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Preface

This book is based on my experiences in teaching Software Engineering courses.
It is meant to be a textbook for an upper level undergraduate course on Software
Engineering, and perhaps for first year graduate courses. This book differs signifi-
cantly from the existing textbooks on Software Engineering in several fundamental
ways. A major distinction is the use of constraints in all phases of software
development. The existing books on Software Engineering are mostly on analysis,
design, documentation, software project management and related issues and not
on the software itself. Because of that many recent developments in software
technologies that are critical for software engineering are missing from those texts.
Technical coverage of data management issues and software verification are two
further major distinctive properties of this book.

Analysis and design are in the existing books on Software Engineering typically
presented using UML diagrams. However, a major component of the UML Standard
is OCL (Object Constraint Language). Specification of constraints in a language
such as OCL is very limited in the existing texts on Software Engineering if
it is present at all. UML diagrams are simply insufficient for specification of
the designed model. The UML diagrams are subject to different interpretations
by the implementors. Usage of a constraint language such as OCL produces a
much more precise specification of the designed model. These specifications are
in fact the requirements for the implementors to produce code that indeed satisfies
the specifications. In addition, such an approach leads to the usage of software
verification techniques that have been developed recently.

The technical details that are needed in order to implement the designed model
using object-oriented programming languages are typically missing in the existing
textbooks on Software Engineering. This is why these texts have very little material
on the actual software. Subtle issues related to the usage of parametric types to
represent associations in the UML models, subtleties of the interplay of inheritance
and subtyping, the impact of dynamic binding in forward and reverse engineering,
refactoring and model and code transformations are thus not presented at the
required technical level. The role of interfaces in mapping models to code is
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neglected, perhaps because the interfaces are given a side role in UML models. This
leads to poor management of the levels of abstraction, which is critical in software
development.

In most applications, data management is a critical issue. Data management
requires specialized models and software technologies. Without a correct solution
for data management a software project is bound to failure. In spite of that
software engineering issues when it comes to data management have very limited
coverage in the existing books on software engineering. The technical level of those
presentations is not even close to what database and related technologies have to
offer. In this book, data management is given the attention that it requires in order to
make a software project a success. A related issue is that use cases should typically
be implemented as transactions. Transaction technologies are completely missing
from the existing texts on software engineering. In this book, those technologies
have the place that they deserve.

Lack of coverage of OCL as a major component of the UML Standard leads to
multiple implications. The absence of specifications makes it impossible to verify
that the produced code actually has the required properties. OCL is not the only
object-oriented specification language available. There are several object-oriented
specification languages that are tied to particular object-oriented programming
languages. In these technologies code is annotated with specifications so that it can
be verified that the code actually satisfies the specifications. This is done preferably
statically using a verifying compiler or more commonly constraints are enforced
at run-time and violations are then handled. Since static verification is obviously
preferable, there are several open-source projects offering static verification. None
of this is in the existing textbooks on Software Engineering. For the first time we
give a detailed presentation of the usage of OCL to document models based on
UML. We also elaborate how specifications are used in a particular implementation
language so that they are subject to dynamic or static verification.

Portland, Maine, USA Suad Alagić
Spring 2017
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Chapter 1
Analysis and Design

The starting point of system analysis is an application environment consisting of
different types of users and different activities that they are involved in. The users in
the application environment that initiate and carry out activities in that environment
are called actors. The activities and hence their actors have information requirements
that are necessary in order to perform those activities. The task of system analysis
is specification of different types of users, their activities, and the requirements that
those activities have in order to perform correctly their task.

The task of the system design is to produce a specification of a technical system
that supports the activities specified in the analysis phase in such a way that the
requirements for those activities are satisfied. The result of a system design is a
model of an application environment that is suitable for implementation using an
appropriate software technology.

A model of an application environment is an abstraction that specifies only the
relevant features of that environment as determined by the activities to be supported
in the newly designed system. Such a model is specified using a well-defined
modeling framework. A modeling framework must be able to specify different
types of entities in the application environment, actors in particular. In addition, the
modeling framework should be able to represent relationships that exist between
different entities in the application environment. Most importantly, a modeling
framework must be able to specify the activities in the application environment
as triggered by actors. These activities become use cases for the newly designed
system, i.e., they represent different ways of using the system.

The level of abstraction of the model designed in the system analysis should be
such that the model is independent of a particular implementation. This way the
model may be redesigned to reflect the changes in its application environment that
happen over time. At the same time, the model must be implementable using an
available software technology.

© Springer International Publishing AG 2017
S. Alagić, Software Engineering: Specification, Implementation, Verification,
DOI 10.1007/978-3-319-61518-9_1
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2 1 Analysis and Design

In this chapter we consider several application environments. For each one
of them we specify different types of relevant entities and their relationships.
We specify the most important use cases and their requirements. All of this is done
using our view of the UML modeling framework in ways that is not typical in the
existing literature, as explained in the preface of this book.

1.1 Specification of Use Cases

Consider first an investment management application. We identify two groups of
users of respective types Investor and Broker. Investors and brokers are called actors
in the UML terminology because they invoke actions in the investment management
system.

These actions may be clustered into two groups shown in Fig. 1.1.The two groups
of use cases are Investing and OverseeingPortfolios and they may be viewed as
subsystems of the overall system.

OverseeingPortfolio

Investing

Actor

Investor

Actor

Broker

Fig. 1.1 Investment management

The investing use cases are displaying a portfolio, buying an asset, and selling
an asset. The overseeing use cases are displaying a portfolio, displaying available
assets, and approving a transaction that an investor required by selling or buying
assets. These use cases are specified in Fig. 1.2.

In order to specify a use case we first specify entities involved in a use case.
Consider the use cases BuyAsset and SellAsset. An investor selects an asset, asks
for approval of his broker, and if approved he completes the transaction so that the
purchased asset now appears in the investor’s portfolio. So the entities involved in
these use cases are of type Investor, Asset, Portfolio and Broker.
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PortfolioManagement

ApproveTrasaction

DisplayAssets

DisplayPortfolio

Broker
Actor

Actor
Investor

BuyAsset

SellAsset

Fig. 1.2 Portfolio management use cases

The next step in specification of a use case is specification of conditions under
which the use case may be invoked. These conditions are called preconditions.
The outcome of invocation of a use case is specified by its postconditions.
The preconditions for the use case BuyAsset are that the asset price is acceptable
and that the broker approves the transaction. The effect of a use case is specified
in its postconditions that are required to hold in the system after the use case is
completed. The postcondition of the use case BuyAsset is that the asset is in the
portfolio.

In addition to the pre- and postconditions, full specification of a use case also
includes specification of the impact of invoking a use case on entities that are not
specified in these constraints. A particularly important aspect is the impact on other
constraints that the system should satisfy. This is expressed by frame constraints.
The frame constraints for the use cases BuyAsset and SellAsset specify that all the
other assets in the portfolio will be unaffected by invocation of these use cases.

Use case: BuyAsset

Entities: Investor, Asset, Portfolio, Broker

Actors: Investor, Broker

Constraints:

Preconditions: assetPriceOK, brokerApproves

Postconditions: assetInPortfolio

Frame: All other assets in portfolio unaffected
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The use case SellAsset is symmetric. The preconditions are that the asset is in the
portfolio of the investor who initiated the use case and that the broker approves the
transaction. The postcondition ensures that the asset is no longer in the investor’s
portfolio.

Use case: SellAsset

Entities: Investor, Asset, Portfolio, Broker

Actors: Investor, Broker

Constraints:

Preconditions: assetInPortfolio, brokerApproves

Postconditions: not assetInPortfolio

Frame: All other assets in portfolio unaffected

Statements such as assetPriceOK, brokerApproves, assetInPortfolio, not asset-
InPortfolio etc. are informally specified predicates that evaluate to true or false. All
these specifications will be expressed in Chap. 2 in a language associated with UML
called Object Constraint Language (OCL).

Consider now a more complex flight management application. The flight man-
agement application has two types of actors: Scheduler and Passenger. Use cases of
this system are partitioned into two groups: Scheduling and Reservations as shown
in Fig. 1.3.

FlightScheduling

Reservations

Actor
Reservations Actor

Scheduler

Fig. 1.3 Flight management

Scheduling consists of use cases DisplayFlights, ScheduleFlight, RedirectFlight,
and CancelFlight. Reservations consists of use cases DisplayFlights, MakeReser-
vation, and DeleteReservation. These use cases are shown in Fig. 1.4.
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FlightScheduling

DisplayFlights

ScheduleFlight

CancelFlight

Actor
Passenger

Actor
Scheduler

RedirectFlight

MakeReservation

CancelReservation

Fig. 1.4 Flight management use cases

The entities involved in ScheduleFlight use case are Scheduler, FlightSchedule,
Flight, Aircraft, and Airport. The preconditions for invoking this use case are that
the flight is not already scheduled, that the origin and the destination airports are
available, and that an aircraft is available. The postcondition ensures that the flight
is in the flight schedule. The frame constraint ensures that scheduling a flight does
not affect other scheduled flights.

Use case: ScheduleFlight

Entities: Scheduler, FlightSchedule, Flight, Aircraft, Airport

Actors: Scheduler

Constraints:

Preconditions: not flightScheduled, originAirportAvailable,
destinationAirportAvailable, aircraftAvailable

Postconditions: flightScheduled

Frame: All other scheduled flights unaffected

The entities involved in the use case CancelFlight are Scheduler, FlightSchedule
and Flight. The preconditions are that the flight is scheduled and that its status is not
inflight. The postcondition is that the flight is not scheduled any more.

Use case: CancelFlight

Entities: Scheduler, FlightSchedule, Flight

Actors: Scheduler
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Constraints:

Preconditions: flightScheduled, not inFlight

Postconditions: not flightScheduled

Frame: Schedule of all other flights unaffected

The use case RedirectFlight involves entities of types Scheduler, FlightSchedule,
Flight and Airport. The preconditions are that the flight is in flight, that the new
destination is different from the original destination, and that the new airport is
available. The postcondition ensures that the flight has a new destination.

Use case: RedirectFlight

Entities: Scheduler, FlightSchedule, Flight, Airport

Actors: Scheduler

Constraints:

Preconditions: inFlight, newDestination notEqual destination,
newAirportAvailable

Postconditions: destination equal newDestination

Frame: flightScheduled, schedule of all other flights unaffected

The use case MakeReservation involves an actor of type Passenger. The other
entity in this use case is FlightSchedule. The precondition is that the desired flight
is available and the postcondition is that the reservation is confirmed. The frame
constraint guarantees that this use case does not affect any other reservation.

Use case: MakeReservation

Constraints:

Entities: Passenger, FlightSchedule

Actors: Passenger

Preconditions: flightAvailable

Postconditions: reservationConfirmed

Frame: Other reservations not affected

The use case CancelReservation involves the same entity types as MakeReserva-
tion. The precondition is that the reservation is confirmed and the postcondition that
the reservation is not confirmed.

Use case: CancelReservation

Entities: Passenger, FlightSchedule

Actors: Passenger
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Constraints:

Preconditions: reservationConfirmed

Postconditions: not reservationConfirmed

Frame: Other reservations not affected

1.2 Structural Modeling

In addition to specification of entities involved in a use case, we also specify their
relationships. UML modeling philosophy includes two types of relationships among
entities in the modelled application environment: associations and inheritance.
We consider associations first. These are particular constraints that hold in the
application environment of the system. In the investment management application,
an investor is associated with a single portfolio and a portfolio has a unique owner.
The association between an investor and portfolio is thus one to one. A broker
manages multiple portfolios, and a portfolio has a unique broker so the association
of a broker and its portfolios is one to many. A portfolio includes multiple assets
and an asset appears in multiple portfolios, hence this association is many to many.
These associations reflect the semantics of the application environment and could
be different from the above specifications. The relationships among entities in this
application are specified in Fig. 1.5. Each association is equipped with multiplicity
indicators as discussed above. 0..* stands for zero or more occurrences.

Investor Portfolio

Asset

1 1 0..*

0..*

0..*

1
Broker

Fig. 1.5 Investment management associations

Associations were described above as they apply to this particular application.
However, it is the inheritance relationships that are in the core of the object-oriented
paradigm. Figure 1.6 shows that in this particular application inheritance is the
required modeling technique. In Fig. 1.6 there is a generic entity Asset, with two
subtypes, Stock and Bond. These two subtypes inherit all the properties of the
generic type Asset and in addition feature some specific properties that apply to
the subtypes and not to the generic type.
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Asset

Stock Bond

Fig. 1.6 Asset inheritance hierarchy

A diagram that represents the association and the inheritance relationships in this
application is given in Fig. 1.7. In this diagram end points of associations are named
which allows traversal of these relationships to be used extensively in Chap. 2.

Investor Asset

Stock Bond

allAssetsassetsowner

1 1

1 0..*

0..*

0..*

0..* 0..* 0..* 0..*

myPortfolios
Portfolio

myPortfolio

Broker
brokers

manager

Fig. 1.7 Portfolio management associations and inheritance

The inheritance relationships in the flight scheduling model are represented in
Figs. 1.8 and 1.9. The structural model of this application specifies two subtypes of
the entity type Flight (DomesticFlight and InternationalFlight) and two subtypes
of the entity type Airport (DomesticAirport and InternationalAirport).

InternationalFlightDomesticFlight

Flight

Fig. 1.8 Inheritance in flight scheduling
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InternationalAirportDomesticAirport

Airport

Fig. 1.9 Airport inheritance hierarchy

Consider now the entity types and their associations in the flight management
application. A flight schedule is associated with a collection of flights, a collection
of aircraft, and a collection of airports (at least two). On the other hand, a
flight is associated with a single flight schedule, and so is each aircraft and each
airport.

The entity types and their relationships in the flight management application are
given in Fig. 1.10 in which the end points of associations are named. This makes it
possible to access all flights, all airports, and all aircraft in a flight schedule. These
relationships are bidirectional in the UML terminology. Specifically, this means that
given a flight, it is possible to access the flight schedule to which it belongs, and
likewise for aircraft and airports.

InternationalFlightDomesticFlight

Flight
flights planesschedule schedule

schedule1

2..*

0..* 1

airports

FlightSchedule

InternationalAirport

Aircraft

DomesticAirport

Airport

Fig. 1.10 Flight scheduling associations and inheritance

1.3 Behavioral Specifications: Sequence Diagrams

It is critical to understand that the specifications that we considered so far are
entirely declarative. They do not say anything about a sequence of actions that
is needed in order to satisfy the constraints associated with a use case. In the
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Investor
Actor

Broker
Actor

Asset

displayAssets

consultBroker

buy/sellAsset

approveTransaction

updatePortfolio

confirmTransaction

Portfolio

Fig. 1.11 Investment sequence diagram

UML style these sequences of actions are represented by sequence diagrams. The
sequence diagram for the use cases BuyAsset/SellAsset is given in Fig. 1.11. It
contains entities involved in the use case specified along the horizontal axis, time
represented by the vertical axis oriented downward, and the messages sent and
received by the involved entities as they happen in time.

