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Preface

In 1998, in times of ever increasing computer power, I had the unusual idea of writing my
own finite element program, with just 20-node brick elements for elastic fracture-mechanics
calculations. Especially with the program FEAP as a guide, it proved exceedingly simple
to get a program with these minimal requirements to run. However, time has shown that
this was only the beginning of a long and arduous journey. I was soon joined by my
colleague Klaus Wittig, who had written a fast postprocessor for visualizing the results
of several other finite element programs and who thought of expanding his program with
preprocessing capabilities. He also brought along quite a few ideas for the solver. Coming
from a modal-analysis department, he suggested including frequency and linear dynamic
calculations. Furthermore, since he was interested in running real-size engine models, he
required the code to be not only correct but also fast. This really meant that the code was
to be competitive with the major commercial finite element codes. In terms of speed, the
mathematical linear equation solver plays a dominant role. In this respect, we were very
lucky to come across SPOOLES for static problems and ARPACK for eigenvalue problems,
both excellent packages that are freely available on the Internet. I think it was at that time
that we decided that our code should be free. The term “free” here primarily means freedom
of thought as proclaimed by the GNU General Public License. We had profited enormously
from the free equation solvers; why would not others profit from our code?

The demands on the code, but, primarily, also our eagerness to include new features,
grew quickly. New element types were introduced. Geometric nonlinearity was imple-
mented, hyperelastic constitutive relations and viscoplasticity followed. We selected the
name CalculiX, and in December 2000 we put the code on the web. Major contributions
since then include nonlinear dynamics, cyclic symmetry conditions, anisotropic viscoplas-
ticity and heat transfer. The comments and enthusiasm from users all over the world
encourage us to proceed. But above all, the conviction that one cannot master a theory
without having gone through the agony of implementing it ever anew drives me to go on.

This book contains the theory that was used to implement CalculiX. This implies
that the topics treated are ready to be coded, and, with a few exceptions, their practical
implementation can be found in the CalculiX code (www.calculix.de). One of the criteria
for including a subject in CalculiX or not is its industrial relevance. Therefore, topics such
as cyclic symmetry or multiple point constraints, which are rarely treated in textbooks,
are covered in detail. As a matter of fact, multiple point constraints constitute a very
versatile workhorse in any industrial finite element application. Conditions such as rigid
body motion, the application of a mean rotation, or the requirement that a node has to
stay in a plane defined by three other moving nodes are readily formulated as nonlinear
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multiple point constraints. Clearly, new theories have to face several barriers before being
accepted in an industrial environment. This especially applies to material models because
of the enormous cost of the parameter identification through testing. Nevertheless, a couple
of newer models in the area of anisotropic hyperelasticity and single-crystal viscoplasticity
are covered, since they are the prototypes of new constitutive developments and because
of the analytical insight they produce.

Although the applications are very practical, the theory cannot be developed without a
profound knowledge of continuum mechanics. Therefore, a lot of emphasis is placed on the
introduction of kinematic variables, the formulation of the balance laws and the derivation
of the constitutive theory. The kinematic framework of a theory is its foundation. Among
the kinematic tensors, the deformation gradient plays a special role, as amply demonstrated
by the multiplicative decomposition used in viscoplastic theories. The balance equations
in their weak form are the governing equations of the finite element method. Finally, the
constitutive theory tells us what kind of conditions must be fulfilled by a material law
to make sense physically. The knowledge of these rules is a prerequisite for the skillful
description of new kinds of materials. This is clearly shown in the treatment of hyperelastic
and viscoplastic materials, both in their isotropic and anisotropic form.

The only prerequisite for reading this book is a profound mathematical background in
tensor analysis, matrix algebra and vector calculus. The book is largely self-contained, and
all other knowledge is introduced within the text. It is oriented toward

1. graduate students working in the finite element field, enabling them to acquire a
profound background,

2. researchers in the field, as a reference work,

3. practicing engineers who want to add special features to existing finite element pro-
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Manfred Köhl (MTU Aero Engines), Dr Joop Nagtegaal (ABAQUS), Dr Erhard Reile
(MTU Aero Engines), Dr Harald Schönenborn (MTU Aero Engines) and others. Last but
not least, I am very grateful to my wife Barbara and my children Jakob and Lea, who
bravely endured my mental absence of the last few months.



Nomenclature

A, AKL kinematic internal variable in material coordinates

A, AMN thermal strain tensor per unit temperature

A, a, AK, ak acceleration vector

A deformed area of the body

A0 undeformed area of the body

A = σε radiation coefficient

{A} global acceleration vector

b, bkl left Cauchy–Green tensor

be−1 inverse left elastic Cauchy–Green tensor or elastic Finger tensor

Cp, C
p
KL right plastic Cauchy–Green tensor

CofE cofactor matrix of a second rank tensor E

cofactor EKL cofactor of tensor component EKL

[C] global capacity matrix

c specific heat

c0 speed of light in vacuum

cp specific heat at constant pressure

cv specific heat at constant volume

d, dkl deformation rate tensor

dA, dAK infinitesimal area one-form in material coordinates

da, dak infinitesimal area one-form in spatial coordinates

det E determinant of a second rank tensor E



xvi NOMENCLATURE

dev σ deviatoric tensor of a second rank tensor σ

dS infinitesimal length in material coordinates

ds infinitesimal length in spatial coordinates

dV infinitesimal volume in material coordinates

dv infinitesimal volume in spatial coordinates

dX, dXK infinitesimal length vector in material coordinates

dx, dxk infinitesimal length vector in spatial coordinates

d� infinitesimal length in the intermediate configuration

dω infinitesimal spatial angle

Ẽ, ẼKL infinitesimal strain tensor in material coordinates

E total internal energy in the body

E, EKL Lagrange strain tensor

E Young’s modulus

E total emissive power

Eb total emissive power of a blackbody

Eλ spectral, hemispherical emissive power

ẽ, ẽkl infinitesimal strain tensor in spatial coordinates

e, ekl Euler strain tensor

eLMP , eLMP alternating symbols

F , F k
K deformation gradient

Fij viewfactor: fraction of the radiation power leaving surface i that

is intercepted by surface j

{F } global force vector

{F }e element force vector

f , f k, f K force per unit mass

G, G�, GKL covariant metric tensor in the reference system

G, G�, GKL contravariant metric tensor in the reference system



NOMENCLATURE xvii

GK contravariant curvilinear basis vectors in the reference system

GK covariant curvilinear basis vectors in the reference system

G hemispherical irradiation power

g, g�, gkl covariant metric tensor in the spatial system

g, g�, gkl contravariant metric tensor in the spatial system

gKk, gK
k, gk

K shifters

gk contravariant curvilinear basis vectors in the spatial system

gk covariant curvilinear basis vectors in the spatial system

h Planck constant

h convection coefficient

h heat generation per unit mass

IA unit tensor of rank four where the unit tensor I is replaced by

the tensor A

II unit tensor of rank four

I , IKL, IKL, δK
L metric tensor in rectangular coordinates in the reference system

IK, IK rectangular basis vectors in the reference system

IE spectral, directional radiation intensity

IE,b spectral intensity of blackbody radiation

II spectral, directional irradiation intensity

Ikd kth invariant of the deformation rate tensor

IkE kth invariant of the Lagrangian strain tensor

Ik, IkC kth invariant of the reduced Cauchy–Green tensor

Ik, IkC kth invariant of the Cauchy–Green tensor

Ikσ kth invariant of the Cauchy tensor

i, ikl, ikl, δk
l metric tensor in rectangular coordinates in the spatial system

ik, ik rectangular basis vectors in the spatial system

J , JK Jacobian vector



xviii NOMENCLATURE

J Jacobian determinant of the deformation

J radiosity

J ∗ Jacobian of the global–local transformation

Jk, JkC kth invariant of the Cauchy–Green tensor of the form trCk

K total kinetic energy in the body

K bulk modulus

[K] global stiffness matrix

[K]e element stiffness matrix

k Boltzmann constant

[L]e element localization matrix

l, lkl velocity gradient

M i = N i ⊗ N i , MKL
i contravariant structural tensors in material coordinates

M i = N i ⊗ N i , Mi
KL covariant structural tensors in material coordinates

[M] global mass matrix

[M]e element mass matrix

ṁij absolute value of the mass flow between node i and node j

N i , NK
i ith normalized eigenvector in material coordinates

N i , Ni
K ith normalized eigen-one-form in material coordinates

N , NK normalized area one-form in material coordinates

ni , nk
i ith normalized eigenvector in spatial coordinates

ni , ni
k ith normalized eigen-one-form in spatial coordinates

n, nk normalized area one-form in spatial coordinates

P , P Kk first Piola–Kirchhoff stress tensor

P radiation power

p pressure

Q internal dynamic variable in material coordinates



NOMENCLATURE xix

Q, QK ′
L orthogonal transformation matrix

Q, QK, Qθ heat vector in material coordinates

{Q} global heat flux vector
{
Q

}
e

element heat flux vector

q, q i internal dynamic variable in spatial coordinates

q, qk, qθ heat vector in spatial coordinates

R̃, R̃KL infinitesimal rotation tensor in material coordinates

R, Rk
L rotation tensor

R specific gas constant

S, SK entropy vector in material coordinates

S, SKL second Piola–Kirchhoff stress tensor

s, sk entropy vector in spatial coordinates

T K traction vector on a surface with normal parallel to GK

T (N), T K
(N)

traction vector on a surface with normal N in material coordinates

T relative temperature

{T } global temperature vector

{T }e element temperature vector

tk traction vector on a surface with normal parallel to gk

t (n), tk
(n)

traction vector on a surface with normal n in spatial coordinates

trE trace of a second rank tensor E

U , UK
L right stretch tensor

U , u, UK, uk displacement vector

U volumetric free energy potential

{U} global displacement vector

{U}e element displacement vector

V , V k
l left stretch tensor

V , v, V K, vk velocity vector



xx NOMENCLATURE

V deformed volume of the body

V0 undeformed volume of the body

V0e undeformed volume of a finite element

{V } global velocity vector

W total rate of work in the body

w, wkl spin tensor

X, XK position vector in material coordinates

x, xk position vector in spatial coordinates

α, αkl kinematic internal variable in spatial coordinates

α total, hemispherical absorptivity

β, βKL thermal stress tensor per unit temperature

γ , γ KL residual stress tensor

γ (ξ, η, ζ ) vector of local coordinates

γ̇ consistency parameter

δK
L mixed-variant metric tensor in the reference system

δk
l mixed-variant metric tensor in the spatial system

δT temperature perturbation

δU , δUK displacement perturbation

ε, εkl infinitesimal strain tensor in spatial coordinates

εe, εe
kl infinitesimal elastic strain tensor in spatial coordinates

εp, ε
p

kl infinitesimal plastic strain tensor in spatial coordinates

ε emissivity

ελ,ω spectral, directional emissivity

ε energy density

ζ local coordinate

η entropy per unit mass

η local coordinate



NOMENCLATURE xxi

θ absolute temperature

θe absolute environmental temperature

θref reference temperature

κ, κK, κKL, κKLM conduction coefficients

�iE ith eigenvalue of the Lagrangian strain tensor

�iS ith eigenvalue of the second Piola–Kirchhoff stress tensor

�i, �iC ith eigenvalue of the Cauchy–Green tensor

λ Lamé constant

λi principal stretches, eigenvalues of F

λiσ ith eigenvalue of the Cauchy stress tensor

λv fluid constant

µ Lamé constant

µv fluid constant

ν Poisson coefficient

�, �KL relative stress tensor in material coordinates

ξ local coordinate

ρ mass density in the spatial configuration

ρ total, hemispherical reflectivity

ρ0 mass density in the material configuration

�0, �KL, �KLMN free energy coefficients

� = ρ0ψ free energy per unit volume in the reference configuration

σ , σ kl Cauchy stress tensor

σ Stefan–Boltzmann constant

τ total, hemispherical transmissivity

ϕi(ξ, η, ζ ) shape functions

ψ free energy per unit mass

ω circular frequency

∇ spatial gradient

∇0 material gradient



1

Displacements, Strain, Stress
and Energy

1.1 The Reference State

Continuum mechanics deals with the change of field variables due to external actions.
Examples of field variables are displacements, stresses, temperatures and magnetic induc-
tion. Actions include mechanical forces, heating, and so on. In general, a reference state is
chosen with respect to which the change of field variables is measured. Let the fields of
interest be defined in the reference state in a set of points, the so-called material points,
occupying a volume V0 with a surface A0 in Eucledian space R

3 (Figure 1.1). Assume that
the reference space is described by a set of curvilinear coordinates

{
XK

}
K=1,2,3 related to

a rectangular system {ZK}K=1,2,3 by

ZK = ZK(X1, X2, X3). (1.1)

Coordinates in the reference state are also called material coordinates. Consider an infinites-
imal vector dX. One can write

dX = ∂X

∂ZK
dZK (1.2)

(summation over repeated indices).

IK = ∂X

∂ZK
(1.3)

is a set of basis vectors in the rectangular system. Accordingly, IK, K = 1, 2, 3 do not
depend on ZK . In an analogous way, one can write

dX = ∂X

∂XK
dXK. (1.4)

The Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85752-8
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X1

X2

X3

Z1

Z2

Z3 G1

G2G3

I 1

I 2I 3
X

dX

A0

V0

Figure 1.1 Material coordinate systems

The vectors

GK = ∂X/∂XK (1.5)

constitute a basis in the curvilinear coordinate system. One can write (compare Equation (1.2)
with Equation (1.4))

GK dXK = IL dZL (1.6)

or

GK = ∂ZL

∂XK
IL. (1.7)

The size dS of a vector dX is defined as

dS2 := dX · dX (1.8)

where the “·” denotes the inner product of two vectors (also called the dot product or the
contraction of two vectors). In rectangular coordinates, one finds (substitute Equation (1.2)
into Equation (1.8))

dS2 = IK dZK · IL dZL

= dZK dZLIK · IL

=: dZK dZLIKL. (1.9)

The metric tensor IKL takes the value 1 for K = L and 0 for K �= L. In curvilinear
coordinates, one obtains (substitute Equation (1.4) into Equation (1.8)),

dS2 = GK dXK · GL dXL

= dXK dXLGK · GL

=: dXK dXLGKL (1.10)
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GKL is called the metric tensor for the coordinate system {XK }. In general, GKL �= 0
for K �= L, and GKL �= 1 for K = L. Thus, the basis vectors GK are not necessarily
orthonormal. Using the set {GK }, one can define another set {GL} through the relations

GK · GL = δ L
K (1.11)

where δ L
K = 0 for K �= 0 and δ L

K = 1 for K = L. In modern Riemannian geometry, {GL}
are called one-forms (or covariant tensors of rank 1 ). They map the vectors {GK } (which
are also called contravariant tensors of rank 1 ) into a scalar by Equation (1.11). {GL}
forms a basis for the vector space of one-forms and is also called the dual basis of {Gk}.
If α is a one-form, one writes

α = αKGL. (1.12)

The dot product of a vector V and a one-form α is defined by

V · α = V KGK · αLGL = V KαK (1.13)

through Equation (1.11). In the same way, the dot product of two vectors and two one-forms
yields

V · W = V KGK · WLGL = V KWLGKL (1.14)

α · β = αKGK · βLGL = αKβLGKL (1.15)

where GKL is defined by

GKL := GK · GL. (1.16)

Notice that in Equations (1.13), (1.14) and (1.15) the same symbol is used for the dot
product. The context shows whether a (covariant or contravariant) metric tensor is needed.
Multiplying a vector V with the one-form GL yields

V · GL = V KGK · GL = V Kδ L
K = V L. (1.17)

Thus, the components V L of V can be obtained by taking the scalar product of V with the
basis one-form GL. Hence,

V = (V · GL)GL. (1.18)

Similar statements to Equation (1.17) and Equation (1.18) can be made on the basis of
one-forms:

α · GL = αL (1.19)

α = (α · GL)GL. (1.20)

Although the separation of tensors of rank one into vectors and one-forms is instructive
from a theoretical point of view, there is no reason why a vector cannot be written in terms
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of a contravariant basis or a one-form in terms of a covariant basis. Substituting GK in
Equation (1.18) and GK in Equation (1.19), one obtains

GK = GKLGL (1.21)

GK = GKLGL. (1.22)

The operation in Equation (1.21) and in Equation (1.22) is called raising and lowering of
the index respectively. As we will see later on, some fields are naturally represented by
covariant tensors (such as the Lagrangian strain and normals on a plane), whereas others are
predestinate for a contravariant representation (such as stresses and normals in a direction).
They can be viewed as dual fields.

1.2 The Spatial State

Because of the actions, the body B is mapped from its reference state into some other
state, a spatial state. Let the spatial state be described by rectangular coordinates {zk} and
curvilinear coordinates {xk}. These coordinates are called spatial coordinates. The same
definitions of the reference state apply to the spatial state, for instance,

ds2 = dxk dxlgkl (1.23)

where gkl is the metric tensor of the spatial state. Within the theory of continuum mechanics,
one tries to predict the spatial state from the reference state and the actions on it. Since

gk = ∂x

∂xk
(1.24)

one can write

dx = dxkgk = ∂xk

∂XK
dXKgk

= xk
,K dXKgk. (1.25)

This reveals that the spatial state can be predicted from the material state if xk
,K is known.

Defining the dyadic product of two vectors a and b, written as a ⊗ b such that

(a ⊗ b) · c = a(b · c) (1.26)

and

c · (a ⊗ b) = (c · a)b (1.27)

for an arbitrary vector c, and similar for two one-forms or a vector and a one-form, one
finds that

dx = xk
,Kgk(G

K · dX)

= xk
,K(gk ⊗ GK) · dX. (1.28)
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Defining the deformation gradient F as

F = xk
,K(gk ⊗ GK) (1.29)

Equation (1.28) is transformed into

dx = F · dX. (1.30)

This shows that the deformation gradient is the Jacobian matrix of the motion from the
material into the spatial state.

The dyadic product of two vectors, of two one-forms and of a vector and a one-form is
called a contravariant tensor of rank two, a covariant tensor of rank two and a mixed-variant
tensor of rank two respectively. If

a = aKLGK ⊗ GL (1.31)

then one can also write (Equation (1.21))

a = aKLGKMGLNGM ⊗ GN = aMNGM ⊗ GN (1.32)

where aMN = aKLGKMGLN is obtained by raising the indices. Equation (1.31) is the
covariant expansion of a, Equation (1.32) is the contravariant expansion. To emphasize
this, the notation a� will be used for the covariant expansion and a� for the contravariant
one (this agrees with recent literature, see (Marsden and Hughes 1983), (Holzapfel 2000)).
Accordingly,

a� = aKLGK ⊗ GL (1.33)

a� = aKLGK ⊗ GL. (1.34)

F is called a mixed-variant two-point tensor since it is the dyadic product of basis vectors
belonging to different states (the material and the spatial state).

Notice that the dot on the right-hand side and on the left-hand side of Equation (1.26)
have a different meaning: the dot on the right-hand side denotes the contraction of two
vectors already encountered in Equation (1.8). The dot on the left-hand side symbolizes the
contraction of a tensor of rank two and a vector. Whereas the contraction of two vectors
is commutative, the contraction of a tensor of rank two and a vector is not

(a ⊗ b) · c = a(b · c) �= (c · a)b = c · (a ⊗ b). (1.35)

However,

(a ⊗ b) · c = a(b · c) = (c · b)a = c · (b ⊗ a) = c · (a ⊗ b)T (1.36)

where

(a ⊗ b)T := b ⊗ a (1.37)

is the transpose of a ⊗ b.
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The length ds of a vector dx in the spatial state satisfies

ds2 = dx · dx

= xk
,K dXKgk · xl

,L dXLgl

= xk
,Kxl

,L dXK dXLgk · gl

= xk
,Kxl

,Lgkl dXK dXL. (1.38)

Defining the right Cauchy–Green tensor by

C := CKLGK ⊗ GL (1.39)

where

CKL = xk
,Kxl

,Lgkl (1.40)

one obtains

ds2 = CKL dXK dXL. (1.41)

Comparing Equation (1.23) and Equation (1.41), one notices that for the calculations of
ds2, the tensor C is the equivalent of g in the reference frame. One also says that C is the
pullback of g and, equivalently, g is the push-forward of C. Equation (1.41) also shows
that the Cauchy–Green tensor is positive definite. Furthermore, it satisfies

C = F T · F (1.42)

where F T is the transpose of F defined by

F T := xk
,K(GK ⊗ gk). (1.43)

Indeed, since (a ⊗ b) · (c ⊗ d) = (a ⊗ d)b · c, one finds

F T · F = xk
,Kxl

,L(GK ⊗ gk) · (gl ⊗ GL)

= xk
,Kxl

,LgklG
K ⊗ GL. (1.44)

The stretch in a direction N = (dXK/dS)GK is defined by

λ(N) = ds

dS
=
√

CKL

dXK

dS

dXL

dS

=
√

CKLNKNL (1.45)

where NK = dXK/dS. Thus, λ(N) is the change of length of an infinitesimal vector in
direction N in the reference state.

If the mapping x(X) is one to one, it can be inverted to yield X(x). Since matter cannot
disappear, the Jacobian determinant

J := det(xk
,K) = det F (1.46)
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cannot be zero and the mapping is one to one. Assuming the transformation to be contin-
uous, this means that J must be either everywhere positive or everywhere negative. Since
J = 1 for the identical transformation, it is everywhere positive.

dS2 can also be written as

dS2 = dXK dXLGKL = XK
,kX

L
,l dxk dxlGKL

= (b−1)kl dxk dxl (1.47)

where

(b−1)kl := XK
,kX

L
,lGKL. (1.48)

The tensor b (the inverse of b−1) is called the left Cauchy–Green tensor and satisfies

bkl = xk
,Kxl

,LGKL (1.49)

or, equivalently,

b = F · F T. (1.50)

Consequently,

b−1 = F−T · F−1 (1.51)

where

F−1 = XK
,kGK ⊗ gk (1.52)

is the inverse of the deformation gradient and

F−T = XK
,kg

k ⊗ GK. (1.53)

Equation (1.47) shows that, with respect to dS2, b−1 plays in the spatial state the role that
is assumed by G in the reference state, that is,

GKL dXK dXL = (b−1)kl dxk dxl. (1.54)

Therefore, b−1 is called the push-forward of G and equivalently G is called the pullback
of b−1. Equation (1.41) and Equation (1.47) can also be written as

ds2 = dX · C · dX (1.55)

and

dS2 = dx · b−1 · dx. (1.56)

Since J is the determinant of xk
,K , one also has

∂J

∂xk
,K

= cofactor(xk
,K). (1.57)
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The cofactor of xk
,K is defined as the determinant of the matrix one obtains after deleting

row k and column K in xk
,K (this is the so-called minor determinant of xk

,K ), multiplied by
(−1)k+K . Equation (1.57) is easily derived by recalling that the determinant of a matrix
can be obtained by taking the dot product of any row with the row of the corresponding
cofactors, for example, if the first row is used,

J = x1
,1cofactor (x1

,1) + x1
,2cofactor (x1

,2) + x1
,3cofactor (x3

,3). (1.58)

XK
,k is the inverse of xk

,K . Accordingly,

XK
,k = 1

J
cofactor (xk

,K). (1.59)

Indeed, the inverse of a matrix M satisfies (Greenberg 1978)

(M−1)KL = 1

det M
cofactor (MLK). (1.60)

Comparing Equation (1.57) with Equation (1.59), one finds

∂J

∂xk
,K

= JXK
,k. (1.61)

This relationship will be needed for the time derivative of J .
So far, only length changes were considered. Since the determinant of a map describes

its volume change, one can write

dv = J dV (1.62)

where dv and dv are infinitesimal volume elements in the reference and spatial configuration
respectively. Denoting an infinitesimal surface element in the reference configuration by
the one-form dA orthogonal to the surface element and with size equal to the area of the
surface, and similarly for the spatial configuration, one obtains for Equation (1.62),

da · dx = J dA · dX (1.63)

or

da · F · dX = J dA · dX. (1.64)

Since this applies to an arbitrary vector dX, one finds

da = J dA · F−1 (1.65)

or

da = JF−T · dA. (1.66)

This is feasible since it expresses that for isochoric (volume-preserving, J = 1) motion,
the surface change is inversely proportional to the length change.
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1.3 Strain Measures

Physically, we are interested in the change from dX to dx and not as much in the actual
size of dx. After all, assuming the body to be stress-free at the outset of the calculation,
it is the change of dX that generates the stress field in a mechanical problem. The vector
connecting the initial position of a material particle at X to its new position x at time t is
called the displacement U (X, t) of that particle at time t . One can write (see Figure 1.2)

u = U = o + x − X (1.67)

o is the vector connecting the spatial frame of reference {gk} with the material frame {GK }.
Since the displacement connects a material vector with a spatial vector, it does not uniquely
belong to the material nor to the spatial frame, and both upper case notation U and lower
case notation u will be used. The component notation yields

U = UKGK (1.68)

and
u = ukgk. (1.69)

The difference between dS2 and ds2 can be written as (Equation (1.41))

ds2 − dS2 = (CKL − GKL) dXK dXL (1.70)

as well as (Equation (1.47))

ds2 − dS2 = (gkl − b−1
kl ) dxk dxl. (1.71)

x1

x2

x3

X1

X2
X3

G1

G2

G3

I 1 I 2

I 3

g1

g2

g3

i1

i2
i3

X

U

dX

x

dx

U + dU

O

Figure 1.2 Displacement vectors
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Now, the Lagrangian strain tensor E (also sometimes called the Green–Lagrange strain
tensor) is defined by

EKL := 1
2 (CKL − GKL) (1.72)

and the Eulerian strain tensor e (also sometimes called the Euler–Almansi strain tensor )
by

ekl := 1
2 (gkl − b−1

kl ). (1.73)

Accordingly,

ds2 − dS2 = 2EKL dXK dXL (1.74)

= 2ekl dxk dxl. (1.75)

E and e are second-order tensors and can be interpreted as measures for the change of
length in a body. Using Equation (1.67) one can write

ds2 − dS2 = dx · dx − dX · dX

= (dU + dX) · (dU + dX) − dX · dX

= dU · dX + dX · dU + dU · dU

= (U ,K · X,L + X,K · U ,L + U ,K · U ,L) dXK dXL. (1.76)

Since U = UMGM and dX = dXNGN , one finds

∂U

∂XK
= ∂

∂XK
(UMGM) = ∂UM

∂XK
GM + UM ∂GM

∂XK

= ∂UM

∂XK
GM + UM ∂2ZL

∂XK∂XM
IL

= ∂UM

∂XK
GM + UM ∂2ZL

∂XK∂XM

∂XN

∂ZL
GN

=
(

∂UM

∂XK
+ UN ∂2ZL

∂XK∂XN

∂XM

∂ZL

)
GM

=: UM
;KGM (1.77)

and

∂X

∂XL
= GL. (1.78)

UM
;K is the covariant derivative of UM and can also be written as

UM
;K = UM

,K + UN

{
M

KN

}
(1.79)
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where {
M

KN

}
:= ∂2ZL

∂XK∂XN

∂XM

∂ZL
(1.80)

are called the Christoffel symbols of the second kind. Hence,

ds2 − dS2 = (UM
;KGLM + UM

;LGKM + UM
;KUN

;LGMN) dXK dXL. (1.81)

Comparison of Equation (1.74) with Equation (1.81) finally yields

2EKL = UM
;KGLM + UM

;LGKM + UM
;KUN

;LGMN. (1.82)

Similarly, one finds

2ekl = um
;kglm − um

;lgkm + um
;ku

n
;lgmn. (1.83)

It is important to note that the extra term in Equation (1.77) derives from the fact that
GM is not necessarily constant in space. The expression UM

;K is also called the covariant
derivative covariant derivative of U (Eringen 1980). For rectangular coordinates, the unit
vectors do not vary in space and Equations (1.82) and (1.83) reduce to

2EKL = UM
,KGLM + UM

,LGKM + UM
,KUN

,LGMN (1.84)

and
2ekl = um

,kglm − um
,lgkm + um

,ku
n
,lgmn. (1.85)

Furthermore, the distinction between {GK } and {GK} fades since both bases are identical,
and GKL is the unit tensor. Consequently, Equations (1.84) and (1.85) can be further
simplified to

2EKL = UK,L + UL,K + UM,KUM,L (1.86)

and
2ekl = uk,l + ul,k − um,kum,l. (1.87)

The above equations establish a relationship between displacements and strains. This
relationship is nonlinear owing to the last terms in Equations (1.82) to (1.87). In problems
with small deformations, the nonlinear terms are frequently neglected, leading to the linear
strain ẼKL, in rectangular coordinates:

ẼKL := 1
2 (UK,L + UL,K). (1.88)

Defining the infinitesimal rotation as

R̃KL := 1
2 (UK,L − UL,K) (1.89)

Equation (1.86) can be rewritten as

EKL = ẼKL + 1
2 (ẼMK + R̃MK)(ẼML + R̃ML) (1.90)
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X

Y

x

y

θ

θ0

x, X

y, Y

R

Figure 1.3 Finite rotation of a rod

showing that for the linear strain to be a good approximation for the actual strain, both the
linear strain and the linear rotation must be small. Accordingly, for a rod freely rotating
about one of its ends, linear strains are a poor approximation of the real strains. This is
easily shown. Consider a rod of length R rotating about the origin (Figure 1.3). The original
position is

X = R cos θ0

Y = R sin θ0. (1.91)

The final position is characterized by

x = R cos(θ0 + θ)

y = R sin(θ0 + θ). (1.92)

Consequently, the displacements amount to

UX = x − X = X(cos θ − 1) − Y sin θ

UY = y − Y = X sin θ + Y(cos θ − 1). (1.93)

The infinitesimal strains yield

ẼXX = UX,X = cos θ − 1

ẼYY = VY,Y = cos θ − 1

ẼXY = (UX,Y + UY,X)/2 = 0 (1.94)
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which shows that ẼXX and ẼYY are generally not zero. Since a rigid body motion must
not generate strains, this clearly shows that the infinitesimal strains are not suited for finite
rotations. The Lagrangian strain tensor, on the other hand, vanishes. For instance,

EXX = UX,X + (U2
X,X + U2

Y,X)/2

= (cos θ − 1) +
[
(cos θ − 1)2 + sin2 θ

]/
2 = 0. (1.95)

This is especially important for slender structures such as shells and beams in which strains
are usually small but rotations can be large.

1.4 Principal Strains
An infinitesimal vector dX with size dS is transformed by the motion of the body into dx

with size ds satisfying

ds2 − dS2 = EKL dXK dXL (1.96)

or

ds2 − dS2

dS2
= EKLNKNL (1.97)

where

NK := dXK

dS
(1.98)

is a unit vector satisfying

NKNLGKL = dXKdXLGKL

dS2
= 1. (1.99)

The expression in Equation (1.97) is a measure for the relative change of length of a fiber
originally parallel to N . The question we want to look into now is the following: in which
directions is this change of length maximal? This boils down to maximizing Equation (1.97)
subject to the constraint Equation (1.99). The variables are the components of N . Following
the usual procedure of calculus, finding an extremum reduces to setting the derivative of
the target function with respect to the variables to zero. The target function is

F(N) = EKLNKNL − 	E(NKNLGKL − 1) (1.100)

where 	E is a Lagrange multiplier. Hence,

∂

∂NM
[EKLNKNL − 	E(NKNLGKL − 1)] = 0

�
EMLNL + EKMNK − 	ENLGML − 	ENKGKM = 0

�
(EKM − 	EGKM)NK = 0. (1.101)
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This is a classical eigenvalue problem (generalized for curvilinear coordinates). Since E

is a symmetric tensor, the eigenvalues 	E are real and the corresponding eigenvectors are
mutually orthogonal (or can be made orthogonal). Indeed, suppose that 	E is a complex
eigenvalue, then

EKMNK = 	EGKMNK. (1.102)

Premultiplying with the complex conjugate of N yields

N
M

EKMNK = 	EN
M

GKLNK. (1.103)

Since E is symmetric and real, one obtains

N
M

EKMNK = NMEKMN
K = NKEMKN

M

= NKEKMN
M

(1.104)

and similar for G. Consequently, N
M

EKMNK and N
M

GKMNK are real and 	E must be real
because of Equation (1.103) and the positive-definiteness of G. Because of Equation (1.102),
the eigenvectors N are real too.

To prove that the eigenvectors are mutually orthogonal, consider two distinct eigen-
values 	1 and 	2 with two corresponding eigenvectors N1 and N2. Then

EKMNK
1 = 	1GKMNK

1 (1.105)

and

EKMNK
2 = 	2GKMNK

2 . (1.106)

Multiplying Equation (1.105) with NM
2 and Equation (1.106) with NM

1 and subtracting both
yields

NM
2 EKMNK

1 − NM
1 EKMNK

2 = 	1N
M
2 GKMNK

1 − 	2N
M
2 GMKNK

1 (1.107)

or

NM
2 (EKM − EMK)NK

1 = 	1N
M
2 GKMNK

1 − 	2N
M
1 GKLNK

2 . (1.108)

Since both E and G are symmetric, this yields

0 = (	1 − 	2)N
M
2 GKMNK

1 . (1.109)

	1 and 	2 are assumed to be distinct, which means

NK
1 GKMNM

2 = 0 (1.110)

or
N1 · N2 = 0. (1.111)

This completes the proof.
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The eigenvalues are the solution of a third-order nonlinear equation expressing that the
determinant of the matrix in Equation (1.101) has to satisfy

det(EKM − 	EGKM) = 0 ⇔ det(EK
M − 	EδK

M) = 0 (1.112)

for the equation to have nontrivial solutions. Since the extremal strains have a physical
relevance and are independent of the coordinate system, the coefficients of Equation (1.112)
are invariants. Indeed, Equation (1.112) can be written as

−	3
E + I1E	2

E − I2E	E + I3E = 0 (1.113)

where

I1E = δK
LEL

K = trE (1.114)

I2E = 1

2

[
I 2

1E − tr(E2)
]

(1.115)

I3E = det E = 1

3!
eLMP eKNQEL

KEM
NEP

Q (1.116)

are the first, second and third invariant of E. The expression trE stands for the trace
of E, eLMP and eKNQ are the alternating symbols: eKLM = 1 for KLM = 123 or any
cyclic rotation thereof, eKLM = −1 for KLM = 321 or any cyclic rotation, else eKLM = 0.
The eigenvalues are called principal strains and the corresponding direction N i are called
principal directions. They are obtained by solving Equation (1.101) in which the solutions
of Equation (1.113) are substituted. For the solution of Equation (1.113), which is a cubic
equation, see (Simo and Hughes 1997) or (Abramowitz and Stegun 1972).

Since E and C differ by the metric tensor, Equation (1.101) can also be written as

(CKM − 	CGKM)NK = 0 (1.117)

where

	C = 2	E + 1. (1.118)

Consequently, the eigenvectors of C and E are the same and the eigenvalues are directly
related by Equation (1.118). In what follows, 	i denotes the eigenvalues of C, that is,
	i = 	iC . The calculation of the eigenvectors N i is somewhat tedious. Sometimes, it is
more advantageous to calculate the tensors N i ⊗ N i , which play the role of a tensorial
basis. Here, N i (index up) are the one-forms obtained by raising the index of N :

N i = G� · N i (1.119)

and satisfy (Equation (1.110)

N i · N j = δi
j . (1.120)

The one-forms {N i} are the dual basis of the vectors {N i}.
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Theorem 1.4.1 Let C be a symmetric covariant second-order tensor in R3, 	i its eigen-
values and N i the corresponding eigenvectors, then

C =
3∑

i=1

	iM
i (1.121)

where
M i = N i ⊗ N i (1.122)

and N i are the one-forms dual to N i .

Proof. ∑

i

	iM
i · N l =

∑

i

	i(N
i ⊗ N i ) · N l

=
∑

i

	iN
i (N i · N l )

=
∑

i

	iN
iδi

l

= 	lN
l = 	lG

� · N l , ∀l (1.123)

where G� is the covariant metric tensor and an underscore or a summation sign remove
implicit summation. Consequently, C and

∑
i 	iM

i have the same eigenvalues and eigen-
vectors and are identical. Since C is a covariant tensor, it is logical that it is made up of
one-forms and not of vectors.

An interesting property is

C · C =
(
∑

i

	iM
i

)

·



∑

j

	jM
j





=
∑

i

∑

j

	i	j (N
i ⊗ N i ) · (N j ⊗ N j )

=
∑

i

∑

j

	i	j (N
i ⊗ N j )(N i · N j )

=
∑

i

	2
i (N

i ⊗ N i ) =
∑

i

	2
i M

i . (1.124)

This property allows for the following simple calculation of M i . Since





M1 + M2 + M3 = G

	1M
1 + 	2M

2 + 	3M
3 = C

	2
1M

1 + 	2
2M

2 + 	2
3M

3 = C2

(1.125)

one obtains

M i = 1

D

[
C2 − (I1C − 	i)C + I3C	−1

i G
]

(1.126)
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where
Di = (	i − 	j)(	i − 	k) (1.127)

for j, k �= i.
If two eigenvalues are identical, for example, 	 = 	1 = 	2 �= 	3 one obtains instead

of Equation (1.125),





(M1 + M2) + M3 = G

	(M1 + M2) + 	3M
3 = C

	2(M1 + M2) + 	2
3M

3 = C2

(1.128)

Discarding the third equation, one finds

M1 + M2 = 	3G − C

	3 − 	
(1.129)

M3 = C − 	G

	3 − 	
. (1.130)

This means that M1 and M2 are not known individually, only their sum can be derived. For
three equal eigenvalues, the set in Equation (1.125) reduces to the first equation (Itskov
2001). The tensors M1, M2 and M3 are sometimes called structural tensors. They are
genuine tensors of rank two subject to Equation (1.122) and the normality condition of N i .

Notice that

C · M i = C · (N i ⊗ N i ) = (C · N i )N i = 	i(G · N i )N i = 	iG · M i (1.131)

and

C : M i = C : (N i ⊗ N i ) = N i · C · N i = N i	i · (G · N i ) = 	i (1.132)

since Equation (1.117) is equivalent to

C · N i = 	iG · N i (1.133)

and the double contraction or inner product of two second-order tensors a ⊗ b and c ⊗ d

is defined by

(a ⊗ b) : (c ⊗ d) = (a · c)(b · d) = tr
[
(a ⊗ b)T · (c ⊗ d)

]
. (1.134)

One finds that the eigenvalues λi of F satisfy

λi =
√

	i (1.135)

because of Equation (1.42). Defining

ni := F · N i/λi (1.136)

one can write

F =
∑

i

λi(ni ⊗ N i ). (1.137)
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The normals N i along the principal directions in the material frame are mapped into the
normals ni in the spatial frame, strained by an amount λi . Notice that Equation (1.136)
actually defines the right-hand side of the eigenvalue problem for F . Furthermore, since
F is a two-point tensor, it cannot map a vector into a multiple of itself.

Not only are {N i} mutually orthogonal but {ni} are also a mutually orthogonal set of
vectors. Indeed,

ni · nj = 1

λiλj

N i · F T · F · N j

= 1

λiλj

N i · C · N j

=
λj

λi

N i · N j =
λj

λi

δij . (1.138)

Hence, in each material point, there exist three mutually orthogonal vectors, the deformation
of which is extremal and yields again three mutually orthogonal vectors. The vectors {ni} are
the eigenvectors of the inverse of the left Cauchy–Green tensor b−1. Indeed, substituting
Equation (1.136) into Equation (1.117) yields

C · F−1 · ni = 	CG · F−1 · ni . (1.139)

Substituting C (Equation (1.42)) leads to

F T · g · ni = 	CG · F−1 · ni (1.140)

or

1

	C

g · ni = F−T · G · F−1 · ni (1.141)

which is equivalent to

1

	C

g · ni = b−1 · ni . (1.142)

At this point, the polar decomposition theorem should be mentioned because of its
physical relevance. It states that the deformation gradient F can be written as the product
of an orthogonal matrix R and a symmetric tensor U , called the right-stretch tensor.
Accordingly,

F = R · U (1.143)

where

RT = R−1 (1.144)

and

U = UT. (1.145)
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Since

C = F T · F = UT · RT · R · U

= UT · U = U · U = U2 (1.146)

U and F have the same eigenvalues equal to the square root of the eigenvalues of C.
Since C is positive-definite (Equation (1.41)), U is also positive-definite. Furthermore, the
eigenvectors of C and U are identical. We have

U =
∑

i

λiN
i ⊗ N i =

∑

i

√
	iN

i ⊗ N i (1.147)

and

R =
∑

i

ni ⊗ N i . (1.148)

Indeed,

R · U =
∑

i

(ni ⊗ N i )
∑

j

λj (N
j ⊗ N j )

=
∑

i

∑

j

λjni ⊗ N j (N i · N j )

=
∑

i

λini ⊗ N i = F . (1.149)

In a similar way, one can decompose F into

F = V · R. (1.150)

V is the left-stretch tensor.
Equation (1.143) shows that the motion can be locally decomposed into a pure stretch

along the principal directions followed by a rotation. It should be emphasized that a pure
stretch is guaranteed for the principal directions only. For all other directions N , the product
U · N will involve some rotation, unless some of the principal values coincide. Furthermore,
R is not constant in space. Consequently, R denotes a microscopic rotation in the material
point of interest and not a macroscopic rotation.

1.5 Velocity

In most problems time is involved. The total time rate of change of a field is denoted by
the total derivative D/Dt . It physically means that a material particle is followed while
monitoring the change of some field at the momentaneous location of the moving particle.
The partial derivative ∂/∂t is used when looking at the change in time of a field at a fixed
spatial position. Both are related by (chain rule)

D

Dt
φ(x, t) = ∂φ

∂t
+ ∂φ

∂x
· ∂x

∂t
(1.151)
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where φ(x, t) is some field variable. The second term in Equation (1.151) is also called
the convective time rate of change and is solely due to the nonzero velocity of the particle.
The vector field

v := ∂x(X, t)

∂t
(1.152)

is the classical velocity of a particle originally at location X. Applying Equation (1.151)
to the particle acceleration, a defined by

a := Dv

Dt
(X, t) (1.153)

one finds

a = ∂v

∂t
+ ∂v

∂x
· ∂x

∂t
(1.154)

= ∂v

∂t
+ (v ⊗ ∇) · v (1.155)

where

∇ := ∂

∂x
(1.156)

is a one-form. Writing

v = vkgk (1.157)

and

∇ = gl ∂

∂xl
(1.158)

leads to

∇ ⊗ v = (v ⊗ ∇)T = gl ⊗ ∂

∂xl
(vkgk)

= vk
;lg

l ⊗ gk (1.159)

and, consequently,

akgk = ∂vk

∂t
gk + vk

;lv
m(gk ⊗ gl) · gm

=
(

∂vk

∂t
+ vk

;lv
l

)
gk (1.160)

or, in rectangular coordinates

ak = ∂vk

∂t
+ vk

,lv
l . (1.161)
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The change of length in time is given by

D

Dt
ds2 = D

Dt
dx · dx

=
(

D

Dt
dx

)
· dx + dx ·

(
D

Dt
dx

)
. (1.162)

Since

D

Dt
dx = dv = ∂v

∂x
· dx = (v ⊗ ∇) · dx (1.163)

one finds

D

Dt
ds2 = dx · (∇ ⊗ v) · dx + dx · (v ⊗ ∇) · dx

= dx · (∇ ⊗ v + v ⊗ ∇) · dx

= 2dx · d · dx (1.164)

where

d := 1
2 (∇ ⊗ v + v ⊗ ∇)� (1.165)

is called the deformation rate tensor. One also defines the velocity gradient l and the spin
tensor w:

l := (v ⊗ ∇)� (1.166)

w := 1
2 (l − lT). (1.167)

Consequently, one obtains

d = 1
2 (l + lT). (1.168)

Equation (1.164) shows that 2d plays a similar role for D(ds2)/Dt as g for ds2.
Since

dx = F · dX (1.169)

one finds by taking the total derivative of both sides

(v ⊗ ∇) · dx = Ḟ · dX

= Ḟ · F−1 · dx (1.170)

or

l = (Ḟ · F−1)� (1.171)
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where
˙( ) := ˙

( ) := D

Dt
( ). (1.172)

In component notation, Equation (1.164) reads

D

Dt
ds2 = 2dxk dxl dkl. (1.173)

Since

ds2 = (2EKL + GKL) dXK dXL (1.174)

one also finds

D

Dt
ds2 = 2ĖKL dXK dXL. (1.175)

Comparison of Equation (1.173) and Equation (1.175) leads to

ĖKL = dklx
k
,Kxl

,L (1.176)

or

Ė = F T · d · F . (1.177)

Accordingly, the tensor Ė is the pullback of d and equivalently d is the push-forward of
Ė.

The time derivative of the Jacobian J can be derived as follows:

DJ

Dt
= DJ

Dxk
,K

Dxk
,K

Dt

= JXK
,k

(
Dxk

Dt

)

,K

= JXK
,kv

k
,K

= JXK
,kv

k
;lx

l
,K

= Jvk
;k. (1.178)

In this derivation, Equation (1.61) was used. The expression vk
;k corresponds to the diver-

gence of the velocity, also written as ∇ · v.

1.6 Objective Tensors

Observers are not always on the same place and they do not necessarily use the same time.
Consequently, observations are made by people in totally different places characterized by
local coordinate systems for time and space. In space, these coordinate systems are related
by a translation described by a vector c(t) and a rotation defined by an orthogonal matrix
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x1

x2

x3

x1′

x2′

x3′

c
x

x′

Figure 1.4 Frames of different observers

Q(t) (Figure 1.4). Notice that, since the observers generally move with a different speed,
c and Q are a function of the time t . The different wall-clock time can be expressed by a
shift of time. Hence,

x′(X, t ′) = c(t) + Q(t) · x(X, t) (1.179)

t ′ = t − a. (1.180)

Since Q is an orthogonal matrix Q−1 = QT and det Q = 1. Here, only rigid body motions
excluding reflections are considered and hence det Q = 1. The transformation in
Equation (1.179) conserves the distance and angles. Indeed,

dx′ = Q · dx (1.181)

and consequently

(ds ′)2 = dx′ · dx′ = dx · QT · Q · dx = dx · dx = ds2 (1.182)

and

dx′ · dy′ = dx · QT · Q · dy = dx · dy. (1.183)

It is generally accepted that material properties should be independent of the coordinate
frame of the observer. Hence, in describing these material properties, we would like to use
quantities that ensure that the frame independence is guaranteed. For a time-independent
rigid body motion, it is known that vectors a and second-order tensors b in the spatial
description transform according to

a′ = Q · a (1.184)
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and

b′ = Q · b · QT. (1.185)

Requiring this to be true for time-dependent rigid motions guarantees the spatial frame
indifference of any material law using such quantities. Vectors and tensors obeying
Equation (1.184) and Equation (1.185) for time-dependent rigid body motions are called
objective. From Equation (1.181), it is clear that dx is objective while time-differentiation
of Equation (1.179) reveals that the velocity v and the acceleration are not:

v′ = Q̇ · x + Q · v (1.186)

a′ = Q̈ · x + 2Q̇ · v + Q · a. (1.187)

Accordingly, v and a should not be used to describe material laws. That the acceleration is
not objective is well known and is the reason for the Coriolis force in mechanics. Since the
transformation in Equation (1.179) conserves the distance, one obtains (Equation (1.164)):

D

Dt
(ds ′)2 = 2dx′ · d ′ · dx′

= 2dx · QT · d ′ · Q · dx

= D

Dt
ds2 = 2dx · d · dx (1.188)

and consequently,

d = QT · d ′ · Q. (1.189)

This shows that the deformation rate tensor is objective. Notice that a second-order tensor
a, which maps an objective vector b into another objective vector c, is objective. Indeed,

c′ = a′ · b′ (1.190)

implies

c = (QT · a′ · Q) · b (1.191)

yielding

a = QT · a′ · Q. (1.192)

The time derivative of an objective vector or tensor is generally not objective. Indeed,
time differentiation of Equation (1.184) and Equation (1.185) yields

ȧ′ = Q̇ · a + Q · ȧ (1.193)

ḃ′ = Q̇ · b · QT + Q · ḃ · QT + Q · b · Q̇
T
. (1.194)

The terms that are underlined are the reason for the lack of objectivity.
Finally, all vectors and tensors in the material description (such as C) are objective

since they are not influenced by a change of the spatial frame of reference.
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1.7 Balance Laws

Balance laws are important statements describing the conservation of some physical quan-
tities. These quantities and the conservation thereof will be defined in the present section.

1.7.1 Conservation of mass

Each object in space is assigned a strictly positive scalar quantity called the mass. The
mass is assumed to be continuously distributed, which allows for the definition of density
ρ0(X, t) by letting the volume containing particle X go to zero:

ρ0(X) := lim
�V0→0

�M

�V0
, X ∈ �V0. (1.195)

�V0 is the volume the particle occupies in the reference configuration at time t = t0. The
density can change during the motion of a body. The density of a particle at time t originally
at X is

ρ(X, t) := lim
�V →0

�M

�V
, x(X, t) ∈ �V. (1.196)

�V is the volume the particle occupies at time t in the spatial configuration. The axiom
of the conservation of mass now states that “the time rate of change of the total mass of a
body is zero”. Accordingly,

D

Dt

(∫

V

ρ dv

)
= 0. (1.197)

1.7.2 Conservation of momentum

The momentum (also called linear momentum) of an infinitesimal mass dm moving with
a velocity v is defined as

v dm = ρv dv. (1.198)

The principle of conservation of momentum states that “the time rate of change of linear
momentum is equal to the total force F acting on a body”. Forces acting on a body are
either body forces Fb resulting from distant actions such as gravity, surface tractions Fs
resulting from immediate contact such as classical friction forces, or concentrated forces
Fc. Enough continuity is assumed such that the body force per unit volume f and the force
per unit area t (n) can be defined as follows:

dFb =: ρf dv (1.199)

dFs =: t (n) da. (1.200)

Accordingly,

D

Dt

∫

V

ρv dv =
∮

A

t (n) da +
∫

V

ρf dv +
∑

Fc (1.201)

where A denotes the surface of the body at stake. This principle is also known as Newton’s
second law.
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1.7.3 Conservation of angular momentum

The angular momentum of a particle with mass dm, velocity v and location x is defined as

x × v dm (1.202)

where × symbolizes the vector product (also called the cross product) of two vectors. The
vector product of two vectors a and b is a one-form c satisfying

c · a = c · b = 0 (1.203)

and

c · c = (a · a)(b · b) − (a · b)2. (1.204)

Accordingly, gi × gj is proportional to gk . The proportionality constant λ can be deter-
mined from Equation (1.204):

λ2gkk = giigjj − (gij )
2 = cofactor(gkk). (1.205)

Since g� is the inverse of g�, one finds

gkk = cofactor(gkk)

det g�
(1.206)

leading to

gi × gj = eijkg
k
√

det g�. (1.207)

Similarly, the moment of a force F acting at a location x is defined as x × F . The
principle of conservation of angular momentum states that “the time rate of change of
angular momentum is equal to the total moment due to forces and couples acting on the
body”. Hence,

D

Dt

∫

V

ρx × v dv =
∮

A

x × t (n) da +
∫

V

ρx × f dv +
∑

x × Fc +
∑

Mc. (1.208)

Here Mc represents concentrated moments. It is assumed that there are no distributed
moments, which essentially means that this treatise is limited to nonpolar theories. Readers
interested in polar theories (used, for example, for the description of liquid crystals) are
referred to (Eringen 1980).

1.7.4 Conservation of energy

This principle states that “the time rate of change of the sum of the kinetic energy K and
internal energy E is equal to the sum of the work rate of all forces and couples W acting
on the body and all other energies U that enter or leave the body per unit time”. The total
kinetic energy of a body is defined by

K = 1

2

∫

V

ρv · v dv (1.209)
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and the rate of work of all forces and couples by

W =
∮

A

t (n) · v da +
∫

V

ρf · v dv +
∑

Fc · vc +
∑

Mc · ωc (1.210)

where ωc is the angular velocity of the particle Mc is acting.
The internal energy is a new quantity. It is assumed that it is continuously distributed

such that the energy density or energy per unit mass ε can be defined as

E =
∫

V

ρε dv. (1.211)

Other energies can, for example, be of thermal, chemical or electromagnetic origin. Here
we limit the discussion to thermal energy. In that case, U amounts to

U = −
∮

A

q · da +
∫

V

ρh dv +
∑

Hc (1.212)

where q is the heat flux through area da (the minus sign implies that the body is los-
ing energy if q points outwards), h is the body heat density and Hc is the heat due to
concentrated heat sources. Consequently, the principle of conservation of energy reads

D

Dt

∫

V

(
ρε + 1

2
ρv · v

)
dv =

∮

A

(t (n) · v − q · n) da

+
∫

V

(ρf · v + ρh) dv +
∑

Hc +
∑

Fc · vc +
∑

Mc · ωc. (1.213)

This is also called the first law of thermodynamics.

1.7.5 Entropy inequality

This principle, also called the second law of thermodynamics or Clausius–Duhem inequal-
ity, states that “the time rate of change of the entropy H of a body is never less than the
sum of the entropy s entering the body through its surface and the entropy B generated by
body sources”. Hence,

DH

Dt
≥ B +

∮

A

s · da. (1.214)

Defining the entropy density η and the entropy source density b by

H =
∫

V

ρη dv (1.215)

and

B =
∫

V

ρb dv (1.216)

one finds
D

Dt

∫

V

ρη dv ≥
∫

V

ρb dv +
∮

A

s · da. (1.217)

Notice that this is an inequality. If other phenomena are considered such as electromagnetic
actions, additional laws apply. Here we concentrate on thermomechanical processes.
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1.7.6 Closure

At first sight, the formulation of the balance laws does not look very promising for our
primary goal, that is, the determination of x(X, t). Indeed, a lot of extra unknowns have
been defined: ρ, t (n), ε, η, . . . On the other hand, some of the new variables are formulated
in terms of previously defined unknowns such as K(v). The relevance of the balance laws
is based on the relationship they establish with the physical world through quantities such
as f and h. They are fundamental axioms based on physical observations and as such
indispensable. The extra unknowns will be taken care of later on by the material description
(constitutive equations).

1.8 Localization of the Balance Laws

An important notion in the classical theory of continuum mechanics is the localization
of the balance laws. In the previous section, the balance laws were formulated for finite
bodies. The localization principle postulates that the balance laws are valid for any body,
no matter how small. This strong assumption leads to a differential form of the balance
laws. Nonlocal theories exist (Eringen 1976), which do not make this assumption but rather
assume a sphere of influence for every point.

1.8.1 Conservation of mass

Since dv = J dV , one can write Equation (1.197) as

D

Dt

(∫

V0

ρJ dV

)
= 0. (1.218)

V0 is the volume of the mass at time t = t0 and as such not dependent on time. Hence,
Equation (1.218) is equivalent to

∫

V0

D

Dt
(ρJ ) dV = 0. (1.219)

Since this equation must be satisfied for any volume, the balance of mass yields

D

Dt
(ρJ ) = 0 (1.220)

which can also be written as (Equation (1.178))

ρ∇ · v + Dρ

Dt
= 0 (1.221)

or

∂ρ

∂t
+ ∇ρ · v + ρ∇ · v = 0 (1.222)

which is equivalent to

∂ρ

∂t
+ ∇ · (ρv) = 0. (1.223)
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1.8.2 Conservation of momentum

Equation (1.201) can be written as
∫

V0

D

Dt
(ρJv) dV =

∮

A

t (n) da +
∫

V0

ρJf dV +
∑

Fc. (1.224)

Before localization can be applied to Equation (1.224) the surface integral in the right-
hand side has to be converted to a volume integral. To this end, the original conservation
of momentum Equation (1.201) is applied to the volume in Figure 1.5. In addition, the
mean value theorem is used, stating that for a continuous function φ in a domain � a point
x∗ ∈ � exists such that

∫

�

φ(x) d� = φ(x∗)
∫

�

d�. (1.225)

Hence

D

Dt
(ρ∗v∗�v) = t (n)�a + t (−nk)�ak + ρ∗f ∗�v (1.226)

assuming there are no point loads in the volume �v. Newton’s third law (action = reaction)
dictates that

t (−nk) = −t (nk) (1.227)

x1

x2

x3

g1

g2

g3

n

t (n)

t (−n1)

t (−n2)

t (−n3)

−n1

−n2

−n3

Figure 1.5 Equilibrium of an infinitesimal mass element
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and Equation (1.226) reduces to

D

Dt
(ρ∗v∗�v) = t (n)�a − t (nk)�ak + ρ∗f ∗�v. (1.228)

Notice that n1, n2 and n3 are positive in the direction of g1, g2 and g3 respectively. Since
in the limit �v → 0

lim
�v→0

�v

�a
= 0 (1.229)

for an infinitesimal volume, Equation (1.226) reduces to

t (n)�a = t (nk)�ak. (1.230)

Since

�ak = nk�a (1.231)

where nk are the components of the one-form n, that is, n = nkg
k, one finds

t (n) = t (nk)nk. (1.232)

Notice that the normal to a surface is a one-form since the inner product with a length
vector produces a scalar volume. Denoting the traction vector on a surface with unit normal
nk by tk , Equation (1.232) reads

t (n) = tknk. (1.233)

Accordingly, the stress on a surface with normal n is a linear combination of the
stresses on surfaces perpendicular to the coordinate axes. Substituting Equation (1.233)
into Equation (1.224) and applying Cauchy’s theorem , which reads

∮

A

tknk da =
∫

V

tk
;k dv (1.234)

one finds after localization

D

Dt
(ρJv) = tk

;kJ + ρf J (1.235)

at locations without concentrated forces. Applying the balance of mass yields

ρ
Dv

Dt
= tk

;k + ρf (1.236)

or

ρ

[
∂v

∂t
+ (v ⊗ ∇) · v

]
= tk

;k + ρf . (1.237)
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1.8.3 Conservation of angular momentum

Localization of Equation (1.208) at points without concentrated forces nor moments, taken
Equation (1.232) into account, yields

D

Dt
(ρJx × v) = J (x × tk),k + ρJx × f (1.238)

or

D

Dt
(ρJ )x × v + Jx × ρ

Dv

Dt
= Jx,k × tk + Jx × tk

,k + Jx × ρf . (1.239)

Using the balance of mass, Equation (1.220), and the balance of momentum, Equation (1.236),
yields

gk × tk = 0 (1.240)

since x,k = gk . The meaning of Equation (1.240) will become clear in Section 1.9.

1.8.4 Conservation of energy

Similar operations as in the previous section convert Equation (1.213) into

D

Dt

(
ρJε + 1

2
ρJv · v

)
= J (v · tk);k − ∇ · qJ + ρJf · v + ρJh (1.241)

or

ρJ
Dε

Dt
+ Jv · ρ

Dv

Dt
= Jv · tk

;k + Jv;k · tk − J∇ · q + Jv · ρf + Jρh. (1.242)

Application of the balance of momentum finally leads to

ρ
Dε

Dt
= v;k · tk − ∇ · q + ρh. (1.243)

Equation (1.243) shows that the change of the internal energy per unit of time is balanced
by the stress power (v;k · tk), the heat influx (−∇ · q) and the heat source power (ρh).

1.8.5 Entropy inequality

Along the same lines Equation (1.217) is reduced to

ρ
Dη

Dt
≥ ρb + ∇ · s. (1.244)

1.9 The Stress Tensor

In the previous section, it was explained that tk(x) is the stress on an infinitesimal surface
at x perpendicular to gk . The components σ kl of tk are defined by

tk = σ klgl . (1.245)
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Now, t (n) = tknk can be rewritten as

t (n) = σ klnkgl (1.246)

or, since nk = gk · n,

t (n) = σ klgl · (gk · n) = (σ klgl ⊗ gk) · n (1.247)

which shows that σ kl is a second-order contravariant tensor (the so-called Cauchy stress
tensor) and that the stress vector on an infinitesimal surface perpendicular to n can be
obtained by the scalar product of the transpose of the stress tensor at that point with n, in
component notation:

t l
(n) = σ klnk. (1.248)

The Cauchy stress is also called the true stress since it is defined in the spatial state of
reference. It is the stress the deformed state truly experiences.

An important property of σ kl follows from Equation (1.240) in component notation:

eij lg
j

k σ kl = 0 (1.249)

where eij l is the alternating symbol. Since g
j

k = δ
j

k one finds

σ kl = σ lk (1.250)

that is, the stress tensor is symmetric. Letting

σ := σ klgk ⊗ gl (1.251)

Equation (1.250) is equivalent to

σ = σ T (1.252)

and t (n) = σT · n, Equation (1.247), is transformed into t (n) = σ · n.
For the special case of tk , Equation (1.247) reduces to

tk = σT · gk. (1.253)

The term v ,k · tk in the energy balance, Equation (1.243), becomes (see also Equation (1.163))

v ,k · tk =gk · (∇ ⊗ v) · σT · gk

= (v ⊗ ∇) : σ T = (v ⊗ ∇) : σ (1.254)

yielding for the complete energy equation

ρ
Dε

Dt
= (v ⊗ ∇) : σ − ∇ · q + ρh. (1.255)

Using the definition in Equation (1.166)

ρ
Dε

Dt
= l : σ − ∇ · q + ρh (1.256)



DISPLACEMENTS, STRAIN, STRESS AND ENERGY 33

or

ρ
Dε

Dt
= d : σ − ∇ · q + ρh. (1.257)

Since σ is symmetric, all its eigenvalues are real. The meaning of the eigenvalues can
be clarified by looking for the maximum normal stress in a point. Since t (n) = n · σ , the
normal stress σ on an infinitesimal surface with normal n is given by

σ = n · σ · n. (1.258)

Maximizing σ with the constraint ‖n‖ = n · g� · n = 1 yields

∂

∂n

[
n · σ · n − λ(n · g� · n)

] = 0. (1.259)

g� is the contravariant metric tensor whose components gkl satisfy

gkl = gk · gl . (1.260)

Equation (1.259) leads to the eigenvalue problem

(σ − λg�) · n = 0. (1.261)

Similar to Equation (1.121), one can write

σ =
3∑

i=1

λiσ (ni ⊗ ni ) (1.262)

where ni are the complementary basis vectors to the eigen one-forms of σ . However, con-
trary to C the tensor σ is not positive definite, since σ in Equation (1.258) can be negative
(pressure). In general, the stress eigenvectors do not coincide with the strain eigenvectors.
Consequently, ni in Equation (1.262) is usually distinct from ni in Equation (1.136).

The force on an infinitesimal area da can be written as

dF = t (n) da = σ · n da

= σ · da

= σ · JF−T · dA

= Jσ · (F−T · N) dA

=: T (N) dA (1.263)

where Equation (1.65) was used. The vector T (N) represents an equivalent stress vector on
the surface in the reference configuration and satisfies

T (N) = Jσ · F−T · N . (1.264)

Defining the Piola–Kirchhoff tensor of the first kind by an expression similar to Equa-
tion (1.247):

T (N) := P T · N (1.265)
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one finds

P = JF−1 · σ . (1.266)

Notice that P is a two-point tensor, in component notation:

P Kk = JXK
,lσ

lk. (1.267)

The tensor P is not symmetric. Indeed, σ = σ T is equivalent to

F · P = P T · F T. (1.268)

To remediate this, a Piola–Kirchhoff stress tensor of the second kind, S, is defined by

S := P · F−T = JF−1 · σ · F−T. (1.269)

This tensor is symmetric and satisfies

S = SKLGK ⊗ GL. (1.270)

One also defines the Kirchhoff stress τ by

τ := Jσ . (1.271)

Equation (1.257) can now also be written as

ρ0
Dε

Dt
= d : τ − J∇ · q + ρ0h. (1.272)

In the balance equations in the previous section, a couple of quantities were defined on
surfaces in the spatial configuration such as the heat vector q. Similar to the derivation in
Equation (1.263), an equivalent quantity in the reference configuration is defined by

q · da = Q · dA (1.273)

yielding

Q = Jq · F−T. (1.274)

Analogously, one defines

S = J s · F−T (1.275)

for the entropy flux. Do not confuse the infinitesimal length dS, Equation (1.8), with the
Piola–Kirchhoff stress tensor of the second kind S, Equation (1.269), and the entropy
vector S, Equation (1.275). The context should clarify what is meant.

1.10 The Balance Laws in Material Coordinates

In Sections 1.7 and 1.8, the balance laws were derived in spatial coordinates. In some
cases (think of objective quantities), it is advantageous to work in material coordinates.
The material form can be derived by starting over with the global form, or by simply
converting spatial quantities into material quantities.
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1.10.1 Conservation of mass

The spatial form D(ρJ )/Dt can be trivially converted by integration into

ρJ = ρ0. (1.276)

Substitution into the spatial form yields

D

Dt
(ρ0) = 0. (1.277)

1.10.2 Conservation of momentum

Substitution of Equation (1.253) into Equation (1.236) yields the spatial form

(σ T · gk);k + ρf = ρ
Dv

Dt
(1.278)

or
[
σml(gl ⊗ gm) · gk)

]

;k
+ ρf = ρ

Dv

Dt
(1.279)

yielding

(σ klgl );k + ρf = ρ
Dv

Dt
(1.280)

in component form

σ kl
;k + ρf l = ρ

Dvl

Dt
. (1.281)

Notice that the semicolon in Equation (1.281) stands for the covariant differentiation of a
second-order tensor (gm in Equation (1.280) is not constant in space). For second-order
contravariant tensors, one finds

σ ,m = (σ klgk ⊗ gl),m

= σ kl
,mgk ⊗ gl + σ kl ∂gk

∂xm
⊗ gl + σ klgk ⊗ ∂gl

∂xm

= σ kl
,mgk ⊗ gl + σ kl ∂2zp

∂xm∂xk

∂xq

∂zp
gq ⊗ gl + σ klgk ⊗ ∂2zp

∂xm∂xl

∂xq

∂zp
gq

=
[
σ kl

,m + σql ∂2zp

∂xm∂xq

∂xk

∂zp
+ σ kq ∂2zp

∂xm∂xq

∂xl

∂zp

]
gk ⊗ gl . (1.282)

Hence,

σ kl
;m = σ kl

,m + σql

{
k

mq

}
+ σ kq

{
l

mq

}
(1.283)

where the braces denote the Christoffel symbols of the second kind (cf Equation (1.80)).
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Substituting Equation (1.267) and Equation (1.276) into Equation (1.281) yields

J (J−1xk
,KP Kl);k + ρ0f

l = ρ0
Dvl

Dt
(1.284)

or

xk
,K(P Kl);k + ρ0f

l = ρ0
Dvl

Dt
(1.285)

since (J−1xk
,K),k = 0. This identity can be obtained by realizing that J−1 is the Jacobian

determinant of the inverse deformation X(x). Consequently, Equation (1.59) becomes

xk
,K = 1

J−1
cofactor (XK

,k)

= 1
2JeklmeKLMXL

,lX
M
,m (1.286)

Accordingly, focusing on rectangular coordinates for simplicity,

(J−1xk
,K),k = 1

2eklmeKLM(XL
,lkX

M
,m + XL

,lX
M
,mk) = 0 (1.287)

since by switching l and k or m and k the permutation symbols change sign. Another
derivation is given by (Ogden 1984). Equation (1.285) finally yields

P Kl
;K + ρ0f

l = ρ0
Dvl

Dt
. (1.288)

Notice that the first term involves covariant differentiation of a contravariant two-point
tensor. One finds (Eringen 1975)

(P KkGK ⊗ gk),L = P Kk
,LGK ⊗ gk + P Kk ∂GK

∂XL
⊗ gk + P KkGK ⊗ ∂gk

∂xl
xl
,L

=
(

P Kk
,L + P Kk ∂2ZM

∂XL∂XN

∂XK

∂ZM
+ P Kn ∂2zm

∂xl∂xn

∂xk

∂zm
xl
,L

)
GK ⊗ gk.

(1.289)

Accordingly,

P Kk
;L = P Kk

,L + P Nk

{
K

LN

}
+ P Kn

{
k

ln

}
xl
,L. (1.290)

In vector form, Equation (1.288) yields

∇0 · P + ρ0f = ρ0
Dv

Dt
(1.291)

or

∇0 · (S · F T) + ρ0f = ρ0
Dv

Dt
(1.292)

where ∇0 represents the gradient in material coordinates.
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1.10.3 Conservation of angular momentum

The material form of σ = σ T was derived in Section 1.8 and can be written as

F · P = P T · F T (1.293)

or
S = ST (1.294)

depending on whether the first or second Piola–Kirchhoff stress tensor is used.

1.10.4 Conservation of energy

Since
q = J−1Q · F T (1.295)

σ = J−1F · S · F T (1.296)

d = F−T · Ė · F−1 (1.297)

Equation (1.257) now yields

ρ0
Dε

Dt
= Ė : S − ∇0 · Q + ρ0h. (1.298)

Because of the expressions for work power in Equation (1.272) and Equation (1.298), it
is said that (d, τ ) and (Ė, S) are conjugate pairs in the spatial and material description
respectively. Indeed,

d : τ = Ė : S. (1.299)

Recall that d is the push-forward tensor of Ė. Equivalently, τ is called the push-forward
of S and equivalently S is the pullback of τ . One obtains

S = F−1 · τ · F−T. (1.300)

1.10.5 Entropy inequality

Along the same lines, one obtains for the material equivalent of Equation (1.244)

ρ0
Dη

Dt
≥ ρ0b + ∇0 · S (1.301)

where S is the entropy flux vector in material coordinates.
The entropy inequality plays an important role in the derivation of admissible constitu-

tive equations. For thermal processes, the entropy influx and source can be written as the
corresponding heat influx and source, divided by the absolute temperature θ . Consequently,

S = −Q

θ
+ S1 (1.302)

b = h

θ
+ b1 (1.303)
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where S1 and b1 are the entropy influx and source due to other processes respectively.
For simple thermomechanical processes that are considered here, S1 and b1 are zero.
Accordingly, the entropy inequality reads

ρ0
Dη

Dt
≥ ρ0

h

θ
− ∇0 · Q

θ
(1.304)

or

ρ0
Dη

Dt
≥ ρ0

h

θ
− 1

θ
∇0 · Q + 1

θ2
Q · ∇0θ. (1.305)

Solving the energy balance Equation (1.298) for ∇0 · Q and substituting into Equation (1.305)
yields

ρ0

(
η̇ − ε̇

θ

)
+ 1

θ
Ė : S − 1

θ2
Q · ∇0θ ≥ 0. (1.306)

This is the preferred form that will be used for the derivation of the constitutive equations.

1.11 The Weak Form of the Balance of Momentum

In this section, an alternative form of the balance of momentum will be derived, which will
form the basis for much of the finite element formulation to follow in subsequent chapters.
In the material formulation, the weak form is generally known as the principle of virtual
work and in the spatial description it is known as the virtual power principle. It will be
shown that the strong form deduced so far, Equation (1.288), is completely equivalent to
the weak form by first deriving the weak form from the strong form and subsequently the
strong form from the weak form. General curvilinear coordinates are assumed throughout.
To obtain the equations in rectangular coordinates, replace the covariant differentiation by
partial differentiation.

