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1. Introduction

1.1 History and Context



1.2 State-Space Description of Dynamical Systems

State-space Concept

Transfer functions classically limited to linear SISO systems
- Matrix of transfer functions to extend to MIMO

State-space formulation
e linear or non-linear
e SISOor MIMO
e time-invariant or varying

Basic system diagram: r inputs, m outputs

u24_> Plant - y2
U, : X1y X, 000y Xy : Y
Figure2.1a

Plant X

Figure 2.1b
State Vector X(t)

State vector is composed of state variables. minimum set of parameters which uniquely describe
the future response of a system given the current state, input, and dynamics equations.

There are infinite choices for state variables and hence infinite state-space representations for the
same system.

State X(t) is not the same as output Y (t). Output is a physical quantity; we assume each output
has an associate sensor to measure its value over time. State can be anything, not even recognizable
guantity always.

Basic motivation - convert all dynamics and control system models to 1% order ODEs.



State-space representation converts a single n™ order ODE into a system of n coupled 1% order
ODEs. Matrix of differential equations. In principle, easier to solve (standardized methods which we
shall present later).

Can also convert asystem of k n™ order ODEs into a matrix system of kn coupled 1% order
ODEs.
State-space description

» Statedifferential equations
*  Output algebraic equations

Example - linear SISO 1-dof m-c-k mechanical translational system (see Figure 1.2a).
my(t) +cy(t) +hky(t) = ult)
y(t) output (displacement); u(t) input (force)

t
Single 2™ order ODE - need to select 2x1 state vector: X(t)= { % )}

x(t) = ¥
Define: dy
d

t)
=20 T =)

Substitute into original equation:
M, (t) +cX, () + oty (t) = u(t)
Original single 2" order dynamics ODE can be written as a system of two 1% order dynamics ODES:

%(t) = x2(t)
%,(t)

—% X, (t) —% xq(t) +

u(t)

1
m
Andtheoutputis.  y(t)=xy(t)

Write these equations in matrix-vector form to get

State-space description
o Statedifferential equations



[0 e o 2o
*  Output algebraic equation

y)=f o2+ (eut)

In this example, the state vector is composed of the position and velocity of the output y(t) (the output
and its time derivative - not the acceleration!). There are two states required since we started with one

2" order ODE.

The state variables are not always physically identifiable; for instance we could transform the above
state differential equations into another basis (there are infinite choices for basis) so that the state

variables are each some strange combination of the more-logical y(t), y(t) .



General Form of State-Space Description Differential-Algebraic Equations

-

number of inputs
m number of outputs

=]

number of state variables (order of ODE for SISO; combination of ODE orders and numbers of
equations for MIMO)

« State differential equations. Matrix of 1% order ODEs - represents system dynamics. Solution of
this equation yields the state vector X(t).

A nxn
X nx1
B nxr
U rx1

X =AX+BU
System Dynamics Matrix
State Vector
Input Matrix
Input Vector

» OQutput algebraic equations - calculates output vector Y (t) given the state vector and possibly the

input vector.

Y =CX+DU

Y mx1  Output Vector

C mxn
D mxr

Output Matrix
Direct Transmission Matrix

D= [O] for most physical systems because dynamics appear in all paths from input to output!

Example 2" order SISO system fromabove: r=m=1, n=2

0o 1 0

A=| k ¢ B=| 1 c=[1 q D =[0]
X = AX +Bu {2q =[2x2{2q} +[2xa]{pq}
y=CX +Du {14 =[x2l{2d +[vdl {14

10



State-Space Description of General n™ order ODE (SISO)

dny dn—ly d2y dy
+a,_ +.+a,—— +a; — + =u(t
d" g 2z o) ()
Define state variables:
X1=Y
dy
X2 —E
_d?
_d™ly
Xn - dtn—l

Substitute the state variable definitions into the original ODE:

Xn = _a.oxl _a.1X2 _a2X3 —~--—an_1Xn +U('[)
State and output equations:
x| [ O 1 0 0 |[x] [O]
Xo O 0 1 0 Xo 0
Xgr=| i Cb x| [{u(t)
: 0 0 o - 1 :
Xpo) "8 —8& "8 - 8y (%) | 1]
X
X2
y({)=[1 0 0 -~ dix;+{d{u(t)
Xn
X = AX +Bu {rd} =[roxn]{roat} +[ot]{ 1t}
y=CX+Du {vd =[val{ng +[pd{vd

This form for the state-space description (with Os and 1s in the first n-1 rows of [A], the interesting
coefficients only in the n™ row of [A]) is called the Phase-Variable Canonical Form; it is also called the

11



Controllable Canonical Form We will consider other canonical forms when we present similarity
transformations in Chapter 6.

Another SISO Example - paralel RLC circuit with current i(t) input and voltage v(t) output (see Figure
1.3).

Cdv 1 + I

Integro-differential equation with single integral and time derivative - need to select 2x1 state vector:

Define:
X5 (t) = %4 (t) = v(t)
o - : .1 1 .
Substitute into original equation: Cx, Xt X =i(t)
Output y(t) = v(t). Write these equations in matrix-vector form to get

State-space description
o Statedifferential equations

s s oy

e Qutput algebraic equation

0 1 0
A= _i _i B= l C=[0 ]] D=[0]
LC RC C

Recall Force-Current analogy.

12



Block Diagram for General MIM O State-Space Description

— D

A ——

Figure 2.2 State-Space Open-Loop System Block Diagram

X = AX +BU {nat} = [roxn]{ o} + [ [{ >t}
Y =CX +DU {md =[mam]{rd +[mx]{rd

MIMO Example: 3-dof linear translational mechanical system (CUT??!?? —Cont Ex I)

Diagram: 2 inputs uz, Up
3 OUtpUtS Y1, Y2, V3

Free-body diagrams:

Write 3 equations of motion:
k(yz =v1) +¢(y2 —¥1) +up =my,
k(ys —Y2) +c(y3 —2) —k(y2 =y1) ¢(V2 —V1) +up =y,
‘k()’:s ‘yz) ‘C(S’3 ‘S’Z) =nMy3
Define state variables:

X1=Y1 X3=Y>2 X5 =Y3
X2 =Y Xq =Y2 Xg = Y3

13



» Statedifferential equations

) 0 1 0 0 0 0 | r 7
X1 k ¢ k ¢ X1 9 0
. — = = = 0 o0 1
% o o 0 T o o 2] fm
Clel ke a0 xoko e fpa Bl
X m m m m m m | 0 m U
X5 0 0 0 0 0 1 X5 0 0
% o o X & _kK _cl
6 I m m m m. 6 _0 0_
e QOutput algebraic equation
X1
X2
Y1 1 00 00O 0 0
X3 Ug
y,t=l0 01 0 0 0 +0 o{ }
X4 Ul
Y3 000010 OO0
X5
X6
X = AX +BU {nd =[nxn|{nxd +[nxr]{rxd
Y =CX +DU {md =[mxn]{nxg +[mxr]{r

r=2; m=3; n=6(3- 2" order ODES)

14



State-Space Description for System with Zero(s)
Example

y(t) +2y(t) +10y(t) =u(t) +3u(t) Transfer function: Y(s) s+3

U(s) s2+2s+10

Separate transfer function with intermediate variable w.

%“ 6,9 HV 9 -

Figure 2.3 Separate Transfer Functions

1

Where s)=——— and G, (s)=s+3. Now, two differential equations:
Gu(s) s% +2s+10 2(9)

vi(t) +2w(t) +10w(t) =u(t)
y(t) =w(t)+3w(t)
Still 2™ order system - need to select 2x1 state vector: X(t) = {Xl(t)}

o x()=w()
Define: %o (1) =w(t) =% (t)

w(t) = —2w(t) =10w(t) +u(t), which leads to the state equations:

%(t) = %5 (t)

X5 (t) = —2X2(t) —10x1(t) +u(t) Output equation: Y(t) = X2 (t) + 3X1(t)

R e R i e

2(t)
A= 01 B=| c=[3 1 p=[0]
10 -2 1

15



1.3 State-Space and Transfer Function Relationships

State-Space Equations
X =AX+BU
Y =CX+DU

Given State-Space Matrices A, B, C, D, find the equivalent transfer function description for the same
linear system. Matrix of transfer functions (assume MIMO case):

Output equals matrix of transfer functions times input; no explicit state vector involved. The scalar
transfer function for SIS systemsiis:

6(s)=Y18)

U (s)
Laplace Transforms of State-Space Equations

sX(s)-X(0) =AX(s) +BU(s)
Y (s)=CX(s)+DU(s)

For transfer functions - zero initial conditions so X (0) ={0}

[sl -=A] X(s) =BU(s)
X(s)=[sl -A]*BU(s)

Substitute this X(s) into output equation to eliminate explicit state dependence.
Y(s)=c[s -ABU(s) +DU(s) =| [ - B +D]U(s)

And so:
G(s)=C[s ~A'B+D

In the general MIMO casg, thisis a matrix of transfer functions where Gj;(s) is the scalar transfer
function giving the contribution of input j to output i.
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Example — SISO linear 1-dof m=1, c=0.1, k=10 mechanical translational system

o e A S IS

m

G(s)=C[s ~A| "B +D

s O 0 1 S -1
s -A= - =
0 s -10 0.1 10 s+0.1

[Sl—A]_lz 1 {s+0.1 1}
s(s+0.1)+10| -10 s

ek P ML

1

G(s)=——
(9 s® +01s+10

G(s) = 09 = = Agrees!
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1.4 Linearization of Nonlinear Systems
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1.5 Matlab for State-Space Description

There athree primary ways to describe a dynamic system to Matlab: 1. state-space realizations
ABCD; 2. transfer functions with (num,den), where numis the array of polynomial coefficients for the
transfer function numerator and den is the array of polynomial coefficients for the transfer function
denominator; and 3. transfer functions with (zeros,poles), where zeros is the array of numerator
polynomial roots and den is the array of denominator polynomial roots.

To convert between these various system representations, we have the following Matlab functions:

ss2tf Covert state-space realization ABCD to transfer function (num,den).

tf2ss Covert transfer function (num,den) to state-space realization ABCD.

S27p Covert state-space realization ABCD to transfer function (zeros,poles).
7Zp2ss Covert transfer function (zeros,poles) to sate-space realization ABCD.
tf2zp Covert transfer function (num,den) to transfer function (zeros,poles).

zp2tf Covert transfer function (zeros,poles) to transfer function (num,den).

poly Find the system characteristic polynomial coefficients from A or from den.

Continuing M atlab Example: State-Space Description

Derive avalid state-space description for the Continuing Matlab Example (SISO rotational
mechanical system: input 7, output 6). That is, specify the state variables and derive matrices A, B, C,
and D. Write out the resultsin full matrix-vector form. Explicitly give the system order and complete
matrix/vector dimensions of the results.

We start with the 2™-order ODE (1) in the Chapter 1 Matlab Example. Since we have a 2"-
order ODE, we need to define two state variables x; (n=2). A good set of choicesis.

X =8 @

X, =60=%

We will have two 1%-order ODEs, derived from the original 2"-order ODE (1), and from
X, =X, above. The state differential equations X = AX +BU are:

A e

X
2 3 3 2
The output algebraic equation Y =CX +DU comesfrom y=6=x,:

O =l o]{ }+[d{z} ©

X1
X2
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0 1 0
A=l kg b B=|1 c=[1 q D =[(]
J J J
3 order SISO system:
r=1 #inputs
m=1 #outputs
n=2 #daes

X = AX +BU {2 =[2x2f{2xd +[2xal{1d
Y =CX+DU {d =[ixal{2xg +[palfnd

Let us assume the following constant, lumped parameters for the Continuing Matlab Example:

J=1kg-nf b =4 Nms/rad ks = 40 Nm/rad
0 1
A ==
{—40 —4}

Chapter-by-chapter we will present actual Matlab code and results dealing with the topics at
hand for the Continuing Matlab Example. These will be complete only if taken together over all
chapters (i.e. ensuing code portions may require previously-defined variables in earlier chaptersto run
without errors). To get sarted, we need to define the state-space matrices A, B, C, D to Matlab. Then
we can find the system characteristic polynomial and transfer function description.

B:m Cc=[1 0 D =1[0]

%9%%6%6%%%%%%% %% %% % %% %% %% % %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 2. State-Space Description
%9%%6%6%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %0 %0 %% % %% %% %% %% %

J=1
b=4
kR = 40;

A =[0 1;-kR/J -b/J]; % Define the state-space realization A, B, C, D
B =[0;1/7];

C=[10];

D =[0];
CharPoly = poly(A); % Find the system characteristic polynomial from A

[num,den] = ss2tf(A,B,C,D); % Find SISO transfer function
printsys(num,den);

[A1,B1,C1,D1] = tf2ss(hum,den); % Check - find A,B,C,D from transfer function
printsys(A1,B1,C1,D1);
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The poly and printsys (transfer function and state-space, respectively) commands result in:

CharPoly =
1.0000 4.0000 40.0000

num/den =
1
s"2+4s+40
a:=
x1 X2
x1 -4.00000 -40.00000
X2 1.00000 0
b=
ul
x1 1.00000
X2 0
c=
x1 X2
yl 0 1.00000
d=
ul
yl 0

Note in the tf2ss command, Matlab chooses a different order for the state variables than our examples
thusfar:

Xo =Y
Xp =Y =X

This swaps the columns of A and C compared to our example above. Also, Matlab reverses the order of
equations; this swaps the rows A and B compared to our example above.
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1.6 Continuing Examples

1.6.1 Continuing Example I: Two-mass MIMO Translational Mechanical System

This example will continue throughout each chapter of this book, building chapter-by-chapter to
demonstrate the important topics.

1.6.1.1 Modeling

A complex nonlinear, time-varying mechanical systemis greatly simplified to the 2 degree-of-
freedom (dof) linear, constant-coefficient, lumped-parameter system shown in Figure 1.5a. There are
two inputs ui(t) and two outputs yi(t), i = 1,2. The constant lumped parameters are point masses m,
linear spring coefficients ki, and linear damping coefficients ¢, i = 1,2. Derive the linear model for this
system, i.e. draw the free-body diagrams and write the correct number of independent ordinary
differential equations. All motion is constrained to be horizontal as shown in Figure 1.5a. Outputsy; are
each measured from the neutral spring equilibrium location of each point mass m.

Y, Y,
5

D T
C, m, C2 m

2

Figure 1.5a 2-dof Lumped, Linear, Constant-Coefficient m-c-k System

Solution
First, assume all y; are small positive displacements; further assumey, > y;. During the ensuing

vibratory motion these will all take +/- directions at different times, but the general equations derived
with the positive assumption hold good for al motion. Figure 1.5b shows the two free-body diagrams:
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1 2

[~ [~

klylk — l(z()/2 -X)k
. ml . m2
C Y= »Cz(yz_yl)€

Figure 1.5b 2-dof m-c-k System Free-Body Diagrams

Now use Newton's 2™ law twice, once for each mass, to derive the two independent 2™ order dynamic
eguations of motion.

DR =my = Ka(yz = 1)+ Co(V2 = 1)~ kayr —Crys + 1y

) o ()

Z Fo =myy, = ‘kz(Y2 - Y1)‘02(Y2 - Y1)+U2
Rewrite equations (1) so the output termsy; appear on the left side along with their derivatives and the
input forces u; are on theright. Also, combine y; terms:

my¥y +(cp +6) Vs + (k +Ko)yr —Co¥o —KoYo =y @)
My¥, +Co Yo + KoY, —CoYy —Kayy = Uy

In (1) and (2) note that inputs u; outputs'y; are functions of time, while m, k;, and ¢;, are
constants, i =1,2.

Equations (2) aretwo linear, coupled, 2" order ordinary differential equations (ODEs). Inthis
type of vibrational system, you will always find that for equation i, the it displacement and its
derivatives are always positive in the equations of motion; i.e. my, +¢ Vi +k;y; =u;. Notethenthe
cross-coupling terms all always negative.

Example | isaMIMO (multiple-input, multiple output) system with two inputs u; and two
outputs y;.

We can express the two 2™-order ODEs of (2) in standard 2™-order matrix vector form,

MY +CY +KY =U:

LI 5 g e [ i
0 my ||V, —C G Y2 —ky ko Jly2) (U2
1.6.1.2 State-Space Description

Derive avalid state-space description for Continuing Example | (Two-mass MIMO Translational
Mechanical System). That is, specify the state variables and derive matrices A, B, C, and D. Write out
the resultsin full matrix-vector form. Explicitly give the system order and complete matrix/vector
dimensions of the results. Do two distinct cases:
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I Full MIMO; two inputs, two outputs
i. SISO; one input uy(t), one output yi(t)

We start with the two coupled 2™ order ODES derived in the Chapter 1 Example I; it will be
convenient to use the equations (1) since the highest-order derivatives V; (t) areisolated in those forms.

For casei, we use both inputs u;; for caseii, we must set u;=0. For both cases the choice of state
variables and the resulting A system dynamics matrix will be identical. Thiswill always be true; i.e. A
is fundamental to the system and does not change with different choices for inputs and outputs.

Solution, Casei: Full MIMO

Since we have two 2"-order ODESs, we need to define four state variables x; (n=4). A good set
of choicesis:

X = Xq =

A 2T 4
X2 =Y1=% X4 =Y2=X3

We will have four 1%-order ODES, derived from the original two 2™-order ODES; two are X = X;,; from

the state variable definitions above, for i = 1, 3. The remaining two come from the original 2"™-order
ODEs, rewritten as follows (substituting the state variable definitions in place of outputsy and their
derivatives; also, collect terms of state variables and divide by m to normalize each equation):

X =X
S = _(kl + kZ)Xl _(01 +C2)X2 +KoXg +CoXq +Up
)=
my
. (5
X3 = X4

_ KoXg +CoXp —KoXz —CoXq + U,
my,
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The state differential equations X = AX +BU are:

- 0 1 0 0 | 0O O
4l [ =(gtky) —(atc) ko |[%] |1 0
X2 = my my m my X th (6)
X3 0 0 0 1 (% 0 0 |lu,
k c -k, -c 1
% 22 2 2 2 1| x 0o —
! L M m, m, My | 2l m |
- 0 1 0 | [0 0]
“(tky) -(a+c) ke o 1 5
- my my my | M
A 0 0 1 B 0O O
ko & ke -G o L
. m, m, m, m | | m, |
The output algebraic equations Y = CX + DU come from the state definitions (4):
X
1 000
Y1 _ X5 + 0 0 Uy (7)
Yo 0 0 1 Of{xg| [0 Ofuy
X4
|1 00O D= 00
o010 |00
4"-order MIMO system:
r=2 #inputs
m=2 # outputs
n=4 #daes
X = AX +BU {4 =[axal{axg +[4x2{2d
Y =CX+DU {24 =[2xaf{axg +[2x2l{2xd
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Solution, Caseii SI SO: one input U,, one output y;

Remember, A does not change by considering different inputs and outputs to the system; A is
fundamental to the system itself. For SISO caseii, only B, C, and D change. The state differential

equations X = AX +BU are now:

0 1 0 0 |
[ -latky) -(atc) ko |[% 8
X2 = m m mom X
% - 0 0 0 1 X3 + (]? {UZ} (8)
: ko e Tk G =
X4 X4 m2
L) my my My | L2 ]
0]
0
A isthe same asthat in (6) B=| o
1
LMp
The output algebraic equation Y = CX + DU isnow:
X
X
(=l 0 o0 o " +{dfud ©)
X4
C=[1 0 0 0 D =[q]
Still a4™-order system, now SISO:
r=1 #inputs
m=1 #outputs

n=4 #dsaes(nisthesameasCasei)

X = AX +BU {4 =[axaf{axd +[axl{1d
Y =CX+DU {d =[1xa{axd + [pal{d
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1.6.2 Continuing Example II: Rotational Electromechanical System

This example will also continue throughout each chapter of this book, building chapter-by-
chapter to demonstrate the important topics.

1.6.2.1 Modeling

A simplified 1-dof DC servomotor model is shown in Figure 1.6. The single input is armature
voltage v(t) and the output is motor shaft angle &t). The constant lumped parameters are armature
circuit inductance and resistance L and R, respectively, and motor shaft rotational inertia and rotational
viscous damping coefficient J and b, respectively. The intermediate variables are armature current i(t),
motor torque 7(t), and co(t) =d@/dt . Inthiscontinuing Example I, we have simplified the model: we
ignore back emf voltage, there is no gear ratio or load inertia, and the numbers (see Chapter 3) are
chosen for asimple integer characteristic polynomial rather than for realism. For improvements on each
of these issues, please see Continuing Exercise 3.

L R

J
g0 @S
1 w,0

Figure 1.6 Simplified DC Servomotor M odel
Solution
We can derive the dynamic model of this system in three steps: circuit model, electromechanical

coupling, and rotational mechanical model. For the circuit model, Kirchoff’ s voltage law yields a first-
order ODE with voltage input and current output:

L%(tt) ~Ril)=v(t) 0

Motor torque is proportional to the circuit current, so the electromechanical coupling equation is:
r(t)=kri(t) 2)

For the rotational mechanical model, Z M = Ja resultsin a second-order ODE with torque input and
motor shaft angle output:
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J4(t) +bo(t)=1(t) 3)

To derive the overall system model we need to use voltage input and motor shaft angle outpuit;
the intermediate variablesi(t) and 7(t) must be eliminated. It is convenient to use Laplace transforms
and transfer functions for this purpose, dueto the differential terms. We have:

V(s):Ls+R i) T T(s) Js2+bs

1(s) 1 T(s) _ ‘ os) . 1 @

Multiplying the transfer functions (4) together we eliminate the intermediate variables to generate the
overall transfer function:

o(s) _ Kr

V(s) (Ls+ R)(J52 + bs) ©)

Simplifying, cross multiplying, and taking the inverse Laplace transform yields the single, third-order,
linear, constant-coefficient ordinary differential equation (6):

LIE(t)+(Lb+R3)A(t)+ RbA(t) = krv(t) (6)

(6) isthe dynamic model for the system of Figure 1.6. Note there is no rotational mechanical spring
term in this equation, i.e. the coefficient of the &t) termis zero.