The sequence diagram for the ScheduleFlight use case is represented in Fig. 1.12.
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Scheduler
Actor

Airport

selectOrigin

selectDestination

selectAircraft

scheduleFlight

confirmSchedule

Aircraft FlightSchedule

Fig. 1.12 Flight scheduling sequence diagram

1.4 Putting It All Together: Use Cases, Entity Diagrams
and Sequence Diagrams

We will illustrate the analysis techniques discussed so far in a particular application.
In the course management application, we can identify two groups of users of
respective types Student and Registrar. Students and registrars are actors in the
course management system.

The actions may be clustered into two groups. The first group is called Scheduling
and consists of course scheduling actions. The other group of use cases is called
Enrollment and it deals with enrollment into courses. We can view these two groups
of use cases as subsystems of the overall system. The registrar actor interacts with
both of these two subsystems and the student actor interacts only with the subsystem
that handles course enrollment (Fig. 1.13).
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Scheduling

Enrollment

Actor
Student

Actor
Registrar

Fig. 1.13 Course management application

Two main use cases in the Scheduling subsystem are ScheduleCourse and
DeleteCourse. In order to specify these two use cases we first specify the entities
that those use cases involve. In both cases the entities involved are of the types
Course and Registrar. We also specify the actors for every use case, which is of
type Registrar in both of these two use cases.

The preconditions for the ScheduleCourse use case are that the course is not
already scheduled, that an instructor is available, and that a classroom is available.
The postcondition for the use case ScheduleCourse is that the course is scheduled.
The use case SchedueCourse is specified as follows:

Use case: ScheduleCourse

Entities: Course, Registrar

Actors: Registrar

Constraints:

Preconditions: not courseScheduled, instructorAvailable, classroomAvailable

Postconditions: courseScheduled

Frame: Schedule of all other courses unaffected

The precondition for the use case DeleteCourse is that the course is actually in
the schedule. The postcondition of the use case DeleteCourse is that the course is
not scheduled any more. In the use cases ScheduleCourse and DeleteCourse, the
frame constraints specify that other courses are not affected by these use cases.

Use case: DeleteCourse

Entities: Course, Registrar

Actors: Registrar
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Constraints:

Preconditions: courseScheduled

Postconditions: not courseScheduled

Frame: All other scheduled courses unaffected

Consider now the relationships among entity types of the course management
application. A registrar is associated with a number of instructors and an instructor
with a single registrar. A registrar is associated with a number of courses and so
is an instructor. On the other hand, a course is associated with a single registrar
and a single instructor. These associations are shown in Fig. 1.14. They reflect the
semantics of the application environment and could be different from the above
specifications.

Registrar Instructor

Course

1

1 1

0..*

0..*0..*

Fig. 1.14 Associations for ScheduleCourse use case

Student

Actor

Registrar

Course Registration

ScheduleCourse

DeleteCourse

DisplayRoster

EnrollInCourse

DropCourse

DisplayGrade

AssignGrade

Actor

Instructor

Actor

Fig. 1.15 Course registration use cases
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The most important use cases in the Enrollment subsystem are EnrollInCourse
and DropCourse. The entities involved in EnrollInCourse are of types Student,
Course, and Registrar. The actors are of type Student. The preconditions are that
the course is open and that the student who initiated this use case satisfies the
prerequisites for the course. The postcondition is that the student is enrolled in the
course.

Use case: EnrollInCourse

Entities: Student, Course, Registrar

Actors: Student, Registrar

Constraints:

Preconditions: courseOpen, prerequisitesSatisfied

Postconditions: enrolledInCourse

Frame: All other enrollments unaffected

The entities and the actions are the same in the use case DropCourse. The
precondition is that the student is enrolled in the course and that the use case is
invoked within the drop period. The postcondition of this use case is that the student
is not enrolled in the course. The frame constraints specify that these two use cases
do not have any effect on other enrollments.

Use case: DropCourse

Entities: Student, Course, Registrar

Actors: Student, Registrar

Constraints:

Preconditions: enrolledInCourse,withinDropPeriod

Postconditions: not enrolledInCourse

Frame: All other enrollments unaffected

The association diagram in Fig. 1.16 specifies the relationships among the entities
involved in the use cases EnrollInCourse and DropCourse.

Registrar

Student

Course

1

0..*
1..n

1

0..*

0..*

Fig. 1.16 Enroll in course association diagram
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Unlike these specifications that are entirely declarative, in the UML style
sequences of actions needed to implement a use case are represented by sequence
diagrams. The sequence diagram for the use case DropCourse is given in Fig. 1.17.

Student
Actor

Registrar
Actor

Course

checkDropDeadline

dropCourse

updateEnrollment

acknowledgeDrop

Fig. 1.17 Drop course sequence diagram

Figures 1.18 and 1.19 contain two situations in this particular application in
which inheritance is the required modeling technique. In Fig. 1.18 there is a generic
entity type Student, with two subtypes, Undergraduate and Graduate. The entity
type Student contains generic properties that apply to all students. The two subtypes
inherit all those properties of the generic type Student and in addition have some
specific properties that apply to the subtypes and not to the generic type.

Another case of inheritance is given in Fig. 1.19 which contains one generic
entity type Instructor with two subtypes Lecturer and Professor.
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Student

Undergraduate Graduate

Fig. 1.18 Inheritance

Instructor

Lecturer Professor

Fig. 1.19 Inheritance

Registrar Instructor

Lecturer Professor

Course

GraduateUndergraduate

Student
myStudents

allStudents

allCourses

univRegistrar
univRegistrar

univRegistrar allInstructors

myInstructor 1

1 0..*

0..*0..*

0..*0..*

0..*

1 1

myCourses

myCourses

Fig. 1.20 Course management associations and inheritance

Figure 1.20 specifies the association and inheritance relationships in the course
management system.

1.5 Aggregation

Aggregation is a particular form of association between entity types that allows
specification of a complex entity type in terms of entity types that represent its
components. For example, in Fig. 1.21 an entity type Schedule is defined as an
aggregate of entity types Course, Student and Instructor.
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Schedule

Student InstructorCourse

0..* 0..*

1
1

1

0..*

Fig. 1.21 Course schedule as an aggregate entity type

University

Instructor CourseDepartment

0..* 0..*

1
1

1

0..*

Fig. 1.22 University as an aggregate entity type

A stronger form of aggregation is specified in Fig. 1.22. The entity type Uni-
versity is defined as an aggregate of the entity types Department, Instructor and
Course. In the type of aggregation specified in Fig. 1.21 instances of the component
types can exist independently of the instance of the entity type Schedule. In the form
of aggregation specified in Fig. 1.22 components cannot exist independently of an
instance of the type University. Deleting an instance of the type Schedule does not
cause deletion of its component courses, instructors or students. Deleting an instance
of the type University causes deletion of its associated components representing
departments, courses and instructors.

Another example of strong aggregation given in Fig. 1.23 is the entity type
InvestmentBank. Components of an instance of this type are assets, portfolios and
brokers. These component instances cannot exist if their associated investment bank
instance does not exist. An investment bank instance owns its components, and if an
investment bank instance is deleted, so are its components.

The entity type Portfolio is defined in Fig. 1.24 as a weak aggregation of the
entity types Stock and Bond. This means that if a portfolio is deleted, stocks and
bond instances that are components of the portfolio will continue to exist.
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InvestmentBank

Portfolio BrokerAsset

0..* 0..*

1
1

1

0..*

Fig. 1.23 Investment bank as an aggregate entity type

Fig. 1.24 Portfolio as an
aggregate entity type Portfolio

1

0..* 0..*

1

Stock Bond

1.6 Entity Types as Interfaces

The first step in our methodology in specifying entity types is to view them as UML
interfaces. An interface of an entity type specifies signatures of operations or actions
applicable to instances of that type. So it is in fact a communication interface for
instances of that type specifying what kind of messages such instances are able to
send and receive. A signature of an operation of an interface consists of the name of
the operation, the types of its arguments, and the type of the result of the operation.
When an operation is an action that produces no specific result, the result type is
omitted. This is the case with actions buyAsset and sellAsset of the interface Investor
specified in Fig. 1.25. Operations getPortfolio and getBroker reflect the one to one
relationships between an investor and its portfolio and its broker. The symbol +
indicates that all of the operations of an interface are public.

Fig. 1.25 Investor interface
<<interface>>

Investor

+ getname(): String

+ getPortfolio(): Portfolio
+getBroker(): Broker
+ buyAsset(Asset)
+sellAsset(Asset)
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The operations getPortfolios of the interface Asset specified in Fig. 1.26 reflect
a many to many relationship between assets and portfolios in which those assets
appear.

Fig. 1.26 Asset interface
<<interface>>

Asset

+ getAssetId(): String

+getValue(): float
+getPortfolios:
CollectionOfPortfolios

The operations getOwner and getBroker of the interface Portfolio specified in
Fig. 1.27 reflect one to one association between a portfolio and its owner and
between a portfolio and its broker. The operation getAssets produces the collection
of all assets of a portfolio reflecting many to many association between portfolios
and assets.

Fig. 1.27 Portfolio interface
<<interface>>

Portfolio

+ getTotalValue(): float
+ getOwner(): Investor
+getBroker(): Broker
+ getAssets():
CollectionOfAssets

The operation getAllAssets of the interface Broker specified in Fig. 1.28 produces
a collection of all assets. This reflects a many to many association between brokers
and assets. The operation getMyPortfolios is a reflection of the one to many
association between brokers and portfolios that they manage.

Fig. 1.28 Broker interface
<<interface>>

Broker

+ getBrokerName(): String
+ getBrokerId(): String
+ getAllAssets():
CollectionOfAssets

CollectionOfPortfolios
+getMyPortfolios():
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Fig. 1.29 Stock interface
<<interface>>

Asset

+ getAssetId(): String
+getValue(): float
+getPortfolios:
CollectionOfPortfolios

<<interface>>
Stock

+ getShareValue(): float

Fig. 1.30 Bond interface
<<interface>>

Asset

+ getAssetId(): String
+getValue(): float
+getPortfolios:
CollectionOfPortfolios

<<interface>>
Bond

+ getYield(): float

Two specific types of assets are represented by interfaces Stock in Fig. 1.29 and
Bond in Fig. 1.30. These two interfaces are derived by inheritance from the interface
Asset. So these two interfaces inherit all the operations applicable to assets and in
addition they define operations applicable to these two subtypes. For the interface
Stock a specific operation applicable to stocks is getShareValue. For the interface
Bond a specific operation applicable to bonds is getYield.
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1.7 Entity Types as Classes

The next step in specifying entity types is to define them as UML classes. A UML
class of an entity type specifies the components of state of instances of that entity
type. These components are called attributes or fields. So a class associated with
an interface specifies some of the implementation aspects of that interface. This
is why a class is said to realize or implement its interfaces. However, unlike a
class in an object-oriented programming language, a UML class does not specify
implementation of operations. It just specifies their signatures like interfaces do.

In the class Investor given in Fig. 1.31 components of the state of instances of
this entity type are name, broker and portfolio. Specification of an attribute consists
of its name and its type. The minus signs indicates that these attributes are private
for the entity type Investor, i.e., inaccessible to other entity types. The operations
of this class are specified as public in the interface of this class. A class can have
operations that are not defined in its interfaces, and they might be declared private
or public.

Fig. 1.31 Investor class
<<interface>>

Investor

+ getname(): String
+ getPortfolio(): Portfolio
+getBroker(): Broker
+ buyAsset(Asset)
+sellAsset(Asset)

+getName(): String
+ getPortfolio(): Portfolio
+ getBroker(): Broker
+buyAsset(Asset)
+ sellAsset(Asset)

Investor

<<realize>>

- name: String
- myPortfolio: Portfolio
-myBroker: Broker

Figure 1.32 specifies a UML class Asset and its interface. The components of the
state of an instance of the entity type Asset are asset identifier and its value.
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Fig. 1.32 Asset class
<<interface>>

Asset

+ getAssetId(): String
+getValue(): float
+getPortfolios:
CollectionOfPortfolios

+ getAssetId(): String
+ getValue(): float
+ getPortfolios():
CollectionOfPortfolios

Asset

- assetId: String
- value: float

<<realize>>

The class Portfolio and its interface are specified in Fig. 1.33. This specification
includes attributes total value, the investor who is the portfolio owner, the broker
who manages the portfolio, and the collections of stocks and bonds in the portfolio.

Fig. 1.33 PortfolioClass
<<interface>>

Portfolio

+ getTotalValue(): float
+ getOwner(): Investor
+getBroker(): Broker
+ getAssets():
CollectionOfAssets

+ getTotalValue(): float
+ getOwner(): Investor
+ getManager(): Broker
+ getPortfolioAssets():

CollectionOfAssets

Portfolio

-totalValue: float
- owner: Investor

- manager: Broker
- stocks: CollectionOfStocks
- bonds: CollectionOfBonds

<<realize>>
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The class Broker specified in Fig. 1.34 has attributes broker identifier and broker
name.

Fig. 1.34 Broker class
<<interface>>

Broker

+ getBrokerName(): String
+ getBrokerId(): String
+ geAlltAssets():
CollectionOfAssets

CollectionOfPortfolios
+getMyPortfolios():

+ getAllAssets():
CollectionOfAssets

CollectionOfPortfolios
+ getMyPortfolios():

+getBrokerId(): String
+ getName(): String

Broker

- brokerId: String
- name: String

<<realize>>

Consider now the class Stock specified in Fig. 1.35. This class implements the
interface Stock and specifies an attribute shareValue. The interface Stock inherits
from the interface Asset. The class Asset implements the interface Asset. The class
Stock inherits from the class Asset. This determines the fields and operations of
the class Stock. The attributes are assetId, value, and shareValue. The operations
are getAssetId, getValue, getPortfolios, and getShareValue. This situation is called
diamond inheritance. It includes multiple inheritance in which the class Stock
implements its interface Stock and inherits from the class Asset. The general rule
is that multiple inheritance may be applied to interfaces and single inheritance to
classes. This will be discussed in more detail in Chap. 3. A similar situation occurs
for the class Bond.
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<<interface>>
Asset

<<interface>>
Stock

+ getShareValue(): float

Stock

<<realize>>

<<realize>>

- shareValue: float

+ getShareValue(): float

-assetId: String
- value: float

Asset

+ getAssetId(): String
+ getValue(): float
+getPortfolios:
CollectionOfPortfolios

+ getAssetId(): String
+ getValue(): float
+ getPortfolios():
CollectionOfPortfolios

Fig. 1.35 Classes and interfaces

1.8 Exercises

1. Specify use cases (such as ApproveTransaction) of the OverseeingPortfolio
subsystem of the Investment management application.

2. Specify use cases BuyStock and SellStock and likewise BuyBond and SellBond
of the Investment management application. Specify the relationship of these use
cases with the use cases BuyAsset and SellAsset.

