name Broadcast
Aliases Broadcast Communication
Context Distributed systems
Problem Distributed application with multiple clients and services. At

times, a service needs to send the same message to
several clients.

Summary of solution Crude form of group communication in which service sends
a message to all clients, regardless of whether clients
want the message or not. Client decides whether it wants
to process the message or just discard the message.

Strengths of solution Simple form of group communication
Weaknesses of solution Places an additional load on the client, because the client

may not want the message
Applicability Distributed environments: client/server and distribution

applications with multiple servers
Related patterns Similar to Subscription/Notification, except that it is not

selective
Reference Chapter 17, Section 17.6.1
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Figure A.12. Broadcast pattern: alarm broadcast example
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A.2.5 Broker Forwarding Pattern

Pattern name Broker Forwarding
Aliases White Pages Broker Forwarding, Broker with Forwarding

Design
Context Distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register with broker. Client sends service request
to broker. Broker forwards request to service. Service
processes request and sends reply to broker. Broker
forwards reply to client.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in all
message communication. Broker can become a
bottleneck if there is a heavy load at the broker.

Applicability Distributed environments: client/server and distribution
applications with multiple servers

Related patterns Similar to Broker Handle; more secure, but performance is
not as good

Reference Chapter 16, Section 16.2.2

1: serviceRequest

3:serviceReply
4: forwardedReply

aBroker

aServiceRequester aService

2: forwardedRequest

Figure A.13. Broker Forwarding pattern
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A.2.6 Broker Handle Pattern

Pattern name Broker Handle
Aliases White Pages Broker Handle, Broker with Handle-Driven

Design
Context Distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register with broker. Client sends service request
to broker. Broker returns service handle to client. Client
uses service handle to make request to service. Service
processes request and sends reply directly to client.
Client can make multiple requests to service without
broker involvement.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in initial
message communication. Broker can become a
bottleneck if there is a heavy load at the broker. Client
may keep outdated service handle instead of discarding.

Applicability Distributed environments: client/server and distribution
applications with multiple servers

Related patterns Similar to Broker Forwarding, but with better performance
Reference Chapter 16, Section 16.2.3

B1: serviceRequest

B4: serviceReply

B3: serviceRequestWithHandle

B2: serviceHandle

aBroker

aServiceRequester aService

Figure A.14. Broker Handle pattern
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A.2.7 Call/Return Pattern

Pattern name Call/Return
Aliases Operation invocation, method invocation
Context Object-oriented programs and systems
Problem An object needs to call an operation (also known as

method) in a different object.
Summary of solution A calling operation in a calling object invokes a called

operation in a called object. Control is passed, together
with any input parameters, from the calling operation to
the called operation at the time of operation invocation.
When the called operation finishes executing, it returns
control and any output parameters to the calling
operation.

Strengths of solution This pattern is the only possible form of communication
between objects in a sequential design.

Weaknesses of solution If this pattern of communication is not suitable, then most
likely a concurrent or distributed solution will be needed.

Applicability Sequential object-oriented architectures, programs, and
systems. A service designed as a sequential subsystem
that communicates with internal objects using this
pattern.

Related patterns Software architectural communication patterns in which
message passing is used instead of operation invocation.

Reference Chapter 12, Section 12.3.2

: Calling Object

: Called Object

invokeOperation(in inputParameter,

                           out outputParameter)

Figure A.15. Call/Return pattern
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A.2.8 Negotiation Pattern

Pattern name Negotiation
Aliases Agent-Based Negotiation, Multi-Agent Negotiation
Context Distributed multi-agent systems; service-oriented

architectures
Problem Client needs to negotiate with multiple services to find best

available service.
Summary of solution Client agent acts on behalf of client and makes a proposal

to service agent, who acts on behalf of service. Service
agent attempts to satisfy client’s proposal, which might
involve communication with other services. Having
determined the available options, service agent then
offers client agent one or more options that come closest
to matching the original client agent proposal. Client
agent may then request one of the options, propose
further options, or reject the offer. If service agent can
satisfy client agent request, client agent accepts the
request; otherwise, it rejects the request.

Strengths of solution Provides negotiation service to complement other services
Weaknesses of solution Negotiation may be lengthy and inconclusive.
Applicability Distributed environments: client/service and distribution

applications with multiple services, service-oriented
architectures

Related patterns Often used in conjunction with broker patterns (Broker
Forwarding, Broker Handle, Service Discovery)

Reference Chapter 16, Section 16.5
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Figure A.16. Negotiation pattern: airline reservation example
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A.2.9 Service Discovery Pattern

Pattern name Service Discovery
Aliases Yellow Pages Broker, Broker Trader, Discovery
Context Distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Client knows the
type of service required but not the specific service.

Summary of solution Use broker’s discovery service. Services register with
broker. Client sends discovery service request to broker.
Broker returns names of all services that match discovery
service request. Client selects a service and uses Broker
Handle or Broker Forwarding pattern to communicate with
service.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know specific service, only the service
type.

Weaknesses of solution Additional overhead because broker is involved in initial
message communication. Broker can become a
bottleneck if there is a heavy load at the broker.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Other broker patterns (Broker Forwarding, Broker Handle)
Reference Chapter 16, Section 16.2.4
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6: serviceReply

5: serviceRequestWithHandle

4: service 

Handle
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aService
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aBroker
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Figure A.17. Service Discovery pattern
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A.2.10 Service Registration Pattern

Pattern name Service Registration
Aliases Broker Registration
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register service information with broker, including
service name, service description, and location. Clients
send service requests to broker. Broker acts as
intermediary between client and service.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in message
communication. Broker can become a bottleneck if there
is a heavy load at the broker.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Broker, Broker Forwarding, Broker Handle, Service Discovery
Reference Chapter 16, Section 16.2.1
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register 

Service

R2: 

registrationAck

aBroker

aService

Figure A.18. Service Registration pattern
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A.2.11 Subscription/Notification Pattern

Pattern name Subscription/Notification
Aliases Multicast
Context Distributed systems
Problem Distributed application with multiple clients and services.