1.6.2.2 State-Space Description

Derive avalid state-space description for Continuing Example Il (1-dof rotational
electromechanical system; SISO: input v, output 6. That is, specify the state variables and derive
matrices A, B, C, and D. Write out the results in full matrix-vector form. Explicitly give the system
order and complete matrix/vector dimensions of the results.

We start with the 3®-order ODE (1) in the Chapter 1 Example 1.

Solution

Since we have a 3-order ODE, we need to define three state variables x; (n=3). A good set of
choicesis:

X =6
X, =6 =% (7)

X3:é:).(2

We will have three 1%-order ODEs, derived from the original 3"-order ODE (6); two are X = X4 from
the state variable definitions above, for i = 1, 2. The remaining 1¥-order ODE comes from the original
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3"-order ODE, rewritten as follows (substituting the state variable definitions in place of output &and its
derivatives; also, collect terms of state variables and divide the third equation by LJ to normalize it:

X =X
XZ = X3 (8)
5 = -(Lb+RJ) . _R_bx2 L kevit)
LJ LJ LJ
The state differential equations X = AX +BU are:
Xq 0 1 0 Xq 0
%bt=[0 0 1 X, b+| 0 (9)
N ~Rb —(Lb+RI) || [ | Kkt Y
X3 0 X3 —_—
LJ LJ LJ
0 1 0 0
A=/0 O 1 B=| 0
o —Rb ~(Lb+RJ) kr
LJ LJ LJ
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The output algebraic equation Y =CX +DU comesfrom y=6=x,:

X
4= 0 olix +[dfy (10)
X3
c=[1 0o D =[q]
3%-order SISO system:
r=1 #inputs
m=1 #outputs
n=3 #dates

X = AX +BU {3xd =[axa{3xt +[3xal{1xd}
Y =CX+DU {d =[xgl{axg + [palind
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1.7 Homework Assignments

1.7.1 Mathematical Homework Assignments
1.7.2 Matlab Homework Assignments

1.7.3 Continuing Homework Assignments

CElla

A complex nonlinear, time-varying mechanical systemis greatly simplified to the 3 degree-of-freedom
(dof) linear, constant-coefficient, lumped-parameter system shown in Figure CEL1. There are three input
forces ui= fi(t) and three output displacements yi=yi(t), i = 1,2,3. The constant lumped parameters are
point masses m, i = 1,2,3; linear spring coefficients k;, and linear damping coefficients ¢, j = 1,2,3,4.
Derive the linear model for this system, i.e. draw the free-body diagrams and write the correct number of
independent ordinary differential equations. All motion is constrained to be horizontal. Outputsy; are
each measured from the neutral spring equilibrium location of each point massm. Also expressthe

results in matrix-vector form [MJ{¥} +[Cl{V} +[K}{¥} { & .
Y. Y, Y,
T u

1 2

w

K =k k = k
A AN A AN
C 1 m 1 C2 m2 C3 m3 C4
7 ] ] ]

- @) C - @) @) - O O -

/

Figure CE1. 3-dof Linear m-c-k System

CEl.1b

Derive avalid state-space redlization for the CE1.1a system. That is, specify the state variables and
derive matrices A, B, C, and D. Write out your results in full matrix-vector form. Explicitly give the
system order and complete matrix/vector dimensions of your result. Do three distinct cases.

i. Full MIMO; three inputs, three displacement outputs.

ii. MIMO; two inputs (us(t) and us(t) only), three displacement outputs.
iii. SISO; input uy(t) and output ys(t).
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The solution for CE1.1ais given in 2™-order matrix-vector form below:
my i (t) + (cy + G2 )y (6) + (ky + ko )ya () = Co ¥ (t) = ko v t) = ug
M2 (t) +(Co +C3)¥2 (1) + (ky +ka)Ya(t) = ¥ (t) — kaya (t) = ca¥5(t) —Kaya(t) = us(t)
My (t) + (C3 +C4)Va(t) + (kg + Ky )Ya(t) — Ca¥a (t) - Kaya (t) = us(t)

m 0 O |/%| |gtc, G 0 il |ktky K 0 Y1 Uy

0 m O |3¥or+| & Ca+Cg < [3VorH Ko Kk +tky Kz [{Yr Sy

0 0 myj|Vys 0 G GtCy (Vs 0 *s k3 tky |lys]  |ug
CE2.1a

The classic nonlinear, inherently unstable, 2-dof inverted pendulum is shown in Figure CE2. The god is
to maintain pendulum angle &= 0 by using a feedback controller with a sensor (encoder or
potentiometer) for and input forcef. The cart point mass is my; the lumped pendulum mass is m,.
There are two possible outputs, pendulum angle 8and cart displacement y (the primary concern is 6).
The classical inverted pendulum has only one input, the force f. We will consider a second case, adding
atorque motor providing a second input 7 (not shown) at the pin joint shown in the figure. For both
cases (they will be very similar), derive the nonlinear model for this system, i.e. draw the free-body
diagrams and write the correct number of independent ordinary differential equations. Alternately, you
may use the Lagrangian dynamics approach that does not require FBDs. Assume our controller will be
good enough to use the small angle approximation and linearize your models.

Figure CE2. Inverted Pendulum
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CE2.1b

Derive avalid state-space description for the CE2.1 system. That is, specify the state variables and
derive matrices A, B, C, and D. Write out your results in full matrix-vector form. Explicitly give the
system order and complete matrix/vector dimensions of your result. Do three distinct cases.

I. The classical SISO case; input f(t) and output &t).

i. SIMQO; one input f(t), two outputs y(t) and 4t).

iii. MIMO; two inputs f(t) and 7(t) (add atorque motor to the inverted pendulum
revolute joint, traveling with the cart), two outputs y(t) and &t).

The solution for CE2.1 is given below:

Coupled non-linear ODEs
(my + my )9(t) - L cos6(t)é(t) + myLsinA(t)A(t)* = £ (t)
m, L24(t) - m, L cosé(t)y(t) - mygLsin8(t) =0

Coupled linearized ODEs
(my +my)y(t) -m,L6(t) = £(t)
- my¥(t)+ mL6(t) - m,g6(t) =0

Coupled linearized ODEs with torque motor included
(my +m, )(t) -mpL6(t) = £ (t)
-myLy(t)+ m,L%8(t) - mygL6(t) = 7(t)

CE3.1a

Figure CE3 shows a 1-dof single robot joint/link driven through a gear ratio n by an armature-controlled
DC servomotor as shown. The input is armature voltage v(t) (DC, but you can change the DC level) and
the output is load-shaft angle 4 (t). Derive the linearized model for this system, i.e. develop the circuit
ODE, the electromechanical coupling equations, and the rotational mechanical ODE. Eliminate
intermediate variables and simplify; it will be convenient to use atransfer function approach. Assume
the mass-moment of inertia of all outboard links plus any load, J, (t), is a constant (areasonable
assumption when the gear ratio n = au/ @ is much greater than 1 asit isin the case of industrial robots).
The parameters in Figure CE3 are named below.

v(t) armature voltage L armature inductance R armature resistance

ia(t) armature current vg(t) back emf voltage ks motor back emf constant
Jv  lumped motor inertia by motor viscous damping m(t) motor torque

kr  torque constant ay(t) motor shaft velocity Qi(t) motor shaft angle

n  gearratio Ju(t) tota load inertia b, motor viscous damping
7.(t) load shaft torque a (t) load shaft velocity 4(t) load shaft angle
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O,
Figure CE3. Robot Joint/Link driven by Armature-controlled DC servomotor
CE3.1b

Derive avalid state-space description for the CE3.1 system. That is, specify the state variables and
derive matrices A, B, C, and D. Write out your results in full matrix-vector form. Explicitly give the
system order and complete matrix/vector dimensions of your result. Do two distinct cases:

I. SISO; input armature voltage v(t) and output robot load shaft angle 4 (t).
i. SISO; input armature voltage v(t) and output robot load shaft angular velocity

a(t).
The solution for CE3.1 is given below; the overall transfer function is:

_@L(S)_ kr/n

Where J =Jg =Jy +‘]—; and b=Dbg =by, +b—é are the effective rotational inertias and viscous
n n
damping coefficients, reflected to the motor shaft. The associated SISO ODE is.
L35, (t)+(Lb+ RI)E, (1) + (Ro+krks )AL () :‘%v(t)
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2. Simulation of State-Space Systems

2.1 Solution of State-Space Equations

State-Space Dynamics Differential Equations
X =AX+BU
Solve this coupled system of 1% order ODES, then output is found from the linear combination:

Y =CX+DU

2.1.1 Solution of Scalar 1*-Order Differential Equations

First, further review Scalar 1% order ODEs

Physical systems with scalar 1% order ODES

« Translational mechanical w/o mass cx(t) + kx(t) = F(t)
- Rotational mechanical w/o torsional spring  Jéft) + Baft) = ft)
« SeriesR-L circuit w/o capacitance Li(t) + Ri(t) = v(t)

Solution methods
» Slow ME way (homogeneous and particular)
» Laplace Transform
e Matlablsm

Example: solve  x(t)+50x(t) =u(t)  subject toinput u(t) (step input of magnitude 5) and initial

condition x(0) =
use Laplace transform method:

({9~ x(0)) +50X(9) =

(s+50)X(s) =
(9= =9, 9

wlorunlo

st0=C, +C, o G701

5=Cy(s+50) +C,s
(s+50)+C; 05=50C, C,=-01
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X(t) = L X(s) =L*{%§—Sgéo} x(t) = 01-016"* =01(1-¢")  (Plo)

Starts a the zero initial condition on x(t), transient goesto zero by 0.15 sec, steady-state value is 0.1
(5/50). Verify initial and steady-state values using the Initial- and Final-Value theorems:

Initial Value Theorem limx(t) = lim sX(s) = Ilm{ j Agrees!
t-0 S © S—> S(S+50
Final Value Theorem lim x()—llmsX —Ilm{ j 01 Agrees!
to o 5-0 s+50)

Time congtant T: Ae”"'7 Soiin this example 1=1/50
After 3 time constants (0.06 sec), the first order system rises to 95% of itsfinal value of 0.1 (see Figure
3.1):

0.1

0.08

0.06

X(t)

0.04

0.02

Figure3.1 Single 1¥-Order ODE Solution Plot
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T :§ for translational mechanical; 1 :% for rotational mechanical ; T :% for series R-L circuit

General Solution Form to Scalar 1% order ODESs
Solve: x(t)=ax(t) +bu(t) (Form of matrix-vector equations X = AX +BU):
subject to input u(t) and initial condition x(0).

sX(s) = x(0) =ax(s) +bU(s)
(s—a)X(s) =x(0) +bU(s)
x(0)  bu(s)

(s-a) (s-a)

x(t) = LY X(s} =e™x(0) + I;ea(t")bu(r)dr

X(

N
I

First part ishomogeneous:  transient response to initial conditions x(0)
Second part is particular: steady-state response to forcing function u(t)

Recall: e —1+at +1a2t? +1a%3+.. =3 L akik
2 6 Skl

2.1.2 Solution of Matrices of 1%-Order Differential Equations

Generalize Scalar Solution Form to Matrix of 1% order ODEs X = AX +BU
sX (s) - X (0) =AX(s) +BU(s)
[sl =A] X(s) =X (0) +BU(s)

X (s)=[sl —A] ' X (0) +[sl -A] *BU(s)
X (t) =L X (s} j (t-7)BU(r

First part ishomogeneous.  transient response to initial conditions X(0)
Second part is particular: steady-state response to forcing functions U(t)

@(t) State Transition Matrix
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» Solution to homogeneous case, transient response to initial conditions with zero forcing
X=AX,  X(0)=Xo, u(t)={0}
* That is, for the homogeneous case, given any initial conditions, the future state vector at any time

tis:

«  @;(t) is the response of the i'" state variable due to an initial condition on the " state variable
with zero initial conditions on all other state variables (linear superposition).

- ®(t)= L‘l{[sl -A] _1} (see general solution form and last Laplace line above)

- Also, ®(t)=e™ =I +At+;At +6At + -Z At A is the System Dynamics

Matrix, t is scalar time.

Properties of State Transition Matrix ®(t)
1)  @(0)=I
2 o (t)=®(~)
3) Dt —t;) @ (t, —ty) =@(t, —to)
4) [d)(t)]k =®(kt)  For any positive integer k
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Example: Linear SISO 2™ order System

Solve y(t) +7y(t) +12y(t) = u(t)

. . . - . y(0)=010
Subject to u(t) (step input of magnitude 3) and initial conditions .
y(0) =005

Characteristic polynomial: §% +7s+12 =(s +3)(s +4) =0 S1p=-34

Distinct, negative real roots - overdamped system

By either the slow ME way or using L aplace transforms, we can find the solution to be:
y(t) = 025-055" +040e™
Let us derive this same solution from the state-space description. Define state vector:
=201
X (1)) [y(t)
Then the system dynamics differential equations, input, and initial state vector are:
()] _[ 0 1][x(t)],[0 {u(t}
% ()] [-12 -7]|%(t)| |1
u(t) isastep input of magnitude 3 and the initial conditions are X (0) ={0.10 0.03 T

Solve in Laplace frequency domain

X (s)=[sl ~A] X (0) +[sl ~A] "BU(S) then X (t)=L"{X(s}}
[l -A] {s —1} g _A]-lzl{s” 1}
12 s+7 Al -12 s
Where A=s* +7s+12 =(s +3)(s +4) is sl —A|, the characteristic polynomial

e R R HE

39



Where the Laplace transform of the unit step function is 1
S

3
X(s):% 0.10+0.75+ :{xl(s)}
0.055+1.80 X(s)
010s+075+°

_ s_010s°+0755+3_C;  C, Gy _ _ _
%(S) (+3(5+4) 5+ 3)(s+4) < + (+3 + (5+4) (partial fraction expansion)

010s” +0.755+3 = C, (s +3)(s +4) +C, s +4) +Cs5(s +3)

Match like powers of s, then solve:
C =025
C, =055
C; =040

)1 _,-1J025 055 040 | _ ... .. 3 at
y(t) =x(t) =L x(s} =L { . (S+3)+(S+4)}_0.25 055~ +040e Agrees!

Now find solution for second state variable x,(t):

XZ(S):(O.058+ZL8 _ G N G

s+ 3)(S+4) B (S+3) (S+4) (partial fraction expansion)

0055+ 3=Cy(s+4) +Cy(s +3)

Match like powers of s, then solve:
C, =165
G, =-160

X,(t) = L x,(s} = L'l{ ( 51553) N ifa)} =165~ -160e™

Check: Xo(t) = % (t) 22

%(t) = (-3)055¢™ +(4)040e™ =165 -160e™ Agrees
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Figure 3.2 shows the state responses over time for this example.

2.5

1.5 2
t (sec)

1

0.5

Figure 3.2 2"-Order State Responses

We can see that the initial conditions X (0)={0.10 0.03 T are met and the steady state values

of 0.25 for x; and O for x; (from the functions, with t — oo, or by using the Final Value Theorem for x;

and xp).
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2.2 Similarity Transformations

Linear state vector coordinate transformation
X=TZ

Where original state vector
new state vector

non-singular transformation matrix

— N X

z=T7"X
Z=TX=T?(AX+BU)

State-space description in terms of new state vector Z:

Zz=TaTZ+T!BU Z=AZ+BU
Y =CTZ+DU Y =Cz+DU
A=T1AT
B=T1B
C=CT
D=D

This set of linear transformations is called a similarity transformation because new system has the same:
» characteristic equation

» eigenvalues
» transfer function
* but eigenvectors are different!

Proof:
@—ﬂ:b—rmﬂzbﬂTqﬂkﬂ

il al ] il Al et ) So  |sl-A|=sl -A|
T4 s -A] T =[Tjs -A|T] =[TY[T]}s -A]

Therefore, A and A have the same characteristic polynomial and eigenvalues.
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2.3 Diagonal Canonical Form (DCF)
modal form, decoupled ODEs.

« solven 1% order ODEs independently

* InSISO DCEF, if al B elements are non-zero, system is completely controllable

* InSISO OCF, if al C elements are non-zero, system is completely observable
Any state-space redlization A, B, C, D can be transformed to DCF by:

X=TZ, where T=[v; v, L v,] (nxn)

and v; isthe eigenvector of A associated with eigenvalue A; .

DCF:
A 0 0 - 0]
O A4 O -+ O
A=

TIAT={0 0 A - 0

10 0 0 0 A]
B=T!B, C=CT, ad D=D have no particular form

If A isCCF and A has distinct eigenvalues A; then T for DCF is the Vandermonde matrix:

[ 1 1 1 - 1
/11 /12 /]3 An
T=| A2 A2 A2 A2
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DCF Example NEED A NEW DCF EXAMPLE. THISIS FROM ANOTHER BOOK?21??

Given the system from the CCF and OCF examples, calculate the Observable Canonical Form.

-1 2/3 -3 1
[A=l0 1 3 [B]=]0 [€]=[r 1 1 O] =[4
-1 -5/3 -3 1

0707 -021+052i -021-052i
T=[v; Vv, vg|=|-0424 -050-056i -050+056i
0566 035+002i 035-002i

-3 0 0 212
[A=T"AT=l0 i 0 B =T7'B = -024 +058
-i ~024 - 058
[C]=cT =[085 -035-002i -035+002] EEEEL

B ad C completely populated (non-zero).
Therefore, this system is completely controllable and observable. NOT INTRODUCED YET??

eig(A) = eig(z\) =root[3 1 3)=-3 4
If start withDCF, T =1.

Same example, start with CCF:

0O 1 O 0
Acce=|0 0 1 Beer =10 Ceor :[3 1 2] Decr :[0]
-3 -1 3 1

1 1 1 1 1 1
T: /‘1 /‘2 A3 = | _i _3
AR A5 A3 |1 1 9

i 0 0 ~005-015
[Z] =T2IAT=|0 4 0 [E] =T1B =| -005+015i
00 -3 01

[d]=cT=[1+i 1-i 1g D] =[] :[q.



2.4 Matlab

2.4.1 Matlab for Simulation of State-Space Systems

Some of the Matlab functions that are useful for simulation of state-space systems (to solve
X = AX +BU given the input U and initial conditions X(0)) are:

eig(A)
roots(den)

damp(A)
damp(den)

impulse(A,B,C,D) or
impul se(num,den)
step(A,B,C,D) or
step(num,den)
Ism(A,B,C,D,U.,t,X0)

expm(A*t)
plot(x,y)

Find the eigenvalues of A, which are the system poles.

Find the roots of the characteristic polynomial, which are the same as the system
poles.

Calculate the 2"-order system & and w, (for each mode if n>2), from the system

dynamics matrix A.
Calculate the 2™-order system ¢ and w, (for each mode if n>2), from the

coefficients den of system characteristic polynomial.
Determine numerically the unit impulse response for a system.

Determine numerically the unit step response for a system.

General linear simulation; calculate the output Y and state X given the state-space
description A,B,C,D, inputs U, evenly-spaced time vector t, and initial conditions
XO0.

Evaluate the state transition matrix at timet sec.

Plot dependent variable y vs. independent variable x.

Continuing M atlab Example: State-Space Simulation

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
simulate the open-loop system response given zero input torque 7 and initial state conditions

x(0)={04 037.

The problem is: solve X(t) from X = AX +BU given the zero input U and the

initial conditions X(0). Then find Y(t) from Y =CX+DU. The following Matlab code, in
combination with that in Chapter 2, performs the open-loop system simulation for this example.
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%%%%%%%%%0% %% %% %%6%%%%% %% %% %% %% %% %% %% %% %% % %% %% %% %% %% %% %% %
% Chapter 3. Simulation of State-Space Systems
%%%%%%%%%0% %% %% %6%6%%%%% %% %% %% %% %% %% %% %% %0 %% % % %% %% %% %% %% %% %

t =[0:.01:4]; % Define array of time values

U = [zeros(size(1))]; % Define zero single input of proper size to go with t
X0 =1[0.4;0.2]; % Define vector of initial conditions [x1;x2]

PolesO = eig(A); % Calculate open-loop system poles

damp(A); % Determine zeta and wn from ABCD

[Yo,Xo] = Isim(A,B,C,D,U,t,X0); % Open-loop response: zero input torque, given ICs

Xo(101,:) % State vector values at t=1 sec; compare with state transition matrix method
X5 = expm(A*1)*X0

figure; % Open-loop State Plots
subplot(211), plot(t,Xo(:,1)); grid; axis([0 4 -0.2 0.5]);
set(gca, FontSize',18);

ylabel(‘{\itx} 1 (\itrad)")

subplot(212), plot(t,Xo(:,2)); grid; axis([0 4 -2 1]);

set(gca, FontSize',18);

xlabel(\ittime (sec)’); ylabel({\itx} 2 (\itrad/s)");

This m-file, combined with the m-file from Chapter 1, generated the following results for open-
loop poles, ¢ and w,, and the state vector values at 1 sec (both methods yielded the same state):

PolesO =
-2.0000 + 6.0000i
-2.0000 - 6.0000i

Eigenvalue Damping Freq. (rad/s)
-2.00e+000 + 6.00e+000i 3.16e-001  6.32e+000
-2.00e+000 - 6.00e+000i 3.16e-001  6.32e+000
X5 =

0.0457
0.1293

The m-file also generated the open-loop state plots of Figure 3.3.
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Figure 3.3 Open-Loop State Responsesfor Matlab Example

System simulation can also be performed using Matlab's Simulink. This is the graphical user
interface to Matlab, and it is a fast and powerful tool. At the Matlab prompt simply enter smulink and
the GUI opens, with menus for building system diagrams and then simulating them. Figures 3.4 show
Simulink diagrams for this example; Figure 3.4a shows the high-level diagram and Figure 3.4b shows
the detailed diagram for the ABCD Open-loop block mask, implementing X =AX+BU and
Y =CX +DU. This could be replaced by the built-in ssmulink ABCD block. To run these diagrams for
this example, the step input was set to zero (torque) and the initial conditions were set to those given.
The scope shows the output @plot, identical to the upper plot of Figure 3.3.

| st %—p:l

Step Scope
ABCD Open-loop

Figure 3.4a Simulink Diagram for Open-L oop Response
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Figure 3.4b ABCD Open-loop Detailed Simulink Diagram
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2.4.2 Matlab for Diagonal Canonical Form

The Matlab functions that are useful for similarity transformations and canonical realizations are:

canon Matlab function for canonical forms ( use ‘modal’ for DCF)
S2sS Similarity transformation of one state-space realization to another.