3. Specify sequence diagrams for use cases CancelFlight and RedirectFlight of
the Flight management application.

4. Specify sequence diagrams for the use cases MakeReservation and Cancel-
Reservation of the Flight management application.
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5. Specify sequence diagrams for use cases ScheduleCourse, DeleteCourse and
EnrollInCourse of the Course management application.

6. For the model of an investment bank in Figs. 1.23 and 1.24 specify use cases
EstablishBank and DissolveBank.

7. For the model of an investment bank in Figs. 1.23 and 1.24 specify use cases
EstablishPortfolio and DeletePortfolio.

8. For the Course management application specify in the UML style the interface
Registrar and its associated class.

9. For the Course management application specify in the UML style the interface
Student and its associated class.

10. For the Course management application specify in the UML style the interface
Course and its associated class.



Chapter 2
Specification of Constraints

Behavior of objects of a class is specified in UML by signatures of methods of
that class. These signatures specify what kind of messages an object can send
to other objects or receive from them. However, a UML class does not contain
specifications of the actual behavior of objects of that class, i.e., what happens when
an object sends or receives a message. Some behavioral properties are specified
in the associated diagrams that attempt to specify some aspects of behavior. We
discussed sequence diagrams, which specify a sequence of actions in a use case as
they happen in time. However, that is still far from specifying precisely behavior
of objects of a class. This behavior is specified in an associated constraint language
OCL (Object Constraint Language) which is the topic of this chapter.

Although OCL is a part of the UML standard, its usage in the specification of the
design is not typical. The thrust of this book is that the specification of constraints
is critical. Not only do these specifications complete documentation of the result of
the design, they also specify the requirements for the code to be produced after the
design is completed.

OCL is a declarative, specification language and as such it does not deal with
details of the programming language representation of a class. It specifies in
a declarative fashion behavior of entities in an application environment. These
specifications are given at a much higher level of abstraction than the level of
programming languages.

2.1 Class Invariants

Our presentation of OCL is based on the following sample of UML classes and their
associations given in Fig. 2.1.

© Springer International Publishing AG 2017
S. Alagić, Software Engineering: Specification, Implementation, Verification,
DOI 10.1007/978-3-319-61518-9_2
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Employee Company
employees employer

Department

name:String

noOfEmployees: Integer

worksIn1

name:String
noOfEmployees: Integer

appointManager(e: Employee)

name: String
employeeId: String

getSalary(): Real

Manager manager

members

0..*

manages company

departments

1
1

0..*

0..* 1

1 1

dept

CEO 1

getSalary(): Real

Fig. 2.1 Company class diagram

Properties of all objects of a class are specified in class invariants. A class
invariant specifies the context to which it applies by providing the class name.
A reference to an object of a class is specified using the keyword self. References to
attributes are specified using the dot notation. For example, self.noOfEmployees in a
class Company refers to the number of employees of a particular company denoted
by self. The invariant properties of objects of a class are specified by expressions
that are called constraints.

For example, the type of an attribute noOfEmployees is specified as integer
in the UML class Company, but the actual range of values by a constraint
self.noOfEmplyees >D0. This particular invariant has the following specification
in OCL:

context Company inv:
self.noOfEmplyees >D 0

Class invariants can refer to methods as in the example below which contains
invocation of a method getSalary.

context Employee inv:
self.getSalary()>D 10,000

More complex invariants may be defined using logical operators as in the
following example:
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Employee <<invariant>>
self.noOfEmplyees >= 0

<<invariant>>
self.getSalary()>= 10,000 and
self.getSalary()<= 100,000

- name: String

- salary: Real
- yearsOfService

+ getName(): String

+ getEmployeeId(): String

+ getYearsOfService(): 
                           Integer

+ getSalary(): Real

+ updateSalary(real)

- emplyeeId: String

Fig. 2.2 Invariant of class Employee

context Employee inv:
self.getSalary()>D 10,000 and
self.getSalary()<D 100,000

An invariant is represented in a UML diagram as a note shown in Fig. 2.2. This
diagram contains a more elaborate representation of the class Employee.

Dot notation is also used in OCL to traverse relationships. For example, CEO
is a 1:1 relationship between entity types Company and Manager. An example
of a constraint that specifies that a manager of a company has salary greater than
$100,000 is specified as follows:

context Company inv:
self.CEO.getSalary() >D 100,000

Traversing a relationship between a company and its employees is specified in the
class invariant given below. This invariant specifies that the number of employees
computed by traversing the relationship employees of a company must be the same
as the number of employees of the company. This case is an example of a reference
to a method count that applies to a collection of objects and is denoted by the symbol
� >.

context Company inv:
self.employees� > count() = self.noOfEmployees

A similar example that specifies traversal of the relationship employees and
contains application of the function notempty to the collection of employees is given
below. notempty is a boolean function that tests whether the collection to which it
is applied is nonempty. Since this operator applies to a collection, its application is
denoted by the symbol � >.
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context Company inv:
self.employees � > notempty()

OCL predefined simple types and their corresponding UML types are:

– Boolean corresponding to the UML type boolean.
– Integer corresponding to the UML type integer
– Real corresponding to the UML type double
– String corresponding to the UML type string
– UnlimitedNatural corresponding to the UML type nonNegativeInteger.

2.2 Pre and Post Conditions

A signature of a method is specified in a UML class by specifying the name
of the method, its arguments along with their types, and the type of the result.
However, there is no specification of the meaning of a method in a UML class. These
specifications are given by OCL constraints called preconditions and postconditions.

Likewise, a message specifies the object to which it is sent (the receiver object),
the method that should be invoked in response to the message and the actual
arguments that contain specifics that pertain to the message. However, the meaning
of the message is not specified.

In order to provide a declarative specification of a method, the context to which
it applies must be specified first. This includes the name of the class of the receiver
and the signature of the method to be invoked. For example, in the specification
given below the method is hire of the class Employee and its argument is a company
in which an employee should be hired. The precondition specifies that the collection
of employees of the company given as the argument of this method does not already
include the receiver of this message. This requires traversal of the relationship
employees of the specified company and application of a method includes to test
whether the receiver employee belongs to that collection of employees.

There are two postconditions of this method. The first ensures that the receiver of
the message belongs to the collection of employees of the specified company. The
second postcondition specifies that invocation of this method increases the number
of employees of the specified company by 1. The second postcondition refers to
the state of the company object before method execution using the keyword pre.
So a postcondition in general relates two states: the state before and the state after
method execution.

context Employee:: hire(c: Company)
pre not (c.employees� >includes(self))
post c.employees� >includes(self)
post c.noOfEmployees=c.noOfEmployees@pre +1
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The context for the method fire is also the class Employee. This method has
no arguments and no result. The effect of this method is in changing the states
of the receiver object and the associated company object obtained by traversing
the employer relationship of the class Employee. The precondition requires that the
receiver employee object belongs to the collection of employees of the associated
company. This requires traversing two relationships, employer and then employees.

The first postcondition ensures that the receiver employee object is not any more
in the collection of employees of the associated company object (the employer
object). The second postcondition ensures that the number of employees of the
associated employer company has been reduced by one. This postcondition requires
a reference to the state prior to execution of the method fire. This is indicated by the
keyword pre.

context Employee:: fire()
pre self.employer.employees� >includes(self)
post not(self.employer.employees� >includes(self))
post self.employer.noOfEmployees=self.employer.noOfEmployees@pre - 1

Preconditions and postconditions are in UML diagrams specified as notes as
illustrated in Fig. 2.3.

The context of the method appointManager is the class Company and the
argument is an employee of that company to be appointed. The precondition
requires that the specified object belongs to the collection of employees of the
receiver company object. This requires traversal of the relationship employees.
The postcondition ensures that the CEO of the receiver company is the specified
employee. This is accomplished by traversing the relationship CEO.

context Company:: appointManager(e: Employee)
pre self.employees� >includes(e)
post self.CEO = e

If a method has a result, it can be referred to in the postcondition using the key
word result as in the example below:

context Company :: selectManager(): Manager
post result = self.CEO
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Employee

- name: String

<<precondition>>
not(c.employees -> includes(self))

<<postcondition>>
c.employees -> includes(self))

       <<postcondition>>
c.noOfEmployees = c.noOfEmployees@pre + 1

        <<precondition>>
self.employer.employees -> includes(self)

        <<postcondition>>
not(self.employer.employees -> includes(self))

<<postcondition>>

- emplyeeId: String
- salary: Real
- yearsOfService

+ getName(): String
+ getEmployeeId(): String

+ getYearsOfService():
                            Integer

+ getSalary(): Real

+ hire(c: Company)
+ fire()

self.employer.noOfEmployees =
self.employer.noOfEmployees@pre - 1

Fig. 2.3 Pre and post conditions in UML diagrams

2.3 Constraints over Collections

Collections are critical for the UML design methodology because associations
require them. Constraints over collections require more complex expressions than
those that are found in programming languages.

OCL has two types of quantifiers that apply to collections. The universal
quantifier is denoted as forAll. It applies to all elements of a collection. In the
invariant given below the collection to which the universal quantifier applies is
the collection of all departments of a company which is obtained by traversing the
relationship departments. d is a variable of type Department that ranges over that
collection. The invariant holds if the manager of each department has salary greater
than 100,000.

context Company inv:
self.departments � > forAll(d: Department j d.manager.getSalary() > 100,000)
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There are two simpler forms of the forAll expression. In the simplest one there
is no iterator variable as in the example below:

context Company inv:
self.departments � > forAll(manager.getSalary() > 100,000)

However, lack of an explicit iterator variable makes it impossible to define more
complex forAll expressions. A more complex example of usage of the universal
quantifier is the expression:

forAll(e1,e2: Employee j

e1.empoyeeId = e2.employeeId implies e1=e2)

which specifies that employeeId is a key in the collection of all employees. This
condition holds if the equality of employeeId attributes of two employees implies
that these are in fact equal employees. This expression is used in the invariant of the
Company class as follows:

context Company inv:
self.employees � > forAll(e1,e2: Employee j

e1.empoyeeId = e2.employeeId implies e1=e2)

Invariants and pre- and postconditions for the class Company with the above
constraint are shown in the UML diagram in Fig. 2.4.

The type of the iterator variable may be omitted because it can be inferred as the
type of the elements of the underlying collection as in the following example:

context Company inv:
self.departments � > forAll(d j d.manager.getSalary() > 100,000)

The existential quantifier is denoted by the keyword exists. An example of usage
of this quantifier is an invariant of a class Company given below. It requires that
there exists an employee of the company whose salary is greater than 100,000.

context Company inv:
self.employees� >exists(e: Employee j e.getSalary() > 100,000)

Like in the case of the forAll expression, the simpler forms of the above invariant
are:

context Company inv:
self.employees� >exists(e j e.getSalary() > 100,000)
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Company

<<invariant>>
self.noOfEmployees >= 0

<<invariant>>
self.CEO.getSalary() >=100,000

<<invariant>>
self.employees -> count() = self.noOfEmployees

    <<precondition>>
self.employees -> includes(e)

<<postcondition>>
self.CEO =e

<<invariant>>

e1 = e2)

name: String
noOfEmployees:
      Integer

appointManager (
e: Employee)

self.employees -> forAll(e1,e2: Employee|
e1.employeeId = e2.employeeId implies

Fig. 2.4 Assertions for the class Company

context Company inv:
self.employees� >exists(getSalary() > 100,000)

The universal and existential quantification may be composed as in the more
complex invariants that follow. The invariant of the class Company specified below
states that every department of the company has an employee whose salary is greater
than 100,000.

context Company inv
self.departments � > forAll(d: Department j

d.members � > exists (e: Employee j e.getSalary() > 100,000))

The invariant of the class Company given below specifies that the company has
a department such that all of its employees have salary greater than 50,000.

context Company inv
self.departments � > exists(d: Department j

d.members � > forAll (e: Employee j e.getSalary() > 50,000))
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The value of an attribute may be specified by an OCL expression which
determines the value of the attribute that will be computed (derived) from the values
of other attributes. Here is an example:

context Company::noOfEmployees: Integer
derive self.employees � > size()

OCL allows specification of operators in a declarative fashion. An example is an
operator maxSalary associated with the class Employee. The result is specified by
the postcondition which ensures that the result is greater than any employee salary.

context Company::maxSalary(): Real
post self.employees � > forAll(e: Employee j result >D e.getSalary())

Methods that apply to class objects themselves rather than to individual objects
of that class are called static. For example, the method allInstances is not a method
that applies to individual objects but to the class itself. An example is the invariant
of a class Employee which specifies that emplyeeId is a key for all instances of this
class. This means that if two employees have equal employee ids they are in fact the
same employee.

context Employee inv:
Employee.allInstances()� >

forAll(e1,e2: Employee j

e1.employeeId=e2.employeeId implies e1=e2)

2.4 Selection of Collection Elements

Selection of elements of a collection that satisfy a given condition is in OCL
specified using the select operator. For example, the expression given below:

select(e:Employee j e.getSalary() > 50,000)

produces a collection of employees that have salary greater than 50,000. In
this expression e is a variable of type Employee that ranges over a collection
of employees and the expression e.getSalary() > 50,000 specifies the condition
that an employee object must satisfy in order to be selected. The invariant of the
class Company given below shows how this operator is applied by traversing the
relationship employees of the class Company.
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context Company inv:
self.employees � > select(e: Employee j e.getSalary() > 50,000 )� >notempty()

The operator collect allows projection of a collection to a new collection whose
elements have selected components from the elements of the original collection. For
example, the expression

collect(d:Department j d.noOfEmployees)

produces a collection whose elements are the numbers of employees in individual
departments. In the invariant given below the expression

collect(d:Department j d.noOfEmployees)� >sum()

produces the sum of the numbers of employees of individual departments. The
expression given below requires that this sum is equal to the number of employees
of the company.

collect(d:Department j d.noOfEmployees)� >sum()=self.noOfEmployees

So we have the following invariant:

context Company inv:
self.departmets � >

collect(d:Department j d.noOfEmployees)� >sum()=self.noOfEmployees

Here is another example of an invariant that makes use of the collect operator:

context Company inv:
self.departments � > collect(d:Department j

d.manager)� > subset(self.employees)

The above invariant specifies that the set of department managers is a subset of
the set of employees.

2.5 Type Conformance

A flexibility called subtype polymorphism allows substitution of an instance of
one type where an instance of its supertype is expected. This is possible only if
the type conformance rules are satisfied. In the simple case of primitive types, the
type Integer conforms to the type Real and the type UnlimitedNatural conforms
to the type Integer. Hence an integer may be substituted where a real is expected
and an unlimited natural may be substituted where an integer is expected. These are
familiar rules.
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Every type conforms to itself and in addition the type conformance is transitive,
i.e., if type C conforms to type B and type B conforms to type A, then type C
conforms to type A.

In the object-oriented paradigm subtype polymorphism is critical for the correct
functioning of object-oriented software. A type defined by a subclass conforms to
the type defined by its superclass. This way subtyping is tied to inheritance. The
reason is that inheritance is monotonic, i.e., a subclass inherits all the properties
(attributes and methods) of the superclass. This means that given the inheritance
specified in Fig. 2.5, an instance of the class Manager may be substituted where an
instance of the class Employee is expected.