Clients want to receive messages of a given type.
Summary of solution Selective form of group communication. Clients subscribe

to receive messages of a given type. When service
receives message of this type, it notifies all clients who
have subscribed to it.

Strengths of solution Selective form of group communication. Widely used on the
Internet and in World Wide Web applications.

Weaknesses of solution If client subscribes to too many services, it may
unexpectedly receive a large number of messages.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Similar to Broadcast, except that it is more selective
Reference Chapter 17, Section 17.6.2
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Figure A.19. Subscription/Notification pattern: alarm notification example
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A.2.12 Synchronous Message Communication with Reply Pattern

Pattern name Synchronous Message Communication with Reply
Aliases Tightly Coupled Message Communication with Reply
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which multiple

clients communicate with a single service. Client needs
to wait for reply from service.

Summary of solution Use synchronous communication between clients and
service. Client sends message to service and waits for
reply. Use message queue at service because there are
many clients. Service processes message FIFO. Service
sends reply to client. Client is activated when it receives
reply from service.

Strengths of solution Good way for client to communicate with service when it
needs a reply. Very common form of communication in
client/server applications.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
the server.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Asynchronous Message Communication with Callback
Reference Chapter 12, Section 12.3.4; Chapter 15, Section 15.3.1

1: sendSynchronousMessagewithReply

(in message, out response)

aClient aService

Figure A.20. Synchronous Message Communication with Reply pattern
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A.2.13 Synchronous Message Communication without Reply Pattern

Pattern name Synchronous Message Communication without Reply
Aliases Tightly Coupled Message Communication without Reply
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which concurrent

components need to communicate with each other.
Producer needs to wait for consumer to accept message.
Producer does not want to get ahead of consumer. There
is no queue between producer and consumer.

Summary of solution Use synchronous communication between producer and
consumer. Producer sends message to consumer and
waits for consumer to accept message. Consumer
receives message. Consumer is suspended if no
message is available. Consumer accepts message,
thereby releasing producer.

Strengths of solution Good way for producer to communicate with consumer when
it wants confirmation that consumer received the
message and producer does not want to get ahead of
consumer.

Weaknesses of solution Producer can be held up indefinitely if consumer is busy
doing something else.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Consider Synchronous Message Communication with Reply
as alternative pattern.

Reference Chapter 18, Section 18.8.3

1: sendSynchronousMessagewithoutReply (in message)

aProducer aConsumer

Figure A.21. Synchronous Message Communication without Reply pattern
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A.3 SOFTWARE ARCHITECTURAL TRANSACTION PATTERNS

This section describes the architectural transaction patterns, which address the
transaction management in client/server architectures, in alphabetical order, using
the standard template.

A.3.1 Compound Transaction Pattern

Pattern name Compound Transaction
Aliases
Context Distributed systems, distributed databases
Problem Client has a transaction requirement that can be broken

down into smaller, separate flat transactions.
Summary of solution Break down compound transaction into smaller atomic

transactions, where each atomic transaction can be
performed separately and rolled back separately.

Strengths of solution Provides effective support for transactions that can be
broken into two or more atomic transactions. Effective if a
rollback or change is required to only one of the
transactions.

Weaknesses of solution More work is required to make sure that the individual
atomic transactions are consistent with each other. More
coordination is required if the whole compound
transaction needs to be rolled back or modified.

Applicability Transaction processing applications, distributed databases
Related patterns Two-Phase Commit Protocol, Long-Living Transaction
Reference Chapter 16, Section 16.4.2

1: flightReservation

2: flightConfirmation

3: hotelReservation

4: hotelConfirmation

5: carReservation

6: carConfirmation

worldWide

TravelAgent

airline

ReservationService

hotel

ReservationService

vehicle

RentalService

Figure A.22. Compound Transaction pattern: airline/hotel/car
reservation example
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A.3.2 Long-Living Transaction Pattern

Pattern name Long-Living Transaction
Aliases
Context Distributed systems, distributed databases
Problem Client has a long-living transaction requirement that has a

human in the loop and that could take a long and
possibly indefinite time to execute.

Summary of solution Split a long-living transaction into two or more separate
atomic transactions such that human decision making
takes place between each successive pair of atomic
transactions.

Strengths of solution Provides effective support for long-living transactions that
can be broken into two or more atomic transactions

Weaknesses of solution Situations may change because of long delay between
successive atomic transactions that constitute the
long-living transaction, resulting in an unsuccessful
long-living transaction.

Applicability Transaction processing applications, distributed databases
Related patterns Two-Phase Commit Protocol, Compound Transaction.
Reference Chapter 16, Section 16.4.3
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Figure A.23. Long-Living Transaction pattern: airline reservation example
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A.3.3 Two-Phase Commit Protocol Pattern

Pattern name Two-Phase Commit Protocol
Aliases Atomic Transaction
Context Distributed systems, distributed databases
Problem Clients generate transactions and send them to the service

for processing. A transaction is atomic (i.e., indivisible). It
consists of two or more operations that perform a single
logical function, and it must be completed in its entirety
or not at all.

Summary of solution For atomic transactions, services needed to commit or
abort the transaction. The two-phase commit protocol is
used to synchronize updates on different nodes in
distributed applications. The result is that either the
transaction is committed (in which case all updates
succeed) or the transaction is aborted (in which case all
updates fail).

Strengths of solution Provides effective support for atomic transactions
Weaknesses of solution Effective only for short transactions; that is, there are no

long delays between the two phases of the transaction.
Applicability Transaction processing applications, distributed databases
Related patterns Compound Transaction, Long-Living Transaction
Reference Chapter 16, Section 16.4.1
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(a) First phase of Two-Phase Commit Protocol 

(b) Second phase of Two-Phase Commit Protocol 

Figure A.24. Two-Phase Commit Protocol pattern



APPENDIX B

Teaching Considerations

B.1 OVERVIEW

The material in this book may be taught in different ways depending on the time
available and the knowledge level of the students. This appendix describes possible
academic and industrial courses that could be based on this book.