Continuing M atlab Example: Similarity Transformations and Canonical
Realizations

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
determine the DCF canonical form for the given open-loop system. The following Matlab code, along
with code from previous chapters, performs this determination.

%9%6%6%6%%%%%%% %% %% % %% %% %% % %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 2. Similarity Transformations and Diagonal Canonical Form
%9%6%6%6%%%%%%% %% %% % %% %%6%6%% %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %0

[Td,E] = eig(A); % Transform to Diagonal canonical form (DCF) via formula
Ad = inv(Td)*A*Td,;

Bd = inv(Td)*B;

Cd = C*Td,

Dd = D;

[Am,Bm,Cm,Dm,Tm] = canon(A,B,C,D, modal’); % Determine DCF using Matlab function canon

This m-file, combined with the previous chapter m-files, yielded the following output:

Td =
-0.0494 - 0.1482i -0.0494 + 0.1482i
0.9877 0.9877

Ad =

-2.0000 + 6.0000i 0 - 0.0000i

0.0000 - 0.0000i -2.0000 - 6.0000i
Bd =

0.5062 + 0.1687i

0.5062 - 0.1687i
Cd=

-0.0494 - 0.1482i -0.0494 + 0.1482i
Dd =

0
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Tm =
0 1.0124
-6.7495 -0.3375

Am =
-2.0000 6.0000
-6.0000 -2.0000

Bm =
1.0124
-0.3375

Cm=
-0.0494 -0.1482

Dm =

0
TO =

4 1

1 O
AO =

0 -40

1 4
BO =

1

0

CO=
0 1

DO =
0

The modal form using Matlab function canon does not agree with DCF from the formula since
the formula allows imaginary numbers in the realizations (the open-loop system poles are complex
conjugates — 2 + 6i ) and Matlab canon only allows real numbers. Both ‘diagonal’ forms are valid state-
space realizations for this system.
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2.5 Continuing Examples for Simulation and Similarity Transformations
2.5.1 Simulation of State-Space Systems

2.5.1.1 Continuing Examplel: Two-massMIM O Transational M echanical System

The following constant, lumped parameters are given for Continuing Example | (Two-mass
MIMO Translational Mechanical System):

my =40 kg c1 =20 N-gm ki =400 N/m
mp = 20 kg C2 =10 N-gm ko, =200 N/m

* For Case i, simulate the open-loop system response given zero initial conditions and step
inputs of magnitudes 20 and 10 N, respectively, for u; and ..

* For Caseii, simulate the open-loop system response given zero input u, and initial conditions
X(0)={0.1 0 02 G (initial displacements of 0.1 and 0.2 iny; and y, respectively, with
zero initial velocities).

Solution, Case i

For Case i, the problem is: solve X(t) from X = AX +BU given the input U and the zero initial
conditions X(0). Then find Y(t) from Y =CX+DU. The state-space matrices, with specific
parameters from above, are:

0 1 0 0 0 0

_ -15 -075 5 025 5= 0025 O C:{l 00 0} D:{O 0}
0 0 0 1 0 0 0010 00
10 05 -10 -05 0 0.05

Using Matlab numerical simulation (function Issim), the plots for outputs y; and y, over time are given in
Figure 3.5.
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Figure 3.5 Open-Loop Response for Examplel, Casei

We see from Figures 3.5 that this system is lightly damped; there are large percent overshoots
and the masses are still vibrating past 40 seconds. The vibratory motion is a classical 2™-order transient
response, settling to final non-zero steady-state values due to the step inputs. The four open-loop system
poles, found from the eigenvalues of A, are:

1 =05+ 4.44i and s, =-0.125+2.23

Thus, this open-loop system is stable since all real parts of the four poles are strictly negative. The 4™-
order system characteristic polynomial is:

A(s)=s* +1.25s% + 252552 +10s+100=0
This was found using the Matlab function poly(A); the roots of this polynomial are identical to the

system poles. There are two modes of vibration in this 2-dof system; both are underdamped with
$,=0.112 and wy, =4.48 rad/s for s, and &, =0.056 and w,, =2.24 rad/s for s;,. Note both

modes contribute to both y; and y, in Figures 3.5. The steady state values are found from
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X =—A 18U for sep inputs; due to the step inputs u; and up, Y1 and y» do not go back to zero in the

steady-state, asthe velocitiesdo: X = X(0)={0.075 0 0125 ¢'.

Though we focus on state-space techniques, for completeness the matrix of transfer functions is
given below for continuing Example I, Case i (found from Matlab function ss2tf):

Y(s)=G(s)u(s)

0.025s% +0.0125s+0.25 0.0125s+0.25
_ As) As)
G(s)= 0.0125 2
0125s+0.25 0.05s2 +0.0375s +0.75
As) As)

where the system characteristic polynomial is:
A(s)=s* +1.25s% + 252552 +10s+100=0

Thisisidentical to the system characteristic polynomial derived from the A matrix and presented earlier.
Note that the roots of the system characteristic polynomial are identical to the eigenvalues of A
presented earlier.

Solution, Caseii

For Case ii, the problem is. solve X(t) from X = AX +BU given the input U (zero up) and the given

initial conditions X(0). Then find Y(t) from Y =CX+DU. The state-space matrices, with specific
parameters from above, are (A is unchanged from Case i):

0
0

B=| | c=[t o000 D=0
0.05

Using Matlab numerical simulation (function Isim, with initial conditions), the plots for states x; through
X4 Over time are given in Figure 3.6.
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Figure 3.6 Open-Loop State Response for Example |, Caseii

We again see from Figures 3.6 that this system is lightly damped. The vibratory motion is again
a classical 2™-order transient response, to the initial displacement conditions, settling to zero final
steady-state values due to the zero input u,. The open-loop system characteristic polynomial, poles,
vibration modes, and stability condition are all identical to the Case i example above.

In Figure 3.6, we see that states x; and x; start from the given initial values of 0.1 and 0.2,
respectively; these are the initial displacements. The given initial velocities were both zero. Notethat in
this Case ii example, the final values are all zero since after the transient dynamics, the system returns to
the equilibrium positions of both spring (because the initial conditions have damped out naturaly and
the input U is zero).

For such transient response problems based on given initial conditions, we can calculate the final
state vector value at any desired time value by using the state transition matrix. For instance, at time
t=20 sec.:



0.0067
-0.0114
0.0134
—-0.0228

X 50 = @(20)X(0) =

These values, though difficult to see at the scale of Figure 3.6 (at least the signs can be seen to be
correct), agree perfectly with the Matlab data used in Figure 3.6, at t=20 sec.

Though we focus on state-space techniques, for completeness the matrix of transfer functions is
given below for continuing Example I, Case i (found from Matlab function ss2tf):

G(s)= L\J(((z)) _ 0.0122?5; 0.25

where the system characteristic polynomial is again:
A(s)=s* +1.25s% + 252552 +10s+100=0

Note that this scalar transfer function giving output y; from input u; is identical to the (1,2) element of

the matrix of transfer functions presented for the full MIMO Casei. This makes sense because the (1,2)
element refersto output y; caused by input us.

2.5.1.2 Continuing Examplell: Rotational Electromechanical System

The following constant, lumped parameters are given for Continuing Example 11 (1-dof
rotational electromechanical system; SISO: input v, output 6):

kT:2

L=1 J=1
R=2 b=1

Simulate the open-loop system response given zero initial conditions and unit step input of voltage.
Solution

The problem is: solve X(t) from X =AX+BU given the input U and the initial conditions

X(0). Then find Y(t) from Y =CX+DU. The state-space matrices, with specific parameters from
above, are:

01 0 0
A=|0 0 1 B=(0 c=[1 0 D =[q]
0 -2 -3 2
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Using Matlab numerical simulation (function Isim), the plots for the three states x; over time are given in
Figure 3.7.

10

time (sec)
Figure 3.7 Open-Loop Response for Examplel |

We see from Figure 3.7 (top) that the motor shaft angle @ = x; increases linearly in the steady
state, after the transient dynamics response. This is desired; if a constant voltage is applied, the motor
angle should continue to increase since there is no torsional spring. The steady-state slope of x; in
Figure 3.7 is the steady-state value of w=d@)/dt = x,, 1 rad/s. This x, response is a classical 2"-order
overdamped response. The third state response, @ = dey/dt = d 26/ dt? = x,, rapidly rises from its zero
initial condition to a maximum of 0.5 rad/s?; in the steady State, a is zero due to the constant angular

velocity wof the motor shaft. The three open-loop system poles, found from the eigenvalues of A, are:

S.I.,2,3 = 0,_1,_2

Thus, this open-loop system is marginally-stable since two of the real poles are negative, but the other is
zero. The 3"%order system characteristic polynomial is:
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Als)=s*+3s°+2s=0
A(s)= s(s2 +3s+ 2) =s(s+1)(s+2)=0

This was found using the Matlab function poly(A); the roots of this polynomial are identical to the
system poles. The zero pole corresponds to the rigid-body rotation of the motor shaft; the remaining two
poles of —1,—2 led to the conclusion that the shaft angular velocity system wis overdamped. Note that

we cannot calculate steady state values from X =-A “1BU since the system dynamics matrix A is

singular (itsrank is 2 due to the column of zeros).
For completeness the scalar transfer function is given below for this example (found from Matlab
function ss2tf):

V() P+3s2+zs s(s+1)(s+2)

Note the same characteristic polynomial results from ss2tf. The roots of the system characteristic
polynomial are the same as the eigenvalues of A. The above transfer function G(s) is for system output
motor shaft angle & given system input voltage v. If we wish to consider the motor shaft angular
velocity w as the output instead, we must differentiate @, which is equivalent to multiplying by s,
yielding the overdamped 2"-order system discussed previously:

wls)_ 2
V(s) (s+1)(s+2)

G,(s)=

We could develop an associated 2™-order state-space realization A, B, C, D if we wished to
control wrather than @as the output:

Xlza)
Xzzd)le
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2.5.2 Similarity Transformations and Diagonal Canonical Form

2.5.2.1 Continuing Examplel: Two-massMIM O Transational M echanical System

Determine the diagonal canonical form (DCF) for Continuing Example | (Two-mass MIMO
Translational Mechanical System), for Case ii (SISO, input u, and output y;).

Solution, Caseii

If we allow imaginary numbers in our redization, the transformation matrix for DCF is the
matrix of column-wise eigenvectors of A:

0.0173+0.1553i 0.0173-0.1553 -0.0102-0.1823 -0.0102+0.1823i

— ~0.6901 ~0.6901 0.4082 0.4082
DCF =1 _0.0173-0.1553i -0.0173+0.1553i -0.0204-0.3646i —0.0204 + 0.3646i
0.6901 0.6901 0.8165 0.8165

Using the similarity transformations, we find diagonal canonical form:

-0.50+4.44i 0 0 0
Apcr = T|5<1:FATDCF _ 0 —-0.50-4.44i 0 0
0 0 -0.125+2.23 0
0 0 0 -0.125-2.23
0.0121+0.0014i
Bor = T|5<1:FB _ 0.0121- 0.0014?
0.0204+0.0011
0.0204 - 0.0011i

Cpcg =CTpcr = [0.0173 +0.15531 0.0173-0.1553i -0.0102-0.1823i -0.0102+ 0.1823i]
Dpcr =D = [0]

Note that DCF isin the form expected, i.e. the poles of the system show up on the diagonal of diagonal
matrix Apce. Also, Bpcg and Cpp are fully populated (no zero terms) which means that the system

is fully state-controllable, and fully state-observable, respectively NOT YET DEFINED??.

The Matlab canon function with the switch ‘modal yields different results from these DCF
results above, forcing only real numbersinthe ‘diagonal’ form:
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-050 444 0 0 0.0242

A |44 -050 0 0 o _|00027
DCF =1 o 0 -0125 223 DCF ™1 0.0408
0 0 -223 -0125 -0.0023

Cpcr =[0.0173 0.1553 -0.0102 -0.1823

2.5.2.2 Continuing Examplell: Rotational Electromechanical System

Determine the diagonal canonical form (DCF) for Continuing Example Il (1-dof rotational
electromechanical system; SISO: input v, output 6).

Solution
The transformation matrix for DCF is the matrix of column-wise eigenvectors of A:

1 -05774 0.2182
TDCF =0 0.5774 -0.4364
0 -05774 0.8729

Using the similarity transformations, we find diagonal canonical form:

0 0 O 1
A DCE — T[;(].;,F ATDCF =0 -1 0 B DCE — T[;(].;,F B =| 3.4641
0 0 -2 4.5826

Cpcr =CTper =[1 -05774 0.2182] Dpce =D =[0)

Note that DCF isin the form expected, i.e. the poles of the system show up on the diagonal of diagonal
matrix Apce. Also, Bpcg and Cpp are fully populated (no zero terms) which means that the system

is fully state-controllable, and fully state-observable, respectively NOT YET DEFINED??.

The Matlab canon function with the switch ‘modal yields identical results to these DCF results
since the system poles are real.
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2.6 Homework Assignments

2.6.1 Mathematical Homework Assignments

2.6.2 Matlab Homework Assignments

2.6.3 Continuing Homework Assignments

CEl.2a
Use the following numerical parameters for this and all ensuing CE1 assignments (see Figure CEL).

Table 3.1 Numerical Parametersfor CE1 System

i m; (kQ) ¢i (Ngm) ki (N/m)
1 1 0.4 10
2 2 0.8 20
3 3 1.2 30
4 1.6 40

Simulate and plot the resulting open-loop output motion (displacements) for three cases (for this
problem use the state-space redlizations of CE1.2):

i. Full MIMO; three inputs, three outputs
a. step inputs of magnitudes u;=3, u,=2, and us=1 (N). Zero initial
conditions.
b. Zero inputs. Initial displacements y; (t) =0.005, y,(t)=0.010, and

y3(t) =0.015 (m); zero initial velocities. Plot all six state components in
this case, not just the three displacements.

ii. MIMO; two unit step inputs ui(t) and us(t), three displacement outputs. Zero
initial conditions.

iii. SISO; unit step input ux(t) and output ys(t). Zero initial conditions. Plot all six
state components in this case, not just the one output displacement.

For each case, simulate long enough to demonstrate the steady-state behavior. For all plots, use the
Matlab subplot function to keep each output on separate plots, aligned vertically with the same time
range. What are the system poles? These define the nature of the system transient response. For Case
i.b only, check your state vector results at t=10 sec using the state transition matrix.
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One possible solution for CE1.1 (system dynamics matrix A only) isgiven below. This A matrix
is the same for all input/output cases, while B, C, and D will change for different input/output cases.
First, the state vector choices associated with this A are:

X =Y X3 = Yo X5 =Ys3
Xp =Y1=% Xq = Y2 = X3 X6 = Y3 =%
C0 1 0 0 0 0
(atke) (atc) ke S 0 0
m m m m
0 0 0 1 0 0
A= ks C _(k2+k3) _(C2+°3) ks <3
m, m, m, m, m, m,
0 0 0 0 0 1
0 0 ks o _(ktk) (e
i my my my my

CE1l.2b
For the CE1 system, Case iii only, calculate the DCF canonical realization. Comment on the structure

of the results.
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CE2.2a
Use the following numerical parameters for this and all ensuing CE2 assignments (see Figure CE2):
my =2, mp=1(kg), L =0.75 (m), g = 9.81 (m/s)

Simulate and plot the resulting open-loop output motion (all four states, not just the output(s)) for three
cases (for this problem use the state-space realizations of CE2.2); assume zero initial conditions for all
cases (except Case i.b):

I. The classical SISO case; input f(t) and output &t).
a. unit impulse input f(t) and zero initial conditions.
b. zero input f(t) and an initial condition of 6=0.1 rad (zero initial
conditions on all other sates).
ii. SIMO; unit impulse input f(t), two outputs y(t) and &t).
iii. MIMO; two unit step inputs f(t) and 7(t) (add a torque motor as in CE2.2.iii), two
outputs y(t) and &t).

Simulate long enough to demonstrate the steady-state behavior. What are the system poles? Based on
these poles and the physical system, explain the system responses.

One possible solution for CE2.2 (system dynamics matrix A only) isgiven below. This A matrix
is the same for all input/output cases, while B, C, and D will change for different input/output cases.
First, the state vector choices associated with this A are:

X =Y X3=6
Xo =Y =% X, =6 =%
0 1 0 0]
00 f%? 0
A=lo o 0 1
0 o (M+m)g
L mlL i

CE2.2b
For the CE2 system, Case i only, TRY to calculate the DCF realizations (DCF cannot be found — why?).
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CE3.2a
Use the following numerical parameters for this and all ensuing CE3 assignments (see Figure CE3):

L = 0.0006 H armature inductance

R =1.40 Q armature resistance

ks =0.00867 V/deg/s motor back emf constant

Ju  =0.00844  Ib-in-s lumped motor shaft rotational inertia
bwm =0.00013 Ib-in/deg/s  Motor shaft damping constant

kr =4.375 Ibs-in/A Torque constant

n =200 unitless Gear ratio

J = Iby-in-<? Load shaft polar inertia

b, =05 Ib-in/deg/s  Load shaft damping constant

Simulate and plot the resulting open-loop output motion (all three states, not just the output) for two
cases (for this problem use the state-space realizations of CE3.2):

I. SISO; input armature voltage v(t) and output robot load shaft angle 4 (t).
a. unit step input armature voltage v(t); plot all three state responses. Zero
initial conditions.
b. zero input armature voltage v(t); plot all three state responses. Initial
conditions 8(0) =0, &{(0) = 8(0)=1,a(0) = 6(0)= 2.
ii. SISO; unit step input armature voltage v(t) and output robot load shaft angular
velocity a(t); plot both state responses. Zero initial conditions.

Simulate long enough to demonstrate the steady-state behavior. What are the system poles? Based on
these poles and the physical system, explain the system responses.

One possible solution for CE3.2 (Case i) is given below. The state vector choices associated
with the solution below are:

X =6
Xo =0, =%

Xg =0 =% =%

The state differential (X = AX + BU) and the output (Y = CX + DU ) equations are:

%] |0 1 0 X 0 X
% =0 0 1 X+ 0 |{V} {}=[1 0 0<xr+{d{V}
%) 1 _(Rb+krkg)  (Lb+RJ) %) | kr X3

L LJ L) L LJn |
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The solution for Case i is similar, but of reduced (2™) order:

: 0 1 0
Gl el e (el 0 (4=l a9

In the above equations (Case i and Case i), the effective rotational inertia and rotational damping
coefficient, reflected from the load to the motor shafts, are:

J=dy =Jy, +J—;
n
D=by by +

CE3.2b
For the CE3 system, Case i only, calculate the DCF canonical realization. Comment on the structure of
the results.
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3. Controllability

Conditions of controllability and observability govern the existence of a complete solution to the
control system design problem in state space. Introduced by Kalman (filter guy) - father of linear state-
space methods. He developed these concepts as the first step in complete control system design.
Kalman - flunked prelims at MIT - ideas to far-fetched at the time (early 1960's), apparently.
Developed his famous work a some small college.

« Controllableif all states x; can be affected by at least one control y; (actuators)

Although most physical systems are controllable, we must ensure that the corresponding
mathematical models are also controllable.

X =AX+BU
Y =CX+DU
3.1 Definition of Controllability
The continuous-time linear system
X =AX+BU

is said to be completely state controllable at t=ty if there exists an unconstrained control input U(t) that
will change an initial state X(to) to any final state X(t1) in afinite time interval ty <t<t; (for all states).

For example, we can force X (t;) - {G if desired, if the system is completely state controllable.

» Property of coupling between input and state, so it involves A and B.

» If the input vector has a connection to each state, system is completely controllable.

* |If a system is completely controllable (and observable), we can design a linear state-feedback
control law to arbitrarily place the closed-loop eigenvalues (poles) so that an unstable system is
stabilized and the transient response can be changed.

3.2 Tests for Controllability

Controllability Criterion

Controllability Matrix P:[B AB A28 ... A”'lB}

If rank(P)=n, the system is completely state controllable. recall: r number of inputs
m number of outputs
n number of states
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B,AB,A?B, - each have dimension (nx r) so the dimension of P is (n x nr).

SISO Case: b isacolumn matrix P:[b Ab A% ... A”'lb}, P is (n x n) square matrix.

If |P|#0, thesystemiscompletely state controllable,

Controllability Examples

. 0o 1 0 0
1) G(8)=5— A=l 0 0 1 b=[0
S +a,s” +a1S+ay —a, -a -a 1
2
0 0 1
b=|0 Ab=| 1 A%b=| -a
1 % a5 -a
o 0 1

P=[b Ab A%|=l0 1 -a

1 _a2 a2 - al

|P|=-1#0
S0 the system is completely state controllable.