Fig. 2.5 Type conformance
and inheritance Employee

Manager

Because of this flexibility, the static, i.e. declared type of an object is in general
different from its dynamic, i.e., run-time type. So if the static type of an object
is Employee, its run-time type may in fact be Manager if a manager object is
substituted for the employee object.

Collection types are critical for UML modeling philosophy because it relies
heavily on the use of associations. The OCL hierarchy of collection types is given
in Fig. 2.6. All the types in this figure are generic or parametric. The formal
parameter T stands for the type of elements of a collection. A specific collection
type is obtained by substituting the type of elements of that collection in place
of the parameter T. For example, Collection(Employee) stands for the type which
represents a collection of employees.

Collection(T)

Set(T) Sequence(T) Bag(T) OrderedSet(T)

Fig. 2.6 Type conformance for collections
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Collection is the most general collection type. Four collection types are derived
by inheritance from the generic collection type Collection(T). Set(T) fits the
mathematical notion of a set. Bag(T) is a collection which, unlike Set(T), may
contain multiple elements of type T. Ordered(Set) is a type of a collection whose
instances are ordered. Sequence(T) stands for a collection type which is linearly
ordered hence represents a sequence.

The notion of type conformance allows viewing a collection of elements of type
B as a collection of elements of type A as long as the type B conforms to the type A
(Fig. 2.7). Specifically:

Fig. 2.7 Type conformance
for collections A Collection(A)

Collection(B)B

B conforms to A implies
Collection(B) conforms to Collection(A)
Set(B) conforms to Set(A)
Bag(B) conforms to Bag(A)
Sequence(B) conforms to Sequence(A)
OrderedSet(B) conforms to orderedSet(A).

For example, in the invariant given below Set(Manager) is viewed as a set of type
Set(Employee), i.e.,

Set(Manager) conforms to Set(Employee)

context Company inv:
self.departments � > collect(d:Department j

d.manager)� > subset(self.employees)

The invariant given below states that the set of all objects of the class Manager
is a subset of the set of all objects of the class Employee.

context Manager inv:
Manager.allInstances()� >subset(Employee.allInstances())

Another example in which Set(Manager) conforms to Set(Employee) is given in
the invariant given below:
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context Department:: getDeptManagers(): Set(Employee) inv:
body
Department.allInstances()� >collect(d: Department j d.manager)

The idea of type conformance allows substitution of an object of type Collec-
tion(B) where an object of type Collection(A) is expected as long as B conforms to
A. Although this rule for type conformance in OCL is intuitive, it is actually not type
safe and it does not fit the notion of subtyping in typed object-oriented languages. As
such, it creates nontrivial problems and hence it is not allowed in those languages.
Even if B is a subtype of A, Collection(B) is not a subtype of Collection(A). We will
discuss these issues in detail in Chap. 3 and explain in more detail the relationship
between parametric types and subtyping.

Viewing an instance of a class as an instance of its superclass is accomplished by
type casts, as in the examples below:

context Manager inv:
self.employeeId=self.oclAsType(Employee).employeeId

The invariant of the class Manager specified below relates the salary attribute in
the class Employee and in its subclass Manager.

context Manager inv:
self.getSalary() >D self.oclAsType(Employee).getSalary()

The above two cases are upcasts, i.e., their direction is up the inheritance
hierarchy. OCL specifications are silent about down casts which are in fact typical
for object-oriented languages. An example of a downcast is given in the following
invariant.

context Employee inv:
self.getSalary() <D self.oclAsType(Manager).getSalary()

Down casts play an important role in object-oriented languages and they require
dynamic checking to be discussed in Chap. 3.

2.6 Queries

Collection operators mimic the corresponding operators of the relational model of
data. This is why OCL makes it possible to specify queries on collections. Those
queries are defined as methods that operate on collection objects and in general
return collections.
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In the first example given below, a method getDeptManagers is defined in the
context of a class Company. The result type of this method is Set(Manager). The
body of the method is defined in a declarative manner applying the operator collect
to the collection of departments of the company which is the receiver of this method
and collecting managers of individual departments.

context Company::getDeptManagers(): Set(Manager)
body self.departments � > collect(d: Department j d.manager)

A query method selectWellPaid of a class Company returns a set of employees.
Its body is defined using the operator select. This operator selects the well paid
employees of the company object representing the receiver of this method.

context Company::selectWellPaid(pay: Real): Set(Employee)
body self.employees � > select(e:Employee j e.getSalary() > pay)

In a query method selectLargeCompanies of the class Company the class method
allInstances produces the collection of all companies and then those that have the
number of employees larger than the argument size of this method.

context Company:: selectLargeCompanies(size: integer): Set(Company)
body Company.allInstances � > select(c.Company j c.noOfEmployees > size)

A query method wellPaid of the class Department selects a set of employees
of the department whose salary is greater than their manager’s salary. This query
involves traversal of the relationships member and manager.

context Department:: selectWellPaid(): Set(Employee)
body self.members � >

collect(e: Employee j e.getSalary() > self.employer.CEO.getSalary())

2.7 Operations on Collections

2.7.1 Collections

Type: Collection(T)

The notion of a collection in general allows multiple occurrences of the same
element in a collection. The OCL type Collection has a function count which returns
the number of occurrences of an element in a collection.
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count(obj: T): Integer

The OCL type Collection also has a function size which computes the number of
elements in a collection.

size(): Integer

A boolean function includes tests whether an element belongs to a collection. The
meaning of this function is specified in its postcondition. In order for an element to
belong to a collection its number of occurrences must be greater than 0.

context Collection(T)::includes(obj: T): Boolean
post result = (self � > count(obj) > 0)

The boolean function isEmpty of the OCL type Collection tests whether the
receiver collection is empty. This is specified in the postcondition of this function
expressed in terms of the function size.

context Collection(T)::isEmpty(): Boolean
post result = (self � > size()= 0)

2.7.2 Sets

Type: Set(T)
The notion of a set does not allow multiple occurrences of the same element in a

set. This is why the function count is redefined in the OCL type Set to ensure that
the maximum number of occurrences of an element is 1.

context Set(T)::count(obj:T): Integer
post result <D 1

The operations of inserting an element into a collection and deleting an element
from a collection are defined as functions including and excluding. These functions
construct a new set by inserting or deleting an element from the receiver set. The
postcondition of the method including ensures that the resulting set contains all the
elements of the initial (receiver) set and in addition it contains a newly inserted
element.

context Set(T)::including(obj:T): Set(T)
post result � >forAll(x:T j self� >includes(x) or x=obj)
post self � >forAll(x:T j result� >includes(x))
post result � > includes(obj)
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The postcondition of the function excluding ensures that the resulting collection
contains all the elements of the initial collection except the deleted element.

context Set(T)::excluding(obj:T)): Set(T)
post result � >forAll(x:T j self� >includes(x) and (x <> obj))
post self � >forAll(x:T j result� >includes(x)) = (x <> obj))
post not (result � > includes(obj))

The operation union of the type Set is defined in the usual manner by its
postcondition. This postcondition guarantees that the elements of the resulting set
belong to either the receiving or the argument set.

context Set(T)::union(s: Set(T)): Set(T)
post result � >forAll(x:T j self� >includes(x) or s� >includes(x))

The postcondition of the operation intersection ensures that the resulting set
contains the elements that belong to both the receiver and the argument set.

context Set(T)::intersection(s: Set(T): Set(T)
post result � >forAll(x:T j self� >includes(x) and s� >includes(x))

Equality of two sets requires that each element in one set belongs to the other set
and the other way around.

context Set(T):: =(s: Set(T): Boolean
post result � >forAll(x:T j self� >includes(x) and

s� > forAll (x:T j s� >includes(x))

Constraints associated with the type Set(T) are given in the UML diagram in
Fig. 2.8.

2.7.3 Ordered Sets

Type: OrderedSet(T)
The OCL type OrderedSet is equipped with a function at which returns the

element at a specified position in the ordering. So the ordering is in fact linear. The
precondition of this function requires that the integer specifying the position must
be in the range of indices of the ordered set.
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<<interface>>
Collection(T)

      <<postcondition>>
result = (self -> count(obj) > 0)

     <<postcondition>>
result = (self -> size() = 0)

<<postcondition>>
result <= 1

<<postcondition>>

<<postcondition>>

<<postcondition>>

<<postcondition>>

<<postcondition>>

<<postcondition>>

result -> forAll(x:T|
self.includes(x) or x=obj)

result -> includes(obj)

result -> forAll( x: T|
self.includes(x) and x <> obj)

result -> forAll(x:T|
self -> includes(x) or S -> includes(x))

result -> forAll(x:T|
self-> includes(x) and S.includes(x))

not(result -> includes(obj))

<<interface>>
Set(T)

count(obj: T): Integer

size(): Integer
includes(obj: T):

Boolean

isEmpty(): Boolean

count(obj: T): Integer

including(obj: T):Set(T)

excluding(obj: T):Set(T)

intersection(S: Set(T)):
Set(T)

union(S: Set(T)):
Set(T)

Fig. 2.8 Constraints for Set(T)

context OrderedSet(T)::at(i: Integer): T
pre i >D 1 and i <D self.size()

The function indexOf returns the position of the element specified as the argu-
ment of this function. The precondition of this function requires that the argument
element belongs to the receiver set. The postcondition ensures that the argument
element is indeed in the receiver set at the computed index. This condition is
expressed in terms of the function at.
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context OrderedSet(T):: indexOf(obj: T): Integer
pre self.includes(obj)
post self � > at(result)= obj

Since the ordering is assumed to be linear, the function first returns the element
of the receiver set at the first position. This is specified in the postcondition of this
function using the function at.

context OrderedSet(T):: first(): T
post result = self.at(1)

Likewise, the function last returns the last element of the receiver set. This is
specified in the postcondition of this function using the functions at and size.

context OrderedSet(T):: last(): T
post result = self.at(self � > size())

2.7.4 Bags

Type: Bag(T)
The notion of a bag differs from the notion of a set in that a bag may have multiple

occurrences of the same element. The operation of inserting an element into a bag
is defined as a function including which constructs a new bag from the receiver bag.
In the resulting bag the number of occurrences of an element has been increased by
one. The number of other elements remains the same as in the receiver bag.

context Bag(T):: including(obj:T): Bag(T)
post result � > forAll(x:T j

if x=obj then
result � >count(x) = self � > count(x) +1

else result � > count(x) = self� >count(x)
endIf)

The above example contains the OCL conditional expression. The operation
excluding reduces the number of occurrences of the argument element in the
resulting bag to zero. The number of occurrences of other elements remains the
same.
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context Bag(T):: excluding(obj:T): Bag(T)
post result � > forAll(x:T j

if x=obj then
result � >count(x) = 0

else result � > count(x)= self� >count(x)
endIf)

An alternative to the above OCL definition would reduce by one the number of
occurrences of the argument object if that object actually exists in the receiver bag.

The postcondition of the operation union of the OCL type Bag ensures that
the number of occurrences of an element of the resulting bag is the sum of the
numbers of occurrences of that element in the receiver and the argument bags of
this operation.

context Bag(T):: union(bag: Bag(T)): Bag(T)
post result� > forAll (x:T j result� >count(x) =

self � >count(x) + bag� >count(x))

The above OCL definition of the union of two bags is not the definition of this
operation as defined in the algebra of bags. The alternative definition specifies that
the number of occurrences of an element in the resulting bag is the maximum of the
numbers of occurrences of that element in the two initial bags (the receiver and the
argument bag in our case). The expression for the postcondition would then look
like this:

post result� > forAll (x:T j result� >count(x) =
self� >count(x).max(bag� >count(x)))

Unlike the OCL definition, this definition reduces to the notion of union of two
sets if the given bags are in fact sets. In that case one would expect that the result of
the operation of union is a set. So if these sets contain the same element x, it would
appear only once in the result, whereas in the OCL definition it will appear twice.

The above reasoning is actually applied to the definition of the operation
intersection of the OCL type Bag. The number of occurrence of an element of the
resulting bag of this operation is the minimum of the numbers of occurrences of this
element in the receiver and the argument bag.

context Bag(T):: intersection(bag: Bag(T)): Bag(T)
post result� > forAll (x:T j result� >count(x) =

self� >count(x).min( bag� >count(x)))

The notion of equality of two bags specified by the operator = requires that
the two bags (the receiver and the argument bag) of this operation have the same



46 2 Specification of Constraints

elements with the same number of occurrences, as specified in the postcondition of
this operation.

context Bag(T):: =(bag: Bag(T): Boolean
post result = (self� > forAll (x:T j

self� >count(x) = bag� >count(x)))

Constraints associated with the type Bag(T) are given in the UML diagram in
Fig. 2.9.

<<interface>>
Collection(T)

<<postcondition>>
result = (self -> count(obj) > 0)

<<postcondition>>
result = (self -> size() = 0)

result -> forAll(x:T|
if x = obj then
   result -> count(x)=self->count(x) +1
else
   result -> count(x) = self -> count(x)
endIf)

<<postcondition>>

result -> forAll( x: T|
if x = obj then
   result-> count(obj)=0
else
   result -> count(x) = self -> count(x)
endIf)

<<postcondition>>

result -> forAll(x:T|
self -> count(x) + bag -> count(x))

<<postcondition>>

result -> forAll(x:T|
self -> count(x).min(bag.count(x)))

<<postcondition>>

<<interface>>
Bag(T)

count(obj: T): Integer

size(): Integer
includes(obj: T):

Boolean

isEmpty(): Boolean

including(obj: T): Bag(T)

excluding(obj: T): Bag(T)

union(bag: Bag(T)):

intersection(bag: Bag(T)):
Bag(T)

Bag(T)

Fig. 2.9 Constraints for Bag(T)
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Sequence(T)

The OCL type Sequence contains all the above defined functions of OrderedSet.
The main difference between a sequence and an ordered set is that a sequence is not
a set, i.e., it allows multiple occurrences of the same element.

2.8 Constraints and Inheritance

The OCL specifications are silent about the subtle interplay of inheritance and
constraints. Consider an example of inheritance specified in Fig. 2.10.