A prerequisite of these courses is an introductory course on software engineering
that covers the software life cycle and the main activities in each phase of the life
cycle. This prerequisite course would cover the material described in introductory
books on software engineering, such as Pressman (Pressman 2009), or Sommerville
(Sommerville 2010).

Each of these courses has three parts: description of the method, presentation of
at least one case study using the method, and a hands-on design exercise for students
to apply the method to a real-world problem.

B.2 SUGGESTED ACADEMIC COURSES

The following academic courses could be based on the material covered in this
book:

1. A senior undergraduate or graduate level course on software modeling and
design, with an overview of each of the architecture categories.

2. A variation on the preceding course is to concentrate on one of the archi-
tecture categories, such as service-oriented architectures or component-
based software architectures, with a detailed case study and hands-on design
exercise.

3. A design lab course is held as a follow-up course to the software modeling
and design course (course 1) in which the students work in groups to develop
a solution to a substantial software problem for one of the categories of soft-
ware architecture. In this case, students could also implement all or part of
the system.
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B.3 SUGGESTED INDUSTRIAL COURSES

The following industrial courses could be based on the material covered in this book:

1. A course on software modeling and design. Concepts are presented briefly
from Part I, and then the course would concentrate on Parts II and, depending
on the length of the course, one or more of the architecture categories of
Part III, together with a case study from Part IV in that category. For example,
the course could concentrate on the design of service-oriented architectures
and cover the Online Shopping System in detail. The hands-on design exercise
would concentrate on the selected category of architecture. This course could
be run at any length, from 2 to 5 days, depending on the level of detail covered.

2. A practical hands-on course in which each stage of the method is followed by
a hands-on design lab. The design lab could be on a problem of the company’s
choice, assuming an in-house course. This course would focus on one archi-
tecture category, such as component-based software design. One option is to
stage the course so that each phase of teaching the method is carried out in
conjunction with that phase of an actual development project.

B.4 DESIGN EXERCISES

This discussion applies to both academic and industrial courses.
As part of the course, students should also work on one or more real-world prob-

lems, either individually or in groups. Whether one or more problems are tackled
depends on the size of the problem and the length of the course. However, sufficient
time should be allocated for students to work on the problems, because this is the
best way for the students to really understand the method.

The following software problems may be used:

1. Microwave Oven System (real-time)
2. Supermarket Checkout System (client/server)
3. Factory Automation System (component-based software architecture)
4. Inventory Management System (service-oriented system)

Possible approaches are as follows:

1. Work on one problem throughout the course using one of the architecture
categories, such as service-oriented architectures. This has the advantage that
students get an in-depth appreciation of the method.

2. Divide the class up into groups. Each group solves a different kind of problem
using a different category of architecture to solve the same problem. Time
is allocated at the end of the course for each group to present its solution.
A class discussion is held on the problems encountered while applying the
method and how they were resolved.

3. A design lab course is held as a follow-up course to the course on software
modeling and design, in which the students work in groups to develop a solu-
tion to a substantial software architecture for one of the architecture cate-
gories. In this case, students could also implement all or part of the system.



Glossary

abstract class A class that cannot be directly instantiated (Booch, Rumbaugh, and
Jacobson 2005). Compare concrete class.

abstract data type A data type that is defined by the operations that manipulate it
and thus has its representation details hidden.

abstract interface specification A specification that defines the external view of the
information hiding class – that is, all the information required by the user of the
class.

abstract operation An operation that is declared in an abstract class but not imple-
mented.

action A computation that executes as a result of a state transition.
active object See concurrent object.
Activity diagram A UML diagram depicting the flow of control and sequencing

among activities.
actor An outside user or related set of users who interact with the system

(Rumbaugh, Booch, and Jacobson 2005).
aggregate class A class that represents the whole in an aggregation relationship

(Booch, Rumbaugh, and Jacobson 2005).
aggregate subsystem A logical grouping of lower-level subsystems and/or objects.
aggregation A weak form of whole/part relationship. Compare composition.
algorithm object An object that encapsulates an algorithm used in the problem

domain.
alternative feature A feature that can be chosen in place of a different feature in

the same software product line. Compare common feature and optional feature.
alternative use case A use case that can be chosen in place of a different use case

in the same software product line. Compare kernel use case and optional use case.
analog data Continuous data that can, in principle, have an infinite number of

values.
analysis modeling A phase of the COMET use case–based software life cycle in

which static modeling and dynamic modeling are performed. Compare design
modeling and requirements modeling.
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application deployment A process for deciding which component instances are
required, how component instances should be interconnected, and how the com-
ponent instances should be allocated to physical nodes in a distributed environ-
ment.

application logic object An object that hides the details of the application logic
separately from the data being manipulated.

architectural pattern See software architectural pattern.
association A relationship between two or more classes.
asynchronous message communication A form of communication in which a con-

current producer component (or task) sends a message to a concurrent consumer
component (or task) and does not wait for a response; a message queue could
potentially build up between the concurrent components (or tasks). Also referred
to as loosely coupled message communication. Compare synchronous message
communication.

at-least-one-of feature group A feature group in which one or more features can
be selected from the group, but at least one feature must be selected.

behavioral analysis See dynamic analysis.
behavioral model A model that describes the responses of the system to the inputs

that the system receives from the external environment.
binary semaphore A Boolean variable used to enforce mutual exclusion. Also

referred to simply as semaphore.
black box specification A specification that describes the externally visible charac-

teristics of the system.
boundary object A software object that interfaces to and communicates with the

external environment.
broadcast communication A form of group communication in which unsolicited

messages are sent to all recipients.
broker An intermediary in interactions between clients and services. Also referred

to as object broker or object request broker.
brokered communication Message communication in a distributed object environ-

ment in which clients and services interact via a broker.
business logic object An object that encapsulates the business rules (business-

specific application logic) for processing a client request.
callback An operation handle sent by a client in an asynchronous request to a ser-

vice and used by the service to respond to the client request.
CASE See Computer-Aided Software Engineering.
category A specifically defined division in a system of classification.
class An object type; hence, a template for objects. An implementation of an

abstract data type.
class diagram A UML diagram that depicts a static view of a system in terms of

classes and the relationships between classes. Compare interaction diagram.
class interface specification A specification that defines the externally visible

view of a class, including the specification of the operations provided by the
class.

class structuring criteria See object structuring criteria.
client A requester of services in a client/server system. Compare server.
client/server system A system that consists of clients that request services and one

or more servers that provide services.
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collaboration diagram UML 1.x name for communication diagram.
Collaborative Object Modeling and Architectural Design Method (COMET) An

iterative use case driven and object-oriented method that addresses the require-
ments, analysis, and design modeling phases of the software development life
cycle.