2) NEED A NEW NON-CONTROLLABLE EXAMPLE. THISIS FROM ANOTHER BOOK.

bl el

1 2
P=
-1 -2
Clearly, |P|=0
s0 the system isNOT completely state controllable.

Why? Xg+ X =2% U =X +X5 —U =X; X,

States do not depend on u, so uncontrollable.
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3.3 Coordinate Transformations and Controllability
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3.4 Matlab for Controllability

Some Matlab functions that are useful for controllability determination are:

P = ctrb(A,B) Calculate the controllability matrix associated with the system A, B.
rank(M) Calculate the rank of matrix M.

det(M) Calculate the determinant of square matrix M.

size(A,1) Determine the system order n.

Continuing M atlab Example: Contr ollability

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
determine the controllability of the given open-loop system. The following Matlab code performsthis
determination for the continuing example.

%9%6%6%6%%%%%%% %% %% % %% %% %% % %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 3. Controllability
%9%%6%6%%%%%%% %% %% %% % %%6%6%% %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %

P = ctrb(A,B); % Calculate controllability matrix P
if (rank(P) == size(A,1)) % Logic to determine controllability
disp('System is fully state-controllable’);
else
disp('System is NOT fully state-controllable’);
end

P1 = [B A*B]; % Check P via the formula

This m-file, combined with the m-file from Chapter 2, determined the controllability condition for the
continuing example (the Matlab function yielded identical results to the formula):

System is fully state-controllable

68



3.5 Continuing Examples

3.5.1 Continuing Example I: Two-mass MIMO Translational Mechanical System

Determine the controllability for Continuing Example | (Two-mass MIMO Translational
Mechanical System), for both Case i (full MIMO) and Case ii (input u, and output y;).

Solution, Case i

The 4x8 controllability matrix P is:

0 0 0.03 0 -002 001 -036 023
003 0 -002 001 -036 023 067 -061

0 0 0 005 001 -003 023 -048

0O 005 001 -003 023 -048 -061 0.73

P=[B AB A%B A3B|=

This controllability matrix is of full rank, i.e. rank(P) = 4, which matches the system order n=4.
Therefore, the system is fully state-controllable. This means we can proceed to design a full-state-
feedback controller to place any desired poles into the closed-loop system.

Solution, Caseii

In Case ii, the system dynamics matrix A isidentical to Case i; however, since B is different due
to different input condition, we must again check for controllability.
The 4x4 controllability matrix P is:

0 0 001 0.23

0 001 023 -061

0 005 -003 -0.48
005 -003 -048 0.73

P=[B AB A%B A3B|=

This controllability matrix is of full rank, i.e. rank(P) = 4, which matches the system order n=4.
Therefore, the system is fully state-controllable. This again means we can proceed to design a full-state-
feedback controller to place any desired poles into the closed-loop system for this case.
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3.5.2 Continuing Example II: Rotational Electromechanical System

Determine the controllability for Continuing Example 11 (1-dof rotational electromechanical
system; SISO: input v, output 6).

Solution

The 3x3 controllability matrix P is:

00 2
P:[B AB AZB]: 0 2 -6
2 -6 14

This controllability matrix is of full rank, i.e. rank(P) = 3, which matches the system order n=3.
Therefore, the system is fully state-controllable. Another way to establish full rank for a square matrix

is if the matrix determinant is non-zero: |P|=-8# 0. This means we can proceed to design a full-state-
feedback controller to place any desired poles into the closed-loop system.
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3.6 Homework Assignments

3.6.1 Mathematical Homework Assignments

3.6.2 Matlab Homework Assignments

3.6.3 Continuing Homework Assignments

CE1.3

For the CE1 system, determine if the system is completely state-controllable, for al three Cases (cases
from CEL.2 and specific parameters from CE1.3). Give the mathematical details to justify your
answers, explain your results in all cases by looking at the physical problem.

CE2.3

For the CE2 system, determine if the system is completely state-controllable, for al three Cases (cases
from CE2.2 and specific parameters from CE2.3). Give the mathematical details to justify your
answers; explain your results in all cases by looking at the physical problem.

CE3.3

For the CE3 system, determine if the system is completely state-controllable, for both Cases (cases from
CE3.2 and specific parameters from CE3.3). Give the mathematical details to justify your answers,
explain your resultsin all cases by looking at the physical problem.
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4. Observability

4.1 Definition of Observability

The continuous-time linear system
X =AX+BU
Y =CX+DU

is said to be completely observable if the all initial states X(tp) can be determined from the observation
of output Y (t) over afinitetime interval ty <t <t; given U(t).

» Property of coupling between state and output, o it involves A and C.
* An observable system has an output that possesses a component due to each state variable.

* An observable system can estimate all state variables. A connection exists between each state
variable and the output.

4.2 Tests for Observability

Observability Criterion

Observability Matrix Q=| CA?

cAnt

If rank(Q) =n, the system is completely observable.

recall: r number of inputs
m number of outputs
n number of states

C,CA,CAZ,... each have dimension (mx n) so the dimension of Q is (nm x n).
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SISO Case:  cisarow matrix Q=| cA? |, Q is(nx n) square matrix.

If |Q|#0, thesystemiscompletely observable.
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Observability Examples

o 1 o0
1) G(g=— 21 A= 0 0 1 c=[1 0 q
S +a,s” +ays+ay
& T &
c=[1 0
cA=[0 1 O
cA?=[0 0 1]
c| 100
Q=[cA |=]0 1 0
cA? 0 01

Clearly, |Q|=1#£0
S0 the system is completely observable.

2) NEED A NEW NON-OBSERVABLE EXAMPLE. THISISFROM ANOTHER BOOK.
X 2 0| x 1 X
S M e TR MG
X2 _1 1 X2 _1 X2
c=[1 1]
cA=[1 1]

£

Clearly, |Q|=0
s0 the system isNOT completely observable.

Why? Yy = X; + X, which depends on x;(0) and x>(0) so this does not allow us to determine

x1(0) and x»(0) independently.

Examples summary:

1) Completely state controllable and observable so we can design a linear state-feedback controller with

closed-loop poles as we specify; and we can design an associated observer.

2) Not gate controllable or observable so we cannot design a linear state-feedback controller with
closed-loop poles as we specify; nor can we design an associated observer.
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4.3 Coordinate Transformations and Observability
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4.4 Duality and Minimality
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4.5 Matlab for Observability

Some Matlab functions that are useful for observability determination are:

Q =o0bsv(A,C) Calculate the observability matrix associated with the system A, C.
rank(M) Calculate the rank of matrix M.

det(M) Calculate the determinant of square matrix M.

size(A,1) Determine the system order n.

Continuing M atlab Example: Observability

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
determine the observability of the given open-loop system. The following Matlab code performsthis
determination for the continuing example.

%9%%6%6%%%%%%% %% %% % %% %%6%6%% %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 4. Observability
%9%%6%6%%%%%%% %% %% %% % %%6%6%% %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %

Q = obsv(A,C); % Calculate observability matrix P
if (rank(Q) == size(A,1)) % Logic to determine observability
disp('System is fully state-observable');
else
disp('System is NOT fully state-observable');
end
Q1 =|[C; C*A]; % Check Q via the formula

This m-file, combined with the m-file from Chapter 2, determined the observability condition for the
continuing example (the Matlab function yielded identical results to the formula):

Q:
1 0
0 1

System is fully state-observable
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4.6 Continuing Examples

4.6.1 Continuing Example I: Two-mass MIMO Translational Mechanical System

Determine the observability for Continuing Example | (Two-mass MIMO Translational
Mechanical System), for both Case i (full MIMO) and Case ii (input u, and output y;).

Solution, Case i

The 8x4 observability matrix Q is:

1 0 0 0
0 0 1 0
C 0 1 0 0
leal | o 0 0 1
Q=lcaz|™ =15 -075 5 025
CA3 10 05 -10 -05
13.75 -14.31 -6.25 4.69
-125 938 750 -963

This observability matrix is of full rank, i.e. rank(Q) = 4, which matches the system order n=4.
Therefore, the system is fully state-observable. This means that we can proceed to design a full-state-
feedback observer to estimate the states for feedback.

Solution, Caseii

In Case ii, the system dynamics matrix A is identical to Case i; however, since C isdifferent due
to different output condition, we must again check for observability.

The 4x4 observability matrix Q is:

C 1 0 0 0
o= CA| | O 1 0 0
“lcAa?| | -15 -075 5 025

CAS3 13.75 -1431 -6.25 4.69

This observability matrix is of full rank, i.e. rank(Q) = 4, which matches the system order n=4.
Therefore, the systemis fully state-observable. This again means that we can proceed to design a full-
state-feedback observer to estimate the states for feedback for this case.

78



4.6.2 Continuing Example Il: Rotational Electromechanical System

Determine the observability for Continuing Example Il (1-dof rotational electromechanical
system; SISO: input v, output 6).

Solution
The 3x3 observability matrix Q isls:
C 10
Q=| CA |=|0 1
CA%| |0 ©

= O O

clearly rank(Q) = 3 = n; also |Q|=1#0. Therefore, this system is fully state-observable. This means
that we can proceed to design a full-state-feedback observer to estimate the states for feedback.
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4.7 Homework Assignments

4.7.1 Mathematical Homework Assignments

4.7.2 Matlab Homework Assignments

4.7.3 Continuing Homework Assignments

CEl4

For the CE1 system, determine if the system is completely observable, for all three Cases (cases from
CEL1.2 and specific parameters from CE1.3). Give the mathematical details to justify your answers,
explain your resultsin all cases by looking at the physical problem.

CE2.4

For the CE2 system, determine if the system is completely observable, for all three Cases (cases from
CE2.2 and specific parameters from CE2.3). Give the mathematical details to justify your answers,
explain your resultsin all cases by looking at the physical problem.

CE34

For the CE3 system, determine if the system is completely observable, for both Cases (cases from CE3.2
and specific parameters from CE3.3). Give the mathematical details to justify your answers; explain
your resultsin all cases by looking at the physical problem.
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5. Stability

5.1 Definition and Eigenvalue Analysis

A system is stable if the output is bounded for all bounded inputs. Stability is property of a system,
independent of input signal.

Equilibrium states can be unstable equilibrium (point a), neutral equilibrium (region b), or stable
equilibrium (point c); this is demonstrated in the diagram of Figure 7.1.

Figure 7.1 Equilibrium States

Simple test for system stability: The real part of all poles must be negative. Poles are eigenvalues of
system dynamics matrix A.

Characteristic equation |sl —A|=0 Poles, eigenvalues.  s; = B, iw,
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I im
X X X
1 2 3
Re

X X

Figure7.2 Re-Im Pole Map
Transient solution form: y(t) = Cef codat + @
1) Ifal B; <0 stable
2) If any Bj=0 marginally stable (assuming the remaining g; are negative)
3) If any Bj>0 unstable

Classical controls:
* Routh-Hurwitz criterion - determine stability based on transfer function coefficients without
actually calculating poles.
* Root-locus method - graphical method to vary feedback gain k to determine ranges for sability
and control transient response.
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5.2 Lyapunov Stability Analysis

5.2.1 Stability Analysis Based on System Energy

Appliesto linear/non-linear and constant/time varying
Can determine stability without solving X = AX +BU (or non-linear system equations).

Based on energy method. E isthe total system energy and an equilibrium point is X={ 0} :

Ifz—lt5<0 then X - {G andthesystemisstable.

If (?j_ltz =0 then the system is marginally stable.

If (?j_ltz >0 then the system is unstable because something is continuously adding energy.

Example

SISO 1-dof m-c-k linear translational mechanical system.

1 - 1 5
E=—my* +=
Zmy 2ky
“={a) =)
X2 y
1 -1 -, 1 - 1 5
E== +=ky® ==mx5 +=kx
YT =M ke
dE ) . :
If E:rmzx2+kxlx1<o, then the system is stable.

Thisisaways true for positive damping.

Stability analysis via phase plots - plot velocity vs. displacement:
* Increasing or decreasing energy
» Stableif orbit convergesto apoint (constant x;, X,=0)
» Show examples, +,0,- damping??!!??
* Initial conditions
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5.2.2 Lyapunov Stability Background

Definitions:

Any time varying nonlinear system can berepresented as: X =f (X, t)
A stateis an equilibrium state Xe if f(Xq,t)=0 forallt.

For linear time invariant systems, X =f (X,t)=AX and there is one unique equilibrium state X if A is
nonsingular; infinitely many equilibrium states X if A issingular.

We can always shift an equilibrium state X to zero by coordinate shifts: f (0,t) =0 for all t.

Hyperspherical region of radius k about an equilibrium state X, (using Euclidean norm):

1/2
[X - X <k where. [X - X =] (% =) (g )"+ +{% ) |

Define two such spherical regions: |[X-X|<d and |X-X <&, with Jd<e. Graphica
representation:

Figure 7.3 Four Lyapunov Stability Conditions



1. Anequilibrium state X, is said to be stable in the sense of Lyapunov (stability 1.SL.) if trgectories
starting within o do not leave the & region ast increases indefinitely.

2. An equilibrium state X, is said to be asymptotically stable if trgjectories starting within J converge
to Xe without leaving the £ region ast increases indefinitely. This case is preferable to stability 1.SL.

3. An equilibrium state X, is said to be asymptotically stable in the large asymptotic stability holds for
all possible initial states Xo. There must be only one equilibrium state in the whole state space.

4. An equilibrium state X, is said to be unstable if trgjectories starting within o leavesthe ¢ regionast
increases.

Stability types:
» Stability in the sense of Lyapunov (stability 1.SL.)
* Asymptotic stability
* Bounded input, Bounded state Stability (BIBS)
* Bounded input, Bounded output Stability (BIBO)

5.2.3 Lyapunov Stability Analysis

Given system X = AX , assume the state vector origin is the equilibrium state Xe:
Xe=0,0r AX,=0

Second method of Lyapunov (1892, Russian):
If a positive-definite function V (X) can be found such that V (X) is negative-definite, this
equilibrium state is asymptotically stable.

V (X) Lyapunov function: generalized energy function, not unique

V(X) is positive-definite if V(X)>0  foralX
positive-semi-definite if V(X)=z0
negative-definite if V(X)<o0

Quadratic form XTPX scalar function, P isreal and symmetric.

This form is positive-definite if P is positive-definite.

Positive-definite matrix: Sylvester’s criterion:
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P is positive-definite if all principal minors are positive. Principal minors are submatrix
determinants starting with scalar p11 and proceeding (with p11 included as the first term in each) until the
determinant of the entire P.

P is positive-semi-definite if al principal minors are non-negative.

5.2.4 Lyapunov’s Direct Method

For linear time-invariant systems, we must find a positive-definite quadratic scalar Lyapunov
function V (X) =XTPX. WithPreal, symmetric, and positive-definite, V (X) is positive-definite.

If V(X) <0 for all t (negative-definite), then the system is asymptotically stable.
V(X)=XTPX

V(X)=XTPX +XTPX + XTPX If A is constant, P is constant:
P=0 andusing X = AX,

V(X)=XTPX+XTPX = XTATPX + XTPAX = XT| ATP+PA |X
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5.2.5 Lyapunov Equation

V (X) must be negative-definite, so the matrix in the quadratic form:
V(X)=XT [ATP + PA} X must be negative-definite:

ATP+PA =-Q for some positive-definite Q.
Starting with an arbitrary positive-definite Q yields a unique P; however,

Starting with an arbitrary positive-definite P may not yield a unique Q.

Solve ATP+PA=-Q
Given P, solve Q is easy, but may not work this way.

Necessary and sufficient condition:
System represented by dynamics matrix A is asymptotically stable if and only if the solution P is

positive-definite when Q is positive-definite. For non-singular constant A, equilibrium state X, =0 is
asymptotically stable in the large.
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5.2.6 Lyapunov Stability Analysis Example

0 1
Determine the stability condition for A = { }

ATP+PA=-Q; Let Q =1, (positive-definite matrix)

b
Solve for symmetric P = {Z } and determine its definiteness.
c

2
(n?+n)
Since P is symmetric, we don’t have n® equations, we have

0 O O A il
b b | ea)Tlo ]

[ -4b a-3b-2c
a-3Ib-2c 2b-6¢

eguations

-1 0
= { 9 - } due to symmetry, use either 2,1 or 1,2 (same equations).

0 -4 O0|fa -1
-3 2Kkby=<0 actualy, these linear equations are decoupled
0 2 -6||c -1

[

125

a b| |125 025
0.25 SO P= =

b c 025 0.25
0.25

T 9
I

Sylvester’s criterion for positive definiteness:

check |a| = +125 and Z j = +0.25

Both principal minors are positive so P is positive-definite. Therefore, the linear system represented by
A isasymptotically stable in the large.

Note: eig(A) =[-1,-2] All real parts are gtrictly negative - agrees with the above result.
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5.3 Input/Output Stability
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5.4 Matlab for Stability Analysis
The following Matlab functions are useful for Lyapunov stability analysis:

lyap(A',QQ) Solve ATPP + PPA = —-QQ for matrix PP given positive-definite matrix QQ.

Continuing M atlab Example: L yapunov Stability Analysis

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
determine the stability condition of the given open-loop system via Lyapunov stability analysis. The
following Matlab code performs this determination for the continuing example.

%9%%6%6%%%%%%% %% %% % %% %% %% % %% %% % % %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 7. Lyapunov Stability Analysis
%9%%6%6%%%%%%% %% %% % %% %%6%6%% %% %% % % %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %

QQ =eye(2); % Given positive definite matrix
PP = lyap(A',QQ); % Solve for PP
pml=PP(1,1); % Sylvester's method to see if PP is positive definite; principal minors of PP

pm2 = PP(1:2,1:2);

if (det(pm1)>0 & det(pm2)>0) % Logic to determine stability condition
disp('System is asymptotically stable’);

elseif (det(pm1)==0 | det(pm?2)==0)
disp('System is marginally stable’);

else
disp('System is unstable’);
end
figure; % Plot phase portraits to enforce stability analysis

plot(Xo(:,1),Xo(:,2)); grid; axis('square’); axis([-1.3 1.0 -1.7 0.6]);
set(gca, FontSize',18);
xlabel(‘{\itx} 1 (rad)’); ylabel('{\itx} 2 (rad/s)’);

This m-file, combined with the previous chapter m-files, yielded the following output, plus the phase
portrait plot of Figure 7.4.

PP =
51750 0.0125
0.0125 0.1281

pm1l =
5.1750

pm2 =
5.1750 0.0125
0.0125 0.1281

System is asymptotically stable
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Figure 7.4 Phase Portrait Plot for Continuing Matlab Example

Figure 7.4 plots velocity x2 vs. displacement x1. Since this is an asymptotically-stable system,

x(0)={04 03T

the phase portrait spirals in from the given conditions to the final state vector values

_ T
of X(°°)‘{O d . Thisisanother view of the state responses shown in Figure 3.3.
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5.5 Continuing Examples: Stability Analysis

5.5.1 Continuing Example I: Two-mass MIMO Translational Mechanical System

Determine the stability condition for the system of Continuing Example | (Two-mass MIMO
Translational Mechanical System). Stability is a fundamental property of a system; it is only dependent
on the system dynamics matrix A and not on matrices B, C, or D. The stability condition is the same
regardless of the various possible combinations of input and output choices. Therefore, in this section
there is only one stability analysis; it is the same for Case i (full MIMO), Case ii (SISO, input u, and
output y;) and all other input/output combinations. However, we will employ two methods to get the
same result, simple eigenvalue analysis and Lyapunov stability analysis.

Solution, SSimple Eigenvalue Analysis

This case was already presented in Continuing Example I, Chapter 3. If all real parts of all
system poles are strictly negative, the systemis stable. If just onereal part of apoleis zero (and the real
parts of the remaining system poles are zero or grictly negative), the system is marginally stable. If
just one real part of a pole is positive (regardless of the real parts of the remaining system poles), the
system isungtable.

From Chapter 3, the four open-loop system poles for Example I, found from the eigenvalues of
A, ae

12 =—05% 444 and s34 =-0.125+2.23]
Thus, this open-loop system is stable since all real parts of the four poles are strictly negative.

Solution, L yapunov Analysis

The Lyapunov stability equation is:
ATP+PA=-Q

The stability analysis procedure is: for a given positive definite matrix Q (I is a great choice), solve for
P in the above equation. If P turnsout to be positive definite, then the system is asymptotically stable
in the large; if P is positive semi-definite, the system is marginally stable; but if P is neither positive-
definite nor positive semi-definite, the system is unstable.

The solution for P is:

1576 029 193 038
029 178 -019 1.09
193 -019 916 -0.04
038 109 -004 146
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Now we must check the positive-definiteness of P using Sylvester’s criterion. The four principal minors
of Pare P, =P itself, and:

1576 029 1.93
P;=| 029 178 -0.19 P, =
193 -019 9.6

{15.76 0.29} p, = [15_76]

029 1.78

The determinants of the four principal minors of P are 194.88, 248.58, 27.96, and 15.76, respectively.
All principal minor determinants are positive and therefore P is strictly positive definite. Therefore, this
system is asymptotically stablein the large.

To enforce these stability results, Figures 7.5 present the phase portrait plots for Example |, Case
i (full MIMO system with two step inputs of 20 and 10 N, respectively, and zero initial conditions).

Figure 7.5 Phase Portraitsfor Casei

Figures 7.5 plot velocity x, vs. displacement x; on the left and velocity x4 vs. displacement x; on the
right. Since this is a stable system, the phase portraits both spiral in from the given zero initial
conditions on all state vector components to the final state vector, presented in the Chapter 3 Examplell,

X =X(@)={0.075 0 0125 ¢T. SinceFigures 7.5 are both plotted to the same scale, we see that

mass 2 undergoes higher displacement and velocity motions than mass 1. This can also be seen (for
displacements only) in Figures 3.5, Chapter 3.