Employee

<<invariant>>

self.getSalary() >= 10,000

self.getSalary() > 10,000

<<precondition>>

<<postcondition>>

self.getSalary() >= 50,000

<<invariant>>

self.getSalary() > 50,000

<<postcondition>>

inc > 0

Manager

- dept: Department

+ getDepartment():

+ getSalary(): Real

+ updateSalary(inc: Real)

Department

- name: String

- emplyeeId: String

- salary: Real

- yearsOfService

+ getName(): String

+ getEmployeeId: String

+ getYearsOfService:

+ getSalary(): Real

+ updateSalary(inc: Real)

Integer

Fig. 2.10 Inheritance and constraints
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The invariant of the class Employee requires that an employee salary is larger
than or equal to 10,000.

context Employee inv
self.getSalary() >D 10,000

The class Manager inherits this invariant. In addition, it strengthens it requiring
that the salary of a manager is larger than or equal to 50,000. If an instance of
Manager is substituted where an instance of Employee is expected, the substituted
manager will behave as expected from an employee because the manager’s invariant
is stronger, i.e., if it holds, so will the invariant of an employee. This explains the
rule for constraints requiring that the invariant of a subclass is stronger than the
invariant of its superclass.

context Manager inv
self.getSalary() >D 50,000

Consider now specification of the method updateSalary of the class Employee.
The precondition requires that the increase is greater than 0.

context Employee:: updateSalary(inc: Real)
pre inc > 0

The postcondition of this method ensures that the employee’s salary is greater
than 10,000.

context Employee:: updateSalary(inc: Real)
post self.getSalary() > 10,000

In the class Manager the precondition of the method updateSalary is just
inherited as defined for the class Employee. The postcondition is strengthened
ensuring that the salary of a manager is greater than 50,000.

context Manager:: updateSalary(inc: Real)
post self.getSalary() > 50,000

If an instance of the class Manager is substituted where an instance of Employee
is expected, the result of invocation of the method updateSalary will be greater
than 50,000 because it is the method updateSalary of the class Manager that
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will be invoked. The reason is that method selection in object-oriented languages
is based on the run-time type of the receiver object which is Manager. But the
effect of invocation of the method updateSalary of the class Manager satisfies the
postcondition of the method updateSalary as defined in the class Employee. This
explains the rule that method postconditions can be strengthened in a subclass.

Let us now try to strengthen the precondition of the method updateSalary in the
class Manager requiring that a manager must have more than 2 years of service in
order to get a salary update.

context Manager:: updateSalary(inc: Real)
pre self.getYearsOfService()> 2
post self.getSalary() > 50,000

Now a substitution of an instance of type Manager where an instance of type
Employee is expected causes a behavioral incompatibility. A user of the class
Employee is aware only of the precondition that requires that the increase must
be positive. But it is the method updateSalary of the class Manager that will be
executed and it will fail, because its precondition is not satisfied. This is why
the rules for constrains require that the precondition of a method inherited from
the superclass remains the same in the subclass.

The above rules are in fact followed in the specification of OCL operations
on collections. Preconditions are never changed and postconditions are often
strengthened.

2.9 Exercises

1. Specify in OCL the preconditions and the postconditions of the methods
buyAsset and sellAsset of a UML class Investor specified in Chap. 1.

2. Specify in OCL a UML class Asset defined in Chap. 1 which asserts that assetId
is a key in the collection of all instances of the class Asset.

3. Specify in OCL an invariant of the class Broker defined in Chap. 1 which asserts
that all assets of the portfolios managed by an individual broker belong to the
collection of all assets as seen by that broker.

4. Specify an invariant of a UML class Portfolio defined in Chap. 1 which asserts
that each asset of a portfolio belongs to the collection of all assets seen by the
broker of that portfolio.

5. Specify a class invariant of a UML class Broker defined in Chap. 1 which asserts
that the assets of the portfolios managed by each individual broker belong to the
collection of all assets seen by that broker.

6. Specify an invariant of a UML class Investor defined in Chap. 1 which asserts
that the portfolio of an individual investor belongs to the collection of portfolios
managed by the broker of that investor.
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7. Specify an invariant of a UML class Portfolio defined in Chap. 1 which asserts
that the total value of a portfolio is the sum of values of stocks and bonds in
that portfolio.

8. Specify constraints of UML classes Asset, Stock and Bond defined in Chap. 1
in such a way that stocks and bonds behave like assets. That is, they satisfy all
constraints of the class Asset.

9. Specify entity types in the Flight management application as UML classes.
10. For the invariants of the class Flight specified in the previous exercise specify

the invariant of the class Flight.
11. Specify the preconditions and the postconditions of the methods scheduleFlight

and cancelFlight of the class FlightSchedule specified above.
12. With the specification of classes produced in the previous exercises specify

the preconditions and the postconditions of the methods makeReservation and
cancelReservation.

13. Specify an invariant of the class FlightSchedule which asserts that each
scheduled flight refers to the collection of all flights associated with the flight
schedule.

14. Specify an invariant of the class FlightSchedule which asserts that the origin
and the destination of each scheduled flight refer to the collection of all airports
associated with the flight schedule.



Chapter 3
Implementation Technology

UML interfaces and classes are abstractions suitable for the design phase. These
notions will eventually be mapped to the corresponding notions of the technology of
object-oriented languages and systems that will be used to implement the designed
model. In this chapter we consider the core notions of object-oriented programming
languages that are critical for correct implementation of models produced by the
UML methodology.

UML models specify relationships among entity types as associations or inheri-
tance. Object-oriented programming languages have an explicit and very elaborate
support for inheritance which is the core idea in these languages. However, object-
oriented programming languages have no explicit support for associations.

We elaborate inheritance as it appears in object-oriented programming languages
and its relationships to subtyping of entity types. Associations require parametric
collection types and we elaborate how such types are supported in object-oriented
programming languages. Subtyping of parametric collection types comes with
subtleties not represented correctly in the OCL type conformance rules. We present
techniques for representing associations using the described apparatus of object-
oriented programming languages.

Typically, multiple use cases are executed concurrently. In Chap. 5 we will see
how use cases are implemented as transactions. In this chapter we explain the
basic apparatus of object-oriented programming languages that allows concurrent
implementations of a model produced in the design phase.
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3.1 Objects and Classes

An abstract data type defines its instances entirely in terms of actions that can be
performed upon those instances. An example is an abstract data type IAsset specified
below as an interface. The actions are reading and setting the values of an instance
of the IAsset type.

interface IAsset {
float getValue();
void setValue(float x);

}

The above definition is an abstraction offered to the users of the IAsset type. The
users can only see the signatures of operations, i.e., their names, the types of their
arguments, and the type of their result. All details of representation of instances
of this type are hidden from the users. A representation of the IAsset type is given
in the class Asset given below. The components of the object state are declared as
private and the methods that either read or update the object state as public. This way
the object state is encapsulated and accessible only by invoking public methods.

class Asset implements IAsset {
private float value;
public float getValue(){

return value;
}
public void setValue(float value) {

this.value=value;
}

}

A UML diagram that corresponds to the above interface and its implementing
class is given in Fig. 3.1.

Instances of a class are objects. An object has three defining components:

– object identity
– object state
– methods applicable to the object

When an object is created a unique identity is assigned to the object. Details of
representation of the object identity are hidden from the users of the object.

In the example below expressions a.setValue(5) and a.getValue() are called
messages.

Asset a; float value;
a.setValue(10,000);
value = a.getValue();
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Fig. 3.1 UML interface and
its implementing class

<< interface>>
Asset

Asset

+ getValue(): float

- value: float

+ setValue(float)

+ getValue(): float

+ setValue(float)

<<realize>>

In general, invoking a method m of a class C whose signature is
B m(A1,A2,. . . ,An), where B, A1, A2, . . . ,An are types, is called a message and
it has the form

a.m(a1,a2,. . . ,an)

where the type of a is C and the type of ai is Ai for i=1,2 . . . ,n. The object a
in the above message is called the receiver of the message and a1, a2, . . . ,an are
arguments. All an object x needs to know in order to invoke a message on an object
a is the interface of the type of a as in the example above.

Object-oriented languages have a special keyword (like self in OCL or this in
Java and C#) to denote the receiver of a message. In the above example of Asset class
the method setValue refers to the value of the receiver object using the keyword this.
This is also necessary in order to distinguish the value of the formal parameter and
the value of the corresponding field of the receiver object. In the method getValue
the value of the field of the receiver object is referred to directly by its name so that
this is implicit.

Objects are created dynamically by invoking a class constructor as in the example
below:

Asset a=new Asset();
a.setValue(10,000);
float value = a.getValue();

In the above example a no argument constructor is invoked initializing the
Asset object to the default values for the types of components of the object state.
Additional constructors are typically defined for a class that would specify a
particular initialization of the object state as in the following example.

Asset(float value) {
this.value = value;

}

Asset a= new Asset(10,000);
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3.2 Properties

In the examples so far we followed a sound object-oriented design methodology to
hide the components of the object state making its fields private. Access to the object
state is possible only through public methods. This methodology has an explicit
support in C# in the notion of a property. A property is a pair of public methods: a
method get which returns the value of a component of the object state and a method
set which assigns a value to a component of object state. In the simplest case this
idea is implemented in such a way that a property has a backing field which is
private. The method get returns the value of the backing field and the method set
assign a value to the backing field.

In the example below the class Asset has two properties: Name and Value. The
backing field of the property Name is name and this property has only the get
method, so the field is read only. The backing field of the property Value is value.
This property is equipped with a pair of methods: get and set. The argument of the
method set is denoted by the keyword value, hence we had to use the expression
this.value to refer to the backing field that has the same name. In C# default access
right is private, but we explicitly denoted the backing fields as such.

class Asset {
private String name;
private float value;
// other fields
// constructor
public String Name
{ get { return name; }
public float Value
{ get { return value; }

set { this.value = value; }
}
// other poperties

}

Externally, a property is treated as a field. For example:

Asset a=new Asset;
a.Value = 100,000;
float assetValue=a.Value;

The notion of a property is not necessarily tied to a backing field. The result of
the method get may be computed in a more complicated manner rather than by just
reading the value of the backing field. Here is a modified class Asset which shows
this for the property Value.
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class Asset {
private String name;
private float purchaseValue;
private float appreciation;
// other fields
// constructor
public String Name
{ get { return name; }
public float Value
{ get { return purchaseValue + appreciation; }
}
// other properties

}

3.3 Inheritance

A core feature of object-oriented languages allows specification of new types
by derivation from the already defined types. This is how software reuse is
accomplished in object-oriented technology. An example is a type IStock defined
as an extension of the type IAsset:

interface IStock extends IAsset {
public String getName();
public void setName(String name);
public String getCode();
public void setCode(String code);

}

Instances of the type IStock inherit all methods of the base type IAsset. Additional
methods of the type IStock that are specific to those objects are defined in the
specification of the type IStock.

The class that implements the interface IStock specifies the additional compo-
nents of the Stock object state along with the associated methods:

class Stock extends Asset
implements IStock {

private String name;
private String code;
public String getName(){

return name;
}
public void setName(String name) {
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this.name=name;
public String getCode(){

return code;
}
public void setCode(String code) {

this.code=code;
}

}

The class Stock inherits the implementation of Asset objects and implements the
methods whose signatures are specified in the interface IStock. In UML this situation
is represented by the diagram in Fig. 3.2.

<<interface>>
Asset

<<interface>>
Stock

Stock

Asset

<<realize>>

<<realize>>

+ getValue(): float

+ setValue(float)

+ getValue(): float

- value: float

- name: String

- code: String

+ setValue(float)

+ getName(): String

+ setName(float)

+ getCode(String)

+ setCode(String)

+ getName(): String

+ setName(float)

+ getCode(String)

+ setCode(String)

Fig. 3.2 UML diagram with diamond inheritance
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Fig. 3.3 Object states and methods

The states and the associated methods of objects of types Asset and Stock are
represented in Fig. 3.3.

The basic features applicable to all object types are specified in the class Object.
The details of representation of this class are not exposed to the users. A simplified
specification of the class Object that omits signatures of other methods is given
below.

public class Object {
public boolean equals(Object x);
public Class getClass();
// other methods

}

All classes implicitly inherit from the class Object. The two methods whose
signatures are specified above make it possible to test whether two objects are equal
and to access the class information available at run time.

The inheritance relationships in our example are represented in Fig. 3.4. This
diagram illustrates the type of multiple inheritance allowed in Java and C#.

A class can have a single superclass, and the root class Object has none. Multiple
inheritance for classes is not allowed because it creates problems since a class
specifies an implementation. If a class extends two different and independently
developed classes, the question is which implementation is being inherited. A par-
ticularly problematic situation occurs in the case of diamond inheritance illustrated
in Fig. 3.5. All the types in this diagram cannot be classes. A class can implement
multiple interfaces. An interface can extend multiple interfaces because interfaces
do not contain implementation. The only conflict that may occur is with names
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Fig. 3.4 Inheritance for
interfaces and classes Object

IAsset

IStock
extends

implements

implements
extends
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Asset

Stock

Fig. 3.5 Multiple
inheritance
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and signatures of methods inherited from multiple superinterfaces. These issues are
easily resolved with simple rules that Java and C# have. In the above example the
class Stock extends the class Asset and implements an interface IStock.

The immutable class object contains run-time representation of signatures of the
class fields, constructors and methods. The method getSuperClass applied to a class
object produces a reference to the superclass object. This makes the complete type
hierarchy of classes available at run-time. However, this hierarchy of types can be
only introspected, and not changed at run time. This is why the class Class contains
only introspection methods and cannot be extended (it is final). Changing at run
time the type information produced in the process of compilation would completely
defeat the purpose of a type system.

public final class Class {
// methods for accessing field signatures
// methods for accessing constructor signatures
// methods for accessing method signatures
public Class getSuperClass();

}
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Fig. 3.6 Objects and class objects

The relationships between objects and their class objects is represented in
Fig. 3.6. Objects and class objects are stored in the memory area called the heap. The
heap allows dynamic creation of objects and memory management when objects are
not in use any more.

3.4 Subtyping

The basic form of inheritance presented so far amounts to extension of both
components of the object state, and the set of the associated methods. A subclass
inherits all of them just the way they are defined in the superclass. This makes it
possible to have a particular flexibility in object-oriented languages. An instance of a
subclass could be safely substituted where an instance of the superclass is expected.
This is not a literal substitution of the object representation. Substitution applies to
object identities that are implemented as references to object states. A reference to
an object of the superclass is replaced by a reference to an object of the subclass.

The general term polymorphism applies to situations like this where an instance
of one type is substituted where an instance of a different type is expected.
The form of polymorphism that is associated with inheritance is called subtype
polymorphism. Although these two notions are in general different, they are
identified in mainstream typed object-oriented languages. That is, the typing rules
for deriving a subclass from another class by inheritance guarantee that the subclass
defines a subtype of the superclass.

The most restrictive implementation of the rule for method subtyping is that
an inherited method has exactly the same signature in a subclass as it does in the
superclass. So the name, the types and the number of arguments and the result type
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will be the same. A more flexible type safe discipline is that the argument types of
an inherited method remain the same as in the superclass and the result type may be
changed to the subclass type. For example:

public class Object {
boolean equals(Object x)
public Object clone()

// other methods
}

public class Asset {
boolean equals(Object x)
public Asset clone()

// other methods
}

3.5 Static and Dynamic Type Checking

The flexibility introduced by subtype polymorphism makes the declared (static) type
of an object in general different from its run-time (dynamic) type. The run-time type
is in general a subtype of the static type. For example:

Asset a = new Asset();
Stock s = new Stock();
a=s;

The static type of a is Asset and after the assignment a = s its run-time type
is Stock. This has implications on selection of the most appropriate method when
executing a message. Consider the class Stock given below. In the notation used in
this book the symbol D is overloaded. It stands for the standard mathematical notion
of equality as in the code below, as well as for the assignment as in Java and C#.

public class Stock {
private String code;
public boolean equals(Object x) {

return (code = (Stock)x.code);
}
// other methods

}

The method equals in the root class Object is defined as the test on object identity.
This is the only meaningful way of defining the equality of objects in general. That
is, two objects are equal if they have the same identity. In a specific class a more
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suitable meaning of equality may be more appropriate. In the above class two stocks
are considered equal if their codes are equal. So the method equals is redefined
accordingly in the class Stock. This redefinition of an inherited method is called
overriding.