COMET See Collaborative Object Modeling and Architectural Design Method.
commonality The functionality that is common to all members of a software prod-

uct line. Compare variability.
commonality/variability analysis An approach for examining the functionality of

a software product line to determine which functionality is common to all product
line members and which is not.

common feature A feature that must be provided by every member of the software
product line. Compare optional feature and alternative feature.

Common Object Request Broker Architecture (CORBA) An open systems stan-
dard for middleware technology, developed by the Object Management Group,
that allows communication between distributed objects on heterogeneous plat-
forms.

communication diagram A UML 2 interaction diagram that depicts a dynamic
view of a system in which objects interact by using messages. In UML 1.x, it is
referred to as a collaboration diagram.

complex port A port that supports both a provided interface and a required inter-
face.

component A concurrent self-contained object with a well-defined interface, capa-
ble of being used in different applications from that for which it was originally
designed. Also referred to as distributed component.

component-based software architecture A software architecture in which an
infrastructure is provided that is specifically intended to accommodate preexisting
components.

component-based system A system in which an infrastructure is provided that is
specifically intended to accommodate preexisting components.

component structuring criteria A set of heuristics for assisting a designer in struc-
turing a system into components.

composite component A component that contains nested components. Also
referred to as composite subsystem. Compare simple component.

composite object An object that contains nested objects.
composite state A state on a statechart that is decomposed into two or more sub-

states. Also referred to as a superstate.
composite structure diagram A UML 2 diagram that depicts the structure and

interconnections of composite classes; often used to depict components, ports, and
connectors.

composite subsystem See composite component.
composition A form of whole/part relationship that is stronger than an aggregation;

the part objects are created, live, and die together with the composite (whole)
object.

Computer-Aided Software Engineering (CASE) tool A software tool that sup-
ports a software engineering method or notation.

concrete class A class that can be directly instantiated (Booch, Rumbaugh, and
Jacobson 2005). Compare abstract class.
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concurrent Referring to a problem, process, system, or application in which many
activities happen in parallel, where the order of incoming events is not usually pre-
dictable and is often overlapping. A concurrent system or application has many
threads of control. Compare sequential.

concurrent collaboration diagram See concurrent communication diagram.
concurrent communication diagram A communication diagram that depicts a net-

work of concurrent objects and their interactions in the form of asynchronous and
synchronous message communication. In UML 1.x, it is referred to as a concurrent
collaboration diagram.

concurrent object An autonomous object that has its own thread of control. Also
referred to as an active object, process, task, thread, concurrent process, or concur-
rent task.

concurrent process See concurrent object.
concurrent service A service that services multiple client requests in parallel. Com-

pare sequential service.
concurrent task See concurrent object.
condition The value of a Boolean variable that can be true or false over a finite

interval of time.
connector An object that encapsulates the interconnection protocol between two

or more components.
constraint A condition or restriction that must be true.
control object An object that provides overall coordination for other objects.
coordinator object An overall decision-making object that determines the overall

sequencing for a collection of objects and is not state-dependent.
CORBA See Common Object Request Broker Architecture.
critical section The section of an object’s internal logic that is mutually exclusive.
data abstraction An approach for defining a data structure or data type by the set

of operations that manipulate it, thus separating and hiding the representation
details.

data abstraction class A class that encapsulates a data structure or data type,
thereby hiding the representation details; operations provided by the class manip-
ulate the hidden data.

database wrapper class A class that hides how to access data stored in a database.
data replication Duplication of data in more than one location in a distributed

application to speed up access to the data.
deadlock A situation in which two or more concurrent objects are suspended

indefinitely because each concurrent object is waiting for a resource acquired by
another concurrent object.

default feature A feature out of a group of alternative features in the same software
product line that is automatically chosen if no other feature is explicitly selected
in its place.

delegation connector A connector that joins the outer port of a composite compo-
nent to the inner port of a part component such that messages arriving at the outer
port are forwarded to the inner port.

demand driven task A task that is activated on demand by the arrival of a message
or internal event from another task.
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deployment diagram A UML diagram that shows the physical configuration of the
system in terms of physical nodes and physical connections between the nodes,
such as network connections.

design concept A fundamental idea that can be applied to designing a system.
design method A systematic approach for creating a design. The design method

helps identify the design decisions to be made, the order in which to make them,
and the criteria used in making them.

design modeling A phase of the COMET use case–based software life cycle in
which the software architecture of the system is designed. Compare analysis mod-
eling and requirements modeling.

design notation A graphical, symbolic, or textual means of describing a design.
design pattern A description of a recurring design problem to be solved, a solution

to the problem, and the context in which that solution works.
design strategy An overall plan and direction for developing a design.
device interface object An information hiding object that hides the characteristics

of an I/O device and presents a virtual device interface to its users.
device I/O boundary object A software object that receives input from and/or out-

puts to a hardware I/O device.
discrete data Data that arrive at specific time intervals.
distributed A system or application that is concurrent in nature and executes in an

environment consisting of multiple nodes, which are in geographically different
locations.

distributed application An application that executes in a distributed environment.
distributed component See component.
distributed kernel The nucleus of an operating system that supports distributed

applications.
distributed processing environment A system configuration in which several geo-

graphically dispersed nodes are interconnected by means of a local area or wide
area network.