To further enforce the stability results, Figures 7.6 present the phase portrait plots for Example,
Case i (SISO, with zero input Uz and output ys, plus given initial conditions X(0)={0.1 0 02 ¢7).
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Figure 7.6 Phase Portraitsfor Caseii

Figures 7.6 again plot velocity x, vs. displacement x; on the left and velocity x4 vs. displacement x; on
the right. Since this is a stable system, the phase portraits both spiral in from the given non-zero initial
conditions (displacements; initial velocities are zero) on all state vector components to the final state
vector values of all zeros. Since its initial displacement is double that of mass 1, we see that mass 2
undergoes higher displacement and velocity motions than mass 1. This can also be seen, along with the
zero final state values in Figures 3.6, Chapter 3.
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5.5.2 Continuing Example Il: Rotational Electromechanical System

Determine the stability condition for the system of Continuing Example Il (1-dof rotational
electromechanical system; SISO: input v, output 8). We will attempt to employ two methods, simple
eigenvalue analysis and L yapunov stability analysis.

Solution, SSimple Eigenvalue Analysis

This case was already presented in Continuing Example 11, Chapter 3. If all real parts of al
system poles are strictly negative, the systemis stable. If just onereal part of apoleis zero (and the real
parts of the remaining system poles are zero or grictly negative), the system is marginally stable. If
just one real part of a pole is positive (regardless of the real parts of the remaining system poles), the
system isungtable.

From Chapter 3, the three open-loop system poles for Example I, found from the eigenvalues of
A, are:

312’3 = 0,_1,_2
Thus, this open-loop system is marginally stable since there is a zero pole and the rest are real and
negative. Marginally stable in this example means that the input angle has a rigid body mode; i.e. when
voltage is applied, the output shaft angle will increase linearly without bounds in the steady state. This
does not pose aproblem as thisis how a DC servomotor is supposed to behave.

Solution, L yapunov Analysis

Determining the stability condition using Lyapunov analysis is not possible. Matlab cannot
solve the Lyapunov stability equation (Solution does not exist or is not unique), due to the singular
system dynamics matrix A. Thisalso indicatesthat the system is marginally stable.

These marginal-stability results can be further demonstrated by the phase portrait plots of Figure
7.7.
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Figure7.7. Phase Portraitsfor Rotational Electromechanical System

Figures 7.7 plot motor shaft angular velocity x, vs. angle x; on the left and angular acceleration xs vs.
angular velocity x, on theright. Since thisis a marginally stable system, the phase portraits both start a
the given zero initial conditions on all state vector components; they neither spiral back towards the zero
equilibrium position nor spiral out of control as an unstable system. This means that the system is
marginally stable, approaching a constant angular velocity of 1 rad/s in steady-state motion.
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5.6 Homework Assignments

5.6.1 Mathematical Homework Assignments

5.6.2 Matlab Homework Assignments

5.6.3 Continuing Homework Assignments

CEl15

Using Lyapunov analysis, determine the stability condition for the CE1 system; any case will do — since
the A matrix isidentical for all input/output cases, the stability condition does not change. Check your
results via simple pole analysis.

CE2.5

Using Lyapunov analysis, determine the stability condition for the CE2 system; any case will do — since
the A matrix is identical for all input/output cases, the stability condition does not change. Lyapunov
stability analysis will not succeed (why?); therefore, determine system stability via simple pole analysis.

CE3.5

Using Lyapunov analysis, determine the stability condition for the CE3 system; either case will do —
since the A matrix is identical for all input/output cases, the stability condition does not change. Check
your results via simple pole analysis.
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6. Design of Linear State-Feedback Controllers

This chapter presents. . .

In this chapter we will design controllers for the state-space description systems. This is the
topic all other chapters have been leading up to. The controller design problem is to calculate a full-
state-feedback gain matrix to provide desired behavior in the closed-loop system, masking the original
open-loop behavior. This process involves placing desired closed-loop poles into the closed-loop
system dynamics matrix. Controller design should be followed by simulation to determine the simulated
closed-loop behavior of your controller design.

First, shaping of dynamic response (how controllers should be prescribed to behave).

6.1 Shaping Dynamic Response
If we don't like the open-loop system performance (i.e. responses to step, impulse, and other

inputs), we can force system output to perform as desired using feedback control. Thisis, in the design
of controllers we can place the n poles of the closed-loop system in order to:

* ensure stability
» achieve desired transient behavior (shaping dynamic response)

This chapter is another important step on the way to controller design: if we don't like the open-loop
response, how should we specify good responses with which to replace it?

6.1.1 Dominant, Augmented Desired System

In this method we will determine good desired system behavior by choosing desired second- or
first-order poles and then augmenting them with enough additional poles to obtain n desired poles (we
need to specify desired closed-loop poles equal in number to the order of the system (the number of state
variables)). We choose all additional augmented poles to be real, negative, and about ten times greater
than the real part of the desired dominant poles. If so, the effect of these augmented poles will not be
seen much since their transient dynamics will be much faster than the desired dominant system behavior.
In this way the specified desired dominant response will still dominate.

6.1.1.1 Second-Order Dominant System

Why study second-order systems?

« many real systems modeled with 2™ order ODEs
« design controller so higher-order system mimics desired 2™ order system

Let us consider the linear SISO 1-dof m-c-k mechanical translational system (see Figure 1.2) with y(t)
output displacement and f(t) input force. We can turn this into a generic second-order system, that



applies to any physical system that can be modeled with a linear second-order system. First, replace the
forcing function f(t) with the spring k times a displacement input u. This will in effect normalize the
generic system output to 1.0 since the natura frequency squared then shows up on both sides of the
ODE:

my+cy +ky = f =ku

.. c. k _k

yt—y+—y=—u
m~ m m

y+ 28w,y +afy = afu

Where: wp = \/% rad/sisthe natural frequency, rad/s

&= ¢ is the dimensionless damping ratio

27/km

The generic 2™-order system transfer function is then:

Y( @y
Gls) = =
ANV R 26,5+ wp

The associated characteristic polynomial is the denominator of G(s):
s +2&w s+ w? =0

The system poles are found from the roots of the characteristic polynomial:

S1p = —Ew, twyy & -1

The nature and values of the poles determine the system transient response. We identify five distinct
cases, according to the dimensionless damping ratio .

Damping Unit step response

&>1 Overdamped; real distinct negative poles, slow response

=1 Critically damped; real repeated negative poles, fastest response without
overshoot

0<é<l Underdamped; complex conjugate poles, overshoot and oscillation

&=0 Undamped; complex conjugate poles with zero real parts, simple harmonic
motion (vibrates theoretically forever since there is no damping in the model).

é<0 Unstable; at least one pole with a positive real part, exponential term in solution

approaches infinity rather than a finite stead-state value.
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Second-Order System Perfor mance Specifications

Now, for determining desired closed-loop poles for controller design (Chapter 8), we can choose
dominant second-order poles from any of the first four cases above (since we cannot specify unstable
poles). Of these, the third is most interesting and most commonly used for dynamic shaping: the
underdamped case with 0< ¢ <1. The polesin this case are:

S12 = ~§Wn *iwy

where: wy = w,\J1- &  isthe damped frequency.

The unit step response solution for the generic underdamped 2"-order system is:

sinf(wgt + a) a=sin"ty1-&2

This solution has an exponential damping envelope due to the (negative) real part of the poles and an
oscillatory sin wave of the damped natural frequency plus a phase angle a. A plot of the form of this
solution will be given later in an example, in Figure 4.1.

For this underdamped generic 2™-order system, there are four performance specifications (see
Figure 4.1). Risetime is the relative time between when the output first reaches 10% of the final value
to when the output first reaches 90% of the final value. Peak time is the absolute time at which the peak
value is reached. Percent overshoot is the maximum output compared to the final steady-state value of
1.0 and converted to a percentage. Settling time would be theoretically infinite; thus for design purposes
we define settling time to be when the output enters the +2% envelope about the final steady-state value
and never leaves again. The formulas for rise time, peak time, percent overshoot, and settling time are
(DERIVE OR REFER TO Dorf and Bishop ?21??) given below, as functions of the natural frequency
and dimensionless damping ratio. Peak time and percent overshoot are theoretically exact, but rise time
and settling time are approximations.

216£+0.60

1) Rise Time (10-90%) tp ——— (best for 0.3< £ <0.8)
n
2)  Peak Time tp=— 4
Wy 1- &
=
3) Percent Overshoot PO =100e et
4) Settling Time (+2%) tg U 4
$wy,
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To control the swiftness of the response we can change the rise time and peak time; to control the
error of the response, we can change the percent overshoot and settling time. These are competing
requirements.

Let us develop a generic underdamped 2"-order system example;

m=1Kkg c=1Nsm k=10 N/m

The natural frequency and dimensionless damping ratio are:
k 10 c 1
=,|—=,/— =3.16 rad/s &= = =0.158
“ T m TV 2Jkm  2,/10(2)

The damped natural frequency is:

ay =+1- & =312 radls

The generic 2™-order system transfer function is:
6(s)= Y(s) _ of 10

U(s) s2+2&ms+af T2 45410

The characteristic polynomial is:
s% +2&w,s+af =s° +s +10 =0

The system poles (roots of the characteristic polynomial) are complex conjugates:
S, =-05£3.12i

The unit step response solution is:
y(t)=1-1.01e™% sin(3.12t +809')

From & and «j, we calculate the four performance specifications:

t, = 0.30 sec (poor approximation since ¢ < 0.3 - from Matlab simulation data, the value is
t,=0.37 9

to =1.01 sec

PO =60.5%

ts =8 sec

Figure 4.1 gives a plot of the unit step response with rise time, peak time, % overshoot, and settling
time. This plot was obtained from Matlab using the step function and right-clicking in the resulting
figure window to add the performance specifications. We see that, with the exception of rise time, the
formula values agree well with the Matlab numerical values of Figure 4.1 (settling time has some error
aswell, since this is an approximate equation).
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System: sys
s Peak amplitude: 1.6 Step Response

Overshoot (%): 60.4
At time: 1.02
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Figure4.1 Example Generic 2"-Order System Unit Step Response

The step response in Figure 4.1 is typical of real-world lightly-damped systems such as certain
space robots. Let us assume that this is the original given 2"-order open-loop system and we must
design controller poles to improve this response. In the generic 2™-order system, & affects the damping

envelope (how much percent overshoot) and «j, affects the speed of the response, i.e. peak and rise
times (in conjunction with ). Both § and a, affect settling time. We will specify a percent overshoot

of 4% and a settling time of 2 sec to improve the response. Given these desired performance
specifications, we can calculate new desired closed-loop system dimensionless damping ratio ¢ from

the percent overshoot equation and then we can calculate the natural frequency aj, from the settling
time approximate equation (using the new ¢£):

PO
In(lOOJ 4
¢= —
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Given the specified PO = 4% and ts = 2 sec, we find the desired ¢ and «, to be:
£=0.716 W, =2.79

The new damped natural frequency is:
ay =+/1- & =1.95 rad/s

The new generic 2™-order system transfer function is:

7.81
G(s)=——""—
(5) °+4s+7.81

The new characteristic polynomial is:
s% +4s+7.81=0

The new, desired system poles are:
S.l.,2 = _2 1195|

The improved unit step response solution is:
y(t)=1-143e" sin(1.95t +44.3)

Matlab step gives us the four performance specifications:

tr =0.78 sec
tp =1.60 sec
PO =4%

ts =212 sec

Note that the percent overshoot was satisfied (theoretically) exactly, while the settling time was
close. Figure 4.2 gives a plot of the unit step response for the improved, desired system, compared with
the unit step response of the open-loop system from Figure 4.1.
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************ — Open-Loop |
— Desired

t (sec)
Figure 4.2 Desired vs. Open-Loop System Unit Step Responses
In Figure 4.2 and Table 4.1 below we see that the desired, improved system rises slower and
peaks slower than the open-loop system, but the error, as measured by the percent overshoot and settling
time, is much improved.

Table4.] Comparison of Open-Loop and Desired Per for mance Specifications

Specification Open-L oop Response Desired Closed-L oop Response
t; (Sec) 0.37 0.78
t, (Sec) 1.02 1.60
PO (%) 60.4 4
ts (Sec) 0.73 2.12
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6.1.1.2 First-Order Dominant System

We can also specify desired closed-loop behavior via a dominant 1%-order pole. Figure 3.1
shows a standard 1%-order system step response. Assuming the system is stable and the pole is non-
zero, al 1%-order systems driven by unit step inputs behave this way, i.e. rising (or falling) exponentially
from the single given initial condition to the steady-state value. Since the system is only 1%-order, we
only have 1-dof. So to specify a dominant pole we can set the desired time constant 7 (rather than
changing two performance specifications to modify ¢ and «j, asin the 2"order case above). After
three time constants, the 1%-order unit step response is within 95% of its final value. A smaller time
constant responds more quickly while a larger time constant responds more slowly. The characteristic
polynomial and associated pole for adominant 1¥-order system is:

s+1:0
T

N

6.1.1.3 Augmenting Desired Dominant Systems

Now, many MIMO and SISO systems have a system order n greater than 1 or 2. For controller
design (Chapter 8), we need to specify as many desired controller poles as the system order n. When we
start with a dominant 1%- or 2™-order desired system, we need to augment the dominant poles with
enough addition poles for n total desired poles. All additional augmented poles should be real, negative,
and about ten times greater than the real part of the desired dominant poles. Then the effect of these
augmented poles will not change the desired behavior significantly and the specified desired dominant
response will dominate.

First, let us consider typical 1%- through 4™-order system unit step responses. A stable 1%-order
system can only behave like Figure 3.1. There are many options for 2™-order system responses (we
considered the underdamped case in detail); for 3% and 4™-order systems there are even more
possibilities. Figure 4.3 shows some typical responses for 13- through 4™-order systems.
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Figure 4.3 1%- through 4"-Order System Unit Step Responses

The 1%- and 2"-order step responses y; and Y are similar to what we have seen before. The 3"
order system response ys is a superposition of atypical 1¥-order rise and underdamped 2™-order system.
The 4™-order system response y, shows a typical 4™-order beat frequency. All responses in Figure 4.3
were normalized for steady-state values of 1.0. The poles associated with each case are given in the
table below.

Table4.11 Polesfor Figure4.3

Order n Poles
r 5 =05
2" S = -0.5+5i
3° S.23= 0525, -1
47 Si234= 0545, 0555
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Figure 4.4 shows the effect of augmenting a dominant 1%-order desired pole (s, =-0.5) with
additional, real, negative poles, at least 10 times higher, for 2™- through 4™-order systems.

t (sec)
Figure4.4 2"- through 4"-Order SystemsMimicking Dominant 1%-Order System

The poles associated with each case are given in the table below.

Table4.111 Polesfor Figure 4.4

Order n Poles
i 5=-05
2™ $,=-05-5
3" S.23=-05-5 6
4" S234 = -0.5,-5, 6, 7
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The 2"- through 4™-order step responses are similar to the desired dominant 1%-order step response.
The time lag increases slightly as the system order increases. Also, the 2™- through 4™-order step
responses start a initial conditions of zero displacement and zero derivatives (one for 2™-, two for 3",
and three for 4™-order systems).

Figure 4.5 shows the effect of augmenting dominant 2™-order desired poles (5, =-2%195

from Section 4.1.1) with additional, real, negative poles, at least 10 times higher, for 3°- and 6™-order
systems.

B ﬂi% i
77777777777777777 0 2nd
- 3 3rd
_ 3 — 6th
} —— 10x
****** 2 e
2 3 4
t (sec)

Figure4.5 3 and 6"-Order Systems Mimicking Dominant 2"-Order System
The poles associated with each case are given in the table below.

Table 4.1V Polesfor Figure 4.5

Order n Poles
2nd S.l.,2 = _2 1195|
3 Si03=-2+1.95, 20
6" Sio3456 = —2+1.95, 20, 21, 22, 23
10x S, = 20195
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The 3" and 6™-order step responses are similar to the desired dominant 2™-order step response. The
time lag again increases as the system order increases. The 10x curve plots the unit step response for a
2"order system with poles 1o times higher than the dominant S, =-2+1.95. This shows why

augmenting dominant poles with higher poles works (the transient dynamics occurs much faster for the
higher poles).
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6.1.2 ITAE Dynamic Shaping Method

With Section 4.1, we found that specification of fast response and low errorsin system responses
are competing factors. The ITAE (Integral of time multiplied the absolute value of error) method
attempts to accomplish dynamic shaping by balancing both of these competing factors. The ITAE
objective function is:

ITAE = [ " tleft)]ct

Minimize ITAE to simultaneously optimize competing requirements. Minimum ITAE means short time
and small error a once. Other possible objective functions. For first- through fourth-order systems, the
following characteristic polynomials minimize ITAE (DERIVE OR REFER TO Dorf and Bishop
717?). Design feedback controller to meet one of these specifications and the shaping of the dynamic
response will be optimized according to ITAE. The resulting desired characteristic polynomials are
given in Table 4.V for 1%- through 4™-order systems. In each case, the engineer must specify the desired
natural frequency aj, (higher values correspond to faster response). Then the desired poles are obtained

by finding the roots of the appropriate characteristic polynomial for the specific system order n.

Table4.V ITAE Characteristic Polynomials

Order n Poles
1% sta,
2" s? +14w, s+ of
3" s +175w,8° +2150s+ of
4" s* + 210, 8% +3402s? +2.7 afs+ of
5" 5 +2.80,8* +5.068s° +5563s% +3.4 s + &
6" s® +3.250),5° +6.60fs” +8.6 41> +7.45 ¢}s® +3.95 @s + §

Note for all cases (except the first order system) some overshoot is required to optimize I TAE.
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6.2 Feedback Control Law
Given the original open-loop state-space system:
X =AX+BU
Y =CX+DU

Draw the open-loop diagram first. Assume the output Y (t) is not performing as desired (underdamped,
unstable, other issues). Add full-state feedback to the open-loop diagram.

Diagram:
- D
r U X X + Y
+ +
- B [ - c —+
- +
A -
K -
Figure 8.1 State-Space Closed-Loop System Block Diagram

r(t) reference input same units and dimensions (r x 1) as U(t)
K constant full-state feedback gain matrix dimensions (r x n)

The Feedback Control Law istaken as:
U(t)=r(t) -KX(t) rxl=rx1 - (rxn)(nxl)

For SISO systems, the reference input r is a scalar, feedback gain matrix K is a row matrix, and the
input u isasingle input. The control law becomes:

u=r—kx —kpXo = —kpX,

If r(t)=0, the controller is a regulator (reject initial conditions and/or disturbances) - maintain
equilibrium state X=0.
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6.3 Controller Pole Placement
Now we derive the closed-loop state dynamics equation. Substitute the above control law

(U=r —-KX) into the system dynamics equation X = AX+BU: the system output equation
Y =CX +DU does not change.

X =AX+BU=AX+B(r-KX)

X =(A-BK)X+Br=AX+Br

Y=CX+DU=C._X+D.U

-BK

(9]

(9]

(9]

OO0 w>
(¢}
I
OO0 W >

So, in the closed-loop system, only the system dynamics matrix A, = A -BK changes compared to the
given open-loop system.

If the original system is not controllable, you cannot proceed in this chapter; instead you must
determine why the system is not controllable by looking at the physical problem and then re-design your
system or re-derive your system model until it is fully state controllable.

If the original open-loop system represented by A, B is completely state-controllable (see
Section 5.1), a matrix K exists that can give arbitrary eigenvalues in the closed-loop system dynamics
matrix A, =A-BK.

That is, we can place the roots (system poles) of the below closed-loop system characteristic
eguation anywhere we desire.

sl -[A-BK]| =0

So we can achieve stability and desired transient performance design specifications:
e risetime

* peaktime
e percent overshoot
» settling time

» damping, frequency

6.3.1 Bass-Gura Formula

Controller design for systems expressed in Controllable Canonical Form (CCF, see Section
6.2.1), dso called Phase-Variable Canonical Form, proceeds as follows. Let us further restrict our
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consideration for now to SISO CCF systems. The A, B forms of CCF are given below. Again, for
SISO, K isarow matrix with n elements.

0 1 0 0 0

0 0 1 0 0

A=| : : S B=|:
0 0 o .- 1 0

|78 & "8 - Tanq | 1]

K:[kl ky - kn]

The expression for closed-loop system dynamics matrix A, = A -BK becomes.

0 1 0 0
0 0 1 0
A-BK = : : : K :
0 0 0 1
_(_ao_kl) (-a -ko) (82 ~ks) - (-Bna _kn)_

We seethat A, =A-BK isstill in CCF form. Furthermore, the last row contains the coefficients of the

closed-loop characteristic polynomial (with negative signs, appearing in reverse order of s powers). The
closed-loop system poles are the eigenvalues of A, = A -BK, the same as the roots of the closed-loop
characteristic equation:

Dcy (5)=|sl =[A-BK]| =8 +(an +ky)S™™ +-- Hay +g)s” Hay #,)s (g #) D

In this form of the closed-loop characteristic equation, a.1, i =1,2,---,n are the original open-loop

system characteristic polynomial coefficients (where a.; is the coefficient for ™) and the n unknown
components of the row matrix K are k;.

The problem statement in controller design is to solve for unknown full-state-feedback gain
matrix K given the original open-loop system and given the desired closed-loop system poles for the
controller to achieve. Let us express the n desired closed-loop system poles (chosen via the methods of
Chapter 4) as a known, desired characteristic polynomial; we do this by multiplying the n factors to
obtain asingle n™ order characteristic polynomial.