Note that the signatures of the inherited method arguments are required to remain
the same in the subclass. This creates an awkward situation because in the class
Stock we would like to refer to the code field of the argument, and Object does not
have such a field. This is why the type cast (Stock)x specifies that the intent is to
view x as a Stock. There is no way to verify this cast statically, hence a dynamic
check is generated by the compiler. This is an instance of dynamic type checking.

If a dynamic type check fails, it creates an exception. If the type cast (Stock)x
fails, it will create a ClassCastException. The exception should then be handled
properly as in the revised version of the class Stock given below.

public class Stock {
private String code;
public boolean equals(Object x) {
try

{return (code = (Stock)x.code); }
catch (ClassCastException CastEx)

{ return false; }
}
// other methods

}

Exceptions may be structured in a type hierarchy. This is very useful because it
allows separation of modeling regular behavior from modeling exceptional events.
An example of a possible user defined inheritance hierarchy of exceptions is given
in Fig. 3.7.

CastEx AssertEx

PrecondEx PostcondEx InvariantEx

Fig. 3.7 Modeling exceptions
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3.6 Dynamic Binding

In order for overriding to work correctly the method to be invoked is determined by
the dynamic type of the receiver object. This is called dynamic dispatch of methods
and it represents the most important case of dynamic binding in object-oriented
languages. For example,

Object x = new Object();
Object y = new Object();
Stock s1 = new Stock();
Stock s2 = new Stock();
x=s1; y=s2;
. . . x.equals(y). . .

The method to be invoked in response to the message x.equals(y) will be the
method equals overridden in the class Stock because the run time type of x is Stock.

There are situations in which overriding a method should not be allowed. An
example is the method getClass of the root class Object. This method has a
particular implementation in the underlying virtual platform, which guarantees that
invocation of this method will indeed return the class object of the receiver of
the method. Allowing overriding would have serious implications on the intended
semantics of this method creating nontrivial problems in dynamic type checking.
This is why the method getClass is declared as final.

public class Object {
public final Class getClass();
// other methods

}

The class Class is final, which means that it cannot be extended, and hence
none of its methods can be overridden. Since the class Class has only introspection
methods, this guarantees safety of the type system at run-time, i.e., the type
information cannot be mutated at run time.

Dynamic dispatch (selection) of methods based on the type of the receiver
object is the basic technique in object-oriented languages. It brings the type
of flexibility that makes the whole object-oriented paradigm work. Adding new
types by inheritance to an already compiled and running application requires only
compilation and linking of the newly introduced types without recompiling the
existing application. However, this flexibility comes with some penalty in efficiency
because the decision about method selection is postponed to runtime. Modern
languages have efficient techniques for dynamic dispatch of methods, but some
languages like C++ and C# try to avoid the associated cost by providing a static
binding (method selection) option. In C#, methods are statically bound unless they
are explicitly declared as virtual. For example, using our notation, the method equals
which is intended to be overridden would be declared as follows:
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public class Object {
public virtual boolean equals(Object x);
// other methods

}

Overriding this method in C# will be indicated by an explicit keyword override.

public class Stock {
private String code;
public override boolean equals(Object x) {

return (code = (Stock)x.code);
}
// other methods

}

Methods whose receiver is the class object are always bound statically. The
reason is that there is only one class object for all objects of that class. Since the
receiver is known at compile time, there is no need to postpone method selection to
run time. These methods are thus declared as static to indicate that they belong to
the class itself. An example is the method valueOfAllAssets of the class Asset. The
value of all assets is not the property of individual asset objects. It is the property of
all objects of the class Asset, hence it belongs to the class itself.

public class Asset {
// fields;
public static float valueOfAllAssets();
// other methods

}

True object-oriented design methodology makes components of an object state
private and exposes public methods to be used to perform actions on the objects. A
class this way looks like an abstract data type. The only way to perform operations
on instances of an abstract data type is by invoking operations associated with
that type. As explained earlier, this idea has explicit support in the C# notion of
a property. An example of a property is given below:

public class Asset {
private float totalValue;
public float TotalValue
{ get {return totalValue;}

set {totalValue = value; }
}

}
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A property may be used as if it is a field as illustrated below:

Asset a = new Asset();
a.TotalValue = 50,000;
a.TotalValue = a.TotalValue+20,000;

In the following example the value of a property is computed rather than being
just the value of a backing field.

public class Asset {
private float unitValue;
private int numberOfShares;
public float TotalValue
{ get {return unitValue * numberOfShares; }
}

}

We summarize the above discussion as follows:

– The basic mechanism for selecting a method for executing a message (method
dispatch) in object-oriented languages is dynamic. It is based on the run-time
type of the receiver object.

– The receiver of a static (i.e. class) method is the class object. Since there is only
one class object of a given type, selection of a static method is static.

– Some languages (C++ and C#) allow a choice of static versus dynamic method
dispatch. Although this is done for the reasons of efficiency, it has been shown
that when both dispatch mechanisms are used in a program, that may obscure the
meaning of the program.

3.7 Abstract Classes

Structuring an implementation of an object-oriented model as a hierarchy of
abstractions has significant advantages. The top level of this hierarchy consists of
interfaces that are exposed to the users of the system as they define messages that
the users can send. The implementation details are completely hidden from the users
of the system.

interface IAsset {
String getName();
float getTotalValue();

}

The next level of abstraction consists of classes implementing the specified
interfaces. However, this implementation level can also often be structured as a
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hierarchy. The first level of this hierarchy are abstract classes. An abstract class is a
partially implemented class, that is, some aspects of implementation are left to the
lower level classes derived by inheritance. An abstract class has at least one abstract
method, i.e., a method whose signature (name, arguments and result) is specified at
the level of the abstract class. However, the implementation details can be specified
only in a class derived by inheritance from the abstract class. The reason is that the
derived class contains the specifics required to implement an abstract method.

An example of an abstract class that implements the interface IAsset given above
is FinancialAsset. It specifies the implementation details related to the name of
an asset, but the method getTotalValue can be implemented only when we actually
know the specifics of a particular financial asset type. This is why this method is
declared as abstract.

abstract class FinancialAsset implements IAsset {
private String name;

public String getName()
{ return name ; }

public abstract float getTotalValue();
}

Likewise, an abstract class RealEstateAsset that implements the interface IAsset
contains some implementation details and it has an abstract method getTotalValue
whose implementation can be specified only when the specifics of a particular type
of a real estate asset is known.

abstract class RealEstateAsset implements IAsset {
private String name;
private City location;

public String getName()
{ return name; }

public City getLocation()
{ return location ; }

public abstract float getTotalValue();
}

Since an abstract class is partially implemented, it is not possible to create an
object of an abstract class. It is only possible to create objects of a fully implemented
class. If such a class is derived by inheritance from the abstract class, the created
object will be also of the abstract class type by subtype polymorphism.

An abstract class is not the same as an interface. An interface contains only the
signatures of methods. An abstract class contains partial implementation (fields,
implemented methods). An abstract class is different from an interface even if it
consists of abstract methods only. It is still a class and single inheritance applies
to it whereas multiple inheritance applies to interfaces. Finally, all methods of an
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interface are public. An abstract class may have public, private and protected fields
and methods.

The bottom level of the implementation hierarchy consists of classes with all
details specified and implemented. In the class Stock given below an implementation
of the method getTotalValue is specified using specific features of this class.

class Stock extends FinancialAsset {
private float shareValue;
private int noOfShares;

public float getTotalValue()
{ return shareValue * noOfShares; }

}

Likewise, the method getTotalValue is implemented in the class House based on
the specific attributes of a house which in general do not belong to all financial
assets.

class House extends RealEstateAsset {
private float marketValue;
private float mortgage;

public float getTotalValue()
{ return marketValue – mortgage; }

}

There are several advantages of structuring an implementation as the above
described hierarchy. One of them is that the implementation is easier to understand
and manage when evolution is required over time. Pushing the implementation
details to the lower levels allows changes of the implementation details without
affecting the upper levels, the user interfaces in particular.

3.8 Collection Types

Most object-oriented languages are equipped with the root class Object (C++ is
a notable exception). The class Object along with subtype polymorphism allows
specification of Collection type whose elements are simply objects. In fact, this was
the only way of specifying a generic collection type in the initial versions of Java
and C#:

public interface Collection{
public boolean isMember(Object x);
public void add(Object x);
public void remove(Object x);

}
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An object of type Collection is equipped with methods for testing whether an
object belongs to the collection, inserting new objects into the collection, and
deleting objects from the collection. The main problem with this specification is
that objects of any type may be inserted into a collection defined this way. If we
would like to define a specific collection, like a collection of assets, we would do it
as follows:

Collection assets;

So the following type checks:

Stock s = new Stock();
assets.add(s);

However, so does the following

Collection stocks;
Bond b = new Bond();
stocks.add(b);

The reason is that both Stock and Bond are subtypes of Object, and so is any other
object type. The other problem occurs when getting objects from a collection as in
the for statement below. This statement introduces a control variable s of type Stock
and iterates over the collection stocks. In the process the control variable assumes
the values of the elements of the collection stocks.

for (Stock s: stocks)
s.setValue(50,000);

The above code will not compile in Java because the control variable s is declared
to have the type Stock, and the elements of the collection stocks are of type Object.
Let us modify the above loop to correct this type mismatch as follows:

for (Object s: stocks)
s.setValue(50,000);

The above will not type check either because the class Object is not equipped with
a method setValue. This is why a type cast is necessary:

for (Object s: stocks)
(Stock)s.setValue(50,000);

This type cast looks redundant, but it is necessary because an object retrieved from
a collection of stocks may not be a stock at all. So not only is a dynamic check
necessary, but it may fail at run-time as well. There is really no good solution for
this situation. In order to avoid program failure the original code must be extended
with exception handling as follows. This is hardly an attractive way to specify an
iteration over a collection of stock objects.
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try {
for (Object s: stocks)
(Stock)s.setValue();
}

catch (ClassCastException classEx )
{exception handling }

The notion of a set of objects may be defined using subtype polymorphism as
follows:

public interface Set extends Collection {
public Set union(Set s);
public Set intersection(Set s);

}

The difference between a collection in general and a set is that an element may
belong multiple times to a collection. The notion of a set does not allow this: an
element is either a member of a set or it is not. This is why an element cannot be
inserted into a set if it already belongs to the set. The behavior of delete is also
different for collections and sets. Deleting an object from a set means that the object
does not belong to the set. Because of possible multiple occurrences of an object in
a collection, that would happen only if the last occurrence is deleted. In addition,
sets are equipped with operations such as union and intersection that collections in
general do not have (Fig. 3.8).

A bag is a collection that keeps explicit count of the number of occurrences of
each element that belongs to the bag. In addition, a bag is equipped with operations
such as union and intersection. The semantics of these operations are defined in
such a way that they reduce to the semantics of union and intersection for sets in a
particular case of a bag that is in fact a set.

The rule for union of bags is the following. If an element x belongs m times to a
bag B1 and n times to a bag B2, then x will belong max(m,n) times to the union of

Fig. 3.8 Collection types
Object

Collection

Set Bag
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B1 and B2. This definition comes from the algebra of bags and it is different from the
definition of this operation in OCL. Symmetrically, x will belong min(m,n) times to
the intersection of B1 and B2. This definition agrees with the OCL definition.

3.9 Parametric Types

The problems in specifying collection types using subtype polymorphism are
avoided by a different form of polymorphism called parametric polymorphism.
Using this form of polymorphism the notion of a collection is specified as follows.

public interface Collection<T> {
public boolean isMember(T x);
public void add(T x);
public void remove(T x);

}

The interface Collection now has a type parameter T. T stands for any object type,
so that there is an implicit quantification over all object types. Collection <T> may
be viewed as a template for construction of new types by substitution. Substituting
Stock for the type parameter T produces a collection of stocks type denoted as:

Collection<Stock>

The previous code obtains the following form:

Collection<Stock> stocks;
Stock s = new Stock();
stocks.add(s)

However, the following will not type check, i.e., it will produce a compile-time error.

Collection<Stock> stocks;
Bond b = new Bond();
stocks.add(b)

Accessing elements of the collection of employees does not require a type cast.
So a previous for statement will now type check:

for (Stock s: stocks)
s.setValue(50,000);

The key property of parametric polymorphism is that it allows static (i.e.,
compile-time) type checking. The unfortunate consequences of dynamic type
checks are completely avoided.

The universal form of parametric polymorphism does not allow static typing of
a variety of other abstractions such as ordered collections, ordered sets etc. The
problem with the definition of the type of ordered collections as:
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OrderedCollection<T>

is that it does not guarantee that the object types substituted for T will be
equipped with ordering. This is why the parametric type OrderedCollection is
defined with a type constraint for the type parameter:

OrderedCollection<T extends Comparable<T>>

where the interface Comparable is equipped with a comparison method and
defined as follows:

public interface Comparable<T> {
public int compareTo(T x);

// other comparison methods
}

Parametric interface OrderedCollection is now specified as follows:

public interface OrderedCollection<T extends Comparable<T>>

extends Collection<T> {
// . . .
}

The above specification means that only types that extend or implement
the interface Comparable will be acceptable as the actual type parameters of
OrderedCollection<T extends Comparable<T>>. So if we have

Stock implements Comparable<Stock>

OrderedCollection<Stock> will satisfy the static type check.
The form of parametric polymorphism in which there is a bound on the type

parameter is called bounded. When the bound itself is parametric, like in the above
cases, the form of parametric polymorphism is called F-bounded.

Array is a parametric type with special notation and special properties. T[] is an
array type for any specific type T. The form of parametric polymorphism is thus
universal.

The interplay of parametric types and inheritance is nontrivial. We will show that
type safe rule in fact contradicts the type conformance rules of OCL specified in
Chap. 2. Assume that we have

class Stock extends Asset {. . . } .

We know that this implies

Stock subtypeOf Asset

following the rules for the signatures of inherited fields and methods. The
question is now whether this implies

Collection<Stock> subtypeOf Collection<Asset> ? ? ?
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Fig. 3.9 Parametric types
and subtyping Asset

Stock Collection<Stock>

Collection<Asset>

???

The answer is no. It is easy to see why. The signature of the method add in the
class Collection<Asset> is void add(Asset x) and the signature of this method in
the class Collection< Stock > is void add (Stock x). This violates the typing rules
for inherited methods. The argument signatures of an inherited method must remain
the same as in the superclass.