1.11.1 Formulation of the boundary conditions (material coordinates)

The balance of momentum in material form

P Kk
;K + ρ0f

k = ρ0
D2uk

Dt2
(1.307)

will be supplemented here with boundary conditions. Suppose that the material volume
V0 is surrounded by a surface A0 consisting of internal surfaces A0i , surfaces on which
the displacements are described A0u and surfaces on which the traction is defined, A0t .
Accordingly,

T +
(N+)

+ T −
(N−)

= 0 on A0i (1.308)

u = u on A0u (1.309)

T (N) = T (N) on A0t . (1.310)
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At internal surfaces the material is connected, but it might change its properties, for
example, due to a change of material. Equation (1.308) is equivalent to Newton’s third
law: action equals reaction. The plus and minus sign denote the two sides of the internal
surface. Since

T (N) = T KNK (1.311)

and N− = −N+, Equation (1.308) also reads

(T K+ − T K−
)N+

K =:
[
T K

]
N+

K = 0. (1.312)

This is also called the traction continuity condition. Note that Equation (1.307) is equivalent
to

P Kk
;Kgk + ρ0f

kgk = ρ0
D2uk

Dt2
gk (1.313)

and hence,

P Kk
;Kg L

k + ρ0f
kg L

k = ρ0
D2uk

Dt2
g L

k (1.314)

where g L
k := gk · GL are called shifters since they move quantities from one coordinate

system into another. Indeed, for a vector v one has

v = vkgk ⇒ v · GL = vkg L
k ⇒ V L = vkg L

k . (1.315)

Accordingly, Equation (1.307) is equivalent to

P Kk
;Kg L

k + ρ0f
L = ρ0

D2uL

Dt2
. (1.316)

1.11.2 Deriving the weak form from the strong form (material
coordinates)

Let us consider an infinitesimal perturbation of the displacement field δu with components
δuk satisfying the geometric boundary conditions in Equation (1.309). Accordingly,

δu = 0 on A0u. (1.317)

Taking the scalar product of the vector Equation (1.307) with the one-form δu and inte-
grating over the material volume leads to

∫

V0

[
P Kk

;K + ρ0

(
f k − D2uk

Dt2

)]
δuk dV = 0. (1.318)

Since (the usual differentiation rules also apply to covariant differentiation)

P Kk
;Kδuk = (P Kkδuk);K − P Kkδuk;K (1.319)
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and applying Cauchy’s theorem, Equation (1.234), one obtains
∫

A0

P KkNKδuk dA −
∫

V0

{
P Kkδuk;K −

[
ρ0

(
f k − D2uk

Dt2

)]
δuk

}
dV = 0 (1.320)

or
∫

V0

P Kkδuk;K dV =
∫

A0t

T
K

(N)δUK dA +
∫

V0

ρ0f
KδUK dV −

∫

V0

ρ0
D2uK

Dt2
δUK dV

(1.321)

since T K+
(N+)

+ T K−
(N−)

= 0 on A0i , δUK = 0 on A0u and T (N) = T (N) on A0t . Through
the relationship

P Kk = SKLxk
,L (1.322)

one obtains

P Kkδuk;K = SKLxk
,Lδxk,K = SKLxk

,Lδxm
,Kgkm = SKLδEKL. (1.323)

Indeed,

SKLδEKL = SKLδ
(

1
2xk

,Lxm
,Kgkm − 1

2GKL

)

= 1
2SKL(δxk

,Lxm
,K + xk

,Lδxm
,K)gkm

= SKLxk
,Lδxm

,Kgkm (1.324)

since both SKL and gkm are symmetric. Notice that covariant differentiation does not apply
to x. Indeed, from

u = o + x − X (1.325)

one obtains

u,K = x,K − GK (1.326)

leading to (see Equation (1.25))

uk
;K = xk

,K − gk
K. (1.327)

Concluding, Equation (1.321) can also be written as
∫

V0

SKLδEKL dV =
∫

A0t

T
K

(N)δUK dA +
∫

V0

ρ0f
KδUK dV −

∫

V0

ρ0
D2UK

Dt2
δUK dV.

(1.328)

The left-hand side is called the internal virtual work, the first term on the right-hand side is the
virtual work due to external tractions, the second term is due to distributed forces and the last
term is due to inertia. Notice that, although all quantities in Equation (1.328) are expressed
in terms of material coordinates, some are defined as a function of their spatial counterparts
such as T (N) and f through T (N)(X, t) dA = t (n)(X, t) da and f K(X, t)GK = f k(X, t)gk .
Hence, both T (N) and f K are a function of the deformation. For example, if a rotating body
expands because of centrifugal loads, f K changes.
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1.11.3 Deriving the strong form from the weak form (material
coordinates)

Starting from the weak form in Equation (1.321) and applying Equation (1.319) and Cauchy’s
theorem one obtains

∫

A0

P KkNKδuk dA −
∫

V0

P Kk
;Kδuk dV

−
∫

A0t

T
k

(N)δuk dA −
∫

V0

ρ0

(
f k − D2uk

Dt2

)
δuk dV = 0. (1.329)

Since P KkNK = T k
(N), A0 = A0u ∪ A0t ∪ A0i and δu = 0 for A0u, one obtains

∫

A0t

(
T k

(N) − T
k

(N)

)
δuk dA +

∫

A0i

(
T k+

(N+)
+ T k−

(N−)

)
δuk dA

−
∫

V0

(
P Kk

;K + ρ0f
k − ρ0

D2uk

Dt2

)
δuk dV = 0. (1.330)

So far we only specified δu to be a virtual displacement field satisfying the geometric
boundary conditions. Now, we require Equation (1.330) to be valid not only for one
special δu but also for any δu satisfying δu = 0 on A0u. Because of the arbitrariness of
δu, the functional analysis density theorem applies (for a proof, the reader is referred to
(Belytschko et al. 2000)) requiring the coefficients of δuk in each term in Equation (1.330)
to be zero. Accordingly,

T k
(N) − T

k

(N) = 0 on A0t (1.331)

T k+
(N+)

+ T k−
(N−)

on A0i (1.332)

P Kk
;K + ρ0f

k = ρ0
D2uk

Dt2
on V0 (1.333)

which is the strong form.

1.11.4 The weak form in spatial coordinates

Here again, the starting point is the strong form, Equation (1.281)

(σ klgl ),k + ρf lgl = ρ
Dvl

Dt
gl (1.334)

subject to

tk+
(n+)

+ tk−
(n−)

on Ai (1.335)

u = u on Au (1.336)

tk(n) − t
k
(n) = 0 on At . (1.337)
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In spatial coordinates, a virtual velocity field δv is selected satisfying δv = 0 on Au.
The reason for this will become clear in the derivation. Scalar multiplication yields

∫

V

[
(σ klgl),k · δv + ρf lgl · δv

]
dv =

∫

V

ρ
Dvl

Dt
gl · δv dv. (1.338)

Since

(σ klgl),k · δv = (σ klgl · δv),k − σ klgl · δv,k (1.339)

and

δv,k = (δvmgm),k = δvm;kgm (1.340)

one obtains
∫

V

[
(σ klδvl),k − σ klδvl;k + ρ

(
f l − Dvl

Dt

)
δvl

]
dv = 0 (1.341)

or
∫

A

σklnkδvl da −
∫

V

[
σ klδdkl − ρ

(
f l − Dvl

Dt

)
δvl

]
dv = 0. (1.342)

Indeed, dkl = (vk;l + vl;k)/2 and σ kl = σ lk. Taking into account the boundary conditions
finally yields

∫

V

σ klδdkl dv =
∫

At

t
l
(n)δvl da +

∫

V

ρf lδvl dv −
∫

V

ρ
Dvl

Dt
δvl dv. (1.343)

Equation (1.53) expresses the principle of virtual power. Notice that the principle of
virtual work is of no avail here since the expression σ klδul;k cannot be simplified because of
the presence of nonlinear terms in the definition of the Eulerian strain measure. Accordingly,
the spatial description implies a rate formulation and necessitates a thorough discussion of
objective rate tensors. This can be largely avoided by using the material description.

Naturally, the strong form can also be obtained starting from the weak form. Interested
readers are referred to (Belytschko et al. 2000).

1.12 The Weak Form of the Energy Balance
We start from the strong form expressed by Equation (1.298)

ρ0
Dε

Dt
= Ė : S − ∇0 · Q + ρ0h on V (1.344)

completed by appropriate boundary conditions: we assume that the temperature T and the
flux Q are known on A0T and on A0Q respectively. Furthermore, the flux normal to an
interface Ai is continuous.

T = T on A0T (1.345)

Q = Q on A0Q (1.346)

Q+ · N+ + Q− · N− = 0 on A0i . (1.347)
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To obtain the weak form, we consider again an infinitesimal perturbation of the indepen-
dent variable field T , satisfying the “geometric” boundary conditions in Equation (1.345).
Hence,

δT = 0 on A0T . (1.348)

Multiplying Equation (1.343) with δT and integrating over V , one obtains
∫

V0

ρ0
Dε

Dt
δT dV =

∫

V0

(Ė : S − ∇0 · Q + ρ0h)δT dV. (1.349)

The second term on the right can be written as

−
∫

V0

∇0 · QδT dV = −
∫

V0

QK
,KδT dV

= −
∫

V0

[
(QKδT ),K − QKδT,K

]
dV

= −
∫

A0Q

δT QKNK dA +
∫

V0

QKδT,K dV. (1.350)

This step is essential to reduce the degree of differentiation of T in the resulting equation
and is similar to Equations (1.318) to (1.320) for the balance of momentum. Indeed, the
constitutive equations in Section 1.13 will show that Q ∼ −∇0T . Consequently, ∇0 · Q ∼
−∇0 · ∇0T = −∇2

0T and ∇0 · Q δT is the product of two terms of which the first one is
twice differentiated, the second one not at all. On the other hand, both terms in QKδT,K

are differentiated only once. This implies that the shape functions in the finite element
formulation can have a lesser degree of smoothness and still comply with Equation (1.350).

Substitution of Equation (1.350) into Equation (1.349) yields

−
∫

V0

Q · δ∇0T dV =
∫

V0

Ė : SδT dV −
∫

A0Q

Q · NδT dA +
∫

V0

ρ0

(
h − Dε

Dt

)
δT dV.

(1.351)

This equation is the analogue of Equation (1.328). Similar to what was said in Section
1.11.3, the strong form can be derived from the weak form if one allows the temperature
perturbation to be absolutely general provided the “geometric” boundary conditions are
satisfied.

1.13 Constitutive Equations

1.13.1 Summary of the balance equations

In Section 1.10, the balance equations were derived in material coordinates. They amount to

ρJ = ρ0 (1 equation) (1.352)

∇0(S · F T) + ρ0f = ρ0v̇ (3 equations) (1.353)

S = ST (3 equations) (1.354)
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ρ0ε̇ = Ė : S − ∇0 · Q + ρ0h (1 equation) (1.355)

ρ0

(
η̇ − ε̇

θ

)
+ 1

θ
Ė : S − 1

θ2
Q · (∇0θ) ≥ 0. (1.356)

In sum, there are eight equations and one inequality. The unknowns are ρ (1), J (1), S (9),
F (9), v (3), ε (1), E(6), Q (3), η (1) and θ (1) which yields 35 unknowns. The variables
J , F , v and E can be reduced to x (3 unknowns) since

J = det(xk
,K) (1.357)

F = xk
,Kgk ⊗ GK (1.358)

v = ẋ (1.359)

E = 1
2 (xk

,Kxl
,Lgkl − GKL)GK ⊗ GL. (1.360)

In that way, 19 unknowns remain. Accordingly, we need another 11 equations to solve the
problem for x(X, t) and θ(X, t). This is not surprising, since the material properties were
not considered so far. All balance equations apply to steel as well as to wood, water or
air. It is well known that these materials behave quite differently and it is the task of the
constitutive equations to describe these different kinds of behavior. It looks like a huge
task to tackle but luckily there are some physical principles that may guide us. Here I wish
to adhere to a simplified form of the axiomatic formulation found in (Eringen 1980) since
it leads us in a systematic way to the constitutive equations of widely different materials.

1.13.2 Development of the constitutive theory

The constitutive equations bridge the gap between physically observable quantities (inde-
pendent variables in the constitutive equations) and the quantities arising in the balance
laws (dependent variables in the constitutive equations). For thermomechanical processes,
the observable quantities are the location x(X, t) and the temperature θ(X, t). All other
variables such as the stress S, the flux Q, the internal energy ε and the entropy η are
measured indirectly by the effect they produce on the displacements and the temperature.
For instance, the stress is usually measured through strain gauges. Accordingly, the value
of the dependent variables (S, Q, ε, and η – the density ρ is not considered as a depen-
dent variable but rather immediately eliminated through Equation (1.352)) at X at time t is
assumed to be a function of the value of the independent variables (x, θ ) at all former times
and in the complete body. This can be written in the form of the following functionals:

S(X, t) = S[x(X′, t ′), θ(X′, t ′), X, t] (1.361)

Q(X, t) = Q[x(X′, t ′), θ(X′, t ′), X, t] (1.362)

ε(X, t) = ε[x(X′, t ′), θ(X′, t ′), X, t] (1.363)

η(X, t) = η[x(X′, t ′), θ(X′, t ′), X, t] (1.364)

t ′ ≤ t, X′ ∈ V0.

Hence, a priori it is assumed that the deformation and temperature in the complete
body at all former times can have an impact on the value of any dependent variable at
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X and t . This formulation includes memory effects (e.g. viscosity) and nonlocal effects
(atomic forces).

There are two major postulates that must be obeyed by the constitutive equations.
First, there is the principle of objectivity, which states that the constitutive equations must
not depend on the spatial motion of the observer. This principle has already been briefly
discussed in Section 1.6. There, it was emphasized that only objective tensors should be
used in constitutive equations. What does this translate to in Equations (1.361) to (1.364)?
Since the left-hand side of these equations is formulated in terms of material quantities,
objectivity is no problem. What about the right-hand side? In general, a time-dependent
rigid body motion combined with a time-shift maps x(X, t) into

x(X′, t ′) = Q(t ′) · x(X′, t ′) + b(t ′) (1.365)

Q · QT = QT · Q = I , t ′ = t ′ − a. (1.366)

This mapping can be split into a time-dependent translation, a time-shift and a time-
dependent rotation.

A time-dependent translation must not change the constitutive equation. Taking the
translation to be x(X, t ′) one obtains, Equation (1.361),

S(X, t) = S[x(X′, t ′) − x(X, t ′), θ(X′, t ′), X, t], (1.367)

which means that only the relative position with respect to x(X, t ′) is kept.
A time shift must not influence Equation (1.367) either. Taking the shift to be t one obtains

S(X, t) = S[x(X′, t ′ − t) − x(X, t ′ − t), θ(X′, t ′ − t), X, 0]. (1.368)

Consequently, the explicit dependence on t drops out:

S(X, t) = S[x(X′, t ′) − x(X, t ′), θ(X′, t ′), X]. (1.369)

Finally, a time-dependent rotation of the spatial frame of reference should also leave the
constitutive equation unaltered. One obtains

S(X, t) = S
[
Q(t) · (x(X′, t ′) − x(X, t ′)), θ(X′, t ′), X

]
(1.370)

for an arbitrary rotation Q(t).
The second postulate states that the constitutive equations must be form-invariant with

respect to a certain class of rotations Q and translations B of the material frame, which
are the result of material symmetries and material homogeneities. A lot of materials exhibit
symmetries with respect to a specific class of rotations due to the intrinsic crystallographic
structure. For example, single crystals are frequently orthotropic, which means that mutually
orthogonal planes exist in the material frame with respect to which the material properties
are symmetric. A usual assumption in polycrystals is the form-invariance with respect to
the full group of rotations: this means that the material properties are independent of the
direction and this is called isotropy. For a homogeneous material, the properties are not
changed by an arbitrary translation. Once the classes {Q} and {B} are determined on
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the basis of observations of the material behavior, the constitutive equations should be
form-invariant with respect to transformations of the type

X = Q · X + B, QT · Q = Q · QT = I , det Q = ±1 (1.371)

mapping the material frame X into X. Notice that the axiom of objectivity involves
transformations of the spatial frame, whereas the axiom of material invariance concerns
transformations of the material frame.

In order to obtain further simplifications, the expressions for the independent quantities
are expanded in a Taylor series. Taylor expansion of x(X′, t ′) − x(X, t ′) in space yields

x(X′, t ′) − x(X, t ′) = x,K1(X, t ′)
(
X′K1 − XK1

)

+ 1

2!
x,K1K2(X, t ′)

(
X′K1 − XK1

) (
X′K2 − XK2

)
+ · · · (1.372)

Similarly,

θ(X′, t ′) = θ(X, t ′) + θ,K1(X, t ′)
(
X′K1 − XK1

)

+ 1

2!
θ,K1K2(X, t ′)

(
X′K1 − XK1

) (
X′K2 − XK2

)
+ · · · (1.373)

and Equation (1.98) can be replaced by

S(X, t) = S[Q(t) · x,K1(X, t ′), Q(t) · x,K1K2(X, t ′), . . . ,

θ(X, t ′), θ,K1(X, t ′), θ,K1K2(X, t ′), . . . , X]. (1.374)

Notice that the dependent variables are explicitly dependent on θ(X, t ′) but not on x(X, t ′).
Materials satisfying Equation (1.374) are said to be of mechanical grade N and thermal
grade M if the spatial derivatives are at most of N th order and the thermal derivatives of
at most Mth order.

Taylor expanding the remaining independent variables in time yields

x,K1(X, t ′) = x,K1(X, t) + ẋ,K1(X, t)(t ′ − t) + 1

2!
ẍ,K1(X, t)(t ′ − t)2 + · · · (1.375)

and similar for the other variables. Hence, one can replace Equation (1.374) by

S(X, t) = S[Q(t) · x,K1(X, t), Q(t) · ẋ,K1(X, t), . . . ,

Q(t) · x,K1K2(X, t), Q(t) · ẋ,K1K2(X, t), . . . ,

· · ·
Q(t) · x,K1K2...KN

(X, t), Q(t) · ẋ,K1K2...KN
(X, t), . . . ,

θ(X, t), θ̇(X, t), θ̈(X, t), . . . ,

θ,K1(X, t), θ̇,K1(X, t), θ̈,K1(X, t), . . . ,

· · ·
θ,K1K2...KM

(X, t), θ̇,K1K2...KM
(X, t), θ̈,K1K2...KM

(X, t), . . . , X]. (1.376)
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In what follows, we will concentrate on materials of mechanical grade 1 and thermal
grade 1. Hence,

S(X, t) = S[Q(t) · x,K(X, t), Q(t) · ẋ,K(X, t), . . . ,

θ(X, t), θ̇(X, t), θ̈(X, t), . . . ,

θ,K(X, t), θ̇,K(X, t), θ̈,K(X, t), . . . , X]. (1.377)

The principle of objectivity implies that the right-hand side of Equation (1.377) must be
invariant with respect to spatial rotations. This means that the list of independent variables
can be replaced by the invariants of {x,K , ẋ,K, ẍ,K, . . . } with respect to an arbitrary rota-
tion. The theory of invariants (Spencer 1971) shows that an integrity basis for the invariants
of the above set subject to proper transformations (i.e. det Q = +1) consists of the scalar
product of any two vectors in the set, for example,

x,K · x,L = xk
,Kxl

,Lgkl = CKL (1.378)

and triple products of the form

eklmxk
,Kxl

,Lxm
,M. (1.379)

For K �= L, K �= M and L �= M the expression in Equation (1.379) is the Jacobian deter-
minant J . For K = L, K = M or K = M Equation (1.379) is zero since this amounts to
the determinant of a matrix with two equal rows or columns. Consequently, the dependence
on {x,K, ẋ,K, ẍ,K, . . . } in Equation (1.377) can be replaced by a dependence on

{CKL, ĊKL, C̈KL, . . . , J, J̇ , J̈ , . . . } (1.380)

or

{CKL, ĊKL, C̈KL, . . . , ρ−1, ρ̇, ρ̈, . . . } (1.381)

since J = ρ0ρ
−1. Equation (1.377) now reads

S(X, t) = S[CKL(X, t), ĊKL(X, t), . . . ,

ρ−1(X, t), ρ̇(X, t), . . . ,

θ(X, t), θ̇(X, t), θ̈(X, t), · · · ,

θ,K(X, t), θ̇,K(X, t), θ̈,K(X, t), . . . , X]. (1.382)

This also applies to Q, ε and η yielding the missing 11 equations.

1.14 Elastic Materials

1.14.1 General form

Elastic materials are defined as materials without memory. Consequently, the time deriva-
tives are dropped in Equation (1.382) and one obtains

S(X, t) = S[C(X, t), ρ−1(X, t), θ(X, t), ∇0θ(X, t), X] (1.383)
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and similarly (dropping the dependence),

Q = Q[C, ρ−1, θ, ∇0θ, X] (1.384)

ε = ε[C, ρ−1, θ, ∇0θ, X] (1.385)

η = η[C, ρ−1, θ, ∇0θ, X]. (1.386)

Since det C = J 2 and ρJ = ρ0 (balance of mass) the explicit dependence on ρ is dropped.
The balance of momentum, the balance of energy and the entropy inequality remain to be
satisfied. It is amazing that the entropy inequality, being an inequality, plays an extremely
important role in the derivation of the material laws. To see this, we first define the free
energy ψ(X, t) to simplify the calculations:

ψ := ε − θη. (1.387)

Since

ψ̇ = ε̇ − θ̇η − θη̇ (1.388)

the entropy inequality now reads

−ρ0

θ
(ψ̇ + θ̇η) + 1

θ
S : Ė − 1

θ2
Q · ∇0θ ≥ 0. (1.389)

Notice that because of Equation (1.385) and Equation (1.386), dropping the dependence on
ρ−1

ψ = ψ[C, θ, ∇0θ, X]. (1.390)

Accordingly,

ψ̇ = ∂ψ

∂C
: Ċ + ∂ψ

∂θ
θ̇ + ∂ψ

∂∇0θ
· ˙∇0θ. (1.391)

Substituting Equation (1.391) into Equation (1.389) and noting that Ė = Ċ/2 yields

1

θ

(
−ρ0

∂ψ

∂C
+ 1

2S

)
: Ċ − ρ0

θ

(
∂ψ

∂θ
+ η

)
θ̇ − ρ0

θ

∂ψ

∂∇0θ
· ˙∇0θ − 1

θ2
Q · ∇0θ ≥ 0. (1.392)

Since S, Q, ψ and η are not a function of Ċ nor θ̇ nor ˙∇0θ , Equation (1.392) is linear in
Ċ, θ̇ and ∇0θ̇ . Hence, for Equation (1.392) to be valid for any Ċ, θ̇ or ∇0θ̇ , the coefficients
of these terms must be zero. Defining � := ρ0ψ one obtains

S = 2ρ0
∂ψ

∂C
= 2

∂�

∂C
= ∂�

∂E
(1.393)

η = −∂ψ

∂θ
= − 1

ρ0

∂�

∂θ
(1.394)

∂ψ

∂∇0θ
= ∂�

∂∇0θ
= 0 (1.395)
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and the entropy inequality reduces to

−Q · ∇0θ ≥ 0. (1.396)

Consequently, for elastic materials there exists a function �(C, θ, X) such that S and η

can be obtained by partial differentiation. ε satisfies

ε(C, θ, X) = �

ρ0
+ θη. (1.397)

The only dependent variable that depends on ∇0θ is Q. Equation (1.396) requires that Q

is at least linear in ∇0θ , that is,

Q = −κ(C, θ, ∇0θ, X) · ∇0θ. (1.398)

The entropy inequality has dictated the shape of nearly all variables! The only equations
left to satisfy are the balance of momentum and the balance of energy. Summarizing,

S = ∂�

∂E
(C, θ, X) (1.399)

η = − 1

ρ0

∂�

∂θ
(C, θ, X) (1.400)

ε = �

ρ0
+ θη (1.401)

Q = Q(C, θ, ∇0θ, X). (1.402)

Elastic materials in this general form are also called hyperelastic materials. � is sometimes
called the stored energy function (Ciarlet 1993).

1.14.2 Linear elastic materials

Special forms arise if we linearize S with respect to E and Q with respect to E and ∇0θ

(C and E are equivalent independent variables). To obtain a linear relation between S and
E, we expand � about E = 0 and truncate the series after the quadratic terms:

� ∼ �0(θ, X) + �KL(θ, X)EKL + 1
2�KLMN(θ, X)EKLEMN, ‖E‖ → 0 (1.403)

while Q is expanded at ∇0θ = 0, E = 0 and the linear terms are kept

Q ∼ −κK(θ, X) − κKL(θ, X)θ,L − κKLM(θ, X)ELM, ‖∇0θ‖ → 0, ‖E‖ → 0.

(1.404)

Because of the symmetry of E one finds

�KL = �LK (1.405)

�KLMN = �LKMN = �KLNM = �MNKL (1.406)

κKLM = κKML. (1.407)
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Applying Equation (1.399) yields

SKL(θ, X) = �KL(θ, X) + �KLMN(θ, X)EMN. (1.408)

Physical observations and the second law of thermodynamics, cf Equations (1.396) and
(1.398), dictate that there is no heat flux if the temperature gradient is zero. This leads to
(see Equation (1.404))

κK = 0, κKLM = 0 (1.409)

and

QK = −κKL(θ, X)θ,L. (1.410)

The entropy inequality now amounts to

κKLθ,Kθ,L ≥ 0 (1.411)

which means that the symmetric part of κKL must be positive definite. The physical meaning
of κKL is the conduction coefficient matrix.

The term �KL(θ, X) in Equation (1.408) contains the thermal stress. Let the temper-
ature θref represent a homogeneous temperature distribution without any thermal stresses.
Then one can write

�KL(θ, X) = γ KL(X) − βKL(θ, X)(θ − θref). (1.412)

γ KL are residual stresses from other sources and βkl is the compressive stress rise per unit
temperature increase if no expansion is allowed. Furthermore, we define αKL assuming
�KLMN to be invertible:

βKL(θ, X) =: �KLMN(θ, X)αMN(θ, X). (1.413)

Hence,

SKL(θ, X) = γ KL(X) − βKL(θ, X)(θ − θref) + �KLMN(θ, X)EMN

= γ KL(X) + �KLMN(θ, X) [EMN − αMN(θ, X)(θ − θref)] . (1.414)

The tensor α contains the expansion coefficients. Now, let us expand �0(θ, X) in Equa-
tion (1.403) about θref:

�0(θ, X) = ρ0(X)ψ0(X) − ρ0(X)η0(X)(θ − θref) − ρ0(X)c(θ, X)

2θref
(θ − θref)

2. (1.415)

Notice that the equality sign applies, since c(θ, X) in the last term may depend on θ .
Dropping the dependence on X in the notation and defining T := θ − θref yields

� = ρ0ψ0 − ρ0η0T − ρ0c(θ)

2θref
T 2 + [γ KL − βKL(θ)T ]EKL + 1

2
�KLMN(θ)EKLEMN

(1.416)
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and

η = η0 + c(θ)T

θref
+ βKL(θ)

ρ0
EKL + c′(θ)T 2

2θref
+ βKL′

(θ)

ρ0
T EKL + 1

2
�KLMN ′

(θ)EKLEMN.

(1.417)

The last three terms are due to the temperature dependence of the coefficients. Since
ρ0ε = � + ρ0θη, one obtains

ρ0ε = ρ0ψ0 + ρ0η0θref + ρ0c(θ)

(
T + T 2

2θref

)

+ [γ KL + βKL(θ)θref]EKL + 1

2
�KLMN(θ)EKLEMN +

ρ0
θc′(θ)T 2

2θref
+ θβKL′

(θ)T EKL + 1

2
ρ0θ�KLMN ′

(θ)EKLEMN. (1.418)

From Equation (1.418), it follows that c is the specific heat. Substituting the above equations
into the energy balance, Equation (1.355), is quite a tedious task. Generally, the derivative of
the coefficients with respect to the temperature can be neglected (the coefficients, however,
are still a function of temperature). Furthermore, discarding the quadratic T term leads to

ρ0ε = ρ0ψ0 + ρ0η0θref + ρ0c(θ)T + [γ KL + βKL(θ)θref]EKL + 1
2�KLMN(θ)EKLEMN

(1.419)

and for the stress

SKL = [γ KL − βKL(θ)T ] + �KLMN(θ)EMN. (1.420)

Substitution into Equation (1.355) finally yields (after further linearization: θĖKL ≈ θrefĖKL)

ρ0c(θ)Ṫ + βKL(θ)θrefĖKL − (κKL(θ)θ,L);K − ρ0h = 0. (1.421)

This is the classical heat equation for linear elastic materials.
If in Equation (1.420)

γ KL = 0 for K �= L

βKL = 0 for K �= L

�KLMN = 0 for K �= L and M = N (1.422)

one obtains SKL = 0, K �= L if EKL = 0, K �= L and vice versa. If this is true for arbitrary
orientations of the axes as in the case of isotropic materials, then the principal axes of E

are also principal axes of S. Indeed, take the principal axes of E as a local rectangular
coordinate system. This means that EKL = 0, K �= L and consequently SKL = 0, K �= L:
the shear stress is zero. Accordingly,

E =
∑

i

	iEN i ⊗ N i (1.423)

S =
∑

i

	iSN i ⊗ N i . (1.424)
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Furthermore, since
F =

∑

i

√
	iCni ⊗ N i (1.425)

and
σ = J−1F · S · F T (1.426)

one finds

σ = J−1

(
∑

i

√
	iCni ⊗ N i

)

·



∑

j

	jSN j ⊗ N j



 ·
(
∑

k

√
	kCNk ⊗ nk

)

= J−1
∑

i

	iC	iSni ⊗ ni (1.427)

which yields for the true principal stresses

λiσ = J−1	iC	iS = J−1(2	iE + 1)	iS. (1.428)

Since J, 	Ci > 0, the true stress and the second Piola–Kirchhoff stress have the same sign.

1.14.3 Isotropic linear elastic materials

For a linear elastic material, we found

� = ρ0ψ0 − ρ0η0T − ρ0c(θ)

2θref
T 2 + [γ KL − βKL(θ)T ]EKL + 1

2
�KLMN(θ)EKLEMN

(1.429)

SKL = [γ KL − βKL(θ)T ] + �KLMN(θ)EMN (1.430)

QK = −κKL(θ)θ,L. (1.431)

Isotropy means that the material data are independent of the direction in the material frame
of reference. Hence, a transformation Q such that

X′ = Q · X, QT · Q = Q · QT = 1, det Q = ±1 (1.432)

must leave the constitutive equations invariant. Under such a transformation, second-order
and fourth-order tensors transform according to

γ ′KL = γ MNQK
MQL

N (1.433)

�′KLMN = �PQRSQK
P QL

QQM
RQN

S. (1.434)

One can show that for this to be true for an arbitrary rotation, the tensors must satisfy

γ KL = γGKL (1.435)

�KLMN = λGKLGMN + µ(GKMGLN + GKNGLM) (1.436)
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and similarly for the other tensors

βKL = βGKL (1.437)

κKL = κGKL. (1.438)

Since
trE = GKLEKL (1.439)

is the trace of the tensor E, one finds

�(θ) = ρ0ψ0 − ρ0η0T − ρ0c(θ)

2θref
T 2 + [γ − β(θ)T ]trE + 1

2λ(θ)(trE)2 + µ(θ)tr(E2)

(1.440)

SKL = [γ − β(θ)T ]GKL + λ(θ)(trE)GKL + 2µ(θ)EMNGKMGLN (1.441)

QK = −κ(θ)θ,LGKL. (1.442)

The energy equation reduces to

ρc(θ)Ṫ + β(θ)θrefĖ
K
K − (GKLκ(θ)θ,L);K − ρ0h = 0. (1.443)

The kind of material described by Equations (1.440) to (1.443) is also called a St Venant–
Kirchhoff material.

The first and second invariant of a tensor E are defined by

I1E = trE (1.444)

I2E = 1

2
[I 2

1E − tr(E2)]. (1.445)

Consequently, the free energy � can also be written as

� = ρ0ψ0 − ρ0η0T − ρ0c(θ)

2θref
T 2 + [γ − β(θ)T ]I1E + 1

2
[λ(θ) + 2µ(θ)]I 2

1E − 2µ(θ)I2E.

(1.446)

λ(θ) and µ(θ) are called Lamé’s constants, κ(θ) is the conduction coefficient, c(θ) is the
specific heat and β(θ) satisfies (substitute Equation (1.436) into Equation (1.413))

β(θ) = [3λ(θ) + 2µ(θ)]α(θ) (1.447)

where α(θ) is the isotropic expansion coefficient. The thermal stress now yields

SKL = −[3λ(θ) + 2µ(θ)]α(θ)T GKL. (1.448)

This stress is needed to suppress

EKL = α(θ)T GKL (1.449)

which is the strain resulting from the temperature change.



54 DISPLACEMENTS, STRAIN, STRESS AND ENERGY

Finally, it should be noted that frequently other elastic constants are used instead of
the Lamé’s constants λ and µ, the latter of which is also called the shear modulus. The
Poisson coefficient ν and Young’s modulus E satisfy

µ = E

2(1 + ν)
(1.450)

λ = νE

(1 + ν)(1 − 2ν)
(1.451)

which can be inverted to yield

ν = λ

2(λ + µ)
(1.452)

E = µ(3λ + 2µ)

λ + µ
. (1.453)

Another frequently used constant is the bulk modulus K . For linearized strains, it will be
proven in the next section that K is the ratio of the hydrostatic pressure p to the volume
reduction it produces. The following relations apply

K = λ + 2

3
µ (1.454)

ν = 3K − 2µ

6K + 2µ
. (1.455)

1.14.4 Linearizing the strains

So far, we consistently used the Lagrange strain tensor E. Equation (1.82) shows that E

is not linear in the displacement U . To obtain a truly linear theory, the quadratic terms in
E are dropped and one obtains the infinitesimal strains Ẽ, Equation (1.88):

ẼKL = 1
2 (UK;L + UL;K). (1.456)

Recall that the infinitesimal rotation is defined by

R̃KL = 1
2 (UK;L − UL;K). (1.457)

Equation (1.90) has shown that EKL can only be replaced by ẼKL if both the strain and
the rotations are small. The same applies to ekl and ẽkl . Under the above assumptions, one
can write

EKL ∼ ẼKL ‖Ẽ‖, ‖R̃‖ → 0 (1.458)

ekl ∼ ẽkl ‖Ẽ‖, ‖R̃‖ → 0. (1.459)

To derive further simplifications we start from Equation (1.67):

xkgk = (XL + UL)GL − o. (1.460)
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Taking the derivative with respect to K yields

xk
,Kgk = (δL

K + UL
;K)GL (1.461)

leading to

xk
,K = (δL

K + ẼL
K + R̃L

K)GL · gk (1.462)

or

xk
,K = (δL

K + ẼL
K + R̃L

K)g k
L (1.463)

where

g k
L = GL · gk = gk · GL = gk

L. (1.464)

In a similar way, one arrives at

XK
,k = (δl

k − ẽl
k − r̃ l

k)g
K
l . (1.465)

For small strains and rotations, Equation (1.463) and Equation (1.465) reduce to

xk
,K ∼ gk

K, ‖Ẽ‖, ‖R̃‖ → 0 (1.466)

XK
,k ∼ gK

k, ‖Ẽ‖, ‖R̃‖ → 0. (1.467)

From Equation (1.352) and Equation (1.353), one finds

EKL = eklx
k
,Kxl

,L (1.468)

which reduces by the use of Equations (1.458), (1.459), (1.466) and (1.467) to

ẼKL ∼ ẽklg
k
Kgl

L, ‖Ẽ‖, ‖R̃‖ → 0. (1.469)

On the basis of Equation (1.457), a similar relationship applies to the infinitesimal rotation

R̃KL ∼ r̃klg
k
Kgl

L, ‖Ẽ‖, ‖R̃‖ → 0. (1.470)

Furthermore, J = det xk
,K . Substituting Equation (1.463) and linearizing yields

J ∼ 1
3!e

KLMeklm[gk
Kgl

Lgm
M + gk

Kgl
L(ẼR

M + R̃R
M)gm

R

+ gk
Kgm

M(Ẽ
Q
L + R̃

Q
L)gl

Q + gl
Lgm

M(ẼP
K + R̃P

K)gm
P ], ‖Ẽ‖, ‖R̃‖ → 0 (1.471)

where eKLM and eklm are alternating symbols. This is equivalent to

J ∼ 1 + ẼK
K ∼ 1 + ẽk

k, ‖Ẽ‖, ‖R̃‖ → 0. (1.472)

Substituting Equation (1.463) and Equation (1.472) into the relationship between the Cauchy
stress and the second Piola–Kirchhoff stress leads to

σ kl = J−1SKLxk
,Kxl

,L (1.473)
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and linearizing yields

σ kl ∼ SKL[gk
Kgl

L(1 − ẽm
m) + (ẽk

m + r̃k
m)gm

Kgl
L

+ (ẽl
m + r̃ l

m)gk
Kgm

L], ‖Ẽ‖, ‖R̃‖ → 0. (1.474)

The inverse of Equation (1.474) amounts to

SKL ∼ σ kl[gK
kg

L
l(1 + ẽm

m) − gL
lg

K
m(ẽm

k + r̃m
k)

− gK
kg

L
m(ẽm

l + r̃m
l)], ‖Ẽ‖, ‖R̃‖ → 0. (1.475)

Substituting the above relations into Equation (1.420) yields a linearized expression for the
stress:

σ kl ∼ γ kl(1 − ẽm
m) + γ ml(ẽk

m + r̃k
m) + γ km(ẽl

m + r̃ l
m)

− βklT + σ klmnẽmn, ‖Ẽ‖, ‖R̃‖ → 0 (1.476)

where

γ kl = γ KLgk
Kgl

L (1.477)

βkl = βKLgk
Kgl

L (1.478)

σ klmn = �KLMNgk
Kgl

Lgm
Mgn

N . (1.479)

In a similar way, by combining Equation (1.274) and Equation (1.410) one arrives at

qk = −J−1κKLθ,lx
k
,Kxl

,L. (1.480)

Linearizing yields
qk ∼ −κklθ,l, ‖Ẽ‖, ‖R̃‖ → 0 (1.481)

where
κkl = κKLgk

Kgl
L. (1.482)

Analogous considerations lead to

ρ0ε ∼ ρ0ψ0 + ρ0η0θref + ρ0c(θ)T + [γ kl + βklθref]ẽkl

+ 1

2
σ klmnẽkl ẽmn, ‖Ẽ‖, ‖R̃‖ → 0 (1.483)

η = η0 + cT

θref
+ βkl

ρ0
ẽkl, ‖Ẽ‖, ‖R̃‖ → 0 (1.484)

� = ρ0ψ0 − ρ0η0T − ρ0c

2θref
T 2 + [γ kl − βklT ]ẽkl

+ 1

2
σ klmnẽkl ẽmn, ‖Ẽ‖, ‖R̃‖ → 0. (1.485)
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The balance equations now read

σ kl
;k + ρ(f l − v̇l) = 0 (1.486)

ρ0cṪ + βklθref ˙̃ekl − (κklT,l);k − ρ0h = 0 (1.487)

κklT,kT,l ≥ 0. (1.488)

The derivation for isotropic materials runs along the same lines and yields for
‖Ẽ‖, ‖R̃‖ → 0

σ kl ∼ γ (1 − ẽm
m)gkl − βT gkl + λẽm

mgkl + 2(µ + γ )ẽkl (1.489)

qk ∼ −κT,lg
kl (1.490)

ρ0ε ∼ ρ0ψ0 + ρ0η0θref + ρ0cT + [γ + βθref]ẽ
m
m + 1

2
(λ + 2µ)I 2

1ẽ − 2µI2ẽ (1.491)

η = η0 + cT

θref
+ β

ρ0
I1ẽ (1.492)

� = ρ0ψ0 − ρ0η0T − ρ0c

2θref
T 2 + [γ − βT ]I1ẽ + 1

2
(λ + 2µ)I 2

1ẽ − 2µI2ẽ (1.493)

σ kl
;k + ρ(f l − v̇l) = 0 (1.494)

ρ0cṪ + βθrefİ1ẽ − (κT,lg
kl);k − ρ0h = 0 (1.495)

κT,kT,lg
kl ≥ 0. (1.496)

For materials without residual stress and T = 0 Equation (1.489) reduces to

σ kl ∼ λẽm
mgkl + 2µẽkl. (1.497)

Hence,

σ k
k ∼ (3λ + 2µ)ẽm

m. (1.498)

For a uniform pressure p we have

σ k
k = 3p (1.499)

and (see Equation (1.472)),

ẽm
m ∼ J − 1 ∼ dv − dV

dV
, (1.500)

which is the volume change. Hence,

p = (λ + 2

3
µ)

dv − dV

dV
(1.501)

from which Equation (1.454) follows.
Summarizing, in the small deformation theory, the strain tensors E and e are replaced by

their infinitesimal counterparts Ẽ and ẽ. This is only justified for small strains together with
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small rotations. Therefore, it is better to use the expression small deformation theory rather
than infinitesimal strain theory. Using the infinitesimal strains and rotations, the constitutive
equations and balance laws can be simplified. Notice that the term “infinitesimal” does not
apply to other quantities such as stresses. Equations (1.474) and (1.475) show that also in
the linear strain theory the second Piola–Kirchhoff and Cauchy stress both exist and are
generally different. The derived equations are valid in the spatial frame of reference.

1.14.5 Isotropic elastic materials

In this section, we start again from Equation (1.399) to Equation (1.402) and assume that
� is isotropic in C but that the resulting stress S is not necessarily linear in E. This
covers the large family of so-called isotropic hyperelastic models such as neo–Hooke,
Mooney–Rivlin, Ogden and many others, used for materials such as rubber and hyperfoam.
Because of the isotropy, � can only be a function of the invariants of C. These will be
denoted in the present context by I1, I2 and I3 (dropping the index C for convenience).
Accordingly,

� = �(I1, I2, I3, θ, X) (1.502)

where

I1 = tr(C) (1.503)

I2 = 1
2 [I 2

1 − tr(C2)] (1.504)

I3 = det C. (1.505)

Consequently, Equation (1.399),

S = 2

[
∂�

∂I1
(I1, I2, I3, θ, X)

∂I1

∂C
+ ∂�

∂I2
(I1, I2, I3, θ, X)

∂I2

∂C

+ ∂�

∂I3
(I1, I2, I3, θ, X)

∂I3

∂C

]
. (1.506)

Since

∂I1

∂CKL

= ∂CMNGMN

∂CKL

= GKL (1.507)

∂I2

∂CKL

= 1

2

∂

∂CKL

[
I 2

1 − CPQCMNGPNGQM
]

= 1

2

[
2I1G

KL − CMNGKNGLM − CPQCPLCQK
]

= I1G
KL − CMNGKNGLM (1.508)

∂I3

∂CKL

= cofactor(CKL) = cofactor(CLK) = I3(C
−1)KL (1.509)
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we obtain,

S = 2

[
∂�

∂I1
(I1, I2, I3, θ, X)G� + ∂�

∂I2
(I1, I2, I3, θ, X)(I1G

� − C�)

+ ∂�

∂I3
(I1, I2, I3, θ, X)I3C

−1
]

. (1.510)

Here, the θ -dependence is not specified yet. Whether the function �(I1, I2, I3, θ, X) has
to satisfy specific requirements to make sense physically will be discussed in Chapter 4 on
hyperelastic materials. Since C� and C−1 have the same eigenvectors and the eigenvectors
of C� are not modified by adding or subtracting a multiple of G�, Equation (1.510) shows
that S has the same eigenvectors as C�. Consequently, for an isotropic elastic material
the principal second Piola–Kirchhoff stress directions coincide with the principal stretch
directions.

1.15 Fluids

Solids and fluids are two major classes of materials. Fluids include both liquids and gases.
There are several ways in which a fluid can be described. Assume that there is no gravity.
Then, the stress in a liquid at rest is zero. If you stir the liquid and wait until there is
no motion the stress will again be zero. If you take a container filled with gas at a given
pressure, stir the gas without increasing the external pressure and wait till there is no motion
the stress reduces to the hydrostatic pressure before stirring. Consequently, the deformation
of liquid materials does not induce stress as long as the liquid is at rest and the density is
unchanged. Accordingly, the deformation gradient for quasistatic deformations leaving the
density unchanged reduces to the shift operator (Eringen 1980):

xk
,K = gk

K. (1.511)

In a similar way, one arrives at the following simplifications:

CKL = xk
,Kxl

,Lgkl = GKL (1.512)

ĊKL = 2dklx
k
,Kxl

,L = 2dklg
k
Kgl

L (1.513)

θ,K = θ,kg
k
K. (1.514)

Just as for elastic materials, we start from the material formulation of mechanical grade 1
and thermal grade 1, but now we keep the first time derivatives of the mechanical quantities
as well:

S(X, t) = S(C, Ċ, ρ−1, ρ̇, θ, ∇0θ, X). (1.515)

Now, Equation (1.269) yields

σ kl = J−1xk
,KSKLxl

,L = ρ

ρ0
SKLgk

Kgl
L. (1.516)
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Since (see Equation (1.178))

ρ̇ =
˙(ρ0

J

)
= − ρ0

J 2
J̇ = −ρdk

k (1.517)

and

∂

∂XK
= ∂

∂xk
gk

K (1.518)

the Cauchy stress takes the form

σ (X, t) = σ (d, ρ−1, θ, ∇θ, X). (1.519)

Since any configuration leaving the density unchanged is undeformed, X can be replaced
by x:

σ (x, t) = σ (d, ρ−1, θ, ∇θ, x). (1.520)

The principle of objectivity requires that Equation (1.520) does not change its form after
applying an arbitrary time-dependent translation, for example, x(t):

σ (d, ρ−1, θ, ∇θ, x) = σ (d, ρ−1, θ, ∇θ, 0) (1.521)

and the explicit dependence on x drops out:

σ = σ (d, ρ−1, θ, ∇θ) (1.522)

and similar expressions for q, ε and η. Just as in the derivation of the constitutive laws
for elastic materials the entropy inequality plays a major role. The spatial formulation of
Equation (1.389) reads

−ρ

θ
(ψ̇ + θ̇η) + 1

θ
d : σ − 1

θ2
q · ∇θ ≥ 0 (1.523)

where ψ = ε − θη, Equation (1.387), and

ψ = ψ(d, ρ−1, θ, ∇θ) (1.524)

because of similar dependencies of ε and η. The time derivative of ψ reads

ψ̇ = ∂ψ

∂d
: ḋ + ∂ψ

∂ρ−1
· ˙
ρ−1 + ∂ψ

∂θ
θ̇ + ∂ψ

∂∇θ
· ∇̇θ. (1.525)

Substituting Equation (1.525) into Equation (1.523) yields

− ρ

θ

∂ψ

∂d
: ḋ − ρ

θ

∂ψ

∂ρ−1
˙

ρ−1 − ρ

θ

(
∂ψ

∂θ
+ η

)
θ̇

− ρ

θ

∂ψ

∂∇θ
· ∇̇θ + 1

θ
d : σ − 1

θ2
q · ∇θ ≥ 0. (1.526)
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Since (see Equation (1.517))

˙
ρ−1 = 1

ρ
d : g (1.527)

this is equivalent to

− ρ

θ

∂ψ

∂d
: ḋ + 1

θ
d :

(
σ − ∂ψ

∂ρ−1
g

)
− ρ

θ

(
∂ψ

∂θ
+ η

)
θ̇

− ρ

θ

∂ψ

∂∇θ
· ∇̇θ − 1

θ2
q · ∇θ ≥ 0. (1.528)

Since this equation is linear in the time derivatives, it can only be satisfied if the corre-
sponding coefficients reduce to zero:

∂ψ

∂d
= 0 (1.529)

η = −∂ψ

∂θ
(1.530)

∂ψ

∂∇θ
= 0. (1.531)

Hence,

ψ = ψ(ρ−1, θ) (1.532)

and Equation (1.528) reduces to

1

θ
d :

(
σ − ∂ψ

∂ρ−1
g

)
− 1

θ2
q · ∇θ ≥ 0. (1.533)

Defining the pressure p by

p = − ∂ψ

∂ρ−1
(1.534)

and the dissipative stress by

t := σ + pg (1.535)

we finally arrive at the following equations:

p = − ∂ψ

∂ρ−1
(ρ−1, θ) (1.536)

η = −∂ψ

∂θ
(ρ−1, θ) (1.537)

t = t(d, ρ−1, θ, ∇θ) (1.538)

q = q(d, ρ−1, θ, ∇θ) (1.539)

ε = ψ(ρ−1, θ) − θ
∂ψ

∂θ
(ρ−1, θ) (1.540)

σ = −pg + t (1.541)
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subject to

1

θ
d : t − 1

θ2
q · ∇θ ≥ 0. (1.542)

Equation (1.542) implies that t and q must be at least linear in d and ∇θ respectively.
Equation (1.538) and Equation (1.539) can be replaced by

t = tL(d, ρ−1, θ, ∇θ) : d (1.543)

q = −κL(d, ρ−1, θ, ∇θ) · ∇θ (1.544)

where tL is a fourth-order tensor, κL is a second-order tensor. Notice that the dissipative
stress cannot be derived from a potential function, only the hydrostatic part p can. This is
a major difference compared to elastic materials. Equation (1.542) is the fluid equivalent
of Equation (1.396) for elastic materials.

Because of the principle of objectivity, Equation (1.543) can be further reduced to

t = α0g
� + α1d

� + α2(d
2)� (1.545)

where

αK(ρ−1, θ, ∇θ, I1d , I2d, I3d) (1.546)

Linearization yields

α0 = λv(ρ
−1, θ, ∇θ)I1d (1.547)

α1 = 2µv(ρ
−1, θ, ∇θ) (1.548)

α2 = 0 (1.549)

and one arrives at the well-known stress expressions for linear Stokesian fluids:

σ = (−p + λvg : d)g + 2µvd. (1.550)

For details, the reader is referred to (Eringen 1980).
The energy equation, Equation (1.355), reads in spatial coordinates:

ρε̇ = d : σ − ∇ · q + ρh. (1.551)

Substitution of Equation (1.540) yields

ρ

[
−
(

p + θ
∂2ψ

∂ρ−1∂θ

) ˙
ρ−1 − θ

∂2ψ

∂θ2
θ̇

]
= d : σ − ∇ · q + ρh, (1.552)

which reads by the use of Equation (1.527) and Equation (1.534):

ρθ
∂2ψ

∂θ2
θ̇ + θ

∂2ψ

∂ρ−1∂θ
d : g + d : t − ∇ · q + ρh = 0. (1.553)

For most gases, t = 0 is assumed (no stress dissipation) and Equation (1.553) reduces to

ρθ
∂2ψ

∂θ2
θ̇ + θ

∂2ψ

∂ρ−1∂θ
d : g − ∇ · q + ρh = 0. (1.554)



2

Linear Mechanical Applications

2.1 General Equations
The basic equations for the finite element method are the weak formulation of the bal-
ance of momentum, Equation (1.328) and the weak formulation of the balance of energy,
Equation (1.351). For mechanical applications in which the temperature is assumed to be
known, only the balance of momentum is needed in order to determine the displacement
fields:
∫

V0

SKLδEKL dV =
∫

A0t

T
K

(N)δUK dA +
∫

V0

ρ0f
KδUK dV − ρ0

∫

V0

D2UK

Dt2
δUK dV.

(2.1)

In the present chapter, primarily linear applications are envisaged. The term “linear” relates
to the material, which is assumed to be linear elastic, and to the strain formulation. Con-
sequently (see Equation (1.420)),

SKL = [γ KL − βKL(θ)T ] + �KLMN(θ)EMN (2.2)

and
EKL ≈ ẼKL = 1

2 (UK;L + UL;K) (2.3)

or
EKL ≈ 1

2 (UK,L + UL,K) (2.4)

for rectangular coordinates. In the rest of the chapter, rectangular coordinates will be
assumed and the covariant differentiation will be replaced by simple differentiation. Now,
Equation (2.1) can be written as

∫

V0

δẼKL�KLMN(θ)ẼMN dV =
∫

A0t

T
K

(N)δUK dA +
∫

V0

ρ0f
KδUK dV

+
∫

V0

[βKL(θ)T − γ KL]δẼKL dV − ρ0

∫

V0

D2UK

Dt2
δUK dV. (2.5)

The Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85752-8
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Equation (2.5) shows that the residual and the thermal stresses can be considered as loads.
Because of the symmetry relations satisfied by �KLMN , βKL and γ KL, substitution of
Equation (2.4) into Equation (2.5) yields

∫

V0

UM,N�KLMN(θ)δUK,L dV =
∫

A0t

T
K

(N)δUK dA +
∫

V0

ρ0f
KδUK dV

+
∫

V0

[βKL(θ)T − γ KL]δUK,L dV − ρ0

∫

V0

D2UK

Dt2
δUK dV. (2.6)

Now, an assumption is made that can be considered as the quintessence of the finite
element method. The volume V0 is split in smaller volumes called “finite” elements:

V0 =
∑

e

V0e (2.7)

and the displacement field within each of these volumes is assumed to be a continuous
function of the displacement in discrete points i, called “nodes”:

U(X) =
N∑

i=1

ϕi(X)U i . (2.8)

The functions ϕi are called shape functions.
In Equation (2.8), the position X is characterized by global coordinates. In practice, it

is advantageous to define local coordinates (ξ, η, ζ ) within each element satisfying −1 ≤
ξ, η, ζ ≤ 1 (this applies to brick elements; the range for other types of elements will be
discussed shortly) and to express both the global coordinates and the displacements as a
function of discrete values at selected positions:

U(X) =
N∑

i=1

ϕi(ξ, η, ζ )U(Xαi
) (2.9)

X =
M∑

i=1

ψi(ξ, η, ζ )Xβi
. (2.10)

If the discrete positions and the shape functions for X and U are the same, the formulation is
called isoparametric (Zienkiewicz and Taylor 1989). Here, only isoparametric formulations
will be considered. Accordingly,

U(X) =
N∑

i=1

ϕi(ξ, η, ζ )U(Xi ) (2.11)

X =
N∑

i=1

ϕi(ξ, η, ζ )Xi . (2.12)



LINEAR MECHANICAL APPLICATIONS 65

Equation (2.11) reads in component formulation

UK(X) =
N∑

i=1

ϕi(ξ, η, ζ )UiK (2.13)

where UiK is the component K of the displacement in node i. Hence,

UK,L(X) =
N∑

i=1

ϕi,L(ξ, η, ζ )UiK (2.14)

where

ϕi,L(ξ, η, ζ ) := ∂ϕi

∂XL
(ξ, η, ζ )

= ∂ϕi

∂ξ

∂ξ

∂XL
+ ∂ϕi

∂η

∂η

∂XL
+ ∂ϕi

∂ζ

∂ζ

∂XL
. (2.15)

The terms ∂ϕi/∂ξ are obtained through direct differentiation, while ∂ξ/∂XL can be deter-
mined by inverting ∂XL/∂ξ :

∂ξ

∂XL
= 1

J ∗ cofactor

(
∂XL

∂ξ

)
(2.16)

where

J ∗ := det

(
∂X

∂γ

)
, γ (ξ, η, ζ ) (2.17)

is the Jacobian determinant of the transformation X(γ ). The quantities ∂XL

∂ξ
are obtained

through direct differentiation of Equation (2.12).
Splitting the integrals in Equation (1.8) across the elements e and using Equation (2.14)

yields

∑

e

∫

V0e

N∑

i=1

N∑

j=1

ϕj,N�KLMN(θ)ϕi,LUjMδUiK dVe =
∑

e

∫

A0e

N∑

i=1

T
K

(N)ϕiδUiK dAe

+
∑

e

∫

V0e

N∑

i=1

ρ0f
KϕiδUiK dVe +

∑

e

∫

V0e

N∑

i=1

[βKL(θ)T − γ KL]ϕi,LδUiK dVe

−
∑

e

∫

V0e

N∑

i=1

N∑

j=1

ρ0ϕiϕj

D2U K
j

Dt2
δUiK dVe (2.18)
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or, removing everything that is not a function of space from the integrals

∑

e

N∑

i=1

N∑

j=1

[∫

V0e

ϕj,N�KLMN(θ)ϕi,L dVe

]
UjMδUiK

=
∑

e

N∑

i=1

[∫

A0e

T
K

(N)ϕi dAe

]
δUiK +

∑

e

N∑

i=1

[∫

V0e

ρ0f
Kϕi dVe

]
δUiK

+
∑

e

N∑

i=1

[∫

V0e

[βKL(θ)T − γ KL]ϕi,L dVe

]
δUiK

−
∑

e

N∑

i=1

N∑

j=1

[∫

V0e

ρ0ϕiϕj dVe

]
D2U K

j

Dt2
δUiK. (2.19)

If we define for each element e a vector containing all displacements belonging to the
element

{
U
}
e

=













U11
U12
U13
U21
...

UN1
UN2
UN3













e

(2.20)

one can write for Equation (2.19)

∑

e

δ
{
U
}T
e

[
K
]
e

{
U
}
e

=
∑

e

δ
{
U
}T
e

{
F
}
e
−
∑

e

δ
{
U
}T
e

[
M
]
e

D2

Dt2

{
U
}
e

(2.21)

where the components of
[
K
]
,
{
F
}

and
[
M
]

satisfy

[
K
]
e(iK)(jM)

=
∫

V0e

ϕi,L�KLMN(θ)ϕj,N dVe (2.22)

{
F
}
e(iK)

=
∫

A0e

T
K

(N)ϕi dAe +
∫

V0e

ρ0f
Kϕi dVe +

∫

V0e

[βKL(θ)T − γ KL]ϕi,L dVe

(2.23)

[
M
]
e(iK)(jM)

=
∫

V0e

ρ0ϕiϕj dVe. (2.24)
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where
[
K
]
e

is the element stiffness matrix,
{
F
}
e

is the element force vector and
[
M
]
e

is the
element mass matrix. Notice that

[
K
]
e

is symmetric because of the symmetry of �KLMN ,
cf Equation (1.156). By defining a displacement vector

{
U
}

containing all displacements
of the complete model and a localization matrix

[
L
]
e

localizing the degrees of freedom of
element e in

{
U
}
:

{
U
}
e

= [L]
e

{
U
}

(2.25)

one obtains for Equation (2.21)

δ
{
U
}T

(
∑

e

[
L
]T
e

[
K
]
e

[
L
]
e

)
{
U
}

= δ
{
U
}T

(
∑

e

[
L
]T
e

{
F
}
e

)

− δ
{
U
}T

(
∑

e

[
L
]T
e

[
M
]
e

[
L
]
e

)
D2

Dt2

{
U
}
. (2.26)

Since Equation (2.26) must be satisfied for an arbitrary virtual displacement δ
{
U
}
, one

finally obtains

[
K
] {

U
}+ [M] D2

Dt2

{
U
} = {F} (2.27)

where

[
K
]

:=
∑

e

[
L
]T
e

[
K
]
e

[
L
]
e

(2.28)

[
M
]

:=
∑

e

[
L
]T
e

[
M
]
e

[
L
]
e

(2.29)

{
F
}

:=
∑

e

[
L
]T
e

{
F
}
e

(2.30)

are the global stiffness matrix, global mass matrix and global force vector respectively.
Notice how the introduction of the shape functions transformed the integral equation (2.1)
into a set of linear algebraic equations over space, Equation (2.27). Instead of having to
look for a solution everywhere in space, the unknowns are reduced to the displacements
in a finite number of nodes. Equation (2.27) is the basic finite element equation to be
solved for mechanical problems. It generally results in a system of hundreds of thousands
of equations requiring special solution techniques (Sloan 1989), (Ashcraft et al. 1999).

2.2 The Shape Functions

Equation (2.8) shows that within each element the displacement field is assumed to be a
continuous function of the displacements in the nodes. The question that arises is where
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Figure 2.1 8-node brick element

those nodes are located and what the shape functions look like. There is no unique answer
to this question. Rather, there are several schemes of which some have grown very popular
through time. As mentioned in the previous section, we will concentrate on formulations in
which the same shape functions are used for the displacements and the geometry (isopara-
metric formulation).

2.2.1 The 8-node brick element

The most popular element form is the brick shape, with local coordinates satisfying −1 ≤
ξ, η, ζ ≤ 1. Figure 2.1 shows the 8-node brick element in local and global coordinates. At
each vertex of the brick there is a node. If the shape functions are such that

ϕi(ξj , ηj , ζj ) = δij (2.31)

then the Equations (2.11) and (2.12) are identically satisfied at the nodes. For the shape
functions, one often takes polynomials because of their mathematically simple form. The
lowest-order polynomial with eight unknown coefficients has the form

ϕi(ξ, η, ζ ) = ai + biξ + ciη + diζ + eiξη + fiξζ + giηζ + hiξηζ. (2.32)

Equation (2.31) together with Equation (2.32) leads to eight equations in eight unknowns
for each shape function. These sets of equations uniquely determine the coefficients. One
obtains

ϕ1 = (1 − ξ)(1 − η)(1 − ζ )/8 (2.33)

ϕ2 = (1 + ξ)(1 − η)(1 − ζ )/8 (2.34)
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ϕ3 = (1 + ξ)(1 + η)(1 − ζ )/8 (2.35)

ϕ4 = (1 − ξ)(1 + η)(1 − ζ )/8 (2.36)

ϕ5 = (1 − ξ)(1 − η)(1 + ζ )/8 (2.37)

ϕ6 = (1 + ξ)(1 − η)(1 + ζ )/8 (2.38)

ϕ7 = (1 + ξ)(1 + η)(1 + ζ )/8 (2.39)

ϕ8 = (1 − ξ)(1 + η)(1 + ζ )/8. (2.40)

The 8-node brick element is also called a linear brick element since the interpolation
functions along any edge are linear (keep two of the three local coordinates constant with
value ±1). They look very attractive due to the simple shape functions and their intuitively
attractive form for meshing purposes; however, the element exhibits marked problematic
behavior such as shear locking, volumetric locking and hourglassing. This will be discussed
in Section 2.5.

2.2.2 The 20-node brick element

This element has the same shape in local coordinates as the 8-node brick, but contains 20
nodes instead of 8. They are located at the vertices and in the middle of the edges (see
Figure 2.2).

Using the following basis polynomials,

1
ξ η ζ

ηζ ξζ ξη

ξ2 η2 ζ 2

ηζ 2 η2ζ ξζ 2 ξ2ζ ξη2 ξ2η

ξηζ

ξ2ηζ ξη2ζ ξηζ 2

(2.41)

one obtains for the shape functions, using Equation (2.31)

ϕ1 = −(1 − ξ)(1 − η)(1 − ζ )(2 + ξ + η + ζ )/8 (2.42)

ϕ2 = −(1 + ξ)(1 − η)(1 − ζ )(2 − ξ + η + ζ )/8 (2.43)

ϕ3 = −(1 + ξ)(1 + η)(1 − ζ )(2 − ξ − η + ζ )/8 (2.44)

ϕ4 = −(1 − ξ)(1 + η)(1 − ζ )(2 + ξ − η + ζ )/8 (2.45)

ϕ5 = −(1 − ξ)(1 − η)(1 + ζ )(2 + ξ + η − ζ )/8 (2.46)

ϕ6 = −(1 + ξ)(1 − η)(1 + ζ )(2 − ξ + η − ζ )/8 (2.47)

ϕ7 = −(1 + ξ)(1 + η)(1 + ζ )(2 − ξ − η − ζ )/8 (2.48)
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Figure 2.2 20-node brick element

ϕ8 = −(1 − ξ)(1 + η)(1 + ζ )(2 + ξ − η − ζ )/8 (2.49)

ϕ9 = (1 − ξ)(1 + ξ)(1 − η)(1 − ζ )/4 (2.50)

ϕ10 = (1 + ξ)(1 − η)(1 + η)(1 − ζ )/4 (2.51)

ϕ11 = (1 − ξ)(1 + ξ)(1 + η)(1 − ζ )/4 (2.52)

ϕ12 = (1 − ξ)(1 − η)(1 + η)(1 − ζ )/4 (2.53)

ϕ13 = (1 − ξ)(1 + ξ)(1 − η)(1 + ζ )/4 (2.54)

ϕ14 = (1 + ξ)(1 − η)(1 + η)(1 + ζ )/4 (2.55)

ϕ15 = (1 − ξ)(1 + ξ)(1 + η)(1 + ζ )/4 (2.56)

ϕ16 = (1 − ξ)(1 − η)(1 + η)(1 + ζ )/4 (2.57)

ϕ17 = (1 − ξ)(1 − η)(1 − ζ )(1 + ζ )/4 (2.58)

ϕ18 = (1 + ξ)(1 − η)(1 − ζ )(1 + ζ )/4 (2.59)

ϕ19 = (1 + ξ)(1 + η)(1 − ζ )(1 + ζ )/4 (2.60)

ϕ20 = (1 − ξ)(1 + η)(1 − ζ )(1 + ζ )/4. (2.61)

The 20-node brick elements are also called quadratic elements because the interpolation
along each edge is a quadratic function. Because of this, they can simulate curved bound-
aries by a piecewise-quadratic approximation. Quadratic brick elements are usually well
behaved and in the author’s opinion they should be preferred to linear brick elements.
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A major disadvantage is that despite intensive research no satisfactory automatic mesh-
ers are yet available (Tautges 2001). Therefore, the efficient generation of a good-quality
hexahedral mesh heavily relies on the expertise of the user.

If one of the faces of a 20-node brick element is collapsed, the element can simulate
singular strain and stress fields (Dhondt 1993). This is used in special applications such as
linear elastic fracture mechanics (Dhondt 2002).

2.2.3 The 4-node tetrahedral element

The 4-node tetrahedral element is characterized by linear interpolation functions within a
tetrahedron (see Figure 2.3). The local coordinates are such that

0 ≤ ξ, η, ζ ≤ 1 (2.62)

ξ + η + ζ ≤ 1. (2.63)

Nodes 2, 3 and 4 are characterized by ξ = 1, η = 1 and ζ = 1 respectively. In the
local coordinate system, the coordinates of a point P can be obtained by constructing
the tetrahedra T1, T2 and T3 extending from P to the faces 1 − 3 − 4 (opposite node 2),
1 − 2 − 4 (opposite node 3) and 1 − 2 − 3 (opposite node 4) respectively. Denoting the
volumes of T1, T2 and T3 by V1, V2 and V3 respectively, and the total volume by V one
can write

ξ = V1/V (2.64)

η = V2/V (2.65)

ζ = V3/V . (2.66)
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X3
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η

ζ
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1

2

2

3
3

4

4

P

Figure 2.3 4-node tetrahedral element
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The shape functions take the form

ϕ1 = 1 − ξ − η − ζ (2.67)

ϕ2 = ξ (2.68)

ϕ3 = η (2.69)

ϕ4 = ζ. (2.70)

The shape functions are exceedingly simple. However, for stress calculations the element
is extremely stiff and lots of elements are needed to obtain acceptable results. It should
generally be avoided.

2.2.4 The 10-node tetrahedral element

The 10-node tetrahedral element is characterized by quadratic interpolation functions within
the element. The extra degrees of freedom are taken care of by introducing nodes in the
middle of the element edges (Figure 2.4). The local coordinate system is the same as for
the 4-node tetrahedral element. The shape functions take the form

ϕ1 = [2(1 − ξ − η − ζ ) − 1][1 − ξ − η − ζ ] (2.71)

ϕ2 = (2ξ − 1)ξ (2.72)

ϕ3 = (2η − 1)η (2.73)

ϕ4 = (2ζ − 1)ζ (2.74)

ϕ5 = 4(1 − ξ − η − ζ )ξ (2.75)

ϕ6 = 4ξη (2.76)
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Figure 2.4 10-node tetrahedral element
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ϕ7 = 4(1 − ξ − η − ζ )η (2.77)

ϕ8 = 4(1 − ξ − η − ζ )ζ (2.78)

ϕ9 = 4ξζ (2.79)

ϕ10 = 4ηζ. (2.80)

The 10-node tetrahedral element is a very flexible element due to its shape. Furthermore,
automatic reliable tetrahedral meshing routines have been developed that are able to cope
with nearly any structure (George and Borouchaki 1998), (Freitag and Knupp 2002). The
quality of the 10-node element is comparable to the 20-node brick element. Disadvantages
are the enormous amount of elements generated by automatic meshing routines and the
nontrivial quality check of the mesh. Indeed, owing to the irregular shape of the tetrahedra,
a visual check is nearly impossible and one has to rely on mathematical measures such as
the dihedral angle.

2.2.5 The 6-node wedge element

For this element type, the local coordinates are such that (Figure 2.5)

0 ≤ ξ, η ≤ 1, −1 ≤ ζ ≤ 1 (2.81)

ξ + η ≤ 1. (2.82)

For ζ = −1, one obtains the lower triangle 1 − 2 − 3. The values of ξ and η of a point A

are given by the surface ratio of triangle 1 − A − 3 and triangle 1 − A − 2 with respect to
triangle 1 − 2 − 3 respectively. The 6-node wedge element is linear, that is, the connection
of the nodes in Figure 2.5 is straight. Its shape functions take the form

ϕ1 = (1 − ξ − η)(1 − ζ )/2 (2.83)

ϕ2 = ξ(1 − ζ )/2 (2.84)

ϕ3 = η(1 − ζ )/2 (2.85)

ϕ4 = (1 − ξ − η)(1 + ζ )/2 (2.86)

ϕ5 = ξ(1 + ζ )/2 (2.87)

ϕ6 = η(1 + ζ )/2. (2.88)

2.2.6 The 15-node wedge element

The 15-node wedge element is the quadratic version of the 6-node wedge element (see
Figure 2.6). Equations (2.81) and (2.82) also apply here. The shape functions take the
form

ϕ1 = −(1 − ξ − η)(1 − ζ )(2ξ + 2η + ζ )/2 (2.89)

ϕ2 = ξ(1 − ζ )(2ξ − ζ − 2)/2 (2.90)

ϕ3 = η(1 − ζ )(2η − ζ − 2)/2 (2.91)
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ϕ4 = −(1 − ξ − η)(1 + ζ )(2ξ + 2η − ζ )/2 (2.92)

ϕ5 = ξ(1 + ζ )(2ξ + ζ − 2)/2 (2.93)

ϕ6 = η(1 + ζ )(2η + ζ − 2)/2 (2.94)

ϕ7 = 2ξ(1 − ξ − η)(1 − ζ ) (2.95)

ϕ8 = 2ξη(1 − ζ ) (2.96)

ϕ9 = 2η(1 − ξ − η)(1 − ζ ) (2.97)

ϕ10 = 2ξ(1 − ξ − η)(1 + ζ ) (2.98)

ϕ11 = 2ξη(1 + ζ ) (2.99)

ϕ12 = 2η(1 − ξ − η)(1 + ζ ) (2.100)

ϕ13 = (1 − ξ − η)(1 − ζ 2) (2.101)

ϕ14 = ξ(1 − ζ 2) (2.102)

ϕ15 = η(1 − ζ 2). (2.103)

Wedge elements are often used as fill-in elements by automatic hexahedral meshing codes.
Their quality is comparable to the 20-node brick and 10-node tetrahedral element.
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Figure 2.5 6-node wedge element
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Figure 2.6 15-node wedge element

2.3 Numerical Integration
To obtain the force, the stiffness matrix and the mass matrix (see Equations (2.22)–(2.24)),
integration over the element is required. To calculate an integral of the form

I =
∫

V0e

f (X) dV (2.104)

numerical integration is used. Indeed, f (X) is frequently a complicated function of space (it
usually contains material properties depending on the temperature, which is itself a function
of space) and the shape of an element can be quite irregular. Consequently, analytical
integration is not feasible. Before applying numerical integration to Equation (2.104) the
integration domain is transformed from the global to the local element coordinate system:

I =
∫

V0eL

f [X(ξ, η, ζ )]J ∗(ξ, η, ζ ) dξ dη dζ =:
∫

V0eL

g(ξ, η, ζ ) dξ dη dζ (2.105)

where J ∗(ξ, η, ζ ) is the Jacobian determinant of the transformation X(γ ) (see
Equation (2.17)). In this way, the integration domain is identical for all elements belonging
to the same type, for example, brick elements. Now, the analytical integration is approx-
imated by a numerical integration scheme (Stroud 1971). This basically means that the
integral in Equation (2.105) is replaced by a linear combination of function values at
specific locations, the so-called integration points, within the domain of integration:

∫

V0eL

g(ξ, η, ζ ) dξ dη dζ ≈
N∑

i=1

g(ξi, ηi, ζi)wi. (2.106)
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The value of the weights, the location of the integration points and their number constitute
together an integration scheme. Different schemes lead to different calculational expenditure
and different accuracy. For finite element calculations, the Gauss schemes are very popular,
because of their high accuracy compared to the numerical expenditure. Since the integration
schemes essentially depend on the shape of the domain, a distinction is made between
hexahedral, tetrahedral and wedge elements.

2.3.1 Hexahedral elements
The domain in local coordinates for a hexahedral element is a cube extending from −1 to +1
(−1 ≤ ξ, η, ζ ≤ 1) along each coordinate axis. The integration schemes are symmetric in
each direction. The lowest scheme has one integration point in each direction (1 × 1 × 1 =
1, Figure 2.7), the next ones have two (2 × 2 × 2 = 8, Figure 2.8) or three (3 × 3 × 3 = 27,
Figure 2.9) points in each direction. The location of the integration points and their weights
are summarized in Table 2.1.