Apes(8) =" +ap 8"t +o +a,s° +ays 4 =0
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The crux of controller design is to match the closed-loop characteristic polynomial Ag (s)

containing the n unknowns k; with the known, desired closed-loop characteristic polynomial Apgg (s)

First, ensure that both polynomials are normalized (coefficient of 1.0 for s"). Then we have a simple,
linear, decoupled gains solution for the SISO CCF case:

Ki=aiq-a4 1=12,-,n

I mplementing this method, the closed-loop system will mask the original open-loop system performance
and replace it with the improved behavior associated with the n specified desired poles.

If one or more state component is not controllable, we cannot change the poles associated with
these states.
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Pole Placement via K (constant state feedback gain matrix): Example

0 1 0 0
A= 0 0 1 B=|0 C=[1 0 D=0 K=[k ky kg
-18 -15 -2 1

Typical 39 order lightly damped response (see Figure ??). The open-loop system poles are
S 23=-1.28-036+3.73i.

This open-loop system is already stable. Let’s design a closed-loop state feedback controller to change
the poles to improve transient performance. Choose a desirable 2"%-order system. We want the resulting
closed-loop system to mimic a standard second-order system with 6% overshoot and 3 sec settling time.
The associated damping ratio and natural frequency are ¢ =0.67 and ), =2.00 rad/s. The resulting
dominant 2™-order poles are S =-133+149i. The origina is a 3% order system, so we need to
choose a third desired pole. Make it negative, real, and 10 times higher than the (negative) real part of
the dominant 2™-order poles: s; = -13.33. So the desired characteristic equation is:

S®+0,8% +a s +ay =s° +165° +39.55s +53.26 =0

Thiswill lead to better transient performance than the open-loop system. The decoupled CCF solution
for the unknown constant full-state-feedback gain matrix is developed below.

0o 1 o] ][0 0O 1 o0][o o o
A-BK=| 0 0 1|-|0|[kf ko kj=/ 0 0 1|-0 0 O
-18 -15 -2| |1 -18 -5 2| |k kp kg

0 1 0

A-BK=| 0 0 1

|-18-k, -15-k, -2 -kg

S -1 0
sl =(A-BK)[=| 0 s -1 |=0
kg +18 k, +15 s+kg+2
s(s(s+ks +2) +ky +15) ~( 1) (k, +18) =0

$* + (kg +2)s% +(k, +15)s +(kq +18) =0
s3 +16s? +39.555 +53.26 =0
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Top characteristic polynomial function of K, bottom desired closed-loop characteristic polynomial.
k; =53.26-18
k, =39.55-15
Ky =16-2

With CCF, the solution for K is decoupled (Equation (?77?)).

K =[35.26 2455 14.00]

Units? K= % (u(t) =r() —Kx(t))
2

e.g. K= {ﬂ Ns N—S} Units of k, ¢, min mechanical system.
m m m

The plot below shows a comparison of the open- and closed-loop output responses to a unit step input.

006 - |
L oo oo  — :
BV & &
0.04 ~— Open-loop
-~ | Closegl-loop
0.08 e R e .
002 — — — +
T R S e S :
A N N
OO 2 4 6 8 10

time (sec)

Figure 8.? Open- vs. Closed-L oop Output Response for Example
We will address the output attenuation of Figure 8.7 in Section 6.4.
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6.3.2 Ackerman’s Formula

To caculate K for any general SISO system (not just CCF), assuming the same linear feedback

control law:
U(t)=r(t)-KX(t)

K=[0 0 - 1P 'Apes(A)

Ackerman’sformulais;

where:
K calculated constant state-feedback gain matrix

P:[B AB A%B ... A”'lB} controllability matrix

And Apgs (A) isthe specified, desired closed-loop system characteristic polynomial, evaluated with the
system dynamics matrix A, rather than s.
Npes(S) =" +a, 48"+ +a,8° +ays Ha

Apes(A) =AM +a, A"+ +a,A? HA

For general MIMO systems, controller design can be accomplished with Matlab function place (see
Section 8.4).

Example
0 1 0 0
A=| O 0o 1 B=|0
-18 -15 -2 1

15 2 1
P1l={2 1 0 (Strange, that looks like M matrix from CCF)
1 0O

No, that’snot strange! T=PM =1 if you start with CCF, so M = P~1 better hold!

3526 2455  14.00
q(A) = A’ +16A% +39.55A +53.261 =| 25200 -174.74 -3.45
62.10 -200.25 -167.84
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K=[0 0 1P q(A)=[3526 2455 14.00]

Agrees with the decoupled CCF solution; for SISO systems the solution for K is unique.

6.3.3 MIMO Pole Placement

Matlab place command. Investigate the algorithm. Present (simple) MIMO theory.
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6.4 Correction of Output Attenuation

As seen in the controller design simulation results for our example (Figure 8.7), the feedback
matrix K has achieved the control of transient response as desired. However, the closed-loop steady-
state value (assuming a step input) has been changed from the open-loop case, which is undesirable.
Therefore we must develop a method so the closed-loop controller yields the original steady-state value
(or some specified value). In classical controls, thisisreferred to asthe DC gain.

This phenomenon is called output attenuation; the closed-loop controller provides a virtual
spring, usually stiffer than the original open-loop system spring (some open-loop systems even have no
spring). Therefore, the steady-state response to a step input will be smaller in the closed-loop case than
in the original open-loop case. Let us assume that the steady-state closed-loop response should be
identical to the original open-loop steady-state response. This section provides a method to ensure this.

First we study this problem for SISO systems and provide a simple method to correct it (DC
gain). Then we extend the simple DC gain approach to MIMO systems. Last we present a more general
MIMO output atenuation correction method. This discussion applies to step inputs and controllers
without Type | integrators which automeatically correct steady-state error problems.

One-dof translational mechanical system:

my+cy+ky =F For constant F, ySS:E (y=y =0 a seady-state)

Multiple-dof translational mechanical system: ([K] is stiffness, not feedback matrix!)

M3 <Y +[KI0Y {5 Forconstant (73, (% =[K] (R ({4 { ¥ =0

State-space description
Atsteady-state, X =0=AX+BU 0 {Xg =-{A{&{Y

Example
0 1 0 0]
A=| O 0O 1 B=|0 u=1 (unit step)
-18 -15 -2 1]
-0.833 -0.111 -0.056(|0 0.056 Xiss Vs
{Xq4 =-] 1 0 0 [[0H{} =4 0 ! =1%sst =1Vs
0 1 0 1 0 X3ss Vss
Check y=— :1_18 =0.056; also agreeswith the simulation results of Figure 8.?2. Now,
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0 1 0 0

A= 0 0 1 B. = 0
-53.26 -39.55 -16 1
Yes :E :?126 =0.019 (agrees with Figure 8.2?, closed-loop response), but we want 0.056. So for the

closed-loop system with state feedback controller, we must modify the reference input r:

r =u*corr where u is the open-loop input magnitude and corr is the correction factor. For
SISO, this correction factor isa simple ratio:

A(3Y)

corr =—-—-

A1)

This is the ratio of the effective closed-loop system stiffness with controller to the actua open-loop
system stiffness.

S S

This is the reference input (DC gain-adjusted) is used to achieve the plot of Figure 8.7, with the desired
steady-state value.

For the example, r =u
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Figure 8.? Open- vs. Closed-L oop Output Response for Example, Corrected

For MIMO systems, we can extend this simple DC gain concept, in order to compare in simulation
closed-loop controller system behavior with the original open-loop system behavior. First, determine

the steady-state values for the closed loop system using:

X =0=AXg +Bu
OXg- A'Bu

where u is a rx1 vector containing the magnitudes of the r input step functions used for open-loop
simulation. For 2™-order mechanical systems, the closed-loop steady-state displacements will be
attenuated compared to the open-loop steady-state displacements, and the steady-state velocities will be
0. Next, simply define an array of displacement correction factors, term-by-term division of the open-
loop steady-state displacements by the closed-loop steady-state displacements:

y

Yesg
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Finally, when plotting the closed-loop responses, simply multiply all state components (including
velocities) by the appropriate correction factor component, in order to compare simulated open- and
closed-loop behaviors to the same steady-state values.

Now, this method is good for simulations and open-/closed-loop comparisons, but it is not
general for real-world controllers. Therefore, we will now present a more general approach with a
slightly modified control law wherein the closed-loop output values will be driven to any desired level
with (theoretically) zero steady-state error.

Our existing closed-loop full-state-feedback control law is u(t) =r(t) —Kx(t); the MIMO

attenuation method uses the modified control law:
ut) = Nr(t) — Kx(t)
where N isa constant output attenuation matrix, calculated by:

N=-|c(a-BK)™ Br

The matrix C(A— BK)_1 B has dimension mxr; in order to take the plain inverse of this matrix, it must

be square (r=m; i.e. the number of inputs must match the number of outputs). Using the modified
control law, the matrix N will guarantee that the closed-loop steady-state output will match that of the
reference input r(t), when simulating the modified closed-loop system:

X(t) = (A=BK) x(t) +BNr(t)
y(t) = Cx(t)

That is, we use the familiar A, =(A-BK) and amodified B, = BN (where earlier B, =B). Again, C

and D do not change from the open- to the closed-loop cases.
An example for this output attenuation correction method is given in Section 6.6.2.1, Case .

Now, requiring the number of inputs to match the number of outputs, r=m, is a significant
restriction on general MIMO systems, where in general r #m. So we can easily adapt the above
procedure by using the Moore-Penrose pseudoinverse in place of the plain square matrix inverse in (7?).
The pseudoinverse approach will work for al cases,i.e. r>m, r=m, r <m.

In this more general case, to make the dimensions work in (??), r(t) must have the dimension
mx1 (not rx1 as before), since the dimension of N, found by the pseudoinverse, is rxm. So, now r(t)
plays the role of reference output, and should contain the desired steady-state output values for each
output component. The modified control law (??) with pseudoinverse-calculated N will then yield
output steady-state values identical to r(t). Note that in simulation of the resulting closed-loop system,
although D is a zero matrix, its dimension must be changed to mxm (from the original mxr) to work with
the new BN and r(t).
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6.5 Stabilizability

Related to controllability, not as strong.
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6.6 Matlab for Shaping Dynamic Response and Controller Design

6.6.1 Matlab for Shaping Dynamic Response

The Matlab functions that are useful for dynamic shaping (determine desired controller
performance based on determining n closed-loop controller poles) are discussed in the Matlab sections
of Chapters 1-3. With either dynamic shaping method (dominant/augmented poles and ITAE poles), a
useful Matlab capability is provided in conjunction with the step function.

figure;
step(numDes,denDes);

Where denDes are the n+1 coefficients of the n™order desired closed-loop characteristic polynomial
(which the engineer must determine based on dominant/augmented poles or ITAE poles) and numDes is
the constant desired behavior numerator, that can be chosen to normalize the final steady-state unit step
response value to 1.0. After running the step function with the desired system, one can right-click with
the mouse in the figure window to automatically display on the plot the performance measures (rise
time, peak time, percent overshoot, and settling time). Matlab determines these values numerically from
the response data by applying the rules for each, i.e. they should be accurate even for non-2"-order
systems.

Continuing M atlab Example: Shaping Dynamic Response

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
determine two desired poles for controller design (Chapter 8) to improve the performance relative to the
open-loop responses of Figure 3.3. Use adesired percent overshoot and settling time of 3% and 0.7 sec,
respectively to determine the desired 2™-order controller poles. The following Matlab code performs
this dynamic shaping for the continuing example.

%9%%6%6%%%%%%% %% %% % %% %% %% % %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 4. Dynamic Shaping
%9%%6%6%%%%%%% %% %% % %% %%6%6%% %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %

PO =3; ts=0.7; % Specify percent overshoot and settling time
zeta = log(PO/100)/sqrt(pi*2 + log(PO/100)"2) % Damping ratio from percent overshoot

wn = 4/(zeta*ts); % Natural frequency from settling time and zeta
numz2 =wn”2; % Generic desired 2"-order system

den2 =[1 2*zeta*wn wn"2];

Poles2 = roots(den2); % Desired controller poles

figure;

td =[0:0.01:1.5];

step(numz2,den2,td); % For right-clicking to place performance measures

This m-ile generated the following results for desired 2™-order closed-loop &, i,
characteristic polynomial, and poles. It aso generated the desired closed-loop response shown in Figure
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4.6, with the performance specifications displayed via right-clicking. We see that the 3% overshoot is
achieved exactly in theory, while the settling time is close to the 0.7 desired since the settling time
equation is approximate.

zeta =
0.7448

wn =
7.6722

den2 =
1.0000 11.4286 58.8627

Poles2 =

-5.7143 + 5.1195i
-5.7143 - 5.1195i

Step Response

1.4

System: sys
1.2} Peak amplitude: 1.03 |
Overshoot (%): 3 System: sys
At time: 0.61 Settling Time: 0.754
e b

\
. System: sys
| Rise Time: 0.296

0.8 -

Amplitude

0.6 -

0.4 -

0.2~

[ [
0 0.5 1 1.5

Time (sec)

Figure 4.6 Desired 2"-order Closed-L oop Response

125



6.6.2 Matlab for Controller Design and Evaluation

The following Matlab functions are useful for design of linear state-feedback controllers:

place(A,B,DesPoles) Solve for full-state-feedback gain matrix K to place the desired controller poles
DesPoles into closed-loop dynamics matrix Ac=A-BK .

acker(A,B,DesPoles) Solve for full-state-feedback gain matrix K to place the desired controller poles
DesPoles into closed-loop dynamics matrix A~A-BK, using Ackerman’s
formula, for SISO systems only.

conv Multiply factorsto obtain a single polynomial.

Continuing M atlab Example: Design of Linear State-Feedback Controllers

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
design the full-state-feedback controller, i.e. determine controller gain matrix K given A, B, and the
desired controller poles developed in the Chapter 4 continuing Matlab example. The following Matlab
code performs this controller design for the continuing example.

%9%%6%6%%%%%%% %% %% % %% %%6%6%% %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 8. Design of Linear State-Feedback Controllers
%9%%6%6%%%%%%% %% %% % %% %% %% % %% %% %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %

K = place(A,B,Poles2); % Compute full-state feedback controller gain matrix K
Kack = acker(A,B,Poles?2); % For SISO we can check K via Ackerman's formula

Ac =A-B*K; Bc=B; Cc=C; Dc=D; % Compute the closed-loop state-feedback system

% Compare open-loop and closed-loop responses: same zero input U, t, and ICs from open-loop above
[Yc,Xc] = Isim(Ac,Bc,Cc,Dc,U,t,X0);

figure;

subplot(211), plot(t,Xo(:,1),r',t,Xc(:,1),'0); grid; axis([0 4 -0.2 0.5]);
set(gca, FontSize',18);

legend('Open-loop’,'Closed-loop’);

ylabel(‘{\itx} 1)

subplot(212), plot(t,Xo(:,2),r',t,Xc(:,2),'9); grid; axis([0 4 -2 1]);
set(gca, FontSize',18);

xlabel(\ittime (sec)); ylabel({\itx} 29;

This m-file, combined with the previous chapter m-files, yielded the following output (place and
acker yielded identical results for K), plus the comparison of open- vs. closed-loop state responses
shown in Figure 8.2.

K=
18.86 7.43
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0.6
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Figure 8.2 Open- vs. Closed-L oop State Responsesfor Matlab Example

Figure 8.2 shows that the simulated closed-loop system states perform better than the open-loop
responses, in terms of lower overshoots and faster rise and settling times. There is less vibration with
the controller responses and the steady-state zero values are obtained sooner than in the open-loop case.
Closed-loop system simulation can also be performed using Matlab’s Simulink. Figure 8.3 shows the
high-level Simulink diagram (Figure 3.3b shows the detailed diagram for the ABCD Open-loop blocks;
in the closed-loop case, another output is required, X for sate feedback). To run these diagrams for this
example, the step input was again set to zero (torque) and the initial conditions were set to those given.
The scope shows the output @plot, identical to the upper plot of Figure 8.2.
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Figure 8.3 Simulink Diagram for Open- vs. Closed-L oop Response
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6.7 Continuing Examples: Shaping Dynamic Response and Controller
Design

6.7.1 Shaping Dynamic Response

6.7.1.1 Continuing Examplel: Two-massMIMO Translational M echanical System

For controller design, if we don’t like the original open-loop system behavior, we need to specify
desired poles which would improve the system performance. There are infinite possibilities; in this
example we will consider two distinct methods to be applied later in controller design for Continuing
Example:

« Use a dominant 2™-order system for desired poles to achieve 5% overshoot and 2 sec settling
time; augment these two poles with two additional non-dominant poles (we need 4 desired poles
for our 4™-order system): real, negative, and at least ten times higher. We will use this
specification of poles (arbitrarily) for the full MIMO Case .

« Use a4™order ITAE approach for desired poles, with the same natural frequency a as Case i
for easy comparison. We will use this specification of poles (arbitrarily) for the SISO Case ii
(input Uz and output ;).

Solution, Case i

Percent overshoot is only a function of ¢; subgtituting the desired 5% overshoot yields
dimensionless damping ratio ¢ =0.69; with this value, plus the desired 2 sec settling time, we then find
natural frequency w, =2.90 rad/s. Thisyields adesired dominant generic 2™-order transfer function:

2
G (S) _ Wy _ 8.40

S 428w s+w?  S2 +4s+840

whose dominant, complex conjugate poles are s; , = -2+ 2.10i . The response of this desired dominant

2"order system is shown in Figure 4.7, complete with the 2™-order performance measures. This figure
was produced using the Matlab step function with the above 2™-order desired numerator and
denominator and then right-clicking to add the performance measures. As seen in Figure 4.7, we have
obtained the desired 5% overshoot (at a peak time of 1.5 sec) and a settling time of 2.07 (2 sec was
specified). The 10% to 90% rise time is 0.723 sec.
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Figure 4.7 Dominant 2"-Order Response with Performance M easures
Let us augment the dominant 2™-order poles to fit our 4™-order system desired poles requirements as
follows (the real, negative, at least 10x higher poles will not change the dominant behavior much):

312 =-2+2.10i 33,4 = _20,_21

Note we do not specify repeated poles for s; 4 because that can lead to numerical problems. The transfer
function for the 4™-order desired behavior mimicking 2"%order behavior is (normalizing for a steady-
state value of 1):

Ga(s)= 3528
4 s* + 45¢3 + 59252 + 2024< + 3528

We will wait to plot this augmented 4™-order desired response until the following subsection, where we
will compare all responses on one graph.
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Solution, Caseii

For a 4™-order system, the optimal (a balance between the competing response time and error)
ITAE characteristic polynomial is:

Araga(s) =s* + 210,58 + 340 s® + 2.7+ o
In this example we will use the same natural frequency from above, i.e. w, =2.90 rad/s:
Arag4(s)=s* +6.09s + 28,565 + 65.72s + 70.54

For this 4™-order desired characteristic polynomial, the four desired poles are:

S, =~1.23+ 3.66i S34 =-181+1.20i

Figure 4.8 plots the 4™-order ITAE desired response, along with the dominant 2"-order and
augmented 4™-order desired responses from the Case i example above. All are normalized to a steady-
state value of 1.0 for easy comparison.
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time (sec)
Figure 4.8 Dynamic Shaping Example Results

From Figure 4.8 we see that the augmented 4™-order response ( ) mimics the dominant 2™-
order response (red) closely, as desired. The augmented 4™-order response lags the dominant 2™-order
response, but it matches the required 5% overshoot and 2 sec settling time well. The 4™-order ITAE
response (blue) did not specify percent overshoot or settling time, but we used the same natural
frequency as in the dominant 2™-order response for comparison purposes. The I TAE response lags even
further and demonstrates a 4™-order wiggle not present in the augmented 4™-order response.
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6.7.1.2 Continuing Examplell: Rotational Electromechanical System

For controller design, if we don’t like the original open-loop system behavior, we need to specify
desired poles which would improve the system performance. There are infinite possibilities; in this
example we will use a desired dominant 1%-order system, to be applied later in controller design for
Continuing Example 1. Use a dominant 1%-order system with time constant 7 = ¥ sec. Augment this
pole with two additional non-dominant poles (we need 3 desired poles for our 3“-order system): real,
negative, and higher so their effect is not seen strongly.

Solution

The relationship between desired dominant pole a and 1%-order time constant 7is e® =e™V7;
therefore, a=-1/r =-4. Thisyields the desired dominant generic 1%-order transfer function:

-a 4

Gls)= s—a s+4

[0)]

Let us augment the dominant 1%-order pole to fit our 3“-order system desired poles requirement
as follows (the real, negative, higher poles should not change the dominant behavior much); we choose
additional poles about three times higher:

S]_'2,3 = _4, _12, -13

Note we do not specify repeated poles for s, 3 because that can lead to numerical problems. The transfer
function for the 3-order desired behavior mimicking 1%-order behavior is (normalizing for a steady-
state value of 1):

624

Gls)=
a(s) 3 42952 + 2565 + 624

Figure 4.9 plots the augmented 3“-order desired response for controller design in a future
example, along with the dominant 1%-order system it was derived from. Both are normalized to a
steady-state value of 1.0 for easy comparison.
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Figure 4.9 Dynamic Shaping for Examplel|

From Figure 4.9 we see that the augmented 3"-order response ( ) mimics the dominant 1°-
order response (red) fairly closely, as desired. We see in the red curve that after three time constants (at
t=0.75 sec), the dominant 1%-order response has achieved 95% of the final steady-state value of 1. The
augmented 3"-order response lags the dominant 1%-order response; we can make this arbitrarily close to
the red curve, by adding higher poles, much higher than the 3x chosen. However, this may lead to large
numerical values for controllers and observers, which is generally to be avoided. Thiswould correspond
to high required actuator values, perhaps exceeding physical limits.
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6.7.2 Controller Design and Evaluation

6.7.2.1 Continuing Examplel: Two-massMIMO Translational M echanical System

For both Cases of Continuing Example | (Two-mass MIMO Translational Mechanical System),
determine a full-state-feedback gain matrix K to move the closed-loop system eigenvalues where
desired and hence achieve the control objectives. In both cases, simulate the closed-loop behavior and
compare the open-loop system responses with those of the closed-loop system.

e For Casei (full MIMO), design the controller based on the desired poles developed in the
Chapter 4 Case i solution and simulate the closed-loop system response given the same
conditions as the open-loop simulation of Chapter 3 (zero initial conditions and step inputs of
magnitudes 20 and 10 N, respectively, for u; and uy).