distributed service A service with functionality that is spread over several server
nodes.

domain analysis Analysis of a software product line.
domain engineering See software product line engineering.
domain modeling Modeling of a software product line.
domain-specific pattern A software pattern that is specific to a given software

product line.
domain-specific software architecture See software product line architecture.
dynamic analysis A strategy to help determine how the objects that participate in

a use case interact. Also referred to as behavioral analysis.
dynamic model A view of a problem or system in which control and sequencing

are considered, either within an object by means of a finite state machine, or by
consideration of the sequence of interaction among objects.

dynamic modeling The process of developing the dynamic model of a system.
EJB See Enterprise JavaBeans.
encapsulation See information hiding.
Enterprise JavaBeans (EJB) A Java-based component technology.
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entity class A class, in many cases persistent, whose instances are objects that
encapsulate information.

entity object A software object, in many cases persistent, which encapsulates infor-
mation.

entry action An action that is performed on entry into a state. Compare exit action.
event (1) In concurrent processing, an external or internal stimulus used for syn-

chronization purposes; it can be an external interrupt, a timer expiration, an inter-
nal signal, or an internal message. (2) On an interaction diagram, a stimulus that
arrives at an object at a point in time. (3) On a statechart, the occurrence of a
stimulus that can cause a state transition on a statechart.

event driven I/O device An input/output device that generates an interrupt when
it has produced some input or when it has finished processing an output operation.

event driven task A task that is activated by an external event, such as an inter-
rupt.

event sequencing logic A description of how a task responds to each of its message
or event inputs; in particular, what output is generated as a result of each input.

event synchronization Control of concurrent object activation by means of signals.
Three types of event synchronization are possible: external interrupts, timer expi-
ration, and internal signals from other concurrent objects.

event trace A time-ordered description of each external input and the time at
which it occurred.

exactly-one-of feature group A group of features from which one feature must
always be selected for a given product line member. Also referred to as one-and-
only-one-of feature group.

exit action An action that is performed on exit from a state. Compare entry action.
Extensible Markup Language (XML) A technology that allows different systems

to interoperate through exchange of data and text.
external class A class that is outside the system and part of the external environ-

ment.
external event An event from an external object, typically an interrupt from an

external I/O device. Compare internal event.
explicit feature A feature that can be selected individually for a given application

member of the software product line. Compare implicit feature.
family of systems See software product line.
feature A functional requirement; a reusable product line requirement or charac-

teristic. A requirement or characteristic that is provided by one or more members
of the software product line.

feature-based impact analysis A means of assessing the impact of a feature on the
software product line, usually through dynamic modeling.

feature/class dependency The relationship in which one or more classes support
a feature of a software product line (i.e., realize the functionality defined by the
feature).

feature/class dependency analysis A means of assessing features and classes in
order to determine feature/class dependency.

feature group A group of features with a particular constraint on their usage in a
software product line member.



Glossary 529

feature modeling The process of analyzing and specifying the features and feature
groups of a software product line.

finite state machine A conceptual machine with a finite number of states and state
transitions that are caused by input events. The notation used to represent a finite
state machine is a state transition diagram, statechart, or state transition table. Also
referred to simply as state machine.

formal method A software engineering method that uses a formal specification
language – that is, a language with mathematically defined syntax and semantics.

generalization/specialization A relationship in which common attributes and oper-
ations are abstracted into a superclass (generalized class) and are then inherited
by subclasses (specialized classes).

idiom A low-level pattern that describes an implementation solution specific to a
given programming language.

implicit feature A feature that is not allowed to be selected individually. Compare
explicit feature.

incremental software development See iterative software development.
information hiding The concept of encapsulating software design decisions in

objects in such a way that the object’s interface reveals only what its users need to
know. Also referred to as encapsulation.

information hiding class A class that is structured according to the information
hiding concept. The class hides a design decision that is considered likely to
change.

information hiding class specification A specification of the external view of an
information hiding class, including its operations.

information hiding object An instance of an information hiding class.
inheritance A mechanism for sharing and reusing code between classes.
input object A software device I/O boundary object that receives input from an

external input device.
input/output (I/O) object A software device I/O boundary object that receives

input from and sends output to an external I/O device.
integrated communication diagram A synthesis of several communication dia-

grams depicting all the objects and interactions shown on the individual diagrams.
Also referred to as a consolidated collaboration diagram.

interaction diagram A UML diagram that depicts a dynamic view of a system in
terms of objects and the sequence of messages passed between them. Commu-
nication diagrams and sequence diagrams are the two main types of interaction
diagrams. Compare class diagram.

interface Specifies the externally visible operations of a class, service, or com-
ponent without revealing the internal structure (implementation) of the opera-
tions.

internal event A means of synchronization between two concurrent objects. Com-
pare external event.

I/O task structuring criteria A category of the task structuring criteria that ad-
dresses how device I/O objects are mapped to I/O tasks and when an I/O task
is activated.

iterative software development An incremental approach to developing software
in stages. Also referred to as incremental software development.
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JavaBeans A Java-based component technology.
Jini A connection technology used in embedded systems and network-based com-

puting applications for interconnecting computers and devices.
kernel The core of a software product line or operating system.
kernel class A class that is required by all members of the software product line.