The 1 × 1 × 1 scheme, the 2 × 2 × 2 scheme and the 3 × 3 × 3 scheme are exact for
a constant function, a trilinear function and a triquadratic function respectively. Therefore,
the 2 × 2 × 2 scheme represents full integration for a linear element (8–node brick) and
the 3 × 3 × 3 scheme stands for full integration in a quadratic element (20–node brick).
The term reduced integration is used if one selects the next coarser scheme: 1 × 1 × 1 for
linear elements and 2 × 2 × 2 for quadratic elements. Reduced integration frequently has
a beneficial effect: it produces less shear locking and less volumetric locking; therefore, it
is ideal for plates, shells and incompressible materials (rubber, plasticity in metals). Fur-
thermore, Barlow has shown ((Barlow 1976), see also (Mackinnon and Carey 1989) and
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Figure 2.7 Hexahedral element: 1 × 1 × 1 scheme
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Figure 2.8 Hexahedral element: 2 × 2 × 2 scheme
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Figure 2.9 Hexahedral element: 3 × 3 × 3 scheme
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Table 2.1 Location of the integration points in hexahedral
elements.

Scheme Location (ξi, ηi , ζi ) Number Weight

and any perturbation

1 × 1 × 1 (0, 0, 0) 1 8

2 × 2 × 2

(
± 1√

3
, ± 1√

3
, ± 1√

3

)
8 1

3 × 3 × 3

(

±
√

3

5
, ±
√

3

5
, ±
√

3

5

)

8

(
5

9

)3

(

0, ±
√

3

5
, ±
√

3

5

)

12

(
8

9

)(
5

9

)2

(

0, 0, ±
√

3

5

)

6

(
8

9

)2 (5

9

)

(0, 0, 0) 1

(
8

9

)3

(Liew and Rajendran 2002)) that the reduced integration points are the so-called super-
convergent points, in which the stress is one order more accurate than in any other point.
However, because of reduced integration, so-called zero-energy modes can arise, lead-
ing to hourglassing. Shear locking, volumetric locking and hourglassing are discussed in
Section 2.5.

2.3.2 Tetrahedral elements

For tetrahedral elements, the integration domain in local coordinates is depicted in Fig-
ure 2.10. The most frequently used Gauss integration schemes are summarized in Table 2.2.
Linear tetrahedral elements are usually integrated with one integration point, quadratic
elements with four. Figure 2.10 visualizes the scheme with four integration points. The
scheme with 15 integration points improves the condition of the consistent mass matrix (cf
Section 2.11.6). For tetrahedral elements, the term reduced integration is not used.

2.3.3 Wedge elements

The integration domain for a wedge element consists of a prism with triangular lower and
upper surface (Figure 2.11). Linear wedge elements are usually integrated with a 2-point
scheme, quadratic wedges with a 9-point scheme. The 18-point scheme is used for the
integration of the consistent mass matrix (cf Section 2.11.6). The integration schemes are
summarized in Table 2.3.
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Figure 2.10 Tetrahedral element: 4 integration points

Table 2.2 Location of the integration points in tetrahedral elements.

Total number of Location (ξi , ηi , ζi , 1 − ξi − ηi − ζi ) Number Weight
integration points and any perturbation

1

(
1

4
,

1

4
,

1

4
,

1

4

)
1

1

6

4

(
5 − √

5

20
,

5 − √
5

20
,

5 − √
5

20
,

5 + 3
√

5

20

)

4
1

24

15

(
1

4
,

1

4
,

1

4
,

1

4

)
1

16

810

(
7 − √

15

34
,

7 − √
15

34
,

7 − √
15

34
,

13 + 3
√

15

34

)

4
2665 + 14

√
15

226 800

(
7 + √

15

34
,

7 + √
15

34
,

7 + √
15

34
,

13 − 3
√

15

34

)

4
2665 − 14

√
15

226 800

(
10 − 2

√
15

40
,

10 − 2
√

15

40
,

10 + 2
√

15

40
,

10 + 2
√

15

40

)

6
20

2268
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Figure 2.11 Wedge element: 9 integration points

Table 2.3 Location of the integration points in wedge elements.

Total number of Location (ξi , ηi , 1 − ξi − ηi − ζi , ζi ) Number Weight
integration points and any perturbation

2

(
1

3
,

1

3
,

1

3
; ± 1√

3

)
2

1

2

9

(
1

6
,

1

6
,

4

6
;±
√

3

5

)

6
5

54

(
1

6
,

1

6
,

4

6
; 0

)
3

8

54

18

(
1

6
,

1

6
,

4

6
;±
√

3

5

)

6
1

12

(
1

6
,

1

6
,

4

6
; 0

)
3

2

15

(
1

2
,

1

2
, 0;±

√
3

5

)

6
1

108

(
1

2
,

1

2
, 0; 0

)
3

2

135
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Figure 2.12 Mapping a surface element in local coordinates onto global coordinates

2.3.4 Integration over a surface in three-dimensional space

Occasionally, the domain of an integral is a surface. For instance, for a distributed pressure,
the first term in Equation (2.23) takes the form

−
∫

A0e

pNKϕi dAe = −
∫

A0e

pϕi dAK
e (2.107)

or, generically,

I =
∫

A0e

f (X) dA. (2.108)

On the left-hand side of Figure 2.12, the surface is shown in local coordinates, on the
right-hand side in global coordinates. The infinitesimal surface dA satisfies

dA = ∂X

∂ξ
dξ × ∂X

∂η
dη (2.109)

where “×” is the vector product. Consequently, Equation (2.108) can be replaced by

I =
∫

AeL

f [X(ξ, η)]J ∗ dξ dη (2.110)

where

J ∗ := ∂X

∂ξ
× ∂X

∂η
= ∂XK

∂ξ

∂XL

∂η
GK × GL (2.111)

can be considered as a Jacobian vector. Since

GK × GL = eKLMGM
√

det G� (2.112)
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Equation (2.111) can also be written as

J ∗ = eKLM

∂XK

∂ξ

∂XL

∂η
GM

√
det G� (2.113)

or

J ∗ =

∣
∣
∣∣
∣
∣∣
∣∣
∣

G1 G2 G3

∂X1

∂ξ

∂X2

∂ξ

∂X3

∂ξ
∂X1

∂η

∂X2

∂η

∂X3

∂η

∣
∣
∣∣
∣
∣∣
∣∣
∣

√
det G� (2.114)

where the vertical lines denote the determinant. Notice that the vector product of two vectors
yields a one-form. This confirms the one-form nature of a differential surface element.

Equation (2.107) is the expression for the force in direction K in local node i due to
a distributed pressure on A0e. Focusing on a hexahedral element type and assuming that
x = ξ , y = η, z = 0 and that the pressure is constant, the force Fzi in z-direction in local
node i takes the form

Fzi = −p

∫ 1

−1

∫ 1

−1
ϕi(ξ, η) dξ dη. (2.115)

The total force Fz on the surface amounts to

Fz = −4p. (2.116)

Accordingly, the relative force in local node i satisfies

Fzi/Fz = 1

4

∫ 1

−1

∫ 1

−1
ϕi(ξ, η) dξ dη. (2.117)

The shape functions in the face are the three-dimensional shape functions from
Section 2.2 for which one local coordinate is kept constant. Performing the integration
in Equation (2.117) and similarly for the other element types leads to the force distribu-
tions in Figure 2.13. One notices that for linear elements each node takes the same amount
of force. This is not the case for quadratic elements. For 10-node tetrahedral elements, the
vertex nodes do not take any force at all and the middle nodes carry the complete force.
For 20-node brick elements, the middle nodes carry even more than the complete force
resulting in tensile forces in the vertex nodes. This substantially complicates the detection
of contact conditions in quadratic elements.

2.4 Extrapolation of Integration Point Values to the Nodes

Solution of the governing finite element equations (2.27) yields the displacements at all
nodes. These can be used to calculate the strains (apply Equations (2.14) and (2.4)) and
the stresses (through Equation (2.2)) throughout each element. Because of the numerical
integration, the strains and stresses are more accurate at the integration points than anywhere
else. Therefore, the field variables are usually evaluated at the integration points and, if
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Figure 2.13 Relative nodal forces due to constant pressure

needed, extrapolated to the nodes. This extrapolation is done on an element basis, that is,
one obtains for a given node as many values as the number of elements it belongs to. These
values are usually discontinuous at the element borders. This is taken care of by calculating
the mean value over all elements the node belongs to.

Extrapolation toward the nodes is sometimes replaced by interpolation within patches
of elements. This is closely related to the very important topic of error estimation. For
further information the reader is referred to (Zienkiewicz and Zhu 1992a), (Zienkiewicz
and Zhu 1992b), (Gabaldón and Goicolea 2002) and (Prudhomme et al. 2003).

Now, extrapolation schemes will be presented for the three-dimensional elements intro-
duced in the previous sections.

2.4.1 The 8-node hexahedral element
The extrapolation of the field variables in the integration points toward the nodes for
the fully integrated linear hexahedral element is usually trilinear, that is, the shape func-
tions that are used for the displacements are also used for the stresses, strains and any
other dependent fields. Assume that the field variables are known in the nodes. Then,
the integration point values are obtained by (the stress σxx stands for any field vari-
able)

σxxj =
8∑

i=1

ϕi(ξj , ηj , ζj ) σxxi (2.118)

(i are the nodes, j are the eight integration points) or in matrix form
{
σxx

}
integration points = [A] {σxx

}
nodes . (2.119)
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Consequently, the nodal values are found by inverting Equation (2.119)

{
σxx

}
nodes = [A]−1 {

σxx

}
integration points . (2.120)

[
A
]

is an 8 × 8 matrix and can be evaluated explicitly since both the shape functions
(Section 2.2.1) and the location of the integration points (Section 2.3.1) are known. Con-
sequently, the inverse matrix can also be coded explicitly into the finite element program.
For the node and integration point numbering of Figure 2.8 the matrix

[
A
]−1 satisfies

[
A
]−1 =










+2.549 −0.683 −0.683 +0.183 −0.683 +0.183 +0.183 −0.049
−0.683 +2.549 +0.183 −0.683 +0.183 −0.683 −0.049 +0.183
+0.183 −0.683 −0.683 +2.549 −0.049 +0.183 +0.183 −0.683
−0.683 +0.183 +2.549 −0.683 +0.183 −0.049 −0.683 +0.183
−0.683 +0.183 +0.183 −0.049 +2.549 −0.683 −0.683 +0.183
0.183 −0.683 −0.049 +0.183 −0.683 +2.549 +0.183 −0.683

−0.049 +0.183 +0.183 −0.683 +0.183 −0.683 −0.683 +2.549
+0.183 −0.049 −0.683 +0.183 −0.683 +0.183 +2.549 −0.683











. (2.121)

Notice that Equation (2.120) defines the nodal values as a linear combination of the
integration point values. For the reduced integration 8-node element, there is only 1 inte-
gration point, yielding one field value per element. This value is copied to the nodes and
corresponds to a constant function extrapolation.

2.4.2 The 20-node hexahedral element

For the fully integrated 20-node element, a similar scheme as for the fully integrated 8-node
element is proposed: the field variables are interpolated using the shape functions of the
element:

σxxj =
20∑

i=1

ϕi(ξj , ηj , ζj ) σxxi, j = 1, . . . , 27 (2.122)

(i are the nodes, j are the integration points). This, however, leads to 27 equations in 20
unknowns (the nodal values σxxi) and cannot be inverted: the system is overdetermined. A
standard procedure to solve overdetermined systems is the least-squares method. Writing
Equation (2.122) as

bj =
20∑

i=1

ajixi, j = 1, . . . , 27 (2.123)

corresponds to minimizing
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I :=
27∑

j=1

(
20∑

i=1

ajixi − bj

)2

. (2.124)

The solution can be found by differentiation:

∂I

∂xk

= 2
27∑

j=1

[(
20∑

i=1

ajixi − bj

)

ajk

]

= 0, k = 1, . . . , 20 (2.125)

is equivalent to

20∑

i=1








27∑

j=1

ajiajk



 xi



 =
27∑

j=1

ajkbj , k = 1, . . . , 20 (2.126)

or

20∑

i=1

ckixi = dk, k = 1, . . . , 20 (2.127)

where

cki =
27∑

j=1

ajkaji , k = 1, . . . , 20 (2.128)

dk =
27∑

j=1

ajkbj , k = 1, . . . , 20. (2.129)

Equation (2.127) is a system of 20 equations in 20 unknowns. Let
{
b1
}

be a unit vector
with a unit value in its first row. Then, the solution

{
x1
}

contains the nodal values for a
unit value in the first integration point and zero in all other integration points. This can be
repeated for all other integration points. One finally obtains the 20 × 27 matrix

[
B
]

in the
equation

{
σxx

}
nodes = [B] {σxx

}
integration points . (2.130)

It takes the form

[
B
] = [{x1

} {
x2
}
. . .
{
x27
}]

. (2.131)

The numerical values can be found in the CalculiX code (CalculiX 2003).
For the reduced integration element, there are only 8 integration point values. The same

scheme as for the fully integrated 8-node element is used to obtain the vertex nodal values.
The values of the middle nodes are obtained by taking the mean of the neighboring vertex
nodal values.
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2.4.3 The tetrahedral elements

For the linear tetrahedral element, there is only 1 integration point and its value is simply
copied to the nodes.

The quadratic tetrahedral element contains 4 vertex nodes and 4 integration points.
Consequently, exactly the same procedure can be used as for the reduced integrated 20-
node elements: one takes the displacement shape functions of the corresponding linear
element – the linear tetrahedron – and writes Equations (2.118) to (2.119). The inver-
sion of

[
A
]

yields the vertex nodal values by Equation (2.120). Here,
[
A
]−1 takes the

form

[
A
]−1 =







+1.92705 −0.30902 −0.30902 −0.30902
−0.30902 +1.92705 −0.30902 −0.30902
−0.30902 −0.30902 +1.92705 −0.30902
−0.30902 −0.30902 −0.30902 +1.92705





 (2.132)

for the node and integration point numbering of Figure 2.10. The values in the middle
nodes are obtained by taking the mean of the neighboring vertex nodal values.

2.4.4 The wedge elements

For the linear wedge element, the values in the two integration points are linearly extrap-
olated toward the nodes in the upper and lower triangle.

The quadratic wedge element has 15 nodes and 9 integration points. It is under-
determined. However, there are only 6 vertex nodes. Consequently, one can apply a
least-squares scheme for the vertex nodes. It results in the following 6 × 9

[
B
]

matrix
(cf Equation (2.130)):

[
B
] =






+1.6314 −0.3263 −0.3263 +0.5556 −0.1111 −0.1111 −0.5203 +0.1041 +0.1041
−0.3263 +1.6314 −0.3263 −0.1111 +0.5556 −0.1111 +0.1041 −0.5203 +0.1041
−0.3263 −0.3263 +1.6314 −0.1111 −0.1111 +0.5556 +0.1041 +0.1041 −0.5203
−0.5203 +0.1041 +0.1041 +0.5556 −0.1111 −0.1111 +1.6314 −0.3263 −0.3263
+0.1041 −0.5203 +0.1041 −0.1111 +0.5556 −0.1111 −0.3263 +1.6314 −0.3263
+0.1041 +0.1041 −0.5203 −0.1111 −0.1111 +0.5556 −0.3263 −0.3263 +1.6314







(2.133)

for the node and integration points numbering of Figure 2.11. The midnode values are
obtained by taking the mean of the neighboring vertex nodal values.

2.5 Problematic Element Behavior

Some of the elements discussed earlier exhibit anomalies under certain conditions. This
invariably results from the approximations in the finite element formulation. These are
twofold: the real displacement field is approximated by the shape functions and the contin-
uous integration is replaced by a sum in discrete points. The most important anomalies that
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can occur in the volume elements considered here are shear locking, volumetric locking
and hourglassing.

2.5.1 Shear locking

Shear locking predominantly occurs in linear elements with full integration (8-node brick).
It results in a deformation behavior that is too stiff, that is, the displacements are too small.
This can best be explained by looking at a two-dimensional view of a beam subjected to
pure bending in Figure 2.14.

The shear force is zero and the shearing strain should everywhere be zero. However,
the linear brick element cannot model the curvature appropriately and will approximate the
deformed shape by a piecewise-linear curve (recall that the edges of an 8-node brick
element are straight). Whereas in the real deformation cross sections remain perpen-
dicular to the beam axis (Figure 2.14(b)), this is not necessarily the case in the finite
element approximation (Figure 2.14(c)). Figures 2.14(d) and 2.14(e) show just one ele-
ment from Figure 2.14(c). If full integration is used (2 × 2 × 2 integration points) as shown
in Figure 2.14(d), the shear strain at the integration points is not zero and a consider-
able amount of energy is absorbed by the fake shearing phenomenon, not leaving enough
energy for bending: the displacements are too small. The problem can be alleviated by
using reduced integration (1 × 1 × 1 integration point) as shown in Figure 2.14(e): the
shear strain at the integration point is zero and the correct displacements result.

2.5.2 Volumetric locking

The problem of volumetric locking occurs for incompressible or nearly incompressible
behavior. It can be explained using the example in Figure 2.15. Element 1 is fixed along-
side 1–2 and 1–4. It is a standard two-dimensional quadrilateral element. The mate-
rial is assumed to be incompressible. Accordingly, J = 1 everywhere. Since u1 = u2 =
u4 = v1 = v2 = v4 = 0, the displacements in the element amount to (reduce the three-
dimensional shape function in Equation (2.39) to the present two-dimensional case)

u = 1

4
(1 + ξ)(1 + η)u3

v = 1

4
(1 + ξ)(1 + η)v3.

(2.134)

For simplicity, the local and global coordinates are assumed to coincide, that is, x,ξ =
y,η = 1, x,η = y,ξ = 0. Hence,

u,ξ = 1

4
(1 + η)u3

u,η = 1

4
(1 + ξ)u3

v,ξ = 1

4
(1 + η)v3

v,η = 1

4
(1 + ξ)v3.

(2.135)
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Figure 2.14 The shear locking phenomenon
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Figure 2.15 Locking behavior in corner elements

Since

xk
,K = (XLδk

L + uk),K = δk
K + uk

,K (2.136)

and

J = det(xk
,K) (2.137)

one finds

J = 1 + 1

4
(1 + η)u3 + 1

4
(1 + ξ)v3. (2.138)

The requirement J = 1 (incompressibility) amounts to

1

4
(1 + η)u3 + 1

4
(1 + ξ)v3 = 0. (2.139)

If we take full integration, Equation (2.139) has to be satisfied at ξ, η = ±0.57:

0.39u3 + 0.39v3 = 0

0.11u3 + 0.39v3 = 0

0.39u3 + 0.11v3 = 0

0.11u3 + 0.11v3 = 0

(2.140)

which can only be satisfied if u3 = v3 = 0. This results in a zero-deformation field for
the complete element: the element locks. The same argument can be repeated for the
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neighboring elements (dashed line in Figure 2.15). If, on the other hand, reduced integration
is applied, there is only one integration point at ξ = η = 0. Now, there is only one equation
to satisfy:

u3 + v3 = 0 (2.141)

and no locking occurs. Therefore, it is often advantageous to use reduced integration to
avoid locking.

Another option is to use hybrid elements (Zienkiewicz and Taylor 1989), in which the
pressure is considered as an additional independent variable. Indeed, the problem is that for
truly incompressible behavior the pressure cannot be derived from the displacement field,
since increasing the hydrostatic pressure does not lead to a change in the displacement field.
The resulting hybrid elements are a special case of what are now called assumed stress
and assumed strain elements. In these elements, the stresses and/or strains are interpolated
independent of the displacements. They require the application of multifield variational prin-
ciples such as the Hu–Washizu weak form. Interested readers are referred to (Belytschko
et al. 2000).

2.5.3 Hourglassing

Hourglassing implies the existence of zero-energy modes: these are displacement modes
that do not lead to any strain or stress at the integration points. Since the field values at the
integration points are the only ones entering the integration scheme (Equation (2.106)),
hourglass modes can be added at will without disturbing the equilibrium condition
(Equation (2.1)). This usually results in wildly varying displacement fields but correct
stress and strain fields. Reducing the number of integration points naturally increases the
number of hourglassing modes. A linear brick element with reduced integration has one
integration point where six strain components prevail. However, the same element has 8
nodes leading to 24 degrees of freedom. Accordingly, 18 undetermined modes are left of
which 6 are rigid body modes leading to 12 hourglass modes in total. Figure 2.16 shows
how hourglassing for a beam under bending might look like.

To get rid of hourglassing, several stabilization methods such as the introduction of arti-
ficial stiffness and the enhanced strain method have been proposed. For details, the reader
is referred to (Belytschko et al. 2000), (Belytschko and Bindeman 1993), (Puso 2000),
(Reese and Wriggers 2000) and (Reese 2003a). Notice that the solution in Figure 2.14(e)
to eliminate shear locking works because the shear deformation is an hourglass mode for
this one integration point. This shows that the locking phenomena and hourglassing are
intimately related, (see also (Reese 2002) for more information).

For the 20-node brick element with reduced integration, there are only (3 degrees of
freedom) × (20 nodes) − (8 integration points) × (6 strain components) − (6 rigid body
modes) = 6 hourglass modes. Because of the quadratic shape of the element sides, these
modes cannot propagate through the mesh. Consequently, hourglassing in these elements
is rare. In fully integrated brick elements, in tetrahedral elements and wedge elements,
hourglassing cannot occur.
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Figure 2.16 Hourglassing in a cantilever beam

2.6 Linear Constraints

In addition to the equilibrium equations expressed by Equation (2.27), the solution of a
field problem requires the formulation of boundary conditions. One distinguishes geomet-
ric boundary conditions, which contain the independent variables such as displacements
and temperatures, from natural boundary conditions, which are formulated in terms of
the dependent variables such as stress and heat flux. In this section, the focus is on geo-
metric boundary conditions. If only one degree of freedom is involved, the constraint is
called a single point constraint, else it is a multiple point constraint. Constraints can be
linear or nonlinear. Examples of truly linear multiple point constraints are the constraint
of a degree of freedom in nonrectangular coordinates, cyclic symmetry conditions and
equations connecting dissimilar meshes. Examples for nonlinear multiple point constraints
are constraints involving finite rotations such as rigid body motions and incompressibility
conditions.

2.6.1 Inclusion in the global system of equations

The multiple point constraint concept is extremely powerful. Therefore, a truly efficient way
must be found to deal with it numerically. One option is to augment the matrix with the
additional equations using Lagrangian multipliers. This, however, leads to larger systems of
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equations, increased computational times and a nonsymmetric system. This can be avoided
by eliminating one degree of freedom per single point constraint or per multiple point
constraint during the construction of the global stiffness matrix. How this is done will be
explained in the present section.

Assume that our global system of equations contains N degrees of freedom. Equation
l reads

N∑

j=1

aljuj = bl, l = 1, . . . , N. (2.142)

Assume we have M additional multiple point constraints of the form

N∑

k=1

eikuk = fi, i = 1, . . . , M. (2.143)

In each of these equations i, we choose one degree of freedom ki , which is suited to be
eliminated and which will be called a dependent degree of freedom. All dependent degrees
of freedom ki, i = 1, . . . , M must be distinct. Now, Equation (2.143) can be rearranged
by collecting all dependent degrees of freedom on the left-hand side:

M∑

j=1

eikj
ukj

= fi −
N∑

k=1
k �∈{k1,... ,kM }

eikuk, i = 1, . . . , M. (2.144)

This is a set of M equations in M unknowns and can be solved for the dependent degrees
of freedom provided that the equations on the left-hand side are linearly independent. It
results in equations of the form

ukj
=

N∑

k=1
k �∈{k1,... ,kM }

ckj kuk + dkj
. (2.145)

Now, assume that there is only one multiple point constraint. Equation (2.145) reduces to

ui =
N∑

k=1
k �=i

cikuk + di (2.146)

which allows us to eliminate ui . Equation (2.146) is of a most general form including
single point constraints (all cik = 0). Substituting Equation (2.146) into Equation (2.142)
yields (no implicit summation in the section)

N∑

j=1
j �=i

(alj + alicij )uj = bl − alidi , l = 1, . . . , N. (2.147)

The new coefficient a◦
lj in the global matrix at position (l, j) now reads

a◦
lj = alj + alicij , j, l = 1, . . . , N; j �= i. (2.148)
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The global stiffness matrix is Hermitian (complex matrices arise because of cyclic sym-
metry conditions, cf Section 2.10; if the matrix is real, “Hermitian” can be replaced by
“symmetric”) and consequently,

alj = ajl, j, l = 1, . . . , N (2.149)

where a stands for the complex conjugate of a. However, for the new coefficient we have

a◦
j l = ajl + aji cil �= a◦

lj , j, l = 1, . . . , N; j �= i. (2.150)

The Hermitian structure is destroyed! This is a serious drawback since it means that com-
putational advantages due to the Hermitian structure are lost. The Hermitian structure,
however, can be restored by multiplying row i, which reads

N∑

j=1
j �=i

(aij + aiicij )uj = bi − aiidi (2.151)

by cim and adding it to row m, m = 1, . . . , N, m �= i. Now, coefficient a∗
lj at position (l, j)

reads

a∗
lj = alj + alicij + aij cil + aiicij cil, j, l = 1, . . . , N; j, l �= i (2.152)

which coincides with the complex conjugate of

a∗
j l = ajl + ajicil + ailcij + aiicilcij , j, l = 1, . . . , N; j, l �= i (2.153)

which reads

a∗
j l = ajl + aji cil + ailcij + aii cilcij , j, l = 1, . . . , N; j, l �= i. (2.154)

The right-hand side coefficient b∗
l satisfies

b∗
l = bl − alidi + bicil − aiidicil, l = 1, . . . , N; l �= i. (2.155)

Row i and column i are dropped altogether from the set.
What happens if two multiple point constraints apply? Let us say that there is a second

multiple point constraint of the form

um =
N∑

k=1
k �=m

cmkuk + dm, m �= i. (2.156)

We assume that both constraints were brought in the form of Equation (2.145) such that
cmi = cim = 0. Consequently,

ui =
N∑

k=1
k �=i,k �=m

cikuk + di (2.157)

um =
N∑

k=1
k �=m,k �=i

cmkuk + dm. (2.158)
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Applying Equation (2.152) twice, first to eliminate multiple point constraint m, and then
to eliminate multiple point constraint i, one obtains

a∗∗
lj = a∗

lj + a∗
lmcmj + a∗

mjcml + a∗
mmcmjcml (2.159)

= alj + alicij + aij cil + aiicij cil

+ (alm + alicim + aimcil + aiicimcil)cmj

+ (amj + amicij + aij cim + aiicij cim)cml

+ (amm + amicim + aimcim + aiicimcim)cmj cml (2.160)

j, l = 1, . . . , N; j, l �= i; j, l �= m;
or taking into account that cim = 0

a∗∗
lj = alj + (alicij + almcmj )

+ (aij cil + amjcml)

+ (aimcmj cil + amicij cml)

+ (aiicij cil + ammcmj cml). (2.161)

j, l = 1, . . . , N; j, l �= i; j, l �= m.

In a similar way one obtains for the right-hand side

b∗∗
l = b∗

l − a∗
lmdm + b∗

mcml − a∗
mmdmcml (2.162)

= bl − alidi + bicil − aiidicil

− (alm + alicim + aimcil + aiicimcil) dm

+ (bm − amidi + bicim − aiidicim)cml

− (amm + amicim + aimcim + aiicimcim) dmcml (2.163)

l = 1, . . . , N; l �= i, m;
or, taking into account that cim = 0

b∗∗
l = bl + (bicil + bmcml)

− (aiidicil + ammdmcml)

− (alidi + almdm + aimcildm + amicmldi). (2.164)

l = 1, . . . , N; l �= i, m.
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Equations (2.161) and (2.164) cover all possibilities for coefficients a and b. Indeed, in
a finite element code the element matrices are calculated first, Equations (2.21) to (2.24).
Then, these matrices are transferred into the global matrix. This operation is symbolized
by Equations (2.28) to (2.30) and will be looked at in more detail now.

Suppose an entry a in the local matrix corresponds to global degrees of freedom p and
q (row and column). Now, the following possibilities arise:

1. p and q are independent degrees of freedom. Then

apq+ = a (2.165)

where the C-notation + = was used to indicate that the global matrix entry apq is
to be augmented by a.

2. p is a dependent degree of freedom, q is not. Accordingly, row p in the global matrix
is eliminated, column q is not , and a has a similar status as aij in the term aij cil in
Equation (2.152). Since row p is eliminated, the contribution of a is transferred to
whatever position aij in Equation (2.152) has gone to, now substituting p for i and
q for j

alq+ = acpl. (2.166)

This applies to all degrees of freedom l for which cpl �= 0. Because of Equation (2.145)
these are only independent degrees of freedom.

3. q is a dependent degree of freedom, p is not. This contribution is comparable to
alicij in Equation (2.152) and −alidi in Equation (2.155). Now we have

apj+ = acqj ∀j such that cqj �= 0 (2.167)

and

bp+ = −adq . (2.168)

4. p and q are dependent degrees of freedom, p �= q, cf aimcilcmj in Equation (2.161)
and aimcildm in Equation (2.164):

alj+ = acplcqj ∀l, j such that cpl �= 0 and cqj �= 0 (2.169)

and

bl+ = −acpldq ∀l such that cpl �= 0. (2.170)

5. p and q are dependent degrees of freedom, p = q, cf aiicij cil in Equation (2.152)
and −aiidicil in Equation (2.155):

alj+ = acpj cpl ∀l, j such that cpl �= 0, cpj �= 0 (2.171)

bl+ = −adpcpl ∀l such that cpl �= 0. (2.172)
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For an entry b in the local right-hand side corresponding to global degree of freedom
p, there are only two possibilities:

1. p is an independent degree of freedom

bp+ = b. (2.173)

2. p is a dependent degree of freedom, cf bicil in Equation (2.155):

bl+ = bcpl ∀l such that cpl �= 0. (2.174)

In this way, all entries in the local matrices are transferred to independent degrees
of freedom in the global matrices. Consequently, the elimination of degrees of freedom
involved in multiple point constraints is taken care of implicitly while transferring the local
matrices into the global ones.

Notice that to each entry a in row ip and column iq in the element stiffness matrix
corresponding to global degrees of freedom p and q, respectively, there is a symmetric
entry with the same value a in row iq and column ip. If p is a dependent degree of freedom
and q is an independent degree of freedom, Equation (2.166) applies to entry a in row ip
and column iq :

alq+ = a cpl (2.175)

and Equation (2.167) applies to entry a in row iq and column ip:

aql+ = acpl (2.176)

which keeps the Hermitian structure of the global matrix. In practice, only half of the
Hermitian matrix is calculated and stored.

2.6.2 Forces induced by linear constraints

The introduction of multiple point constraints induces forces. Indeed, imagine a constraint
of the form

ui = uj . (2.177)

Then both degrees of freedom are coupled and behave as if a rigid bar connects both:
degree of freedom i will experience a force F , degree of freedom j will experience the
inverse force. How does this translate to general multiple point constraints of the form in
Equation (2.146)? Recall that the global system contains N degrees of freedom leading
to an N × N stiffness matrix. Adding Equation (2.146) leads to N + 1 equations in N

unknowns. After substitution into the global set, column i was eliminated leading to N

equations in N − 1 unknowns. This is still an overdetermined system and generally has
no solution. This problem was solved by adding multiples of row i to the other rows and
deleting row i afterward. Consequently, row i is not being satisfied. Indeed, the residual
of row i is exactly the multiple point constraint force we are looking for (no implicit
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summation in this section):

N∑

j=1
j �=i

(aij + aiicij )uj − (bi − aiidi) = Fi. (2.178)

Accordingly, the addition of multiples of row i to other rows is equivalent to the addition
of multiples of Fi . Indeed, row l reads

N∑

j=1
j �=i

(alj + alicij )uj +






N∑

j=1
j �=i

(aij + aiicij )uj




 cil = (bl − alidi) + (bi − aiidi)cil (2.179)

or

N∑

j=1
j �=i

(alj + alicij )uj − (bl − alidi) = −Ficil (2.180)

and degree of freedom l experiences the force

Fl = −Ficil . (2.181)

Notice that the force is proportional to the conjugate coefficient in the multiple point
constraint. For instance, if the multiple point constraint reads

ui = 2uj (2.182)

degree of freedom j experiences a force that is twice the force acting on degree of free-
dom i.

2.7 Transformations

Transformations are an important tool for the finite element practitioner. For instance, if a
structure exhibits cylindrical symmetry, boundary conditions are more easily formulated in
a cylindrical coordinate system than in the global rectangular system. Another important
application is the definition of anisotropic material properties in cases in which the material
axes do not coincide with the global axes. In all these instances, it is advantageous to
introduce a local coordinate system. Here, we will concentrate on local rectangular and local
cylindrical systems. Both systems are orthogonal, that is, the covariant and contravariant
unit vectors coincide. If

I I ′ := GI ′/
√

GI ′I ′ (2.183)

and similarly for the contravariant base vectors, one can write

I I ′ = I I ′
, I ′ = 1, 2, 3 (2.184)

GI ′ · GJ ′ = I I ′ · I J ′ = 0, I ′ �= J ′. (2.185)
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X1

X2

X3

a

X1′

X2′

X3′

I 1′

I 2′

I 3′

b

Figure 2.17 Local rectangular system

Let us characterize the global rectangular coordinate system by unit vectors I 1, I 2, I 3 and
coordinates X1, X2 and X3.

A local rectangular coordinate system X1′
-X2′

-X3′
can be defined by a point a on the

X1′
-axis and a second point b within the X1′

-X2′
plane excluding the X1′

-axis (Figure 2.17).
For transformation purposes, it is important to determine unit base vectors in the local
coordinate system. The unit vector along the X1′

-axis is easily determined

I 1′ = a

‖a‖ . (2.186)

A vector on the X2′
-axis can be found by moving b in direction I 1′ such that the resulting

vector is orthogonal to I 1′ :

(b + λI 1′) ⊥ I 1′ (2.187)

or

(b + λI 1′) · I 1′ = 0 ⇒ λ = −b · I 1′ . (2.188)

Consequently,

I 2′ = b − (b · I 1′)I 1′

‖b − (b · I 1′)I 1′ ‖ . (2.189)



LINEAR MECHANICAL APPLICATIONS 99

Finally,

I 3′ = I 1′ × I 2′ (2.190)

where × symbolizes the vector product.
A local cylindrical coordinate system can be defined by two points on the cylindrical

axis (Figure 2.18). A local cylindrical system is also orthogonal, that is, the three unit
vectors are perpendicular to each other. However, the orientation of the local unit vectors
varies in space. In the finite element code CalculiX (CalculiX 2003), the first unit vector
is in radial direction, the second in tangential direction and the third in axial direction. Let
us determine a set of unit vectors in point p. From Figure 2.18 we have

I 3′ = b − a

‖b − a‖ . (2.191)

Point q is a point on the axis such that

(p − q) ⊥ (b − a) (2.192)

or, since a point on the axis can be written as a + λI 3′ , λ ∈ R

(p − a − λI 3′) · I 3′ = 0 (2.193)

from which

λ = (p − a) · I 3′ . (2.194)

X1

X2

X3

a

p

q

I 1′

I 2′

I 3′

b

Figure 2.18 Local cylindrical system
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Accordingly,

p − q = (p − a) − [(p − a) · I 3′ ]I 3′ (2.195)

and

I 1′ = p − q

‖p − q‖ . (2.196)

If p is on the axis, ‖p − q‖ = 0 and Equation (2.196) cannot be applied. In that case, any
direction perpendicular to I 3′ can be taken for I 1′ . Finally,

I 2′ = I 3′ × I 1′ . (2.197)

This concludes the determination of local unit vectors for rectangular and cylindrical sys-
tems.

An arbitrary vector p can be expressed as a function of I 1, I 2 and I 3 or I 1′ , I 2′ and
I 3′ :

p = X1I 1 + X2I 2 + X3I 3 (2.198)

= X1′
I 1′ + X2′

I 2′ + X3′
I 3′ . (2.199)

Taking the scalar product of Equation (2.198) with I 1′
we arrive at

p · I 1′ = X1(I 1 · I 1′
) + X2(I 2 · I 1′

) + X3(I 3 · I 1′
) = X1′

(2.200)

and similarly,

X1(I 1 · I 2′
) + X2(I 2 · I 2′

) + X3(I 3 · I 2′
) = X2′

(2.201)

X1(I 1 · I 3′
) + X2(I 2 · I 3′

) + X3(I 3 · I 3′
) = X3′

. (2.202)

Notice that we have multiplied p by the contravariant unit vectors in the local coordinate
system, which, for rectangular and cylindrical coordinate systems happen to coincide with
the covariant unit vectors. Equations (2.200) to (2.202) can also be written as

XK ′ = QK ′
LXL (2.203)

where

QK ′
L = IK ′ · IL. (2.204)

In a completely similar way, one arrives at

XK = T K
L′XL′

(2.205)

where

T K
L′ = IK · IL′ . (2.206)
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T is the inverse of Q, that is,
[
QK ′

L

]−1 = [T L
K ′
]
. For orthogonal systems, where covariant

and contravariant unit vectors coincide, one can write

QK ′L = IK ′ · IL (2.207)

TLK ′ = IL · IK ′ (2.208)

which, in terms of matrix operations, means

T = QT. (2.209)

Consequently,

Q−1 = QT (2.210)

that is, Q is an orthogonal matrix. Contravariant vectors satisfy

U = ULIL

= UL ∂XK ′

∂XL
GK ′

=
3∑

K ′=1

UL ∂XK ′

∂XL

√
GK ′K ′IK ′

= UK ′
IK ′ (2.211)

from which one obtains

UK ′ = UL ∂XK ′

∂XL

√
GK ′K ′ . (2.212)

Since (Equation (2.203))

UK ′ = QK ′
LUL (2.213)

one finds

QK ′
L = ∂XK ′

∂XL

√
GK ′K ′ . (2.214)

For covariant tensors, we have

CK ′L′ = CMN

∂XM

∂XK ′
∂XN

∂XL′

√
GK ′K ′

√
GL′L′

(2.215)

= CMNT M
K ′T N

L′ . (2.216)

Notice that Q and T are not symmetric.
If boundary conditions or material orientations are expressed in local coordinate sys-

tems, they have to be transformed into the global system used to formulate Equation (2.27),
usually a global rectangular system. In practice, the following situations occur:
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1. Single point constraints are formulated in local coordinates:

UK ′ = a (2.217)

This is equivalent to

QK ′
LUL = a (2.218)

that is, an inhomogeneous single point constraint in local coordinates is transformed
into an inhomogeneous multiple point constraint in global coordinates.

2. Multiple point constraints are formulated in local coordinates. The same procedure
applies as under item 1: a homogeneous multiple point constraint in local coordinates
is transformed in a (usually longer) homogeneous multiple point constraint in global
coordinates, an inhomogeneous multiple point constraint in local coordinates is
expanded into an inhomogeneous multiple point constraint in global coordinates.

3. Forces are given in local coordinates:

FK ′ = f. (2.219)

This transforms into

QK ′
LFL = f (2.220)

or

FL = T L
K ′f. (2.221)

Consequently, a force with one nonzero local component in direction K ′ generally
results in three nonzero force components L in global coordinates.

4. The material orientation is given in local coordinates. The tangent stiffness matrix,
which is a generalization of the elasticity matrix, satisfies

dSKL = �KLMN dEMN. (2.222)

Since

dSP ′Q′ = dSKLQP ′
KQ

Q′
L (2.223)

dEMN = dER′S ′QR′
MQS ′

N . (2.224)

Equation (2.222) can be transformed into

dSP ′Q′ = �KLMNQP ′
KQ

Q′
LQR′

MQS ′
N dER′S ′ . (2.225)

Hence,

�P ′Q′R′S ′ = �KLMNQP ′
KQ

Q′
LQR′

MQS ′
N . (2.226)

Similar relationships apply to other tensors such as the matrix of expansion coeffi-
cients.

In the CalculiX code, (CalculiX 2003) all quantities expressed in local coordinates
are internally transformed into global coordinates using the previous relationships.
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2.8 Loading
The loading essentially consists of the terms in Equation (2.23). Here, we focus on cen-
trifugal loading and temperature loading.

2.8.1 Centrifugal loading

Centrifugal loading is a body force that is activated when a body rotates at an angular
speed ω about an axis. The force in a point q is proportional to the distance from the axis
and the square of the angular speed and is directed away from and orthogonal to the axis
(Figure 2.19).

Consider two points on the axis p1 and p2. Let

e := p2 − p1

‖p2 − p1‖ (2.227)

be a unit vector on the axis. Then, the point p obtained by dropping q orthogonally on the
axis satisfies

p = p1 + [(q − p1) · e]e. (2.228)

Accordingly, the centrifugal force in q satisfies

f = (q − p)ω2 (2.229)

= {(q − p1) − [(q − p1) · e]e}ω2. (2.230)

r

f

p

p1

p2

q

ω

Figure 2.19 Definition of the centrifugal axis
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The components of f in the reference configuration, satisfying

f = f KGK, (2.231)

can be directly substituted in Equation (2.23).

2.8.2 Temperature loading

Temperature loading acts as residual stress and corresponds to the term βKL(θ)T in
Equation (2.23). Indeed, imagine you heat a sphere while completely suppressing the expan-
sion: a compressive stress builds up, which will lead to the expansion of the sphere if you
relax the constraint. Accordingly, the residual stress −βKL(θ)T is related to the expansion
of the material. Indeed, for isotropic linear elastic materials, it was shown in Section 1.14.3
that (Equation (1.447))

βKL(θ) = [3λ(θ) + 2µ(θ)]α(θ)GKL. (2.232)

More generally, defining the anisotropic expansion coefficient by

EKL = αKL(θ)T (2.233)

the corresponding stress needed to avoid this expansion for a linear material yields
(Equation (1.420))

SKL = −�KLMN(θ)αMN(θ)T (2.234)

leading to

βKL(θ) = �KLMN(θ)αMN(θ). (2.235)

In Equation (2.23), thermal loading is the integral of the negative thermal stress. Indeed,
an increase in temperature has the same effect as a pulling force (assuming that the body
expands as the temperature increases). Numerical integration requires the knowledge of
the temperature at the integration points. If the temperatures are given in the nodes, an
interpolation has to be performed to obtain the integration point values. Usually, the shape
functions that are used to interpolate the displacements are also used to interpolate the
temperature (Equation (2.11)):

T (X) =
N∑

i=1

ϕi(ξ, η, ζ )T (Xi). (2.236)

Because of Equation (2.234), and assuming that the material properties do not vary wildly
within an element, the same interpolation is used for the thermal stresses too. However,
because of the fact that the strains are obtained through differentiation of the displacements
(Equation (2.4)), the degree of the mechanical stress interpolation pattern is one less than for
the thermal stress interpolation. This leads to numerical problems unless reduced integration
is used for the interpolation of the temperatures. Indeed, the number of reduced integration
points is such that interpolating polynomials have a degree that is one less than the degree
of the shape functions: linear for quadratic brick elements and constant for linear elements.
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Accordingly, the interpolated temperature and the thermal stress is at most trilinear in
quadratic elements with reduced integration and constant in linear elements with reduced
integration.

For fully integrated bricks, the temperature integration has to be reduced. This is now
illustrated for the 20-node brick.

First, the temperature is calculated at the reduced integration points:

T ∗
j =

20∑

k=1

ϕR
kjTk, j = 1, . . . , 8. (2.237)

This temperature is linearly extrapolated to the nodes of the element:

T ∗∗
i =

8∑

j=1

aijT
∗
j , i = 1, . . . , 20 (2.238)

and finally the linearly extrapolated temperature is interpolated at the full integration points:

T ∗∗∗
l =

20∑

i=1

ϕilT
∗∗
i , l = 1, . . . , 27. (2.239)

Substituting Equation (2.237) and Equation (2.238) into Equation (2.239) yields a linear
relationship:

T ∗∗∗
l =

20∑

k=1

cklTk, l = 1, . . . , 27 (2.240)

where

ckl =
20∑

i=1

8∑

j=1

ϕilaijϕ
R
kj ,

k = 1, . . . , 20
l = 1, . . . , 27.

(2.241)

ϕil and ϕR
kj are the values of the shape functions for the 20-node brick element at the

full and reduced integration points, respectively, and aij are the trilinear functions, which

are also used for the 8-node brick element (
[
A
]−1

in Equation (2.121)). Equation (2.240)
replaces Equation (2.236) for the temperature interpolation in the 20-node brick element
with full integration. For the concrete coefficients, the reader is referred to the CalculiX
code (CalculiX 2003).

For the fully integrated linear element, the reduced temperature interpolation leads to
a constant temperature at the full integration points, which is equal to the mean of the
temperature at the nodes. Thus, we get in this case for Equation (2.240)

T ∗∗∗
l = 1

8

8∑

k=1

Tk l = 1, . . . , 8. (2.242)

The reduced integration for the temperature in fully integrated elements ensures that the
thermal stress and the mechanical stress are modeled with interpolation functions of the
same degree.
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2.9 Modal Analysis

Mechanical structures exhibit eigenmodes. These are oscillating homogeneous solutions of
the linear (or linearized) governing equations. Their amplitude can be freely scaled. The
corresponding frequency of the oscillation is called the eigenfrequency. Modal analysis,
that is, the determination of the eigenfrequencies and eigenmodes is important in structural
analysis since the eigenmodes are the preferred shapes a structure will assume when subject
to loading. Indeed, one way of calculating dynamic response is by assuming that it is a
linear combination of the lowest eigenfrequencies (Meirovitch 1967).

2.9.1 Frequency calculation

A frequency analysis starts from the governing equation (2.27) in homogeneous form
[
M
] {

Ü
}+ [K] {U} = {0} (2.243)

with initial conditions
{
U
}
t=t0

= {U0
}

(2.244)
{
U̇
}
t=t0

= {V0
}
. (2.245)

To obtain the eigenmodes, a solution in the form
{
U
} = {Uj

}
eiωj t (2.246)

is proposed (separation of the space and time variables). Consequently, Equation (2.243)
yields

[
K
] {

Uj

} = ω2
j

[
M
] {

Uj

}
. (2.247)

This is a classical generalized eigenvalue problem with well-known properties. Since
[
K
]

is symmetric and
[
M
]

is symmetric and positive-definite, the eigenvalues are real and the
eigenmodes are orthogonal with respect to

[
M
]
. Indeed, suppose that λj := ω2

j is complex
with eigenvector

{
Uj

}
, then, taking the complex conjugate of Equation (2.247)

[
K
] {

Uj

} = λj

[
M
] {

Uj

}
(2.248)

reveals that λj must also be an eigenvalue with eigenvector
{
Uj

}
. Premultiplying

Equation (2.248) by
{
Uj

}T and Equation (2.247) by
{
Uj

}T
yields

{
Uj

}T [
K
] {

Uj

} = λj

{
Uj

}T [
M
] {

Uj

}
(2.249)

{
Uj

}T [
K
] {

Uj

} = λj

{
Uj

}T [
M
] {

Uj

}
. (2.250)

Taking the transpose of Equation (2.249) and subtracting the results from Equation (2.250)
leads to

0 = (λj − λj )
{
Uj

}T [
M
] {

Uj

}
. (2.251)
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Since
[
M
]

is positive definite, we have (Greenberg 1978)

{
Uj

}T [
M
] {

Uj

}
> 0 if

{
Uj

} �= 0. (2.252)

Accordingly,

λj = λj (2.253)

and λj = ω2
j is real, and so are the corresponding eigenmodes.

Now, let
{
Ui

}
and

{
Uj

}
be two different solutions:

[
K
] {

Ui

} = λi

[
M
] {

Uj

}
(2.254)

[
K
] {

Uj

} = λj

[
M
] {

Uj

}
. (2.255)

Multiplying Equation (2.254) by
{
Uj

}T and Equation (2.255) by
{
Ui

}T, taking the trans-
pose of Equation (2.255), subtracting both and taking the symmetry of

[
K
]

and
[
M
]

into
account, one obtains

(λi − λj )
{
Uj

}T [
M
] {

Ui

} = 0. (2.256)

For λi �= λj one has

{
Uj

}T [
M
] {

Ui

} = 0 (2.257)

which shows that the eigenmodes are orthogonal indeed. They are generally normed such
that

{
Uj

}T [
M
] {

Uj

} = 1. (2.258)

Premultiplying Equation (2.247) by
{
Uj

}T yields

{
Uj

}T [
K
] {

Uj

} = λj

{
Uj

}T [
M
] {

Uj

}
. (2.259)

The matrix
[
M
]

is positive definite. If
[
K
]

is positive definite as well, λj = ω2
j is not

only real but also strictly positive. This implies that for each eigenvalue λj there are two
real eigenfrequencies: ωj and −ωj . They correspond to the solutions

{
Uj(X)

}
eiωj t and{

Uj (X)
}

e−iωj t , or, alternatively, to
{
Uj(X)

}
cos(ωj t) and

{
Uj(X)

}
sin(ωj t). Notice that

these homogeneous solutions are bounded by ‖Uj(X)‖.
If λj = 0, then ωj = 0 is a double root. The solution of Equation (2.243) now amounts to{

Uj (X)
}

and
{
Uj(X)

}
t . For λj < 0 the eigenfrequencies are imaginary: ωj = ±i

√
(−λj )

leading to the solutions
{
Uj (X)

}
e−√

(−λj t) and
{
Uj(X)

}
e
√

(−λj t). Accordingly, for λj ≤ 0,
at least one of the solutions is not bounded.

Eigenvalue problems such as Equation (2.247) are usually solved with dedicated numer-
ical packages such as ARPACK (Lehoucq et al. 1998). A continuous system has infinitely
many eigenmodes. Usually, only the lowest ones (10 up to maybe 100) are practically
important. In what follows, ωj will be assumed to be positive.
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2.9.2 Linear dynamic analysis

A general linear dynamic analysis starts from Equation (2.27):

[
M
] {

Ü
}+ [K] {U} = {F} . (2.260)

Frequently, a damping term linear in the velocity
{
U̇
}

is added

[
M
] {

Ü
}+ [C] {U̇}+ [K] {U} = {F} . (2.261)

If the damping is of the Rayleigh type,
[
C
]

is defined as a linear combination of
[
M
]

and[
K
]
:

[
C
] = α

[
M
]+ β

[
K
]
. (2.262)

The quintessence of modal dynamic analysis is the fact that the response
{
U
}
, solution

of Equation (2.261), can be written as a linear combination of the eigenmodes
{
Ui

}
, which

is the solution of Equation (2.247). This relates to the fact that the eigenmodes constitute
an orthogonal basis for the solution space of Equation (2.260). Accordingly,

{
U(t)

} =
∑

i

bi(t)
{
Ui

}
. (2.263)

Notice that only the coefficients bi(t) are a function of time, the eigenmodes
{
Ui

}
are not. In

reality, only a finite number of eigenmodes is calculated and the series in Equation (2.263)
is truncated. The truncated series is an approximation of

{
U(t)

}
. The quality of the approx-

imation depends on the number of eigenmodes and the frequency content of the loading.
Substituting Equation (2.263) into Equation (2.261), one obtains

∑

i

[
M
] {

Ui

}
b̈i (t) +

∑

i

[
C
] {

Ui

}
ḃi(t) +

∑

i

[
K
] {

Ui

}
bi(t) = {F(t)

}
. (2.264)

Premultiplying by
{
Uj

}
and using Equations (2.247) and (2.262) yields

∑

i

{
Uj

}T [
M
] {

Ui

} [
b̈i (t) + (α + βω2

i )ḃi (t) + ω2
i bi(t)

]
= {Uj

}T {
F(t)

}
(2.265)

and because of the orthogonality condition, Equation (2.257), and norming condition,
Equation (2.258),

b̈j (t) + (α + βω2
j )ḃj (t) + ω2

j bj (t) = {Uj

}T {
F(t)

}
. (2.266)

Equation (2.266) is the central equation for modal dynamics. It can be written for each
mode and constitutes a linear inhomogeneous second-order ordinary differential equation
with constant coefficients. The key point is that due to the choice of

[
C
]
, the modes are
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independent of each other. The differential equations have to be complemented by the initial
conditions bj (0) and ḃj (0) obtained from

{
U0
}

:= {U(t = 0)
}

and
{
V0
}

:= {U̇(t = 0)
}

(Equation (2.263))

∑

i

bi(0)
{
Ui

} = {U0
}⇒ bj (0) = {Uj

}T [
M
] {

U0
}

(2.267)

and

∑

i

ḃi (0)
{
Ui

} = {V0
}⇒ ḃj (0) = {Uj

}T [
M
] {

V0
}
. (2.268)

Equation (2.266) is frequently written as

b̈j (t) + 2ζjωj ḃj (t) + ω2
j bj (t) = {Uj

}T {
F(t)

}
(2.269)

where ζj is the friction coefficient defined by

ζj :=
α + βω2

j

2ωj

. (2.270)

Notice that because of Equation (2.270), the friction coefficient depends on the eigenvalues.
A large α-coefficient leads to low frequency damping and a large β-coefficient to high-
frequency damping.

The solution of Equation (2.269) basically depends on the character of the discriminant,
defined by

ωjd := ωj

√
1 − ζ 2

j . (2.271)

It arises in the solution of the quadratic equation obtained by substituting eλt in the homo-
geneous differential equation. One obtains the following cases:

1. ωjd ∈ R
+

bj (t) = 1

ωjd

∫ t

0

{
Uj

}T {
F(τ)

}
e−ζj ωj (t−τ ) sin[ωjd(t − τ )] dτ

+ e−ζj ωj t




cos[ωjd t] + ζj√

1 − ζ 2
j

sin[ωjd t]




 bj (0)

+
[

1

ωjd

e−ζj ωj t sin[ωjd t]

]
ḃj (0). (2.272)
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To obtain Equation (2.272), formula 2.663.1 and 2.667.5 in (Gradshteyn and Ryzhik
1980) were used. The solution is called subcritical and consists of oscillatory functions.

2. ωjd = 0

bj (t) =
∫ t

0

{
Uj

}T {
F(τ)

}
e−ζj ωj (t−τ )(t − τ ) dτ

+ e−ζj ωj t [1 + ζjωj t]bj (0) + te−ζj ωj t ḃj (0). (2.273)

To obtain Equation (2.273), formula 2.322.1 in (Gradshteyn and Ryzhik 1980) was
used. The solution is called critical and exhibits an exponential nonoscillatory behavior.

3. ωjd = iω∗
jd , ω∗

jd ∈ R
+

bj (t) = 1

ω∗
jd

∫ t

0

{
Uj

}T {
F(τ)

}
e−ζj ωj (t−τ ) sinh[ω∗

jd(t − τ )] dτ

+ e−ζj ωj t




cosh[ω∗

jd t] + ζj√
ζ 2
j − 1

sinh[ω∗
jd t]




 bj (0)

+
[

1

ω∗
jd

e−ζj ωj t sinh[ω∗
jd t]

]

ḃj (0). (2.274)

The solution is supercritical and exhibits an exponential nonoscillatory behavior. It
can also be written as

bj (t) = 1

2ω∗
jd

∫ t

0

{
Uj

}T {
F(τ)

} [
eω−(t−τ ) − e−ω+(t−τ )

]
dτ

+ 1

2

[
eω−t + e−ω+t

]
bj (0)

+






ζj

2
√

ζ 2
j − 1

bj (0) + 1

2ω∗
jd

ḃj (0)





[
eω−t − e−ω+t

]
(2.275)

where

ω− := ω∗
jd − ζjωj (2.276)

ω+ := ω∗
jd + ζjωj . (2.277)

In Equations (2.272), (2.273) and (2.275), the right-hand side loading is written inside
an integral sign. For pointwise linear loading, the integral can be evaluated exactly. Indeed,
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let the interval [0, t] be split in subintervals [ti−1, ti] in which the loading is linear
in time

{
Uj

}T {
F(τ)

} = aij + bij τ for τ ∈ [ti−1, ti] (2.278)

with t0 = 0 and tn = t , and let

σ := t − τ (2.279)

then (use formulas 2.663.1 and 2.667.5 in (Gradshteyn and Ryzhik 1980))

∫ t

0

{
Uj

}T {
F(τ)

}
e−ζj ωj (σ) sin ωjd(σ ) dτ

=
n∑

i=1





[aij + bij t]

[
e−ζj ωj σ (−ζjωj sin[ωjdσ ] − ωjd cos[ωjdσ ])

ζ 2
j ω2

j + ω2
jd

]t−ti−1

t−ti

−bj

[
e−ζj ωj σ

ζ 2
j ω2

j + ω2
jd

((

−ζjωjσ −
(ζ 2

j ω2
j − ω2

jd)

(ζ 2
j ω2

j + ω2
jd)

)

sin[ωjdσ ]

−
(

ωjdσ + 2ζjωjωjd

(ζ 2
j ω2

j + ω2
jd)

)

cos[ωjdσ ]

)]t−ti−1

t−ti





(2.280)

in Equation (2.272), (use formulas 2.322.1 and 2.322.2 in (Gradshteyn and Ryzhik 1980))

∫ t

0

{
Uj

}T {
F(τ)

}
e−ζj ωj (σ)(σ ) dτ

=
n∑

i=1





[aij + bij t]

[

e−ζj ωj σ

(

− σ

ζjωj

− 1

ζ 2
j ω2

j

)]t−ti

t−ti−1

−bj

[

e−ζj ωj σ

(

− σ 2

ζjωj

− 2σ

ζ 2
j ω2

j

− 2

ζ 3
j ω3

j

)]t−ti

t−ti−1





(2.281)

in Equation (2.273) and (use formulas 2.311 and 2.322.1 in (Gradshteyn and Ryzhik 1980))

∫ t

0

{
Uj

}T {
F(τ)

} [
eω−(σ) − e−ω+(σ)

]
dτ

=
n∑

i=1





[aij + bij t]

[
eω−σ

ω− + e−ω+σ

ω+

]t−ti

t−ti−1

−bj

[
eω−σ

(
σ

ω− − 1

(ω−)2

)
+ e−ω+σ

(
σ

ω+ + 1

(ω+)2

)]t−ti

t−ti−1

}

(2.282)
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in Equation (2.275). Consequently, the solution for piecewise-linear loading can be written
down explicitly.

A special case of loading is the harmonic excitation satisfying
{
F(t)

} = {FR + iFI

}
ei�t . (2.283)

FR and FI are the in-phase and out-of-phase amplitude, respectively, and � is the frequency
of the excitation. Now, Equation (2.266) reads

b̈j (t) + (α + βω2
j )ḃj (t) + ω2

j bj (t) = {Uj

}T {
FR + iFI

}
ei�t . (2.284)

Inspired by the form of the right-hand side, we assume a complex solution in the form

bj (t) = (bjR + ibjI ) ei�t (2.285)

the derivatives of which yield

ḃj (t) = i�(bjR + ibjI ) ei�t (2.286)

b̈j (t) = −�2(bjR + ibjI ) ei�t . (2.287)

Substitution into Equation (2.284) leads to

−�2(bjR + ibjI ) + i(α + βω2
j ) �(bjR + ibjI ) + ω2(bjR + ibjI ) = {Uj

}T {
FR + iFI

}
.

(2.288)

Separating the real and imaginary parts of the equation yields two real equations:
{

−�2bjR − (α + βω2
j ) �bjI + ω2

j bjR = {Uj

}T {
FR

}

−�2bjI + (α + βω2
j ) �bjR + ω2

j bjI = {Uj

}T {
FI

} (2.289)

which is equivalent to
[

(ω2
j − �2) −(α + βω2

j ) �

(α + βω2
j ) � (ω2

j − �2)

]{
bjR

bjI

}
=
{{

Uj

}T {
FR

}
{
Uj

}T {
FI

}

}

(2.290)

the solution of which reads

bjR =
{
Uj

}T {
FR

}
(ω2

j − �2) + {Uj

}T {
FI

}
(α + βω2

j ) �

(ω2
j − �2)2 + (α + βω2

j )
2 �2

(2.291)

bjI =
{
Uj

}T {
FI

}
(ω2

j − �2) − {Uj

}T {
FR

}
(α + βω2

j )�

(ω2
j − �2)2 + (α + βω2

j )
2�2

. (2.292)

2.9.3 Buckling

Buckling calculations are a special case of frequency calculations with preload. In
Equation (2.243), it was emphasized that frequency calculations are essentially homoge-
neous. However, the eigenfrequencies of a structure do depend on the loading. For instance,
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a rotating blade has other eigenfrequencies in comparison to a static blade. This effect
manifests itself through a modified stiffness of the structure due to the stresses and dis-
placements. This is explained in Chapter 3 where the following modified stiffness matrix
is defined (Equation (3.17)):

[
K
]

mod = [K]LE + [K]ST + [K]LD . (2.293)

Here,
[
K
]

LE is the linear elastic stiffness matrix,
[
K
]

ST is the stress stiffness contribution
and

[
K
]

LD is the large deformation stiffness. By replacing
[
K
]

in Equation (2.247) by[
K
]

mod, the loading is taken into account in the frequency calculation. The buckling load
can be defined as the load for which the lowest eigenfrequency reaches zero. Then, a
small perturbation will lead to buckling. Indeed, in Section 2.9.1 it was shown that a zero
eigenvalue, or equivalently a zero eigenfrequency, leads to an unbounded homogeneous
solution: the system is unstable.

As an example, look at the beam in Figure 2.20, loaded by a point force at its end.
Figure 2.21 shows the lowest eigenfrequency ω of the beam. It corresponds with a bending
mode with zero displacements at its fixed end. As the tensile force decreases, the lowest
eigenvalue ω2 decreases until it is zero and buckling occurs. Notice that as the eigen-
value ω2 becomes zero, the eigenfrequency ω is zero too and the solution is unbounded
(Section 2.9.1).

Suppose that the structure is loaded by a static force system 1 and a buckling load
system 2. The static load system is defined as a system that is permanently acting and the
magnitude of which is not changing. The buckling load system varies in magnitude and the
basic question is at what value of the buckling load system will the collapse occur. To this
end, the buckling load system is scaled with a factor λ and the problem is reduced to the
question: at what value of λ is the lowest eigenvalue of the system zero? Equation (2.247)
is now equivalent to

[[
K
]

LE + [K]ST1 + [K]LD1 + [K]ST2λ
+ [K]LD2λ

] {
U
} = 0. (2.294)

Index 1 stands for load system 1, index 2λ for λ times load system 2.
{
U
}

is only nonzero
if the total stiffness matrix is singular which also implies that the matrix is not positive-
definite. Equation (3.17) reveals that

[
K
]

ST is linear in the load but
[
K
]

LD is not (notice
the quadratic term in the displacement). Accordingly,

[
K
]

ST2λ
= λ

[
K
]

ST2 (2.295)
[
K
]

LD2λ
�= λ

[
K
]

LD2λ
. (2.296)

F
h

8 h 1.5 h

Figure 2.20 Geometry of the beam
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Figure 2.21 Lowest eigenfrequency for a beam under tension

Therefore, for linear buckling calculations,
[
K
]

LD2λ
will be neglected leading to the fol-

lowing eigenvalue problem:

[[
K
]

LE + [K]ST1 + [K]LD1

] {
U
} = −λ

[
K
]

ST2

{
U
}
. (2.297)

This is again a generalized eigenvalue problem with symmetric matrices similar to
Equation (2.247) except that

[
K
]

ST2 is not positive-definite. It is the governing buckling
equation and can be solved using the ARPACK package (Lehoucq et al. 1998).

2.10 Cyclic Symmetry

Cyclic symmetry is an important issue in rotating structures such as disks (Ramamurti
and Seshu 1990). It basically enables you to calculate eigenmodes for a complete disk
by modeling a segment only. Look at the deformed disk in Figure 2.22. It exhibits an
eigenmode with a nodal diameter of two. This means that there are two diameters for which
the displacements are zero. This corresponds to four zero crossings or to two complete
waves along the circumference of the disk. In general, a nodal diameter N corresponds to
N waves along the circumference and 2N zero crossings. Suppose only a segment extending
over an angle �S is modeled. For the disk in Figure 2.23, �S can take any value smaller
or equal to 2π . For practical models, the value of �S depends on the size of substructures
such as blades. In general, if there are M identical sectors along the circumference, �S

must be a multiple of 2π/M . For instance, for the structure in Figure 2.24, there are four
identical sectors and �S must be a multiple of π/2.
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Figure 2.22 Eigenmode of a disk with nodal diameter two
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Figure 2.23 Phase along the boundary of the disk and modeled segment

Figure 2.23 shows that for the mode shown in Figure 2.22, the displacements in cylin-
drical coordinates in any node B on the “clockwise” side are phase shifted with respect to
those of the corresponding node A on the “counter clockwise” side by 2�S . For a mode
with nodal diameter N , this shift takes the value NφS . Taking for �S the smallest possible
value �S = 2π/M , one arrives at

{
U
}

cyl,B = {U}cyl,A ei 2πN
M . (2.298)
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Figure 2.24 Structure consisting of four identical sectors

This is the central equation of cyclic symmetry. For modal analysis no other equation is
needed. This basically means the following:

1. The governing equations are not modified but only the boundary conditions are
changed.

2. Because of the complex nature of the boundary conditions, the resulting eigenvalue
problem is a generalized complex eigenvalue problem. It will be shown that it can
be reduced to a generalized real eigenvalue problem twice the size.

3. Because of the presence of N in Equation (2.298), the eigenvalue system is different
for a different nodal diameter. For a given nodal diameter N , the solution of the
eigenvalue system yields all modes having 2N zeros along the circumference. Since
cosine and sine are periodic functions with period 2π , one can write

ei 2πN
M = ei 2π

M
[N+kM] (2.299)

where k is an integer. This means that the application of Equation (2.298) will yield
all modes with nodal diameter N + kM . For other nodal diameters, Equation (2.298)
is different and another eigenvalue system results. Accordingly, a cyclic symmetry
calculation takes longer, but not as long as when the complete disk is modeled.

4. Equation (2.299) shows that it is sufficient to perform calculations for nodal diameters
0, 1, . . . , M/2 if M is even and up to (M − 1)/2 for M odd. For instance, if M is odd,
calculations for N = (M − 1)/2 also yield the eigenmodes for N = |(M − 1)/2 −
M| = (M + 1)/2.
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Using the cylindrical coordinate system in Figure 2.23, Equation (2.298) is equiva-
lent to






UR,B = UR,AeiN�S

U�,B = U�,AeiN�S

UZ,B = UZ,AeiN�S .

(2.300)

The cylindrical and rectangular coordinates in Figure 2.23 are related by





X = R cos �

Y = R sin �

Z = Z

(2.301)

or





R = √
X2 + Y 2

� = tan−1 Y
X

Z = Z

(2.302)

leading to (see Equation (2.212)),





UR = UX cos � + UY sin �

U� = −UX sin � + UY cos �

UZ = UZ

(2.303)

since (Equation (1.7))





G1′ = cos �I 1 + sin �I 2

G2′ = −r sin �I 1 + r cos �I 2

G3′ = I 3

(2.304)

and accordingly,

G1′1′ = G3′3′ = 1, G2′2′ = r2. (2.305)

Inverting Equation (2.303) yields





UX = UR cos � − U� sin �

UY = UR sin � + U� cos �

UZ = UZ.

(2.306)

Now, Equations (2.300) lead in rectangular coordinates to the following linear complex
equations:





UX,B cos �B + UY,B sin �B = [UX,A cos �A + UY,A sin �A

]
eiN�S

−UX,B sin �B + UY,B cos �B = [−UX,A sin �A + UY,A cos �A

]
eiN�S

UZ,B = UZ,AeiN�S .

(2.307)
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Solving for UX,B , UY,B and UZ,B , we get three linear multiple point constraints with UX,B ,
UY,B and UZ,B as dependent variables. Notice that Equation (2.300) and Equation (2.306)
lead to

UX,B = UR,B cos �B − U�,B sin �B

= (UR,A cos �B − U�,A sin �B)eiN�S

�= UX,AeiN�S , (2.308)

that is, Equations (2.300) do not apply in rectangular coordinates.
The resulting complex eigenvalue system

[
KR + iKI

] {
UR + iUI

} = ω2 [M
] {

UR + iUI
}

(2.309)

where the index R denotes the real part and I the imaginary part is equivalent to
[
KR −KI
KI KR

]{
UR
UI

}
= ω2

[
M 0
0 M

]{
UR
UI

}
. (2.310)

Since the basic equilibrium equations lead to a real symmetric and consequently a Hermitian
stiffness matrix, and the treatment of the boundary conditions discussed in Section 2.6
conserves the Hermitian character, KR + iKI is Hermitian. Accordingly,

KR + iKI = (KR + iKI)T

⇓
KR − iKI = KT

R + iKT
I

⇓
{

KR
−KI

=
=

KT
R

KT
I

(2.311)

which shows that Equation (2.310) is a symmetric eigenvalue problem.
Solving Equation (2.310), we get each eigenvalue twice. Indeed, one can check that if

{
UR
UI

}
(2.312)

is a solution,
{−UI

UR

}
(2.313)

is a solution too with the same eigenfrequency. Recomposing the complex form, the
first solution corresponds to

{
U1
} = {UR + iUI

}
, the second to

{
U2
} = {−UI + iUR

} ={
UR + iUI

}
eiπ/2 which shows that the difference between both is a phase shift of 90◦.

The resulting solution amounts to (Equation (2.246))
{
U
} = {UR + iUI

}
eiωt (2.314)
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or
{
U
} = [{UR

}
cos ωt − {UI

}
sin ωt

]+ i
[{

UR
}

sin ωt + {UI
}

cos ωt
]
. (2.315)

Since the governing equation is linear, both the real and imaginary part are a solution.
Taking the real part, one arrives at

{
U
} = {UR

}
cos ωt − {UI

}
sin ωt. (2.316)

This is not a standing wave. However, if ω is a solution, so is −ω and accordingly
{
U
} = {UR

}
cos ωt + {UI

}
sin ωt (2.317)

is a solution too and any linear combination of Equation (2.316) and Equation (2.317) as
well. Consequently, half the sum and half the difference, which are both standing waves,
are also solutions:

{
U
} = {UR

}
cos ωt (2.318)

{
U
} = {UI

}
sin ωt. (2.319)

How do we arrive at the solution in the other sectors? Let the solution in a point P

in the primary sector be U . The solution in a point Q exactly K sectors ahead satisfies
(Equation (2.300))






UR,Q = UR,P eiKN�S

U�,Q = U�,P eiKN�S

UZ,Q = UZ,P eiKN�S .

(2.320)

{
UR,P , U�,P , UZ,P

}
are related to

{
UX,P , UY,P , UZ,P

}
through the relations in Equa-

tion (2.303).
{
UX,P , UY,P , UZ,P

}
are generally complex and so are

{
UR,P , U�,P , UZ,P

}
.

Because the Equations (2.303) are linear, they can be applied to the real and imaginary
parts of the solution separately. The first equality in Equation (2.320) now reads

(UR,Q)R + i(UR,Q)I = [(UR,P )R + i(UR,P )I
]

eiKN�S (2.321)

which leads to
{

(UR,Q)R = (UR,P )R cos(KN�S) − (UR,P )I sin(KN�S)

(UR,Q)I = (UR,P )R sin(KN�S) + (UR,P )I cos(KN�S).
(2.322)

The rectangular components of the solution in Q are obtained through Equation (2.306).
Accordingly, the solution in point Q is obtained by

1. converting the solution in P to cylindrical coordinates (Equation (2.303)),

2. applying the mapping in Equation (2.321) to each component to obtain the solution
in Q in cylindrical coordinates,

3. converting this solution into rectangular coordinates (Equation (2.306)).

This also applies to higher-order tensors such as stresses or strains.
Cyclic symmetry properties can also be used in static calculations by expanding the

circumferential loading in its Fourier components.
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2.11 Dynamics: The α-Method

Instead of using modal dynamics to solve Equation (2.27), a direct solution in the space–time
domain is also feasible. Usually, the space domain is meshed with finite elements, whereas
the time domain is discretized with finite differences. The α-method, which will be presented
here because of its excellent performance, is a further development of the Newmark algorithm
(Zienkiewicz and Taylor 1989). Major contributions to the α-method were made in Hilber’s
Ph.D. Thesis (Hilber 1976) and in (Hilber et al. 1977), (Hilber and Hughes 1978), (Hulbert
and Hughes 1987) and (Miranda et al. 1989). Here, the α-method is introduced in its classical
form. For extensions of the α-method and other time-integration schemes see (Hughes 2000),
(Muğan and Hulbert 2001a), (Muğan and Hulbert 2001b) and (Chung et al. 2003).