» For Caseii (SISO, input u; and output y;), design the controller (it will obviously be different
from the Case i K above, it will not even be of the same size) based on the desired poles
developed in the Chapter 4 Case ii solution and simulate the closed-loop system response
given the same conditions as the open-loop simulation of Chapter 3 (zero input u, and initial

conditions X(0)={0.1 0 02 ¢7).

Solution, Case i

The control law is U=r —KX. The closed-loop system dynamics matrix we will place the
desired poles into viaK is A, =A —-BK . From Chapter 4, the four desired poles for this case are

attempting to provide 5% overshoot and 2 sec settling time:
312 =-2+2.10i 33,4 = _20,_21

By using the Matlab function place we found the 2x4 full-state-feedback gain matrix K to be:

[ 606 858 637 47
| -3616 -166 759 446

Upon checking, the eigenvaluesof A . =A —BK are indeed those specified in the place command. For

the reference input r we take the same as the open-loop input U, i.e. step inputs of magnitudes 20 and 10
N, respectively, for u; and u,. Simulating the closed-loop system response and comparing it to the open-
loop system response yields Figure 8.4.
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Figure 8.4 Open- vs. Closed-loop Responsesfor Casei, with output attenuation

The first thing evident in Figures 8.4 is that the closed-loop controller attenuates the output (see
Section ??). This is because the controller adds virtua springs in addition to the ‘real’ springs in the
system model; a stiffer set of springs will cause the output attenuation seen in Figures 8.4. Before we
can discuss the performance of the controller, we must ensure the level of the closed-loop responses
match those of the original open-loop system. This can be done in two ways. a. The output atenuation
correction factors (smple term-by-term DC gains) are 14.3 and 3.99 for outputs y; and Y, respectively.
The corrected closed-loop responses following this approach are shown in Figures 8.5a. b. Using the
modified control law with attenuation matrix N and reference input equal to the open-loop steady state

values (r :[0.075 O.125]T), results in the corrected closed-loop responses of Figures 8.5b. The
correction matrix N is:

1206 437
-3816 959

|
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Figure 8.5a Open- vs. Closed-loop Responsesfor Casei, corrected via DC Gains
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Figure8.5b Open- vs. Closed-loop Responses for Casei, corrected viaN

Now we see in both Figures 8.5a and 8.5b that the designed controller has improved the
performance of the open-loop system significantly. The settling time of 2 sec has been achieved so that
the closed-loop system responses meet their steady state values much sooner than those of the open-loop
system. However, in the top graph of Figure 8.5a we see that the percent overshoot is much greater than
the specified 5%. This was not visible in Figure 8.4 top due to scale. This is a well known problem
from classical controls — according to the matrix of transfer functions presented in the Chapter 3, there
are zeros (numerator roots) present in this system. The dominant 2™-order pole specification method
does not admit any zeros, thus the results are skewed in the presence of zeros. In classical controls, the
way to handle thisis pre-shaping the input viafilters. HOW TO FIX IN STATE-SPACE?21??

Note that this overshoot problem is less when using the more general N-method shown in Figure
8.5b. However, for the velocity y,, there is a negative overshoot before it attains the desired value of
0.125.
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Solution, Caseii

The control law and closed-loop system dynamics matrix are identical to Case i above. From
Chapter 4, the four desired poles for this case are the optimized 4™-order ITAE poles (with the same
closed-loop natural frequency w, =2.90 rad/sasin Casei):

S, =~1.23+ 3.66i S34 =-181+1.20i

i3y using the Matlab function place we found the 1x4 full-state-feedback gain matrix K to be:
K=[-145 -61 9 97]

Since Case ii is SISO we can check this result using Ackerman’s formula (Matlab function acker); the
results are identical. Upon checking, the eigenvalues of A. =A —BK areindeed those specified in the

place command. For the reference input r we take the same as the open-loop input U, i.e. zero up. This
Case is driven by initial conditions X(0)={0.1 0 0.2 ¢T. Simulating the closed-loop system state
responses and comparing it to the open-loop system state responses yields Figure 8.6.

0.17 ~ | | —— Open-loop
- NN N SN Closed-loop
SN -
01— : | |
O. 2O S 10 15 20
' AN A 5 5
,,,,, ) /ﬁ,,,\\\,,, / N /N PN ]
S O =X/ X o T -
\// N ; ! |
020~ e e e ]
0.0 5 10 15 20
><oo O- ,\ N ////\ \ i/\\ A\ // N ':>JQ T
VAR -
o — : | |
"0 - 5 1{0 1[5 20
;-g_/\/ N N I
020 e oo f
04l e e R .
0 S 10 15 20

time (sec)
Figure 8.6 Open- vs. Closed-loop Responsesfor Caseii
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Since the closed-loop states all go to zero in the steady-state as the open-loop states do, there is
no output attenuation issue. We see in Figures 8.6 that the designed controller has improved the
performance of the open-loop system significantly. The closed-loop system responses meet their steady-
state zero values much sooner than those of the open-loop system. The displacements do not overshoot
significantly and the velocity overshoots are both better than their open-loop counterparts.
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6.7.2.2 Continuing Examplell: Rotational Electromechanical System

For Continuing Example Il (1-dof rotational electromechanical system; SISO: input v, output &),
determine a full-state-feedback gain matrix K to move the closed-loop system eigenvalues where
desired and hence achieve the control objectives. Simulate the closed-loop behavior and compare the
open-loop system responses with those of the closed-loop system.

Design the controller based on the desired poles developed in the Chapter 4 Example |1 solution
(dynamic shaping) and simulate the closed-loop system response given the same conditions as the open-
loop simulation of Chapter 3 (zero initial conditions and a unit step input in voltage v).

Solution

The control law is U=r —KX. The closed-loop system dynamics matrix we will place the
desired poles into viaK is A, =A —BK . From Chapter 4, the three desired poles for this case are a

dominant 1%-order system augmented by two more real, negative, higher poles:

S]_'2,3 = _4, _12, -13

Either by hand, or by using the Matlab functions place or acker, we find the 1x3 full-state-feedback gain
matrix K to be:

K =[312 127 13

Upon checking, the eigenvalues of A, =A —-BK are indeed those that were specified. For the

reference input r we take the same as the open-loop input U, i.e. a unit step input in voltage v.
Simulating the closed-loop system response and comparing it to the open-loop system response yields
Figure 8.7.

The is no output attenuation issue since the original open-loop response increases linearly after
the transient dynamics; this is as expected since there is no torsional spring in the motor model.
However, we could use the N-method to achieve any desired steady-state output angle value in the
closed-loop system.
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Figure 8.7 Open- vs. Closed-loop Responses for Examplel|

The closed-loop angle output in Figure 8.7 (top, x1) was artificially scaled to achieve a steady-
state value of 0.5 rad. Comparing the open- and closed-loop output motor shaft angle € (x;), we see that
the full-state feedback controller has effectively added a virtual spring whereby we can servo to
commanded angles, rather than having the shaft angle increase linearly without bounds as in the open-
loop case. In Figure 8.7, the closed-loop angular velocity and acceleration both experience transient
dynamics motion, and then go to zero steady-state values. The open-loop values are identical to those
plotted in Figure 3.6 (but plotted to 5 rather than 10 sec).

For this example, the closed-loop system dynamics matrix is:

0 1 0
A.=A-BK=| 0 0o 1
-624 -256 —-29

Now the (3,1) term of A is no longer O as it was for the open-loop A; this non-zero term represents the
virtua spring of the controller, allowing control to commanded shaft angles. The coefficients of the
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desired characteristic polynomial can be seen in the third row of A, in ascending order of powers of s,
with negative signs.

The closed-loop caseis strictly stable, changed from the marginally stable open-loop system. Al
three poles are now negative real numbers; now Lyapunov stability analysis would succeed since A¢ is
not singular.
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6.8 Homework Assignments

6.8.1 Mathematical Homework Assignments

6.8.2 Matlab Homework Assignments

6.8.3 Continuing Homework Assignments

CEl.6a

Given controller design criteria 3% overshoot and 3 sec settling time. i) Calculate the natural frequency
and damping ratio required for a standard generic second-order system to achieve this (assuming a unit
step input). What are the associated system poles? Plot the unit step response for the result and
demonstrate how well the design criteriaare met (normalize your output to ensure the final value is 1.0).
Display the resulting rise time, peak time, settling time, and percent overshoot on your graph. ii)
Augment these desired 2™-order system poles for future controller design in CE1: since this is a 6™
order system you will need four additional poles (real, negative, about ten times higher). For the first
additional pole choose exactly ten times the real part of the dominant 2™-order system poles. For the
remaining three, successively subtract one from the first additional pole (to avoid repeated poles). iii)
Also determine the optimal ITAE 6™-order coefficients and poles, using a natural frequency twice that
from the dominant 2™-order approach. Plot both the 6™-order I TAE and the augmented 6™-order desired
responses with the dominant 2"-order response of i (normalize to ensure steady-state values of 1.0);
compare and discuss.

CEl.6b

For the desired controller poles designed in CEL.6a, design full-state feedback controllers (i.e. calculate
K) for al three cases from CE1.3. For cases i and ii, use the augmented 6™-order poles based on
dominant 2™-order behavior; for case iii, use the 6™-order ITAE poles. In each case, evaluate your
results: compare the simulated open- vs. closed-loop output responses for the same input cases as in
CEL.3; use output atenuation correction so that the closed-loop steady-state values match the original
open-loop steady-state values for easy comparisons.

CE2.6a
Since thisis a 4™-order system we will need four desired poles for future controller design in CE2. Use
a4™-order I TAE approach with natural frequency ag, =3 rad/s to generate the four desired poles. Plot

the desired system response (normalize your output to ensure the final value is 1.0).
CE2.6b

For the desired controller poles designed in CE2.6a, design full-state feedback controllers (i.e. calculate
K) for al three cases from CE2.3. In each case, evaluate your results: compare the simulated open- vs.
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closed-loop output responses for the same input cases as in CE2.3. Be sure to adjust the y scales so that
the closed-loop responses are clearly visible.

CE3.6a

Use a dominant 1%-order system with time constant 7=0.5 sec. What is the associated desired pole?
Augment this desired 1%-order pole for future controller design in CE3: since this is a 3%-order system
you will need two additional poles (real, negative, about ten times higher). For the first additional pole
choose exactly ten times the dominant 1%-order pole. For the remaining pole, subtract one from the first
additional pole (to avoid repeated poles). Plot this augmented 3"“-order desired response vs. the
dominant 1%-order response (normalize to ensure steady-state values of 1.0); compare and discuss.

CE3.6b

For the desired controller poles designed in CE3.6a, design full-state feedback controllers (i.e. calculate
K) for both cases from CE3.3. In each case, evaluate your results. compare the simulated open- vs.
closed-loop output responses for the same input cases as in CE3.3; (for Case ii, use output atenuation
correction so that the closed-loop steady-state values match the original open-loop steady-state values
for easy comparison).
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7. Design of Linear Observers for State Feedback

For the control law r = U-K X, controller design straightforward and same for any controllable
system. Special CCF decoupled solution or Ackerman’s formula for SISO, Matlab place for MIMO.

Problem: Often in physical systems we cannot measure all of the components in the state vector
for feedback. Sometimes state vector components are not even physical quantities, but linear
combinations of such. So we can design a linear observer to estimate the states for the full-state
feedback control of Chapter 8.

7.1 Observers

Observer - estimate full state vector for use in feedback controller based on measured outputs. Integrate
with current state-feedback controller system.

7.1.1 Observer Diagrams

Diagram (high-level):

r 4 U Y

%A Plant X -—

N
—= Obsarver X —~—

N
..

K

Figure 9.1 High-Level Observer Diagram

X true current state vector

A

X estimate for current state vector, from Observer

A

Want to drive estimation error to zero e=X-X-0



We require this observer error to converge faster than the transient response dynamics of the
closed-loop linear system with controller; therefore, choose observer poles about ten times higher than

controller poles.

Original open-loop system:

X =AX +BU
Y =CX +DU

Form for Observer:

L observer gain matrix dimensions (n x m)

Choose same form as open-loop plant dynamics. (Use state vector estimate in X = AX +BU, add zero

(with some error), L (Y - \?) )

X Ak+Bu+L(Y-?)

A

CX
(nx1) = (nxn)(nx1)+(nxr(rxl)+nxm(mxl)

%
Assume D=0

Diagram (details):

ro 4 U
) — Plant X

KA

Figure 9.2 State-Space Closed-L oop System with Observer Block Diagram
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Derivation of error convergence dynamics equation:
e=X-X=AX+BU-AX-BU-L(Y-Y)=AX-AX-L(CX-CX)
e=(A-LC)X-(A-LC)X
e=(A-LC)e
e=Ae

If all Re(eig (A)) <0 thenthisisan asymptotically stable error equation and:

e-0 (X>X) & tooo

7.1.2 Observer Designh Concept

If the original system is not observable, you cannot proceed in this chapter; instead you must
determine why the system is not observable by looking at the physical problem and then re-design your
system or re-derive your system model until it is fully state observable.

If the original open-loop system represented by A, C is completely observable, then we can
arbitrarily place eigenvaluesof A = A -LC by selection of observer gain matrix L. We can control the
rate of convergence X — X .

Now we derive state-space equations for the overall system with linear full-state feedback

controller and full-state observer. We will combine state (actual and estimated) and observer error
dynamics. The modified feedback control law (use observer estimate for feedback states) is:

U:r-K>A(

The original system, with D=0 and adding the observer error convergence dynamics is described
as follows:

X = AX +BU
Y =CX
e=Ae
We define a combined state and error vector, of dimension 2n x 1:

]

(Not Z from Canonical!)
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>'<:Ax+B(r-Kk):Ax+B(r-K>2+Kx-Kx)

X =(A-BK)X+BK (X-X)+Br =(A-BK)X+BKe+Br

R WU H SRS CR 1N

A-BK BK B
A, = B, = C, =[C O D, =0
0 A-LC

Z=A,Z+B,r (2nx1) = (2nx2n) (2nx 1) +(2nxr)(r x1)
Y:Crz r (mx1) = (mx2n)(2nx 1)

So, to simulate closed-loop system dynamics with controller and observer, just use our existing
MATLAB methods, with A, ,B,,C,,Z,r inplaceof A,B,C,X,U.
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7.2 Duality and Observer Pole Placement

7.2.1 General Observer Design

First, the closed-loop controller design of Chapter 8 must be complete, i.e. we have found K to
place the closed-loop system poles to the desired controller poles.

In observer design we must place the eigenvalues of A = A-LC to achieve observer estimation
convergence faster than the closed-loop controller transient response. We can take advantage of the
controller design mathematics since the forms are similar; the controller and observer design problems
are dual to each other: Compare to the controller problem where we placed eigenvalues of A-BK to
achieve stability and desired transient response design specifications.

A.=A-BK

A=A-LC
The order is reversed:
BK
LC

A matrix and its transpose have the same characteristic equation and the same eigenvalues. Therefore,
let us select L to change the eigenvaluesof AT:

[A-LC]" =AT-CTLT

and then the eigenvaluesof A = A -LC will be the same. Comparing again:

A.=A-BK
AT :AT-CTLT

So the agorithms for controller design (SISO CCF decoupled solution, SISO Ackerman, MIMO place)
apply directly to observer design if we make the following substitutions:

A AT B_.C' K o LT

The original open-loop system described by A, C must be completely observable. If we replace
the controllability matrix P with the above substitutions for A and B, we obtain the transpose of the
observability matrix Q:

P:[B AB - A”'lB}
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QT:{CT ATCT .. (An-l)TCT}
C

0= CA

CAn-l

Full-state observer design is DUAL to the pole placement problem for design of full-state-feedback
controllers. Partial state observers are also possible (more efficient, just estimate those states that don’t
directly have a sensor, i.e. for al states except those that are also outputs).

Observer Pole Placement via L (observer gain matrix): Example - same system as controller example

0 Ly
A= 0 0 1 B=|0 C=[1 0 ( D=0 L=|L,
-18 -15 -2 1 Ls
1
c'=|0 L'=[L L Ly
0

In controller design algorithm, replace  A-BK - AT -CcTLT

0 0 -18] [1 00 -18] [L L, Lg
AT-CTL"=|1 0 -15|0|[L, L L=[1 0 4540 0 O
01 2| |0 01 2||0 0 O
-, -L, -18-Lg
Al-C"L"=| 1 0 -15
0 1 -2

s+l L, 18+L,
‘sl—(AT—CTLT)‘: 4 s 15 |=0
0 -1 s+2

(s+1y)(s? +25+15) ~()(Lps +2L, 418 +L5) =0
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$?+(Ly +2)s® +(2L, +L, +15)s (151, +2L, +L; 48) =0
Choose observer poles ten times higher than controller poles.

Controller poles S 23 =-133+1.49i,-13.3
Observer poles S 03 =-13.3+14.9i,-133.3

So the desired observer characteristic equation is:

s® +160s? +3955s +53260 =0

Coefficients multiples of K case
(x1)(x10)(x100)(x1000) P
Match like powers of s between the function of L and desired characteristic equation.

1 0 olfL 160-2
2 1 0|{L,+=4 3955-15
15 2 1||Ly| [53260-18

Coefficient matrix looks like a sort of skew-transpose of P™* from controller design (DUAL):

15
pl=|2
1

O, N
o O B+

Actually we don't need a matrix because solution is found in order 1, 2, 3:

L] [ 158
L=|L,|=| 3624
L, | | 43624
e o
s s
Units? X = AX +BU +L(Y—\?) X mz =L(m s L= iz
m 1
|3 |3

Check to ensure that the desired observer poles were placed successfully into A=A-LC. With
observer poles ten times higher than controller poles, we can experience numerical issues (the
magnitudes of the L terms above increase by an order of magnitude for each component).
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Controller & Observer Example Summary

Original given open-loop linear system:

0 1 0 0
A= 0 0 1 B=|0 C=[1 0 ¢ D=0
-18 -15 -2 1
State-Feedback Controller:
0 1 0
A= 0 0 1 B.=B =C D=D=0 K =[35.26 24.55 14.00]
-5326 -3955 -16
Full-State Observer with Controller:
0 1 0 0 0 0]
0 0 1 0 0 O
L] [ 158
A-BK  BK -5326 -39.55 -16 3526 2455 14
= = L=|L, |=| 3624
0 A-LC 0 0 0 -18 1 0
Lg| | 43624
0 0 0 -3624 0 1
.0 0 0 -43624 -15 -2]
G =[c q=[1 0000 D,=D=0

vy
1
1
o W
L
1
o O O OO

)

Simulation output for Controller & Observer (assuming an initial observer error of 0.0005 on the first
state and zero on the other two) is shown in Figure 8.7, for all three states, not just the single output.
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Figure 9.? Open-, Closed-, and Closed-L oop with Observer Loop State Responses for Example
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7.2.2 Observer Design for SISO Systems via Ackerman’s Formula

To calculate L for any general SISO system (not just OCF), we can adapt Ackerman’s formula
from controller design, Section 8.2.3. Ackerman’s formula for observer designis:

L"=[0 0 - 1][QTTAOBS(AT)

where:
LT transpose of constant observer gain matrix

.
QT:{CT ATCT .. (A”'l) CT} transpose of the observability matrix

And Aggs (AT) is the specified, desired observer characteristic polynomial, evaluated with the
transpose of the system dynamics matrix A, rather than s.

Example
0 1 O
A= 0 0 1 C=[1 0 ¢
-18 -15 -2
C 1 00
Q=[CA|=|0 1 0
CA? 001

53242 -2844 -65232
Aops(AT) = A® +160A2 +3955A +532601 =| 3940 50872 57204
158 3624 43624

" =[0 o ]](QT)_lAOBS(AT):[158 3624 43624]

Agrees with the previous solution; for SISO systems the solution for L is unique.
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7.2.3 Observer Error
e=Ae=[A-LC]e
Laplace transform:

sE(s)=[A-LC]E(s)
(s -[A-LC])E(s) =0

If ‘sl -[A- LC]‘ =0 (asit must be for Observer L design), infinite solutions E(s)
If |sl =[A-LC]|#0 unique solution E(s)
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7.3 Reduced-Order Observers
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7.4 State Estimation and Output Feedback
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7.5 Detectability
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7.6 Matlab for Observer Design

The following Matlab functions are useful for design of linear observers for full-state feedback:

place(A’,C’,ObsPoles) Solve for full-state observer gain matrix L to place the desired observer poles

ObsPoles into closed-loop dynamics matrix A=A-LC.
acker(A’,C',ObsPoles) Solve for full-state observer gain matrix L to place the desired observer poles

N

ObsPoles into closed-loop dynamics matrix A=A —-LC, usng Ackerman's
formula, for SISO systems only.

Continuing M atlab Example: Design of Linear Observersfor State Feedback

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
design the full-state observer, i.e. determine observer gain matrix L given A, C, and reasonable observer
poles to go with the controller poles of the Chapter 8 continuing Matlab example. The following Matlab
code performs this observer design for the continuing example.