Compare optional class and variant class.
kernel component A component that is required by all members of the software

product line. Compare optional component and variant component.
kernel first approach A dynamic modeling approach to determine the objects that

realize the kernel use cases and how they interact.
kernel object An object that is required by all members of the software product

line; an instance of a kernel class. Compare optional object and variant object.
kernel system A minimal member of the software product line, composed of the

kernel classes and any required default classes.
kernel use case A use case that is required by all members of the software product

line. Compare optional use case and alternative use case.
loosely coupled message communication See asynchronous message communi-

cation.
mathematical model A mathematical representation of a system.
message dictionary A collection of definitions of all aggregate messages depicted

on interaction diagrams that consist of several individual messages.
message sequence description A narrative description of the sequence of mes-

sages sent from source objects to destination objects, as depicted on a communi-
cation diagram or sequence diagram, describing what happens when each message
arrives at a destination object.

middleware A layer of software that sits above the heterogeneous operating sys-
tem to provide a uniform platform above which distributed applications can run
(Bacon 1997).

monitor A data object that encapsulates data and has operations that are executed
mutually exclusively.

multicast communication See subscription/notification.
multiple readers and writers An algorithm that allows multiple readers to access a

shared data repository concurrently; however, writers must have mutually exclu-
sive access to update the data repository. Compare mutual exclusion.

mutual exclusion An algorithm that allows only one concurrent object to have
access to shared data at a time, which can be enforced by means of binary
semaphores or through the use of monitors. Compare multiple readers and writers.

mutually exclusive feature group A feature group from which no more than one
feature can be selected for any given software product line member. Compare
mutually inclusive feature.

mutually inclusive feature A feature that must be used together with another fea-
ture. Compare mutually exclusive feature group.

negotiation pattern A communication approach used in multi-agent systems to
allow software agents to negotiate with each other so that they can cooperatively
make decisions.

node In a distributed environment, a unit of deployment, usually consisting of one
or more processors with shared memory.
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object An instance of a class that contains both hidden data and operations on that
data.

object-based design A software design method based on the concept of informa-
tion hiding.

object broker See broker.
object-oriented analysis An analysis method that emphasizes identifying real-

world objects in the problem domain and mapping them to software objects.
object-oriented design A software design method based on the concept of objects,

classes, and inheritance.
object request broker See broker.
object structuring criteria A set of heuristics for assisting a designer in structuring

a system into objects. Also referred to as class stucturing criteria.
one-and-only-one-of feature group See exactly-one-of feature group.
operation A specification of a function performed by a class. An access procedure

or function provided by a class.
optional class A class that is required by some members of the software product

line. Compare kernel class and variant class.
optional component A component that is required by some members of the soft-

ware product line. Compare kernel component and variant component.
optional feature A feature that is required by some members of the software prod-

uct line. Compare common feature and alternative feature.
optional object An object that is required by some members of the software prod-

uct line; an instance of an optional class. Compare kernel object and variant object.
optional use case A use case that is required by some members of the software

product line. Compare kernel use case and alternative use case.
output object A software device I/O boundary object that sends output to an

external output device
package A grouping of UML model elements.
parameterized feature A feature that defines a software product line parameter

whose value needs to be defined for a given product line member.
part component A component within a composite component.
passive I/O device A device that does not generate an interrupt on completion of

an input or output function. The input from a passive input device needs to be
read either on a polled basis or on demand.

passive object An object that has no thread of control; an object with operations
that are invoked directly or indirectly by concurrent objects.

performance analysis A quantitative analysis of a software design conceptually
executing on a given hardware configuration with a given external workload
applied to it.

performance model An abstraction of the real computer system behavior, devel-
oped for the purpose of gaining greater insight into the performance of the sys-
tem, whether or not the system actually exists.

periodic task A concurrent object that is activated periodically (i.e., at regular,
equally spaced intervals of time) by a timer event.

PLUS See Product Line UML-Based Software Engineering.
port A connection point through which a component communicates with other

components.
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prerequisite feature A feature that another feature depends on.
primary actor An actor that initiates a use case. Compare secondary actor.
priority message queue A queue in which each message has an associated prior-

ity. The consumer always accepts higher-priority messages before lower-priority
messages.

process See concurrent object.
product family See software product line.
product line See software product line.
product line engineering See software product line engineering.
Product Line UML-Based Software Engineering (PLUS) A design method for

software product lines that describes how to conduct requirements modeling, anal-
ysis modeling, and design modeling for software product lines in UML.

provided interface Specifies the operations that a component (or class) must fulfill.
Compare required interface.

provided port A port that supports a provided interface. Compare required port.
proxy object A software object that interfaces to and communicates with an exter-

nal system or subsystem.
pseudocode A form of structured English used to describe the algorithmic details

of an object or class.
queuing model A mathematical representation of a computer system that analyzes

contention for limited resources.
Rational Unified Process (RUP) See Unified Software Development Process

(USDP).
real-time Referring to a problem, system, or application that is concurrent in

nature and has timing constraints whereby incoming events must be processed
within a given time frame.

remote method invocation (RMI) A middleware technology that allows distri-
buted Java objects to communicate with each other.

required interface The operations that another component (or class) provides for
a given component (or class) to operate properly in a particular environment.
Compare provided interface.

required port A port that supports a required interface. Compare provided port.
requirements modeling A phase of the COMET use case–based software life cycle

in which the functional requirements of the system are determined through
the development of use case models. Compare analysis modeling and design
modeling.

reuse category A classification of a modeling element (use case, feature, class, etc.)
in a software product line by its reuse properties, such as kernel or optional. Com-
pare role category.

reuse stereotype A UML notation for depicting the reuse category of a modeling
element.

RMI See remote method invocation.
role category A classification of a modeling element (class, object, component)

by the role it plays in an application, such as control or entity. Compare reuse
category.

role stereotype A UML notation for depicting the role category of a modeling
element.
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RUP See Rational Unified Process.
scenario A specific path through a use case or object interaction diagram.
secondary actor An actor that participates in (but does not initiate) a use case.

Compare primary actor.
semaphore See binary semaphore.
sequence diagram A UML interaction diagram that depicts a dynamic view of a

system in which the objects participating in the interaction are depicted horizon-
tally, time is represented by the vertical dimension, and the sequence of message
interactions is depicted from top to bottom.

sequential Referring to a problem, process, system, or application in which activ-
ities happen in strict sequence; a sequential system or application has only one
thread of control. Compare concurrent.

sequential service A service that completes one client request before it starts ser-
vicing the next. Compare concurrent service.

server A system node that provides one or more services
service In SOA, software functionality that is distributed, autonomous, heteroge-

neous, loosely coupled, discoverable, and reusable.
service object A software object that provides a service for other objects.
service-oriented architecture (SOA) A software architecture composed of ser-

vices that are distributed, autonomous, heterogeneous, loosely coupled, discov-
erable, and reusable.

simple component A component that has no components within it. Compare
composite component.

simulation model An algorithmic representation of a system, reflecting system
structure and behavior, that explicitly recognizes the passage of time, hence pro-
viding a means of analyzing the behavior of the system over time.