Important criteria to evaluate a numerical procedure are accuracy, consistency, stabil-
ity and high-frequency dissipation. In general, second-order accuracy is strived at. This
means that the error in each iteration is O(�t2) where �t is the size of a time increment.
Accordingly, the error decreases as �t → 0, which also implies consistency. The stability
issue is generally linked to the size of �t . For some algorithms, the solution grows out of
bounds for large values of �t . This is, especially in explicit codes, a matter of concern.
If the size of �t does not matter, the algorithm is called unconditionally stable. Stability
and consistency together imply convergence. High-frequency dissipation is related to the
wish to attenuate high frequencies, which are generally less accurate due to the limited
resolution of the finite element mesh.

2.11.1 Implicit formulation

The equation to be solved is Equation (2.27):
[
K
] {

U
}+ [M] {Ü} = {F} . (2.323)

Finite difference discretization in time means that the finite element variables are calculated
at discrete times, for example, t = t0, t1, . . . , tn, tn+1, . . . . For simplicity, let us focus on
a material point with displacement u, velocity v and acceleration a. Integration of

a = v̇ (2.324)

yields

v(t) = vn +
∫ t

tn

a(ξ) dξ (2.325)

or, for t = tn+1,

vn+1 = vn +
∫ tn+1

tn

a(ξ) dξ. (2.326)

The integral on the right-hand side of Equation (2.326) cannot be solved since a is unknown
except at t = tn and t = tn+1. However, if we approximate a(ξ) by a linear combination
of an and an+1,

a(t) ∼ (1 − γ )an + γ an+1, t ∈ [tn, tn+1] (2.327)
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we can perform the integration leading to

vn+1 = vn + �t[(1 − γ )an + γ an+1]. (2.328)

Similarly for u

u̇ = v. (2.329)

Hence,

u(t) = un +
∫ t

tn

v(η) dη. (2.330)

Substituting Equation (2.325) into Equation (2.330) yields

u(t) = un + vn(t − tn) +
∫ t

tn

∫ η

tn

a(ξ) dξ dη. (2.331)

Assuming a in the interval [tn, tn+1] to be a linear combination of an and an+1 (not
necessarily the same as in Equation (2.328), i.e. 2β �= γ in general),

a(t) = (1 − 2β)an + 2βan+1, t ∈ [tn, tn+1] (2.332)

one obtains

u(t) = un + vn(t − tn) + 1

2
(t − tn)

2[(1 − 2β) an + 2βan+1] (2.333)

or, for t = tn+1,

un+1 = un + �tvn + 1

2
�t2[(1 − 2β) an + 2βan+1]. (2.334)

Notice that un + �tvn is the displacement which applies if the acceleration is zero. Denot-
ing

{
V
}

:= {U̇} and
{
A
}

:= {Ü}, and letting

{
A
}
n+1 = {A}

n
+ {�A

}
(2.335)

Equations (2.328) and (2.334) can be written for the complete mesh in the form

{
V
}
n+1 = {V }

n
+ �t

[
(1 − γ )

{
A
}
n

+ γ
{
A
}
n+1

]
(2.336)

{
U
}
n+1 = {U}

n
+ �t

{
V
}
n

+ 1

2
(�t)2

[
(1 − 2β)

{
A
}
n

+ 2β
{
A
}
n+1

]
. (2.337)

Equation (2.323) has to be satisfied at tn+1. Hence,

[
M
] {

A
}
n+1 + [C] {V }

n+1 + [K] {U}
n+1 = {F}ext

n+1 . (2.338)

Here, a friction term was inserted (cf Section 2.9.2), and the index “ext” stands for external
force. Substitution of Equations (2.336) and (2.337) into Equation (2.338) leads to the
Newmark algorithm. However, experience has shown that the high-frequency dissipation
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can be much improved if all terms in Equation (2.338) except the acceleration term are
evaluated at an intermediate position between tn and tn+1:

[
M
] {

A
}
n+1 + (1 + α)

[
C
] {

V
}
n+1 − α

[
C
] {

V
}
n

+ (1 + α)
[
K
] {

U
}
n+1

− α
[
K
] {

U
}
n

= (1 + α)
{
F
}ext
n+1 − α

{
F
}ext
n

, −1 ≤ α ≤ 0. (2.339)

Since the stiffness term and friction term can also be considered as an internal force:
{
F
}int
n+1 := [C] {V }

n+1 + [K] {U}
n+1 (2.340)

Equation (2.339) amounts to

[
M
] {

A
}
n+1 + (1 + α)

{
F
}int
n+1 − α

{
F
}int
n

= (1 + α)
{
F
}ext
n+1 − α

{
F
}ext
n

. (2.341)

Substitution of Equations (2.336) and (2.337) into Equation (2.340) yields the α-method
(called after the parameter α). In the next sections, it will be proven that if β and γ satisfy

β = 1

4
(1 − α)2 (2.342)

γ = 1

2
− α (2.343)

the algorithm is second-order accurate and unconditionally stable for α ∈ [−1/3, 0]. Max-
imum high-frequency dissipation is obtained for α = −1/3. For α = 0, there is no high-
frequency dissipation and the α-method reduces to a special case of the Newmark method
(also called the average acceleration method since γ = 1/2 and β = 1/4 corresponds to
taking the mean of

{
A
}
n

and
{
A
}
n+1). Defining

{
Ṽ
}
n+1

= {V }
n

+ (1 − γ )�t
{
A
}
n

(2.344)

{
Ũ
}
n+1

= {U}
n

+ �t
{
V
}
n

+ 1

2
(�t)2(1 − 2β)

{
A
}
n

(2.345)

Equations (2.336) and (2.337) yield
{
V
}
n+1 = {Ṽ }

n+1
+ γ�t

{
A
}
n+1 (2.346)

{
U
}
n+1 = {Ũ}

n+1
+ β(�t)2 {A

}
n+1 . (2.347)

The quantities
{
Ũ
}
n+1

and
{
Ṽ
}
n+1

can be considered as predictor values and depend on
values at time tn only. Substitution of Equations (2.346) and (2.347) into Equation (2.339)
yields

[[
M
]+ (1 + α)

[
C
]
�tγ + (1 + α)

[
K
]
(�t)2β

] {
A
}
n+1

+ (1 + α)
[
C
] {

Ṽ
}
n+1

− α
[
C
] {

V
}
n

+ (1 + α)
[
K
] {

Ũ
}
n+1

− α
[
K
] {

U
}
n

= (1 + α)
{
F
}ext
n+1 − α

{
F
}ext
n

(2.348)
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which is equivalent to
[
M∗] {A

}
n+1 = {F} (2.349)

where
[
M∗] = [M]+ (1 + α)

[
C
]
γ�t + (1 + α)

[
K
]
β(�t)2 (2.350)

{
F
} = (1 + α)

{
F
}ext
n+1 − α

{
F
}ext
n

− (1 + α)
{
F̃
}int
n+1

+ α
{
F
}int
n

(2.351)

{
F
}int
n

= [C] {V }
n

+ [K] {U}
n

(2.352)
{
F̃
}int
n+1

= [C] {Ṽ }
n+1

+ [K] {Ũ}
n+1

. (2.353)

After solving for
{
A
}
n+1,

{
V
}
n+1 and

{
U
}
n+1 can be determined using Equations (2.346)

and (2.347).

2.11.2 Extension to nonlinear applications

The procedure can also be extended to nonlinear problems, in which
[
C
]

and
[
K
]

are
nonlinear functions of

{
U
}

and
{
V
}
. Now, Equation (2.339) is replaced by

[
M
] {

A
}
n+1 + (1 + α)

[
C(
{
U
}
n+1 ,

{
V
}
n+1)

] {
V
}
n+1

− α
[
C(
{
U
}
n
,
{
V
}
n
)
] {

V
}
n

+ (1 + α)
[
K(
{
U
}
n+1 ,

{
V
}
n+1)

] {
U
}
n+1

− α
[
K(
{
U
}
n
,
{
V
}
n
)
] {

U
}
n

= (1 + α)
{
F
}ext
n+1 − α

{
F
}ext
n

. (2.354)

Defining
[
K
]
n

:= [K(
{
U
}
n
,
{
V
}
n
)
]

(2.355)
[
C
]
n

:= [C(
{
U
}
n
,
{
V
}
n
)
]

(2.356)

Equations (2.349) and (2.351) still apply but Equations (2.350) and (2.352) to Equa-
tion (2.353) now yield

[
M∗] = [M]+ (1 + α)

[
C
]
n+1 γ�t + (1 + α)

[
K
]
n+1 β(�t)2 (2.357)

{
F
}int
n

= [C]
n

{
V
}
n

+ [K]
n

{
U
}
n

(2.358)
{
F̃
}int
n+1

= [C]
n+1

{
Ṽ
}
n+1

+ [K]
n+1

{
Ũ
}
n+1

. (2.359)

[
K
]
n+1 and

[
C
]
n+1 are, however, not a priori known. Therefore, they are calculated on the

basis of
{
Ũ
}
n+1

and
{
Ṽ
}
n+1

(the predictor values) and iterations are run till convergence.
Denoting the predictor values by

{
V
}(1)

n+1 = {Ṽ }
n+1

= {V }
n

+ (1 − γ )�t
{
A
}
n

(2.360)

{
U
}(1)

n+1 = {Ũ}
n+1

= {U}
n

+ �t
{
V
}
n

+ 1

2
(�t)2(1 − 2β)

{
A
}
n

(2.361)
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the force in iteration 1 amounts to
{
F
}(1) = (1 + α)

{
F
}ext
n+1 − α

{
F
}ext
n

− (1 + α)
{
F
}(1)int
n+1 + α

{
F
}int
n

(2.362)

where
{
F
}int
n

= [C]
n

{
V
}
n

+ [K]
n

{
U
}
n

(2.363)
{
F
}(1)int
n+1 = [C](1)

n+1

{
V
}(1)

n+1 + [K](1)

n+1

{
U
}(1)

n+1 . (2.364)

In Equation (2.364) use was made of the following abbreviations:
[
C
](i)
n+1 :=

[
C(
{
U
}(i)
n+1 ,

{
V
}(i)
n+1)

]
(2.365)

and
[
K
](i)
n+1 :=

[
K(
{
U
}(i)
n+1 ,

{
V
}(i)
n+1)

]
(2.366)

Equation (2.349) now amounts to
[
M∗](1) {

A
}(2)

n+1 = {F}(1)
(2.367)

where
[
M∗](1) = [M]+ (1 + α)

[
C
](1)

n+1 γ�t + (1 + α)
[
K
](1)

n+1 β(�t)2. (2.368)

The corrected velocity and displacement satisfy
{
V
}(2)

n+1 = {V }(1)

n+1 + γ�t
{
A
}(2)

n+1 (2.369)
{
U
}(2)

n+1 = {U}(1)

n+1 + β(�t)2 {A
}(2)

n+1 . (2.370)

Now one can use the corrected displacements and velocities to calculate new values for[
M∗] and

{
F
}

and iterate until
{
A
}
n+1 has converged. For iteration i, one obtains

{
F
}(i) = (1 + α)

{
F
}ext
n+1 − α

{
F
}ext
n

− (1 + α)
{
F
}(i)int
n+1 + α

{
F
}int
n

(2.371)
{
F
}(i)int
n+1 = [C](i)

n+1

{
V
}(1)

n+1 + [K](i)
n+1

{
U
}(1)

n+1 (2.372)
[
M∗](i) = [M]+ (1 + α)

[
C
](i)
n+1 γ�t + (1 + α)

[
K
](i)
n+1 β(�t)2 (2.373)

[
M∗](i) {A

}(i+1)

n+1 = {F}(i) (2.374)
{
V
}(i+1)

n+1 = {V }(1)

n+1 + γ�t
{
A
}(i+1)

n+1 (2.375)
{
U
}(i+1)

n+1 = {U}(1)

n+1 + β(�t)2 {A
}(i+1)

n+1 . (2.376)

This scheme has the disadvantage that
{
V
}(1)

n+1 and
{
U
}(1)

n+1 have to be stored. This can

be avoided by writing Equations (2.375) and (2.376) for i and solving for
{
U
}(1)

n+1 and
{
V
}(1)

n+1 :
{
V
}(1)

n+1 = {V }(i)
n+1 − �tγ

{
A
}(i)
n+1 (2.377)

{
U
}(1)

n+1 = {U}(i)
n+1 − (�t)2β

{
A
}(i)
n+1 . (2.378)
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Substituting these equations into Equations (2.371) to (2.374) one obtains

{[
M
]+ (1 + α)

[
C
](i)
n+1 γ�t + (1 + α)

[
K
](i)
n+1 β(�t)2

} {
A
}(i+1)

n+1

−
{
(1 + α)

[
C
](i)
n+1 γ�t + (1 + α)

[
K
](i)
n+1 β(�t)2

} {
A
}(i)
n+1

= (1 + α)
{
F
}ext
n+1 − α

{
F
}ext
n

+ α
{
F
}int
n

− (1 + α)
{[

C
](i)
n+1

{
V
}(i)
n+1 + [K](i)

n+1

{
U
}(i)
n+1

}
. (2.379)

By defining
{
�A
}(i) = {A}(i+1)

n+1 − {A}(i)
n+1 (2.380)

{
A
}(1)

n+1 = {0} (2.381)

and
{
R
}(i) = {F}(i)∗ − [M] {A}(i)

n+1 (2.382)

where
{
F
}(i)∗ = (1 + α)

{
F
}ext
n+1 − α

{
F
}ext
n

− (1 + α)
{
F
}(i)int∗
n+1 + α

{
F
}int
n

(2.383)

and
{
F
}(i)int∗
n+1 = [C](i)

n+1

{
V
}(i)
n+1 + [K](i)

n+1

{
U
}(i)
n+1 (2.384)

Equation (2.379) can be reduced to
[
M∗](i) {�A

}(i) = {R}(i) . (2.385)

Furthermore, Equations (2.375) to (2.378) yield
{
V
}(i+1)

n+1 = {V }(i)
n+1 + γ�t

{
�A
}(i)

(2.386)
{
U
}(i+1)

n+1 = {U}(i)
n+1 + β(�t)2 {�A

}(i)
. (2.387)

{
R
}(i) is the residual in iteration i and its size can be used as a criterion to exit the loop.

Summarizing,

1. Calculate the predictor values: Equations (2.360), (2.361)

2. Loop i, i = 1, 2, . . . : multicorrector step

(a) Calculate
{
F
}(i)∗

(Equation (2.383)),
[
M∗](i) (Equation (2.373)),

{
R
}(i)

(Equation (2.382)). If ‖ {R}(i) ‖ < ε: exit.

(b) Calculate
{
�A
}(i) (Equation (2.385).

(c) Update
{
U
}
n+1,

{
V
}
n+1 and

{
A
}
n+1 (Equations (2.386), (2.387), (2.380)).
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Those degrees of freedom for which boundary values are given are not a part of the
solution system. For these degrees of freedom, either

{
U
}
n+1,

{
V
}
n+1 or

{
A
}
n+1 is given.

The predictor step yields
{
U
}(1)

n+1,
{
V
}(1)

n+1 and
{
A
}(1)

n+1 (Equations (2.360), (2.361) and
(2.381)) as usual. However, now only one corrector step is necessary. We set

{
U
}(2)

n+1 = {U}
n+1 (2.388)

or
{
V
}(2)

n+1 = {V }
n+1 (2.389)

or
{
A
}(2)

n+1 = {A}
n+1 . (2.390)

Then, Equations (2.387), (2.386) and (2.380) yield for i = 1

{
�A
}(1) = 1

β(�t)2

[{
U
}
n+1 − {U}(1)

n+1

]
(2.391)

{
�A
}(1) = 1

γ�t

[{
V
}
n+1 − {V }(1)

n+1

]
(2.392)

or
{
�A
}(1) = {A}

n+1 . (2.393)

Substituting
{
�A
}(1)

into Equation (2.386) or Equation (2.387) yields the remaining
unknowns (displacement if the velocity is given, velocity if the displacement is given and
displacement and velocity if the acceleration is given).

The assumption that a in [tn, tn+1] is a linear combination of an and an+1 works
well unless a changes discontinuously. For instance, if the external force jumps at t = t+n ,
the acceleration a+

n has to be adjusted accordingly to get accurate results. The correct
acceleration is obtained by using Equation (2.338):

[
M
] {

A
}
n+ = {F }ext

n+ − {F}int
n

= {F }ext
n

+ {�F
}− {F}int

n
(2.394)

where
{
�F
}

is the force jump. Consequently, the acceleration jump amounts to

[
M
] ({

A
}
n+ − {A}

n

)
= {�F

}
. (2.395)

2.11.3 Consistency and accuracy of the implicit formulation

In order to examine the consistency, accuracy and stability of the implicit scheme,
Equation (2.349) together with Equations (2.344) to (2.345) and Equations (2.350) to
(2.353) are written for a homogeneous (no external force) single degree of freedom
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system:

[m + (1 + α)cγ�t + (1 + α)kβ(�t)2]an+1

= αcvn + αkun − (1 + α)c[vn + (1 − γ )�tan]

− (1 + α)k[un + �tvn + 1

2
(�t)2(1 − 2β)an] (2.396)

or

[m + (1 + α)cγ�t + (1 + α)kβ(�t)2]an+1

= −(1 + α)[c(1 − γ )�t + 1

2
k(�t)2(1 − 2β)]an

− [c + (1 + α)k�t]vn − kun. (2.397)

Defining the frequency � and the friction coefficient ξ by

�2 := k

m
(�t)2 (2.398)

ξ := c

2m�
�t (2.399)

which is equivalent to

k = m�2

(�t)2
(2.400)

c = 2m�ξ

�t
(2.401)

one can replace k and c in Equation (2.397), yielding

[1 + (1 + α)2�ξγ + (1 + α)�2β]an+1(�t)2

= −(1 + α)[(1 − γ )2�ξ + 1
2 (1 − 2β)�2]an(�t)2

− [2�ξ + (1 + α)�2]vn�t − �2un. (2.402)

The one-dimensional equivalent of Equations (2.344) to (2.347) yields

�tvn+1 = �tvn + (1 − γ )(�t)2an + γ (�t)2an+1 (2.403)

un+1 = un + �tvn + 1

2
(1 − 2β)(�t)2an + β(�t)2an+1. (2.404)

After substitution of Equation (2.402) into the right-hand side of Equations (2.403) and
(2.404), these three equations form a system expressing un+1, �tvn+1 and (�t)2an+1 in
terms of un, �tvn and (�t)2an:






un+1
(�t)vn+1

(�t)2an+1





= [A]






un

(�t)vn

(�t)2an





(2.405)
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where

[
A
] =




1 + βP 1 + βQ 1

2 + β(R − 1)

γ P 1 + γQ 1 + γ (R − 1)

P Q R



 (2.406)

and

P = −�2/d (2.407)

Q = −[2ξ� + (1 + α)�2]/d (2.408)

R = −(1 + α)[(1 − γ )2�ξ + 1
2 (1 − 2β)�2]/d (2.409)

d = 1 + (1 + α)2�ξγ + (1 + α)�2β. (2.410)

Equation (2.405) is a set of three homogeneous finite difference equations of the first order
with constant coefficients. Solutions are obtained by setting






un

(�t)vn

(�t)2an





= λn

{
X
}

(2.411)

leading to
[
A
] {

X
} = λ

{
X
}

(2.412)

which is a classical eigenvalue problem. Solutions exist if the characteristic equation is
satisfied

λ3 − I1λ
2 + I2λ − I3 = 0 (2.413)

where I1, I2 and I3 are the invariants of A (the elements of A are denoted by A11, . . . ) :

I1 = tr A = A11 + A22 + A33 (2.414)

I2 =
∣
∣∣
∣
A22 A23
A32 A33

∣
∣∣
∣+
∣
∣∣
∣
A11 A13
A31 A33

∣
∣∣
∣+
∣
∣∣
∣
A11 A12
A21 A22

∣
∣∣
∣ (2.415)

I3 = det A. (2.416)

Equation (2.413) is also the characteristic equation of the following third-order equation:

D = un+1 − I1un + I2un−1 − I3un−2 = 0 (2.417)

which is equivalent to Equation (2.405). After some algebra, one obtains the invariants of
Equation (2.406):

I1 = 2 −
{

2ξ�
[
1 + α(1 − γ )

]+ �2
[
(1 + α)(γ + 1

2 ) − βα
]}

/d (2.418)

I2 = 1 −
{

2ξ�
[
1 + 2α(1 − γ )

]+ �2 [γ − 1/2 + 2α(γ − β)
]}

/d (2.419)

I3 = −
[
2ξ�α(1 − γ ) + �2α(γ − β − 1

2

]
/d. (2.420)
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To examine the consistency and accuracy, Equation (2.417) is expanded by Taylor series
about un = u:

un+1 = un + u̇�t + ü
(�t)2

2!
+ ...

u
(�t)3

3!
+ · · · (2.421)

and similarly for un−1 and un−2. Collecting terms, one obtains

D = (1 − I1 + I2 − I3)u + (1 − I2 + 2I3)u̇�t

+ (1 + I2 − 4I3)ü
(�t)2

2
+ (1 − I2 + 8I3)

...
u

(�t)3

3!
+ · · · (2.422)

Defining

I i := Ii(d = 1) (2.423)

one obtains after some algebra

1 − I 1 + I 2 − I 3 = �2 (2.424)

1 − I 2 + 2I 3 = �
2 [4ξ + (−1 + 2α + 2γ )�] (2.425)

1 + I 2 − 4I 3 = 1
2

{
4 − 4[1 + 2α(γ − 1)]ξ� + (1 − 4α − 4αβ − 2γ + 4αγ )�2

}

(2.426)

1 − I 2 + 8I 3 = − 1
2� {−4[1 + 6α(γ − 1)]ξ + [1 − 4α(2 + 3β − 3γ ) − 2γ ]�} (2.427)

and

1 − I1 + I2 − I3 = (1 − I 1 + I 2 − I 3)/d (2.428)

1 − I2 + 2I3 = (1 − I 2 + 2I 3)/d (2.429)

1 + I2 − 4I3 = [2(d − 1) + 1 + I 2 − 4I 3]/d (2.430)

1 − I2 + 8I3 = (1 − I 2 + 8I 3)/d. (2.431)

Now, we will assume there is no friction: ξ = 0. Defining ω by

� := ω�t (2.432)

collecting terms in Equation (2.422) yields

D = (�t)2(ω2u + ü) + (�t)3
[

1
2 (−1 + 2α + 2γ )ω2u̇

]
+ O(�t)4 (2.433)

or

ü + ω2u = D

(�t)2
− �t

[
(α + γ − 1

2 )ω2u̇
]

+ O(�t)2. (2.434)

The left-hand side is the governing equation without friction, the first term on the right-
hand side is its approximation. For �t → 0 both are identical. Consequently, the numerical
scheme is consistent. The accuracy is given by the power of the subsequent �t terms on
the right-hand side. In general, the scheme is first order. However, if

γ = 1
2 − α (2.435)

the scheme is second order. This will be assumed to be the case in the following section.
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2.11.4 Stability of the implicit scheme

A numerical scheme is stable if its amplification matrix
[
A
]
, Equation (2.406), has no

eigenvalues with size greater than one. Indeed, if |λ| > 1, the homogeneous solution,
Equation (2.411) diverges. Since a particular solution (i.e. a solution of the inhomoge-
neous problem) augmented by a linear combination of the homogeneous solutions is a
particular solution as well, any instable homogeneous solution will lead to an instability
of the inhomogeneous scheme. Accordingly, we have to solve Equation (2.413) for λ and
check that |λ| ≤ 1.

Since the coefficients I1, I2 and I3 are a function of �, Equations (2.418) to (2.420),
so is its solution λ. Recall that the parameter γ is defined by Equation (2.435), α and β

are still adjustable. The strategy that will be adopted here follows the treatise in (Hilber
1976): first, we check the value of |λ| for � = 0, then we examine � → ∞ and finally
look at the values in-between.

1. For � = 0 we have I1 = 2, I2 = 1 and I3 = 0. The roots are λ = 0 and λ = 1, the
latter is a double root. The condition |λ| ≤ 1 is satisfied.

2. For � → ∞ I1, I2 and I3 reduce to

I1 ∼ 2 − (1 + α)(γ + 1
2 ) − βα

(1 + α)β
, � → ∞ (2.436)

I2 ∼ 1 − γ − 1
2 + 2α(γ − β)

(1 + α)β
, � → ∞ (2.437)

I3 ∼ α(γ − β − 1
2 )

(1 + α)β
, � → ∞. (2.438)

Notice that ξ drops out for � → ∞. Substituting γ = 1
2 − α and rearranging,

Equation (2.413) yields

α(α + β) − (2α2 + β(1 + α) + 2αβ)λ

+ [2β(1 + α) + αβ − 1 + α2]λ2 − λ3(1 + α)β = 0. (2.439)

Since the term (1 + α)/β that is multiplying λ3 originates from the denominator
of Equations (2.436) to (2.438), α = −1 and β = 0 must be excluded. The solution
of Equation (2.439) is (by inspection or by using a symbolic mathematical pro-
gram)

λ3 = α

1 + α
(2.440)

λ1,2 = 1 − 1 − α

2β
± 1

2β

√
(1 − α)2 − 4β. (2.441)

Let us first have a closer look at λ1 and λ2, Figures 2.25 and 2.26.
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Figure 2.25 Evaluation of λ1

(a) For (1 − α)2 < 4β, λ1 and λ2 are complex and

|λ1| = |λ2| =
√

α + β

β
. (2.442)

|λ1| = |λ2| = 1 for α = 0, to the left of the β-axis we have |λ1| < 1, |λ2| < 1,
to the right we obtain |λ1| > 1, |λ2| > 1.

(b) On the parabola (1 − α)2 = 4β and one finds

λ1 = λ2 = −1 + α

1 − α
(2.443)

leading to

α < 0 ⇒ −1 < λ1,2 < 1

α = 0 ⇒ λ1,2 = −1
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Figure 2.26 Evaluation of λ2

0 < α < 1 ⇒ λ1,2 < −1

α > 1 ⇒ λ1,2 > 1. (2.444)

(c) If (1 − α)2 ≥ 4β, λ1 and λ2 are both real. Closer examination reveals

λ1 �= 1, λ2 �= 1 (2.445)

λ1 = −1 ⇔ β = 1 − 2α

4
, α ≥ 0 (2.446)

λ2 = −1 ⇔ β = 1 − 2α

4
, α ≤ 0. (2.447)

The straight line β = (1 − 2α)/4 is tangent to the parabola at α = 0. For β → 0,
λ1,2 is not properly defined by Equation (2.441) and an asymptotic expansion
must be developed

λ1,2 = 1 − 1 − α

2β
± |1 − α|

2β

√

1 − 4β

(1 − α)2
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= 1 − 1 − α

2β
± |1 − α|

2β

[
1 − 2β

(1 − α)2
+ O(β2)

]
, β → 0

= 1 − 1 − α

2β
± |1 − α|

2β
∓ |1 − α|

(1 − α)2
+ O(β), β → 0. (2.448)

This yields for λ1

λ1 = 1 − 1

1 − α
+ O(β), β → 0, α < 1

λ1 = α − 1

β
+ O(1), β → 0, α > 1

(2.449)

and for λ2

λ2 = −1 − α

β
+ O(1), β → 0, α < 1

λ2 = 1 + 1

α − 1
+ O(β), β → 0, α > 1

. (2.450)

Summarizing, the straight line β = (1 − 2α)/4 divides the region under the parabola
into three zones. Only for α ≤ 0 and β ≥ (1 − 2α)/4 we have |λ1| ≤ 1 and |λ2| ≤ 1.
λ1 and λ2 are sometimes called the principal roots.

For the third eigenvalue (sometimes called the spurious root), one obtains

|λ3| = 1 ⇔ λ3 = −1 ⇔ α = −1

2
. (2.451)

However (see Figure 2.27),

|λ3| ≤ 1 ⇔ α ≥ −1

2

|λ3| > 1 ⇔ α < −1

2
.

(2.452)

Accordingly, the implicit scheme is unconditionally stable (i.e. |λ1| ≤ 1, |λ2| ≤ 1
and |λ3| ≤ 1) at high frequencies only if

−1

2
≤ α ≤ 0

β ≥ 1 − 2α

4
.

(2.453)

Now, for � → ∞, we would like to maximize the dissipation to get rid of spurious
high-frequency effects, that is, we seek to minimize max(|λ1|, |λ2|, |λ3|). How does
β affect max(|λ1|, |λ2|, |λ3|)? Since λ3 is not a function of β, we focus on λ1 and
λ2. One can prove that for fixed α ≥ − 1

2 , max(|λ1|, |λ2|) attains a minimum for
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Figure 2.27 Evaluation of λ3

β = (1 − α)2/4, that is, on the parabola, satisfying

|λ1| = |λ2| = 1 + α

1 − α
. (2.454)

Indeed, for β > (1 − α)2/4 we deduced Equation (2.442) which is a monotonic
increasing function of β toward 1 for β → ∞. The derivative of Equation (2.441)
with respect to β satisfies

∂λ1,2

∂β
= 1 − α

2β2
∓ 1

2β2

√
(1 − α)2 + 4β ∓ 1

β
√

(1 − α)2 + 4β
. (2.455)

For β = (1 − α)2/4 one gets

λ1 = λ2 = −1 + α

1 − α
< 0 for α > −1. (2.456)

Now, ∂λ2
∂β

> 0 (Equation (2.455)), hence, λ2 decreases with decreasing β. Accord-
ingly, |λ2| and max(|λ1|, |λ2|) increase with decreasing β in a neighborhood of
β = (1 − α)2/4. This completes the proof.

Consequently, we maximize the high-frequency dissipation if we take

β = (1 − α)2

4
(2.457)
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and the only parameter left is α. Summarizing, for − 1
2 ≤ α ≤ 0:

|λ1| = |λ2| = 1 + α

1 − α
≤ 1 (2.458)

|λ3| = −α

1 + α
≤ 1 (2.459)

|λ1| = |λ2| = |λ3| = 1
2 for α = − 1

3 . |λ1| = |λ2| is a monotonic decreasing function
of α and |λ3| is monotonic increasing. Consequently, max(|λ1|, |λ2|, |λ3|) has a min-
imum at λ = −1/3. The complete range [− 1

2 , 0] for max(|λ1|, |λ2|, |λ3|) is covered
if one takes α ∈ [− 1

2 , 0]. This concludes the treatment for � → ∞.

3. To assure that max(|λ1|, |λ2|, |λ3|) ≤ 1 for 0 < � < ∞, the feasibility of |λ| = 1 as
solution of Equation (2.413) will be checked. In general, the solution can be complex.
Substituting λ = eiϕ in Equation (2.413) and separating the real and imaginary part
of the equation yields

cos 3ϕ − I1 cos 2ϕ + I2 cos ϕ − I3 = 0 (2.460)

sin 3ϕ − I1 sin 2ϕ + I2 sin ϕ = 0. (2.461)

Both equations must be satisfied. Expanding sin 2ϕ = 2 sin ϕ cos ϕ and sin 3ϕ =
−3 cos ϕ + 4 cos3 ϕ in Equation (2.461) yields

sin ϕ(−1 + 4 cos2 ϕ − 2I1 cos ϕ + I2) = 0 (2.462)

which implies

sin ϕ = 0 ⇔ ϕ = 0, π (2.463)

or

4 cos2 ϕ − 2I1 cos ϕ + I2 = 1. (2.464)

(a) For ϕ = 0, Equation (2.460) yields

1 − I1 + I2 − I3 = 0 (2.465)

(b) for ϕ = π one obtains

1 + I1 + I2 + I3 = 0. (2.466)

(c) If we expand the terms cos 2ϕ = cos2 ϕ − sin2 ϕ and cos 3ϕ = −3 cos ϕ +
4 cos3 ϕ in Equation (2.460), we get

cos ϕ(−3 + 4 cos2 ϕ − 2I1 cos ϕ + I2) + I1 − I3 = 0 (2.467)

and Equation (2.467) can finally be transformed into

cos ϕ = I1 − I3

2
. (2.468)

Substitution of Equation (2.468) into Equation (2.464) finally yields

I3(I3 − I1) + I2 − 1 = 0. (2.469)
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Equations (2.465), (2.466) and (2.469) cover all cases for which |λ| = 1.

(a) Equation (2.465) leads to (Equation (2.428) and Equation (2.424))

�2 = 0 (2.470)

which yields a double root for � = 0. This was already covered previously.

(b) Substituting γ = 1
2 − α and β = (1 − α)2/4 in Equations (2.418) to (2.420)

and using these in Equation (2.466) yields

α2(1 + 2α)�2 − 8α(1 + 2α)ξ� + 4 = 0 (2.471)

with roots

�1,2 = 2ξ

α

[

1 ±
√

1 − 1

4ξ2(1 + 2α)

]

. (2.472)

For 4ξ2(1 + 2α) < 1, there are no real solutions, for 4ξ2(1 + 2α) ≥ 1 the solu-
tions are both negative since α < 0 (for α = 0, Equation (2.471) has no solution
either). Accordingly, there are no positive real solutions of Equation (2.471).

(c) Finally, Equation (2.469) yields

�[8ξ + 8ξ2� + 2ξ(1 + α2)�2 − α(1 + α)2�3] = 0. (2.473)

� = 0 was already covered. For ξ �= 0 and α �= 0 all the coefficients in
Equation (2.473) are strictly positive (ξ > 0, − 1

2 ≤ α < 0) and � = 0 is the
only solution. If one of them is zero but not both, the same reasoning applies
to the nonzero terms. If ξ = α = 0 the equation is satisfied for all �. This
corresponds to the classical Newmark algorithm.

Summarizing, for the parameter combinations γ = 1
2 − α, β = (1 − α)2/4, α ∈ [− 1

3 , 0],
the implicit scheme is unconditionally stable and second-order accurate. The spectral radius
for different values of α and ξ = 0 is shown in Figure 2.28, whereas the effect of ξ for
α = − 1

3 is plotted in Figure 2.29. The figure shows that there is nearly no numerical dissi-
pation for small �-values. For increasing values of � the dissipation gradually increases.
In the previous derivation, it was shown that the solutions of the characteristic equation can
be complex. This leads to oscillatory damping and a corresponding (small) period error of
the solution. For more information the reader is referred to (Miranda et al. 1989), (Hilber
and Hughes 1978) and (Bathe 1995).

2.11.5 Explicit formulation

The method in Section 2.11.1 is essentially implicit owing to the formulation of
[
M∗] in

Equation (2.350) and Equation (2.357). If
[
M∗] is diagonal, the method is explicit. The

mass matrix can be made diagonal by lumping. The problem is the damping matrix
[
C
]

and
the stiffness matrix

[
K
]
, which are usually not diagonal. In the explicit predictor–corrector
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procedure introduced here (Miranda et al. 1989), the diagonalization of
[
M∗] is achieved

by simply dropping the last two terms in Equation (2.350), that is, by setting
[
M∗] = [M] (2.474)

and lumping
[
M
]
. This really amounts to replacing Equation (2.339) by

[
M
] {

A
}
n+1 + (1 + α)

[
C
] {

Ṽ
}
n+1

− α
[
C
] {

V
}
n

+ (1 + α)
[
K
] {

Ũ
}
n+1

− α
[
K
] {

U
}
n

= (1 + α)
{
F
}ext
n+1 − α

{
F
}ext
n

, −1 ≤ α ≤ 0. (2.475)

It can be shown that this iterative scheme is second-order accurate if Equation (2.342)
and Equation (2.343) are satisfied. Furthermore, high-frequency dissipation is achieved
for α < 0. However, the explicit scheme is not unconditionally stable. Indeed, the one-
dimensional equivalent of the explicit scheme corresponds to the equivalent model of
the implicit scheme in which the parameter d defined in Equation (2.410) is replaced
by 1. Equation (2.433) still applies and the explicit scheme is consistent and second-order
accurate for ξ = 0 if γ = 1

2 − α. However, the explicit scheme is not stable for � → ∞.
To check stability, Equation (2.465), (2.466) and (2.469), which still apply, are analyzed.
β = (1 − α)2/4 is assumed throughout. Equation (2.465) reduces to �2 = 0 and deserves
no further attention. Equation (2.466) now yields

(1 − α − 2α2 − α3)�2 + 4(1 + α + 2α2)ξ� − 4 = 0 (2.476)

leading to

�1,2 = 2(1 + α + 2α2)

1 − α − 2α2 − α3



±
√

ξ2 + 1 − α − 2α2 − α3

(1 + α + 2α2)2
− ξ



 . (2.477)

Since 1 − α − 2α2 − α3 > 0 and 1 + α + 2α2 > 0 for − 1
2 ≤ α ≤ 0, the positive root in

Equation (2.477) marks a relevant crossing of the |λ| = 1 line. Figure 2.30 shows �1 as a
function of α for different ξ values.

Equation (2.469) reduces to

�{−8ξ − 8α(1 + 2α)ξ2� + 2ξ [−α(1 + 2α) + α3]�2 + α(1 + α)2�3} = 0. (2.478)

For ξ = 0 the only solution is � = 0. A numerical analysis shows that also for ξ > 0
there are no positive real roots of Equation (2.478) smaller than �1 in Equation (2.477).
Summarizing, the stable regime is limited by a critical “frequency” value given by �1 in
Equation (2.477) and plotted in Figure 2.30.

2.11.6 The consistent mass matrix

The consistent mass matrix is obtained by evaluating Equation (2.24). This is usually per-
formed by one of the integration schemes from Section 2.3. In the previous sections, it was
explained that a force jump leads to a jump in the acceleration. To this end Equation (2.395)
has to be evaluated. This is a system of equations with the mass matrix on the left-hand side.
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Figure 2.30 Critical frequency for the explicit scheme

Equation (2.395) cannot be solved if the mass matrix is singular. Physically, this situation
cannot arise since the mass matrix is positive-definite. Indeed, the kinetic energy satisfies

K = 1
2

{
V
}T [

M
] {

V
} = 0 ⇔ {

V
} = 0. (2.479)

Consequently,
[
M
] {

V
} = 0 ⇒ {

V
} = 0 (2.480)

and
[
M
]

is regular. However,
[
M
]

can become singular because of the numerical integra-
tion. To realize this, consider just one finite element with constant initial density and recall
that the numerical integration of Equation (2.24) amounts to

Mij ≈ ρ0

N∑

k=1

wkϕikϕjkJ
∗
k (2.481)

where Mij denotes the entry in row i and column j of the matrix
[
M
]
, wk are the weighting

functions, J ∗
k is the Jacobian determinant of the global–local coordinate transformation

and the indices K and M in Equation (2.24) were dropped since the mass matrix does
not depend on them (the mass matrix really consists of three identical submatrices, one
for each coordinate direction). The size of the matrix in Equation (2.481) is equal to the
number of nodes in the element. A matrix

[
a
]

is singular if its determinant vanishes.
Suppose there is only one integration point. This is the case for the 8-node brick element

with reduced integration and the four-node tetrahedral element with standard integration.
Accordingly, Equation (2.481) reduces to

Mij ≈ ρ0w1ϕi1ϕj1J
∗
1 . (2.482)
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Furthermore, the shape functions and the location of the integration point for these elements
are such that

ϕi1 = ϕj1 =: ϕ1 ∀i, j (2.483)

and we get

Mij ≈ ρ0w1ϕ1ϕ1J
∗
1 . (2.484)

All entries in the matrix are identical: the matrix is singular. Also, 20-node brick elements
with reduced integration frequently lead to badly conditioned mass matrices. Therefore, it
is advisable to use the higher-order schemes to integrate the mass matrix.

2.11.7 Lumped mass matrix

In the explicit formulation the mass matrix is reduced to a diagonal form. This can be
performed in several ways (Zienkiewicz and Taylor 1989). Here, only one method will be
discussed, which is used in the CalculiX code (CalculiX 2003). In this method, the lumped
mass matrix is obtained by scaling the diagonal terms of the consistent mass matrix such
that the total mass is recovered. Denoting the consistent element mass matrix by

[
MCij

]

and the lumped element mass matrix by
[
MLij

]
one finds

MLii = MCii

Me∑n
j=1 MCjj

(2.485)

where Me is the total mass of the matrix, that is,

Me =
n∑

i=1

n∑

j=1

MCij (2.486)

and n is the number of nodes in the element. This rule is applied to linear elements. For
quadratic elements, a distinction is made between vertex node contributions and midside
node contributions. Denoting the set of vertex nodes by VN and the set of midside nodes
by MN, we define

α :=
∑

i∈VN

∫
Ve

ϕ2
i dV

∑
j∈MN

∫
Ve

ϕ2
i dV

. (2.487)

α is a measure for the mass concentrated in the vertex nodes relative to the mass in the
midside nodes. The integration in Equation (2.487) is performed in local coordinates. The
lumped mass entries are now obtained by

MLii = MCii

(
Me∑

j∈VN MCjj

)(
α

1 + α

)
, i ∈ VN (2.488)

MLii = MCii

(
Me∑

j∈MN MCjj

)(
1

1 + α

)
, i ∈ MN. (2.489)

Summing the masses in Equation (2.488) and Equation (2.489) readily shows that the total
element mass is correctly reproduced. The factor α for some widely used quadratic elements
is listed in Table 2.4.
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Table 2.4 The lumping factor α for
several element types.

Element type α

20-node brick element 0.2917
10-node tetrahedral element 0.1203
15-node wedge element 0.2141

r

A Bp

p = 10 MPa
E = 210, 000 MPa
ν = 0.3
ρ = 7800 kg/m3

10 mm10 mm
10 mm 30 mm

Figure 2.31 Geometry of the spherical shell and material data

2.11.8 Spherical shell subject to a suddenly applied uniform pressure

Consider the thick spherical shell in Figure 2.31 (only one-eighth is shown). At t = 0, a
pressure p is applied and we are interested in the radial stresses as a function of time. It is
known that the ensuing pressure waves travel at a speed c1 satisfying (Graff 1975)

c1 =
√

λ + 2µ

ρ
= 6.0202 × 106 mm/s (2.490)

where λ and µ are Lamé’s constants and ρ is the density of the material (λ and µ can
be calculated from Young’s modulus E and the Poisson coefficient ν in Figure (2.31) by
use of Equations (1.450) and (1.451)). This means that they reach the outer surface of the
shell after 8.3 × 10−6 s. One-eighth of the shell is meshed by 10 rows of 20-node brick
elements with reduced integration across the thickness and 75 elements in circumferential
direction, resulting in 750 elements.

Figure 2.32 shows the radial stress in points A and B by using the implicit α-method
with α = −0.05 and compares these results with the analytical solution (dashed lines,
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Figure 2.32 Radial stress after pressure surge

(Eringen 1980)). The analytical solution applies to a hole in infinite space, and therefore
no reflection takes place. Since the radial wave equation does not exhibit dispersion (Graff
1975) the signal form is kept during propagation, although its amplitude changes. The
numerical solution hits the extremal values of the analytical solution and the time at which
they occur well. The finite element results are nodal values and therefore they are smeared
out due to the extrapolation within the element (cf Section 2.4). For times exceeding the
transversal time of the wall thickness, the wave is reflected leading to maxima at t =
1.4 × 10−5 s in B and t = 1.5 × 10−5 s in A. The subsequent maximum in A (after two
reflections) takes place at t = 1.82 × 10−5 s. The results also show that quadratic elements
tend to lead to oscillatory solutions for short-time calculations.



3

Geometric Nonlinear Effects

3.1 General Equations

Nonlinearities are involved in a lot of applications. Either the strains and/or rotations are
large, such that the Lagrangian strain cannot be approximated by the infinitesimal strain,
or there are discontinuities such as in contact phenomena. Another frequent source of
nonlinearities is nonlinear material behavior. Although this chapter focuses on geometric
nonlinearities, the present section treats both geometric and material nonlinearities.

Nonlinear problems are usually broken down into a repetition of linear ones. This can
best be illustrated by a one-dimensional nonlinear problem. Consider the nonlinear equation

f (x) = F. (3.1)

Both the left-hand side and the right-hand side are plotted in Figure 3.1 as a function of
x. Suppose we know a starting value x0, which is reasonably close to the solution of our
equation (or close to “a” solution, since a nonlinear equation can have multiple solutions).

To find the solution, the function f (x) is locally linearized at x = x0 by replacing it
by its tangent line. Accordingly, Equation (3.1) now reads

f (x0) + (x − x0)f
′(x0) = F (3.2)

which can be solved using a linear equation solver. This yields a first approximation of the
solution, which we will call x1. Now the same procedure can be repeated until the relative
difference between two subsequent solutions is smaller than a specified value ε:

∣∣
∣∣
xi − xi−1

xi−1

∣∣
∣∣ ≤ ε. (3.3)

For solutions close to zero, one sometimes has to resort to the absolute difference. This is
called the Newton–Raphson method. If the true tangent is taken, it exhibits a quadratic rate
of convergence. However, whether it converges at all largely depends on the following:

The Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85752-8
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F

f (x)

x0 x1 x2 x

Figure 3.1 The Newton–Raphson method

1. How close the starting solution is to the final solution. The local maximum between
the starting guess and the true solution in Figure 3.2 leads to no convergence.

2. The smoothness of the nonlinear function. Because of the jump in Figure 3.3, the
Newton–Raphson procedure does not converge.

For our applications, the Newton–Raphson method will be used throughout. For other
solution methods, the reader is referred to (Zienkiewicz and Taylor 1989) and (Matthies
and Strang 1979). A nice treatise on the computability of nonlinear problems is given in
(Belytschko and Mish 2001).

How can the Newton–Raphson method be applied to the governing finite element
equations? The major equation for mechanical problems is Equation (2.1). The nonlinear-
ities arise twofold in the term SKLδEKL on the left-hand side:

1. For materials of mechanical grade 1 and thermal grade 1, the second Piola–Kirchhoff
stress S is generally a nonlinear function of E and its time derivatives (Equa-
tion (1.382)).

2. The Lagrange strain E is a nonlinear function of U (Equation (1.84)), in rectangular
coordinates:

2EKL = UK,L + UL,K + UM
,KUM,L. (3.4)

For the material nonlinearity, the Newton–Raphson method is applied in a straightfor-
ward manner. Assume that we find an intermediate solution E0 with corresponding stress
S0(E

0). Linearizing S at E0 yields

SKL ≈ SKL
0 + ∂SKL

∂EMN

∣
∣∣
∣
0
(EMN − E0

MN). (3.5)
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Denoting

�KLMN
0 := ∂SKL

∂EMN

∣∣
∣
∣
0

(3.6)

Equation (3.5) yields

SKL ≈ SKL
0 + �KLMN

0 (EMN − E0
MN). (3.7)

Differentiating Equation (3.4) yields an expression for the infinitesimal perturbation δEKL:

δEKL = 1
2 (δUK,L + δUL,K + UM

,KδUM,L + UM,LδUM
,K). (3.8)

Accordingly,

SKLδEKL

=
{
SKL

0 + 1
2�KLMN

0

[
(UM,N + UN,M + UR

,MUR,N) − (VM,N + VN,M + V R
,MVR,N)

]}

· 1
2 · (δUK,L + δUL,K + UP

,KδUP,L + UP,LδUP
,K) (3.9)

where V is the displacement corresponding to E0. Defining the new displacement increment
W (to reduce the length of the equations V and W are used instead of the more intuitive
notation U0 and �U respectively)

W := U − V (3.10)

and replacing U in Equation (3.9) by V + W leads to

SKLδEKL

=
[
SKL

0 + 1
2�KLMN

0 (WM,N + WN,M + V R
,MWR,N + WR

,MVR,N + WR
,MWR,N)

]

· 1
2 ·

[
δWK,L + δWL,K + (V P

,K + WP
,K)δWP,L + (VP,L + WP,L)δWP

,K

]
. (3.11)

In the above equations, V is the displacement calculated thus far and known. The
unknown is the incremental displacement W . In Equation (3.11), the terms linear in W

are force contributions, the quadratic terms contribute to the stiffness and the higher-order
terms are neglected. Consequently, Equation (3.11) yields

SKLδEKL ≈ 1
2SKL

0

(
δWK,L + δWL,K + V P

,KδWP,L + VP,LδWP
,K

)

+ 1
2SKL

0

(
WM

,KδWM,L + WM,LδWM
,K

)

+ 1
4�KLMN

0

(
WM,N + WN,M + V R

,MWR,N + WR
,MVR,N

)

·
(
δWK,L + δWL,K + V P

,KδWP,L + VP,LδWP
,K

)
. (3.12)
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Because of the symmetries in SKL
0 and �KLMN

0 (SKL
0 = SLK

0 and �KLMN
0 = �LKMN

0 =
�KLNM

0 ), Equation (3.12) further reduces to

SKLδEKL ≈ SKL
0

(
δWK,L + V P

,KδWP,L

)
+ SKL

0 WP
,KδWP,L

+ �KLMN
0

(
WM,N + V R

,MWR,N

)
·
(
δWK,L + V P

,KδWP,L

)
. (3.13)

This equation applies to linear as well as to nonlinear materials. The only difference is that
for linear materials �KLMN

0 is constant, for nonlinear materials it is a function of EKL.
By substituting Equation (3.13) into Equation (2.1), one obtains, instead of Equation (2.6),

∫

V0

WM,N�KLMN
0 δWK,L dV +

∫

V0

SKL
0 WP

,KδWP,L dV

+
∫

V0

�KLMN
0

(
V R

,MWR,NδWK,L + V P
,KWM,NδWP,L + V R

,MV P
,KWR,NδWP,L

)
dV

=
∫

A0t

T
K

(N)δWK dA +
∫

V0

ρ0f
KδWK dV +

∫

V0

[βKL(θ)T − γ KL]δUK,L dV

−
∫

V0

SKL
0 (δWK,L + V P

,KδWP,L) dV − ρ0

∫

V0

D2V K

Dt2
δWK dV

− ρ0

∫

V0

D2WK

Dt2
δWK dV. (3.14)

The first term on the left-hand side is the traditional (linear) stiffness term, the second is the
stress stiffness and the third is the large deformation stiffness. The last term on the right-
hand side is the mass term. By renaming indices, one can also write for Equation (3.14),

∫

V0

(
�KLMN

0 + SNL
0 GMK + �KLRN

0 V M
,R + �SLMN

0 V K
,S

+�SLRN
0 V M

,RV K
,S

)
WM,NδWK,L dV

=
∫

A0t

T
K

(N)δWK dA +
∫

V0

ρ0f
KδWK dV +

∫

V0

[βKL(θ)T − γ KL]δUK,L dV

−
∫

V0

(
SKL

0 + SML
0 V K

,M

)
δWK,L dV − ρ0

∫

V0

D2V K

Dt2
δWK dV

− ρ0

∫

V0

D2WK

Dt2
δWK dV (3.15)

which has a completely similar form to Equation (2.6). Accordingly, Equation (2.27)

[
K

] {
W

} + [
M

] D2

Dt2

{
W

} = {
F

}
(3.16)
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also applies here together with Equations (2.28) to (2.30), where now

[
K

]
e(iK)(jM)

=
∫

V0e

ϕi,Lϕj,N

(
�KLMN

0 + SNL
0 GMK

+�KLRNV M
,R + �SLMNV K

,S + �SLRNV M
,RV K

,S

)
dVe (3.17)

[
M

]
e(iK)(jM)

= ρ0

∫

V0e
ϕiϕj dVe (3.18)

{
F

}
e(iK)

= {
F

}ext
e(iK)

− {
F

}int
e(iK)

−
∫

V0e
ρ0

D2V K

Dt2
ϕi dVe (3.19)

{
F

}ext
e(iK)

=
∫

At0e

T
K

(N)ϕi dAe +
∫

V0e
ρ0f

Kϕi dVe

+
∫

V0e

[βKL(θ)T − γ KL]ϕi,L dVe. (3.20)

{
F

}int
e(iK)

=
∫

V0e

(
SKL

0 + SML
0 V K

,M

)
ϕi,L dVe. (3.21)

Consequently, each iteration (Figure 3.1) in a nonlinear calculation leads to a linear set of
equations and the same solvers can be used as in the linear case.

3.2 Application to a Snapping-through Plate

Prediction and modeling of local instabilities is an important issue in engineering problems.
These phenomena are characterized by a local or temporal decrease of the load-carrying
capacity. This means that the load cannot be used as a time parameter since it is not
monotonically increasing. In general, powerful techniques such as the Riks method (Riks
1987) (Crisfield 1983), which use the path length as the time parameter, have to be followed.
However, in some applications, such as the one discussed in this section, other more simple
time parameters can be selected.

Consider the bent plate in Figure 3.4 loaded by a force in the center. As the force
increases, the plane bends until it snaps through. The snapping is an instability accompanied
by a complete loss of force-carrying capacity. Therefore, if the force is increased with time
(or pseudo-time), equilibrium is lost at the onset of instability. The time increments are
decreased, but the Newton–Raphson procedure fails to find a solution. This problem can
be solved by taking the displacement u of the loading point in the direction of the force
as a parameter since it is monotonically increasing with time. Figure 3.5 shows the force-
displacement curve for the loading point. Before the onset of instability, marked by the
force maximum, the force steadily increases. During snapping-through, the force crosses the
zero-axis (unstable equilibrium, characterized by a negative force-displacement slope) while



GEOMETRIC NONLINEAR EFFECTS 149

R

R

F

F

R/20

ν = 0.3

Figure 3.4 Bent plate

−2

−1

0

0

0.5 1

1

1.5 2

2

2.5 3

3

3.5 4

4

5

6

10 u
R

(−)

10
4

F

E
R

2
(−

)

Figure 3.5 Force-displacement curve for the bent plate

decreasing steadily, reaches a minimum and increases again until a new stable configuration
is found (stable equilibrium, characterized by a positive force-displacement slope). Notice
that at times an upward force must be exerted to keep the plate in its position. In the new
stable configuration, the force is zero. Increasing the force again now leads to a monotonic
force-displacement curve. This is an example of a strongly nonlinear behavior. It also shows
how a diligent choice of the loading parameter can lead to convergent solutions even in the
presence of instabilities. Other applications of the instability theory are treated in (Mang et
al. 2001) and (Kim et al. 2003).
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3.3 Solution-dependent Loading

In the previous section, the loading terms on the right-hand side of Equation (2.1) were
assumed to be independent of the displacements. This, however, is not necessarily the case.
The effect of the surface traction depends on the size and orientation of the surface it acts
on. Because of the deformation, both the size and the orientation can change. The body
force term too can depend on the displacements. For instance, the centrifugal force depends
on the distance from the rotation axis. This distance can change because of the deformation
of the structure.

3.3.1 Centrifugal forces

In general, the body forces f can be linearly approximated at U = V by

f (X + V + W ) = f (X + V ) + ∂f

∂U

∣
∣
∣∣
U=V

· W . (3.22)

The centrifugal body forces f take the form (Equation (2.230))

f = {(q − p1) − [(q − p1) · e]e}ω2. (3.23)

Now, we assume that the location of the rotation axis does not change because of the
deformation, that is,

p1 = P1 (3.24)

e = E (3.25)

whereas

q = Q + U . (3.26)

Q is the original position of q. Accordingly, Equation (3.22) now reads

f (Q + V + W ) = {(Q + V − P1) − [(Q + V − P1) · E]E}ω2 + [W − (W · E)E]ω2.

(3.27)

Notice that f is linear in W . By comparison with Equation (3.22), one observes

f (Q + V ) = {(Q + V − P1) − [(Q + V − P1) · E]E}ω2 (3.28)

and

∂f

∂U

∣∣
∣∣
U=V

· W = [W − (W · E)E�]ω2

= [W − E�(E · W )]ω2

= [W − (E� ⊗ E) · W ]ω2

= [I − E� ⊗ E] · Wω2. (3.29)
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Consequently, the centrifugal term in Equation (3.15) amounts to
∫

V0

ρ0f
KδWK dV =

∫

V0

ρ0f
K
0 δWK dV +

∫

V0

ρ0

[
WK − (WLEL)EK

]
ω2δWK dV

(3.30)

where

f K
0 = {(Q + V − P1) − [(Q + V − P1) · E]E}ω2 · GK (3.31)

does not depend on the deformation. The first term on the right-hand side of Equation (3.30)
is the instantaneous force contribution, which has already been taken into account in
Equation (3.15). The second term, however, is new and contributes to the stiffness matrix.
Indeed, writing

WK =
∑

i

ϕjW
K
j (3.32)

and similar for δWK leads to

∑

e

∫

V0e

ρ0




∑

j

ϕjW
K

j −
∑

j

ϕjW
L

j ELEK




(

∑

i

ϕiδWiK

)

ω2 dV (3.33)

or

∑

e

∑

i

∑

j

∫

V0e

ρ0ϕiϕj dV
(
δ K
L − ELEK

)
W L

j δWiKω2. (3.34)

The contribution to the stiffness matrix amounts to

[
K

]
(iK)(jL)

= −
∫

V0e

ρ0ϕiϕj dV
(
δ K
L − ELEK

)
ω2. (3.35)

The minus sign results from bringing the stiffness contribution to the left-hand side. Notice
that, because of the direction of the rotation axis, the contribution to the stiffness matrix is
anisotropic.

3.3.2 Traction forces

The traction term in Equation (3.15) amounts to

I =
∫

A0t

T
K

(N)δWK dA. (3.36)

Here, T
K

(N) is a function of the deformation. Recall that it is defined by (Equation (1.263)):

T (N) = t (n)

(
da

dA

)
. (3.37)
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For a uniform pressure σ = −pg�, one arrives at

T (N) = σ · n

(
da

dA

)

= −pg� · n

(
da

dA

)
. (3.38)

Hence,

T
K

(N) = T (N) · GK

= −pGK · g� · n

(
da

dA

)

= −pgK
lg

lknk

(
da

dA

)

= −pgKk

(
dak

dA

)
. (3.39)

Recall that (Equation (1.66))

dak = JXL
,k dAL. (3.40)

Accordingly,

T
K

(N) = −pgKk(JXL
,k)NL (3.41)

where

NL = dAL

dA
. (3.42)

Consequently, Equation (3.36) now reads

I = −
∫

A0t

pgKk(JXL
,k)δWK dAL. (3.43)

[
XK

,k

]
is the inverse of

[
xk
,K

]
. The inverse of a matrix is the transpose of the matrix of its

cofactors divided by its determinant:

XL
,k = 1

2J
eknm eLNMxn

,Nxm
,M. (3.44)

Assuming that p does not vary over the surface, substitution of Equation (3.44) into
Equation (3.43) yields

I = −p

2
gKkeknm eLNM

∫

A0t

xn
,Nxm

,MδWK dAL. (3.45)
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Since

xm = XMgm
M + Um (3.46)

= XMgm
M + V m + Wm (3.47)

=: xm + Wm (3.48)

where Equation (3.48) defines xm, and using the shape functions

Wm =
∑

j

ϕjW
m

j (3.49)

δWK =
∑

i

ϕiδWiK (3.50)

one obtains

I = −p

2
gKkeknm eLNM

(
∑

i

∫

A0t

xn
,Nxm

,Mϕi dALδWiK

+
∑

i

∑

j

∫

A0t

ϕj,Nxm
,Mϕi dALW n

j δWiK

+
∑

i

∑

j

∫

A0t

xn
,Nϕj,Mϕi dALW m

j δWik



 + O(‖W‖3), ‖W‖ → 0 (3.51)

≈ −
∑

i

∫

A0t

pgKkϕi dakδWiK

− p

2
gKkeknm eLNM

∑

i

∑

j

∫

A0t

(
xn

,Nϕj,M − ϕj,Nxn
,M

)
ϕi dALW m

j δWiK. (3.52)

The first term in Equation (3.52) is a force term already encountered in Section 3.1, the
second term yields a stiffness contribution:

[
K

]
(iK)(jM)

= p

2
gKkgmMeknm eLNP

∫

A0t

(
xn

,Nϕj,P − ϕj,Nxn
,P

)
ϕi dAL (3.53)

or, interchanging m, M with l, L,

[
K

]
(iK)(jL)

= p

2
gKkglLeknl eMNP

∫

A0t

(
xn

,Nϕj,P − ϕj,Nxn
,P

)
ϕi dAM. (3.54)

This stiffness contribution is not symmetric. To reduce the computational costs, a sym-

metrization can be performed by replacing
[
K

]
by 1

2

([
K

] + [
K

]T )
.
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Figure 3.6 Slender beam under hydrostatic pressure
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Figure 3.7 Lowest eigenfrequency of the beam

3.3.3 Example: a beam subject to hydrostatic pressure

A slender beam (Figure 3.6) is dropped in the ocean. As it sinks, the pressure steadily
increases and the question arises whether the beam will buckle. Therefore, the eigenfre-
quencies are calculated (cf. Section 2.9.3) since buckling will occur at any zero-crossing
of the lowest eigenfrequency. Applying the stress stiffness and large deformation stiffness
leads to the solid curve in Figure 3.7. Buckling occurs for a large enough pressure. How-
ever, taking the traction stiffness also into account yields the dashed curve: no buckling
takes place! Intuitively, as soon as the beam tends to buckle, the deformation-induced trac-
tion forces along the sides of the beam stabilize its state. Other applications can be found
in (Rumpel and Schweizerhof 2003).

3.4 Nonlinear Multiple Point Constraints

Sometimes there are extra constraints that are not covered by the constitutive equations.
The simplest ones are single point constraints, expressing that a degree of freedom has
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to assume a specific value. These are simple boundary conditions. In other cases, a rela-
tionship is established among several degrees of freedom. These are called multiple point
constraints (MPC). They can be linear or nonlinear. Linear multiple point constraints were
encountered in Chapter 2, for instance, in Section 2.10 on cyclic symmetry. Examples of
nonlinear equations are given in the following sections and include rigid body motion,
incompressible behavior and others. In Section 2.6, it was shown that a linear multiple
point constraint can be taken care of right away at the creation time of the stiffness matrix
by expressing the dependent degree of freedom as a function of the independent degrees
of freedom. A nonlinear multiple point constraint can be treated in the same way after
linearization.

The linearization follows exactly the scheme sketched in Section 3.1. Let

U := {
ui1, ui2, . . . , uin

}
(3.55)

be the degrees of freedom involved in the nonlinear multiple point constraint f (U) = F .
Then, a linearization at U = U0 yields

f (U0) + ∇fU (U0) · (U − U0) = F (3.56)

or

∇fU (U0) · �U = F − f (U 0) (3.57)

where

�U := U − U0. (3.58)

This equation is updated as soon as a new solution U0 is obtained. Notice that not only can
the coefficients of a linearized multiple point constraint change from iteration to iteration,
but also the degrees of freedom involved. This can lead to a change of the dependent
degrees of freedom as the calculation proceeds.

Accordingly, a stream chart of a nonlinear solution procedure that includes nonlinear
multiple point constraints looks like the one shown in Figure 3.8. The box “update MPC”
not only stands for the update of the multiple point constraints but also for the update of
any solution dependent boundary conditions such as contact areas or radiation heat flux
rates.

3.5 Rigid Body Motion
A first example of nonlinear multiple point constraints constitutes rigid body motion. Here,
nonlinearity arises because of large rotations. In what follows, rectangular coordinates are
assumed and the spatial frame coincides with the material frame.

3.5.1 Large rotations

Consider a vector θ = θn along an axis AB (Figure 3.9), and a vector r0. Now, the vector
r0 is rotated about the axis AB until the new vector r includes an angle θ = ‖θ‖ with r0.
We would like to find an expression for r as a function of r0 and θ .
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Figure 3.8 Stream chart of the nonlinear solution procedure
“dep” = dependent, “ind” = independent, “int” = internal, “ext” = external
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For an infinitesimal angle dθ , the change dr of r is perpendicular to r and satisfies

dr = dθ(n × r) (3.59)

in component notation:

dri = dθeijknj rk. (3.60)

Defining the matrix S by

Sik := eijknj (3.61)

one finds

dr = dθS · r (3.62)

or

dr

dθ
= S · r. (3.63)

This is a linear homogeneous vector differential equation with the solution

r = eSθ · r0 (3.64)

satisfying the initial condition r(0) = r0. Equation (3.64) can be expanded into

r =
(

I + θS + 1

2!
θ2S2 + 1

3!
θ3S3 + · · ·

)
· r0. (3.65)

A

B

r
o

r0

dr0

θ = ‖θ‖

θn = θ

Figure 3.9 Large rotation about the axis AB
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Since S · r = n × r (Equations (3.59) and (3.62)) and a × (b × c) = (a · c)b − (a · b)c,
one finds

S2 · r = S · (S · r) = n × (n × r) = (n · r)n − r (3.66)

S3 · r = S · (S2 · r) = n × [(n · r)n − r] = −n × r = −S · r (3.67)

from which one finds

S3 = −S. (3.68)

Accordingly, all powers of S exceeding 2 can be reduced to ±S or ±S2. Consequently,

eSθ = I + S

(
θ − 1

3!
θ3 + 1

5!
θ5 − · · ·

)

+ S2
(

1

2!
θ2 − 1

4!
θ4 + 1

6!
θ6 − · · ·

)

= I + sin θS + (1 − cos θ)S2. (3.69)

Hence,

r =
(
I + sin θS + (1 − cos θ)S2

)
· r0. (3.70)

Since

S2 = n ⊗ n − I (3.71)

this also reduces to

r = [cos θI + sin θS + (1 − cos θ)n ⊗ n] · r0. (3.72)

Defining

θ̂ = θS (3.73)

finally yields

r = C · r0 (3.74)

where

C =
[

cos θI + sin θ

θ
θ̂ + (1 − cos θ)

θ ⊗ θ

θ2

]
(3.75)

or in component notation,

Cij = δij cos θ + sin θ

θ
eikj θk +

(
1 − cos θ

θ2

)
θiθj . (3.76)
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Notice that this is a nonlinear relation in θ . Therefore, only a truly nonlinear calculation can
take large rotations into account. In simple linear calculations, Equation (3.59) is sometimes
used for finite rotations, yielding

r = r0 + θ(n × r0). (3.77)

Using this relation amounts to the motion in Figure 3.10 and is only feasible for a small
θ . The true angle α satisfies

α = arctan θ ≈ θ − θ3

3
+ · · · (3.78)

and ‖r‖ satisfies

‖r‖ = r0

√
θ2 + 1 ≈ r0

(
1 + θ2

2

)
. (3.79)

3.5.2 Rigid body formulation

Defining a set of nodes to behave like a rigid body means that all degrees of freedom of
the set are reduced to six degrees of freedom: three translations w of a point A and three
rotations θ about point A. Point A can be the center of gravity of the node set, but this
does not have to be. Any point will do. Usually, we take an existing node belonging to
the rigid node set to be point A. However, we can also generate an additional fictitious
node to be point A. Hence, the motion u of a node at location p can be described as
(Figure 3.11)

u = w + [C(θ) − I ] · (p − q) (3.80)

r
r0

θ(n × r0)

α

Figure 3.10 Linearized rotation
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A

u

q

p

p − q

p − q

w

w

(C − I ) · (p − q)

C · (p − q)

θ

Figure 3.11 Rigid body motion of p about A

where w represents the motion of point A and q its location. The first term on the right-hand
side represents the translation and the second represents the rotation. Equation (3.80) is a
nonlinear relationship since C(θ) is nonlinear (Equation (3.75)). Linearizing at (w0, θ0),
as described in Section 3.4, yields

u0 + I · (u − u0) = w0 + I · (w − w0) + [C(θ0) − I ] · (p − q) (3.81)

+
[

∂C

∂θ
(θ0) · (θ − θ0)

]
· (p − q)

or

(u − u0) = I · (w − w0) +
[
∂C

∂θ
(θ0) · (θ − θ0)

]
· (p − q) (3.82)

+ w0 + [C(θ0) − I ] · (p − q) − u0.

In component notation, this reads

ui − u0i = wi − w0i +
(

∂C

∂θ
(θ0)

)

ij l

(θl − θ0l )(p − q)j

+ w0i + [
Cij (θ0) − δij

]
(p − q)j − u0i (3.83)
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where, differentiating Equation (3.76),
(

∂C

∂θ
(θ0)

)

ij l

= ∂Cij

∂θl

(3.84)

= ∂ cos θ

∂θl

δij + ∂

∂θl

(
sin θ

θ

)
eikj θk

+
(

sin θ

θ

)
eilj + ∂

∂θl

(
1 − cos θ

θ2

)
θiθj

+
(

1 − cos θ

θ2

)
(
δilθj + θiδjl

)
. (3.85)

The first term in Equation (3.83) is linear in the translations wi , the second term is linear
in the rotations θl and the third term is constant. The derivatives in Equation (3.85) are
easily determined

∂ cos θ

∂θl

= −θl

sin θ

θ
(3.86)

∂

∂θl

(
sin θ

θ

)
= θl

θ3
(θ cos θ − sin θ) (3.87)

∂

∂θl

(
1 − cos θ

θ

)
= θl

θ4
(θ sin θ − 2 + 2 cos θ). (3.88)

For small values of θ , these expressions are undetermined and the limit must be taken

lim
θ→0

sin θ

θ
= 1 (3.89)

lim
θ→0

1 − cos θ

θ2
= 1

2
(3.90)

lim
θ→0

θ cos θ − sin θ

θ3
= −1

3
(3.91)

lim
θ→0

θ sin θ − 2 + 2 cos θ

θ4
= − 1

12
. (3.92)

Equations (3.83) are the linearized rigid body multiple point constraints at (w0, θ0).
Whereas the translational degrees of freedom can be associated with an existing node,
this is not the case for the rotational degrees of freedom. The easiest solution is to assign
them to a new fictitious node, that is, the translational degrees of freedom of the new node
are interpreted as the rotational degrees of freedom of the rigid body.

The above procedure assumes that there is a one-to-one relationship between the motion
of the body and the translation and rotation expression given by (w, θ). If this is not the
case, additional measures must be taken. For instance, if the body consists of points lying
on a straight line, the rotation about this line is not uniquely determined. In that case, the
rotation about the line must be explicitly assigned. Assume that a is a unit vector along the
line, then, setting the rotation about the line to zero amounts to the linear multiple point
constraint a · θ = 0.
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3.5.3 Beam and shell elements

The present section looks into a three-dimensional expansion theory of beam and shell
elements. Beam and shell structures are characterized by small dimensions across their
thickness. Therefore, simplified assumptions can be applied in the thickness direction,
leading to different formulations. In the simplest forms, straight fibers orthogonal to the
midplane in plates and shells and to the midline in beams are assumed to stay straight
and orthogonal during deformation. This leads to the Kirchhoff theory for plates and the
Bernoulli–Euler theory for beams. If the fibers do remain straight during deformation but
not necessarily orthogonal to the midplane/midline, the formulation is called the Mindlin
theory for plates and the Timoshenko theory for beams, see also (Zienkiewicz and Taylor
1989), (Graff 1975) and (Meirovitch 1967). The assumptions regarding the displacement
field across the thickness have the advantage that only the middle plane (midline) needs
to be modeled, while the changes across the thickness are covered by the introduction of
additional rotational degrees of freedom in the nodes. Accordingly, modeling needs are
basically reduced to the creation of a two-dimensional mesh of the (curved) surface (for
shells/plates) or a one-dimensional mesh of the beam axis. The price to be paid is the need
for the derivation of the material stiffness matrix specifically for shell and/or beam elements,
due to the special formulation in terms of rotational degrees of freedom. Therefore, the idea
of hybrid shell-solid and even pure-solid formulations has come up in different forms in
recent years, (Bischoff and Ramm 1999), (Flores and Oñate 2001), (Wriggers et al. 1996),
(Düster et al. 2001) and (Sze et al. 2002).

In the present derivation, a new, pure-solid way is selected. The ease of modeling
is kept by reducing the shells and beams to their midplane and centerline respectively.
However, instead of introducing rotational degrees of freedom, 8-node quadratic shell or
plate elements and 3-node quadratic beam elements are expanded into 1 layer of 20-node
brick elements (with full or reduced integration). Quadratic elements are chosen because
of their intrinsically good properties: they are known to behave well for slender structures
and rarely exhibit locking or hourglassing. The way of expansion is shown in Figures 3.12
and 3.13.