Following the same argument we would have for array types:

Stock[] notSubtypeOf Asset[]

However, languages like Java and C# still allow substitution of objects of type
Stock[] in place of an object of type Asset[]. This flexibility has pragmatic reasons.
For example, an algorithm that sorts an array of persons would not be otherwise
applicable to an array of employees. However, this relaxation of the static typing
rules requires dynamic checks in order to prevent violation of subtyping at run-time,
which both Java and C# have.

3.10 Representing Associations

UML analysis and design methodology relies heavily on associations. However,
object-oriented languages do not have an explicit support for associations quite
unlike inheritance. Associations are in object-oriented languages represented using
the apparatus for complex objects and collection types. A complex object is an
object that refers to other objects as its components.

The one to one association between objects of type Investor and Portfolio in
Fig. 3.10 is represented in the their classes omitting the access specifications as
follows:

Fig. 3.10 Associations
Investor Portfolio

1 1
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class Investor {
Portfolio myPortfolio;

}

class Portfolio {
Investor owner;

}

So an investor has a reference to the portfolio object of the investor and a portfolio
refers to a unique investor as its owner . A portfolio object also refers to the broker
object that manages that portfolio. The relationship between a broker object and
portfolio objects is one to many, that is, a broker manages some finite unspecified
number of portfolios. This relationship is specified using an instantiated parametric
type Collection<Portfolio> (Fig. 3.11).

Investor Portfolio Broker
1 1 0..* 1

Fig. 3.11 Associations

class Portfolio {
Investor owner;
Broker manager;

}

class Broker {
Collection<Portfolio> portfolios;

}

A portfolio consists of a collection of assets. Symmetrically, an asset object
can participate in a number of portfolio objects. The relationship between portfolio
objects and asset objects is thus many to many as in Fig. 3.12.

Fig. 3.12 Associations
Portfolio Asset

0..* 1..*

Representation of this relationship requires two Collection types: Collec-
tion<Asset> and Collection<Portfolio>.

class Portfolio {
Collection<Asset> myAssets;

}
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class Asset {
Collection<Portfolio> portfolios;

}

Finally, since Stock and Bond are subtypes of Asset, in Collection<Asset>
elements of this collection could be Stock or Bond objects, i.e., a portfolio consists
of a collection of stocks and bonds. This is illustrated in Fig. 3.13.

Portfolio Asset

Stock Bond

0..* 1..*

Fig. 3.13 Associations

class Stock extends Asset {
. . .

}

class Bond extends Asset {
. . .

}

It is important to understand that object-oriented languages have no explicit
mechanism for managing associations. Their management is entirely up to the
implementor who must provide the appropriate code.

3.11 Concurrent Implementations

3.11.1 Threads

Java introduced the notion that a thread of execution is an object. As such, it is
created dynamically as all objects are. A thread object has a state (of execution) and
it is equipped with methods that introspect and change the thread object state. This
way a Java program can have multiple threads of execution that exist concurrently
and contribute to the overall outcome of the program execution.
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The core of the Java model of concurrent threads is based on the interface
Runnable and the class Thread. The interface Runnable contains only one method
run. Its implementation in a specific class specifies the actual thread execution
process.

public interface Runnable {
void run();

}

The class Thread has a constructor that takes a Runnable object as the argument
and creates a thread of execution. The method run in the class Thread has an empty
implementation so that it must be overridden in a specific class. Thread execution is
started by invoking the method start. A thread execution can be interrupted, but the
basic idea of the Java model is that all threads created by a program should run to
their completion.

public class Thread
extends Object, implements Runnable {

public Thread(Runnable target);
public void start();
public void run();
public void interrupt();
// other methods

}

An example of using the interface Runnable and the class Thread is the class
TestRun given below.

class TestRun implements Runnable {
private float minWage;
public TestRun(float minWage) {

this.minWage = minWage;
}
public void run() {
// get next employee wage larger than minWage
. . .
}

}

In the code given below, an object of the class TestRun is created, as well as a new
Thread object. The Thread constructor takes an object of TestRun as its argument.
The newly created thread is then started.

TestRun p = new TestRun(15.00);
new Thread(p).start();



3.11 Concurrent Implementations 75

3.11.2 Synchronization

Existence of multiple concurrent threads that access objects creates some well-
known problems. Actions of two threads performed concurrently on the same object
may produce incorrect results such as incorrect updates or incorrect results of
introspection of the object state. This is why concurrent access to objects must be
controlled to avoid these problems.

A well known approach is illustrated below by the class SynchronizedObject.
The methods that access and modify the hidden object state are declared as
synchronized. This means that a thread executing one of these methods gets
exclusive access to the underlying object state. The object state is made available to
other threads when the method completes it execution. This basic model is extended
with a more sophisticated synchronization protocol for concurrent threads accessing
the same object.

public class SynchronizedObject {
private Object state;
public SynchronizedObject(Object initialState) {

state=initialState;
}
public synchronized Object get() {

return state; }
public synchronized void set(Object obj) {

state=obj ;}
// methods inherited from Object:
// public wait()
// public void notifyAll()
// other methods

}

The undesirable effect of unsynchronized access of two threads to the same
object is illustrated in Fig. 3.14. The update of Thread 1 will be lost.

Fig. 3.14 Unsynchronized
object access Time

Object x

Object obj

Thread 2Thread 1

x.get()

x.get()

x.set(obj)

x.set(obj)
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Fig. 3.15 Synchronized
object access
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The effects of synchronized access that avoids the above problem is illustrated in
Fig. 3.15.

An example of synchronization as it applies to portfolio objects is given below.
Synchronization avoids problems of concurrent access of an investor and a broker
to the same portfolio.

public class Portfolio {
private Collection<Asset> assets;
public Portfolio(Collection<Asset> assets) {

this.assets = assets;
}
public synchronized void buyAsset(Asset a) {

assets.include(a); }
public synchronized void sellAsset(Asset a) {

assets.exclude(a);}
// methods inherited from Object:
// public wait()
// public void notifyAll()
// other methods

}

A more sophisticated scheduling strategy for concurrent access is based on the
methods wait and notifyAll inherited from the root class Object. This model is
illustrated by the parametric class SynchronizedContainer. Adding new elements
to the container by a synchronized method add works in accordance with the
synchronization access model described above. The container is assumed to be
unbounded. However, removing an element from the container is possible only if
a container is not empty. This is why a thread that attempts to remove an element
from an empty container is put in a wait state. The method add will send a message
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notifyAll to all waiting threads when it successfully adds an element to the container.
One of those threads waiting for this message will be selected nondeterministically
and its remove action will be performed.

class SynchronizedContainer<T> {
private Container<T> container = new Container<T>;
public synchronized void add(T x) {

container.add(x);
notifyAll();

}
public synchronized void remove(T x) {

throws InterruptedException;
{ while (container.size() = 0)

wait();
container.remove(x);

}
}

3.11.3 Synchronization and Inheritance

Many classes are developed with no considerations for possible concurrent access
to their objects. Producing a class that allows concurrent access from a class that
does not is accomplished by inheritance. A class that enforces synchronized access
is derived from the base class by overriding the inherited methods and declaring
them as synchronized. The bodies of these synchronized methods can now just
invoke the corresponding methods in the base class. This is illustrated by the classes
OrderedCollection and OrderedCollectionSync.

The methods of the class OrderedCollection are those specified in the interface
Collection which the class OrderedCollection implements. The representation of a
sorted collection in the class OrderedCollection is a linked list, where LinkedList is
an already defined parametric class. Methods of the class OrderedCollection are
implemented by invoking methods of the class LinkedList. The main difference
is in the method add which is overridden in such a way that insertion into the
underlying linked list maintains the ordering of the sorted collection of elements.
The type constraint T extends Comparable<T> guarantees that elements of the
sorted collection are equipped with the method compareTo.

public class OrderedCollection<T extends Comparable<T>>

implements Collection<T> {
private LinkedList<T> elements;
public OrderedCollection() {

elements = new LinkedList<T>();
}
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public boolean isMember(Object e) {
return elements.contains(e);

}
public void add(T e) {
if (Š elements.contains(e)) {
for (int i = 0; i < elements.size() - 1; i++) {

if (elements.get(i).compareTo(e) � 0 ^

elements.get(i + 1).compareTo(e) > 0)
elements.add(e);

}
public void remove(Object e) {

if (elements.contains(e))
elements.remove(e);

}
}

Note the general rule that the synchronized property of a method is not inherited.
In this example, the methods in OrderedCollection are not synchronized, and
their overridden versions in OrderedCollectionSync are synchronized. The class
OrderedCollectionSync is derived by inheritance from the class OrderedCollection
by overriding all the inherited methods, declaring them as synchronized, and
invoking the methods in the superclass indicated by the usage of the key word super.

public class OrderedCollectionSync< T extends Comparable<T>>

extends OrderedCollection<T> {
public OrderedCollectionSync() { super(); }

@Override
public synchronized boolean contains(Object e) {
if (e <> null) {return super.contains(e); }
else return false;

}
@Override
public synchronized void add(T e) {
super.add(e); }

@Override
public synchronized void remove(Object e) {
super.remove(e); }

}
}
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3.12 Exercises

1. Specify an implementation of the class Stock in a typed object-oriented
language (such as Java or C#) in such a way that it implements the interface
IStock and extends the class Asset.

2. Specify an interface InvestorI and it implementing class Investor making use of
a typed object-oriented language.

3. Specify the interface IPortfolio and its implementing class Portfolio making use
of appropriate parametric collection types for representing collections of stocks
and bonds.

4. Specify an interface IBroker and its implementing class Broker with the same
guidelines as in the above exercises.

5. Implement the notion of an investment bank as a complex object whose
components are collections of assets, portfolios and brokers.

6. Specify and implement the method equals of the class Asset. Override this
method in the classes Stock and Bond that implement these two subtypes of
the type Asset.

7. Specify implementation of the class Portfolio using two techniques for repre-
senting collection types. In the first representation elements of a collection type
are objects and in the second a collection type is parametric. Demonstrate the
problems with the first representation and the advantages of the second.

8. Consider collection types Collection<Airport>, Collection<DomesticAirport>
and Collection<InternationaAirport>. Assume that DomesticAirport and
InternationalAirport are subtypes of Airport. Are Collection<DomesticAiport>
and Collection<InternationalAirport> subtypes of Collection<Airport>?

9. Assuming that collections of assets, investors and brokers are ordered by their
keys, implement the classes Asset, Investor and Broker using ordered collection
types.

10. Specify and interface IFlightShedule using parametric ordered types for repre-
senting collections of flights, airports and aircraft.

11. Specify an interface IRegistrar using parametric ordered collection types for
representing collection for courses, students, instructors and and classrooms.



Chapter 4
Mapping Models to Code

In this chapter we assume that we have the results of analysis and design consisting
of the informal specification of the use cases along with the entity types involved
in those use cases. We also assume that the inheritance and the association
relationships among those entity types are also specified. In addition, we assume
that the preconditions and the postconditions of the use cases are specified in an
informal manner as in Chap. 1.

The first step in our methodology is specification of the results of the design
as a collection of interfaces representing entity types and their relationships. This
representation specifies what kind of messages objects in this application can send
and receive. In addition, use cases and methods will be specified in OCL in terms of
their pre and post conditions. This methodology produces a high level specification
of the required software. The level of abstraction at this level is such that many
details of the actual code are still left unspecified and will be elaborated in the
subsequent step.

The second step in producing code implementing the designed model is speci-
fication of classes that implement the interfaces specified in the first step. At this
level the procedural code in the chosen object-oriented programming language is
produced in such a way that the constraints specified in the first step are satisfied. In
Chap. 6 we will discuss the technology that makes it possible to verify that the code
actually satisfies the constraints.

4.1 Specifying Interfaces

4.1.1 Investment Management Application

In specifying interfaces for the investment management model in Fig. 4.1 we specify
the signatures of methods that allow traversal of the associations in that model.
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Investor Asset

1 1

0..* 0..*

0..* 0..*

0..*0..*

0..*1

0..* 0..*

Stock Bond

Portfolio

Broker

Fig. 4.1 Investment management entity types and their relationships

The interface IAsset has a method getBrokers that represents one side of the many
to many association between the entity types Asset and Broker. The other side of
this association is specified by the method getAllAssets of the interface IBroker. In
addition, the interface IBroker has a method getMyPortfolios which represents one
side of the one to many association between a broker and the portfolios that the
broker manages. The interface IPortfolio has a method getBroker that represents the
other side of this relationship and produces the broker of a portfolio.

interface IAsset {
float getPrice();
boolean priceOk();
Collection < Broker > getBrokers();
Collection< Portfolio > getPortfolios();
}

interface IBroker {
Collection<Asset> getAllAssets();
Collection <Portfolio> getMyPortfolios();
}

The method getPortfolioAssets represents one side of the one to many association
between a portfolio and the assets that it contains. The method getInvestor
represents one side of the one to one relationship of a portfolio and its owner.
The method getBroker represents one side of the one to many relationship between
brokers and the portfolios that they manage.

interface IPortfolio {
Collection<Asset> getPortfolioAssets();
Broker getBroker();
Investor getInvestor();
}
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The method getMyPortfolio of the interface InvestorI represents one side of
the one to one relationship between an investor and its portfolio. The methods
buyAsset and sellAsset of the interface InvestorI represent the corresponding use
cases.

interface InvestorI {
Portfolio getMyPortfolio();
Broker getMyBroker();
Collection<Asset> getAllAssets();
void buyAsset(Asset a);
void sellAsset(Asset a);
}

The next step in our methodology is specification of constraints associated
with the designed interfaces. We will do that just for the methods buyAsset and
sellAsset of the interface InvestorI that represent the corresponding use cases. These
constraints will be specified in OCL. This way we will produce a declarative
specification of the implementation of the investment management model. This
representation will be subject to further decomposition in which all implementation
details of the procedural code will be developed.

The first precondition of the method buyAsset requires that the asset is not
already in the investor’s portfolio. This is a simplification of the real situation. The
second precondition requires that the price of the asset is OK. The postcondition
ensures that the asset is in the investor’s portfolio. These pre and post conditions are
specified in an UML diagram in Fig. 4.2.

<<interface>>
InvestorI

<<precondition>>

<<postcondition>>

<<precondition>>
a.priceOK()

not(self.getMyPortfolio().getPortfolioAssets() ->
includes(a))

self.getMyPortfolio().getPortfolioAssets() ->
includes(a)<<interface>>

IPortfolio

getMyPortfolio(): Portfolio
buyAsset(Asset a)
sellAsset(Asse at)
other methods

getPortfolioAssets():
CollectionOfAsset
other methods

Fig. 4.2 Assertions for buying an asset
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context InvestorI:: buyAsset(Asset a):
pre not (self.getMyPortfolio().getPortfolioAssets() � > includes(a))
pre a.priceOk();
post self.getMyPortfolio().getPortfolioAssets() � > includes(a)

The precondition of the method sellAsset is that the asset is in the investor’s
portfolio, and the postcondition that it is not any more.

context InvestorI:: sellAsset(Asset a):
pre self.getMyPortfolio().getPortfolioAssets() � > includes(a)
post not (self.getMyPortfolio().getPortfolioAssets() � > includes(a))

These pre and post conditions are specified in an UML diagram in Fig. 4.3.