SOA See service-oriented architecture.
software application engineering A process within software product line engineer-

ing in which the software product line architecture is adapted and configured to
produce a given software application, which is a member of the software product
line. Also referred to as application engineering.

software architectural pattern A recurring architecture used in a variety of soft-
ware applications. Also referred to simply as architectural pattern.

software architectural communication pattern A software architectural pattern
that addresses the dynamic communication among distributed components of the
software architecture.

software architectural structure pattern A software architectural pattern that ad-
dresses the static structure of the software architecture.

software architecture A high-level design that describes the overall structure of a
system in terms of components and their interconnections, separately from the
internal details of the individual components.

software product family See software product line.
software product family engineering See software product line engineering.
software product line A family of software systems that have some common func-

tionality and some variable functionality; a set of software-intensive systems shar-
ing a common, managed set of features that satisfy the specific needs of a partic-
ular market segment or mission and that are developed from a common set of
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core assets in a prescribed way (Clements and Northrop 2002). Also referred to
as family of systems, software product family, product family, or product line.

software product line architecture The architecture for a family of products, which
describes the kernel, optional, and variable components in the software prod-
uct line, and their interconnections. Also referred to as domain-specific software
architecture.

software product line engineering A process for analyzing the commonality and
variability in a software product line, and developing a product line use case model,
product line analysis model, software product line architecture, and reusable com-
ponents. Also referred to as software product family engineering, product family
engineering, or product line engineering.

software system context class diagram A class diagram that depicts the relation-
ships between the software system (depicted as one aggregate class) and the exter-
nal classes outside the software system. Compare system context class diagram.

software system context model A model of a software system boundary that is
depicted on a software system context class diagram. Compare system context
model.

spiral model A risk-driven software process model.
state A recognizable situation that exists over an interval of time.
statechart A hierarchical state transition diagram in which the nodes represent

states and the arcs represent state transitions.
statechart diagram UML 1.x name for state machine diagram.
state-dependent control object An object that hides the details of a finite state

machine; that is, the object encapsulates a statechart, a state transition diagram,
or the contents of a state transition table.

state machine See finite state machine.
state machine diagram A UML depiction of a finite state machine or statechart.
state transition A change in state that is caused by an input event.
state transition diagram A graphical representation of a finite state machine in

which the nodes represent states and the arcs represent transitions between states.
state transition table A tabular representation of a finite state machine.
static modeling The process of developing a static, structural view of a problem,

system, or software product line.
stereotype A classification that defines a new building block that is derived from

an existing UML modeling element but is tailored to the modeler’s problem
(Booch, Rumbaugh, and Jacobson 2005).

subscription/notification A form of group communication in which subscribers
receive event notifications. Also referred to as multicast communication.

substate A state that is part of a composite state.
subsystem A significant part of the whole system; a subsystem provides a subset of

the overall system functionality.
subsystem communication diagram A high-level communication diagram depict-

ing the subsystems and their interactions.
superstate A composite state.
synchronous message communication A form of communication in which a pro-

ducer component (or concurrent task) sends a message to a consumer component
(or concurrent task) and then immediately waits for an acknowledgment. Also
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referred to as tightly coupled message communication. Compare asynchronous
message communication.

synchronous message communication with reply A form of communication in
which a client component (or producer task) sends a message to a service com-
ponent (or consumer task) and then waits for a reply. Also referred to as tightly
coupled message communication with reply.

synchronous message communication without reply A form of communication in
which a producer component (or task) sends a message to a consumer component
(or task) and then waits for acceptance of the message by the consumer. Also
referred to as tightly coupled message communication without reply.

system context class diagram A class diagram that depicts the relationships
between the system (depicted as one aggregate class) and the external classes out-
side the system. Compare software system context class diagram.

system context model A model of a system (hardware and software) boundary
that is depicted on a system context class diagram. Compare software system con-
text model.

system interface object An object that hides the interface to an external system or
subsystem.

task See concurrent object.
task architecture A description of the concurrent objects in a system or subsystem

in terms of their interfaces and interconnections.
thread See concurrent object.
tightly coupled message communication See synchronous message communi-

cation.
tightly coupled message communication with reply See synchronous message com-

munication with reply.
tightly coupled message communication without reply See synchronous message

communication without reply.
timer event A stimulus used for the periodic activation of a concurrent object.
timer object A control object that is activated by an external timer.
timing diagram A diagram that shows the time-ordered execution sequence of a

group of concurrent objects.
transaction A request from a client to a service consisting of two or more opera-

tions that must be completed in its entirety or not at all.
two-phase commit protocol An algorithm used in distributed applications to syn-

chronize updates to ensure that an atomic transaction is either committed or
aborted.

UML See Unified Modeling Language.
Unified Modeling Language (UML) A language for visualizing, specifying, con-

structing, and documenting the artifacts of a software-intensive system (Booch,
Rumbaugh, and Jacobson 2005).

Unified Software Development Process (USDP) An iterative use case – driven
software process that uses the UML notation. Also known as the Rational Unified
Process (RUP).

USDP See Unified Software Development Process.
use case A description of a sequence of interactions between one or more actors

and the system.
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use case diagram A UML diagram that shows a set of use cases and actors and
their relationships (Booch, Rumbaugh, and Jacobson 2005).

use case model A description of the functional requirements of the system in
terms of actors and use cases.

use case modeling The process of developing the use cases of a system or software
product line.

use case package A group of related use cases.
user interaction object A software object that interacts with and interfaces to a

human user.
variability The functionality that is provided by some, but not all, members of the

software product line. Compare commonality.
variant class A class that is similar to, but not identical to, another class; a subclass

that is similar to, but not identical to, another subclass of the same superclass.
Compare kernel class and optional class.

variant component A component that is similar to, but not identical to, another
component. Compare kernel component and optional component.

variant object An object that is similar to, but not identical to, another object; an
instance of a variant class. Compare kernel object and optional object.

variation point A location at which change can occur in a software product line
artifact (e.g., in a use case or class).

visibility The characteristic that defines whether an element of a class is visible
from outside the class.