As long as the plate, shell or beam is smooth, the expansion results in a three-
dimensional connected continuum model. However, problems arise as soon as sharp kinks
need to be modeled, in areas where several shells and beams cross or the thickness of the
shells or beams changes discontinuously. At such locations, all nodes expanded from one
and the same node are considered to behave like a rigid body, and will be called a knot.
At a knot, the degrees of freedom are reduced to three translational and three rotational
degrees. All participating structures are expanded as stand-alone parts. Figure 3.14 shows
the expansion at a knot between shells and Figure 3.15 at a knot between beams. The
structures partially overlap.

A knot is also introduced between beams with a different offset and/or with dif-
ferent cross section (Figure 3.16) and in composed shells and beams. The I-cross
section in Figure 3.17 consists of three beam elements with exactly the same nodes,
but with different cross section and different offset. Since the cross section is defined
as a rigid body, it will remain plane and no warping will occur. However, shear
deformation is possible since the cross section does not have to remain orthogonal
to the central axis. The expanded structure is a volume model and has no rotational
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Figure 3.12 Expansion of the one-dimensional element
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Figure 3.14 Knot between shells

Figure 3.15 Knot between beams
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Figure 3.16 Knot between beams with different offset and different cross section

Figure 3.17 I-cross section composed of three simple beam elements each with a different
offset
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Figure 3.18 Hemispherical shell loaded by concentrated forces

degrees of freedom. Therefore, knots are also introduced at nodes where the user has
defined rotations.

The foregoing expansion can also be applied to plane stress, plane strain and axisym-
metric elements. Any mixing of these element types among each other or with beams
and shells is also taken care of by the knots. However, in the case of plane stress, plane
strain or axisymmetric elements, the rigid body definition is restricted to the nodes in the
midplane or along the centerline. Indeed, the off-center nodes in plane stress, plane strain
and axisymmetric elements are subject to additional conditions due to the z-symmetry or
axisymmetry, which would collide with the rigid body definition.

As an example, consider the thin hemispherical shell with a hole at the top and loaded
by concentrated forces (Figure 3.18). The shell is meshed in three different ways:

1. As a three-dimensional structure using genuine 20-node brick elements with full
integration. The 8 × 10 element mesh contains one element over the thickness (1872
degrees of freedom in total). The length to the thickness ratio of the elements is
about 40. All nodes in the x − z plane are fixed in the y-direction, and the nodes in
the y − z plane are fixed in the x-direction. This description contains translational
degrees of freedom only.

2. As a three-dimensional structure using genuine 20-node brick elements with reduced
integration. The same comments as under 1 also apply here.

3. As a shell structure meshed by 8 × 10 quadratic shell elements with reduced inte-
gration. In the x − z plane, the translational degrees of freedom in the y-direction
and the rotational degrees of freedom about the x-axis and z-axis are fixed, in the
y − z plane the translational degrees of freedom in the x-direction and the rotational
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Table 3.1 Displacements of nodes A and B.

Load ABAQUS 20-node brick 20-node brick 8-node shell
109 F

ER2 4-node shell full integration red. integration red. integration

1

R
ux,A

1

R
uy,B

1

R
ux,A

1

R
uy,B

1

R
ux,A

1

R
uy,B

1

R
ux,A

1

R
uy,B

5.86 −0.326 0.232 −0.138 0.114 −0.329 0.227 −0.324 0.222
8.79 −0.434 0.282 −0.191 0.147 −0.447 0.277 −0.442 0.272
14.65 −0.590 0.341 −0.271 0.190 −0.618 0.334 −0.610 0.328

degrees of freedom about the y-axis and z-axis are fixed. The shell elements are
internally automatically expanded into 20-node brick elements with reduced integra-
tion. Along x = 0 and y = 0, rigid knots are introduced to take care of the rotational
degrees of freedom.

The displacements of nodes A and B in x- and y-direction respectively, are listed in
Table 3.1 and compared with ABAQUS reference results. The 20-node brick elements
with full integration are clearly too stiff. However, the elements with reduced integration
show good agreement with the reference results even for highly nonlinear deformations.

3.6 Mean Rotation

Sometimes a rigid body motion is just too restrictive. Consider a beam with square cross
section, fixed at one end. The other end is twisted by an angle γ . It is not known what
motion each node on the twisted surface makes, only the mean rotation γ is known. Hence,
the twisted surface can expand, contract, warp, and so on, which violates a rigid surface
condition.

To formulate an appropriate multiple point constraint, consider the motion of the nodes
on the twisted surface as a translation of the center of gravity of this set of nodes, followed
by a motion about it. The location of the center of gravity pcg of a set of N nodes at
locations pi satisfies

pcg = 1

N

N∑

j=1

pj . (3.93)

The relative location p′
i of node i is

p′
i = pi − 1

N

N∑

j=1

pj . (3.94)

The translation of the center of gravity is given by the mean of the displacements ui :

ucg = 1

N

N∑

j=1

uj (3.95)
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and the relative displacement u′
i of each nodes i satisfies

u′
i = ui − 1

N

N∑

j=1

uj . (3.96)

The rotation of each node i about the center of gravity is expressed by the angle αi in
Figure 3.19. This angle satisfies

| sin αi | =
‖p′

i × (p′
i + u′

i )‖
‖p′

i‖ · ‖p′
i + u′

i‖
(3.97)

(the underscore removes implicit summation). However, the plane defined by p′
i , u′

i in
Figure 3.19 will generally be different for each node i. Generally, we are interested in the
rotation about an axis. Let this axis be defined by a unit vector a. Then, the rotation γi of
node pi about this axis can be expressed as

γi = arcsin
a · [p′

i × (p′
i + u′

i )]

‖p′
i‖ · ‖p′

i + u′
i‖

(3.98)

and expressing that the mean angle amounts to γ leads to

1

N

∑

i

γi = γ. (3.99)

Because of Equation (3.98), this is a nonlinear equation in the displacements. To linearize
this equation, we first focus on Equation (3.98) and define

λi := sin γi (3.100)

and use component notation in a rectangular coordinate system yielding

λi =
eknj akp

′
in(p

′
ij + u′

ij )

‖p′
i‖ · ‖p′

i + u′
i‖

(3.101)

u′
i

p′
i

p′
i + u′

i

αi

Center of gravity

Figure 3.19 Rotation about the center of gravity
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where p′
ij and u′

ij are the j components of pi and ui , respectively. The only terms in
Equation (3.101) depending on uk, k = 1, . . . , N are u′

ij and u′
i through Equation (3.96).

Because of the term ‖p′
i + u′

i‖ in the denominator of Equation (3.101), λi is nonlinear in
uk . To linearize λi(uk), we first focus on the derivative of some simpler expressions:

∂u′
ij

∂upq

= δipδjq − 1

N

N∑

k=1

δkpδjq

= δjq(δip − 1
N

). (3.102)

Now,

‖p′
i + u′

i‖2 = p′
ij p

′
ij + 2u′

ij p
′
ij + u′

ij u
′
ij . (3.103)

Hence,

∂‖p′
i + u′

i‖2

∂upq

= 2(δip − 1
N

)(p′
iq + u′

iq) (3.104)

and

∂‖p′
i + u′

i‖
∂upq

=
(δip − 1

N
)(p′

iq + u′
iq)

‖p′
i + u′

i‖
. (3.105)

Using Equations (3.102) to (3.105), one obtains for the derivative of γi :

∂γi

∂upq

= 1
√

1 − λ2
i

eknjakp
′
in(δip − 1

N
)

‖p′
i‖ · ‖p′

i + u′
i‖3

[
δjq‖p′

i + u′
i‖2 − (p′

iq + u′
iq)(p′

ij + u′
ij )

]
.

(3.106)

Defining

ξ i :=
(p′

i + u′
i )

‖p′
i + u′

i‖
(3.107)

and

ηi :=
p′

i

‖p′
i‖

(3.108)

Equation (3.106) can be transformed into

∂γi

∂upq

= 1
√

1 − λ2
i

(
δip − 1

N

)

‖p′
i + u′

i‖
[eknqakηin − λiξiq ] (3.109)

where

λi = eknj akηinξij . (3.110)
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h

h8 h

M

ν = 0.3

Figure 3.20 Cantilever beam with square cross section subject to torsion

The governing nonlinear equation, Equation (3.99), can finally be linearized at position 0
yielding

N∑

i=1

{
γi |0 + ∂γi

∂upq

∣
∣
∣∣
0
(upq − upq

∣
∣
0)

}
= Nγ (3.111)

or
(

N∑

i=1

∂γi

∂upq

∣
∣
∣∣
0

)

(upq − upq

∣
∣
0) = Nγ −

N∑

i=1

γi |0 . (3.112)

This is a linear scalar equation in the unknowns upq, p = 1, . . . , N, q = 1, . . . , 3. Notice
that the coefficients of the linear terms can at times be zero. Since the dependent term in
an equation must have a nonzero coefficient, the selection of the dependent variable may
have to change from one iteration to the next.

The mean-rotation concept only makes sense if more than one node is involved. If one
of the nodes k happens to coincide with the center of gravity of the node set, the angle

γk is not determinate since p′
k = 0 and the contribution γk|0 and ∂γk

∂upq

∣
∣
∣
0

are left out in

the sums in Equation (3.112). Equation (3.112) is less restrictive than a rigid body motion.
Accordingly, less energy is needed for applying a mean rotation than for a rigid body
motion.

This can be nicely illustrated by the cantilever beam in Figure 3.20. A torque is applied
at the free end such that a rotation of 45◦ results. Three conditions are examined here:

1. The beam theory is applied and the torque is determined analytically by (Popov 1968)

M = 0.141ϕ(bc)3G

L
(3.113)

where, in the actual example, ϕ = π/4, b = c = h and L = 8 h.

2. The cross section at the free end of the beam is considered as a rigid body.

3. The mean-rotation condition is applied.

The torque required for each of these conditions is listed in Table 3.2. The analytical result
is close to the rigid body condition. The mean-rotation condition requires a torque that is
10% less due to the relaxed constraints.
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Table 3.2 Torque needed
for a twist of 45◦.

Condition
M

Gh3

Beam theory 0.0138
Rigid body 0.0141
Mean rotation 0.0126

a

b

Figure 3.21 A straight-line kinematic constraint

3.7 Kinematic Constraints

As in the previous sections, rectangular coordinates are assumed throughout and the spatial
reference system coincides with the material reference system.

3.7.1 Points on a straight line

Occasionally, one comes across the condition that points must stay on a straight line. An
example of such a case is a hinge consisting of nodes on a line (Figure 3.21). The line
itself can move in space. A node p lies on the straight line defined by distinct nodes a and
b if

p = a + λ(b − a), λ ∈ R (3.114)

which is equivalent to

xp − xa = λ(xb − xa) (3.115)

yp − ya = λ(yb − ya) (3.116)

zp − za = λ(zb − za) (3.117)
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where (x, y, z) are coordinates in the deformed configuration. Since a and b do not coincide,
at least one of the right-hand sides in Equations (3.115) to (3.117) is nonzero. Let xb 
= xa

and a and b be such that xa = xb is highly improbable throughout the complete deformation,
then, one obtains by solving for λ in Equation (3.115) and substituting into Equation (3.116)
and (3.117),

(yp − ya)(xb − xa) = (xp − xa)(yb − ya) (3.118)

(zp − za)(xb − xa) = (xp − xa)(zb − za). (3.119)

Since

xa = Xa + ua (3.120)

where Xa is the x-coordinate of node a in the undeformed configuration and ua is its
displacement in x-direction and similarly for the other coordinates,

ya = Ya + va (3.121)

za = Za + wa. (3.122)

Equations (3.118) and (3.119) are a set of two nonlinear equations in ua, va, wa, ub, vb, wb

and up, vp, wp. Denoting Equation (3.118) by

f (vp, up, va, ua, vb, ub) = 0 (3.123)

and since (Equation (3.120))

∂f

∂ua

= ∂f

∂xa

∂xa

∂ua

= ∂f

∂xa

(3.124)

and similarly for the other variables, linearization of Equation (3.123) at (v0
p, u0

p, v0
a , u0

a ,
v0
b , u0

b) yields

f (v0
p, u0

p, v0
a, u0

a, v0
b, u0

b) + ∂f

∂vp

∣
∣
∣∣
0
(vp − v0

p) + ∂f

∂up

∣
∣
∣∣
0
(up − u0

p) + ∂f

∂va

∣
∣
∣∣
0
(va − v0

p)

+ ∂f

∂ua

∣
∣∣
∣
0
(ua − u0

p) + ∂f

∂vb

∣
∣∣
∣
0
(vb − v0

p) + ∂f

∂ub

∣
∣∣
∣
0
(ub − u0

p) ≈ 0 (3.125)

where

∂f

∂vp

∣
∣∣
∣
0

= x0
b − x0

a (3.126)

∂f

∂up

∣∣
∣∣
0

= −(y0
b − y0

a ) (3.127)
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∂f

∂va

∣
∣
∣∣
0

= −(x0
b − x0

p) (3.128)

∂f

∂ua

∣
∣
∣∣
0

= −(y0
p − y0

b) (3.129)

∂f

∂vb

∣
∣
∣∣
0

= −(x0
p − x0

a) (3.130)

∂f

∂ub

∣
∣
∣∣
0

= y0
p − y0

a (3.131)

and

x0
a := Xa + u0

a (3.132)

(similarly for the other coordinates). An analogous procedure can be applied to
Equation (3.119). In the present case, vp and wp are suitable selections for the dependent
variables since x0

b 
= x0
a is assumed. It is advantageous to select a and b at an appreciable

distance from each other in order to improve the accuracy. Each node p constrained to lie
on the line defined by the nodes a and b will lead to two of the above equations.

3.7.2 Points in a plane

The treatment of points constrained to lie in a plane is somewhat similar to the derivation
in the previous section. Let the plane α be defined by three nodes a, b and c, which are
not colinear, that is,

m := (b − c) × (a − c) 
= 0. (3.133)

A node p lies in the plane if

m · (p − c) = 0. (3.134)

Introducing spatial coordinates (x, y, z), Equation (3.134) is equivalent to

f =
∣
∣
∣∣
∣
∣

xp − xc yp − yc zp − zc

xa − xc ya − yc za − zc

xb − xc yb − yc zb − zc

∣
∣
∣∣
∣
∣
= 0. (3.135)

The vertical lines denote the determinant of the 3 × 3 matrix. f is a nonlinear equation in
ua, va, wa, ub, vb, wb, uc, vc, wc, up, vp and wp since

xa = Xa + ua (3.136)

and similarly for the other coordinates. The derivatives of f at (u0
a, v0

a, w0
a, u0

b, . . . , w0
p)

with respect to ua, va, wa, ub, vb, wb, up, vp and wp are the corresponding cofactors,
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that is,

∂f

∂ua

∣
∣
∣∣
0

= −
∣
∣
∣∣
y0
p − y0

c z0
p − z0

c

y0
b − y0

c z0
b − z0

c

∣
∣
∣∣ (3.137)

since (Equation (3.136))

∂f

∂ua

∣∣
∣
∣
0

= ∂f

∂xa

∣∣
∣
∣
0

(3.138)

and the derivatives with respect to uc, vc and wc are sums of cofactors,

∂f

∂uc

∣
∣
∣∣
0

= −
∣
∣
∣∣
y0
a − y0

c z0
a − z0

c

y0
b − y0

c z0
b − z0

c

∣
∣
∣∣ +

∣
∣
∣∣
y0
p − y0

c z0
p − z0

c

y0
b − y0

c z0
b − z0

c

∣
∣
∣∣ −

∣
∣
∣∣
y0
p − y0

c z0
p − z0

c

y0
a − y0

c z0
a − z0

c

∣
∣
∣∣ . (3.139)

Consequently, denoting the elements of the matrix at (u0
a, v0

a, . . . , w0
p) by a11, a12, . . . , a33

and the corresponding cofactors by A11, A12, . . . , A33, the linearization of Equation (3.135)
yields

f 0 + A11(up − u0
p) + A12(vp − v0

p) + A13(wp − w0
p)

+ A21(ua − u0
a) + A22(va − v0

a) + A23(wa − w0
a) + A31(ub − u0

b)

+ A32(vb − v0
b) + A33(wb − w0

b) − (A11 + A21 + A31)(uc − u0
c)

− (A12 + A22 + A32)(vc − v0
c ) − (A13 + A23 + A33)(wc − w0

c ) ≈ 0. (3.140)

Since m 
= 0, A11, A12 and A13 cannot all be zero. The variable with the largest coefficient
in size should be taken as the dependent degree of freedom. Accordingly, if

|A12| ≥ |A13| ≥ |A11| (3.141)

take vp as the dependent degree of freedom, unless it is already used in another multiple
point constraint. Notice that the nonlinearity only arises because of the fact that the plane
defined by a, b and c is not fixed in space. If the plane is fixed, xa, ya, za, xb, . . . , zc are
constants and Equation (3.135) reduces to a linear equation in xp, yp, and zp.

3.8 Incompressibility Constraint

Many materials such as rubber or organic tissue are either incompressible or can be
viewed as such. In Chapter 1, it was shown that this condition is equivalent to J = 1.
Denoting the undeformed position of X by the rectangular coordinates (X, Y, Z), the
deformed position by (x, y, z) and the displacements by (u, v, w), this condition is equiv-
alent to

J =
∣∣
∣
∣∣
∣

x,X x,Y x,Z

y,X y,Y y,Z

z,X z,Y z,Z

∣∣
∣
∣∣
∣
= 1 (3.142)
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or, using the local coordinates γ (ξ, η, ζ ),

J =
∣
∣∣
∣
∣∣

x,ξ x,η x,ζ

y,ξ y,η y,ζ

z,ξ z,η z,ζ

∣
∣∣
∣
∣∣
·
∣
∣∣
∣
∣∣

ξ,X ξ,Y ξ,Z

η,X η,Y η,Z

ζ,X ζ,Y ζ,Z

∣
∣∣
∣
∣∣
= 1. (3.143)

This is a function of the displacement components of all nodes belonging to the element
at stake. Indeed (cf Equation (2.9) and (2.10)),

x =
N∑

i=1

ϕi(ξ, η, ζ )xi =
N∑

i=1

ϕi(ξ, η, ζ )(Xi + ui) (3.144)

y =
N∑

i=1

ϕi(ξ, η, ζ )(Yi + vi) (3.145)

z =
N∑

i=1

ϕi(ξ, η, ζ )(Zi + wi). (3.146)

Notice that Equations (3.144) to (3.146) only apply if the formulation is isoparametric,
that is, the undeformed position and the displacements are interpolated in the same way.
Accordingly, one finds

x,ξ =
N∑

i=1

∂ϕi

∂ξ
(ξ, η, ζ )(Xi + ui) (3.147)

and similarly for the other terms. If we write Equation (3.143) as

f (u1, v1, w1, u2, v2, w2, . . . , uN, vN , wN) = 0 (3.148)

the linearization yields

f (u0
1, v0

1, w0
1, u0

2, v0
2, w0

2, · · · , u0
N, v0

N, w0
N)

+
∑

i

[
∂f

∂ui

∣
∣∣
∣
0
(ui − u0

i ) + ∂f

∂vi

∣
∣∣
∣
0
(vi − v0

i ) + ∂f

∂wi

∣
∣∣
∣
0
(wi − w0

i )

]
≈ 0. (3.149)

Substitution of Equations (3.147) into Equation (3.143) reveals that f is a linear function
of ui if all vi and wi are kept constant, that is, vi = v0

i and wi = w0
i , ∀i. Accordingly,

∂f

∂ui

=
∣∣
∣
∣∣
∣

∂ϕi

∂ξ
∂ϕi

∂η
∂ϕi

∂ζ

y,ξ y,η y,ζ

z,ξ z,η z,ζ

∣∣
∣
∣∣
∣
·
∣∣
∣
∣∣
∣

ξ,X ξ,Y ξ,Z

η,X η,Y η,Z

ζ,X ζ,Y ζ,Z

∣∣
∣
∣∣
∣
. (3.150)

Equation (3.149) can be applied at any internal point of the element and leads to one
equation in all the degrees of freedom belonging to the element (e.g. 60 degrees of freedom
for the 20-node brick element). If it is applied to the points on the border, the degrees of
freedom of the adjoining elements must be considered too. In that case, it sounds feasible
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to require that the mean of the Jacobian determined for each of the adjoining elements
separately, must be 1.

The question remains, at what points should Equation (3.142) be applied to yield valid
results. Application to too many points leads to volumetric locking of the element. Taking
hybrid elements as reference, where the pressure is usually interpolated with a lower degree
than the displacements, it is proposed to apply the incompressibility condition to the corner
nodes for quadratic elements, and to the center of the element for linear type elements.



4

Hyperelastic Materials

In this chapter, hyperelastic materials will be discussed. They are defined as materials for
which a free energy function

�(C, θ, X) (4.1)

exists such that Equations (1.393) and (1.394) apply. The function � is sometimes called the
stored-energy function (Ciarlet 1993), (Simo and Hughes 1997). Because of the functional
dependence in Equation (4.1), hyperelastic materials have no memory (Figure 4.1). After
unloading, they return without time delay to their starting position. The determination of
the second Piola–Kirchhoff stress is straightforward through Equation (1.393):

S = 2
∂�

∂C
. (4.2)

The question naturally arises whether the function � can be freely chosen or whether
physical considerations impose any restrictions. This is treated in the first section. Then,
a few popular isotropic models are discussed and applied to simulate a shear test and
the inflation of a balloon. Finally, the theory is extended to anisotropic materials such as
fiber-reinforced tissues. For further reading, the reader is particularly referred to (Holzapfel
2000) and (Bonet and Wood 1997).

4.1 Polyconvexity of the Stored-energy Function

4.1.1 Physical requirements

Basic physical considerations imply that extreme strains must lead to infinite stress (Antman
1983). The word “extreme” applies equally well to large compressions as well as to large
expansions. If the material is extremely compressed such that it is on the verge of being
annihilated, J → 0, large stresses should result. Large stresses should equally well be
required to expand a material beyond bounds (J → ∞). The notion of “extreme strains”

The Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85752-8
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F

�L/L

Loading

Unloading

Figure 4.1 Force-stretch diagram for a hyperelastic material in a uniaxial test

can be further concretized by looking at the invariants of C in terms of the principal values
�1, �2 and �3 (cf Equations (1.121)–(1.123)):

I1 = �1 + �2 + �3 (4.3)

I2 = �1�2 + �1�3 + �2�3 (4.4)

I3 = �1�2�3. (4.5)

Recall that the eigenvalues of C are the squares of the stretch in the principal direction.
Indeed, one finds, using Equation (1.132) and defining the norm for vectors and tensors of
rank two by ‖N‖ = √

N · N and ‖A‖ = √
A : A respectively,

�i = N i · F T · F · N i = ‖F · N i‖2. (4.6)

Consequently, �i ≥ 0. Furthermore, the eigenvalues are the solution of the characteristic
equation

�3 − I1�
2 + I2� − I3 = 0. (4.7)

If at least one �i → 0, then I3 → 0 must apply in order to satisfy the above equation. The
other way around, if �1�2�3 → 0, then at least one �i → 0. Accordingly, a small value
of I3 is equivalent to small extreme strains. If at least one �i → ∞, then I1 → ∞ since
�i ≥ 0. The inverse is also true: if I1 → ∞, at least one �i → ∞. Accordingly, a large
value of I1 is equivalent to large extreme strains. If I1 → ∞, then I1 + I2 + I3 → ∞ since
I1, I2 ≥ 0, and I1 + I2 + I3 cannot be large unless at least one �i → ∞, which implies
that I1 → ∞. Consequently,

I1 → ∞ ⇔ I1 + I2 + I3 → ∞. (4.8)

Summarizing,

“small” extreme strains ⇔ I3 → 0 (4.9)

“large” extreme strains ⇔ I1 + I2 + I3 → ∞. (4.10)
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In treatises on stored-energy functions, the invariants of C are frequently written as a
function of F . One has

‖F‖ =
√

F : F =
√

I1 (4.11)

‖CofF‖ =
√

tr[(CofF )T · (CofF )]

= J

√
tr(F−1 · F−T )

= J

√
tr(C−1)

= J

√
1

�1
+ 1

�2
+ 1

�3

= J

√
I2

I3

=
√

I2 (4.12)

det F = J =
√

I3. (4.13)

Recall that

F−1 = (CofF )T

det F
(4.14)

which was used in the derivation of Equation (4.12). Equations (4.9) and (4.10) can now
be replaced by

“small” extreme strains ⇔ det F → 0 (4.15)

“large” extreme strains ⇔ ‖F‖ + ‖CofF‖ + det F → +∞. (4.16)

“Large” stresses basically mean
∥
∥∥
∥
∂�

∂C

∥
∥∥
∥ → +∞. (4.17)

If �(C, X) is continuous on a closed interval [a, b] and differentiable within the open
interval (a, b), then the mean value theorem states that

sup
C∈(a,b)

∥
∥∥
∥
∂�

∂C

∥
∥∥
∥ ≥ ‖�(b) − �(a)‖

‖b − a‖ . (4.18)

This means that � → +∞ is sufficient for ‖ ∂�
∂C

‖ → +∞. Summarizing, the requirements
for � are

�(C, X) → +∞ if det F → 0+ (4.19)

�(C, X) → +∞ if (‖F‖ + ‖CofF‖ + det F ) → +∞. (4.20)
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Figure 4.2 Gurtin’s experiment

For simplicity, the temperature dependence is dropped from �(C, θ, X). Recall that the
deformation gradient F belongs to the set of 3 × 3 matrices with a positive determinant,
that is,

F ∈ M
3
+. (4.21)

Equation (4.20) is sometimes replaced by the coerciveness inequality, which reads

�(C, X) ≥ α
[‖F‖p + ‖CofF‖q + (det F )r

]+ β,

α, p, q, r > 0, F ∈ M
3
+, X ∈ V0. (4.22)

This condition plays a major role in proving the existence of a solution. The present
section essentially follows (Ciarlet 1993) and is based on the research by John Ball (see,
for instance, (Ball 1977)). Here, only the main results will be quoted. For proofs and further
reading, the reader is referred to (Ciarlet 1993).

The existence of a solution immediately calls into mind the uniqueness problem. Con-
trary to linear problems, nonlinear problems can have infinitely many solutions. Merely
one example is given here: a beam under torsion fixed at its ends and with stress-free sides
(Figure 4.2, Gurtin’s experiment). There are infinitely many solutions to this problem,
each differing by a torsion angle of a multiple of 2π from the others. Consequently, the
solution is physically not unique and accordingly a numerical uniqueness is not desirable
either.

4.1.2 Convexity

To proceed, some basic mathematical concepts of convexity have to be explained. Indeed,
convexity plays a major role in the derivation of stored-energy functions satisfying Equa-
tions (4.19) and (4.22).

Definition 4.1.1 A subset of a vector space is convex if, for any two elements a and b
belonging to the subset, the closed interval [a, b] also belongs to the subset.
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The interval [a, b] consists of all points a + λ(b − a), where λ ∈ [0, 1]. For example,
consider the vector space over R of all 3 × 3 matrices M

3. The matrices with positive
determinant (M3+) form a nonconvex subset. Indeed, A = Diag(−3, 2, −1) ∈ M

3+ and B =
Diag(2, −3, −1) ∈ M

3+ but Diag(−1, −1, −2) = A + B �∈ M
3+. Here, Diag(−3, 2, −1) is

a diagonal 3 × 3 matrix with elements −3, 2 and −1.

Definition 4.1.2 The closed convex hull co U of a subset U of a vector space V is the
smallest closed convex subset of V that contains U.

One can prove (Ciarlet 1993),

co M
3
+ = M

3 (4.23)

co{(F , CofF , det F ) ∈ M
3
+ × M

3
+ × R+} = M

3 × M
3 × (0, ∞). (4.24)

Note that CofF ∈ M
3+ since

det(CofF ) = (det F )2 (4.25)

because of Equation (4.14) and the properties of determinants (Gradshteyn and Ryzhik
1980).

Definition 4.1.3 A function f : U ⊂ V → R defined on a convex subset U of a vector space
V is convex on U if

∀a, b ∈ U, λ ∈ [0, 1] : f [λa + (1 − λ)b] ≤ λf (a) + (1 − λ)f (b). (4.26)

The following theorem, formulated here for the special case of an inner product space, can
be used to prove the convexity of a function:

Theorem 4.1.4 Let f : U → R be a function defined and twice differentiable over a convex
subset U of an inner product vector space. The function f is convex on U if and only if

f ′′(a) · (b − a, b − a) ≥ 0, ∀a, b ∈ U. (4.27)

(Ciarlet 1993).

The second derivative is a bilinear mapping of its arguments, that is, it has two arguments
and is linear in each of them. In our applications, the bilinear mapping reduces to a classical
inner product. As an example, consider

f : A ∈ M
3 → ‖A‖2. (4.28)

Since ‖A‖2 = A : A = AijAij (in rectangular coordinates), one finds

∂AijAij

∂Akl

= Akl + Akl = 2Akl (4.29)

and for the second derivative

2
∂Akl

∂Amn

= 2δkmδln. (4.30)
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Accordingly, ∀B,

f ′′(A)klmnBklBmn = 2BklBkl = 2‖B‖2. (4.31)

Since ‖B‖ ≥ 0, f is convex.
On the other hand,

f : A ∈ M
3 → ‖CofA‖2 (4.32)

and

g : A ∈ M
3 → det A = I3A (4.33)

are not convex. Indeed,

A := Diag(3, 1, 1) ∈ M
3 (4.34)

B := Diag(1, 3, 1) ∈ M
3 (4.35)

f (A) = 19 = f (B) (4.36)

g(A) = 3 = g(B) (4.37)

C = λA + (1 − λ)B (4.38)

f (C) = 19 + 16λ − 32λ3 + 16λ4 (4.39)

g(C) = 2 + 4λ − 4λ2. (4.40)

Accordingly,

λf (A) + (1 − λ)f (B) = 19 (4.41)

λg(A) + (1 − λ)g(B) = 3 (4.42)

but

f (C)|λ=0.01 > 19 (4.43)

g(C)|λ=0.01 > 3. (4.44)

This concludes the proof.
An important example of a convex function is

f : (x, A) ∈ R
+ × M

3 → ‖A‖2

x2/3
. (4.45)

The proof given here goes back to (Hartmann and Neff 2003). First consider

g : (x, y) ∈ R
+ × R → f (x) · g(y). (4.46)

R
+ × R is a convex domain. According to Theorem 4.1.4, g is convex if and only if

{
x

y

}T [
f ′′(x)g(y) f ′(x)g′(y)

f ′(x)g′(y) f (x)g′′(y)

]{
x

y

}
≥ 0, ∀x, y. (4.47)
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This implies that the 2 × 2 matrix in Equation (4.47) must be positive semidefinite. A matrix
is positive semidefinite if and only if all eigenvalues are not negative. The eigenvalues of
a 2 × 2 symmetric matrix

[
a11 a12
a12 a22

]
(4.48)

are

λ1,2 = 1
2

[
(a11 + a22) ±

√
(a11 + a22)2 − 4(a11a22 − a2

12)

]
(4.49)

which are positive if and only if
{

a11a22 − a2
12 ≥ 0 and

a11 ≥ 0 (or a22 ≥ 0).
(4.50)

Accordingly, we require
{

f ′′(x)g(y) ≥ 0

f ′′(x)g(y)f (x)g′′(x) ≥ [f ′(x)g′(x)]2.
(4.51)

Let
{

f (x) := x−α, α ≥ 0

g(y) := yp
(4.52)

then Equations (4.51) are equivalent to

α + 1

α
≥ p

p − 1
⇒ α ≤ p − 1. (4.53)

For instance, for p = 2 and α = 2/3,

g : (x, y) ∈ R
+ × R → y2

x2/3
(4.54)

is a convex function. Substituting ‖A‖ for y, one obtains, using the Cauchy–Schwarz
condition,

f [λx1 + (1 − λ)x2, λA1 + (1 − λ)A2] = ‖λA1 + (1 − λ)A2‖2

[λx1 + (1 − λ)x2]3/2

≤ [λ‖A1‖ + (1 − λ)‖A2‖]2

[λx1 + (1 − λ)x2]3/2

≤ λ
‖A1‖2

x
3/2
1

+ (1 − λ)
‖A2‖2

x
3/2
2

. (4.55)

The last step is a consequence of the convexity of g. This concludes the proof that the
function f in Equation (4.45) is convex. In a similar way, one can prove that

f : (x, A) ∈ R
+ × M

3 → ‖A‖3

x2
(4.56)

is convex by choosing p = 3 and α = 2.
The convexity of a function can be extended to nonconvex subsets:
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Definition 4.1.5 A function f ∗ : U → R is convex if there exists a convex function
f : co U → R such that f ∗(a) = f (a) ∀a ∈ U .

Accordingly,

f ∗ : F ∈ M
3
+ → ‖F‖2 = I1 (4.57)

is a convex function since f defined by Equation (4.28) is convex in M
3 = co M

3+.
A convex function f : R

+ → R can be extended to a convex function
f : R → R ∪ {+∞} by defining

f (x) = f (x), x ∈ R
+

= +∞, x ∈ R\R
+. (4.58)

Convexity is a very nice property and it would be advantageous if we could take simple
functions such as in Equation (4.57) to be stored-energy functions. Unfortunately, this is
not possible (for a proof, see (Ciarlet 1993)):

Theorem 4.1.6 Let X ∈ V0 and � : F ∈ M
3+ → �(X, C) ∈ R be convex. Then:

1. Equation (4.19) is not satisfied.

2. The eigenvalues σi of the resulting Cauchy stress satisfy σ1 + σ2 ≥ 0, σ1 + σ3 ≥ 0,
σ2 + σ3 ≥ 0 at any X ∈ V0.

Accordingly, for a convex function, there is no constraint to prevent the annihilation of
material, and some stress states, such as uniform hydrostatic pressure, cannot be simulated.
Therefore, convex functions are unsuitable as stored-energy functions.

4.1.3 Polyconvexity

To solve this problem, John Ball (Ball 1977) had the idea of relaxing the convexity require-
ment to polyconvexity, which is defined as follows:

Definition 4.1.7 A stored-energy function �̂ : V0 × M
3+ → R is polyconvex, if for each X ∈

V0 there exists a convex function

� : V0 × M
3 × M

3 × (0, +∞) → R (4.59)

such that

�̂(X, F ) = �(X, F , CofF , det F ) ∀F ∈ M
3
+. (4.60)

Using this definition, both ‖CofF‖2 and det F are polyconvex (the latter because
f : x ∈ R

+ → x is convex). On the basis of Equation (4.45), one also finds that

f : F ∈ M
3
+ → ‖F‖2

(det F )2/3
(4.61)
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is polyconvex. Notice that the expression ‖F‖2/(det F )2/3 is the first invariant of C satis-
fying

C = C

(det F )2/3
(4.62)

and

I 3 := I3C = det C = 1. (4.63)

Accordingly, C contains the isochoric motion of C. In hyperelastic applications and von
Mises plasticity, the total motion is frequently split into an isochoric part and a volumetric
part. Equation (4.61) is now equivalent to

f : F ∈ M
3
+ → I1C (4.64)

which is a polyconvex function.
Since f (I ) = 3, the function

g : F ∈ M
3
+ → I 1 − 3 (4.65)

is a convex residual stress-free stored-energy potential. Furthermore, one can prove that
I 1 − 3 ≥ 0. Indeed (Schröder and Neff 2001)

3I2 − I 2
1 = (�1�2 + �1�3 + �2�3) − (�1 + �2 + �3)

2 (4.66)

= �1�2 + �1�3 + �2�3 − �2
1 − �2

2 − �2
3 (4.67)

= − 1
2

[
(�1 − �2)

2 + (�2 − �3)
2 + (�3 − �1)

2
]

≤ 0. (4.68)

Accordingly,

I 2
1 ≥ 3I2. (4.69)

Notice that this only applies if the eigenvalues are real, which is guaranteed since C is
symmetric. Equation (4.69) can also be obtained by requiring the solution of the charac-
teristic equation to be real (cf the explicit solution of a cubic equation in (Abramowitz and
Stegun 1972)).

Equation (4.69) also applies to the inverse of C unless det C = 0:

I 2
1C−1 ≥ 3I2C−1 . (4.70)

Recall that the eigenvalues of the inverse of a matrix are the inverse of the eigenvalues.
Accordingly,

I1C−1 = I2

I3
(4.71)

I2C−1 = I1

I3
(4.72)
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and

I3C−1 = 1

I3
. (4.73)

Consequently, Equation (4.70) is equivalent to

I 2
2 ≥ 3I1I3. (4.74)

Equations (4.66) and (4.74), together with Equations (4.11) to (4.13), yield (recall that all
eigenvalues and invariants are strictly positive unless material annihilation is accepted)

I 4
1 ≥ 27I1I3 (4.75)

⇓
‖F‖4 ≥ 3

√
3‖F‖(det F ) (4.76)

⇓

I 1 = ‖F‖2

(det F )2/3
≥ 3 (4.77)

which completes the proof. Accordingly, the function g = I 1 − 3 is a positive, polyconvex,
residual stress-free stored-energy function.

Now, the following theorem will be used:

Theorem 4.1.8 If

f : x ∈ V0 → f (x) ∈ R
+ (4.78)

is convex and

g : y ∈ R
+ → g(y) (4.79)

is monotonic increasing and convex, then

g ◦ f : x ∈ V0 → (g ◦ f ) (x) (4.80)

is convex.

Proof. f is convex means

f [λa + (1 − λ)b] ≤ λf (a) + (1 − λ)f (b). (4.81)

Hence, since g is monotonic increasing,

g{f [λa + (1 − λ)b]} ≤ g[λf (a) + (1 − λ)f (b)] (4.82)

≤ λg[f (a)] + (1 − λ)g[f (b)] (4.83)

due to the convexity of g.
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Let us apply this theorem to f = I 1 − 3. Choosing g(y) = yi, i ≥ 1 one finds that

h : F ∈ M
3
+ → (I 1 − 3)i , i ≥ 1 (4.84)

is polyconvex. This function is frequently used in stored-energy functions for rubber mate-
rials.

The second invariant of C satisfies

I 2 = ‖CofF‖2

(det F )4/3
. (4.85)

This function is not polyconvex. However,

f : F ∈ M
3
+ → ‖CofF‖3

(det F )2
= I

3/2
2 (4.86)

is polyconvex because of Equation (4.56). Equations (4.66) and (4.74) reveal that

I 4
2 ≥ 27I2I

2
3 (4.87)

⇓
I

3/2
2

I3
≥ 3

√
3. (4.88)

Using the same reasoning as for I 1, one finds that

h : F ∈ M
3
+ →

(
I

3/2
2 − 3

√
3
)i

, i ≥ 1 (4.89)

is polyconvex. Furthermore h(I ) = 0, since I2I = 3, and consequently the initial configu-
ration is stress-free. Terms of the kind in Equation (4.89) are only recently being used in
stored-energy functions (see (Hartmann and Neff 2003) and (Düster et al. 2003)).

Notice that the basic norm properties in conjunction with Theorem 4.1.8 can be used to
prove that f : A ∈ M

3 → ‖A‖2 in Equation (4.28) is convex. Indeed, the norm properties
guarantee that

‖λA1 + (1 − λ)A2‖ ≤ λ‖A1‖ + (1 − λ)‖A2‖. (4.90)

Consequently, ‖A‖ is convex and also positive. Application of Theorem 4.1.8 with
g(y) = yi , i ≥ 1 shows that

f : A ∈ M
3 → ‖A‖i , i ≥ 1 (4.91)

is convex.
To prove that I 2 is not polyconvex, the following definitions are introduced:

Definition 4.1.9 A twice differentiable function �(A), A ∈ M
3 leads to an elliptic system

if and only if

∀A ∈ M
3, ∀ξ , η ∈ R

3 : �′′(A) · (ξ ⊗ η, ξ ⊗ η) ≥ 0. (4.92)



188 HYPERELASTIC MATERIALS

Definition 4.1.10 A function �(A), A ∈ M
3 is rank-one convex if

f : t ∈ R → �(A + t (ξ ⊗ η)) (4.93)

is convex ∀A ∈ M
3, ∀ξ , η ∈ R

3.

One can prove (Dacorogna 1989),

Theorem 4.1.11 1. For sufficiently smooth functions �, one has

� leads to an elliptic system

�
� is rank-one convex

2. � is polyconvex ⇒ � is rank-one convex

Notice that for ellipticity, the direction the second derivative is projected on is a rank-one
matrix (ξ ⊗ η), whereas for convexity, this direction can have an arbitrary rank (a general
matrix A, Theorem 4.1.4). Accordingly, convexity implies rank-one convexity. Recall that
the rank of a matrix is the dimension of its image. Since

(ξ ⊗ η) · ζ = ξ(η · ξ ) (4.94)

the rank of ξ ⊗ η is one. The concept of rank-one convexity is somewhat simpler than
convexity. Therefore, invoking Theorem 4.1.11(2), it is mainly used to prove that a function
is not polyconvex. Let us apply this to prove that I 2 in Equation (4.85) is not polyconvex.
Rank-one convexity implies that

f : t ∈ R → ‖Cof[A + t (ξ ⊗ η)]‖2

det[A + t (ξ ⊗ η)]4/3
(4.95)

is convex. The expression det[A + t (ξ ⊗ η)] is linear in t. This can be seen by applying a
coordinate rotation (which leaves the determinant unchanged since it is an invariant of its
argument) such that ξ coincides with a basis vector. Then the term t (ξ ⊗ η) leads to a linear
change of just one row in A. Since the cofactors of a matrix are the minor determinants,
the numerator is a sum of squares of linear relations. This leads to a quadratic relation with
positive coefficients for the quadratic term and the constant term:

f (t) = λ2
1t

2 + λ2t + λ2
3

(λ4t + λ5)4/3
. (4.96)

The second derivative of a function g = aαbβ has the form

g′′ = aα−2bβ−2[α(α − 1)(a′)2b2 + αaa′′b2 + β(β − 1)(b′)2a2 + βbb′′a2 + 2αaa′βbb′].
(4.97)

Taking

α = γ/2 (4.98)

a = λ2
1t

2 + λ2t + λ2
3 (4.99)

b = λ4t + λ5 (4.100)
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the term in the square brackets yields

λ2
4λ

4
1t

4[(β + γ )2 − (β + γ )]. (4.101)

This function is only convex for (β + γ )2 − (β + γ ) ≥ 0, that is, β + γ ≤ 0 or β + γ ≥ 1.
Since for Equation (4.96), γ = 2 and β = −4/3, f in Equation (4.95) is not rank-one
convex and consequently not polyconvex (Theorem 4.1.11).

Finally, note that all convex functions are polyconvex, but not vice versa.

4.1.4 Suitable stored-energy functions

The polyconvexity concept plays an important role in the existence theorems. Indeed, John
Ball proved that a solution exists if

1. the stored-energy function is polyconvex

2. Equation (4.19) applies:

lim
det F→0+ �(C, X) = +∞ (4.102)

3. and the coerciveness inequality is satisfied, Equation (4.22).

For details, the reader is referred to (Ciarlet 1993). These are sufficient but not necessary
conditions.

An important class of materials satisfying these conditions is evoked by the following
theorem:

Theorem 4.1.12 Let � be a stored-energy function of the form

F ∈ M
3
+ → �(F ) =

M∑

i=1

aiI1(Cγi/2) +
N∑

j=1

bj I2(C
δj /2

)
+ 

(√
I3C

)
(4.103)

where ai > 0, γi ≥ 1, bj > 0, δj ≥ 1 and  : (0, +∞) → R is a convex function, then �

is polyconvex and satisfies

�(F ) ≥ α
{‖F‖p + ‖CofF‖q

}+ 
(√

I3C

)
(4.104)

∀F ∈ M
3+ with α > 0, p = maxi (γi), q = maxj (δj ).

If, in addition, limδ→0+ (δ) = +∞ (Equation (4.19)), the material is called an Ogden
material. An Ogden material satisfies the conditions in the existence theorem by Ball.
Accordingly, a solution exists. Notice that both ai > 0 and bj > 0 apply. Hence, both I1C

and I2C must be present, together with I3C because of Equation (4.19). In Equation (4.103),
I1(Cγi/2) and I

2(C
δj /2

)
are defined by

I1(Cγi /2) :=
∑

j

�
γi/2
j (4.105)

I
2(C

δj /2
)

:=
∑

k,l
k �=l

(�k�l)
δj /2 . (4.106)
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Notice that Theorem 4.1.12 only gives information on how to construct polyconvex func-
tions that have the desired property. This does not mean that any function not in the form of
Equation (4.103) is inappropriate. Yet, in most cases, no existence results will be available.

As an example of a well-known stored-energy function that is not polyconvex, consider
the St.Venant–Kirchhoff potential (Equation (1.440)):

� = 1
2λ(trE)2 + µtr(E2). (4.107)

For the proof, the reader is referred to (Ciarlet 1993). Using Equations (1.444) and (1.445)
together with

2I1E = −3 + I1C (4.108)

4I2E = 3 − 2I1C + I2C (4.109)

8I3E = −1 + I1C − I2C + I3C (4.110)

it is clear that � does not depend on I3C and Equation (4.19) cannot be satisfied. Further-
more, the stress obtained by differentiating Equation (4.107)

S = λ(trE)G� + 2µE (4.111)

can be inverted to yield

E = 1

E
[−ν(trS)G + (1 + ν)S] (4.112)

which implies uniqueness. As explained previously, uniqueness is not desirable for large
strains. Although the use of Equation (4.107) will yield better results than the use of
infinitesimal strains, it should not be used for large strains. Its field of operation is often
called large deformation–small strains, which emphasizes the good performance for large
rotations (shell applications).

4.2 Isotropic Hyperelastic Materials

In this section, frequently used stored-energy potentials for hyperelastic materials are
treated. These include the Arruda–Boyce, the Mooney–Rivlin, the neo-Hooke, the polyno-
mial, the reduced polynomial, the Yeoh and the Ogden model. The preferred form involves
a split into an isochoric part and a volumetric part (ABAQUS 1997), (Kaliske and Rothert
1997), (Storåkers 1986). For a treatise on volumetric strain-energy functions, see (Doll
and Schweizerhof 2000). This implies that we will use the reduced invariants I 1 and I 2
and the reduced principal stretches λ1, λ2, and λ3. Unfortunately, these forms do not fit
the generic form of Equation (4.103). However, in some cases we can prove explicitly
that John Ball’s conditions are satisfied. Notice that the use of the reduced quantities in
polynomial-type functions automatically implies that � grows beyond bounds as J → 0
(Equation (4.19)).

The split of the stored-energy function in an isochoric part and a volumetric part finds
its origin in the near isochoric behavior of most rubber materials. The isochoric coeffi-
cients are usually determined by simple tests such as the uniaxial, equibiaxial or planar
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test (ABAQUS 1997). The compressibility coefficients are derived by volumetric com-
pression tests. Depending on the model, a linear or a nonlinear least-squares procedure is
used to find the coefficients (Hartmann 2001a), (Hartmann 2001b). In general, different
types of tests are needed for a good description of the material. Even then, extrapolation
to stretches significantly exceeding the range of the test data can lead to wildly erroneous
behavior. If only one test type is performed (nearly always a uniaxial test), the neo-Hooke
and the Arruda–Boyce models seem to perform well because of the physical foundations
of these models. More complex phenomenological models such as the Ogden model and
the polynomial model with many terms require the availability of different test type data
to perform well.

Another issue is the stability of the models. Several criteria exist, such as the Baker–Erick-
sen inequality and the incremental stability. The Baker–Ericksen inequality states that if a
Cauchy principal stress σi exceeds another Cauchy principal stress σj , the corresponding
stretch λi should exceed λj as well. The incremental stability requires that the incremental
power Ṡ : Ė be positive. For details, the reader is referred to (Hartmann 2003) and (Reese
1994). For most models, stability requirements imply limits on the coefficients.

Taking a stored-energy functional of the form �(C, θ, X), we are interested in the
stress (Equation (4.2))

SKL = 2
∂�

∂CKL

(4.113)

and the tangent stiffness (Equation (3.6)):

�KLMN = 2
∂SKL

∂CMN

= 4
∂2�

∂CKL∂CMN

. (4.114)

For isotropic materials, � will be of the form �(I 1, I 2, J, θ, X) or of the Ogden form
�(λ1, λ2, λ3, J, θ, X), where the dependence on θ and X is hidden in the coefficients of
the models.

4.2.1 Polynomial form

The general polynomial stored-energy function takes the form

� =
N∑

i+j=1

Bij (I 1 − 3)i(I 2 − 3)j +
N∑

i=1

1

Di

(J el − 1)2i (4.115)

where

J el = J

J th
(4.116)

with J el the elastic Jacobian of the deformation, J the total Jacobian and J th the thermal
Jacobian,

J th = (1 + αT )3 (4.117)
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cf Equation (1.449). Notice that the polynomial form is not polyconvex unless j = 0 (since
I 2 is not polyconvex) and Bij , Di ≥ 0. Special forms are the Mooney–Rivlin strain-energy
potential

� = B10(I 1 − 3) + B01(I 2 − 3) + 1

D1
(J el − 1)2 (4.118)

the neo-Hooke strain potential

� = B10(I 1 − 3) + 1

D1
(J el − 1)2 (4.119)

the Yeoh form

� = B10(I 1 − 3) + B20(I 1 − 3)2 + B30(I 1 − 3)3

+ 1

D1
(J el − 1)2 + 1

D2
(J el − 1)4 + 1

D3
(J el − 1)6 (4.120)

and the reduced polynomial form

� =
N∑

i=1

Bi0(I 1 − 3)i +
N∑

i=1

1

Di

(J el − 1)2i . (4.121)

Only the neo-Hooke, the Yeoh and the reduced polynomial form are polyconvex because
of the absence of I 2. Since I 2 is difficult to determine experimentally and its inclusion in
the stored-energy function does not necessarily improve its predictive quality (Kaliske and
Rothert 1997), it is advisable to start off with a dependence only on I 1. This especially
applies if only uniaxial data are available. Among the models that depend only on I 1, the
neo-Hooke type assumes a special position. Indeed, using Gaussian statistical thermody-
namics, its constant can be linked to the molecular chain density of the material (Treloar
1975).

Since � is linear in the coefficients Bij , a linear least-squares procedure suffices to deter-
mine them. The Baker–Ericksen inequality is assured if all Bij ≥ 0 (sufficient condition)
SKL and �KLMN take the form

SKL = 2






N∑

i+j=1

Bij

[

i(I 1 − 3)i−1(I 2 − 3)j
∂I 1

∂Ckl

+j (I 1 − 3)i(I 2 − 3)j−1 ∂I 2

∂Ckl

]

+
N∑

i=1

2i

Di

(J el − 1)2i−1 ∂J el

∂CKL

}

(4.122)
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�KLMN = 4






N∑

i+j=1

Bij (I 1 − 3)i−2(I 2 − 3)j−2

[

i(i − 1)(I 2 − 3)2 ∂I 1

∂CKL

∂I 1

∂CMN

+ ij (I 1 − 3)(I 2 − 3)
∂I 1

∂CKL

∂I 2

∂CMN

+ i(I 1 − 3)(I 2 − 3)2 ∂2I 1

∂CKL∂CMN

+ ij (I 1 − 3)(I 2 − 3)
∂I 2

∂CKL

∂I 1

∂CMN

+ j (j − 1)(I 1 − 3)2 ∂I 2

∂CKL

∂I 2

∂CMN

+ j (I 1 − 3)2(I 2 − 3)
∂2I 2

∂CKL∂CMN

]

+
N∑

i=1

2i(J el − 1)2i−2

Di

[
(2i − 1)

∂J el

∂CKL

∂J el

∂CMN

+ (J el − 1)
∂2J el

∂CKL∂CMN

]}

.

(4.123)

The derivatives of the invariants with respect to C are treated in Section 4.4.

4.2.2 Arruda–Boyce form

This potential function satisfies

� = µ

[
1
2 (I 1 − 3) + 1

20λ2
m

(I
2
1 − 9) + 11

1050λ4
m

(I
3
1 − 27)

+ 19

7000λ6
m

(I
4
1 − 81) + 519

673 750λ8
m

(I
5
1 − 243)

]

+ 1

D

(
(J el)2 − 1

2
− ln J el

)
, µ, D ≥ 0. (4.124)

Notice that all terms are polyconvex and that

lim
J el→0

� = +∞ (4.125)

lim
J el→∞

� = +∞ (4.126)

lim
I1→∞
J el<M

� = +∞. (4.127)

where M is some positive real number. Accordingly, the physical requirements in Sec-
tion 4.1.1 are fulfilled. The Arruda–Boyce model is based on an 8-chain representation of
the macromolecular network of rubber and is extensively described in (Arruda and Boyce
1993). For this model, the Baker–Ericksen inequality is satisfied. The determination of
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the coefficients requires a nonlinear least-squares procedure. The second Piola–Kirchhoff
stress and tangent stiffness satisfy

SKL = 2

[

µ

(
1

2
+ 1

10λ2
m

I 1 + 33

1050λ4
m

I
2
1 + 76

7000λ6
m

I
3
1 + 2595

673 750λ8
m

I
4
1

)
∂I 1

∂CKL

+ 1

D

(
J el − 1

J el

)
∂J el

∂CKL

]
(4.128)

�KLMN = 4

[

µ

(
1

10λ2
m

+ 66

1050λ4
m

I 1 + 228

7000λ6
m

I
2
1 + 10 380

673 750λ8
m

I
3
1

)
∂I 1

∂CKL

∂I 1

∂CMN

+µ

(
1

2
+ 1

10λ2
m

I 1 + 33

1050λ4
m

I
2
1 + 76

7000λ6
m

I
3
1 + 2595

673 750λ8
m

I
4
1

)
∂2I 1

∂CKL∂CMN

+ 1

D

(
1 + 1

(J el)2

)
∂J el

∂CKL

∂J el

∂CMN

+ 1

D

(
J el − 1

J el

)
∂2J el

∂CKL∂CMN

]
.

(4.129)

4.2.3 The Ogden form
The Ogden form resembles the stored-energy function in Theorem 4.1.12; however, the
principal stretches are replaced by their reduced form:

� =
N∑

i=1

2µi

α2
i

(λ
αi

1 + λ
αi

2 + λ
αi

3 − 3) +
N∑

i=1

1

Di

(J el − 1)2i (4.130)

where

λi := λi

J 1/3
= λ

2/3
i

λ
1/3
j λ

1/3
k

j, k �= i. (4.131)

For αi = 2, one obtains I 1, for αi = −2, the invariant I 2 emerges. Since I 2 is not poly-
convex, Equation (4.130) is not necessarily polyconvex. SKL and �KLMN satisfy

SKL = 2

[
N∑

i=1

2µi

αi

(
3∑

k=1

λ
αi−1
k

∂λk

∂CKL

)

+
N∑

i=1

2i

Di

(J el − 1)2i−1 ∂J el

∂CKL

]

(4.132)

�KLMN = 4

{
N∑

i=1

2µi

αi

[

(αi − 1)

(
3∑

k=1

λ
αi−2
k

∂λk

∂CKL

∂λk

∂CMN

)

+
3∑

k=1

λ
αi−1
k

∂2λk

∂CKL∂CMN

]

+
N∑

i=1

[
2i(2i − 1)

Di

(J el − 1)2i−2 ∂J el

∂CKL

∂J el

∂CMN

+ 2i

Di

(J el − 1)2i−1 ∂2J el

∂CKL∂CMN

]}

.

(4.133)
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4.2.4 Elastomeric foam behavior

Whereas the potentials in the previous sections are frequently used for materials that are
nearly incompressible, such as rubber, elastomeric foams are very compressible. The general
form satisfies

� =
N∑

i=1

2µi

α2
i

{
λ̂

αi

1 + λ̂
αi

2 + λ̂
αi

3 − 3 + 1

βi

[
(J el)−αiβi − 1

]}
(4.134)

where

λ̂i := λi

(J el)1/3
. (4.135)

This form comes close to the Ogden form defined in Theorem 4.1.12 if αi, µi > 0. Indeed,
for αi > 0, the first three terms correspond to I1(Cαi /2). For αi < 0, however, they corre-
spond to

I2(C−αi/2)

I3(C−αi/2)

, (4.136)

which is not compatible with the Ogden form. Since the second derivative of the volumetric
term satisfies

�′′
vol =

N∑

i=1

(αiβi)(αiβi + 1)

βi

2µi

α2
i

(J el)−αiβi−2 (4.137)

convexity is guaranteed if

µiαi(αiβi + 1) ≥ 0 (4.138)

(sufficient but not necessary condition). The derivatives yield

SKL = 2
N∑

i=1

2µi

αi

[
3∑

k=1

λ̂
(αi−1)
k

∂λ̂k

∂CKL

− (J el)−αiβi−1 ∂J el

∂CKL

]

(4.139)

�KLMN = 8
N∑

i=1

µi

αi

[

(αi − 1)

3∑

k=1

λ̂
(αi−2)
k

∂λ̂k

∂CKL

∂λ̂k

∂CMN

+
3∑

k=1

λ̂
(αi−1)
k

∂2λ̂k

∂CKL∂CMN

+ (αiβi + 1)(J el)−αiβi−2 ∂J el

∂CKL

∂J el

∂CMN

− (J el)−αiβi−1 ∂2J el

∂CKL∂CMN

]

. (4.140)
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4.3 Nonhomogeneous Shear Experiment

To illustrate the differences between the models, the nonhomogeneous shear experiment
investigated in (van den Bogert and de Borst 1994) is discussed. A rubber material is con-
sidered and described by the neo-Hooke, Mooney–Rivlin, Yeoh and Arruda–Boyce model.
The isochoric constants are taken from (Kaliske and Rothert 1997) and were obtained by
fitting tensile test results. The volumetric data are such that νeq = 0.475 at zero deformation.
They satisfy (coefficients Bij and µ in N/mm2, Di in mm2/N, λm is dimensionless)

1. neo-Hooke model

B10 = 0.525, D1 = 0.0952 (4.141)

2. Mooney–Rivlin model

B10 = 0.1486, B01 = 0.4849, D1 = 0.0789 (4.142)

3. Yeoh model

B10 = 0.538, B20 = −0.0685, B30 = 0.0325,

D1 = 0.0929, D2 = 0.0086, D3 = 0.0008 (4.143)

4. Arruda–Boyce model

µ = 0.71, λm = 1.7029, D = 0.1408. (4.144)

When applied to a 1 × 1 × 8 mm3 specimen, we get the force versus stretch curves in
Figure 4.3. According to (Kaliske and Rothert 1997), the experimental results are best fit
by the Yeoh curve exhibiting an S-shape. This typical shape originates from the negative
B20 coefficient. The neo-Hooke model and the Mooney–Rivlin model are not capable of
capturing this effect.

The shear experiment is schematically shown in Figure 4.4. The upper and lower sur-
faces are rigid. The lower surface cannot translate or rotate, all degrees of freedom are fixed.
The upper surface can only translate in x-direction and z-direction. A force is applied in
x-direction. A uniform 5 × 5 × 10 20-node brick element mesh was used with reduced
integration.

The displacements in x-direction (Figure 4.5) show similar tendencies as the uniaxial
test data. The Yeoh model predicts more hardening than the neo-Hooke and Mooney–Rivlin
model. However, up to moderate displacements, all models predict similar results closely
fitting the experimental data (overall behavior of the experimental data is symbolized by dis-
crete symbols). Because of the elongation in x-direction, the specimen shrinks in z-direction
(Figure 4.6). This is reasonably well modeled by the neo-Hooke, Yeoh and Arruda–Boyce
model. The Mooney–Rivlin model, however, shows a completely opposite tendency: the
specimen grows thicker. Notice that the Mooney–Rivlin model is the only model including
the second invariant. It seems that predictions of models that include the second invari-
ant are not very accurate if model-parameter characterization is based on uniaxial test
results only.
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4.4 Derivatives of Invariants and Principal Stretches

4.4.1 Derivatives of the invariants

In the previous section, the derivatives of the reduced invariants and (reduced) principal
stretches with respect to C were used. Recall the definitions of the reduced invariants:

I 1 = I
−1/3
3 I1 (4.145)

I 2 = I
−2/3
3 I2 (4.146)

J el = I
1/2
3 /J th. (4.147)

Differentiation yields

∂I 1

∂CKL

= − 1
3I

−4/3
3 I1

∂I3

∂CKL

+ I
−1/3
3

∂I1

∂CKL

(4.148)

∂I 2

∂CKL

= − 2
3I

−5/3
3 I2

∂I3

∂CKL

+ I
−2/3
3

∂I2

∂CKL

(4.149)

∂J el

∂CKL

= 1
2

I
−1/2
3

J th

∂I3

∂CKL

(4.150)

and for the second derivatives,

∂2I 1

∂CKLCMN

= 4
9I

−7/3
3 I1

∂I3

∂CKL

∂I3

∂CMN

− 1
3I

−4/3
3

(
∂I1

∂CMN

∂I3

∂CKL

+ ∂I1

∂CKL

∂I3

∂CMN

)

− 1
3I

−4/3
3 I1

∂2I3

∂CKLCMN

+ I
−1/3
3

∂2I1

∂CKLCMN

(4.151)

∂2I 2

∂CKLCMN

= 10
9 I

−8/3
3 I2

∂I3

∂CKL

∂I3

∂CMN

− 2
3I

−5/3
3

(
∂I2

∂CMN

∂I3

∂CKL

+ ∂I2

∂CKL

∂I3

∂CMN

)

− 2
3I

−5/3
3 I2

∂2I3

∂CKLCMN

+ I
−2/3
3

∂2I2

∂CKLCMN

(4.152)

∂2J el

∂CKLCMN

= − 1
4

I
−3/2
3

J th

∂I3

∂CKL

∂I3

∂CMN

+ 1
2

I
−1/2
3

J th

∂2I3

∂CKLCMN

. (4.153)

Equations (4.148) to (4.153) yield the derivatives of the reduced invariants as a function
of the derivatives of the invariants. The latter yields (Equations (1.507) to (1.509))

∂I1

∂CKL

= GKL (4.154)



200 HYPERELASTIC MATERIALS

∂I2

∂CKL

= I1G
KL − CPQGPKGQL (4.155)

∂I3

∂CKL

= I3C
−1KL

(4.156)

∂2I1

∂CKLCMN

= 0 (4.157)

∂2I2

∂CKLCMN

= ∂I1

∂CMN

GKL − ∂CPQ

∂CMN

GPKGQL

= GMNGKL − 1
2 (GMKGNL + GMLGNK) (4.158)

∂2I3

∂CKLCMN

= I3C
−1KL

C−1MN + I3
∂C−1KL

∂CMN

. (4.159)

Since

C−1KL
CLA = δK

A (4.160)

differentiation yields

∂C−1KL

∂CMN

CLA + C−1KL ∂CLA

CMN

= 0 (4.161)

which leads to

∂C−1KL

∂CMN

CLA = − 1
2C−1KL

(
δ M
L δ N

A + δ N
L δ M

A

)

= − 1
2

(
CKMδ N

A + CKNδ M
A

)
. (4.162)

Multiplication of both sides with C−1AB
yields

∂C−1KB

∂CMN

= − 1
2

(
C−1KM

C−1NB + C−1KN
C−1MB

)
. (4.163)

Accordingly, Equation (4.159) can be rewritten as

∂2I3

∂CKLCMN

= I3

[
C−1KL

C−1MN − 1
2

(
C−1

KMC−1
NL + C−1

KNC−1
ML

)]
. (4.164)

4.4.2 Derivatives of the principal stretches

The derivatives of the reduced principal stretches can be obtained in a similar way (for an
alternative formulation see (Simo and Taylor 1991)). Starting from

λi = I
−1/6
3 λi = J−1/3λi (4.165)
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one obtains

∂λi

∂CKL

= − 1
6I

−7/6
3 λi

∂I3

∂CKL

+ I
−1/6
3

∂λi

∂CKL

(4.166)

∂2λi

∂CKL∂CMN

= 7
36 I

−13/6
3 λi

∂I3

∂CKL

∂I3

∂CMN

− 1
6I

−7/6
3

∂λi

∂CMN

∂I3

∂CKL

− 1
6I

−7/6
3 λi

∂2I3

∂CKL∂CMN

− 1
6I

−7/6
3

∂λi

∂CKL

∂I3

∂CMN

+ I
−1/6
3

∂2λi

∂CKL∂CMN

. (4.167)

To obtain the derivative of the principal stretches with respect to C, we start from the
characteristic equation

λ6 − I1λ
4 + I2λ

2 − I3 = 0. (4.168)

Taking the first derivative with respect to C, one obtains

6λ
∂λ

∂CKL

− ∂I1

∂CKL

λ4 − 4I1λ
3 ∂λ

∂CKL

+ ∂I2

∂CKL

λ2 + 2λI2
∂λ

∂CKL

− ∂I3

∂CKL

= 0 (4.169)

yielding

∂λ

∂CKL

=
(

λ4 ∂I1

∂CKL

− λ2 ∂I2

∂CKL

+ ∂I3

∂CKL

)
/
(

6λ5 − 4I1λ
3 + 2λI2

)
. (4.170)

Taking the second derivative of Equation (4.168) yields

∂2λ

∂CKL∂CMN

=
[(

−30λ4 + 12I1λ
2 − 2I2

) ∂λ

∂CKL

∂λ

∂CMN

+ 4λ3
(

∂I1

∂CKL

∂λ

∂CMN

+ ∂I1

∂CMN

∂λ

∂CKL

)
+ λ4 ∂2I1

∂CKL∂CMN

− λ2 ∂2I2

∂CKL∂CMN

− 2λ

(
∂I2

∂CKL

∂λ

∂CMN

+ ∂I2

∂CMN

∂λ

∂CKL

)

+ ∂2I3

∂CKL∂CMN

]
/
(

6λ5 − 4I1λ
3 + 2λI2

)
. (4.171)

Equations (4.170) and (4.171) only apply on condition that the denominator is not zero.
The denominator is the derivative of the characteristic equation, which can also be written
as

L = 0 ⇔ (λ2 − λ2
1)(λ

2 − λ2
2)(λ

2 − λ2
3) = 0 (4.172)

and a zero denominator for λi signifies

∂L

∂λ

∣
∣
∣∣
λ=λi

= 0 (4.173)
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which means that λ2
i is at least a double root if we exclude λi = 0. To obtain the deriva-

tives for double and triple roots, a different approach has to be taken (Itskov 2001). The
eigenvalues of C and its invariants are related by

�1 + �2 + �3 = I1 (4.174)

�1�2 + �1�3 + �2�3 = I2 (4.175)

�1�2�3 = I3. (4.176)

Taking the derivative with respect to C, one obtains



1 1 1

�2 + �3 �1 + �3 �1 + �2
�2�3 �1�3 �1�2










�1,C

�2,C

�3,C





=





I1,C

I2,C

I3,C





. (4.177)

Three cases can be distinguished

1. If �1 �= �2 �= �3 �= �1, then the solution of Equation (4.177) yields

�i,C = �2
i I1,C − �iI2,C + I3,C

3�2
i − 2I1�i + I2

(4.178)

which agrees with Equation (4.170) since λi,C = 2λiλi,C . Expanding the derivatives
of the invariants (Equations (1.507)–(1.509)),

∂I1

∂C
= G� (4.179)

∂I2

∂C
= I1G

� − G� · C · G� (4.180)

∂I3

∂C
= I3C

−1 (4.181)

and taking Equations (4.174) and (4.175) into account, Equation (4.178) can also be
written as

∂�i

∂C
= �i(�i − I1)G

� + �iG
� · C · G� + I3C

−1

(�i − �j)(�i − �k)
. (4.182)

Since

G� = G� · C · C−1 (4.183)

G� · C · G� = G� · C2 · C−1 (4.184)

and

C−1 = G� · G · C−1 (4.185)
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one finds by comparison with Equation (1.126),

∂�i

∂C
= �iG

� · M i · C−1. (4.186)

Writing C−1 in terms of the structural tensors

C−1 =
∑

j

�−1
j N j ⊗ N j (4.187)

Equation (4.186) can be further simplified to

�i,C = �iG
� · (N i ⊗ N i ) ·

∑

j

�−1
j (Nj ⊗ Nj )

= �iG
�
∑

j

�−1
j (N i ⊗ N j )N

i · N j

= �iG
��−1

i (N i ⊗ N i )

= N i ⊗ N i

= M i . (4.188)

It is a remarkably simple expression: for three distinct eigenvalues, the deriva-
tives of the eigenvalues are the corresponding contravariant structural tensors. Using
Equation (4.188), one also obtains a very elegant expression for the principal stresses
in an Ogden material. Indeed,

S = 2
∂�

∂�i

�i,C = 2
∂�

∂�i

M i . (4.189)

Accordingly (Equation (1.132)),

�jS = S : Mj = 2
∂�

∂�j

(4.190)

or (Equation (1.428))

λjσ = 2

J
�j

∂�

∂�j

= 2

J

∂�

∂ ln �j

= 1

J

∂�

∂ ln λj

. (4.191)

2. If two eigenvalues are equal, for example, � = �1 = �2 �= �3 Equation (4.177)
reduces to




1 1 1

� + �3 � + �3 2�

��3 ��3 �2
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�3,C





=





I1,C

I2,C

I3,C





(4.192)
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and column 1 and 2 are identical: the system is singular. It can be reduced to
[

1 1
� + �3 2�

]{
�1,C + �2,C

�3,C

}
=
{
I1,C

I2,C

}
. (4.193)

The solution satisfies

�1,C + �2,C = 2�I1,C − I2,C

� − �3
(4.194)

�3,C = I2,C − (� + �3)I1,C

� − �3
. (4.195)

It is not difficult to prove that

�1,C + �2,C = G� − M3 = M1 + M2 (4.196)

�3,C = M3 (4.197)

where M1 + M2 and M3 satisfy Equation (1.129) and Equation (1.130).

3. For three equal eigenvalues � = �1 = �2 = �3, Equation (4.193) reduces to one
single equation:

�1,C + �2,C + �3,C = I1,C = G�. (4.198)

Now let us take a look at the second derivatives of λi . Instead of using Equation (4.171),
one can also express it through the second derivative of �i = λ2

i :

λi,CC = 1

2
√

�i

�i,CC − 1

4�i

√
�i

�i,C ⊗ �i,C (4.199)

obtained by differentiating

λi,C = 1

2
√

�i

�i,C (4.200)

with respect to C. Again, three cases can be distinguished

1. For �1 �= �2 �= �3 �= �1 one obtains (Equation (4.188))

�i,CC = M i,C . (4.201)

An expression for M i,C is found by differentiating Equation (1.125) leading to (notice
that M i,C = G� · M i

,C · G�)




1 1 1

�1 �2 �3

�2
1 �2

2 �2
3










M1
,C

M2
,C

M3
,C





=





0
A

B





(4.202)
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where

A = C,C −
∑

i

M i ⊗ M i (4.203)

B = C2
,C − 2

∑

i

�iM i ⊗ M i (4.204)

and

C,C := ∂C

∂C
(4.205)

and similar expressions for the other terms. Straightforward calculation yields for
C,C and C2

,C ,

∂CKL

∂CPQ

= 1
2 (δP

Kδ
Q
L + δP

Lδ
Q
K) =: II (4.206)

and

∂CKLCNMGLN

∂CPQ

= 1
2 (δP

KC
Q
M + δ

Q
KCP

M) + 1
2 (δ

Q
MC P

K + δP
MC

Q
K ). (4.207)

Notice the following shorthand notation:

(II )
IJ

KL := (Iδ)
IJ

KL := 1
2 (δI

KδJ
L + δI

LδJ
K) (4.208)

(IG)IJKL := 1
2 (GIKGJL + GILGJK) (4.209)

(IG�)IJKL := 1
2 (GIKGJL + GILGJK), (4.210)

and similarly for other tensor fields. The solution of Equation (4.202) amounts to

M i
,C = 1

Di

[B − (I1 − �i)A] (4.211)

where

Di = (�i − �j)(�i − �k), i = 1, 2, 3; j, k �= i. (4.212)

2. For � = �1 = �2 �= �3, Equation (4.202) reduces to

[
1 1
� �3

]{
M1

,C + M2
,C

M3
,C

}

=
{

0
A

}
(4.213)

leading to

M1
,C + M2

,C = −A/(�3 − �) (4.214)

M3
,C = A/(�3 − �). (4.215)
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Figure 4.7 Tangent ambiguity for identical eigenvalues

3. For � = �1 = �2 = �3, one obtains in a similar way

M1
,C + M2

,C + M3
,C = 0. (4.216)

Notice that for double or triple roots, the derivatives of �i (Equation (4.196) and
Equation (4.198)) and M i (Equation (4.214) and Equation (4.216)) are not known sep-
arately: only the sum is known. This is not surprising, since double roots cannot be
distinguished, and consequently it is not clear whether tangent 1 or tangent 2 applies
(Figure 4.7).