%%%%%%%%%0% %% %% %6%6%%%%% %% %% %% %% %% %% %% %% %% % % % %% %% %% %% %% %% %
% Chapter 9. Design and Simulation of Linear Observers for State Feedback
%%%%%%%%%0 %% %% %%6%6%%%%%% %% %0 %% %% %% %% %% %% %0 %% % % %% %% %% %% %% %% %

PolesObs = 10*Poles2; % Select desired observer poles; ten times higher than controller poles

L = place(A',C',PolesObs)’; % Compute full-state observer controller gain matrix L
Lack = acker(A',C',PolesObs)’; % For SISO we can check L via Ackerman's formula

Ahat = A-L*C; % Compute the closed-loop observer estimation error dynamics matrix
eig(Ahat); % Check to ensure desired poles are in there

% Compute and simulate closed-loop system with controller and observer

Xr0 =[0.4;0.2;0.10;0}; % Define vector of initial conditions [x1;x2;el;e2]

Ar = [(A-B*K) B*K;zeros(size(A)) (A-L*C)];
Br = [B;zeros(size(B))];
Cr = [C zeros(size(C))];

Dr =D;
[Yr,Xr] = Isim(Ar,Br,Cr,Dr,U,t,Xr0);
figure; % Compare Open-, Closed-loop, and Controller/Observer output responses

plot(t,Yo,'r',t,Yc,'0',t,Yr,'b"); grid; axis([0 4 -0.2 0.5]);
set(gca, FontSize',18);
legend('Open-loop’,'Closed-loop’,'w/ Observer’);
xlabel(\ittime (sec)); ylabel(\ity");

figure; % Plot observer errors
plot(t,Xr(:,3),r',t,Xr(:,4),'0"); grid; axis([0 0.2 -3.5 0.2]);
set(gca, FoniSize',18);

legend('Obs error 1','Obs error 2');

xlabel(\ittime (sec)’); ylabel(\ite');
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This m-file, combined with the previous chapter m-files, yielded the following output (place and
acker yielded identical results for L), plus the output response plot of Figure 9.3 and the observer error
plot of Figure 9.4:

PolesObs =
-57.1429 +51.1954i
-57.1429 -51.1954i

L=
110.29
5405.13

Ahat =
-110.3 1.0
-5.445.1 -4.0

ans =
-57.1429 +51.1954i
-57.1429 -51.1954i

0.5

04y

,,,,,,, ~— Open-loop | -
Closed-loop

—— w/ Observer
0.2 e ]

03

01 S H—— f

time (sec)
Figure 9.3 Open-, Closed-, and Closed-L oop with Observer Output Responses, M atlab Example
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Obs error 1
Obs error 2

0

1 0.2

time (sec)
Figure 9.4 Observer Error State Responses, Matlab Example

In simulation we started the observer with an artificial error of 0.1 rad in shaft angle & estimation
(and zero error in @ estimation). In Figure 9.4 we see that the observer error for shaft angle starts from
of Figure 9.4 is zoomed in on that of Figure 9.3)
goesto zero. The observer velocity error goes to zero soon after, but with an initial large negative peak,
even though its assumed initial error was zero. However, this effect is not seen in Figure 9.3, where the
), but then
quickly matches (around 1 sec). Since the observer poles were chosen to be ten times greater than the
ion dynamics goes to zero much faster than the
responses in Figure 9.3 are

the assumed initial value and quickly (the time scale

closed-loop system with observer (blue) slightly lags

controller poles, the observer transient error estimat

closed-loop system with controller transient dynamics. The red and

identical to those of Figure 8.2.

162

the closed-loop system response (



Closed-loop plus observer system simulation can also be performed using Matlab’s Simulink.
Figure 9.5 shows the high-level diagram and Figure 9.6 shows the detailed diagram for the observer
implementation.
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Figure 9.5 Simulink Diagram for Open-, Closed-, plus Closed-L oop with Observer Response
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Figure 9.6 Detailed Simulink Diagram for Observer Implementation
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7.7 Continuing Examples: Design of Linear State Feedback Observers

7.7.1 Continuing Example I: Two-mass MIMO Translational Mechanical System

For both Cases of Continuing Example | (Two-mass MIMO Translational Mechanical System),
determine a full-state observer gain matrix L to estimate the states for feedback at every instant in
control time.

Solution, Case i

The observer estimation error dynamics matrix we will place the desired observer poles into via

L is A=A -LC. Sincethe observer estimation dynamics must take place faster than the closed-loop
controller dynamics, we choose four desired observer poles to be 10 times greater than the four
controller poles:

S;2 =20+ 2i S34 =—200,-210
The polynomial associated with those desired observer polesis:

s* +450s% +5.924x10%s? + 2.0244 x10% s + 3.5276 x 10

Note that this observer polynomial is very similar to the desired controller behavior characteristic
polynomial of the Chapter 4 Example |, but the coefficients of the s powers are multiplied by:

[L 10 100 1000 10000],

since the poles were uniformly multiplied by 10. Therefore, numerical problems may arise; hence one
should not take observer poles any higher than the rule-of-thumb 10x greater.

Taking advantage of the duality between controller and observer design and using Matlab
function place, we found the 4x2 full-state observer gain matrix L to be:

195 1073
L=l 978 213836

2 254
—-101 11863

Due to the numerical issue pointed out above, the terms of L vary greatly in magnitude. The output
response plots for the combined controller/observer system are shown in Figure 9.7 for Case i.
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—— w/ Observer

20

10 15 20
time (sec)
Figure 9.7 Open-, Closed-, and Closed-L oop with Observer Output Responses, Casei

We started the observer with an artificial error of 0.5 and 1 mm for y; and y,, respectively (and
zero error in both velocity estimations). In Figure 9.7 we see that the assumed initial errors cause both
mass displacements to start at a negative initial value. The closed-loop system with observer (blue)
overshoots the closed-loop system response ( ), but then quickly matches (around 3 sec). Since the
observer poles were chosen to be ten times greater than the controller poles, the observer transient error
estimation dynamics goes to zero much faster than the closed-loop system with controller transient
dynamics. Thered and responses in Figure 9.7 are identical to those of Figure 8.5.

Solution, Caseii

The desired observer poles are 10 times greater than the controller poles used in Chapter 8:

S, =-123+ 36.6 S34 =-18.1+12.0)

Taking advantage of the duality between controller and observer design and using Matlab
function place, we found the 4x1 full-state observer gain matrix L to be:
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60
2756
5970

135495

Again, we see that the terms of L vary greatly in magnitude, due to the fact that the desired observer
poles are 10 times greater than the controller poles. The output response plots for the combined
controller/observer system are shown in Figure 9.8 for Case ii.

ﬂ e -~ Open-loop
<7 0 \\ W g Closed-loop
o1 \/ | | ~— w/ Observer
0.20 5 10 15 20
><C\l 0
-0.2 ‘
0. 20 - 5 1[0 1[5 20
AN o |
& | g\, AN / - S T T
/) b :
o — | | |
"0 - 5 1[0 1[5 20
O G e e f
Y / \ TN e
020 R RRREEEEEEEEEEE S RRRRRECEELE .
Q4 S S S ]
0 5 10 15 20
time (sec)

Figure 9.8 Open-, Closed-, and Closed-L oop with Observer Output Responses, Caseii

We again started the observer with an artificial error of 0.5 and 1 mm for y; and y», respectively
(and zero error in both velocity estimations). In Figure 9.8 we see that in Case ii the closed-loop system
with observer (blue) matches the closed-loop system response ( ) very well at this scale. There are
observer errors, but they go to zero before 1 sec. Since the observer poles were chosen to be ten times
greater than the controller poles, the observer transient error estimation dynamics goes to zero much
faster than the closed-loop system with controller transient dynamics. The and (amogt
perfectly masked by blue) responses in Figure 9.8 are identical to those of Figure 8.6.
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7.7.2 Continuing Example II: Rotational Electromechanical System

For Continuing Example Il (1-dof rotational electromechanical system; SISO: input v, output 6),
determine a full-state observer gain matrix L to estimate the states for feedback at every instant in
control time.

Solution

The observer estimation error dynamics matrix we will place the desired observer poles into via

L is A=A -LC. Sincethe observer estimation dynamics must take place faster than the closed-loop
controller dynamics, we choose three desired observer poles to be 10 times greater than the three
controller poles:

31,2,3 = _40,_120,_130
The polynomial associated with those desired observer polesis:

s +290s? + 25600s + 624000

Note that this observer polynomial is very similar to the desired controller behavior characteristic
polynomial of the Chapter 4 Example |1, but the coefficients of the s powers are multiplied by:

[1 10 100 1000,

since the poles were uniformly multiplied by 10. Therefore, numerical problems may arise; hence one
should not take observer poles any higher than the rule-of-thumb 10x greater.

Taking advantage of the duality between controller and observer design and doing the observer
design by hand, or using Matlab functions place or acker, we find the 3x1 full-state observer gain matrix
L to be:

287
L =| 24737
549215

The three state response plots for the combined controller/observer system are shown in Figure
9.9 for Example 1.
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Figure 9.9 Open-, Closed-, and Closed-L oop with Observer Output Responses, Examplel|

We started the observer with an artificial error of 0.001 rad in shaft angle 8 estimation (and zero
error in @ and & estimations). In Figure 9.3, the closed-loop system with observer (blue) slightly lags
the closed-loop system output dresponse ( ); als0, there is significant overshooting in the 8 and &
responses for the controller/observer system. All three plots match at around 1.5 sec. Since the observer
poles were chosen to be ten times greater than the controller poles, the observer transient error
estimation dynamics goes to zero much faster than the closed-loop system with controller transient
dynamics. Thered and responses in Figure 9.9 are identical to those of Figure 8.7.
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7.8 Homework Assignments

7.8.1 Mathematical Homework Assignments

7.8.2 Matlab Homework Assignments

7.8.3 Continuing Homework Assignments

CELl7

For the controllers designed in CE1.8, design full-state observers (i.e. calculate L), for all three cases.
Use desired observer poles 10 times higher than the desired controller poles (for Case iii, two times
greater works better due to numerical conditioning). In each case, evaluate your results. compare the
simulated open-, closed-, and closed-loop with observer output responses for the same input cases asin
CE1.3; use the same correction factors from CEL1.8. Introduce some initial observer error, otherwise the
closed- and closed-loop with observer responses will be identical in simulation.

CE2.7

For the controllers designed in CE2.8, design full-state observers (i.e. calculate L), for al three cases
(this is possible only for the full-state-observable cases). Use desired observer poles 10 times higher
than the desired controller poles. In each case, evaluate your results: compare the simulated open-,
closed-, and closed-loop with observer output responses for the same input cases as in CE2.3; use the
same correction factors from CE2.8. Introduce some initial observer error, otherwise the closed- and
closed-loop with observer responses will be identical in simulation.

CE3.7

For the controllers designed in CE3.8, design full-state observers (i.e. calculate L), for both cases. Use
desired observer poles 10 times higher than the desired controller poles. In each case, evaluate your
results. compare the simulated open-, closed-, and closed-loop with observer output responses for the
same input cases as in CE3.3 (for Case ii, use the same correction factor from CE3.8). Introduce some
initial observer error, otherwise the closed- and closed-loop with observer responses will be identical in
simulation.
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8. Introduction to Optimal Control

Linear state-feedback controllers can be designed to stabilize a given system and provide desired
transient response.

Can also optimize (usually minimize) objective functions of:

e time

e e@rror

* enegy

e combinations
e other

Performance I ndex (Objective Function):

J= Ef g(x,u,t)dt (1)

If r(t)=0, the controller is a regulator (reject initial conditions and/or disturbances) - maintain
equilibrium state X=0. Any deviation X isthe error.

U=r-K X=-K X 2

X=(A-BK)X +Br=A_X +B.r

: 3
X = AX



8.1 Optimal Controller for Minimum Energy

Replace my XTX.

172



8.2 Linear Quadratic Regulator (LQR)

Now, in addition to minimizing control efforts u(t), optimal controllers can also minimize the
input effort U required in the control. An optimal controller which simultaneously tries to minimize
state error and input effort (these are competing factors) isthe Linear Quadratic Regulator (LQR), whose
objective function is (19):

j= I:%(XTQX +UTRU) dt (19)

where QOnxn and ROr xr are weighting matrices (could be | if both state error and input effort
goals are equally important).

We must minimize J subject to the system dynamics equations X =AX +BU. We start by

considering the augmented objective function (where we have added zero (0=X —AX —-BU) to the
integral):

J :IF(XTQX+UTRU)+AT(X-AX-BU)}dt (0.1)
oL2
N isavector of Lagrange multipliers. The integrand of (1.1) is the Hamiltonian:

H :%(XTQX+UTRU)+AT (x-Ax-BU) (0.2)

Now we apply the Euler-Lagrange dynamic equations (REF??) to the variables X, U, and A:

dfoH) _oH _,

dt\oX ) oX

dfoH) _oH _, (0.3)
dt\ou /) ouU

dfoH) _oH _,

dt\0A /) 0A

Substituting (1.2) and simplifying, (1.3) yields three equations to solve:

A=-QX-ATA
U=-R1BTA (0.4)
X =AX+BU
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We assume the solution form is:
A =KX (0.5)

where K isthe constant LQR feedback gain matrix (different form and role from the full-state-feedback
gain matrix of Chapter 8). Substituting this assumed form of (1.5) into equations (1.4), the combined
eguations become:

KX +K (AX—BR'lBTKX)z —OX -ATKX (0.6)
Since K isconstant, K =0 and (1.6) becomes:
(ATK +KA -KBRIBTK +Q)X =0 (0.7)
Equation (1.6) must hold for all state vectors X and so:

ATK +KA-KBR™BTK +Q=0 KOnxn (20

This is the Matrix-Ricatti Equation for, which must be solved for optimal LQR gain matrix K. This can
be accomplished by using Matlab function are (algebraic Ricatti equation). Notethat K is different than
the full-state-feedback gain matrix K for controllers from Chapter 8. The LQR optimal control law from
1.4 is

U=-RIBTKX (21)

R'B'K —~

Figure 10.1 shows the closed-loop block diagram for the LQR system. The reference input r is
zero (compare with Figure 8.1) and d is a disturbance which the regulator must regject. Due to the
different control law, the LQR closed-loop system dynamics matrix, for control simulation, is no longer
A -BK asit wasin Chapter 8. Instead, it is:

X = AX +BU :[A-B(R'lBTK)}x = AX

A.=A-BRBTK
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8.3 Matlab for Optimal Control

The following Matlab functions are used for design of LQR feedback controllers:

are(A,BB,Q) Solve algebraic Ricatti equation to find optimal LQR gain matrix to find gain
matrix K or, given weighting matrices Q (state error) and R (input effort), plus
BB=BR 'BT. For use with LQR feedback control law U=-R™*BTKX and
Section 10.2.

lgr(A,B,Q,R) Calculates the optimal LQR gain matrix K, given weighting matrices Q (state
error) and R (input effort). For use with standard Chapter 8 feedback control law
U=-KX.

Continuing M atlab Example: Linear Quadratic Requlator Design

For the Continuing Matlab Example (SISO rotational mechanical system: input 7, output 6),
design the optimal LQR regulator controller, i.e. determine gain matrix K or. The following Matlab
code performs this LQR design for the continuing example.

%9%%6%6%%%%%%% %% %% % %% %% %% %% %% % %% %% %% %% %% %% %% %0 %0 % % % %% %% %% %% %
% Chapter 10. Linear Quadratic Regulator Design
%9%%6%6%%%%%%% %% %% % %% %%6%6 %% %% %% %% %% %% %% %% %% %% %0 %% % % %% %% %% %% %

Q = 20*eye(2); % Weighting matrix for state error

R =[1]; % Weighting matrix for input effort

BB = B*inv(R)*B";

KLQR = are(A,BB,Q); % Solve algebraic Ricatti equation to find optimal LQR gain matrix
ALQR = A-B*inv(R)*B"*KLQR; % Compute the closed-loop state-feedback system

[YLQR,XLQR] = Isim(ALQR,Bc,Cc,Dc,U,t,X0); % Compare open-loop and closed-loop step responses

figure;

subplot(211), plot(t,Xo(:,1),r',t,Xc(:,1),'0',t, XLQR(:,1),'b"); grid; axis([0 4 -0.2 0.5]);
set(gca, FontSize',18);

legend('Open-loop’,'Closed-loop’,'LQR’);

ylabel(‘{\itx} 1)

subplot(212), plot(t,Xo(:,2),r',t,Xc(:,2),'0',t, XLQR(:,2),'b"); grid; axis([0 4 -2 1]);
set(gca, FontSize',18);

xlabel(\ittime (sec)); ylabel({\itx} 29;

% Calculate and plot to compare closed-loop and LQR input efforts required

Uc = -K*Xc"; % Chapter 8 input effort
ULQR = -inv(R)*B*KLQR*XLQR'; % LQR input effort
figure;

plot(t,Uc,'0',t,ULQR,'D"); grid; axis([O 4 -10 6]);
set(gca, FoniSize',18);
legend('Closed-loop’,'LORY);

xlabel(\ittime (sec)’); ylabel(\itU");
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This m-file, combined with the previous chapter m-files, yielded the following output, plus the
comparison of open-, closed-loop, vs. LOR state responses shown in Figure 10.2.

KLQR =
83.16 0.25
0.25 2.04
0.6 |
0.4 — dpen-loop -
<~0.2 Closed-loop |
— LOR
0 1
0.2 |
0 0 3 4

time (sec)
Figure 10.2 Open-, Closed-loop, and L QR State Responses for M atlab Example

We see that the LQR response follows the shape of the original open-loop system responses, but
drives the states to zero faster. The error is less for the standard closed-loop system, but that controller
was designed without regard to required input effort.

Figure 10.3 compares the single input effort required over time for the standard and LQR
controllers in this example. No open-loop input is plotted because it is zero, i.e. no control effort is
required at al, the open-loop system returns to zero from the given initial conditions.
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Figure 10.3 LQR Optimal Controller vs. Standard Controller Input Effort

Clearly from Figure 10.3, the LQR optimal controller is superior in terms of less input effort
required for control. The standard closed-loop design does not attempt to minimize input efforts. We
see that initially a relatively large (negative) input spike are required to get the standard controllers
moving; the LQR case does not require this spike. Less energy isrequired to operate the LQR controller
over time compared to the standard controller.
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8.4 Continuing Example I: Linear Quadratic Regulator

For Continuing Example | (Two-mass MIMO Translational Mechanical System), design and
evaluate in simulation an optimal LQR controller, for Case ii (SISO, zero input uy, initial conditions
X(0)={0.1 0 02 @7, and output ys).

Solution, Caseii

Due to scaling in this problem, the weighting matrices for the LQR objective function J were
chosen to be:

Q =300l , R=1

We use Matlab function are to solve the algebraic Ricatti equation for the optimal gain matrix K. Note
that this LQR K plays a different role than the full-state-feedback gain matrix K, due to the changed

control law: U=-RBTKX. Dueto the different control law, the LQR closed-loop system dynamics
matrix, for control simulation, is:

A.=A-BRBTK

The state vector results are plotted in Figure 10.4. We compare the optimal LQR controller
responses with the original open-loop system state responses, and the standard controller from Chapter 8
Examplel.
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Figure 10.4 Open-, Closed-loop, and LQR Responsesfor Caseii

If we are used to standard controller design as in Chapter 8, a first glance we may think thereis
an error in the optimal LQR controller design responses in Figure 10.4. That is, the LQR overshooting
and settling time is much greater in Figure 10.4 than we have seen in standard controller designs (such
as the closed-loop responses, from Chapter 8 and seen again in Figure 10.4). However, what is
not evident in Figure 10.3 is that the input effort U is also reduced in addition to the state error X. We
will return to this issue to conclude this section. The state error is much improved, upon close
inspection of Figures 10.3: though the LQR (blue) is close to the open-loop responses (red) during the
first period of motion, we see that the settling time is much better for the LQR than the open-loop.

Now, with regard to state error only, it appears that the LQR optimal controller is second best to
the standard closed-loop controller. However, tight, fast responses with low error require a lot of input
effort. Figure 10.5 compares the single input effort required over time for the standard and LQR
controllers in this example. No open-loop input is plotted because it is zero, i.e. no control effort is
required at al, the open-loop system returns to zero from the given initial conditions.

179



time (sec)
Figure 10.5 LQR Optimal Controller vs. Standard Controller Input Effort

Clearly from Figure 10.5, the LQR optimal controller is superior in terms of less input effort
required for control. The standard controller design does not attempt to minimize input efforts. We see
that initially a relatively large effort is required to get the standard controller moving; the LQR case
starts near zero and clearly requires less energy than the standard controller. While the standard
controller input effort goesto zero relatively quickly, the LQR case requires low inputs for longer time.
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8.5 Homework Assignments

8.5.1 Mathematical Homework Assignments

8.5.2 Matlab Homework Assignments

8.5.3 Continuing Homework Assignments

CEL1.8
Design and evaluate in simulation an LQR regulator for the CE1.3.i.b system. Use equal weighting
between state error and input efforts. In addition to plotting the open- and closed-loop LQR responses,
separately plot the input efforts required. Compare state responses and inputs efforts to the CE1.8
results.

CE2.8
Design and evaluate in simulation an LQR regulator for the CE2.3.i.b system. Use equal weighting
between state error and input efforts. In addition to plotting the open- and closed-loop LQR responses,
separately plot the input efforts required. Compare state responses and inputs efforts to the CE2.8
results.

CE3.8
Design and evaluate in simulation an LQR regulator for the CE3.3.i.b system. Use equal weighting
between state error and input efforts. In addition to plotting the open- and closed-loop LQR responses,
separately plot the input efforts required. Compare state responses and inputs efforts to the CE3.8
results.
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