Web service Business functionality provided by a service provider over the Inter-
net to users of the World Wide Web.

white page brokering A pattern of communication between a client and a broker
in which the client knows the service required but not the location. Compare
yellow page brokering.

whole/part relationship A composition or aggregation relationship in which a
whole class is composed of part classes.

wrapper component A distributed component that handles the communication
and management of client requests to legacy applications (Mowbray and Ruh
1997).

XML See Extensible Markup Language.
yellow page brokering A pattern of communication between a client and a broker

in which the client knows the type of service required but not the specific service.
Compare white page brokering.

zero-or-more-of feature group A feature group consisting of optional features.
zero-or-one-of feature group A feature group in which all features are mutually

exclusive.



Answers to Exercises

Bold numbers indicate questions and alphabets within parenthesis indicate answers.

CHAPTER 1: INTRODUCTION

1. (b) 2. (d) 3. (c) 4. (b) 5. (c) 6. (d) 7. (c) 8. (a) 9. (b) 10. (c)

CHAPTER 2: OVERVIEW OF THE UML NOTATION

1. (b) 2. (a) 3. (c) 4. (a) 5. (a) 6. (b) 7. (c) 8. (d) 9. (d) 10. (c)

CHAPTER 3: SOFTWARE LIFE CYCLE MODELS AND PROCESSES

1. (c) 2. (b) 3. (d) 4. (b) 5. (d) 6. (c) 7. (b) 8. (c) 9. (c) 10. (d)

CHAPTER 4: SOFTWARE DESIGN AND ARCHITECTURE CONCEPTS

1. (c) 2. (c) 3. (c) 4. (c) 5. (c) 6. (b) 7. (c) 8. (b) 9. (b) 10. (b)

CHAPTER 5: OVERVIEW OF SOFTWARE MODELING AND DESIGN METHOD

1. (b) 2. (c) 3. (d) 4. (b) 5. (c) 6. (b)

CHAPTER 6: USE CASE MODELING

1. (c) 2. (c) 3. (b) 4. (c) 5. (b) 6. (c) 7. (d) 8. (d) 9. (a) 10. (c)

CHAPTER 7: STATIC MODELING

1. (d) 2. (c) 3. (a) 4. (d) 5. (c) 6. (b) 7. (d) 8. (c) 9. (c) 10. (b)

CHAPTER 8: OBJECT AND CLASS STRUCTURING

1. (c) 2. (c) 3. (d) 4. (c) 5. (c) 6. (c) 7. (a) 8. (a) 9. (a) 10. (b)
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CHAPTER 9: DYNAMIC INTERACTION MODELING

1. (c) 2. (d) 3. (c) 4. (c) 5. (b) 6. (c) 7. (a) 8. (a) 9. (c) 10. (d)

CHAPTER 10: FINITE STATE MACHINES

1. (a) 2. (a) 3. (d) 4. (a) 5. (b) 6. (c) 7. (a) 8. (b) 9. (a) 10. (b)

CHAPTER 11: STATE-DEPENDENT DYNAMIC INTERACTION MODELING

1. (c) 2. (c) 3. (a) 4. (b) 5. (b) 6. (d) 7. (b) 8. (a) 9. (a) 10. (a)

CHAPTER 12: OVERVIEW OF SOFTWARE ARCHITECTURE

1. (c) 2. (b) 3. (b) 4. (d) 5. (c) 6. (a) 7. (a) 8. (b) 9. (b) 10. (a)

CHAPTER 13: SOFTWARE SUBSYSTEM ARCHITECTURAL DESIGN

1. (b) 2. (a) 3. (b) 4. (b) 5. (a) 6. (c) 7. (b) 8. (c) 9. (d) 10. (a)

CHAPTER 14: DESIGNING OBJECT-ORIENTED SOFTWARE ARCHITECTURES

1. (b) 2. (b) 3. (d) 4. (c) 5. (d) 6. (d) 7. (d) 8. (d) 9. (c) 10. (b)
11. (d) 12. (d)

CHAPTER 15: DESIGNING CLIENT/SERVER SOFTWARE ARCHITECTURES

1. (d) 2. (b) 3. (d) 4. (b) 5. (a) 6. (b) 7. (c) 8. (a) 9. (d) 10. (c)

CHAPTER 16: DESIGNING SERVICE-ORIENTED ARCHITECTURES

1. (b) 2. (c) 3. (a) 4. (d) 5. (a) 6. (b) 7. (b) 8. (c) 9. (c) 10. (d)

CHAPTER 17: DESIGNING COMPONENT-BASED SOFTWARE ARCHITECTURES

1. (d) 2. (a) 3. (a) 4. (b) 5. (c) 6. (a) 7. (c) 8. (d) 9. (c) 10. (a)

CHAPTER 18: DESIGNING CONCURRENT AND REAL-TIME SOFTWARE
ARCHITECTURES

1. (d) 2. (c) 3. (b) 4. (b) 5. (b) 6. (c) 7. (b) 8. (a) 9. (c) 10. (d)

CHAPTER 19: DESIGNING SOFTWARE PRODUCT LINE ARCHITECTURES

1. (a) 2. (c) 3. (b) 4. (a) 5. (b) 6. (c) 7. (d) 8. (c) 9. (b) 10. (c)

CHAPTER 20: SOFTWARE QUALITY ATTRIBUTES

1. (b) 2. (b) 3. (c) 4. (b) 5. (a) 6. (b) 7. (b) 8. (c) 9. (c) 10. (b)
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