4.4.3 Expressions for the stress and stiffness for three equal
eigenvalues

In the previous section, it was found that for three equal eigenvalues the derivatives of λi

are not known separately, only their sum can be calculated. In the present section, it will
be shown that this suffices to determine the stress and the stiffness. For λ1 = λ2 = λ3 = λ,
Equation (4.132) and Equation (4.133) reduce to

S = 2

[
n∑

i=1

2µi

αi

λ
λi−1

3∑

k=1

λk,C +
N∑

i=1

2i

Di

(J el − 1)2i−1J el
,C

]

(4.217)

and

� = 4

{
N∑

i=1

2µi

αi

[

(αi − 1)λ
αi−2

(
3∑

k=1

λk,C ⊗ λk,C

)

+ λ
αi−1

3∑

k=1

λk,CC

]

+
N∑

i=1

[
2i(2i − 1)

Di

(J el − 1)2i−2J el
,C ⊗ J el

,C + 2i

Di

(J el − 1)2i−1J el
,CC

]}

. (4.218)
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Furthermore, Equation (4.166) and Equation (4.167) now lead to

3∑

k=1

λk,C = − 1
2I

−7/6
3 λI3,C + I

−1/6
3

3∑

k=1

λk,C (4.219)

3∑

k=1

λk,C ⊗ λk,C = 1
12I

−7/3
3 λ2I3,C ⊗ I3,C + I

−1/3
3

3∑

k=1

λk,C ⊗ λk,C

− 1
6I

−4/3
3 λI3,C ⊗

3∑

k=1

λk,C − 1
6I

−4/3
3 λ

3∑

k=1

λk,C ⊗ I3,C (4.220)

3∑

k=1

λk,CC = 7
12I

−13/6
3 λI3,C ⊗ I3,C − 1

6I
−7/6
3

3∑

k=1

I3,C ⊗ λk,C

− 1
2I

−7/6
3 λI3,CC − 1

6I
−7/6
3

3∑

k=1

λk,C ⊗ I3,C + I
−1/6
3

3∑

k=1

λk,CC .

(4.221)

In this way, the sums of the derivatives of the reduced stretches are written in terms of
the derivatives of the unreduced stretches. Now, Equations (4.198), (4.199), (4.200) and
(4.216) show that

3∑

k=1

λk,C = 1
2λ

3∑

k=1

�k,C = 1
2λ

G� (4.222)

3∑

k=1

λk,CC = − 1
4λ3

3∑

k=1

�k,C ⊗ �k,C = − 1
4λ3

3∑

k=1

Mk ⊗ Mk. (4.223)

For λ = λ1 = λ2 = λ3, Equation (4.202) reduces to rank one and, consequently, A = 0

3∑

k=1

Mk ⊗ Mk = C,C (4.224)

which is equivalent to

3∑

k=1

Mk ⊗ Mk = (G� ⊗ G�) : C,C . (4.225)

Accordingly,

3∑

k=1

λk,CC = − 1
4λ3 (G� ⊗ G�) : II . (4.226)



208 HYPERELASTIC MATERIALS

In a similar way, one arrives at

3∑

k=1

λk,C ⊗ λk,C = 1

4λ2

3∑

k=1

�k,C ⊗ �k,C

= 1

4λ2
(G� ⊗ G�) : II . (4.227)

Hence, Equations (4.219) to (4.221) yield

3∑

k=1

λk,C = − 1
2I

−1/6
3 λC−1 + I

−1/6
3

1

2λ
G� (4.228)

3∑

k=1

λk,C ⊗ λk,C = 1

12
I

−1/3
3 λ2C−1 ⊗ C−1 + 1

4λ2
I

−1/3
3 IG�

− 1
12I

−1/3
3 C−1 ⊗ G� − 1

12
I

−1/3
3 G� ⊗ C−1 (4.229)

3∑

k=1

λk,CC = 7
12I

−1/6
3 λC−1 ⊗ C−1 − 1

12λ
I

−1/6
3 C−1 ⊗ G�

− 1
2λI

−1/6
3 C−1 ⊗ C−1 + 1

2λI
−1/6
3 IC−1

− 1

12λ
I

−1/6
3 G� ⊗ C−1 − 1

4λ3
I

−1/6
3 IG�. (4.230)

In a similar way, the expressions for the stress and stiffness for an elastomeric foam
for λ̂ = λ̂1 = λ̂2 = λ̂3 reduce to

S = 2
N∑

i=1

2µi

αi

[

λ̂

3∑

k=1

λ̂k,C − (J el)−αiβi−1J el
,C

]

(4.231)

� = 8
N∑

i=1

µi

αi

[

(αi − 1)λ̂αi−2
3∑

k=1

λ̂k,C ⊗ λ̂k,C + λ̂αi−1
3∑

k=1

λ̂k,CC

+ (αiβi + 1)(J el)−αiβi−2J el
,C ⊗ J el

,C − (J el)−αiβi−1J el
,CC

]

. (4.232)

Since J th depends on the temperature only, Equations (4.222) and (4.227) also apply
to λ̂.
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4.5 Tangent Stiffness Matrix at Zero Deformation

The tangent stiffness matrix at zero deformation can be obtained by substituting F = I in
the expression for �KLMN . The expressions in the previous section take the form

I1 = 3 = I 1 (4.233)

I2 = 3 = I 2 (4.234)

I3 = 1 (4.235)

λ1 = λ2 = λ3 = λ1 = λ2 = λ3 = 1. (4.236)

The derivatives of the invariants take the value

∂I1

∂CKL

= GKL (4.237)

∂I2

∂CKL

= 2GKL (4.238)

∂I3

∂CKL

= GKL (4.239)

∂2I1

∂CKL∂CMN

= 0 (4.240)

∂2I2

∂CKL∂CMN

= GKLGMN − 1
2 (GKMGLN + GKNGLM) (4.241)

∂2I3

∂CKL∂CMN

= ∂2I2

∂CKL∂CMN

(4.242)

∂I 1

∂CKL

= 0 (4.243)

∂I 2

∂CKL

= 0 (4.244)

∂J el

∂CKL

= 1
2GKL (4.245)

∂2I 1

∂CKL∂CMN

= − 1
3GKLGMN + 1

2 (GKMGLN + GKNGLM) (4.246)

∂2I 2

∂CKL∂CMN

= ∂2I 1

∂CKL∂CMN

(4.247)

∂2J el

∂CKL∂CMN

= 1
4GKLGMN − 1

4 (GKMGLN + GKNGLM). (4.248)
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Finally, the derivatives of the principal stretches satisfy for F = I :

3∑

j=1

λj,C = 1
2G�. (4.249)

3∑

j=1

λj,CC = − 1
4IG� (4.250)

3∑

j=1

λj,C ⊗ λj,C = 1
4 IG� (4.251)

3∑

j=1

λj,C = 0 (4.252)

3∑

j=1

λj,CC = − 1
12G� ⊗ G� + 1

4 IG� (4.253)

3∑

j=1

λj,C ⊗ λj,C = − 1
12G� ⊗ G� + 1

4 IG�. (4.254)

Comparison with Equation (1.436) reveals that, in the initial configuration, an equivalent λ

and µ can be defined as the coefficient of the terms GKLGMN and GKMGLN + GKNGLM

respectively.

4.5.1 Polynomial form

Substitution of the above expressions into Equation (4.123) yields

�KLMN =
[
− 4

3 (B10 + B01) + 2

D1

]
GKLGMN + 2(B10 + B01)(G

KMGLN + GKNGLM).

(4.255)

Hence,

λeq = − 4
3 (B10 + B01) + 2

D1
(4.256)

µeq = 2(B10 + B01). (4.257)

Frequently, an equivalent bulk modulus Keq is defined, satisfying (cf Equation (1.454))

Keq = λeq + 2
3µeq. (4.258)

Hence,

Keq = 2

D1
. (4.259)
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4.5.2 Arruda–Boyce form

Equation (4.129) yields

�KLMN =
[
−4µ

3

(
1
2 + 3

10λ2
m

+ 297

1050λ4
m

+ 2052

7000λ6
m

+ 210 195

673 750λ8
m

)
− 2

D

]
GKLGMN

+ 2µ

(
1
2 + 3

10λ2
m

+ 297

1050λ4
m

+ 2052

7000λ6
m

+ 210 195

673 750λ8
m

)
·

(GKMGLN + GKNGLM) (4.260)

Hence,

µeq = 2µ

(
1
2 + 3

10λ2
m

+ 297

1050λ4
m

+ 2052

7000λ6
m

+ 210 195

673 750λ8
m

)
(4.261)

Keq = 2

D
. (4.262)

4.5.3 Ogden form

Substitution into Equation (4.218) leads to

� =
N∑

i=1

8µi

αi

[
αi

(
− 1

12
G� ⊗ G� + 1

4
IG�

)]
+ 2

D1
G� ⊗ G� (4.263)

from which

µeq =
N∑

i=1

µi (4.264)

Keq = 2

D1
. (4.265)

4.5.4 Elastomeric foam behavior

Equation (4.232) yields

� = 8
N∑

i=1

µi

αi

[
(αi − 1)

1

4
IG� − 1

4
IG� + (αiβi + 1)

4
G� ⊗ G� − 1

4
G� ⊗ G� + 1

2
IG�

]

=
N∑

i=1

µi

(
2IG� + 2βiG

� ⊗ G�
)
. (4.266)

This leads to the following expressions for the equivalent constants:

µeq =
N∑

i=1

µi (4.267)



212 HYPERELASTIC MATERIALS

λeq = 2
N∑

i=1

βiµi (4.268)

Keq =
N∑

i=1

2µi

(
βi + 1

3

)
. (4.269)

4.5.5 Closure

For the polynomial model, the Arruda–Boyce model and the Ogden model, the equivalent
bulk modulus is related to the coefficient D1 (polynomial model, Ogden model) or D

(Arruda–Boyce model). Incompressible behavior corresponds to D1 = D = 0. To avoid
the resulting singularities in the material law, the CalculiX code (CalculiX 2003) replaces
this behavior by a nearly incompressible behavior corresponding to an equivalent Poisson
coefficient µeq = 0.475 at zero deformation. One finds (Equation (1.455)),

Keq = 2µeq(1 + νeq)

3(1 − 2νeq)
. (4.270)

Accordingly, for a polynomial material,

D1 = 3(1 − 2νeq)

µeq(1 + νeq)
= 0.1017

µeq
. (4.271)

If N > 1 in the polynomial model, the following numerical relationship (disregarding the
dimensions) is proposed:

Di =
[

3(1 − 2νeq)

µeq(1 + νeq)

]i

=
(

0.1017

µeq

)i

. (4.272)

4.6 Inflation of a Balloon
This is a classical example discussed in different places in the literature (see e.g. (Holzapfel
2000), (Beatty 1987) and (Verron et al. 2001)). The geometry is depicted in Figure 4.8.
The undeformed radius and thickness are 10 m and 0.1 m respectively.

Assume that we select a St Venant–Kirchhoff material, that is, a linear elastic isotropic
material, satisfying

E = 1

E
[−ν(trS)G + (1 + ν)S] . (4.273)

Consider a material particle of the balloon on the X-axis. Because of symmetry conditions,
we have S12 = S23 = S13 = 0 and S22 = S33 = S. Furthermore, the balloon is assumed to
be in plane stress, S11 = 0. Accordingly, Equation (4.273) leads to the following strains:

E22 = E33 =
(

1 − ν

E

)
S (4.274)

E11 = −2ν

E
S (4.275)

E12 = E13 = E23 = 0. (4.276)
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t = 0.1 m

X, x

Y, y

Figure 4.8 Geometry of the balloon

The stretch can be obtained from Equation (1.45):

λ(N) =
√

(2EKL + 1)NKNL (4.277)

yielding for the circumferential stretch (take N in Y -direction)

λ =
√

2

(
1 − ν

E

)
S + 1 (4.278)

and for the thickness stretch

λt =
√(

1 − 4ν

E
S

)
. (4.279)

Taking λ = r/R as the independent variable during the inflation of the balloon, the Piola–
Kirchhoff stress of the second kind can be obtained from Equation (4.278):

S = E(λ2 − 1)

2(1 − ν)
. (4.280)

Expressing the equilibrium of a hemisphere, one obtains

pπr2 = S(2πR)t (4.281)

from which the pressure p results:

p = S
(2Rt)

r2
= Et

R(1 − ν)

(
1 − 1

λ2

)
. (4.282)
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This is a monotonic increasing function of λ. Substituting Equation (4.278) into Equa-
tion (4.279), one obtains an expression for the thickness stretch of the balloon:

λt =
√

1 − 2ν(λ2 − 1)

(1 − ν)
. (4.283)

Surprisingly enough, λt is zero for

λ =
√

1 − ν

2ν
+ 1. (4.284)

If ν = 0.5, the thickness of the balloon is reduced to zero for λ = √
3/2. This corresponds

to an infinite circumferential Cauchy stress. It is well known that the circumferential stretch
during inflation can reach values up to 10 and higher. Accordingly, the St Venant–Kirchhoff
material is not suited to model balloon behavior.

In Chapter 1, it was emphasized that ν = 0.5 represents isochoric deformation for
infinitesimal strains only. The real isochoric condition is J = 1. This can be illustrated
by noticing that for the balloon

J = λtλ
2 = λ2

√

1 − 2ν(λ2 − 1)

(1 − ν)
. (4.285)

Substituting ν = 0.5, one obtains

Jν=0.5 = λ2
√

3 − 2λ2. (4.286)

The plot of this function in Figure 4.9 shows that ν = 0.5 is indeed a bad approximation
for isochoric behavior as soon as the stretch deviates markedly from λ = 1.

To model true balloon behavior, recourse must be taken to hyperelastic laws such as
the Neo-Hooke or Mooney–Rivlin law. The following constants are taken

neo-Hooke: B10 = 211 250. Pa, D1 = 0.2367 × 10−6 Pa−1 (4.287)

Mooney–Rivlin: B10 = 184 843.75 Pa, B01 = 26 406.25 Pa,

D1 = 0.2367 × 10−6 Pa−1. (4.288)

The isochoric constants are taken from (Holzapfel 2000), the volumetric constants are such
that the equivalent Poisson coefficient amounts to ν = 0.475. Only one-eighth of the balloon
was modeled using seventy-five 20-node brick elements with reduced integration (one layer
across the thickness). The pressure as a function of the circumferential stretch is plotted
in Figure 4.10 and agrees well overall with the analytical predictions for incompressible
material in (Holzapfel 2000). The neo-Hooke curve is about 6% lower than the analytical
prediction. This also applies to the Mooney–Rivlin model for small stretches up to the
local maximum at a stretch of approximately 1.5. For higher stretch, the present curve does
not show the local minimum with the renewed pressure increase obtained in (Holzapfel
2000). This is attributed to the volumetric term. Notice that both models predict a local
pressure maximum. This phenomenon, which was not predicted by the St Venant–Kirchhoff
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material description, is well known: inflating a party balloon, the initial pressure is quite
high, but decreases significantly after some stretching takes place. Because its behavior is
not monotonic, the pressure cannot be taken as an independent variable during the finite
element calculation. The radial forces in the nodes of the mesh are taken instead since they
continuously increase.

4.7 Anisotropic Hyperelasticity
Recently developed materials are frequently anisotropic, such as fabrics embedded in a
matrix material (Reese et al. 2001). For these applications, the theory of the previous
section has to be extended. Anisotropic materials are characterized by the fact that

�(F · Q) = �(F ) (4.289)

does not apply for arbitrary rotation tensors Q ∈ SO(3) (the group of all rotations without
reflection in three-dimensional space). The group G for which Equation (4.289) applies, if
any, is called the material symmetry group and characterizes the material:

G = {
Q|�(F · Q) = �(F )

} ⊂ SO(3). (4.290)

For instance, transverse isotropic materials are characterized by a preferred unit direction
A about which the material is isotropic, that is,

G = {
Q(α, A)|0 < α < 2π

}
(4.291)

where Q(α, A) denotes a rotation about A covering an angle α. Anisotropic materials are
frequently characterized by so-called structural tensors M , which are invariant under the
material symmetry group:

Q · M = M, ∀Q ∈ G. (4.292)

For transversely isotropic materials, there is one structural tensor defined by

M := A ⊗ A, ‖A‖ = 1. (4.293)

Indeed,

Q · M = Q · (A ⊗ A) = (Q · A) ⊗ A

= A ⊗ A = M. (4.294)

The behavior of anisotropic materials is not invariant under the proper orthogonal group
of transformations SO(3). However, if the structural tensors are also transformed, that is,
the preferred material directions undergo the same rotation, one obtains

�(F , M) = �(F · Q, QT · M · Q) (4.295)

and taking objectivity into account,

�(C, M) = �(QT · C · Q, QT · M · Q). (4.296)

Consequently, � is an isotropic function of C and M . Here, M stands for all structural
matrices appropriate for the material. An application of the above concept to anisotropic
viscoplasticity can be found in (Schröder et al. 2002). In what follows, we will concentrate
on transversely isotropic materials and deal with only one structural tensor. For further
details, the reader is referred to (Schröder and Neff 2001).
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4.7.1 Transversely isotropic materials

To proceed, we will express � as a function of a polynomial basis. For isotropic scalar
functions of two symmetric tensors, such a basis consists of the following terms (Spencer
1971):

J1 := trC (4.297)

J2 := trC2 (4.298)

J3 := trC3 (4.299)

J4 := tr(C · M) (4.300)

J5 := tr(C2 · M) (4.301)

J6 := tr(C · M2) (4.302)

J7 := tr(C2 · M2). (4.303)

Since M2 = M , we have J6 = J4 and J7 = J5. One recognizes J1, J2 and J3 as invariants
of C, although more frequently I1, I2 and I3 are used, defined by

I1 = J1 = ‖F‖2 (4.304)

I2 = tr(CofC) = 1
2 (J 2

1 − J2) = ‖CofF‖2 (4.305)

I3 = det C = 1
6 (2J3 + J 3

1 − 3J1J2) = (det F )2. (4.306)

In previous sections, it was shown that I1, I2 and I3 are polyconvex functions. The invariant
J4 can be expressed as

J4 = tr(F T · F · (A ⊗ A))

= AT · F T · F · A

= ‖F · A‖2. (4.307)

This is a convex function of F due to the norm properties and the convex monotonic
increasing behavior of x2 for x ≥ 0. Accordingly, J4 is convex.

It can be proved that J5 is not polyconvex (Schröder and Neff 2001). However, it is
clear that

K1 := ‖CofF · A‖2 (4.308)

is polyconvex. K1 can also be written as

K1 = AT · (CofF )T · (CofF ) · A

= AT · Cof(F T · F ) · A

= tr [(CofC) · (A ⊗ A)]

= tr [(CofC) · M] . (4.309)
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The tensor C satisfies its characteristic equation, accordingly,

C3 − I1C
2 + I2C − I3 = 0

�
C2 · M − I1C · M + I2M − I3C

−1 · M = 0

�
tr(C2 · M) − I1tr(C · M) + I2 = tr(CofC · M)

�
J5 − I1J4 + I2 = K1 (4.310)

which shows that K1 can be written as a function of J5. Notice the nice analogy between
J4 and K1, and I1 and I2 respectively (Equations (4.304), (4.305), (4.307) and (4.308)).
The physical significance of J4 and K1 is also noteworthy: Equation (1.30) reveals that J4
is a measure of the change of length of a unit vector along the structural axis, whereas
Equation (1.65) shows that K1 can be interpreted as the area change of a unit area perpen-
dicular to the structural axis. On the basis of these physical observations, sometimes the
change in length of vectors perpendicular to the material axis, and the change in area of
area elements whose normal is perpendicular to the material axis are considered. They are
defined by

K2 := tr(C · D) = I1 − J4 = ‖F‖2 − ‖F · A‖2 (4.311)

K3 := tr[(CofC) · D] = I1J4 − J5 = ‖CofF‖2 − ‖(CofF ) · A‖2 (4.312)

where

D := G� − M. (4.313)

It can be proved that K2 and K3 are polyconvex (Schröder and Neff 2001). Indeed,

K2 = tr[F T · F · (G� − M)]

= ‖F · (G� − M)‖2 (4.314)

since

(G� − M) · (G� − M) = G� − M (4.315)

and

(G� − M)T = (G� − M). (4.316)

Similarly, one finds

K3 = ‖CofF · (G� − M)‖2. (4.317)
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Analogous to the proof leading to Equation (4.64), one can prove that

J4

(det F )2/3
(4.318)

and

J
3/2
4

(det F )2
(4.319)

are polyconvex as well as the same terms with J4 replaced by K1, K2 or K3. In particular,

J 4 := J4

(det F )2/3
(4.320)

K
3/2
1 :=

[
K1

(det F )4/3

]3/2

(4.321)

K2 := K2

(det F )2/3
(4.322)

and

K
3/2
3 :=

[
K3

(det F )4/3

]3/2

(4.323)

are polyconvex and consequently, also J
n

4, K
3n/2
1 , K

n

2 and K
3n/2
3 (Theorem 4.1.8) (notice

that J4, K1, K2, K3 ≥ 0). For C = G, one obtains

J4 = J 4 = 1 (4.324)

K1 = K1 = 1 (4.325)

K2 = K2 = 2 (4.326)

K3 = K3 = 2 (4.327)

but J 4 ≥ 1 is not guaranteed, hence we cannot argue that terms of the form (J 4 − 1)k are
polyconvex. On the other hand, terms such as

e(J 4−1), e(K
3/2
1 −1), e(K2−2), e(K

3/2
3 −2

√
2) (4.328)

are polyconvex, since ex is a convex, monotonic increasing function in R.

4.7.2 Fiber-reinforced material

In this section, an anisotropic hyperelastic model for fiber-reinforced materials will be
discussed. It is a model that was developed for arteries by Holzapfel (Holzapfel et al.
2000) but which seems promising for other applications as well. It consists of an isotropic
neo-Hooke part superimposed by strengthening terms in the fiber direction (the volumetric
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Figure 4.11 Generic form of the anisotropic term

term is not a part of the original Holzapfel model):

� = B10(I 1 − 3) + 1

D1
(J − 1)2 +

N∑

i=1

k1i

2k2i

[
ek2i<J 4i−1>2 − 1

]
(4.329)

where
< x > = x for x > 0

= 0 for x ≤ 0.
(4.330)

and
k2i > 0. (4.331)

Notice that the anisotropic term applies only if the fibers are extended. Under compression
the fibers do not contribute any strength. Under tension, however, the strengthening is
exponential. There are as many terms as there are fiber directions, each with its own
constants k1i and k2i . Notice that ea<x>2 − 1 (a > 0) is a C1 monotonically increasing
convex function (Figure 4.11). Accordingly, the anisotropic terms in Equation (4.329) are
polyconvex.

Differentiation of Equation (4.329) leads to SKL and �KLMN ,

SKL = B10
∂I 1

∂CKL

+ 1

D1
(1 − I

−1/2
3 )

∂I3

∂CKL

+
N∑

i=1

k1i (J 4i − 1)
[
ek2i (J 4i−1)2

] ∂J 4i

∂CKL

(4.332)
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�KLMN = ∂2�

∂CKLCMN

= B10
∂2I 1

∂CKL∂CMN

+ 1

2D1
I

−3/2
3

∂I3

∂CKL

∂I3

∂CMN

+ 1

D1
(1 − I

−1/2
3 )

∂2I3

∂CKLCMN

+
N∑

i=1

k1i

[
ek2i (J 4i−1)2

]
·

·
[

∂J 4i

∂CKL

∂J 4i

∂CMN

(
1 + 2k2i (J 4i − 1)2

)
+ (J 4i − 1)

∂2J 4i

∂CKLCMN

]

(4.333)

and the derivatives of J4i and J 4i yield

J4i = MIJ
i CIJ (4.334)

∂J4i

∂CKL

= MKL
i (4.335)

∂2J4i

∂CKL∂CMN

= 0 (4.336)

J 4i = I
−1/3
3 J4i (4.337)

∂J 4i

∂CKL

= − 1
3I

−4/3
3 J4i

∂I3

∂CKL

+ I
−1/3
3

∂J4i

∂CKL

(4.338)

∂2J 4i

∂CKL∂CMN

= 4
9I

−7/3
3 J4i

∂I3

∂CKL

∂I3

∂CMN

− 1
3I

−4/3
3

(
∂J4i

∂CMN

∂I3

∂CKL

+ ∂J4i

∂CKL

∂I3

∂CMN

)

− 1
3I

−4/3
3 J4i

∂2I3

∂CKL∂CMN

+ I
−1/3
3

∂2J4i

∂CKL∂CMN

. (4.339)

To investigate the effect of the anisotropic terms on the initial stiffness, the limit C → G

is taken

J4i |C=G = 1 (4.340)

∂J4i

∂CKL

∣
∣
∣∣
C=G

= MKL
i (4.341)

∂2J4i

∂CKL∂CMN

∣
∣∣
∣
C=G

= 0 (4.342)

J 4i

∣
∣
C=G

= 1 (4.343)

∂J 4i

∂CKL

∣
∣∣
∣
∣
C=G

= MKL
i − 1

3GKL (4.344)
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Figure 4.12 Geometry of the cantilever beam

∂2J 4i

∂CKL∂CMN

∣
∣
∣∣
∣
C=G

= 1
9GKLGMN + 1

6 (GKMGLN + GKNGLM)

− 1
3 (MMN

i GKL + MKL
i GMN). (4.345)

Substitution in Equation (4.333) yields for the anisotropic terms

�KLMN
∣
∣∣
C=G,anisotropic

=
N∑

i=1

k1i (M
KL
i − 1

3GKL)(MMN
i − 1

3GMN). (4.346)

For a fiber aligned with the 1-direction (M11 = 1, all other MKL = 0) one obtains

�KLMN
∣
∣
∣
C=G,anisotropic

=










4/9 −2/9 −2/9

−2/9 1/9 1/9
−2/9 1/9 1/9



 [
0
]

3×3

[
0
]

3×3

[
0
]

3×3





 k1i . (4.347)

Accordingly, the initial stiffness in fiber direction is increased by 4
9k1i . The parameter k1i

has the unit of stress, k2i is dimensionless and governs the strength increase at increasing
deformation.

Consider the cantilever beam in Figure 4.12 subject to a force F evenly distributed
at its end. The force keeps its magnitude and direction during deformation. The material
consists of an isotropic neo-Hooke substrate strengthened by fibers. It is assumed to satisfy
Equation (4.329) with constants:

B10h
2/F = 0.192505 (4.348)

D1F/h2 = 0.26 (4.349)

N = 1 (4.350)

k11h
2/F = 0.23632 (4.351)

k21 = 0.8393. (4.352)

There is only one layer of fibers making an angle α with the axis of the beam. The
relative axial displacement ua/h and transversal displacement 100ut/h at the end of the
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Figure 4.13 Longitudinal and transversal displacement of the end of the beam

beam are shown in Figure 4.13. If the fibers are parallel to the axis of the beam, the
transversal displacement is zero and the axial displacement exhibits a minimum because of
the strengthening effect of the fibers. As the angle with the axis increases, the strengthening
effect decreases steadily. The transversal displacement exhibits a maximum at about 27◦
because of the asymmetry induced by the fibers.



5

Infinitesimal Strain Plasticity

5.1 Introduction

The materials treated so far had no memory. The instantaneous deformation for such mate-
rials is a function of the instantaneous loading only. The previous loading history is of no
importance. However, for a lot of practical materials this assumption does not hold. A piece
of metal that has been forged into a car component will react differently on loading because
of the forging process: the component remembers it has been forged. Furthermore, the acti-
vation of memory allows for the simulation of another new phenomenon: irreversibility
of deformation. Without this feature, it would be impossible to deform a body into a new
form without continuously applying loads: on releasing pressure, a car would return into
ore!

Memory and irreversibility of deformation are two important characteristics of plastic-
ity. Although the term is most often applied to metals, it is also used to describe irreversible
behavior in soils, biological tissue, and so on. Here, we treat metals only. Furthermore,
attention is focused on the infinitesimal theory, that is, strains and rotations are assumed
to be so small that material and spatial quantities coincide. First, the general framework
is derived using the one-dimensional example as a guide. Then, the isotropic viscoplastic
theory is deduced. Finally, a detailed analysis is presented of single-crystal viscoplasticity
and von Mises plasticity of elastically anisotropic materials. The treatment of other vis-
coplastic formulations, such as Drucker–Prager or Gurson, runs along the same lines. For
fundamental reference works on plasticity, see ((Kachanov 1971); (Lemaitre and Chaboche
1990); and (Save and Massonnet 1972)).

5.2 The General Framework of Plasticity

5.2.1 Theoretical derivation

Throughout the present chapter, it will be assumed that the strains and rotations are
small, such that the infinitesimal quantities ẽKL and ẼKL can be used. One recalls

The Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85752-8
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(Section (1.14.4)),

ẼKL ≈ ẽKLδk
Kδl

L (5.1)

SKL ≈ σ klδ K
k δ L

l . (5.2)

Furthermore, it will be assumed that a rectangular spatial coordinate system and a rectan-
gular material coordinate system are used and that both coincide. To emphasize this, the
infinitesimal strain tensor will be represented by the new symbol εkl .

How can we characterize a viscoplastic material? A simple stress–strain test on steel
yields Figure 5.1. One notices that the material is elastic for small stresses. For growing
stress (σ > σA), the curve deviates from the elastic straight line by an amount that will be
called the plastic strain εp. It is this amount that is not recovered after unloading (point
C). When loading again, the material remains elastic up to σ = σB before accumulating
further plastic strain. Accordingly, the elastic range depends on the previous plastic flow.

From these considerations, the following assumptions (some of which are valid for the
infinitesimal range only) seem plausible:

1. The total strain can be decomposed in an additive way into an elastic part and a
plastic part:

ε = εe + εp. (5.3)

2. Plastic flow starts as soon as the stress (axial stress in a tensile specimen, an appro-
priate stress invariant in the two- and three-dimensional case) reaches a specific
value, which can change as a function of the previous amount of plastic deformation.
Accordingly, this value is a function and will be denoted −q. The amount of plastic
flow is represented by α. Hence,

q = q(α). (5.4)

A

B

C

σ

ε

εe εp

Figure 5.1 Elastoplastic stress–strain curve
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q is an internal dynamic variable (comparable to a stress), α is the kinematic coun-
terpart (comparable to a strain). The material remains elastic if

σ < −q ⇔ σ + q < 0. (5.5)

The function

f (σ, q) = σ + q = 0 (5.6)

represents the boundary of the elastic range and is called the yield surface.

In theory, plastic deformation takes place if the yield surface is exceeded. However,
because of the plastic flow, the yield surface is expanded such that the stress stays on the
yield surface (in the absence of viscosity). This can be made obvious by simply performing
an unloading–loading experiment, as shown in Figure 5.1. Consequently, the increasing
stress drags the yield surface along, and Equation (5.6) keeps its validity during the plastic
flow. The reverse statement is not true: Equation (5.6) does not necessarily imply plastic
deformation. Imagine we load until σ = −q and freeze the loading at that point: this is a
purely elastic process. Summarizing, during plastic deformation, one has

σ = E(ε − εp) (5.7)

q = q(α) (5.8)

σ + q = 0. (5.9)

Assume that we know the total strain and want to know the stress. Equations (5.7) to
(5.9) yield three equations in the four unknowns σ , εp, q and α: one equation is lacking.
Physically, we do not know at what rate the plastic flow is accumulated: an evolution
equation for εp (and actually, also for α) is lacking. This equation will be obtained by
maximizing the plastic dissipation.

Recall from Chapter 1 that the entropy rate was obtained by substituting an expression
for the free energy, Equation (1.390), into the entropy inequality, yielding Equation (1.392)
and subsequently Equation (1.396). For our infinitesimal (one-dimensional) considerations,
Equation (1.411) reduces to

ψ = ψ(ε, θ, ∇θ, X). (5.10)

In the previous analysis, it was shown that the total strain of the elastic theory should
be replaced by εe. Furthermore, a dependence of ψ on the internal kinematic variable is
assumed. Hence,

ψ = ψ(ε − εp, α, θ, ∇θ, X). (5.11)

Note that the time derivative of the internal kinematic variable α is not necessarily contin-
uous: at unloading, the time rate of α discontinuously drops to zero. This also applies to
εp. Taking the time derivative yields

ψ̇ = ∂ψ

∂(ε − εp)
ε̇ − ∂ψ

∂(ε − εp)
ε̇p + ∂ψ

∂α
α̇ + ∂ψ

∂θ
θ̇ + ∂ψ

∂∇θ
∇̇θ. (5.12)
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Substituting this expression into Equation (1.389) yields (ρ0 ≈ ρ)

1

θ

(
−ρ

∂ψ

∂εe + σ

)
ε̇ + ρ

θ

∂ψ

∂εe ε̇p − ρ

θ

∂ψ

∂α
α̇ − ρ

θ

(
∂ψ

∂θ
+ η

)
θ̇ − ρ

θ

∂ψ

∂∇θ
∇̇θ − 1

θ2
qθ∇θ ≥ 0

(5.13)

where qθ stands for the heat conduction (the superscript θ is introduced in this chapter to
avoid confusion between the heat conduction qθ and the internal dynamic variable q). This
inequality is satisfied if

σ = ρ
∂ψ

∂εe (5.14)

η = −∂ψ

∂θ
(5.15)

∂ψ

∂∇θ
= 0 (5.16)

and

σ ε̇p − ρ
∂ψ

∂α
α̇ − 1

θ
qθ∇θ ≥ 0. (5.17)

The first two terms do not vanish because of the time history of plastic deformation. As in
Equation (5.14), q is now defined by

q = −ρ
∂ψ

∂α
(5.18)

(or, the other way around, Equation (5.18) can be viewed as the definition of ψ(α) through
Equation (5.4)). Inequality (5.17) is satisfied if

σ ε̇p + qα̇ ≥ 0 (5.19)

and

−1

θ
qθ∇θ ≥ 0. (5.20)

Now, the evolution equations for ε̇p and α̇ are obtained by postulating that for a given ε̇p

and α̇, the state (σ, q) will prevail, which maximizes (Simo and Hughes 1997) (Halphen
and Nguyen Quoc Son 1975)

dp = σ ε̇p + qα̇ (5.21)

subject to

f (σ, q) ≤ 0. (5.22)

This postulate is accepted to hold for metals, but does not necessarily hold for all kinds of
material. This also amounts to minimizing

lp := −σ ε̇p − qα̇ + γ̇ f (σ, q) (5.23)
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with respect to σ and q where

γ̇ ≥ 0 (5.24)

and subject to

γ̇ f (σ, q) = 0 (5.25)

(Luenberger 1989). By taking the derivative of lp with respect to σ and q, one obtains the
evolution equations

ε̇p = γ̇
∂f (σ, q)

∂σ
(5.26)

α̇ = γ̇
∂f (σ, q)

∂q
. (5.27)

Equations (5.22), (5.24) and (5.25) are called the Kuhn–Tucker conditions. Although there
are two new equations, Equations (5.26) and (5.27), there is also a new unknown γ̇ , called
the consistency parameter (sometimes called the plastic rate parameter). By Equation
(5.24), γ̇ cannot be negative, and by Equation (5.25), it can be strictly positive only if
yielding takes place. The notation γ̇ was chosen because it is easiest to consider it as a
rate of accumulated plastic flow. To emphasize that, for plastic deformation to occur, the
stress state has to persist on the yield surface the following equation is added

γ̇ ḟ (σ, q) = 0. (5.28)

This is also called the consistency condition. Summarizing, the following equations apply:

1. Elastic stress–strain relations

σ = E(ε − εp) (5.29)

2. Internal variable relationship

q = −h(α) (5.30)

3. Yield surface

f (σ, q) = 0 (5.31)

4. Evolution equations

ε̇p = γ̇
∂f (σ, q)

∂σ
(5.32)

α̇ = γ̇
∂f (σ, q)

∂q
(5.33)

5. Kuhn–Tucker equations

γ̇ ≥ 0, f (σ, q) ≤ 0, γ̇ f (σ, q) = 0 (5.34)
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6. Consistency condition

γ̇ ḟ (σ, q) = 0. (5.35)

The evolution equations are also called the flow rule (Equation (5.32)) and the hardening
law (Equation (5.33)). Equations (5.29) to (5.35) are quite general and are easy to extend
to higher dimensions. Notice particularly that the maximum-dissipation principle implies
that the evolution equations can be derived from the yield surface. This kind of model is
called associative.

Returning to our basic yield surface, Equation (5.9), extending it to negative stresses
in the form

|σ | + q ≤ 0 (5.36)

and substituting this equation into (5.32) and (5.33) yields

ε̇p = γ̇ sgn(σ ) (5.37)

α̇ = γ̇ . (5.38)

Equations (5.37) and (5.38) reveal that, for our simple example, γ̇ and α̇ are the magnitude
of the plastic strain rate:

γ̇ = ∣∣ε̇p
∣
∣ . (5.39)

Hence, since σ = h(α) and α = εp for monotonic loading (α̇ = ε̇p and let α = 0 for εp =
0), one can derive h(α) from Figure 5.1 by subtracting the elastic strain at a given stress
level (Figure 5.2).

The type of hardening considered so far is called isotropic hardening, since it equally
applies to positive and negative stresses (Figure 5.3). In practice, the Bauschinger effect
is frequently observed: after plastic deformation in the tensile range, plastic deformation
in the compressive range takes place at higher stress levels than expected. Pure kinematic
hardening implies that the size of the elastic range has not changed, just its origin: BD =
2 OA in Figure 5.3. Introducing an internal variable −q2 for the center of the elastic range,
this amounts to a yield surface of the form

|σ + q2| + c ≤ 0 (5.40)

h(α)

εp, α

Figure 5.2 Isotropic hardening curve
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O

A

B

C

E

σ

ε
D Kinematic hardening

F Isotropic hardening

G Combined isotropic/Kinematic hardening

Figure 5.3 Types of hardening

where c is a constant. If BF = 2 BE, pure isotropic hardening applies. Point G symbolizes
a state in between, that is, combined hardening. For this general case, the yield surface
looks like

|σ + q2| + q1 ≤ 0 (5.41)

leading to the flow rule

ε̇p = γ̇ sgn(σ + q2) (5.42)

and the evolution equations

α̇1 = γ̇ (5.43)

α̇2 = γ̇ sgn(σ + q2). (5.44)

From Equation (5.42), one again notices that γ̇ is the rate of the accumulated plastic
strain (in absolute value). The only functions left to be determined are q1(α1) and q2(α2),
both of which are material characteristics to be obtained by experiments. Notice that the
inclusion of kinematic hardening does not substantially change the governing relations
(Equations (5.29)–(5.35)): instead of q, one now deals with q1 and q2 or, equivalently, a
two component vector q.

The theory derived so far can also be extended to include viscous effects. For many
materials, one observes that during loading the stress state exceeds the yield surface and
slowly creeps back with time until the yield surface is reached from above. In Figure 5.4,
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σ

ε

t = t1

t = t2

t = 0

Figure 5.4 Viscoplasticity concept

the external loading (forces, temperature etc.) is frozen at t = t1. Because of the rate
at which the loading was applied, the material did not have time to accumulate enough
plastic deformation to attain equilibrium conditions. Physically, this means that since plastic
flow is largely equivalent to dislocation motion, the dislocations did not have enough
time to redistribute in accordance with the applied load. As time goes by, an equilibrium
configuration is reached. This phenomenon is also called creep and is usually modeled by
a creep law of the form

ε̇p = g−1(σ 0) (5.45)

where σ 0 is the overload. This is the stress amount by which the yield surface is exceeded
and which constitutes the driving force for the creep process. Consequently, if plastic
deformation occurs, Equation (5.31) has to be replaced by

f (σ, q) = g(ε̇p). (5.46)

An example of a creep law is the Norton law, which is of the form

ε̇p = A(σ 0)n. (5.47)

The parameter A is usually a small number (depending on the unit of σ 0), and n > 1, for
example, n = 5. Both A and n are material parameters.

5.2.2 Numerical implementation

Ultimately, Equations (5.29) to (5.35) have to be solved; for viscous problems, Equa-
tion (5.31) is to be replaced by Equation (5.46). Notice that Equations (5.34) and (5.35)
have a kind of regulating character: they characterize the discrete split into elastic defor-
mation and plastic deformation.

The usual finite-element procedure consists of the creation of a tangent-stiffness matrix
at an instantaneous deformation field and solving the resulting linear equations to obtain
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a new deformation field, after which the procedure can be repeated until convergence.
Thus, two major tasks ensue: the calculation of a consistent tangent-stiffness matrix and
the calculation of the stress corresponding to a given deformation field in order to check
convergence (satisfaction of the equilibrium conditions). In both cases, the deformation field
is given. Consequently, the total strain is known. This is an extremely important fact and
the starting point of most numerical algorithms in present finite-element implementations.
Accordingly, εn+1 is known, where t = tn+1 is the new time step and all quantities at t = tn
are known. Further strategy consists of trial and error. One first assumes that no plasticity
occurs in the present step, that is,

ε
p,trial
n+1 = ε

p
n (5.48)

q trial
n+1 = qn (5.49)

γ trial
n+1 = γn. (5.50)

Hence (Equation (5.29)),

σ trial
n+1 = E(εn+1 − ε

p
n). (5.51)

If the new stress state lies within the elastic range, that is, if

f (σ trial
n+1, q trial

n+1) ≤ 0 (5.52)

then the solution is found

ε
p
n+1 = ε

p,trial
n+1 (5.53)

qn+1 = q trial
n+1 (5.54)

γn+1 = γ trial
n+1 (5.55)

σn+1 = σ trial
n+1 (5.56)

and the tangent modulus is the elastic one. If this is not the case, plasticity takes place and
the following equations must be satisfied at t = tn+1:

f (σ, q) = g(ε̇ − E−1σ̇ ) (5.57)

ε̇ − E−1σ̇ = γ̇
∂f (σ, q)

∂σ
(5.58)

˙
h−1(−q) = γ̇

∂f (σ, q)

∂q
. (5.59)

These are (for the one-dimensional case) three equations in the three unknowns σ , q and
γ̇ . Now, a backward Euler scheme is applied to turn the differential equations (5.57) to
(5.59) into difference equations. To this end, the equations are evaluated at t = tn+1 and
the first derivative ε̇ is replaced by

ε̇ = εn+1 − εn

�t
+ O(�t) (5.60)
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and similarly for the other first derivatives. One can prove that the backward Euler scheme
is first-order accurate and unconditionally stable. Applying this to Equations (5.57) to (5.59)
leads to

f (σn+1, qn+1) = g[�εn+1 − E−1(σn+1 − σn)] (5.61)

�εn+1 − E−1(σn+1 − σn) = �γn+1
∂f (σn+1, qn+1)

∂σ
(5.62)

h−1(−qn+1) − h−1(−qn) = �γn+1
∂f (σn+1, qn+1)

∂q
(5.63)

where

�εn+1 := εn+1 − εn (5.64)

�γn+1 := γn+1 − γn. (5.65)

Equations (5.61) to (5.63) are three nonlinear equations in three unknowns σn+1, qn+1
and �γn+1. They can be solved using the customary mathematical techniques to solve
sets of nonlinear equations. To concretize the further derivation, the yield surface of
Equation (5.36) is taken, no creep is assumed and a linear isotropic hardening law is
chosen of the form

q = −σ0 − Kα (5.66)

where σ0 and K are constants. Consequently,

|σn+1| + qn+1 = 0 (5.67)

�εn+1 − E−1(σn+1 − σn) = �γn+1sgn(σn+1) (5.68)

(−σ0 − qn+1) − (−σ0 − qn) = K�γn+1. (5.69)

The sign of σn+1 is the same as that of σ trial
n+1 (Figure 5.5).

sgn(σn+1) = sgn(σ trial
n+1). (5.70)

Accordingly (Equations (5.68) and (5.69)),

σn+1 = E�εn+1 − E�γn+1sgn(σ trial
n+1) + σn (5.71)

qn+1 = qn − K�γn+1 (5.72)

yielding (Equation (5.67))

�γn+1 = 1

E + K

[
E�εn+1sgn(σ trial

n+1) + σnsgn(σ trial
n+1) + qn

]
. (5.73)

Substitution of �γn+1 into Equations (5.71) and (5.72) yields σn+1 and qn+1. In particular
(Equation (5.71)),

σn+1 = E(εn+1 − εn) − E2(εn+1 − εn)

E + K
− Eσn

E + K
− Eqnsgn(σ trial

n+1)

E + K
+ σn (5.74)
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σ
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σ trial
n+1

σn+1

εn

σn

εn+1

�εn+1

�γn+1

Figure 5.5 Trial-and-error method

from which the plastic tangent is obtained:

dσn+1

dεn+1
= EK

E + K
. (5.75)

Because of the particular choice of q and f , the resulting equation, Equation (5.73), was
linear and easy to solve.

5.3 Three-dimensional Single Surface Viscoplasticity

5.3.1 Theoretical derivation

The governing equations for three-dimensional applications are the same as for one-
dimensional applications and their derivation is similar (cf Equations (5.29)–(5.35)):

1. Elastic stress–strain relations

σ = ∂�

∂εe (5.76)

2. Internal variable relationships

q = −h(α) (5.77)

3. Yield surface

f (σ , q) = 0 (5.78)

4. Evolution equations

ε̇p = γ̇
∂f (σ , q)

∂σ
(5.79)

α̇ = γ̇
∂f (σ , q)

∂q
(5.80)
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5. Kuhn–Tucker equations

γ̇ ≥ 0, f (σ , q) ≤ 0, γ̇ f (σ , q) = 0 (5.81)

6. Consistency condition

γ̇ ḟ (σ , q) = 0. (5.82)

If viscous effects are to be taken into account, Equation (5.78) is replaced by

f (σ , q) = g(ε̇p) (5.83)

and f > 0 is feasible. Although the form of the equations is similar, due to the tensorial
character of the quantities involved, one arrives at a much larger set of nonlinear equations
than in the one-dimensional case. Indeed, Equations (5.78) to (5.80) lead to a set of nonlin-
ear equations the size of which is the sum of the number of independent stress components
and the number of internal variables plus one. Here, an example covering the usual isotropic
metal plasticity will be given.

To fully determine the plasticity model defined by Equations (5.76) to (5.83), one has
to define the yield surface, choose the internal variables and possibly define a creep law.

In three dimensions, the yield surface is not so trivial as in the one-dimensional case.
Indeed, one has to find one scalar equation connecting the tensorial quantities σ and q.
Furthermore, for isotropic materials, the yield surface should contain invariants only, that
is, I1σ , I2σ and I3σ . Practical observations have shown that the hydrostatic pressure p does
not significantly lead to plasticity in metals (does not apply to soils!). Since

p := − 1
3I1σ (5.84)

the first invariant does not enter the yield condition explicitly. Therefore, a new stress
tensor, the deviatoric stress s is defined by

s := dev σ := σ + pI . (5.85)

On the basis of the deviatoric stress, a new invariant is defined called the von Mises stress
σvm by

σvm :=
√

3
2‖s‖2 =

√
3
2‖dev σ‖2. (5.86)

Since

‖s‖2 = ‖σ‖2 − 1
3 (I1σ )2

= 2
3 (I1σ )2 − 2I2σ (5.87)

one finds

σvm =
√

(I1σ )2 − 3I2σ . (5.88)
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The von Mises stress is a measure of the shear energy. The factor
√

2/3 is introduced such
that the von Mises stress in a tensile test coincides with the applied tensile stress. Including
isotropic and kinematic hardening (internal variables q1 and q2 respectively), the following
yield surface is proposed (Huber–von Mises yield surface):

‖dev (σ ) + q2‖ +
√

2
3q1 = 0. (5.89)

In deviatoric space (axes s1, s2 and s3), Equation (5.89) is a sphere with radius
√

2/3 q1 and
center −q2 (Figure 5.6). The inside of the sphere is the elastic range. During plasticity, the
sphere can both expand (isotropic hardening) and move (kinematic hardening). The internal
variable q1 is a scalar, whereas q2 is a tensor. Since only the deviatoric part of the stress
is relevant in Equation (5.89), the hydrostatic part of q2 remains arbitrary throughout the
analysis.

Defining

ξ := dev (σ ) + q2 (5.90)

and since

q2 = dev (q2) (5.91)

∂

∂ξ
‖ξ‖ = ξ

‖ξ‖ (5.92)

∂

∂σ
(dev (σ )) = I − 1

3I ⊗ I (5.93)

where

(I)
ij

kl := 1
2 (δi

kδ
j
l + δi

lδ
j
k) (5.94)

is the fourth-order identity tensor and I is the second-order identity tensor, straightforward
application of Equations (5.79) and (5.80) yields

ε̇p = γ̇
ξ

‖ξ‖ (5.95)

s1

s2

s3

−
√

2
3 q1

−q2

Figure 5.6 Yield surface in deviatoric stress space
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α̇1 = γ̇

√
2
3 (5.96)

α̇2 = γ̇
ξ

‖ξ‖ . (5.97)

Similar to the von Mises stress, an equivalent plastic strain is defined by

εpeq :=
√

2
3‖εp‖. (5.98)

The factor
√

2/3 is introduced such that in a tensile test, the equivalent plastic strain is
equal to the plastic strain in the tensile direction. Indeed, since a hydrostatic pressure does
not lead to plasticity, the plastic deformation is volume preserving, and hence,

ε
p
11 + ε

p
22 + ε

p
33 = 0. (5.99)

Consequently, for uniaxial plastic strain, one has

ε
p
22 = ε

p
33 = − 1

2ε
p
11 (5.100)

and

εpeq =
√

2
3

√
(ε

p
11)

2 + (ε
p
22)

2 + (ε
p
33)

2 = ε
p
11. (5.101)

From Equations (5.95) and (5.98), it is apparent that the physical meaning of
√

2/3 γ̇ is
the equivalent plastic strain rate.

Finally, the relationships q1(α1) and q2(α2) are left to be defined. The variable −q1
means the von Mises stress with respect to the reference stress q2 at yield (cf Equation (5.89)),
α1 is the accumulated plastic strain. This relationship must be obtained from experiments
and will be written as

q1 = −h1(α1). (5.102)

The second set of internal variables q2 is tensorial and the relationship

q2 = −h2(α2) (5.103)

is more difficult to obtain. Time differentiation of Equation (5.103) yields

q̇2 = −∂h2

∂α2
: α̇2 (5.104)

which implies that the tensor q̇2 is not necessarily parallel to α̇2. This complicates the sub-
sequent analysis. Since the material is isotropic, it seems convenient to assume that the kine-
matic hardening is also isotropic, that is, we write the relationships for Equations (5.103)
and (5.104) for the equivalent properties:

q
eq
2 = h

eq
2 (α

eq
2 ) (5.105)

leading to

q̇
eq
2 = ∂h

eq
2

∂α
eq
2

α̇
eq
2 (5.106)
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or

√
3
2‖q̇2‖ = ∂h

eq
2

∂α
eq
2

√
2
3‖α̇2‖. (5.107)

Equation (5.107) suggests the following isotropic tensorial relationship:

q̇2 = − 2
3

∂h
eq
2

∂α
eq
2

α̇2. (5.108)

Comparison with Equation (5.104) leads to

∂h2

∂α2
= 2

3

∂h
eq
2

∂α
eq
2

II . (5.109)

One finally obtains

q̇1 = −ḣ1 (5.110)

q̇2 = − 2
3

∂h
eq
2

∂α
eq
2

γ̇
ξ

‖ξ‖ = −
√

2
3 ḣ

eq
2

ξ

‖ξ‖ (5.111)

since

α̇
eq
2 =

√
2
3 γ̇ (5.112)

and Equation (5.96). From Equations (5.95) to (5.97), it is obvious that

εpeq = α1 = α
eq
2 . (5.113)

5.3.2 Numerical procedure

Just as in the one-dimensional case, the total strain is assumed to be given, all quantities are
known at t = tn, they are to be determined at t = tn+1. Again the trial-and-error procedure
is used. At first, it is assumed that no plasticity occurs:

ε
p
n+1 = ε

p
n (5.114)

q1,n+1 = q1,n (5.115)

q2,n+1 = q2,n (5.116)

γn+1 = γn (5.117)

σ n+1 = ∂�

∂εe

∣
∣∣
∣
n+1

. (5.118)

If

‖dev (σ n+1) + q2,n+1‖ +
√

2
3q1,n+1 ≤ 0 (5.119)
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the solution is found. Else, the following equations have to be solved at t = tn+1:

σ = ∂�

∂εe (6 equations) (5.120)

‖dev + q2‖ +
√

2
3q1 = 2

3g(ε̇peq) (1 equation) (5.121)

ε̇p = γ̇
ξ

‖ξ‖ (5 equations) (5.122)

q̇1 = −ḣ1 (1 equation) (5.123)

q̇2 = −
√

2
3 ḣ

eq
2

ξ

‖ξ‖ (5 equations). (5.124)

These are 18 equations in 18 unknowns: σ (6), εp (5), q1 (1), q2 (5), γ̇ (1) (recall that εp

and q2 are deviatoric in nature). If we assume that the material is isotropic in the elastic
regime, the equations can be further simplified. Indeed, the elastic stress–strain relationship
for a linear elastic isotropic material satisfies

σ = λtr(εe)I + 2µεe. (5.125)

Hence,

s = dev σ = 2µdev εe. (5.126)

Equation (5.122) shows that ε̇p is deviatoric, consequently,

ε̇p = dev (ε̇p) = dev (ε̇ − ε̇e) = dev (ε̇) − dev (ε̇e) (5.127)

and

2µdev (ε̇) − ṡ = 2µγ̇
ξ

‖ξ‖ . (5.128)

Replacing the time derivatives by backward Euler differences and defining

�εn+1 := εn+1 − εn (5.129)

and similarly for the other expressions, one obtains

2µdev (�εn+1) − sn+1 + sn = 2µ�γn+1
ξn+1

‖ξn+1‖
. (5.130)

Now, strial
n+1 is obtained from sn by assuming that �ε is purely elastic, that is,

strial
n+1 = sn + 2µdev (�εn+1) (5.131)

which leads to

strial
n+1 − sn+1 = 2µ�γn+1

ξn+1

‖ξn+1‖
(5.132)
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for Equation (5.130). Backward Euler for Equation (5.124) yields

q2,n+1 − q2,n = −
√

2
3

[
h

eq
2 (ε

peq
n+1) − h

eq
2 (ε

peq
n )
] ξn+1

‖ξn+1‖
. (5.133)

Subtracting Equation (5.132) from Equation (5.133), one gets

ξn+1 − ξ trial
n+1 =

[
−2µ�γn+1 −

√
2
3�h

eq
2,n+1

]
ξn+1

‖ξn+1‖
(5.134)

where

ξ trial
n+1 := strial

n+1 + q2,n. (5.135)

Equation (5.134) shows that the vectors ξn+1 and ξ trial
n+1 are parallel (therefore, the algorithm

is sometimes called the radial return method ). This result is crucial in the present derivation.
If the kinematic hardening had not been isotropic, this simplification would not apply! Since
all terms in Equation (5.134) are parallel, the equation applies to their size equally well:

‖ξn+1‖ − ‖ξ trial
n+1‖ = −2µ�γn+1 −

√
2
3�h

eq
2,n+1. (5.136)

There is only one equation left to be satisfied: the yield condition, which reads

‖ξn+1‖ +
√

2
3q1,n+1 =

√
2
3g(�ε

peq
n+1). (5.137)

One finds

h1,n+1 = h1(ε
peq
n + �ε

peq
n+1) = h1

(
ε

peq
n +

√
2
3�γn+1

)
. (5.138)

Finally, one gets for the yield condition

‖ξ trial
n+1‖ −

{
2µ�γn+1 +

√
2
3

[
h

eq
2

(
ε

peq
n +

√
2
3�γn+1

)
− h

eq
2 (ε

peq
n )

]}

−
√

2
3h1

(
ε

peq
n +

√
2
3�γn+1

)
=
√

2
3g

(√
2
3�γn+1

)
. (5.139)

Consequently, we finally arrive at one nonlinear equation in �γn+1. This equation can be
solved using a Newton–Raphson technique. Denoting the initial value for the unknown
�γn+1 by �γ

(0)
n+1 and writing

�γ
(k+1)
n+1 = �γ

(k)
n+1 + ��γ

(k)
n+1 (5.140)

linearization of Equation (5.139) about �γ
(k)
n+1 yields

‖ξ trial
n+1‖ −

{
2µ�γ

(k)
n+1 +

√
2
3

[
h

eq
2

(
ε

peq
n +

√
2
3�γ

(k)
n+1

)
− h

eq
2 (ε

peq
n )

]}

−
√

2
3h1

(
ε

peq
n +

√
2
3�γ

(k)
n+1

)
−
√

2
3g

(√
2
3�γ

(k)
n+1

)

−


2µ + 2
3

∂(h1 + h
eq
2 )

∂εpeq

∣
∣∣
∣∣
ε

peq
n +

√
2
3 �γ

(k)
n+1

+ 2
3

∂g

∂�εpeq

∣∣
∣
∣√ 2

3 �γ
(k)
n+1



��γ
(k)
n+1 = 0. (5.141)



242 INFINITESIMAL STRAIN PLASTICITY

Once �γn+1 is known, one finds for the other variables

ε
peq
n+1 = ε

peq
n +

√
2
3�γn+1 (5.142)

q1,n+1 = −h1(ε
peq
n+1) (5.143)

q2,n+1 = q2,n −
√

2
3

[
h

eq
2 (ε

peq
n+1) − h

eq
2 (ε

peq
n )
] ξ trial

n+1

‖ξ trial
n+1‖

(5.144)

ε
p
n+1 = ε

p
n + �γn+1

ξ trial
n+1

‖ξ trial
n+1‖

(5.145)

σ n+1 = ∂�

∂εe

∣∣
∣∣
n+1

. (5.146)

5.3.3 Determination of the consistent elastoplastic tangent matrix

The consistent elastoplastic tangent matrix is the instantaneous slope of the stress–total
strain relationship. The term “consistent” points to the fact that the slope has to be deter-
mined for the actual numerical scheme used, that is, it depends on the numerical procedure
(using another scheme, e.g. the midpoint rule instead of backward Euler, will lead to
another slope). It is well known (Simo and Hughes 1997) that the slope derived for the
present numerical scheme deviates from the continuum tangent. Consistency of the slope
is a prerequisite for the quadratic convergence of the Newton–Raphson scheme.

For materials that are linear in the elastic range, Equation (5.146) reduces to

σ n+1 = C : εe
n+1 = C : (εn+1 − ε

p
n+1) (5.147)

where

C := ∂2�

∂εe∂εe . (5.148)

Substituting Equation (5.145), one now arrives at the following stress–strain relationship:

σ n+1 = C : (εn+1 − ε
p
n − �γn+1nn+1) (5.149)

where

nn+1 := ξn+1

‖ξn+1‖
= ξ trial

n+1

‖ξ trial
n+1‖

. (5.150)

Thus, the tangent relation at t = tn+1 takes the form

dσ n+1 = C : (dεn+1 − d�γn+1nn+1 − �γn+1 dnn+1). (5.151)

For an isotropic elastic material, C amounts to

C = 2µI + λI ⊗ I (5.152)
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where λ, µ are Lamé’s constants. Since n is deviatoric I : n = 0, one can write

C : n = 2µn (5.153)

and Equation (5.151) reduces to

dσ n+1 = C : dεn+1 − 2µ(d�γn+1nn+1 + �γn+1 dnn+1) (5.154)

or

dσ n+1 =
[
C − 2µ

(
nn+1 ⊗ ∂�γn+1

∂εn+1
+ �γn+1

∂nn+1

∂εn+1

)]
: dεn+1. (5.155)

The consistent elastoplastic tangent is the expression in square braces. To determine
∂�γn+1/∂εn+1, Equation (5.139) is differentiated with respect to εn+1:

∂‖ξ trial
n+1‖

∂εn+1
−
(

2µ + 2
3∂ε

peq
n+1

h
eq
2 + 2

3∂ε
peq
n+1

h1 + 2
3∂�ε

peq
n+1

g
) ∂�γn+1

∂εn+1
= 0. (5.156)

Since

∂‖ξ trial
n+1‖

∂εn+1
= ∂‖ξ trial

n+1‖
∂ξ trial

n+1

:
∂ξ trial

n+1

∂εn+1
(5.157)

and (combining Equation (5.135) with Equation (5.131))

ξ trial
n+1 = sn + 2µdev (εn+1 − εn) + q2,n (5.158)

one obtains (Equations (5.92) and (5.93))

∂‖ξ trial
n+1‖

∂εn+1
= nn+1 : 2µ

(
I − 1

3I ⊗ I
)

= 2µnn+1. (5.159)

Consequently,

∂�γn+1

∂εn+1
=
(

2µ + 2
3∂ε

peq
n+1

h
eq
2 + 2

3∂ε
peq
n+1

h1 + 2
3∂�ε

peq
n+1

g
)−1

2µnn+1. (5.160)

The derivative in the last term of Equation (5.155) yields

∂nn+1

∂εn+1
= ∂nn+1

∂ξ trial
n+1

:
∂ξ trial

n+1

∂εn+1

=
(

1

‖ξ trial
n+1‖

I − 1

‖ξ trial
n+1‖2

ξ trial
n+1 ⊗ ξ trial

n+1

‖ξ trial
n+1‖

)

: 2µ
(
I − 1

3I ⊗ I
)

= 2µ

‖ξ trial
n+1‖

(I − nn+1 ⊗ nn+1) :
(
I − 1

3I ⊗ I
)

= 2µ

‖ξ trial
n+1‖

(
I − 1

3I ⊗ I − nn+1 ⊗ nn+1

)
. (5.161)
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Substituting Equations (5.160) and (5.161) into Equation (5.155) finally yields

Cep = C − (2µ)2�γn+1

‖ξ trial
n+1‖

(
I − 1

3I ⊗ I − nn+1 ⊗ nn+1

)

− (2µ)2nn+1 ⊗ nn+1

(
2µ + 2

3∂ε
peq
n+1

h
eq
2 + 2

3∂ε
peq
n+1

h1 + 2
3∂�ε

peq
n+1

g
)−1

. (5.162)

It can be shown that for �γn+1 = 0, the continuum elastoplastic tangent is obtained (Simo
and Hughes 1997). Accordingly, because of the finite size of the increments, the consistent
numerical tangent deviates from the continuum tangent.

5.4 Three-dimensional Multisurface Viscoplasticity: the
Cailletaud Single Crystal Model

Single crystals are advanced metallic materials consisting of just one crystal. Substantial
progress made in the last two decades in casting technology enables the manufacturers to
control crystal growth in the liquid metal by carefully monitoring the cooling conditions.
Thus, a highly anisotropic material ensues, in contrast with the usual metallic materials
(polycrystals), in which the different orientations of the many crystals assure the isotropic
properties. In this section, the focus will be on nickel-base alloys, exhibiting a face cube
centered (FCC) crystal structure. A good reference on crystalline plasticity is (Havner
1992).

5.4.1 Theoretical considerations

In single crystals, viscoplasticity is mainly due to a crystallographic dislocation slip. Other
mechanisms will not be considered here. The crystallographic slip planes and directions
for nickel-base superalloys at high temperature are known (Méric et al. 1991) and can
be divided into octahedral slip systems (12 systems consisting of 4 {111} planes with 3
< 011 > directions per plane, Figure 5.7) and cubic slip systems (6 systems consisting of
3 {001} planes with 2 < 011 > directions per plane, Figure 5.8).

Accordingly, the slip planes and directions are explicitly known and are generally
denoted by their normal nβ and unit vector lβ respectively. Here, β stands for any of the
18 slip systems. For each slip system, an orientation tensor mβ is defined by

mβ := 1
2 (nβ ⊗ lβ + lβ ⊗ nβ). (5.163)

Whether dislocations move along a slip system basically depends on the shear stress com-
ponent τβ in the slip direction:

τβ = mβ : σ = (nβ ⊗ lβ) : σ = nβT · σ · lβ. (5.164)

This is really a one-dimensional system and we can fall back on yield-surface formulations
such as in Equation (5.41):

f β(σ , q) = |τβ + q
β

2 | + q
β

1 ≤ 0. (5.165)
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Figure 5.7 Octahedral slip systems

Figure 5.8 Cubic slip systems
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However, now we are dealing with 18 yield surfaces at the same time, which may intersect
each other at so-called corner points. This is an example of multisurface viscoplasticity.
The underlying theory has been developed in the 1950s and 1960s (Koiter 1960), and is a
straightforward extension of the one-dimensional derivation in Section 5.2. The governing
equations for m slip systems are

1. Elastic stress–strain relations

σ = ∂�

∂εe (5.166)

2. Internal variable relationships

q = −h(α) (5.167)

3. Yield surfaces

f β(σ , q) = 0 (5.168)

4. Evolution equations

ε̇p =
m∑

β=1

γ̇ β ∂f β(σ , q)

∂σ
(5.169)

α̇ =
m∑

β=1

γ̇ β ∂f β(σ , q)

∂q
(5.170)

5. Kuhn–Tucker conditions

γ̇ β ≥ 0, f β(σ , q) ≤ 0, γ̇ βf β(σ , q) = 0 (5.171)

6. Consistency conditions

γ̇ β ḟ β(σ , q) = 0. (5.172)

q is a vector of internal variables with a size that is usually a multiple of the number
of slip systems. In Equations (5.169) and (5.170), γ̇ β is only nonzero for the active slip
systems. In what follows, we will concentrate on a particular single crystal viscoplastic
model developed by Georges Cailletaud and coworkers, (Méric et al. 1991), (Méric and
Cailletaud 1991). For other single crystal models, see (Fedelich 2002) and (Meissonnier
et al. 2001). The Cailletaud model does not completely fit into the theory described by
Equations (5.166) to (5.171) because of the following two aspects:

1. The model is not associative, which means that the evolution equations are derived
from a function that differs from the yield surface.

2. The evolution equation, Equation (5.170), is modified by a term depending on the
total accumulated plasticity.
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Denoting the yield surfaces by hβ (not to confuse with h in Equation (5.167)), the extra
term for α̇ by w and the creep term (viscous term) by gβ(γ̇ β), one obtains

1. Elastic stress–strain relations

σ = ∂�

∂εe (5.173)

2. Internal variable relationships

q = −h(α) (5.174)

3. Yield surfaces

hβ(σ , q) = gβ(γ̇ β) (5.175)

4. Evolution equations

ε̇p =
m∑

β=1

γ̇ β ∂f β(σ , q)

∂σ
(5.176)

α̇ =
m∑

β=1

γ̇ β

[
∂f β(σ , q)

∂q
+ wβ

(∫ t

0
γ̇ β dt

)]
(5.177)

5. Kuhn–Tucker conditions

γ̇ β ≥ 0, hβ(σ , q) ≤ 0, γ βhβ(σ , q) = 0 (5.178)

6. Consistency conditions

γ̇ β ḣβ(σ , q) = 0. (5.179)

Specifically, in the Cailletaud model, there are 2m internal dynamic variables, which
will be denoted by q

β

1 , q
β

2 , β = 1, . . . , m. The internal variable relationships take the form

q
β

1 = −bβQβα
β

1 (5.180)

q
β

2 = −cβα
β

2 (5.181)

where bβ , Qβ and cβ, β = 1, . . . , m are constants. Consequently, Equations (5.180) and
(5.181) are linear. The yield surfaces are defined by

hβ(σ , q) :=
∣
∣
∣τβ + q

β

2

∣
∣
∣− r

β

0 +
m∑

α=1

Hβαqα
1 . (5.182)

The parameters r
β

0 are the initial yield values and Hβα are the interaction coefficients
between the slip systems. Equation (5.182) is a slightly more complicated form than
Equation (5.165). The potential function for the evolution equations reads

f β(σ , q) :=
∣
∣
∣τβ + q

β

2

∣
∣
∣+ q

β

1 + dβ

2cβ
(q

β

2 )2 + 1

2Qβ
(q

β

1 )2. (5.183)
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This is the yield function in Equation (5.165), augmented by quadratic terms in q
β

1 and q
β

2 .
The parameters dβ, β = 1, . . . , m are constants, cβ and Qβ already appeared in the internal
variable relationships. The only functions left are gβ and wβ . They will be specified in the
next section.

5.4.2 Numerical aspects

The numerical procedure to solve Equations (5.173) to (5.179) is totally similar to the
methods treated in the previous sections. The two basic considerations in the analysis are

1. The procedure is strain-driven, that is, we start from a given increment �εn+1 =
εn+1 − εn and look for the corresponding stress and tangent-stiffness matrix.

2. A trial-and-error procedure is used, starting from the assumption that the step is
purely elastic. A verification of the yield condition tells us whether this assumption
is right.

Consequently, we assume in step n + 1

αn+1 = αn (5.184)

ε
p
n+1 = εp (5.185)

γ
β

n+1 = γ β
n , β = 1, . . . , m. (5.186)

The stress is obtained from Equation (5.173). Now, the yield surfaces are verified. If

hβ(σ , q) ≤ 0, ∀ β ∈ {1, . . . , m} (5.187)

then the step is elastic and the solution is found. Equation (5.173) yields the stress, the
tangent-stiffness matrix is the elasticity tensor. If

B
(0)
act := {β|hβ(σ , q) > 0} �= ∅ (5.188)

plastic flow takes place. B
(0)
act is the initial set of active slip planes. Equations (5.173) and

(5.174) lead to

σ̇ = C : (ε̇ − ε̇p) (5.189)

q̇ = −∂h

∂α
: α̇ =: −D : α̇. (5.190)

For the Cailletaud model, D is a constant matrix. Using a backward Euler scheme, Equa-
tions (5.189) and (5.190) and Equations (5.175) to (5.177) can be rewritten as

�σ n+1 = Cn+1 : (�εn+1 − �ε
p
n+1) (5.191)

�qn+1 = −Dn+1 : �αn+1 (5.192)

hβ(σ n+1, qn+1) = gβ(�γ
β

n+1), β ∈ B
(0)
act (5.193)

�ε
p
n+1 =

∑

β∈B
(0)
act

�γ
β

n+1∂σ f β(σ n+1, qn+1) (5.194)
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�αn+1 =
∑

β∈B
(0)
act

�γ
β

n+1∂qf β(σ n+1, qn+1). (5.195)

The abbreviations

∂σ f β := ∂f β

∂σ
(5.196)

and likewise for the derivative with respect to q were used, and the functions wβ were
dropped for now. Notice that only the active slip planes are considered in Equations (5.193)
to (5.195)! Substituting Equations (5.191) and (5.192) into Equations (5.193) to (5.195) one
finally obtains

hβ(σ n+1, qn+1) = gβ(�γ
β

n+1), β ∈ B
(0)
act (5.197)

�εn+1 − C−1
n+1 : �σ n+1 =

∑

β∈B
(0)
act

�γ
β

n+1∂σ f β(σ n+1, qn+1) (5.198)

−D−1
n+1 : �qn+1 =

∑

β∈B
(0)
act

�γ
β

n+1∂qf β(σ n+1, qn+1). (5.199)

If mact is the number of active slip planes, Equation (5.197) represents mact equations,
Equation (5.198) represents 6 equations and Equation (5.199) represents 2 × mact equations
in the unknowns σ n+1 (6), qn+1 (2 × mact) and �γ

β

n+1 (mact). Hence, we obtain 3 × mact +
6 equations in 3 × mact + 6 unknowns. For the inactive slip planes, Equations (5.184) to
(5.186) apply. Equations (5.197) to (5.199) are the basis for our further consideration.

5.4.3 Stress update algorithm
The stress can be determined by solving Equations (5.197) to (5.199) for �σ n+1. Since
these equations are nonlinear, a Newton–Raphson iterative technique is used for their solu-
tion (cf Section 3.1). Assume that we have an intermediate solution denoted by a superscript
(k). To obtain a better approximation, the Equations (5.197) to (5.199) are linearized at the
solution (k) and solved. Denoting

h
β

n+1 := hβ(σ n+1, qn+1) (5.200)

and similarly for f and g, linearization yields
[
h

β(k)

n+1 − g
(k)
n+1

]
+ ∂σ h

β(k)

n+1 : �σ
(k)
n+1 + ∂qh

β(k)

n+1 : �q
(k)
n+1 − ∂�γ g

β(k)

n+1 ��γ
β(k)

n+1 = 0 (5.201)




−ε

p
n+1 + ε

p
n +

∑

β∈B
(k)
act

�γ
β

n+1∂σ f
β

n+1






(k)

+ C
−1(k)
n+1 : �σ

(k)
n+1

+
∑

β∈B
(k)
act

��γ
β(k)

n+1 ∂σ f
β(k)

n+1

+
∑

β∈B
(k)
act

�γ
β(k)

n+1

[
∂2
σσ f

β

n+1 : �σ n+1 + ∂2
σqf

β

n+1 : �qn+1

](k) = 0 (5.202)
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−αn+1 + αn +

∑

β∈B
(k)
act

�γ
β

n+1∂qf
β

n+1






(k)

+ D
−1(k)
n+1 : �q

(k)
n+1

+
∑

β∈B
(k)
act

��γ
β(k)

n+1 ∂qf
β(k)

n+1

+
∑

β∈B
(k)
act

�γ
β(k)

n+1

[
∂2
qσ f

β

n+1 : �σ n+1 + ∂2
qqf

β

n+1 : �qn+1

](k) = 0 (5.203)

where

�σ
(k)
n+1 := σ

(k+1)
n+1 − σ

(k)
n+1 (5.204)

�q
(k)
n+1 := q

(k+1)
n+1 − q

(k)
n+1 (5.205)

��γ
β(k)

n+1 := �γ
β(k+1)

n+1 − �γ
β(k)

n+1 . (5.206)

Notice that in the above derivation, �εn+1 as well as all quantities with the superscript (k)

are assumed to be given (the process is strain-driven). The first terms in square brackets
in each equation are the function values of Equations (5.193) to (5.195), equivalent to
f (x0) − F in Equation (3.2). If the equations are satisfied, these function values should be
zero. Therefore, they are also called the residual. The other terms in the equations are the
gradients. Equations (5.201) to (5.203) are linear in ��γ

β(k)

n+1 , �σ
(k)
n+1 and �q

(k)
n+1. Defining

{
R

(k)
n+1

}
:=
{−ε

p
n+1 + ε

p
n

−αn+1 + αn

}(k)

+
∑

β∈B
(k)
act

�γ
β(k)

n+1

{
∂σ f

β

n+1

∂qf
β

n+1

}(k)

(5.207)

which is the residual of Equations (5.202) to (5.203),

[
A

(k)
n+1

]−1

:=



C−1

n+1 +∑
β∈B

(k)
act

�γ
β

n+1∂
2
σσ f

β

n+1

∑
β∈B

(k)
act

�γ
β

n+1∂
2
σqf

β

n+1
∑

β∈B
(k)
act

�γ
β

n+1∂
2
qσ f

β

n+1 D−1
n+1 +∑

β∈B
(k)
act

�γ
β

n+1∂
2
qqf

β

n+1





(k)

(5.208)

and finally

{
F

β(k)

n+1

}
:=





∂σ f
β

n+1

∂qf
β

n+1






(k)

(5.209)

{
H

β(k)

n+1

}
:=





∂σ h
β

n+1

∂qh
β

n+1






(k)

(5.210)
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then Equations (5.202) and (5.203) can be written as

{
R

(k)
n+1

}
+
[
A

(k)
n+1

]−1
:






�σ
(k)
n+1

�q
(k)
n+1





+
∑

β∈B
(k)
act

��γ
β(k)

n+1

{
F

β(k)

n+1

}
= 0 (5.211)

which is equivalent to

[
A

(k)
n+1

]
:
{
R

(k)
n+1

}
+





�σ
(k)
n+1

�q
(k)
n+1





+
∑

β∈B
(k)
act

��γ
β(k)

n+1

[
A

(k)
n+1

]
:
{
F

β(k)

n+1

}
= 0. (5.212)

From Equation (5.201), one gets

(
h

β(k)

n+1 − g
β(k)

n+1

)
+
{
H

β(k)

n+1

}T
:






�σ
(k)
n+1

�q
(k)
n+1





− ∂�γ g

β(k)

n+1 ��γ
β(k)

n+1 = 0. (5.213)

Premultiplying Equation (5.212) by
{
H

α(k)
n+1

}T
and inserting Equation (5.213) leads to

{
H

α(k)
n+1

}T
:
[
A

(k)
n+1

]
:
{
R

(k)
n+1

}
+ ∂�γ g

α(k)
n+1��γ

α(k)
n+1 −

(
h

α(k)
n+1 − g

α(k)
n+1

)

+
∑

β∈B
(k)
act

��γ
β(k)

n+1

{
H

α(k)
n+1

}T
:
[
A

(k)
n+1

]
:
{
F

β(k)

n+1

}
= 0, α ∈ B

(k)
act . (5.214)

Defining

(Gαβ)
(k)
n+1 :=

{
H

α(k)
n+1

}T
:
[
A

(k)
n+1

]
:
{
F

β(k)

n+1

}
+ ∂�γ g

β(k)

n+1 δαβ (5.215)

Equation (5.214) can be rewritten as
∑

β∈B
(k)
act

(Gαβ)
(k)
n+1��γ

β(k)

n+1 =
(
h

α(k)
n+1 − g

α(k)
n+1

)
−
{
H

α(k)
n+1

}T
:
[
A

(k)
n+1

]
:
{
R

(k)
n+1

}
, α ∈ B

(k)
act .

(5.216)

These are m
(k)
act linear equations in m

(k)
act unknowns. Their solution yields ��γ

β(k)

n+1 , β ∈ B
(k)
act .

Substituting into Equation (5.212) yields an expression for �σ
(k)
n+1 and �q

(k)
n+1 and iteration

(k) seems to be finished. However, there is one further consideration to be taken into
account. Equation (5.188), which defines the active slip systems, is not completely correct
in the sense that it constitutes a necessary condition to be an active system but not a
sufficient one. Indeed, because of the presence of corner points in the yield surface, the
consistency parameter after iteration k + 1 (Equation (5.206)),

�γ
(k+1)
n+1 := �γ

(k)
n+1 + ��γ

(k)
n+1 (5.217)

is not necessarily positive. For details the reader is referred to (Simo and Hughes 1997). All
active planes for which �γ

(k+1)
n+1 ≤ 0 have to be removed from B

(k)
act and Equation (5.216)

has to be solved again until for all active slip systems �γ
(k+1)
n+1 > 0. Accordingly, the
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number of active slip systems can decrease from iteration to iteration, which is symbolized
by the superscript (k) on B

(k)
act .

What form do the above equations take in the Cailletaud model? Recall that the potential
for the evolution equations is defined by

f β(σ , q) := |σ : mβ + q
β

2 | + q
β

1 + dβ

2cβ
(q

β

2 )2 + 1

2Qβ
(q

β

1 )2. (5.218)

Consequently,

∂σ f
β

n+1 = mβsgn(τ
β

n+1 + q
β

2,n+1) (5.219)

∂qf
β

n+1 =






0

...

0

1 + q
β
1

Qβ

sgn(τβ + q
β

2 ) + dβ

cβ q
β

2

0

...

0






← row(2β − 1)

← row(2β)

← row(2m)

. (5.220)

In Equation (5.177), ∂qf
β

n+1 was modified by a function wβ taking the total plasticity into
account. In the Cailletaud model, wβ is defined by

wβ :=






0

...

0

(ϕβ − 1)sgn(τβ + q
β

2 )

0

...

0






← row(2β) (5.221)

where

ϕβ := φβ + (1 − φβ)e−δβ
∫ t

0 γ̇ β dt . (5.222)

The parameters φβ and δβ are material constants. In the numerical procedure, the accumu-
lated plasticity in step n + 1 can be approximated by

∫ t

0
γ̇ β dt ≈

n∑

i=1

�γ
β
i + �γ

β(k)

n+1 . (5.223)
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In our derivation, the effect of wβ will be incorporated into a modified ∂qf
β

n+1:

∂qf
β∗
n+1 =






0

...

0

1 + q
β
1

Qβ

ϕβsgn(τβ + q
β

2 ) + dβ

cβ q
β

2

0

...

0






← row(2β − 1)

← row(2β)

← row(2m)

. (5.224)

This modified value will be used instead of the original value in all previously derived
formulas. Notice that theoretically we now have

∂qf
β

n+1(σ n+1, qn+1, �γ
β

n+1) (5.225)

that is, ∂qf
β

n+1 is not only a function of σ n+1 and qn+1, but also of �γ
β

n+1. Accordingly,
the linearization of Equation (5.199) is not completely correct any more. This effect will
be neglected. It will at most slow down convergence. The second derivatives yield

∂2
σσ f

β

n+1 = 0 (6 × 6 matrix) (5.226)

∂2
σqf

β

n+1 = 0 (6 × 2m matrix) (5.227)

∂2
qσ f

β

n+1 = 0 (2m × 6 matrix) (5.228)

∂2
qqf

β

n+1 =













0 0 0

0
1

Qβ 0

0 dβ

cβ

0

0 0 0













(2m × 2m matrix) (5.229)

where the submatrix in Equation (5.229) occupies rows and columns (2β − 1) and 2β.
From Equations (5.180), (5.181) and (5.190) one finds

D = Diag(b1Q1, c1, b2Q2, . . . , bmQm, cm). (5.230)
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Consequently (Equation (5.173)),

{
F

β(k)
n+1

}
=






mβsgn(τ
β
n+1 + q

β
2,n+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0

.

..

0

1 + q
β
1,n+1
Qβ

ϕβ sgn(τ
β
n+1 + q

β
2,n+1) + dβ

cβ q
β
2,n+1

0

.

..

0






(k)

← row(2β + 5)

← row(2β + 6)

(5.231)

and (Equation (5.209))

[
A

(k)
n+1

]−1 = Diag

(
C

−1
n+1

.

..
1

b1Q1
+ �γ 1

n+1
1

Q1
,

1

c1
+ �γ 1

n+1
d1

c1
,

1

b2Q2
+ �γ 2

n+1
1

Q2
, . . .

)(k)

.

(5.232)

The sum over B
(k)
act in Equation (5.208) was replaced by a sum over all slip systems since

�γn+1 = 0 for an inactive slip system. Combining Equations (5.231) and (5.232), one
obtains

[
A

(k)
n+1

]
:
{
F

β(k)
n+1

}
=






Cn+1 : mβ sgn(τ
β
n+1 + q

β
2,n+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0

..

.

0

Qβ+q
β
1

1
bβ +�γ

β
n+1

ϕβcβ sgn(τ
β
n+1+q

β
2,n+1)+dβq

β
2,n+1

1+�γ
β
n+1dβ

0

..

.

0






(k)

← row(2β + 5)

← row(2β + 6)

. (5.233)

Now recall the expression for the yield surface in the Cailletaud model:

hβ(σ , q) := |σ : mβ + q
β

2 | − r
β

0 +
m∑

α=1

Hβαqα
1 . (5.234)
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Differentiation yields

∂σ h
β

n+1 = mβsgn(τ
β

n+1 + q
β

2,n+1) (5.235)

∂qδ
1
h

β

n+1 =
m∑

α=1

Hβαδαδ = Hβδ (5.236)

∂qδ
2
h

β

n+1 = sgn(τ
β

n+1 + q
β

2,n+1) · δβδ. (5.237)

In matrix form,

{
H

β(k)

n+1

}
=






mβsgn(τ
β

n+1 + q
β

2,n+1)

. . . . . . . . . . . . . . . . . . . .

Hβ1

0

Hβ2

0

...

Hββ

sgn(τ
β

n+1 + q
β

2,n+1)

Hβ(β+1)

...

Hβm

0






(k)

. (5.238)

Hence (Equation (5.215)),

(Gββ)
(k)
n+1 = mβ : Cn+1 : mβ + Hββ

[
Qβ + q

β(k)

1,n+1

]

[
1
bβ + �γ

β(k)

n+1

]

+
[
ϕβcβ + dβq

β(k)

2,n+1sgn(τ
β(k)

n+1 + q
β(k)

2,n+1)
]

[
1 + �γ

β(k)

n+1 dβ
] + ∂�γ g

β(k)

n+1 (5.239)

(Gαβ)
(k)
n+1 = mα : Cn+1 : mβsgn(τ

β(k)

n+1 + q
β(k)

2,n+1)sgn(τ
α(k)
n+1 + q

α(k)
2,n+1)

+ Hαβ

[
Qβ + q

β(k)

1,n+1

]

[
1
bβ + �γ

β(k)

n+1

] , α �= β. (5.240)
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For the right-hand side of Equation (5.216), the following term is needed:

{
T α

n+1

}
:=
({

H
α(k)
n+1

}T
:
[
A

(k)
n+1

])T

=






Cn+1 : mαsgn(τα
n+1 + qα

2,n+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Hα1Q
1

(1/b1)+�γ 1
n+1

0

Hα2Q
2

(1/b2)+�γ 2
n+1

0

...

HααQα

(1/bα)+�γ α
n+1

cαsgn(τα
n+1+qα

2,n+1)

1+�γ α
n+1dα

...

HαmQm

(1/bm)+�γ m
n+1

0






(k)

. (5.241)

The only function left to be specified is the creep function g. In the Cailletaud model,
the relationship between the viscous shear strain rate and the shear stress in a slip plane is
defined by

∣
∣∣ε̇pβ

τ

∣
∣∣ =

〈
τβ

Kβ

〉nβ

(5.242)

where < x >= x for x ≥ 0 and < x >= 0 for x < 0. Kβ and nβ are material constants.
The total viscous strain rate is related to the slip plane shear strain rates by (Koiter 1960)

ε̇p =
m∑

β=1

ε̇
pβ
τ mβ . (5.243)

Now, combining Equations (5.169) and (5.219) yields

ε̇p =
m∑

β=1

γ̇ βmβsgn(τ
β

n+1 + q
β

2,n+1). (5.244)

Comparison of Equations (5.243) and (5.244) yields

γ̇ β =
∣∣
∣ε̇pβ

τ

∣∣
∣ (5.245)

since the applied shear stress and resulting shear strain rate have the same sign. Hence,
Equation (5.242) can be written as

γ̇ β =
〈

τβ

Kβ

〉nβ

. (5.246)
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In the viscoplastic theory, the stress gβ by which the yield surface is exceeded is to be
relaxed by creep, that is,

< τβ >= gβ. (5.247)

Consequently,

gβ(γ̇ β) = Kβ(γ̇ β)(1/nβ) (5.248)

= Kβ

(
�γ β

�t

)(1/nβ)

(5.249)

and

∂�γ g
β(k)

n+1 = Kβ

nβ�t

(
�γ

β(k)

n+1

�t

) 1
nβ −1

. (5.250)

The last expression is used in Equation (5.239).
Summarizing, one arrives at the following algorithm to obtain σ n+1 from σ n:

1. Compute the elastic predictor and the value of the yield surfaces

ε
p,trial
n+1 = ε

p
n (5.251)

q trial
n+1 = qn (5.252)

�γ trial
n+1 = 0 (5.253)

σ trial
n+1 = Cn : (εn+1 − ε

p,trial
n+1 ) (5.254)

h
β,trial
n+1 =

∣
∣∣mβ : σ trial

n+1 + q trial
2,n+1

∣
∣∣− r

β

0 +
m∑

α=1

Hβαq
α,trial
1,n+1. (5.255)

Notice that gβ(�γ trial
n+1) = 0.

2. Check for plasticity.

If h
β,trial
n+1 ≤ 0, ∀β: step n + 1 is elastic, that is,

σ n+1 = σ trial
n+1 (5.256)

the values at t = tn+1 are the trial values: the solution is found.

else

B
(0)
act =

{
β ∈ {1, . . . , m}|hβ,trial

n+1 > 0
}

(5.257)

ε
p(0)

n+1 = ε
p
n (5.258)

α
(0)
n+1 = αn (5.259)

�γ
β(0)

n+1 = 0, β = 1, 2, . . . , m. (5.260)

endif
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3. Start of the outer loop

calculate σ
(k)
n+1 and q

(k)
n+1 from ε

p(k)

n+1 and α
(k)
n+1 and check if the flow rule and the

evolution equations are satisfied.

σ
(k)
n+1 = Cn+1 : (εn+1 − ε

p(k)

n+1) (5.261)

q
(k)
n+1 = −Dn+1 : α

(k)
n+1 (5.262)

{
R

(k)
n+1

}
=
{

−ε
p
n+1 + ε

p
n

−αn+1 + αn

}(k)

+
∑

β∈B
(k)
act

{
F

β(k)

n+1

}
(5.263)

h
β(k)

n+1 − g
β(k)

n+1 =
∣∣
∣mβ : σ

(k)
n+1 + q

β(k)

2,n+1

∣∣
∣− r

β

0 +
m∑

α=1

Hβαq
α(k)
1,n+1

−Kβ

(
�γ

β(k)

n+1

�t

) 1
nβ

(5.264)

if
∣
∣∣hβ(k)

n+1 − g
β(k)

n+1

∣
∣∣ < TOL and

∥
∥∥R(k)

n+1

∥
∥∥ < TOL, leave the outer loop.

4. Start of the inner loop

determine ��γ
β(k)

n+1 by Equation (5.216) without creep effects.

If �γ
β(k+1)

n+1 := �γ
β(k)

n+1 + ��γ
β(k)

n+1 > 0, ∀β ∈ B
(k)
act then

recalculate ��γ
β(k)

n+1 by Equation (5.216) with creep effects and exit inner
loop.

else

remove the inactive slip planes from B
(k)
act and reiterate the inner loop.

endif

End of the inner loop

5. Update the internal variables

Determine

{
�σ

(k)
n+1

�q
(k)
n+1

}

from Equation (5.212).

{
�ε

p
n+1

�αn+1

}(k)

= −
[
C−1

n+1 0

0 D−1
n+1

](k)

:

{
�σ

(k)
n+1

�q
(k)
n+1

}

(5.265)

ε
p(k+1)

n+1 = ε
p(k)

n+1 + �ε
p(k)

n+1 (5.266)

α
(k+1)
n+1 = α

(k)
n+1 + �α

(k)
n+1 (5.267)

�γ
β(k+1)

n+1 = �γ
β(k)

n+1 + ��γ
β(k)

n+1 (5.268)

set k ← k + 1 and reiterate the outer loop.
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6. End of outer loop. Now, the determination of the plastic tangent modulus can start.

Finally, two more remarks:

(a) It is advantageous to substitute Equation (5.265) directly into Equation (5.212)
yielding

{
�ε

p
n+1

�αn+1

}(k)

=
[
C−1

n+1 0

0 D−1
n+1

](k)

:
[
A

(k)
n+1

]
:

:
{{

R
(k)
n+1

}
+∑

β∈B
(k)
act

{
F

β(k)

n+1

}
��γ

β(k)

n+1

}
(5.269)

where (Equation (5.232)),

[
C−1 0

0 D−1

](k)

n+1
:
[
A

(k)
n+1

]

= Diag

(

I
...

1

1 + b1�γ 1
n+1

,
1

1 + d1�γ 1
n+1

,
1

1 + b2�γ 2
n+1

, . . .

)(k)

. (5.270)

(b) The inner loop is necessary to determine the active slip planes (cf (Simo and Hughes
1997) for more details). In the determination process, the viscous terms are dropped
to make sure that the viscous procedure converges in the limit to the same point on
the yield surface as the inviscid formulation.

5.4.4 Determination of the consistent elastoplastic tangent matrix

The determination of the consistent elastoplastic moduli also starts from Equations (5.197)
to (5.199). We have attained equilibrium for t = tn+1, that is, Equations (5.197) to (5.199)
are identically satisfied and we would like to know how σ changes if ε is perturbed.
Therefore, we differentiate these equations:

∂σ h
β

n+1 : dσ n+1 + ∂qh
β

n+1 : dqn+1 − ∂�γ g
β

n+1 · d�γ
β

n+1 = 0 (5.271)

− dεn+1 + C−1
n+1 : dσ n+1 +

∑

β∈B
(k)
act

d�γ
β

n+1∂σ f
β

n+1

+
∑

β∈B
(k)
act

�γ
β

n+1

(
∂2
σσ f

β

n+1 : dσ n+1 + ∂2
σqf

β

n+1 : dqn+1

)
= 0 (5.272)

D−1
n+1 : dqn+1 +

∑

β∈B
(k)
act

d�γ
β

n+1∂qf
β

n+1

+
∑

β∈B
(k)
act

�γ
β

n+1

(
∂2
qσ f

β

n+1 : dσ n+1 + ∂2
qqf

β

n+1 : dqn+1

)
= 0. (5.273)
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These equations are very similar to Equations (5.201) to (5.203). In fact, by replacing
{
R

(k)
n+1

}
by −

{
dεn+1

0

}
, h

α(k)
n+1 − g

α(k)
n+1 by 0, � by d and dropping the superindex (k), they

are identical. Hence, by comparing with Equation (5.216), one arrives at the following set
of equations:

∑

β∈Bact

(Gαβ)n+1 d�γ
β

n+1 = {T α
n+1

}T
:

{
dεn+1

0

}

, α ∈ Bact (5.274)

yielding

d�γ
β

n+1 =



∑

α∈Bact

(G−1βα)n+1
{
T α

n+1

}T



 :

{
dεn+1

0

}

, β ∈ Bact. (5.275)

The equivalent equation of Equation (5.212) reads

{
dσ n+1
dqn+1

}
= [An+1

]
:

{{
dεn+1

0

}
−∑β∈Bact

{
F

β

n+1

}
dγ

β

n+1

}

= [An+1
]

:

[[
I
]−

∑

β∈Bact

∑

α∈Bact

(G−1βα)n+1

{
F

β

n+1

}
⊗ {T α

n+1

}T]
:

{
dεn+1

0

}
. (5.276)

Only the relationship between dσ n+1 and dεn+1 is needed, hence (Equations (5.231),
(5.232) and (5.241)),

{
dσ n+1

} = [Cn+1 −
∑

β∈Bact

∑

α∈Bact

Cn+1 : mβsgn(τ
β

n+1 + q
β

2,n+1)(G
−1βα)n+1 ⊗

⊗ mα : Cn+1sgn(τα
n+1 + qα

2,n+1)] :
{
dεn+1

}
. (5.277)

Hence, the consistent elastoplastic stiffness matrix C
ep
n+1 satisfies

C
ep
n+1 = Cn+1 −

∑

β∈Bact

∑

α∈Bact

(G−1βα)n+1M
β ⊗ MαT (5.278)

where

Mα := Cn+1 : mαsgn(τα
n+1 + qα

2,n+1). (5.279)

Equation (5.278) shows that each active slip plane modifies the stiffness matrix (without
plastic flow, the consistent elastoplastic stiffness matrix reduces to the elasticity matrix).
Since

[
G
]

is not necessarily symmetric (cf Equation (5.240)), Cep is not necessarily sym-
metric either. In practice, the matrix is often symmetrized by adding the transpose and
dividing by two.

5.4.5 Tensile test on an anisotropic material

Consider the tensile specimen in Figure 5.9. The axis of the specimen coincides with the
z-axis. The orientation of the anisotropic material is defined by the x′-y′-z′ axis system.
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Figure 5.9 Geometry of the tensile specimen
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Figure 5.10 Accumulated plastic slip

The y- and y′-axes coincide, whereas the z- and z′-axis include an angle θ . A constant force
F is applied at the end of the specimen in the z-direction. Now we look at what happens
if we vary the angle θ from 0◦ to 90◦. In particular, we investigate the accumulated plastic
slip in two different slip systems: the first slip system is octahedral and is characterized
by n = (1, 1, 1) and l = (1, 0, −1), the second is a cubic slip system and is defined by
n = (0, 0, 1) and l = (1, −1, 0). The slip systems are defined in the local x′-y′-z′ system.

Figure 5.10 shows that the octahedral slip system is activated if the global axes and
the material axes are aligned. Then, the slip direction that is considered includes an angle
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of 45◦ with the loading axis, leading to a large slip. The cubic slip system is activated
especially for angles close to θ = 45◦. Here again, the angle between the slip direction and
the loading direction is maximized.

5.5 Anisotropic Elasticity with a von Mises–type
Yield Surface

In the previous section, we introduced the Cailletaud model for single crystals. In order to
use the model, 21 parameters must be determined (3 elastic constants and 9 viscoplastic
constants for each slip system) for the relevant temperature range. This is a huge and
expensive task. Therefore, one frequently resorts to the following approximation: the elastic
range is properly described by the anisotropic elasticity tensor. The yield surface, however,
is assumed to be isotropic of the von Mises form. In this respect, the equations are similar to
the ones in Section 5.3.1. However, because of the anisotropic elastic behavior, the solution
method is more complex and closely linked to the solution procedure in the Cailletaud
model.

5.5.1 Basic equations

The governing equations are merely a concretization of Equations (5.76) to (5.83):

1. Elastic stress–strain relation

σ = C : (ε − εp). (5.280)

2. Internal variable relationships

Two internal variables are used: an isotropic scalar variable q1 denoting the radius
of the elastic domain in deviatoric stress space and a kinematic tensor variable q2
denoting its center. The relationship between the internal variables in stress space
{q1, q2} and the corresponding ones in strain space {α1, α2} is assumed to be linear.
A generalization to other functional relationships is no problem.

q1 = −d1α1 (5.281)

q2 = − 2
3d2α2. (5.282)

The factor 2
3 is introduced such that the equivalent quantities satisfy (cf Equation

(5.10))

q
eq
2 = d2α

eq
2 . (5.283)

3. Yield surface (Equation (5.89))

‖dev (σ ) + q2‖ +
√

2
3 (q1 − r0) = 0. (5.284)

The parameter r0 is the yield stress at zero-equivalent plastic strain.
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4. Evolution equations

In the associative theory, they are derived from the yield surface in the form of
Equations (5.79) and (5.80) and, for a von Mises type surface, Equations (5.95) to
(5.97):

ε̇p = γ̇n (5.285)

α̇1 = γ̇

√
2
3 (5.286)

α̇2 = γ̇n (5.287)

where

n := ξ

‖ξ‖ (5.288)

and

ξ := dev (σ ) + q2. (5.289)

5. Kuhn–Tucker equations

γ̇ ≥ 0, f (σ , q1, q2) ≤ 0, γ̇ f (σ , q1, q2) = 0. (5.290)

6. Consistency condition

γ̇ ḟ (σ , q1, q2) = 0. (5.291)

Viscous effects are taken into account by a Norton-type law

ε̇peq = A(σvm)n (5.292)

or

σvm = g(ε̇peq) =
(

ε̇peq

A

)(1/n)

(5.293)

and Equation (5.284) is replaced by

‖dev (σ ) + q2‖ +
√

2
3

[
q1 − r0 − g(ε̇peq)

] = 0. (5.294)

Finally, recall that (Equations (5.112) and (5.113))

α1 = α
eq
2 = εpeq =

√
2
3γ. (5.295)

5.5.2 Numerical procedure

Starting from known quantities at time t = tn, the solution at t = tn+1 is what
is being looked for. Using the trial-and-error procedure explained in previous
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sections, we first assume that no plasticity takes place in [tn, tn+1]. Consequently
(Equations (5.114)–(5.118)),

ε
p
n+1 = ε

p
n (5.296)

q1,n+1 = q1,n (5.297)

q2,n+1 = q2,n (5.298)

γn+1 = γn (5.299)

σ n+1 = C : (εn+1 − ε
p
n+1). (5.300)

If

‖dev (σ n+1) + q2,n+1‖ +
√

2
3 (q1,n+1 − r0) ≤ 0 (5.301)

the assumption was right and the solution at t = tn+1 is found. If Equation (5.301) is not
satisfied, the following set of 24 equations in 24 unknowns, obtained by backward Euler
discretization of Equations (5.279) to (5.282), (5.285) to (5.287) and (5.294) has to be
solved:

�σ n+1 = Cn+1 : (�εn+1 − �ε
p
n+1) (6 equations) (5.302)

�q1,n+1 = −d1�α1,n+1 (1 equation) (5.303)

�q2,n+1 = − 2
3d2�α2,n+1 (5 equations) (5.304)

‖dev (σ n+1) + q2,n+1‖ +
√

2
3

[
q1,n+1 − r0 − g

(√
2
3�γn+1

)]
= 0 (1 equation)

(5.305)

�ε
p
n+1 = �γn+1nn+1 (5 equations) (5.306)

�α1,n+1 = �γn+1

√
2
3 (1 equation) (5.307)

�α2,n+1 = �γn+1nn+1 (5 equations) (5.308)

in the unknowns �σ n+1 (6), �q1,n+1 (1), �q2,n+1 (5), �γn+1 (1), �ε
p
n+1 (5), �α1,n+1

(1) and �α2,n+1 (5). Because of the anisotropic character of Equation (5.302), the solution
method of Section 5.3 cannot be used. However, notice the similarity of Equations (5.302)
to (5.308) to Equations (5.191) to (5.195). Indeed, since

nn+1 = ∂σ f (σ n+1, q1,n+1, q2,n+1) (5.309)

the present set of equations can be considered as a special case of Equations (5.191) to
(5.195) for h = f , q := {q1, q2}, g replaced by

√
2/3 g and just 1 slip system. Focusing

on the solution method starting at Equation (5.207), one obtains the following residual:

{
R

(k)
n+1

}
=





−ε
p
n+1 + ε

p
n

−α1,n+1 + α1,n

−α2,n+1 + α2,n






(k)

+ �γ
(k)
n+1






nn+1√
2
3

nn+1






(k)

. (5.310)
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For the determination of
[
A

(k)
n+1

]−1
, the second derivatives of f with respect to σ and q

are needed. Using Equations (5.90) to (5.93) one arrives at

∂2
σσ f = ∂

∂σ

ξ

‖ξ‖ = 1

‖ξ‖
∂

∂σ
(ξ) − 1

‖ξ‖2
ξ ⊗ ∂

∂σ
‖ξ‖

= 1

‖ξ‖
(
I − 1

3I ⊗ I
)

− 1

‖ξ‖2
ξ ⊗ ξ

‖ξ‖ (5.311)

= 1

‖ξ‖
(
I − 1

3I ⊗ I − n ⊗ n
)

(5.312)

and in a similar way,

∂2
q2q2

f = ∂2
σq2

f = ∂2
q2σ

f = ∂2
σσ f = χ

‖ξ‖ (5.313)

where

χ := I − 1
3I ⊗ I − n ⊗ n. (5.314)

Let B be a fourth-order tensor of the form

B := aI + bI ⊗ I + cn ⊗ n (5.315)

with a, b, c ∈ R,

‖n‖ = 1 (5.316)

and n is deviatoric:

n : I = 0. (5.317)

Since fourth-order tensors in three-dimensional space can be viewed as 9 × 9 matrices,
we know that tensor contraction (A : B) is associative and that there is a neutral element
I. However, for tensors of the form in Equation (5.315), contraction is also commutative.
Indeed,

(a1I + b1I ⊗ I + c1n ⊗ n) : (a2I + b2I ⊗ I + c2n ⊗ n)

= a1a2I + (a1b2 + b1a2 + 3b1b2)I ⊗ I + (a1c2 + c1a2 + c1c2)n ⊗ n (5.318)

which is symmetric in the indices 1 and 2. Straightforward calculation shows that

B−1 = 1

a

(
I − b

a + 3b
I ⊗ I − c

a + c
n ⊗ n

)
(5.319)

and

A : χ = χ : A = aχ . (5.320)
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Now, Equation (5.208) reduces to the following form:

[
A

(k)
n+1

]−1 =









C−1
n+1 + �γn+1

‖ξn+1‖
χn+1 0

�γn+1

‖ξn+1‖
χn+1

0
1

d1
0

�γn+1

‖ξn+1‖
χn+1 0

3

2d2
I + �γn+1

‖ξn+1‖
χn+1









(k)

. (5.321)

Defining

a := 3

2d2
(5.322)

b := �γ
(k)
n+1

‖ξn+1‖
(5.323)

(notice that b is a function of n and k, although not explicitly indicated!) and dropping the
indices n + 1 and (k) for simplicity, one arrives at

[
A
]−1 =






C−1 + bχ 0 bχ

0 d−1
1 0

bχ 0 aI + bχ




 . (5.324)

In the further derivation,
[
A
]

will be needed and it is clearly numerically advantageous if
this inversion can be performed in a largely analytical way. Denoting

[
A
]

:=



P 0 R

0 d1 0
Q 0 S



 , (5.325)

the submatrices P , Q, R and S satisfy
[
C−1 + bχ bχ

bχ aI + bχ

]
:

[
P R

Q S

]
=
[

I 0
0 I

]
. (5.326)

To solve this system, the block in the first row and second column of the left matrix will
be reduced by premultiplying the first block equation by (aI + bχ), the second by bχ and
subtracting the second from the first. This results in
[
(aI + bχ) : (C−1 + bχ) − (bχ) : (bχ) 0

bχ aI + bχ

]
:

[
P R

Q S

]
=
[
aI + bχ −bχ

0 I

]
.

(5.327)

Notice that the block in the first row and second column actually reads

(aI + bχ) : [(bχ) : Q] − (bχ) : [(aI + bχ) : Q] = 0 (5.328)

which is only true by virtue of the associativity and above all the commutativity of the
tensor-contraction operation for this kind of tensors.
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P can be obtained from Equation (5.327) by solving the following equation:
[
(aI + bχ) : C−1 + abχ

]
: P = aI + bχ . (5.329)

In order to find ��γ
(k)
n+1, the equivalent of Equation (5.216) has to be solved. Since

{
F

(k)
n+1

}
=
{
H

(k)
n+1

}
=






nn+1
√

2
3

nn+1






(k)

(5.330)

it is clear that P : n, Q : n, R : n and S : n are needed, and not P , Q, R and S. This is
an easier task to accomplish. Since (Equation (5.327))

[aI + bχ ] : Q = −[bχ : P ] (5.331)

[(aI + bχ) : C−1 + abχ ] : R = −bχ (5.332)

[aI + bχ ] : S = [I − bχ : R] (5.333)

and

χ : n = χ : I = 0 (5.334)

[aI + bχ ]−1 = 1

a + b

[
I + b

3a
I ⊗ I + b

a
n ⊗ n

]
(5.335)

one arrives at

[(aI + bχ) : C−1 + abχ ] : (P : n) = an (5.336)

Q : n = − b

a + b
χ : (P : n) (5.337)

R : n = 0 (5.338)

S : n = 1

a
n. (5.339)

Consequently, only one 6 × 6 set of equations must be solved (Equation (5.336), because
of symmetry conditions, the nine equations reduce to six), the other equations are explicit.
The equivalent of Equation (5.216) now reads













n
(k)
n+1
√

2
3

n
(k)
n+1






T

:
[
A

(k)
n+1

]
:






n
(k)
n+1
√

2
3

n
(k)
n+1






+
√

2
3∂�γ g

(k)
n+1








��γ
(k)
n+1

=
(

f
(k)
n+1 −

√
2
3g

(k)
n+1

)
−
{
R

(k)
n+1

}T
:
[
A

(k)
n+1

]T
:






n
(k)
n+1
√

2
3

n
(k)
n+1






. (5.340)
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Since

[
A

(k)
n+1

]
:






n
(k)
n+1
√

2
3

n
(k)
n+1






:=






P : n
√

2
3d1

Q : n + S : n






(k)

n+1

(5.341)

and
[
A

(k)
n+1

]T =
[
A

(k)
n+1

]
(5.342)

(
[
A

(k)
n+1

]−1
is symmetric, Equation (5.324), and the inverse of a symmetric matrix is also

symmetric), one obtains

[
(n : P : n)

(k)
n+1 + 2

3d1 + 2
3d2 +

√
2
3∂�γ g

(k)
n+1

]
��γ

(k)
n+1

=
(

f
(k)
n+1 −

√
2
3g

(k)
n+1

)
−
{
R

(k)
n+1

}T
:






P : n
√

2
3d1

Q : n + S : n






(k)

n+1

(5.343)

where

g
(k)
n+1 =

(√
2
3

�γ
(k)
n+1

A�t

) 1
n

(5.344)

and

∂�γ g
(k)
n+1 =

√
2
3

1
An�t

(√
2
3

�γ
(k)
n+1

A�t

) 1
n
−1

(5.345)

represent the viscous effects. Equation (5.343) is a linear equation in ��γ
(k)
n+1. Once the

correction to the consistency parameter is known, the corrections to the internal variables
can be calculated using the following equivalent of Equation (5.269) (again dropping the
indices n + 1 and (k) for simplicity):






�εp

�α1

�α2





=






C−1 0 0

0 d−1
1 0

0 0 aI




 :






P 0 R

0 d1 0

Q 0 S




 :






Rε

Rα1

Rα2





(5.346)

=






C−1 : (P : Rε + R : Rα2)

Rα1

a(Q : Rε + S : Rα2)





(5.347)
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where






Rε

Rα1

Rα2





= {R}+ ��γ






n
√

2
3

n





(5.348)

is the update of the residual. Substitution of Equations (5.329) and (5.332) into the first
block equation of Equation (5.347) yields

[(aI + bχ) : C−1 + abχ ] : [C :
{
�εp

}
] = [(aI + bχ) : Rε − bχ : Rα2 ]. (5.349)

Notice that the left-hand matrix of Equation (5.349) is the same as in Equation (5.336)
and consequently the LU decomposition (in an upper and lower matrix (Zienkiewicz
and Taylor 1989)) can be reused. Furthermore, C−1, needed to obtain

{
�εp

}
from C :{

�εp
}
, was already computed to obtain the left-hand side in Equation (5.336). Substituting

Equations (5.331) and (5.333) into the lower block equation leads to
{
�α2

} = a[aI + bχ ]−1 :
[{

Rα2

}− bχ :
(
P :

{
Rε

}+ R :
{
Rα2

})]
. (5.350)

Using the first block equation of Equation (5.347), this is equivalent to
{
�α2

} = a[aI + bχ ]−1 :
[{

Rα2

}− bχ :
{
C : �εp

}]
(5.351)

or

{
�α2

} = a

a + b

[
I + b

3a
I ⊗ I + b

a
n ⊗ n

]
:
{
Rα2

}− ab

a + b
χ :
{
C : �εp

}
. (5.352)

Accordingly, reintroducing the indices (C is no function of n), one finds for the corrections
of the internal variables

[
(aI + bχ

(k)
n+1) : C−1 + abχ

(k)
n+1

]
:
[
C :

{
�εp

}(k)

n+1

]

=
[
(aI + bχ) :

{
Rε

}(k)

n+1 − bχ
(k)
n+1 :

{
Rα2

}(k)

n+1

]
(5.353)

and

{
�α2

}(k)

n+1 = a

a + b

[
I + b

3a
I ⊗ I + b

a
n

(k)
n+1 ⊗ n

(k)
n+1

]
:
{
Rα2

}(k)

n+1

− ab

a + b
χ

(k)
n+1 :

[
C :

{
�εp

}(k)

n+1

]
. (5.354)

Recall that b is also a function of k and n. As soon as all the corrections are determined,
the satisfaction of the flow rule

∣∣
∣∣f

(k+1)
n+1 −

√
2
3g

(k+1)
n+1

∣∣
∣∣ < TOL (5.355)
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can be checked. If satisfied, convergence is reached and the loop can be left. If not, a
new correction must be determined. Notice that this loop corresponds to the outer loop
in Section 5.4. There is no inner loop since we deal with single surface plasticity. Once
convergence is reached, the consistent elastoplastic tangent matrix can be determined. This
is obtained from the equations equivalent to Equations (5.276) and (5.278):

{
dσ n+1

} = P n+1 :
(
I − G−1

n+1[nn+1 ⊗ P n+1 : nn+1]
)

:
{
dεn+1

}
(5.356)

and

C
ep
n+1 = P n+1 − G−1

n+1(P n+1 : nn+1) ⊗ (P n+1 : nn+1). (5.357)

Here, P : n and P are both needed. For the calculation of P , Equation (5.329) can be used.
Notice that P is needed only after convergence is reached. The quantity Gn+1 is defined
by (Equation (5.343)):

Gn+1 = (n : P : n)n+1 + 2
3d1 + 2

3d2 +
√

2
3∂�γ gn+1. (5.358)

Notice that in the absence of kinematic hardening, d2 can be zero. In that case, a is unde-
termined (Equation (5.322)). Hence, care must be taken in the implementation to express
the equations in terms of a−1. For instance, Equation (5.336) then reads

[
(I + ba−1χ) : C−1 + bχ

]
: (P : n) = n. (5.359)

Summarizing, the algorithm runs as follows:

1. Compute the elastic predictor and the value of the yield surface (Equations (5.296)–
(5.300))

2. Check for plasticity (Equation (5.301)). If satisfied, the solution is found. Else, go
to (3).

3. Loop construct

(a) Calculate the residuals of the flow rule, Equation (5.305), and evolution laws,
Equation (5.310). If small enough, exit.

(b) Calculate a correction to the consistency parameter, Equation (5.343).

(c) Calculate a correction to the internal variables, Equations (5.353) and (5.354);
go to 3a.

4. Determine the consistent elastoplastic tangent matrix, Equation (5.357).

5.5.3 Special case: isotropic elasticity

For isotropic materials, the above equations can be substantially simplified. Indeed,

C = λI ⊗ I + 2µI (5.360)
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where µ and λ are Lamé’s constants. Using Equation (5.319), one obtains

C−1 =
(

1

9K
− 1

6µ

)
I ⊗ I + 1

2µ
I (5.361)

where

K := λ + 2
3µ. (5.362)

Defining

α := 1

2µ
(5.363)

β := 1

9K
− 1

6µ
(5.364)

one obtains

C−1 = αI + βI ⊗ I . (5.365)

From Equation (5.329), the following expression for P results:

P =
[
(aI + bχ) : C−1 + abχ

]−1
: [aI + bχ ]. (5.366)

Substitution of Equation (5.365) into (5.366) and taking into account the laws applicable
to tensors of the type at stake (such as Equation (5.319)), one arrives after some algebra at

P = 1

[aα + (a + α)b]

[
(a + b)I + ab − 3β(a + b)

3(α + 3β)
I ⊗ I + ab

α
n ⊗ n

]
(5.367)

and

P : n = 1
α
n = 2µn. (5.368)

Accordingly, the coefficient of ��γ
(k)
n+1 in Equation (5.343) reduces to

Gn+1 = 2µ + 2
3d1 + 2

3d2 +
√

2
3∂�γ g

(k)
n+1 (5.369)

which is identical to the corresponding coefficient in Equation (5.141) since

∂�γ g
(k)
n+1 =

√
2
3∂�εpeqg

(k)
n+1. (5.370)

The equivalent consistent elastoplastic tangent matrix takes the form (Equation (5.357)

C
ep
n+1 = P n+1 − 4µ2nn+1 ⊗ nn+1

2µ + 2
3d1 + 2

3d2 + 2
3∂�εpgn+1

. (5.371)
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To check whether Equation (5.371) coincides with Equation (5.162), α and β are substituted
into Pn+1 (the index n + 1 is dropped for simplicity):

P = 1

1 + (2µ + a−1)b
[2µI + λI ⊗ I ]

+ 2µb

1 + (2µ + a−1)b

[
a−1

I + K(1 − 3βa−1)I ⊗ I + 2µn ⊗ n
]

(5.372)

which is equivalent to

P = (2µI + λI ⊗ I ) − (2µ)2b

1 + (2µ + a−1)b
[I − 1

3I ⊗ I − n ⊗ n]. (5.373)

Recall that a = 2
3d2 and b = �γ/‖ξ‖. Notice that b contains ‖ξ‖, whereas Equation (5.162)

contains ‖ξ trial‖. The connection between both is given by Equation (5.134), in which the
term �h

eq
2 takes the form

�h
eq
2 = d2�εpeq = d2

√
2
3�γ (5.374)

in the present context of linear hardening laws. Consequently, Equation (5.134) leads to

‖ξ trial‖ = ‖ξ‖[1 + b(2µ + a−1)] (5.375)

and Equation (5.373) yields

P = (2µI + λI ⊗ I ) − (2µ)2�γ

‖ξ trial‖
(
I − 1

3I ⊗ I − n ⊗ n
)

. (5.376)

Equations (5.371) and (5.376) reproduce Equation (5.162). The isotropic case is recovered
as a special case of the anisotropic formulation.
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Finite Strain Elastoplasticity

Finite strain plasticity implies the existence of large strains or rotations. Therefore, the
concept of objectivity (Section 1.6) plays a major role in the development of a finite strain
elastoplasticity theory. There are two major classes of models. The first class extends the
additive strain concept of the infinitesimal theory to the deformation rate tensor d , that
is, d = de + dp. This, however, leads to a hypoelastic formulation, which means that the
elastic stress–strain relations cannot be derived from a stored energy function. For a dis-
cussion of this type of models the reader is referred to (Simo and Hughes 1997). The
second class of models involves a multiplicative decomposition of the deformation gra-
dient into a plastic and an elastic part and goes back to the work by Lee and Liu (Lee
and Liu 1967), (Lee 1969), see also (Simo 1988a), (Simo 1988b) and (Simo and Miehe
1992). Thereby, the elastoplastic motion is viewed as a composition of stress-free plastic
flow and stress-inducing elastic deformation. Because of its physical relevance and hyper-
elastic description of the elastic deformation, this type of model has grown very popular.
The theory has been extended to anisotropic viscoplasticity (Miehe 1996a), (Miehe 1996b),
(Reese and Svendsen 2003) and nonlocal gradient-enhanced elastoplasticity (Geers et al.
2003). The multiplicative concept is also applicable to the inelastic deformation of non-
metallic materials such as rubber (Lubliner 1985), (Reese 2003b) and is micromechanically
motivated (Reese 2001).

6.1 Multiplicative Decomposition of the Deformation
Gradient

The multiplicative decomposition states that the deformation in an elastoplastic material
consists of a purely plastic part due to dislocation motion, leading to an intermediate
stress-free configuration, followed by a purely elastic deformation rotating and distorting
the crystal lattice (Figures 6.1 and 6.2).

F = F e · F p. (6.1)

The Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85752-8



274 FINITE STRAIN ELASTOPLASTICITY

X
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Figure 6.1 Multiplicative decomposition of the deformation gradient
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F p

F e

l1

l1

l1

l2

l2

l2

Figure 6.2 Deformation of the crystal lattice

The total left and right Cauchy–Green tensors satisfy (Chapter 1)

b = F · F T (6.2)

C = F T · F (6.3)

whereas the elastic left Cauchy–Green tensor be and the plastic right Cauchy–Green tensor
Cp are defined as follows:

be = F e · F eT (6.4)

Cp = F pT · F p. (6.5)

The inverse left elastic Cauchy–Green tensor or elastic Finger tensor be−1 and the right
plastic Cauchy–Green tensor Cp are a push-forward/pull-back pair:

Cp = F pT · F p = F T · F e−T · F e−1 · F = F T · be−1 · F . (6.6)
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Accordingly, Cp is the pull-back of be−1 and be−1 is the push-forward of Cp. Recall that
C and the spatial metric tensor g are push-forward/pull-back pairs, as well as C−1 and
g−1. From Figure 6.1, the following relationships prevail:

dx = F · dX (6.7)

dx∗ = F p · dX = F e−1 · dx (6.8)

and consequently,

ds2 = CKL dXK dXL (6.9)

ds∗2 = C
p
KL dXK dXL = be−1

kl dxk dxl. (6.10)

Hence, the plastic right Cauchy–Green tensor plays the role of a metric tensor in the
intermediate configuration with respect to the material frame of reference.

6.2 Deriving the Flow Rule

6.2.1 Arguments of the free-energy function and yield condition

Concentrating on mechanical applications, we start from a general energy function of
mechanical grade 1(cf Equation (1.377))

� = �(F , F p, X). (6.11)

Objectivity in the spatial configuration requires (cf Chapter 1)

� = �(C, F p, X). (6.12)

Now, in addition, invariance under arbitrary rigid motions in the intermediate configuration
is postulated. This is only satisfied if � is a function of the inner product of any two vectors
in the intermediate configuration:

� = �(C, F pT · F p, X) (6.13)

= �(C, Cp, X) (6.14)

or, dropping X for convenience,

� = �(C, Cp). (6.15)

In the theory of plasticity, additional internal variables are frequently defined, which we
will denote by A in their kinematic form. Accordingly,

� = �(C, Cp, A) (6.16)

and

�̇ = ∂�

∂C
: Ċ + ∂�

∂Cp : Ċ
p + ∂�

∂A
: Ȧ. (6.17)
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In Equation (6.16), Cp and A represent the time–history dependence of plastic deformation.
Substitution of Equation (6.17) into the Clausius–Duhem inequality yields

1

θ

(
−∂�

∂C
+ 1

2
S

)
: Ċ − 1

θ

(
∂�

∂Cp : Ċ
p + ∂�

∂A
: Ȧ

)
− ρ0

θ
θ̇η − 1

θ2
Qθ · ∇0θ ≥ 0 (6.18)

where Qθ is the heat flux. Assuming similar relationships as in Equation (6.16) for η and
Qθ , Equation (6.18) is satisfied if

S = 2
∂�

∂C
(C, Cp, A) (6.19)

η = 0 (6.20)

Qθ = 0 (6.21)

− ∂�

∂Cp : Ċ
p − ∂�

∂A
: Ȧ ≥ 0. (6.22)

Equation (6.19) is the classical expression for the second Piola–Kirchhoff stress S. Equa-
tions (6.20) and (6.21) result from the fact that no temperature dependence is assumed.
The crucial equation left to be satisfied is the dissipation inequality (Equation (6.22)). It
suggests the definition of the dynamic form Q of the internal variables by

Q := −∂�

∂A
:= −h(A) (6.23)

reducing Equation (6.22) to

− ∂�

∂Cp : Ċ
p + Q : Ȧ ≥ 0. (6.24)

The main goal is to derive expressions for the evolution of Cp and A, that is, expressions
for Ċ

p
and Ȧ.

From the previous chapter, we know that an additional equation in the form of a yield
condition is required to describe plasticity. The yield condition is usually written in terms
of the stress S and the dynamic internal variables Q:

�(S, Q) ≤ 0. (6.25)

Because of Equations (6.19) and (6.23), this is equivalent to

�(C, Cp, Q) ≤ 0. (6.26)

6.2.2 Principle of maximum plastic dissipation

The previous section has shown that the thermodynamic state is characterized by the vari-
ables {C, Cp, A}. Now, an uncoupled free energy in the internal state variables A is assumed
of the form

� = �(C, Cp) + �(A). (6.27)
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The plastic dissipation D
p amounts to Equation (6.24):

D
p(C, Cp, A; Ċ

p; Ȧ) := − ∂�

∂Cp : Ċ
p − ∂�

∂A
: Ȧ. (6.28)

To derive the flow rule, the principle of maximum dissipation is invoked. It states that, for
fixed {Cp, A}, the field C will take such a value that for all other fields C satisfying the
yield condition, the plastic dissipation is smaller. Hence, defining the cone

Kφ := {C̃ ∈ R
6|�(C̃, Cp, Q) ≤ 0} (6.29)

of all the states satisfying the yield condition, we have

D
p(C, Cp, A; Ċ

p
, Ȧ) ≥ D

p(C̃, Cp, A; Ċ
p
, Ȧ) ∀C̃ ∈ Kφ (6.30)

or, by use of Equation (6.28),

−∂�(C, Cp)

∂Cp : Ċ
p ≥ −∂�(C̃, Cp)

∂Cp : Ċ
p
, ∀C̃ ∈ Kφ. (6.31)

Accordingly, C satisfies

C = arg

{

max
C̃∈Kφ

[

−∂�(C̃, Cp)

∂Cp : Ċ
p

]}

(6.32)

or

C = arg

{

min
C̃∈Kφ

[
∂�(C̃, Cp)

∂Cp : Ċ
p

]}

(6.33)

where “arg” denotes the argument of the function. This is a constrained minimization
problem amenable to mathematical analysis. Indeed, one can prove (Luenberger 1989) that
the solution of Equation (6.33) is equivalent to the minimization of the functional

L
p := ∂�(C, Cp)

∂Cp : Ċ
p + γ̇ �(C, Cp, Q) (6.34)

subject to

γ̇ ≥ 0 (6.35)

γ̇ �(C, Cp, Q) = 0. (6.36)

The minimization of L
p is equivalent to

∂L
p

∂C
= 0 (6.37)

or

∂2�(C, Cp)

∂C∂Cp : Ċ
p = −γ̇

∂�(C, Cp, Q)

∂C
. (6.38)

Equation (6.38) is the flow rule! The principle of maximum plastic dissipation leads to a
flow rule, which is a function of the hyperelastic free-energy potential and the yield surface
only. Accordingly, as soon as the hyperelastic free energy and yield surface are known, the
flow rule is uniquely defined.
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6.2.3 Uncoupled volumetric/deviatoric response

The elastoplastic theory can be further simplified if one assumes a completely uncoupled
volumetric/deviatoric response throughout the entire range of deformation. It is obtained
through a multiplicative decomposition of the deformation gradient:

F = J 1/3F (6.39)

and accordingly

det(F ) = 1. (6.40)

The associated right Cauchy–Green tensor takes the form

C = F
T · F = J−2/3C. (6.41)

By using the chain rule and taking into account that

∂J

∂C
= J

2
C−1 (6.42)

one obtains

∂C

∂C
= J−2/3

(
I − 1

3C ⊗ C−1
)

(6.43)

and in general

∂(·)
∂C

= J−2/3DEV

[
∂(·)
∂C

]
(6.44)

where

DEV[·] := (·) − 1
3 [C : (·)]C−1 (6.45)

is the pull-back of the deviator in spatial coordinates. For example, we know that Cp−1 is
the pull-back of be:

Cp−1 = F−1 · be · F−T. (6.46)

Accordingly,

DEVCp−1 = F−1 · devbe · F−T, (6.47)

which leads to

DEVCp−1 = F−1 ·
[
be − 1

3 (be : g)
]

· F−T

= Cp−1 − 1
3 (be : g)C−1

= Cp−1 − 1
3 (Cp−1 : C)C−1. (6.48)

For metals, the plastic deformation is considered to be isochoric, and consequently the
volumetric response is purely elastic. Hence,

J = J e, J p = 1. (6.49)
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6.3 Isotropic Hyperelasticity with a von Mises–type Yield
Surface

6.3.1 Uncoupled isotropic hyperelastic model

Next, the attention is focused on an isotropic hyperelastic model of the form (Simo 1988a)

�(g, be−1, F ) = 1
2µ(J−2/3I1be − 3) + U(J ) (6.50)

where Ibe is the first invariant of the elastic left Cauchy–Green tensor. The first term on
the right-hand side of Equation (6.50) is isochoric, the second is volumetric. The choice of
U(J ) is not unique. Here, we will take

U(J ) = 1
2K

[
1
2 (J 2 − 1) − ln J

]
(6.51)

which satisfies the asymptotic requirements

lim
J→+∞

U(J ) = +∞ (6.52)

lim
J→0

U(J ) = +∞ (6.53)

discussed in Chapter 4. The parameter K is the bulk modulus.
For C = G, Equation (6.50) leads to the classical isotropic Hooke law. To prove this,

the derivative with respect to C is taken. Using relationships derived in Section 4.4 and
noting that I1b = I1C = I1, one obtains

∂�

∂CKL

= 1
2µJ−2/3

(
− 1

3I1C
−1KL + GKL

)
+ 1

4K
(
J 2 − 1

)
C−1KL

(6.54)

and

∂2�

∂CKL∂CMN

= − 1
6µJ−2/3C−1MN

(
GKL − 1

3I1C
−1KL

)

+ 1
2µJ−2/3

[
− 1

3GMNC−1KL + 1
6I1(C

−1KM
C−1LN + C−1KN

C−1LM
)
]

+ 1
4KJ 2C−1MN

C−1KL − 1
8K(J 2 − 1)(C−1KM

C−1LN + C−1KN
C−1LM

). (6.55)

For C = G, the first and last term drop out and one obtains

4
∂2�

∂CKL∂CMN

∣
∣∣
∣
C=G

=
(
K − 2

3µ
)

GKLGMN + µ(GKMGLN + GKNGLM) (6.56)

where K − 2
3µ = λ. This is the classical Hooke law for linear isotropic materials.

Using the appropriate push-forward/pull-back pairs, Equation (6.50) can be reformu-
lated as

�(C, Cp) = 1
2µ(J−2/3TRCp−1 − 3) + U(J ) (6.57)
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where

TR[·] = [·] : C (6.58)

is the pull-back of the trace operator in spatial coordinates:

tr(be) = be : g = Cp : C =: TR(Cp−1
). (6.59)

Equation (6.57) can also be written as

�(C, Cp) = 1
2µ(C : Cp−1 − 3) + U(J ). (6.60)

Applying Equations (6.19),(6.42) and (6.44), one obtains for the second Piola–Kirchhoff
stress

S = pJC−1 + µDEV(C
p−1

) (6.61)

where

p = dU

dJ
= 1

2K

[
J 2 − 1

J

]
(6.62)

and

C
p−1

:= J−2/3Cp−1
. (6.63)

Accordingly (Equation (6.38)),

∂2�(C, Cp)

∂C∂Cp = 1

2

∂S

∂Cp = µ

2
DEV

(
∂C

p−1

∂Cp

)

(6.64)

and

∂2�(C, Cp)

∂C∂Cp : Ċ
p = −µJ−2/3DEV

(
∂Cp−1

∂t

)

. (6.65)

6.3.2 Yield surface and derivation of the flow rule

One of the frequently used forms of the yield surface is due to von Mises:

�(S, C, Q) = ‖DEVS‖ +
√

2
3q1 (6.66)

where q1 is a scalar internal plastic variable satisfying q1 = −h1(α1). The variables q1 and
α1 are spatial quantities. Since C−1 is a symmetric matrix, one finds

DEV(C−1) = C−1 − 1
3 (C : C−1)C−1 = 0 (6.67)

leading to (Equation (6.61))

DEVS = µDEV(C
p−1

). (6.68)
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Hence, Equation (6.66) can be rewritten as

�(C, Cp, Q) = µ‖DEV(C
p−1

)‖ −
√

2
3h1(α1). (6.69)

The unit of � is stress, and in the present chapter we will assume that this is the Kirchhoff
stress. Since (S, τ ) and (C, g) are push-forward/pull-back pairs, one can write

‖DEVS‖ =
√

(DEVS)IJ (DEVS)KLCIKCJL (6.70)

=
√

(devτ )ij (devτ )klgikgjl . (6.71)

For the flow rule (Equation (6.38)), we need the derivative of � with respect to C. One
can write

∂�

∂C
= ∂‖DEVS‖

∂C
(6.72)

= 1

2‖DEVS‖
∂

∂C
‖DEVS‖2. (6.73)

Furthermore (Equation (6.44)),

∂

∂C
‖DEVS‖2 = J−2/3DEV

(
∂

∂C
‖DEVS‖2

)
. (6.74)

Now (Equation (6.68)),

∂

∂C
‖DEVS‖2 = µ2 ∂

∂C
‖DEVC

p−1‖2 (6.75)

= µ2 ∂

∂C

[
(DEVCp−1

)IJ (DEVCp−1
)KLCIKCJL

]
(6.76)

= 2µ2
[

∂

∂C
(DEVCp−1

)IJ

]
(DEVCp−1

)KLCIKCJL

+ 2µ2(DEVCp−1
)IJ (DEVCp−1

)KLCJL. (6.77)

Since

∂

∂C
(DEVCp−1

) = ∂

∂C

[
Cp−1 − 1

3 (C : Cp−1
)C−1

]
(6.78)

= ∂

∂C

[
Cp−1 − 1

3 (C : Cp−1
)C

−1
]

(6.79)

= − 1
3 (I : Cp−1

)C
−1 + 1

3 (C : Cp−1
)I

C
−1 (6.80)

= − 1
3C

−1 ⊗ Cp−1 + 1
3 (Cp−1 : C)I

C
−1 (6.81)

where (
I
C

−1

)IJKL

:= 1
2

[
(C

−1
)IK(C

−1
)JL + (C

−1
)IL(C

−1
)JK

]
(6.82)
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and
I := II (6.83)

one obtains

[
∂

∂C
‖DEVS‖2

]AB

= 2
3µ2[

(i)
︷ ︸︸ ︷
(Cp−1 : C)I

C
−1 −

(ii)
︷ ︸︸ ︷
C

−1 ⊗ Cp−1]IJAB(DEVCp−1
)KLCIKCJL

+ 2µ2(DEVCp−1
)AJ (DEVCp−1

)BLCJL︸ ︷︷ ︸
(iii)

. (6.84)

Substituting Equation (6.84) into

∂�

∂C
= J−2/3

2‖DEVS‖DEV

(
∂

∂C
‖DEVS‖2

)
(6.85)

one notices that ∂�/∂C consists of three additive terms, each of which will be treated
separately:

1.

DEV

[
J−2/3µ2

3‖DEVS‖ (Cp−1 : C)IIJAB

C
−1 CIKCJL(DEVCp−1

)KL

]

= DEV

[
J−4/3µ2

3‖DEVS‖
1
2 (Cp−1 : C)(δA

KδB
L + δB

KδA
L)(DEVCp−1

)KL

]
(6.86)

= DEV

[
J−2/3µ

3‖DEVS‖TRCp−1
(DEVS)AB

]
(6.87)

= µN (6.88)

where
µ := 1

3µJ−2/3TRCp−1 (6.89)

N := DEVS

‖DEVS‖ . (6.90)

2.

− DEV

[
J−2/3

2‖DEVS‖
2
3µ2

(
C

−1 ⊗ Cp−1
)IJAB

(DEVCp−1
)KLCIKCJL

]

= −DEV

[
µ2J−4/3

‖DEVS‖ (C−1)IJ (Cp−1
)ABCIKCJL(DEVCp−1

)KL

]
(6.91)

= −DEV

[
µ2J−4/3

‖DEVS‖ (Cp−1
)ABCKL(DEVCp−1

)KL

]
= 0 (6.92)
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since

C : (DEVCp−1
) = 0. (6.93)

To obtain Equation (6.93), recall that C−1 : C = 3 since C is symmetric.

3.

DEV

[
J−2/3

‖DEVS‖µ2(DEVCp−1
)AJ (DEVCp−1

)BLCJL

]

= DEV

[
µ2

‖DEVS‖ (DEVC
p−1

)AJ (DEVC
p−1

)BLCJL

]
(6.94)

= DEV

[
(DEVS)AJ (DEVS)BLCJL

‖DEVS‖
]

(6.95)

= ‖DEVS‖DEV(N2). (6.96)

Accordingly, Equation (6.38) yields

−γ̇
∂�

∂C
= −γ̇ µ

[
N + ‖DEVS‖

µ
DEV(N2)

]
. (6.97)

Equating Equations (6.65) and (6.97) yields the flow rule:

−J−2/3µDEV

(
∂Cp−1

∂t

)

= 2γ̇ µ

[
N + ‖DEVS‖

µ
DEV(N2)

]
. (6.98)

The second term on the right-hand side is much smaller than the first one and is usually
dropped.

For infinitesimal strains and rotations, Equation (6.98) reduces to Equation (5.95). Indeed,
substituting µ yields (neglecting the term with N2)

DEV(Ċ
p−1

) = −2γ̇

3
TR(Cp−1

)N . (6.99)

In the infinitesimal theory, one can write

Cp ≈ I + 2εp (6.100)

Cp−1 ≈ I − 2εp (6.101)

Ċ
p−1 ≈ −2ε̇p. (6.102)

The field εp is deviatoric, hence,

DEV(Ċ
p−1

) ≈ −2ε̇p (6.103)

TR(Cp−1
) ≈ 3 (6.104)

and Equation (6.99) reduces to

ε̇p = γ̇n (6.105)

which coincides with Equation (5.95).
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6.4 Extensions

6.4.1 Kinematic hardening

Frequently, a more generalized form of the yield surface is used, in which the center of
the yield surface can move. This is accomplished by replacing Equation (6.69) by

�(C, Cp, Q) = ‖DEV(µC
p−1 + Q2)‖ −

√
2
3h1(α1). (6.106)

Here, −Q2 represents the moving yield-surface center. Equation (6.68) still applies. Replac-

ing DEV(S) by DEV(S + Q2) and C
p−1

by C
p−1 + Q2/µ in the previous section, one

obtains for the flow rule

−J−2/3µDEV

(
∂Cp−1

∂t

)

= 2γ̇ µ

(

N + ‖DEV(S + Q2)‖
µ

DEV(N2)

)

(6.107)

where

µ := 1
3J−2/3TR(µCp−1 + Q2) (6.108)

= µ + 1
3J−2/3TRQ2 (6.109)

N = DEV(µC
p−1 + Q2)

‖DEV(µC
p−1 + Q2)‖

= DEV(S + Q2)

‖DEV(S + Q2)‖
(6.110)

Q2 = J−2/3Q2. (6.111)

The left-hand side of Equation (6.98) is not changed since it derives from the potential
function. Equation (6.107) is an evolution equation for Cp−1. The field Q2 is called the
back stress and represents an internal plastic variable for which an evolution equation
is needed as well. Since the fields Q2 and µCp−1 are related, an equation similar to
Equation (6.107) seems plausible:

−J−2/3DEV

(
∂Q2

∂t

)
=
(

h
eq’
2

3µ

)

2γ̇ µ

[

N + ‖DEV(S + Q2)‖
µ

DEV(N2)

]

. (6.112)

The factor

1

3µ
h

eq’
2 := 1

3µ

∂h
eq
2

∂α
eq
2

(6.113)

was introduced to assure that Equation (6.112) reduces to its infinitesimal equivalent,
Equation (5.111). Indeed (q2 is deviatoric, )

DEV(Q̇2) ≈ dev(q̇2) ≈ q̇2 (6.114)

J ≈ 1 (6.115)

µ ≈ µ + 1
3 trq2 ≈ µ (6.116)
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yielding

−q̇2 = 2

3

∂h
eq
2

∂α
eq
2

γ̇n. (6.117)

Here too, one defines

h
eq
2 :=

√
3
2‖h2‖ (6.118)

α
eq
2 :=

√
2
3‖α2‖. (6.119)

In the previous chapter, we derived for the infinitesimal theory

α1 = α
eq
2 = εpeq (6.120)

and

ε̇peq =
√

2
3 γ̇ . (6.121)

These equations will also be used for the finite theory. Accordingly,

h
eq’
2 := ∂h

eq
2

∂εpeq . (6.122)

The only curves to be provided by the user are h1(ε
peq) for isotropic hardening and h

eq
2 (εpeq)

for kinematic hardening.
Equation (6.121) can be interpreted as the definition of εpeq for finite strains. Combin-

ing Equation (6.121) with the flow rule, Equation (6.99), yields the following kinematic
relationship for ε̇peq:

ε̇peq =
√

3
2
‖DEV(Ċ

p−1
)‖

TR(Cp−1)
. (6.123)

Notice that Equations (6.107) and (6.112) determine only the deviatoric part of Ċ
p−1

and Q̇2. To guarantee a unique definition of Ċ
p−1

and Q̇2, the following additional con-
straints can be defined:

TR(Ċ
p−1

) = 0. (6.124)

TR(Q̇2) = 0. (6.125)

6.4.2 Viscoplastic behavior

For plastic behavior, it is assumed that the stress tensor cannot exceed the yield surface.
To illustrate this, the yield surface, as given by Equation (6.106), is shown in Figure 6.3
in deviatoric principal stress space (assuming that Q2 and S have the same eigenvectors).

The yield surface can also be written as (cf Equation (6.106))

‖DEV(S + Q2)‖ =
√

2
3h1(α1) (6.126)
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(devτ )1

(devτ )2

(devτ )3

√
2
3h1(α1)

−FQ2F
T

Figure 6.3 von Mises yield surface in deviatoric principal Kirchhoff stress space

which shows that the von Mises surface is indeed a sphere with its center at −Q2 and

radius
√

2
3q1. In the classical plasticity theory, any physical stress state must lie on or

within the yield surface. However, both q1 and Q2 can change because of isotropic and
kinematic hardening respectively. In the viscoplastic theory, the stress state can momentarily
lie outside the yield surface; however, it tends asymptotically to the yield surface as time
goes by. The way in which the yield surface is approached is generally given by a creep
law of the form

τvm = f (ε̇peq). (6.127)

The quantity τvm is the von Mises equivalent stress of the Kirchhoff tensor satisfying

τvm :=
√

3
2‖devτ‖ =

√
3
2

√
devτ : devτ . (6.128)

Accordingly, the plastic equality in Equation (6.126) is replaced in the viscoplastic case by

‖DEV(S + Q2)‖ −
√

2
3h1(ε

peq) =
√

2
3f (ε̇peq) (6.129)

if ‖DEV(S + Q2)‖ −
√

2
3h1(ε

peq) > 0, else the material remains elastic. A typical example
of a creep law in the infinitesimal theory is the Norton law

ε̇peq = Aτn
vm (6.130)

which can also be written as

τvm =
(

ε̇peq

A

)(1/n)

. (6.131)
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6.5 Summary of the Equations

The following equations result:

1. Hyperelasticity equation

S = pJC−1 + µDEV(C
p−1

). (6.132)

2. von Mises yield condition

(a) For plastic materials:

‖�‖ −
√

2
3h1(ε

peq) ≤ 0. (6.133)

(b) For viscoplastic materials:

‖�‖ −
√

2
3h1(ε

peq) =
√

2
3f (ε̇peq) for ‖�‖ ≥

√
2
3h1(ε

peq) (6.134)

where

� := DEV(S + Q2). (6.135)

3. Flow rule

−J−2/3µDEV(Ċ
p−1

) = 2γ̇ µN (6.136)

µ := µ + 1
3J−2/3TRQ2 (6.137)

µ := 1
3µJ−2/3TRCp−1 (6.138)

N := DEV�

‖DEV�‖ (6.139)

TR(Ċ
p−1

) = 0. (6.140)

4. Kinematic hardening law

−J−2/3DEV(Q̇2) =
(

h
eq’
2 (εpeq)

3µ

)

2γ̇ µN (6.141)

TR(Q̇2) = 0. (6.142)

6.6 Stress Update Algorithm

6.6.1 Derivation

The equations describing viscoplasticity were summarized in the previous section. Ulti-
mately, we would like to transform these equations into a numerical algorithm yielding the
solution at time-step n + 1 if the solution at t = tn is known. To this end, the backward
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Euler rule will be applied to the time derivatives. It is an implicit unconditionally stable
scheme expressing the time derivative at t = tn+1 in terms of the function values at t = tn
and t = tn+1:

(ḟ )n+1 ≈ fn+1 − fn

�t
. (6.143)

Applying this to the flow rule, Equation (6.136), yields

µJ
−2/3
n+1 DEVn+1(C

p−1
n+1 − Cp−1

n ) = −2(γn+1 − γn)µn+1Nn+1 (6.144)

where

DEVn+1A := A − 1
3 (A : Cn+1)C

−1
n+1. (6.145)

Henceforth, the following definition will be used:

�γn+1 := γn+1 − γn. (6.146)

The hyperelasticity equation, Equation (6.132), yields

DEVn+1Sn+1 = µJ
−2/3
n+1 DEVn+1(C

p−1
n+1). (6.147)

Consequently, the flow rule, Equation (6.144), can be written as

DEVn+1Sn+1 = µJ
−2/3
n+1 DEVn+1C

p−1
n − 2�γn+1µn+1Nn+1. (6.148)

Equations (6.138) and (6.137) yield

µn+1 = 1
3µJ

−2/3
n+1 TRn+1C

p−1
n+1 + 1

3J
−2/3
n+1 TRn+1Q2,n+1. (6.149)

The auxiliary equations, Equations (6.140) and (6.142), lead to

Cp−1
n+1 : Cn+1 = Cp−1

n : Cn+1 (6.150)

Q2,n+1 : Cn+1 = Q2,n : Cn+1. (6.151)

Hence, Equation (6.149) can be transformed into

µn+1 = 1
3µJ

−2/3
n+1 TRn+1C

p−1
n + 1

3J
−2/3
n+1 TRn+1Q2,n. (6.152)

In a similar way, Equation (6.141) is transformed into

J
−2/3
n+1 DEVn+1(Q2,n+1) = J

−2/3
n+1 DEVn+1(Q2,n) − 2h

eq’
2

3µ
�γn+1µn+1Nn+1. (6.153)

Defining

T trial
n+1 := µJ

−2/3
n+1 DEVn+1C

p−1
n (6.154)

Atrial
n+1 := −J

−2/3
n+1 DEVn+1(Q2,n) (6.155)

�trial
n+1 := T trial

n+1 − Atrial
n+1 (6.156)

T n+1 := DEVn+1Sn+1 (6.157)

An+1 := −J
−2/3
n+1 DEVn+1(Q2,n+1) (6.158)

�n+1 := T n+1 − An+1 (6.159)
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the evolution equations, Equations (6.148) and (6.153), can be rewritten as

T n+1 = T trial
n+1 − 2�γn+1µn+1Nn+1 (6.160)

An+1 = Atrial
n+1 + 2h

eq’
2

3µ
�γn+1µn+1Nn+1. (6.161)

Notice that as soon as the displacement field at t = tn+1 is known, the trial functions can
be calculated. They represent the stress state at t = tn+1 in the assumption that step n + 1
is purely elastic. Next, the yield-surface condition is checked (Equation (6.133)). Using
Equations (6.157), (6.158) and (6.159), the yield condition at t = tn+1 can be expressed as

‖�n+1‖ ≤
√

2
3h1(ε

peq
n+1). (6.162)

Assuming at first that there is no plastic flow, or

�n+1 = �trial
n+1 (6.163)

ε
peq
n+1 = ε

peq
n (6.164)

Equation (6.162) reduces to

‖�trial
n+1‖ ≤

√
2
3h1(ε

peq
n ). (6.165)

If this equation is satisfied, the state is purely elastic and the trial functions are the solu-
tion. Furthermore, the plastic internal variables do not change. If, on the other hand,
Equation (6.165) is not satisfied, plastic deformation occurs and Equation (6.134) applies,
where f = 0 for nonviscous deformation. At t = tn+1, this equation reads

‖�n+1‖ =
√

2
3h1(ε

peq
n+1) +

√
2
3f (ε

peq
n+1). (6.166)

Now �n+1 satisfies

�n+1 = T n+1 − An+1 (6.167)

= T trial
n+1 − Atrial

n+1 − 2µn+1

(

1 + h
eq’
2

3µ

)

�γn+1Nn+1 (6.168)

= �trial
n+1 − 2µn+1

(

1 + h
eq’
2

3µ

)

�γn+1
�n+1

‖�n+1‖ . (6.169)

Equation (6.169) reveals that �n+1 and �trial
n+1 are parallel, and accordingly,

Nn+1 = �trial
n+1

‖�trial
n+1‖

(6.170)

which means that Nn+1 can be calculated using the trial state. Substituting Equation (6.170)
into Equation (6.169) and taking the norm, one finds that

‖�n+1‖ = ‖�trial
n+1‖ − 2µn+1

(

1 + h
eq’
2

3µ

)

�γn+1 (6.171)
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and the yield condition, Equation (6.166) leads to

‖�trial
n+1‖ − 2µn+1

(

1 + h
eq’
2 (ε

peq
n+1)

3µ

)

�γn+1 =
√

2
3h1(ε

peq
n+1) +

√
2
3f (ε̇

peq
n+1). (6.172)

In this equation, ‖�trial
n+1‖ and µn+1 are known, ε

peq
n+1 and �γn+1 are unknowns, related by

Equation (6.121) , or, equivalently,

ε
peq
n+1 = ε

peq
n +

√
2
3�γn+1. (6.173)

Accordingly, Equation (6.172) yields

‖�trial
n+1‖ − 2µn+1





1 +

h
eq’
2

(
ε

peq
n +

√
2
3�γn+1

)

3µ





�γn+1

=
√

2
3h1

(
ε

peq
n +

√
2
3�γn+1

)
+
√

2
3f

(√
2
3�γn+1

)
. (6.174)

This is a nonlinear equation in �γn+1, which can be solved by the Newton–Raphson
technique. Once �γn+1 is known, all other quantities can be calculated using the equations
in this section. Indeed, the definition of DEV leads to

DEVn+1C
p−1
n+1 = Cp−1

n+1 − 1
3 (Cp−1

n+1 : Cn+1)C
−1
n+1 (6.175)

DEVn+1C
p−1
n = Cp−1

n − 1
3 (Cp−1

n : Cn+1)C
−1
n+1 (6.176)

and consequently, since

TRn+1C
p−1
n+1 = TRn+1C

p−1
n , (6.177)

we find

DEVn+1C
p−1
n+1 − DEVn+1C

p−1
n = Cp−1

n+1 − Cp−1
n . (6.178)

Equation (6.144) can be transformed into

DEVn+1C
p−1
n+1 − DEVn+1C

p−1
n = −2�γn+1

µn+1

µ
J

−2/3
n+1 Nn+1. (6.179)

Hence,

Cp−1
n+1 = Cp−1

n − 2�γn+1
µn+1

µ
J

−2/3
n+1 Nn+1. (6.180)

Similarly, Equation (6.153) yields

Q2,n+1 = Q2,n − 2heq’

3µ
�γn+1µn+1J

−2/3
n+1 Nn+1. (6.181)

Finally, the second Piola–Kirchhoff stress follows from Equations (6.148) and (6.132):

Sn+1 = T trial
n+1 − 2�γn+1µn+1Nn+1 + K

2
(J 2

n+1 − 1)C−1
n+1. (6.182)
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6.6.2 Summary

Given: Cp−1
n , Q2,n, γn, ε

peq
n , Un+1.

1. Step 1: Geometric update

Cn+1, Jn+1, C−1
n+1.

2. Step 2: Elastic prediction

TRn+1C
p−1
n = Cp−1

n : Cn+1 (6.183)

DEVn+1C
p−1
n = Cp−1

n − 1
3 (TRn+1C

p−1
n )C−1

n+1 (6.184)

TRn+1(Q2,n) = Q2,n : Cn+1 (6.185)

DEVn+1(Q2,n) = Q2,n − 1
3 TRn+1(Q2,n)C

−1
n+1 (6.186)

T trial
n+1 = µJ

−2/3
n+1 DEVn+1C

p−1
n (6.187)

Atrial
n+1 = −J

−2/3
n+1 DEVn+1(Q2,n) (6.188)

�trial
n+1 = T trial

n+1 − Atrial
n+1. (6.189)

3. Step 3: Check for yielding

If

‖�trial
n+1‖ −

√
2
3h1(ε

peq
n ) ≤ 0 (6.190)

(·)n+1 = (·)trial
n+1 and EXIT.

4. Step 4: Radial return scheme

µn+1 = 1
3J

−2/3
n+1

[
µTRn+1(C

p−1
n ) + TRn+1(Q2,n)

]
(6.191)

Nn+1 = �trial
n+1

‖�trial
n+1‖

(6.192)

‖�trial
n+1‖ − 2µn+1




1 +

h
eq’
2

(
ε

peq
n +

√
2
3�γn+1

)

3µ




�γn+1

=
√

2
3h1

(
ε

peq
n +

√
2
3�γn+1

)
+
√

2
3f

(√
2
3�γn+1

)
(6.193)

from which �γn+1 can be determined.
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5. Update of the plastic state variables

ε
peq
n+1 = ε

peq
n +

√
2
3�γn+1 (6.194)

Cp−1
n+1 = Cp−1

n − 2�γn+1
µn+1

µ
J

2/3
n+1Nn+1 (6.195)

Q2,n+1 = Qn − 2h
eq’
2

3µ
�γn+1µn+1J

2/3
n+1Nn+1. (6.196)

6. Update of the stress

Sn+1 = T trial
n+1 − 2�γn+1µn+1Nn+1 + K

2
(J 2

n+1 − 1)C−1
n+1. (6.197)

Sometimes, Equation (6.193) is written in a different way. Defining

f trial
n+1 := ‖�trial

n+1‖ −
√

2
3h1(ε

peq
n ) (6.198)

one gets

f trial
n+1 =

√
2
3

[
h1

(
ε

peq
n +

√
2
3�γn+1

)
− h1(ε

peq
n )

]

+
√

2
3f

(√
2
3�γn+1

)
+ 2µn+1





1 +

h
eq’
2

(
ε

peq
n +

√
2
3�γn+1

)

3µ





�γn+1. (6.199)

For linear hardening and creep laws of the form

h1

(
ε

peq
n +

√
2
3�γn+1

)
= h1(ε

peq
n ) + h′

1�γn+1

√
2
3 (6.200)

h
eq
2

(
ε

peq
n +

√
2
3�γn+1

)
= h

eq
2 (ε

peq
n ) + h

eq′
2 �γn+1

√
2
3 (6.201)

f

(√
2
3�γn+1

)
= η

√
2
3�γn+1 (6.202)

where h′
1, h

eq′
2 and η are constants. Equation (6.199) further reduces to

2µ�γn+1 = f trial
n+1

1 + h
eq’
2

3µ
+ h′

1
3µ

+ η

3µ

. (6.203)

For nonlinear laws, Equation (6.199) is first written as

g(�γn+1) := f trial
n+1 −

√
2
3

[
h1

(
ε

peq
n +

√
2
3�γn+1

)
− h1(ε

peq
n )

]
−
√

2
3f

(√
2
3�γn+1

)

− µn+1

{
2�γn+1 +

√
2
3

[
h

eq
2

(
ε

peq
n +

√
2
3�γn+1

)
− h

eq
2 (ε

peq
n )

]
1

µ

}
(6.204)
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since (backward Euler)

h
eq′
2

(
ε

peq
n +

√
2
3�γn+1

)
≈

h
eq
2

(
ε

peq
n +

√
2
3�γn+1

)
− h

eq
2

(
ε

peq
n

)

√
2
3�γn+1

. (6.205)

For a Newton–Raphson type solution of Equation (6.204), the derivative of g is also
needed:

dg

d(�γn+1)
= − 2

3h′
1

(
ε

peq
n +

√
2
3�γn+1

)
− 2

3f ′
(√

2
3�γn+1

)

− 2µn+1

[
1 +

(
1

3µ

)
h

eq′
2

(
ε

peq
n +

√
2
3�γn+1

)]
(6.206)

where h′
1, h

eq′
2 and f ′ denote derivatives with respect to their arguments. Since h1, h

eq
2

and f are user-defined functions, the derivatives can be determined too (analytically or
numerically). The Newton–Raphson scheme can be started with �γ

(0)
n+1 = 0. Subsequent

iterations yield

�γ
(k+1)
n+1 = �γ

(k)
n+1 − g(�γ

(k)
n+1)

g′(�γ
(k)
n+1)

(6.207)

until �γ
(final)
n+1 is small enough. Occasionally, depending on the form of the creep and

hardening functions, the Newton–Raphson procedure does not converge (cf Chapter 3).
Then, other techniques such as bisection (Press et al. 1990) (Lührs et al. 1997) can be used.

6.6.3 Expansion of a thick-walled cylinder

Consider the expansion of a long, thick-walled cylinder with inner radius ri of 10 mm
and an outer radius ro of 20 mm, subject to internal pressure p. The material constants
are E=11050 MPa, ν = 0.454 and σvm = 0.5 MPa at zero equivalent plastic strain. In the
plastic range, the material does not harden (perfect plastic behavior). Consequently, the
von Mises stress at the zero equivalent plastic strain applies to the complete plastic range.

A quarter of the cylinder is modeled with three 20-node brick elements in the radial
direction and 5 in the circumferential direction. In the axial direction, only one element
layer is modeled, with its upper and lower layers of nodes fixed in the axial direction (plane
strain assumption). Reduced integration is used throughout. Instead of applying an internal
pressure, the nodes at the inner radius are moved in the radial direction in a uniform way.
The reason for this is shown in Figure 6.4: as soon as the cylinder is fully in the plastic
regime, the internal pressure steadily decreases. Therefore, it cannot be used as the loading
parameter. Also shown is the thickness of the cylinder.

Figure 6.5 shows the change in volume. Notice that during plastic deformation, the
volume decreases slightly. Accordingly, the plastic flow is not completely isochoric. This
is discussed in more detail in Section 6.8.

Comparison with the results published by Simo (Simo 1988b) shows good agreement.
Accordingly, 20-node brick elements with reduced integration can be used for large strain
plasticity. The use of fully integrated 20-node brick elements leads to divergence.
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6.7 Derivation of Consistent Elastoplastic Moduli
For finite element calculations, we also need to determine the consistent elastoplastic moduli
at t = tn+1. These moduli are the derivatives of the second Piola–Kirchhoff stress with



FINITE STRAIN ELASTOPLASTICITY 295

respect to the Lagrange strain:

Bn+1 := ∂Sn+1

∂En+1
= 2

∂Sn+1

∂Cn+1
. (6.208)

Recall that Sn+1 takes the form (Equation (6.197)

Sn+1 = Jn+1U
′(Jn+1)C

−1
n+1 + µJ

−2/3
n+1 DEVn+1C

p−1
n − 2�γn+1µn+1Nn+1. (6.209)

The first term on the right-hand side of Equation (6.209) is the volumetric part, the second
is the deviatoric trial stress and the third is the plastic correction.

6.7.1 The volumetric stress

Taking into account that

∂J

∂C
= J

2
C−1 (6.210)

∂C−1

∂C
= −IC−1 (6.211)

with IC−1 defined in Equation (6.82), one gets

2
∂

∂C
[JU ′(J )C−1] = JU ′(J )C−1 ⊗ C−1 + J 2U ′′(J )C−1 ⊗ C−1 − 2JU ′(J )IC−1

(6.212)

= J 2U ′′(J )C−1 ⊗ C−1 + Jp(C−1 ⊗ C−1 − 2IC−1). (6.213)

The index n + 1 was dropped for convenience. For U(J ) defined in Equation (6.51),
Equation (6.213) takes the form

2
∂

∂C
[JU ′(J )C−1] = KJ 2C−1 ⊗ C−1 − K(J 2 − 1)IC−1 . (6.214)

6.7.2 Trial stress

Since

∂J−2/3

∂C
= − 1

3J−2/3C−1 (6.215)

and

DEV(·) = (·) − 1
3 [(·) : C]C−1 (6.216)

one gets

2
∂T trial

∂C
= − 2

3µJ−2/3DEV(Cp−1
) ⊗ C−1 − 2

3µJ−2/3C−1 ⊗ (Cp−1 : II )

+ 2
3µJ−2/3(C : Cp−1

)IC−1 (6.217)
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= − 2
3µJ−2/3

[
Cp−1 ⊗ C−1 − 1

3 (C : Cp−1
)C−1 ⊗ C−1

]

− 2
3µJ−2/3C−1 ⊗ Cp−1 + 2

3µJ−2/3(C : Cp−1
)IC−1 (6.218)

= 2
3µJ−2/3(C : Cp−1

)
[
IC−1 + 1

3C−1 ⊗ C−1
]

− 2
3µJ−2/3

[
Cp−1 ⊗ C−1 + C−1 ⊗ Cp−1

]
(6.219)

= 2
3µJ−2/3(C : Cp−1

)
[
IC−1 − 1

3C−1 ⊗ C−1
]

− 2
3µJ−2/3

{[
Cp−1 − 1

3 (C : Cp−1
)C−1

]
⊗ C

+C ⊗
[
Cp−1 − 1

3 (C : Cp−1
)C−1

]}
(6.220)

= 2
3µJ−2/3(C : Cp−1

)
[
IC−1 − 1

3C−1 ⊗ C−1
]

− 2
3µJ−2/3

[
DEV(Cp−1

) ⊗ C−1 + C−1 ⊗ DEV(Cp−1
)
]
. (6.221)

Accordingly,

2
∂T trial

n+1

∂Cn+1
= 2

3µJ
−2/3
n+1 (Cn+1 : Cp−1

n )
[
I
C−1

n+1
− 1

3C−1
n+1 ⊗ C−1

n+1

]

− 2
3µJ

−2/3
n+1

[
DEVCp−1

n ⊗ C−1
n+1 + C−1

n+1 ⊗ DEVCp−1
n

]
:= B trial

n+1. (6.222)

6.7.3 Plastic correction

This is the most difficult part. One obtains

2
∂

∂Cn+1

(−2�γn+1µn+1Nn+1
) = −4µn+1Nn+1 ⊗ ∂�γn+1

∂Cn+1

− 4�γn+1Nn+1 ⊗ ∂µn+1

∂C
− 4�γn+1µn+1

∂Nn+1

∂Cn+1
. (6.223)

Concentrating on the last term,

∂Nn+1

∂Cn+1
= ∂

∂Cn+1

�trial
n+1

‖�trial
n+1‖

= 1

‖�trial
n+1‖

(
∂�trial

n+1

∂Cn+1
− Nn+1 ⊗ ∂‖�trial

n+1‖
∂Cn+1

)

. (6.224)
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In complete analogy to Equation (6.222), one finds

2
∂Atrial

n+1

∂Cn+1
= − 2

3J
−2/3
n+1 (Cn+1 : Q2,n)

(
I
C−1

n+1
− 1

3C−1
n+1 ⊗ C−1

n+1

)

+ 2
3J

−2/3
n+1

[
DEV(Q2,n) ⊗ C−1

n+1 + C−1
n+1 ⊗ DEV(Q2,n)

]
(6.225)

and accordingly,

2
∂�trial

n+1

∂Cn+1
= 2µn+1

(
I
C−1

n+1
− 1

3C−1
n+1 ⊗ C−1

n+1

)

− 2
3

(
�trial

n+1 ⊗ C−1
n+1 + C−1

n+1 ⊗ �−1
n+1

)
:= H trial

n+1. (6.226)

Furthermore,

∂‖�trial
n+1‖

∂Cn+1
= ∂

∂Cn+1

√
�

IJ,trial
n+1 �

KL,trial
n+1 CIJ,n+1CKL,n+1 (6.227)

= 1
2H trial

n+1 : Nn+1 + ‖�trial
n+1‖N2

n+1 (6.228)

and

H trial
n+1 : Nn+1 = 2µn+1Nn+1 − 2

3‖�trial
n+1‖C−1

n+1. (6.229)

Equations (6.224), (6.226), (6.227) and (6.229) yield

∂Nn+1

∂Cn+1
= 1

‖�trial
n+1‖

{
H trial

n+1 − Nn+1 ⊗
[
µn+1Nn+1 + ‖�trial

n+1‖DEVn+1(N
2
n+1)

]}
(6.230)

since

DEV(N2) = N2 − 1
3 (N · N : C)C−1 = N2 − 1

3C−1. (6.231)

For the second term, one starts from the expression for µn+1:

µn+1 = 1
3µJ

−2/3
n+1 Cp−1 : Cn+1 (6.232)

⇓
∂µn+1

∂Cn+1
= − 1

3µn+1C
−1
n+1 + 1

3µJ
−2/3
n+1 Cp−1

n (6.233)

and

µn+1 = µn+1 + 1
3J

−2/3
n+1 (Q2,n : Cn+1) (6.234)

⇓
∂µn+1

∂Cn+1
= ∂µn+1

∂Cn+1
+ 1

3J
−2/3
n+1 DEVn+1(Q2,n). (6.235)
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Note the following interesting expression:

∂

∂Cn+1

[
J

−2/3
n+1 TRn+1(·)

]
= J

−2/3
n+1 DEVn+1(·). (6.236)

The first term is obtained by taking the derivative of Equation (6.193):

∂‖�trial
n+1‖

∂Cn+1
− 2

∂µn+1

∂Cn+1

(

1 + h
eq′
2

3µ

)

�γn+1 − 2µn+1

(

1 + h
eq′
2

3µ

)
∂�γn+1

∂Cn+1

− 2
3h′

1
∂�γn+1

∂Cn+1
− 2

3f ′ ∂�γn+1

∂Cn+1
= 0 (6.237)

(heq′
2 is assumed to be constant) from which

2µn+1
∂�γn+1

∂Cn+1
= 1

(
1 + h

eq′
2

3µ
+ h′

1
3µn+1

+ f ′
3µn+1

) ·

·
[

∂‖�trial
n+1‖

∂Cn+1
− 2�γn+1

(

1 + h
eq′
2

3µ

)
∂µn+1

∂Cn+1

]

. (6.238)

Collecting terms, the derivative of the plastic correction yields

2
∂

∂Cn+1

(−2�γn+1µn+1Nn+1
) = −1

(
1 + h

eq′
2

3µ
+ h′

1
3µn+1

+ f ′
3µn+1

) ·

·
[

Nn+1 ⊗ 2
∂‖�trial

n+1‖
∂Cn+1

− 2�γn+1

(

1 + h
eq′
2

3µ

)

Nn+1 ⊗ 2
∂µn+1

∂Cn+1

]

− 2�γn+1Nn+1 ⊗ 2
∂µn+1

∂Cn+1
− 2�γn+1µn+1

‖�trial
n+1‖

[

H trial
n+1 − Nn+1 ⊗ 2

∂‖�trial
n+1‖

∂Cn+1

]

(6.239)

= −
(

1
δ0

− f0

)
Nn+1 ⊗ 2

∂‖�trial
n+1‖

∂Cn+1

+ 2γn+1

[
1
δ0

(

1 + h
eq′
2

3µ

)

− 1

]

Nn+1 ⊗ 2
∂µn+1

∂Cn+1
− f0H

trial
n+1 (6.240)

where

f0 := 2µn+1�γn+1

‖�trial
n+1‖

(6.241)

δ0 := 1 + h
eq′
2

3µ
+ h′

1

3µn+1
+ f ′

3µn+1
. (6.242)
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Substituting Equations (6.228), (6.229), (6.231) and (6.235) into Equation (6.240) yields

2
∂

∂Cn+1

(−2�γn+1µn+1Nn+1
)

= −f1

[
2µn+1Nn+1 ⊗ Nn+1 + 2‖�trial

n+1‖Nn+1 ⊗ DEVn+1(N
2
n+1)

]

+ 2γn+1

[
1
δ0

(

1 + h
eq′
2

3µ

)

− 1

]
2
3‖�trial

n+1‖Nn+1 ⊗ Nn+1 − f0H
trial
n+1 (6.243)

where
f1 := 1

δ0
− f0 (6.244)

or

2
∂

∂Cn+1

(−2�γn+1µn+1Nn+1
)

= −δ1Nn+1 ⊗ Nn+1 − δ2Nn+1 ⊗ DEVn+1(N
2
n+1) − f0H

trial
n+1 (6.245)

where

δ1 := f12µn+1 −
[

1
δ0

(

1 + h
eq′
2

3µ

)

− 1

]
4
3γn+1‖�trial

n+1‖ (6.246)

and
δ2 := 2‖�trial

n+1‖f1. (6.247)

Summarizing,

Bn+1 = KJ 2
n+1C

−1
n+1 ⊗ C−1

n+1 − K(J 2
n+1 − 1)I

C−1
n+1

+ B trial
n+1

− δ1Nn+1 ⊗ Nn+1 − δ2Nn+1 ⊗ DEVn+1(N
2
n+1) − f0H

trial
n+1 (6.248)

where

B trial
n+1 = 2µn+1

(
I
C−1

n+1
− 1

3C−1
n+1 ⊗ C−1

n+1

)
− 2

3

(
T trial

n+1 ⊗ C−1
n+1 + C−1

n+1 ⊗ T trial
n+1

)
(6.249)

H trial
n+1 = 2µn+1

(
I
C−1

n+1
− 1

3C−1
n+1 ⊗ C−1

n+1

)
− 2

3

(
�trial

n+1 ⊗ C−1
n+1 + C−1

n+1 ⊗ �trial
n+1

)

(6.250)

f0 = 2µn+1�γn+1

‖�trial
n+1‖

(6.251)

f1 = 1
δ0

− f0 (6.252)

δ0 = 1 + h
eq′
2

3µ
+ h′

1

3µn+1
+ f ′

3µn+1
. (6.253)
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δ1 = f12µn+1 −
[

1
δ0

(

1 + h
eq′
2

3µ

)

− 1

]
4
3�γn+1‖�trial

n+1‖ (6.254)

δ2 = 2‖�trial
n+1‖f1. (6.255)

This concludes a long and tedious calculation. Notice that the tangent modulus is usually
not isotropic, although the material is isotropic in the elastic range. Plasticity induces
anisotropy.

The expression for Bn+1 is not symmetric because of the Nn+1 ⊗ DEVn+1(N
2
n+1)

term. In practice, this term is often symmetrized:

[
Nn+1 ⊗ DEVn+1(N

2
n+1)

]S

:= 1
2

[
Nn+1 ⊗ DEVn+1(N

2
n+1) + DEVn+1(N

2
n+1) ⊗ Nn+1

]
. (6.256)

This does not lead to wrong solutions, but may decrease the rate of convergence of the
scheme. However, the effect is deemed to be small.

6.8 Isochoric Plastic Deformation

In the previous derivation, the volume-preserving aspect of plastic deformation (Equa-
tion (6.49)) has not been taken into account (Simo and Miehe 1992). Indeed, J p = 1 implies

det Cp−1 = 1 (6.257)

and accordingly,

˙
det Cp−1 = 0 (6.258)

or

∂ det Cp−1

∂Cp−1
: ˙
Cp−1 = 0. (6.259)

Using Equation (1.509) for the derivative of the third invariant of a matrix, this yields

˙
Cp−1 : Cp = 0 (6.260)

which does not agree with the assumption in Equation (6.124):

TR(
˙

Cp−1) = ˙
Cp−1 : C = 0. (6.261)

Accordingly, it looks as if Equation (6.177) does not hold and Equation (6.179) yields
DEVn+1C

p−1
n+1 and not Cp−1

n+1. However, we know that (Equation (6.48))

Cp−1 = DEVCp−1 + 1
3 TR(Cp−1

)C−1 (6.262)
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which implies that the knowledge of TRn+1(C
p−1
n+1) suffices to determine Cp−1

n+1. Defining
the invariants of Cp−1

n+1 by

J1Cp−1 := Cp−1 : C = trbe (6.263)

J2Cp−1 := (Cp−1 · C · Cp−1
) : C = trbe2 (6.264)

J3Cp−1 := (Cp−1 · C · Cp−1 · C · Cp−1
) : C = trbe3 (6.265)

one arrives at, Equations (4.304) to (4.306)

I1Cp−1 = J1Cp−1 = I1be (6.266)

I2Cp−1 = 1
2 (J 2

1Cp−1 − J2Cp−1) = I2be (6.267)

I3Cp−1 = DETCp−1 = 1
6 (2J3Cp−1 + J 3

1Cp−1 − 3J1Cp−1J2Cp−1) = I3be . (6.268)

Since

Cp−1 = F−1 · be · F−T (6.269)

one finds

det Cp−1 = 1 ⇔ det be = DETCp−1 = J 2. (6.270)

Let us, for the simplicity of notation, denote Cp−1 by A in what follows. The eigenvalues
satisfy the characteristic equation:

�3
A − I1A�2

A + I2A�A − I3A = 0. (6.271)

The same applies to the eigenvalues and invariants of DEVA:

�3
DEVA + I2DEVA�DEVA − I3DEVA = 0 (6.272)

since

I1A = TR(DEVA) = 0. (6.273)

The eigenvalues of A and DEVA are related by

�DEVA = �A − 1
3I1A. (6.274)

Accordingly, Equation (6.272) reduces to

(�A − 1
3I1A)3 + I2DEVA(�A − 1

3I1A) − I3A = 0. (6.275)

Expanding Equation (6.275) and substituting Equation (6.272) yields

I3A − I2A�A + 1
3�AI 2

1A − ( 1
3I1A)3 + I2DEVA�A − ( 1

3I1A)I2DEVA − I3DEVA = 0.

(6.276)
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This equation contains the unknowns I1A, I2A, I3A and �A and the known quantities
I2DEVA and I3DEVA. Ultimately, we are looking for I1A. From Equation (6.270), we know
that I3A = J 2. To eliminate I2A, the following equation is used:

TR[(DEVA)2] = TR(A2) − 1
3 [TR(A)]2 (6.277)

which can be obtained by simple expansion. Accordingly,

J2DEVA = J2A − 1
3J 2

1A (6.278)

or, using Equations (6.266) to (6.268),

I2A = 1
3I 2

1A + I2DEVA. (6.279)

Substitution of Equation (6.279) into Equation (6.276) yields

( 1
3I1A)3 + ( 1

3I1A)I2DEVA + (I3DEVA − J 2) = 0. (6.280)

This is a cubic equation in I1A = TRCp−1, which can be solved explicitly (Abramowitz
and Stegun 1972).

The condition in Equation (6.261) was actually also used to determine µn+1 (see
Equations (6.149)–(6.152)). Since at this point TRCp−1 is not necessarily constant in time,
the result of Equation (6.280) allows for an update of µn+1 and an iterative procedure
ensues.

6.9 Burst Calculation of a Compressor

Plasticity is an important phenomenon in the deformation of metallic materials. Because
of plasticity, high linear elastic stresses at notches and other geometric discontinuities
are relaxed and redistributed. In the present application, the rotational speed of a radial
compressor is increased till burst. The compressor is made of an aluminum alloy with
Young’s modulus E = 75 000 MPa and a Poisson coefficient ν = 0.3. The isotropic hard-
ening curve is bilinear and described in Table 6.1. The geometry of the compressor can
be downloaded from the CalculiX Homepage (CalculiX GraphiX examples, (CalculiX
2003)).

Figure 6.6 shows the equivalent plastic strain at a location at the bore (inner radius) and
the rim (outer radius) of the disk. It is well known from the theory of elasticity (Timoshenko
and Goodier 1970) that the stresses are highest in the bore region and that is where plastic
flow starts from. At a rotational speed of about 170 000 cycles/min, the disk collapses. This

Table 6.1 Isotropic hardening curve.

von Mises stress Equivalent plastic strain
(MPa) (%)

290 0
347 6
347 100
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Figure 6.6 Equivalent plastic strain in the disk
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Figure 6.7 Radial displacements in the disk

is clear from the asymptotic increase of the plastic flow in the bore region. At the same
time, the inner and outer radii also increase significantly (Figure 6.7). The bore radius at
rest is about 3.5 mm, the rim radius is 43.5 mm. The calculation allows us to determine
the burst margin for a given operation point.



7

Heat Transfer

7.1 Introduction

So far, the temperature has been considered as known. This is generally not the case. Usu-
ally, one knows thermal boundary conditions such as the environmental temperature or the
value of a heat source, but not the temperature field in the entire body. This is the subject
of heat-transfer calculations. Often, heat-transfer calculations are performed independently
of stress calculations: they yield the temperature field, which serves as an input to the stress
calculations through the force term in Equation (2.23). Also, material properties such as
Young’s modulus and other stress–strain curve characteristics change with temperature.
Nonuniform temperature fields, especially, often induce considerable stress. In a few cases,
the converse also applies: deformations lead to a temperature rise, for example, in forg-
ing operations. Then, there is a true mutual interaction between stress/deformation and
temperature, resulting in coupled calculations.

7.2 The Governing Equations

In the present derivation we will allow for plastic processes, but we assume small strains,
that is, we start from a free energy potential of the form in Equation (5.11):

� = �(ε − εp, α, θ, ∇θ, X). (7.1)

Furthermore, rectangular coordinates are assumed throughout. Of course, the conservation
laws still apply. In particular, the Clausius–Duhem inequality leads to (cf Chapter 5)

σ = ρ

ρ0

∂�

∂εe (7.2)

η = − 1

ρ0

∂�

∂θ
(7.3)

The Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85752-8



306 HEAT TRANSFER

qi = −∂�

∂α
(7.4)

∂�

∂∇θ
= 0 (7.5)

where q i stands for the internal dynamic variables. The index ‘i’ was introduced to avoid
confusion with the heat flux q. Introducing a reference temperature θref, we define the
relative temperature

T := θ − θref. (7.6)

T is assumed to be small compared to θref. We now expand � as a function of T as follows
(� does not depend on ∇θ because of Equation (7.5)):

�(εe, α, θ, X) = ρ0(X)ψ0(ε
e, α, X) − ρ0(X)η0(ε

e, X)T −
[

ρ0(X)c(εe, θ, X)

2θref

]
T 2.

(7.7)

This is an equality, not an approximation: notice that c is a function of the temperature θ . It
is assumed that the dependence on α does not depend on the temperature (only ψ0 contains
α). Applying Equations (7.2) to (7.4) and keeping the linear terms only (T is assumed to
be small) leads to

σ = ρ
∂ψ0

∂εe − ρ
∂η0

∂εe T + O(T 2) (7.8)

η = η0 + cT

θref
(7.9)

q i = −ρ0
∂ψ0

∂α
(7.10)

where ρ0(X), ψ0(ε
e, α, X), η0(ε

e, X) and c(εe, θ , X), as in Equation (7.7). Equation (7.8)
splits the stresses into a mechanical part and a thermal part.

The internal energy satisfies (cf Equation (1.387):

ε = �

ρ0
+ θη. (7.11)

Substitution of Equations (7.7) and (7.9) into Equation (7.11) yields

ε = ψ0 − η0T + θη0 + cT

θref
θ + O(T 2) (7.12)

which can be further simplified to

ε = ψ0(ε
e, α, X) + η0(ε

e, X)θref + c(εe, θ, X)T + O(T 2). (7.13)

The conservation of energy requires (Equation (1.355), spatial form)

ρε̇ = ε̇ : σ − qk
,k + ρh (7.14)
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which yields after the use of Equation (7.13)

ρ
∂ψ0

∂εe : ε̇e + ρ
∂ψ0

∂α
: α̇ + ρ

∂η0

∂εe : ε̇eθref + ρ
∂c

∂εe : ε̇eT

+ ρ
∂c

∂T
Ṫ T + ρcṪ − (ε̇e + ε̇p) : σ + qk

,k − ρh = 0. (7.15)

The first term in Equation (7.15) is a linear approximation to σ : εe (cf Equation (7.8)),
the second term corresponds to −qi : α̇ (cf Equation (7.10)) and the fourth and fifth terms
are quadratic (T and ε̇e are both small). Accordingly, Equation (7.15) reduces to

ρcṪ = −qk
,k + ρh + σ : ε̇p + qi : α̇ − β : ε̇eθref (7.16)

where

β := ρ
∂η0

∂εe (7.17)

is the stress reduction per temperature increase (cf Equations (7.8) and (1.413)). Equa-
tion (7.16) expresses that a temperature increase can result from heat flux, heat sources,
plastic dissipation, internal-variable dissipation and the work rate of the thermal stresses or
any combination. The last three terms depend on the deformation and embody the influence
of the deformation (mechanical action) on the temperature. The conservation of energy in
the form of Equation (7.16) is the governing equation in heat-transfer calculations.

7.3 Weak Form of the Energy Equation

To obtain the weak form of Equation (7.16), we proceed as explained in Section 1.12.
Multiplying by an infinitesimal perturbation of the temperature δT and integrating over V

yields
∫

V

ρcṪ δT dv = −
∫

V

qk
,kδT dv +

∫

V

(
ρh + σ : ε̇p + q i : α̇ − β : ε̇eθref

)
δT dv. (7.18)

Integrating the first term on the right-hand side by parts, one obtains

−
∫

V

qk
,kδT dv = −

∫

A

qkδT dak +
∫

V

qkδT,k dv (7.19)

leading to

∫

V

ρcṪ δT dv −
∫

V

qkδT,k dv

= −
∫

A

qkδT dak +
∫

V

(
ρh + σ : ε̇p + qi : α̇ − β : ε̇eθref

)
δT dv. (7.20)

The entropy inequality, Equation (5.17), requires that

q · ∇T ≥ 0 (7.21)
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which implies that q must be at least a linear function of ∇T :

qk = −κkl(T )T , l (7.22)

that is, for a zero-temperature gradient, there is no heat flux. In Equation (7.22), the coef-
ficients κkl are generally a function of the temperature. It is a nonlinear equation of the
temperature.

The flux in the first term on the right-hand side of Equation (7.20) is the heat flux
entering the body through its surface. It consists of three parts:

1. a convective part, which is more or less linear in T:

qk
conv = h(T )(T − Te)n

k (7.23)

where Te is the environmental temperature, h(T ) is the convective coefficient and n

is the normal to the surface.

2. a radiation part, which is highly nonlinear (Incropera and DeWitt 2002)

qk
rad = A(T )(θ4 − θ4

e )nk (7.24)

where θe is the absolute environmental temperature (in Kelvin) and A(T ) is the
product of the Stefan–Boltzmann constant σ with the emissivity ε(T ):

A(T ) = σε(T ). (7.25)

The emissivity is a property of the surface and takes values between zero and one.
It is a measure of how well the surface emits radiation. For a perfect black body,
ε = 1.

3. any other known flux

qk = qnk. (7.26)

Summarizing, the heat equation for small strains and small temperature deviations from a
reference temperature yields

∫

V

ρc(T )Ṫ δT dv +
∫

V

κklT,lδT,k dv

= −
∫

A

h(T )(T − Te)δT nk dak −
∫

A

A(T )(θ4 − θ4
e )δT nk dak

−
∫

A

qδT nk dak +
∫

V

(
ρh + σ : ε̇p + q i : α̇ − β : ε̇eθ

)
δT dv. (7.27)

In the last term, θref was replaced by θ , which also corresponds to a second-order correction.
Indeed,

β : ε̇eθ = β : ε̇eθref + β : ε̇eT (7.28)

where β : ε̇eT = O(‖ε‖T ). Equation (7.27) is highly nonlinear because of the radiation
term. Furthermore, the temperature dependence of the materials constants in Equation (7.27)
cannot be neglected and must be taken into account through an iterative procedure.
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7.4 Finite Element Procedure
Similar to the discretization procedure for the displacements in Section 2.1, the temperatures
are interpolated within an element between the nodal values by shape functions

T (ξ, η, ζ, t) =
N∑

i=1

ϕi(ξ, η, ζ )Ti(t). (7.29)

The time derivative yields

Ṫ (ξ, η, ζ, t) =
N∑

i=1

ϕi(ξ, η, ζ )Ṫi(t) (7.30)

and similarly

δT (ξ, η, ζ, t) =
N∑

i=1

ϕi(ξ, η, ζ )δTi(t). (7.31)

Substituting these expressions into Equation (7.27) and breaking down the volume integra-
tion on the element level yields

∑

e

N∑

i=1

N∑

j=1

[∫

Ve

ρc(T )ϕjϕi dve

]
Ṫj δTi +

∑

e

N∑

i=1

N∑

j=1

[∫

Ve

κkl(T )ϕj,lϕi,k dve

]
Tj δTi

= −
∑

e

N∑

i=1

[∫

Ae

h(T )(T − Te)ϕi dae

]
δTi −

∑

e

N∑

i=1

[∫

Ae

A(T )(θ4 − θ4
e )ϕi dae

]
δTi

−
∑

e

N∑

i=1

[∫

Ae

qϕi dae

]
δTi +

∑

e

N∑

i=1

[∫

Ve

(
ρh + σ : ε̇p + q i : α̇ − β : ε̇eθ

)
ϕi dve

]
δTi .

(7.32)

Defining for each element a vector containing the nodal temperatures

{
T
}

e :=






T1
T2
...

TN






(7.33)

Equation (7.32) can be written as
∑

e

δ
{
T
}T

e

[
C
]

e

D

Dt

{
T
}

e +
∑

e

δ
{
T
}T

e

[
K
]

e

{
T
}

e =
∑

e

δ
{
T
}T

e

{
Q
}

e (7.34)

where
[
C
]

eij =
∫

Ve

ρc(T )ϕiϕj dve (7.35)

[
K
]

eij =
∫

Ve

κkl(T )ϕi,kϕj,l dve (7.36)
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{
Q
}

ei = −
∫

Ae

h(T )(T − Te)ϕi dae −
∫

Ae

A(T )(θ4 − θ4
e )ϕi dae −

∫

Ae

qϕi dae

+
∫

Ve

(
ρh + σ : ε̇p + q i : α̇ − β : ε̇eθ

)
ϕidve. (7.37)

[
C
]

e is the element capacity matrix and
[
K
]

e is the element conduction matrix. Both are
symmetric matrices (κkl is a symmetric tensor). Defining the localization matrix

[
L
]

e that
localizes element “e” within the structure by

{
T
}

e = [
L
]

e

{
T
}

(7.38)

where
{
T
}

contains the temperatures of all nodes, Equation (7.34) now reads

δ
{
T
}T [

C
] D

Dt

{
T
}+ δ

{
T
}T [

K
] {

T
} = δ

{
T
}T {

Q
}

(7.39)

where
[
C
] =

∑

e

[
L
]T

e

[
C
]

e

[
L
]

e (7.40)

[
K
] =

∑

e

[
L
]T

e

[
K
]

e

[
L
]

e (7.41)

{
Q
} =

∑

e

[
L
]T

e

{
Q
}

e . (7.42)

Since Equation (7.39) must apply for any δ
{
T
}T, one finally arrives at the following

governing set of finite element equations:

[
C
] D

Dt

{
T
}+ [

K
] {

T
} = {

Q
}
. (7.43)

Although Equation (7.43) looks linear in the temperature, it is not linear at all. Indeed,
both

[
C
]

and
[
K
]

are a function of the temperature, since the capacity and conduction
coefficients are temperature-dependent. Furthermore, the driving flux

{
Q
}

(units of power)
is highly nonlinear because of the radiation terms.

7.5 Time Discretization and Linearization of the
Governing Equation

Equation (7.43) is an ordinary differential equation in t . For the time discretization, a
backward Euler scheme is taken. Accordingly,

D

Dt

{
T
}
n+1 ≈ 1

�t

[{
T
}
n+1 − {

T
}
n

]
. (7.44)

Evaluating Equation (7.43) at t = tn+1 leads to

1

�t

[
C
]
n+1

({
T
}
n+1 − {

T
}
n

)
+ [

K
]
n+1

{
T
}
n+1 = {

Q
}
n+1 . (7.45)
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This nonlinear equation will be solved in an iterative way. Assume
{
T
}
n

is known and we

want to determine
{
T
}
n+1. In the iteration k + 1, we have an approximation

{
T
}(k)

n+1 for
{
T
}
n+1, and we seek a better approximation

{
T
}(k+1)

n+1 that satisfies

{
T
}(k+1)

n+1 = {
T
}(k)

n+1 + {
�T

}(k)

n+1 . (7.46)

Substitution of the approximation
{
T
}(k)

n+1 into
[
C
]

will be denoted
[
C
](k)

n+1. Linearization

of the improved value
[
C
](k+1)

n+1 leads to

[
C
](k+1)

n+1 = [
C
](k)

n+1 +
[

∂
[
C
]

∂
{
T
}

](k)

n+1

{
�T

}(k)

n+1 . (7.47)

Similar expressions apply to
[
K
](k+1)

n+1 and
{
F
}(k+1)

n+1 . Evaluation of Equation (5.42) in the
iteration k + 1 yields

1

�t



[C
](k)

n+1 +
[

∂
[
C
]

∂
{
T
}

](k)

n+1

{
�T

}(k)

n+1




({

T
}(k)

n+1 + {
�T

}(k)

n+1 − {
T
}
n

)

+



[
K
](k)

n+1 +
[

∂
[
K
]

∂
{
T
}

](k)

n+1

{
�T

}(k)

n+1




({

T
}(k)

n+1 + {
�T

}(k)

n+1

)

= {
Q
}(k)

n+1 +
[

∂
{
Q
}

∂
{
T
}

](k)

n+1

{
�T

}(k)

n+1 . (7.48)

Collecting terms and neglecting quadratic contributions yields





1

�t



[C
](k)

n+1 +
[

∂
[
C
]

∂
{
T
}

](k)

n+1

({
T
}(k)

n+1 − {
T
}
n

)




+



[
K
](k)

n+1 +
[

∂
[
K
]

∂
{
T
}

](k)

n+1

{
T
}(k)

n+1



−
[

∂
{
Q
}

∂
{
T
}

](k)

n+1





{
�T

}(k)

n+1

= − 1

�t

[
C
](k)

n+1

({
T
}(k)

n+1 − {
T
}
n

)
− [

K
](k)

n+1

{
T
}(k)

n+1 + {
Q
}(k)

n+1 . (7.49)

The right-hand side is the residual
{
R
}(k)

n+1 of Equation (7.45) in iteration (k). The depen-
dence of the capacity and conduction terms on the temperature is usually benign, and the
corresponding temperature-derivative terms in Equation (7.49) are often neglected. In this
way, Equation (7.49) reduces to



 1

�t

[
C
](k)

n+1 + [
K
](k)

n+1 −
[

∂
{
Q
}

∂
{
T
}

](k)

n+1




{
�T

}(k)

n+1 = {
R
}(k)

n+1 . (7.50)
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The only term that needs further analysis is the derivative of the driving flux with respect
to the temperature. Equations (7.38) and (7.42) yield

[
∂
{
Q
}

∂
{
T
}

](k)

n+1

=
∑

e

[
L
]T

e

[
∂
{
Q
}

e

∂
{
T
}

](k)

n+1

=
∑

e

[
L
]T

e

[
∂
{
Q
}

e

∂
{
T
}

e

](k)

n+1

[
L
]

e . (7.51)

The derivative of
{
Q
}

e with respect to the temperature reduces to the derivative of any
of its entries in Equation (7.37). Concentrating on the first term on the right-hand side of
Equation (7.37),
[

∂
{
Q
}1

ei

∂
{
T
}

ej

](k)

n+1

= −
[

∂

∂Tj

∫

Ae

h

(
N∑

k=1

ϕkTk

)(
N∑

l=1

ϕlTl − Te

)

ϕi dae

](k)

n+1

= −
∫

Ae

[
∂h

∂T

](k)

n+1
(T

(k)
n+1 − Te)ϕiϕj dae −

∫

Ae

h(T
(k)
n+1)ϕiϕj dae. (7.52)

In a similar way, one finds for the second term on the right-hand side of Equation (7.37),

[
∂
{
Q
}2

ei

∂
{
Tej
}

](k)

n+1

= −


 ∂

∂Tj

∫

Ae

A

(
N∑

k=1

ϕkTk

)


(

θref +
N∑

l=1

ϕlTl

)4

− θ4
e



ϕi dae





(k)

n+1

= −
∫

Ae

[
∂A

∂T

](k)

n+1

[
(θref + T

(k)
n+1)

4 − θ4
e

]
ϕiϕj dae

−
∫

Ae

A(T
(k)
n+1)4(θref + T

(k)
n+1)

3ϕiϕj dae. (7.53)

The dependence of h and A on T is usually benign, such that the first terms in Equations (7.52)
and (7.53) are frequently dropped. The dependence on T of the third and fourth terms in
Equation (7.37) is usually also small. If not, their derivative must also be included. Summa-
rizing, one obtains
[

∂
{
Q
}

ei

∂
{
T
}

ej

](k)

n+1

= −
∫

Ae

h(T
(k)
n+1)ϕiϕj dae −

∫

Ae

A(T
(k)
n+1)4(θref + T

(k)
n+1)

3ϕiϕj dae. (7.54)

This yields a contribution of the convection and radiation fluxes to the “stiffness” matrix
in Equation (7.50), comparable to the stiffness contribution of the centrifugal forces and
traction forces in Section 3.3. Notice that the resulting equation, Equation (7.50), does not
contain any explicit reference to θref. Consequently, we can freely choose θref, for example,
as absolute zero.

7.6 Forced Fluid Convection
In most cases, the flux boundary conditions are made up of the terms in Equations (7.23)
and (7.24). Equation (7.23) can also be written as

qk
conv = h(θ)(θ − θe)n

k (7.55)



HEAT TRANSFER 313

T

TiTj

Tk

Tl

ṁij
ṁik

ṁil

h(T − Ti)

Figure 7.1 Heat fluxes from and toward location i

where θe is the absolute temperature of the surrounding fluid. In some applications, such
as in tubes with internal flow, this temperature is itself also an unknown, depending on
the fluid temperature at the entry of the tube. In such cases, the fluid temperature can be
calculated using a simple network. For applications in which the fluid is meshed with finite
elements, see (Reddy and Gartling 2001).

Consider the part of the tube wall shown in Figure 7.1. The relative material temperature
T interacts through convection with the gas temperature Ti at location i. At that location,
mass flow arrives from location j , whose temperature is Tj , and the mass flow leaves to
locations k and l, which are at temperature Tk and Tl respectively. The energy equation for
gases is (Equation (1.554)),

ρθ
∂2ψ

∂θ2
θ̇ + θ

∂2ψ

∂ρ−1∂θ
d : I − ∇ · q + ρh = 0 (7.56)

where ψ(ρ−1, θ). Similar to Equation (7.7), we expand ψ as a function of the temperature
T :

ψ(ρ−1, θ) = ψ0(ρ
−1) − η0(ρ

−1)T − cv(ρ
−1, θ)

2θref
T 2 (7.57)

where

cv := ∂ε

∂θ
(7.58)

is the specific heat at constant volume for an ideal gas (Anderson 1989). Hence,
∂ψ

∂θ
= −η0 − cv

T

θref
+ O(T 2), T → 0 (7.59)

∂2ψ

∂θ∂ρ−1
= − ∂η0

∂ρ−1
+ O(T ), T → 0 (7.60)

∂2ψ

∂θ2
= − cv

θref
+ O(T ), T → 0. (7.61)
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Substituting into Equation (7.56) leads to (keeping only first-order terms)

ρcvṪ + θref
∂η0

∂ρ−1
d : I = −∇ · q + ρh. (7.62)

The function η0 can be further specified if we take the gas equation of state into account.
For an ideal gas, we have as the equation of state

p = Rρ(θref + T ) (7.63)

where R is the specific gas constant, and

p = − ∂ψ

∂ρ−1
= − ∂ψ0

∂ρ−1
+ ∂η0

∂ρ−1
T . (7.64)

Accordingly,

∂ψ0

∂ρ−1
= −Rρθref ⇒ ψ0 = Rθref ln ρ + C1 (7.65)

∂η0

∂ρ−1
= Rρ ⇒ η0 = −R ln ρ + C2. (7.66)

The heat equation, Equation (7.60), now yields

ρcvṪ + Rρθrefd : I = −∇ · q + ρh. (7.67)

Using Equation (1.517), this can also be written as

ρcvṪ = −∇ · q + ρh + Rθrefρ̇ (7.68)

or, since ρ = 1/v and θref ≈ θ ,

ρcvṪ = −∇ · q + ρh − ρpv̇. (7.69)

Accordingly, a temperature increase can be obtained through heat influx or through mechan-
ical work (Anderson 1991). If we assume that the pressure p is constant, we have

Rρθ = constant (7.70)

or

Rρ̇θ + Rρθ̇ = 0. (7.71)

This can be transformed into

Rθrefρ̇ ≈ Rθρ̇ = −Rρθ̇ = −RρṪ (7.72)

and

ρcvṪ − Rθrefρ̇ ≈ ρṪ (cv + R) = ρṪ cp (7.73)
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since the specific heat at constant pressure, cp, satisfies

R = cp − cv. (7.74)

Consequently, the energy equation for a gas reduces to

ρcpṪ = −qk
,k + ρh. (7.75)

The derivative of the temperature on the left-hand side is the total derivative consisting of
the local variation and the change due to convection:

Ṫ = DT

Dt
= ∂T

∂t
+ T,kv

k. (7.76)

So far, we dealt with solids, for which the convective term can be neglected. This is not
so for fluids and gases. Accordingly,

ρcp

(
∂T

∂t
+ T,kv

k

)
= −qk

,k + ρh. (7.77)

The conservation of mass requires (Equation (1.223))

∂ρ

∂t
+ (ρvk),k = 0. (7.78)

Combining Equations (7.77) and (7.78) yields

cp
∂ρT

∂t
+ cp(Tρvk),k = −qk

,k + ρh. (7.79)

The gas nodes i, j, k, l, · · · stand for a given control volume that is fixed in space and
assigned to them. Integrating Equation (7.79) for node i yields

∫

Vi

cp
∂ρT

∂t
dv +

∫

Vi

cp(Tρvk),k dv = −
∫

Vi

qk
,k dv +

∫

Vi

ρh dv. (7.80)

Transforming the volume integrals for the divergence terms to surface integrals (assuming
cp to be constant over the volume),

∫

Vi

cp
∂ρT

∂t
dv +

∫

Ai

cpTρvk dak = −
∫

Ai

qk dak +
∫

Vi

ρh dv. (7.81)

We assume that the integrands of the volume integrals are constant across the volume:
∫

Vi

cp
∂ρT

∂t
dv = cp(Ti)

∂ρ(Ti)Ti

∂t
Vi (7.82)

∫

Vi

ρhdv = ρ(Ti)hiVi . (7.83)

The area of the convective term is split into areas with inflow and areas with outflow.
For both types, cp and T are assumed to be constant across the area. For inflow, T is the
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temperature of the neighboring node providing the flow; for outflow it is the temperature
of node i. Hence,

∫

Ai

cpTρvk dak =
∑

j∈in

cp(Tj )Tj

∫

Aij

ρvk dak +
∑

j∈out

cp(Ti)Ti

∫

Aij

ρvk dak. (7.84)

The mass flow between node i and node j is defined by

ṁij = ±
∫

Aij

ρvk dak. (7.85)

The plus sign applies to the outflow and the minus sign to the inflow. Accordingly,
∫

Ai

cpTρvk dak = −
∑

j∈in

cp(Tj )Tj ṁij +
∑

j∈out

cp(Ti)Tiṁij . (7.86)

The first term on the right-hand side of Equation (7.81) relates to the convection from
the wall (surface Aiw) and the conduction in the fluid (surface Aif , Ai = Aif ∪ Aiw):

∫

Ai

qk dak =
∫

Aiw

qk
conv dak +

∫

Aif

qk dak. (7.87)

The conduction in the fluid is neglected. Hence,
∫

Ai

qk dak = −[h(Ti, T )(T − Ti)]Aiw. (7.88)

Summarizing, one obtains the following equation:

cp(Ti)
∂[ρ(Ti)Ti]

∂t
Vi =

∑

j∈in

cp(Tj )Tj ṁij − cp(Ti)Ti

∑

j∈out

ṁij

+ h(Ti, T )(T − Ti) + mihi (7.89)

where

mi = ρ(Ti)Vi (7.90)

is the mass in the control volume and

h(Ti, T ) = h(Ti, T )Aiw (7.91)

A(Ti, T ) = A(Ti, T )Aiw. (7.92)

Equation (7.89) expresses that the change of heat energy at node i is caused by influx from
the other nodes, plus convection from the wall, minus outflux to the other nodes. In reality,
the inertia of the gas is small compared to the inertia of the wall. Consequently, the term
on the left-hand side of Equation (7.89) is usually neglected leading to

0 =
∑

j∈in

cp(Tj )Tj ṁij − cp(Ti)Ti

∑

j∈out

ṁij + h(Ti, T )(T − Ti) + mihi. (7.93)
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This is a weakly nonlinear equation in the temperature:


h(Ti, T ) + cp(Ti)
∑

j∈out

ṁij



 Ti −
∑

j∈in

[
cp(Tj )ṁij

]
Tj − h(Ti, T )T = mihi. (7.94)

Equation (7.94) can be considered as a nonlinear multiple-point constraint in the temper-
ature, analogous to the nonlinear displacement multiple-point constraints in Chapter 3. It
allows for the calculation of the gas temperatures as soon as the structural temperatures are
known.

7.7 Cavity Radiation
In the present section, we examine what happens if radiation is exchanged among several
surfaces. Radiation is a rather complicated subject meriting a much more extensive treatise.
For more details, the reader is referred to (Incropera and DeWitt 2002).

7.7.1 Governing equations

Consider a differential surface dA1 emitting radiation toward a differential surface dA2 at
a distance r (Figure 7.2). The surface dA2 is perpendicular to the line connecting dA1 with
dA2 and covers a spatial angle dω satisfying

dω = dA2

r2
. (7.95)

x

r

y

z

dA1

dA2

ϕ

ψ

dω

Figure 7.2 Radiation of surface dA1 onto dA2
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x

r

y

z

ψ

dφ

dψ

r sin ψ

Figure 7.3 Infinitesimal surface element

The spectral intensity IE in a certain direction (ϕ, ψ) is defined as the radiation power
per unit solid angle dω about this direction, per unit wavelength dλ, per unit emitting area
perpendicular to this direction:

IE = dPE

dω dλ dA1 cos ψ
. (7.96)

Accordingly, for the radiation power between two infinitesimal areas dA1 and dA2, the
area dA1 enters in IE in the form of the projected area dA1 cos ψ , whereas dA2 enters in
the form of the spatial angle dω. Furthermore, IE depends on the wavelength of emission.
The spectral, hemispherical emissive power Eλ, is defined as the radiation power in all
directions of a hemisphere per unit wavelength dλ per unit emitting area (not projected!).
Hence,

Eλ =
∫

hemisphere
IE cos ψ dω. (7.97)

An infinitesimal solid angle can be written as (Figure 7.3)

dω = sin ψ dϕ dψ (7.98)

leading to

Eλ =
∫ 2π

0

∫ π/2

0
IE cos ψ sin ψ dψ dϕ. (7.99)
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If the emission does not depend on the direction (ϕ, ψ), it is called diffuse emission. Here
and in the section that follows, we assume that we deal with diffuse emitters. In that case,
IE is no function of ϕ and ψ , and Equation (7.99) reads

Eλ = IE

∫ 2π

0

∫ π/2

0
cos ψ sin ψ dψ dϕ = πIE. (7.100)

A special kind of diffuse emitter is a blackbody. Its properties are as follows:

1. It emits diffuse, that is, the spectral intensity only depends on the wavelength and
temperature, not on the emission angle.

2. No body can emit more energy than a blackbody for a given wavelength and tem-
perature.

3. All incident radiation is completely absorbed, no reflection takes place.

A blackbody is classically symbolized by a cavity at a uniform temperature with a small
aperture. The spectral intensity of blackbody radiation was first determined by Planck, and
satisfies

IE,b = 2hc2
0

λ5[exp(hc0/λkθ) − 1]
(7.101)

where h = 6.6256 × 10−34 Js is the Planck constant, k = 1.3805 × 10−23 J/K is the Boltz-
mann constant, c0 = 2.998 × 108 m/s is the speed of light in vacuum and θ is the temper-
ature of the blackbody in Kelvin. Since a blackbody is a diffuse emitter, one obtains for
the spectral emissive power

Eλ,b = πIE,b. (7.102)

The total emissive power is the power emitted per unit of emitting area and satisfies

Eb =
∫ ∞

0
Eλ,b dλ. (7.103)

Substituting Equations (7.101) and (7.102) into Equation (7.103) and performing the inte-
gration, one obtains the Stefan–Boltzmann law

Eb = σθ4 (7.104)

where σ = 5.67 × 10−8 W/m2K4 is the Stefan–Boltzmann constant.
The blackbody is an ideal emitter. Real bodies will emit less. The spectral, directional

emissivity is defined as the ratio of the real spectral, directional radiation intensity to the
spectral blackbody intensity at the same temperature:

ελ,ω := IE

IE,b
. (7.105)

Here, we will assume to deal with diffuse emitters and work with averages over all wave-
lengths. Therefore, we define the total hemispherical emissivity as the ratio of the total
emissive power to the emissive power of a blackbody at the same temperature:

ε(θ) := E

Eb
. (7.106)
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The total emissive power is a function of the radiating surface and the temperature. Using
Equations (7.96), (7.97), (7.103) and (7.106), one can write the radiation power as

dP = εEbdA1 (7.107)

and since radiation power and flux are related by

dP = q dA1 (7.108)

the flux satisfies
q = ε(θ)Eb = ε(θ)σθ4. (7.109)

Comparing Equation (7.109) with Equation (7.24) for θe = 0 (no irradiation) reveals that

A(θ) = ε(θ)σ. (7.110)

In reality, we not only have radiation leaving the body but also irradiation entering the
body. The spectral, directional irradiation intensity II in a certain direction (ϕ, ψ) is defined
as the irradiation power per unit solid angle dω about this direction, per unit wavelength
dλ, per unit receiving area perpendicular to this direction:

II = dPI

dω dλ dA1 cos ψ
. (7.111)

Likewise, the total hemispherical irradiation power G is defined as the irradiation power
per unit receiving area:

G =
∫ ∞

0

∫

hemisphere
II cos ψ dω dλ. (7.112)

A part of the irradiation power is absorbed (αG), a part of it is reflected (ρG) and a part
of it is transmitted (τG) (Figure 7.4).

ρG

αG

τG

G

Figure 7.4 Absorption, reflection and transmission of irradiation
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Energy conservation requires that α + ρ + τ = 1. We assume that we are dealing with
opaque materials, that is, materials for which there is no transmission. Accordingly, τ = 0
and τ = 0. Accordingly,

α + ρ = 1. (7.113)

α is the total hemispherical absorptivity and ρ is the total hemispherical reflectivity. In
reality, α and ρ are dependent on the irradiation angle and its spectrum. Therefore, α and
ρ are averaged values in the same sense as ε is an averaged value of ελ,ω.

Here and in the section that follows, we assume that we deal with

1. diffuse surfaces, that is, ε and α are independent of the radiation and irradiation
direction;

2. gray surfaces, that is, ε and α are independent of the wavelength for the actual range
of interest.

Under these conditions, the important relationship

α = ε (7.114)

applies (Incropera and DeWitt 2002), that is, the absorptivity equals the emissivity. Looking
at Figure 7.4, the total radiation leaving the surface is the sum of the total emissive power
E and the reflected total irradiation power. This is called the total radiosity J :

J = E + ρG. (7.115)

Now we arrive at the view-factor concept. The view factor Fij is defined as the fraction
of the radiation power leaving surface i that is intercepted by surface j . It is assumed that
the surface Ai is characterized by a uniform radiosity Ji . The total radiation leaving the
surface Ai amounts to

R = JiAi. (7.116)

Since the radiosity is assumed to be uniform, the directional radiosity Jω,i satisfies

Jω,i = Ji

π
(7.117)

and the radiosity leaving dAi and reaching surface dAj yields (Figure 7.5)

dRij = Jω,i dAi cos ψiωij (7.118)

where ωij is the view angle covered by dAj seen by dAi :

ωij = dAj cos ψj

R2
. (7.119)

Accordingly,

Fij = 1

AiJi

∫

Ai

∫

Aj

(
Jω,i cos ψi cos ψj

R2

)
dAi dAj

= 1

Ai

∫

Ai

∫

Aj

(
cos ψi cos ψj

πR2

)
dAi dAj . (7.120)
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z

ϕ

dAi

dAj

ψi

ψj

Figure 7.5 Geometry for the view-factor calculation

Important relations are the reciprocity relation

AiFij = AjFji (7.121)

and the summation rule for enclosures

N∑

j=1

Fij = 1. (7.122)

Now consider N surfaces Ai interacting with each other. From Figure 7.4, we obtain the
relationships

qi = Ei − αiGi = Ei − εiGi (7.123)

Ji = Ei + ρiGi = Ei + (1 − εi)Gi. (7.124)

Hence, eliminating Gi from Equations (7.123) and (7.124),

qi = Ei − εiJi

1 − εi

= εi(Ebi − Ji)

1 − εi

(7.125)

where Ebi stands for the blackbody radiation of surface i. Eliminating Ei from Equa-
tions (7.123) and (7.124) leads to

qi = Ji − Gi. (7.126)
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Gi is the irradiation from all other bodies. Conservation of energy requires

AiGi =
N∑

j=1
j 
=i

FjiAjJj . (7.127)

Using the reciprocity rule, Equation (7.127) can be rewritten as

Gi =
N∑

j=1
j 
=i

Fij Jj . (7.128)

Accordingly, Equation (7.126) now reads

qi = Ji −
N∑

j=1
j 
=i

Fij Jj . (7.129)

Equating Equations (7.125) and (7.129) yields

Ji − (1 − εi)

N∑

j=1
j 
=i

Fij Jj = εiEbi . (7.130)

If the temperatures of all the participating surfaces are known, Equation (7.130) constitutes
a set of N linear equations in the N unknowns Ji . This set is not necessarily symmetric.
After solving for Ji , the fluxes qi can be obtained through Equations (7.125) or (7.129).
From qi , an equivalent environmental temperature can be derived for each surface Ai using
Equation (7.24):

θei =
[
θ4
i − qi

Ai(θi)

]1/4

(7.131)

where θi is the mean temperature of surface i. Sometimes a cavity is not completely closed
and part of the radiation escapes to the environment. Considering this environment to
behave as a blackbody and attributing it to the surface k, one obtains

εk = 1 ⇒ Jk = Ebk = Eb,environment (7.132)

and Equation (7.130) now yields

Ji − (1 − εi)

N∑

j=1
j 
=i,k

Fij Jj − (1 − εi)FikEbk = εiEbi (7.133)

or, since

Fik = 1 −
N∑

j=1
j 
=i,k

Fij (7.134)
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p2i

p3i

e1i

e2i

ni

nj

ψij

ϕij

ψjiRij

Triangle i

Triangle j

ci

cj

Figure 7.6 Local coordinate system in triangle i

one obtains

Ji − (1 − εi)

N∑

j=1
j 
=i,k

Fij Jj = εiEbi + (1 − εi)(1 −
N∑

j=1
j 
=i,k

Fij )Eb,environment. (7.135)

7.7.2 Numerical aspects

The time-consuming part in generating Equation (7.130) is the calculation of the view
factors. The method proposed here consists of the following steps:

1. Triangulate the free surface of the structure by defining linear triangles within the
element faces without generating any new nodes. For instance, a face of a 20-node
brick element is divided in six triangles, a face of an 8-node brick element in two
triangles and a face of a 10-node tetrahedral element in four triangles. Number the
nodes within each triangle in counterclockwise direction when viewed from outside
the body.

2. For each triangle i, determine the following:

(a) The center of gravity ci .

(b) The normal ni , pointing away from the body (Figure 7.6):

ni = (p2i − p1i ) × (p3i − p2i )

‖(p2i − p1i ) × (p3i − p2i )‖
. (7.136)

(c) The area Ai .
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(d) The unit vector e1i satisfying

e1i = (p2i − p1i )

‖p2i − p1i‖
(7.137)

(e) The unit vector e2i = ni × e1i . The basis (e1i , e2i , n) defines a right-handed
rectangular coordinate system.

(f) The scalar

di = −p1i · ni . (7.138)

A point p lies in the plane of triangle i if

p · ni + di = 0. (7.139)

It is visible from triangle i if and only if (assuming no other triangles block the
view)

p · ni + di ≥ 0. (7.140)

3. For each triangle i:

(a) Perform a loop over all triangles j 
= i with the following actions:

(i) Check whether cj is visible from triangle i. If it is not, that is, if

cj · ni + di < 0 (7.141)

cycle
(ii) Check whether ci is visible from triangle j . If it is not, that is, if

ci · nj + dj < 0 (7.142)

cycle. Only those triangles j remain from which triangle i can be seen and
which are visible from triangle i (assuming no other triangles block the
view). In the remainder of the text, they will be called visible triangles.

(iii) Calculate the distance

Rij = ‖cj − ci‖ (7.143)

and the unit vector

ξ ij = (cj − ci )/Rij . (7.144)
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ϕ

ψ

ϕmin ϕmid ϕmax

�ψ

�ϕ

Figure 7.7 φ − ψ grid

(b) Generate a rectangular grid with ϕ on the x-axis and ψ on the y-axis. A
(ϕ, ψ) pair uniquely defines a direction in the local (e1i , e2i , n) system, where
0 < ϕ < 2π, 0 < ψ < π/2 (cf Figure 7.6). The (ϕ, ψ)-range is meshed with
an N × M rectangular grid (Figure 7.7). Let k and l be functions such that
k(ϕ) and l(ψ) denote the discrete grid element to which (ϕ, ψ) belongs. If
�ϕ = 2π/N and �ψ = π/(2M), then the functions satisfy

k(ϕ) = int(ϕ/�ϕ) + 1 (7.145)

l(ψ) = int(ψ/�ψ) + 1 (7.146)

where int(x) is the largest integer smaller than or equal to x. Initialize by
assuming that all grid elements are uncovered.

(c) For all visible triangles, order Rij in ascending order.

(d) Perform a loop over all visible triangles j 
= i in ascending Rij -order with the
following actions:

(i) Calculate the coordinates of ξ ij in the local (e1i , e2i , n) system and deter-
mine the angles ϕij and ψij by inverting the relations

ξ ij · e1i = sin ψij cos ϕij (7.147)

ξ ij · e2i = sin ψij sin ϕij (7.148)

ξ ij · ni = cos ψij . (7.149)
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(ii) Determine the grid element k(ϕij ), l(ψij ) and check whether it was already
covered. If so, cycle.

(iii) Calculate the view factor

Fij = cos ψij cos ψjiAj

πR2
ij

(7.150)

where

cos ψji = −ξ ij · nj . (7.151)

(iv) Determine which grid elements are covered by triangle j . To that end,
calculate the unit vectors qk ij connecting ci with pkj , k = 1, 2, 3:

qk ij = (pkj − ci )

‖pkj − ci‖ . (7.152)

If

n31ij = q3ij × q1ij (7.153)

n12ij = q1ij × q2ij (7.154)

n23ij = q2ij × q3ij (7.155)

then the equations of the planes connecting the edges of triangle j with ci

satisfy

p · n31ij = 0 (7.156)

p · n12ij = 0 (7.157)

p · n23ij = 0, (7.158)

(see Figure 7.8). A unit vector p with coordinates (sin ψ cos ϕ, sin ψ sin ϕ,
cos ψ) lies in the plane defined by p3j , p1j and ci if

ψ = − tan−1
[

(n31ij · ni )

(n31ij · e1i ) cos ϕ + (n31ij · e2i ) sin ϕ

]
=: f3/1(ϕ)

(7.159)

and likewise for the other planes. The spatial angle covered by triangle j

corresponds to a triangle with curved sides in the ϕ, ψ plane (Figure 7.7).
Its vertices are made up of

(
ϕ(p1j ), ψi(p1j )

)
,
(
ϕ(p2j ), ψi(p2j )

)
and(

ϕ(p3j ), ψi(p3j )
)
. Now determine ϕimin and ϕimax defined by

ϕmin = min{ϕ(p1j ), ϕ(p2j ), ϕ(p3j )} (7.160)

ϕmax = max{ϕ(p1j ), ϕ(p2j ), ϕ(p3j )}. (7.161)
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Figure 7.8 Spatial angle covered by triangle j

The one that is left is called ϕmid. Let ψmin be the ψ-value correspond-
ing to ϕmin and ψmax the ψ-value corresponding to ϕmax. First, the grid
elements (k(ϕmin), l(ψmin)) and (k(ϕmax), l(ψmax)) are marked as covered.
Then, for k(ϕmin) ≤ m ≤ k(ϕmid) and ϕmin ≤ (m − 1

2 )�ϕ ≤ ϕmax, those
grid elements are marked as covered for which

min
{
l{fmin/max[(m − 1

2 )�ϕ]}, l{fmin/mid[(m − 1
2 )�ϕ]}

}
≤ n ≤

max
{
l{fmin/max[(m − 1

2 )�ϕ]}, l{fmin/mid[(m − 1
2 )�ϕ]}

}
(7.162)

and for k(ϕmid) ≤ m ≤ k(ϕmax) and ϕmin ≤ (m − 1
2 )�ϕ ≤ ϕmax the ele-

ments for which

min
{
l{fmin/max[(m − 1

2 )�ϕ]}, l{fmid/max[(m − 1
2 )�ϕ]}

}
≤ n ≤

max
{
l{fmin/max[(m − 1

2 )�ϕ]}, l{fmid/max[(m − 1
2 )�ϕ]}

}
. (7.163)

This corresponds to the crossed elements in Figure 7.8.

(v) If less than ε% of the grid elements are marked as uncovered, exit the loop.

4. Solve Equations (7.135) to obtain Ji , or, equivalently, qi . The corresponding tem-
peratures θei (Equation (7.131)), can be used as the thermal boundary condition in
the next iteration. Since the structure deforms, the view factor has to be recalculated
in each iteration. However, the changes are usually small and the algorithm can be
accelerated by making diligent use of the visible triangles from the last iteration.
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Schröder J, Gruttmann F and Löblein J 2002 A Simple Orthotropic Finite Elasto-Plasticity Model
Based on generalized Stress-Strain measures, Report No 2, Institut für Mechanik, Fachbereich 10,
Universität Essen, 45117 Essen, Germany.
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