<<interface>>
InvestorI

<<postcondition>>
not(self.getMyPortfolio().getPortfolioAssets() ->
includes(a))

<<precondition>>
self.getMyPortfolio().getPortfolioAssets() ->
includes(a)

<<interface>>
IPortfolio

getMyPortfolio(): Portfolio
buyAsset(Asset a)
sellAsset(Asse at)
other methods

getPortfolioAssets():
CollectionOfAsset
other methods

Fig. 4.3 Assertions for selling an asset

4.1.2 Course Management Application

The entity types and their relationships are represented in Fig. 4.4.
The interface representing the entity type Registrar of the course management

application contains a method getAllCourses that reflects the one to many associ-
ation of this entity type with the entity type Course. This interface also contains
a method getInstructors that represents the one to many association between the
entity types Registrar and Instructor. The one to many association between the
entity types Registrar and Student is represented by the method getStudents. The
method getRooms produces a collection of rooms available for scheduling.
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Fig. 4.4 Course management entities and their relationships

interface IRegistrar {
Collection<Course> getAllCourses();
Collection<Instructor> getInstructors();
Collection<Students> getStudents();
Collection<Room> getRooms();
void scheduleCourse(Course c);
void deleteCourse(Course c);
}

The methods scheduleCourse and deleteCourse specify the corresponding use
cases. The first precondition of the method scheduleCourse requires that the course
to be scheduled is not already scheduled. The second precondition requires that there
is a suitable room for the course to be scheduled. The third precondition requires
that there is an instructor suitable to be scheduled for the course. The postcondition
ensures that the course is actually scheduled, i.e., it belongs to the collection of all
scheduled courses.

context IRegistrar:: scheduleCourse(Course c):
pre not (self.getAllCourses() � > includes(c))
pre self.getRooms() � > exists(r: Room j r.suitableFor(c))
pre self.getInstructors() � > exists (x: InstructorI j x.suitableFor(c))
post self.getAllCourses() � > includes(c)

The precondition of the method deleteCourse requires that the course to be
deleted is actually scheduled. The postcondition of this method ensures that the
course is not scheduled any more.

context IRegistrar:: deleteCourse(Course c):
pre self.getAllCourses() � > includes(c)
post not (self.getAllCourses() � > includes(c))
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<<interface>>
IRegistrar

<<precondition>>

<<precondition>>

<<precondition>>

<<postcondition>>

<<postcondition>>

<<precondition>>

not(self.getAllCourses() ->
includes(c))

self.getInstructors() -> exists(
x: Instructor | x.suitableFor(c))

self.getRooms() -> exists(
r: Room | r.suitableFor(c))

self.getAllCourses() -> includes(c)

self.getAllCourses() -> includes(c)

not(self.getAllCourses() -> includes(c))

getAllCourses():

getlInstructors():
CollectionOfCourse

CollectionOfInstructor

CollectionOfStudent
getRooms():
CollectionOfRoom

deleteCourse(Cource c)

scheduleCourse(Course c)

getStudents():

Fig. 4.5 Course scheduling constraints

The above pre and post conditions are specified in a UML diagram given in
Fig. 4.5.

The interface IStudent has a method getMyCourses which represents the one to
many relationship of the entity type Student and the entity type Course. The other
such relationship specified by the method getAllCourses allows a student to access
all scheduled courses. The methods enrollInCourse and dropCourse specify the
corresponding use cases.

interface IStudent {
Collection<Course> getAllCourses();
Collection<Course> getMyCourses();
void enrollInCourse(Course c);
void dropCourse(Course c);
}

The first precondition of the method enrollInCourse requires that the student is
not already enrolled in the course. The second precondition requires that the set of
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prerequisites of the course is a subset of the set of courses already taken by the
student. The third precondition requires that the course is open for enrollment. The
postcondition ensures that the course is in the set of courses taken by the student.

context IStudent:: enrollInCourse(Course c):
pre not (self.getMyCourses() � > includes(c))
pre c.getPrerequsites() � > subset(self.getMyCourses())
pre c.open()
post self.getMyCourses() � > includes(c)

The above assertions are represented in a UML diagram in Fig. 4.6.

<<interface>>
IStudent

<<precondition>>

<<precondition>>

<<precondition>>

<<postcondition>>

not(self.getMyCourses()-> includes(c))

self.getMyCourses()-> includes(c)

c.getPrerequisites()-> subset(self.getMyCourses())

c.open()

getMyCourses():

enrollInCourse(Course c)
dropCourse(Course c)

other methods

CollectionOfCourse

Fig. 4.6 Assertions for enrolling in a course

The precondition of the method dropCourse requires that the course to be deleted
is in the set of courses taken by the student. The postcondition ensures that it is not
anymore.

context IStudent:: dropCourse(Course c):
pre self.getMyCourses() � > includes(c)
post not (self.getMyCourses() � > includes(c))

The above assertions are represented in a UML diagram in Fig. 4.7.
The interface ICourse represents the corresponding entity type and contains

methods required by the entity types Registrar and Student. These methods include
checking whether the course is open for enrollment, who the instructor is, what
the set of prerequisites are, the scheduled time for the course, and the set of
students enrolled in the course. The method getInstructor specifies one side of the
many to one association of the entity types Course and Instructor. The method
getPrerequisites represents a many to many association of the entity type Course
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<<interface>>
IStudent

<<precondition>>

<<postcondition>>
not(self.getMyCourses()-> includes(c))

self.getMyCourses()-> includes(c)

getMyCourses():

enrollInCourse(Course c)
dropCourse(Course c)

other methods

CollectionOfCourses

Fig. 4.7 Assertions for dropping a course

with itself. The method getMyStudents represents one side of the many to many
relationship between the entity types IStudent and ICourse.

interface ICourse {
boolean open();
InstructorI getInstructor();
Collection<Course> getPrerequisites();
Collection<Student> getMyStudents();
Time getTime();
Room getClassRoom();
}

The interface InstructorI has a method getMyCourses producing the set of
courses taught by the instructor. This method represents one side of the one to many
relationship between courses and instructors. A boolean method suitableFor which
checks whether the instructor is suitable to be scheduled for a particular course.

interface InstructorI {
Collection<Course> getMyCourses();
boolean suitableFor(Course c);
}

The interface IRoom has a method maxCapacity that specifies the maximum
capacity of the room and a method which determines whether the room is suitable
for a particular course.

interface IRoom {
boolean suitableFor(Course c);
int maxCapacity();
}
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4.2 From Interfaces to Classes

In the UML methodology the structural model of an application environment is
represented as a diagram specifying the relevant entity types and their relationships.
The two orthogonal types of relationships are inheritance and associations. This
diagram is in UML called the class diagram since the entity types are specified as
UML classes (templates with field and method signatures).

The fact that the UML structural model is heavily based on associations has
a decisive impact on mapping that model to code. In our methodology we first
represent entity types as interfaces. Interfaces exist in UML, but are not given the
role that they should have. Representing the structural model in terms of interfaces
provides a level of abstraction in which many details of the actual code as it appears
in classes are still left unspecified.

This first step of mapping to code clearly shows that the representation of the
model will contain multiple collections. This is a consequence of the design method-
ology that emphasizes associations in addition to inheritance. These collections have
a distinctive property: they have long life times. More specifically, these collections
of objects exist before any particular use case is invoked and continue to exists with
some changes beyond completion of a use case. In other words, these are persistent
collections. Creating and managing persistent collections requires a special software
technology that is the topic of Chap. 5.

4.2.1 Investment Management Application

In the Investment management application that we considered first persistent
collections are a collection of assets, a collection of portfolios, a collection of
investors and a collection of brokers specified below. This is an obvious conclusion
from the interface model and the role that these collections play in that model in
specifying associations.

Collection<Asset> assets;
Collection<Portfolio> portfolios;
Collection<Investor> investors;
Collection< Broker> brokers;

Not only are the above collections persistent, but so are their elements. So imple-
mentation of the Investment management model requires creation and management
of persistent objects of various types, including the collection types. All of this will
be discussed in Chap. 5.
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In the specification of the class Asset the method getBrokers acts on the collection
of all brokers and traverses two associations invoking methods getMyPortfolios and
getPortfolioAssets. Representation of this method is still declarative as it makes use
of queries. Queries come naturally with collections, but object-oriented languages
do not have them with one exception to be discussed in Chap. 5.

class Asset implements IAsset {
private float price;
public getPrice() {

return this.price;
}
public boolean priceOk() {

return this.price <D getAcceptableValue();
}
public void setPrice(float price) {

this.price = price;
}
public Collection<Broker> getBrokers() {
return (from b in brokers

where this in b.getMyPortfolios().getPortfolioAssets()
select b);

}
// method getPortfolios
}

A fundamental observation is that the procedural code is still specified in a
declarative fashion. The reason is that operating on collections naturally leads to
queries. So not only is the representation of the model developed in the design phase
based on persistent collections, but in addition, representing methods that traverse
the associations in the model is naturally expressed by queries.

A procedural representation of the method getBrokers given below makes use of
the foreach statement which object-oriented languages have. The method include
performs simple addition of the argument object to the receiver collection. This
decomposition could be more procedural by using explicit iteration over the
collection of brokers based on the class Iterator.

Collection<Broker> getBrokers() {
Collection<Broker> result;
for (Broker b: brokers)

if (b.getMyPortfolios().getPortfolioAssets().contains(this))
result.include(b);

return result;
}
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The class Portfolio contains components of a portfolio object: a collection of
stocks and a collection of bonds. The method getPortfolioAssets is first specified in
a declarative fashion using a query in its body.

class Portfolio implements IPortfolio {
private Investor owner;
private Broker manager;
private Collection< Stock > stocks;
private Collection< Bond > bonds;
public Broker getBroker() {

return this.manager;
}
public Investor getInvestor() {

return this.owner;
}
public Collection< Stock> getStocks() {
return stocks;
}
public Collection<Bond> getBonds() {
return bonds;
}
public Collection< Asset > getPortfolioAssets() {
return (from a in assets

where (Stock)a in this.getStocks()
or (Bond)a in this.getBonds())
select a);

}
}

A procedural representation of the method getPortfolioAssets given below makes
use of the foreach statement.

Collection<Asset> getPortfolioAssets() {
Collection<Asset> result;
for (Asset a: assets)

if stocks.contains((Stock)a) or
bonds.contains((Bond)a) )
result.include(a);

return result;
}
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The above code should be extended with exception handling in case that type
casts fail, but we will not elaborate this further. In the class Investor the body of the
methods buyAsset and sellAsset representing the corresponding use cases are still
left unspecified at this point.

class Investor implements InvestorI {
private Portfolio myPortfolio;
public Broker getMyBroker() {

return this.getMyPortfolio().getBroker();
}
public Portfolio getMyPortfolio() {

return this.myPortfolio;
}
public Collection<Asset> getAllAssets() {

return assets;
}
public void buyAsset (Asset a) {

// code
}
public void sellAsset (Asset a) {

// code
}

// . . .
}

The method getMyPortfolios of the class Broker is specified as a query that acts
on the collection of all portfolios and selects those that are managed by the receiver
broker object.

class Broker implements IBroker {
private String brokerId;
private name;
public String getBrokerId() {

return this.brokerId;
}
public String getBrokerName() {

return this.name;
}
public Collection<Asset> getAllAssets() {

return assets;
}
public Collection<Portfolio> getMyPortfolios() {
return (from p in portfolios
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where p.getBroker()= this
select p);

}
//. . .
}

The procedural decomposition of the method getMyPortfolios is specified below
using the foreach statement.

Collection<Portfolio> getMyPortfolios(){
Collection<Portfolio> result;
for (Portfolio p: portfolios)

if (p.getBroker() = this)
result.include(p)

return result;
}

4.2.2 Course Management Application

We follow the same methodology in developing classes for the course management
application. In the interface model we identified persistent collections of courses,
students, instructors and rooms. Element types of these collections are specified
by the classes Course, Student, Instructor and Room. There is only one persistent
instance of the class Registrar specified in this representation, as specified below.

Collection<Course> courses;
Collection<Student> students;
Collection<Instructor> instructors;
Collection<Room> classrooms;
Registrar r;

The class Course implementing the interface ICourse has the following
structure:

class Course implements ICourse {
private String courseId;
private String name;
private Instructor taughtBy;
private Room classroom;
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private Time schedule;
public String getCourseId() {

return this.courseId;
}
public String getCourseName() {

return this.name;
}
public String getInstructor() {

return this.taughtBy;
}
public Room getRoom() {

return this.classRoom;
}
public Time getTime() {

return this.schedule;
}
public boolean open() {

return this.getMyStudents.size() < classRoom.getMaxCapacity();
}
public Collection<Student> getMyStudents() {
return (from s in students

where this in s.getMyCourses( )
select s);

}
}

The method getMyStudents of the class Course acts on the collection of all
students to select those enrolled in the course which is the receiver object of this
method. The procedural representation of the method getMyStudents is given below
expressed in terms of the foreach statement.

Collection<Student> getMyStudents() {
private Collection<Student> result;
for (Student s: students)

if (s.getMyCourses().contains(this))
result.include(s)

}

The method getMyCourses of the class Student acts on the collection of all
courses to select those that have the receiver student object of this method enrolled
in a course.
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class Student implements IStudent {
String studentId;
String name;
String getStudentId() {

return this.studentId;
}
String geStudentName() {

return this.name;
}
public Collection<Course> getAllCourses() {
return courses;
}
pubic Collection<Course> getMyCourses() {
return (from c in courses

where this in c.getMyStudents()
select c);

}
public void enollInCourse(Course c) {
. . . }
public void dropCourse(Course c) {
. . . }
// . . .
}

The procedural representation of the method getMyCourses of the class Student
makes use of the foreach statement.

Collection<Course> getMyCourses() {
Collection<Course> result;
for (Course c: courses)

if (c.getMyStudents().contains(this))
result.include(c);

return result;
}

The method getMyCourses of the class Instructor acts on the collection of
courses to select those that are taught by the instructor which is the receiver object
of this course.

class Instructor implements InstructorI {
private String name;
private String suitableFor(Course c) {

// code
}
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public Collection<Course> getMyCourses() {
return (from c in courses

where this = c.getInstructor()
select c);

}
// . . .
}

The procedural representation of the method getMyCourses of the class Instruc-
tor is given below.

Collection<Course> getMyCourses() {
private Collection<Course> result;
for (Course c: courses)

if (c.getInstructor()=this)
result.include(c);

return result;
}

The class Room implementing the interface IRoom has the following structure:

class Room implements IRoom{
private int maxCapacity;
private int getMaxCapacity() {;

return maxCapacity;
}

public boolean suitableFor(Course c) {
//code
}

}

The class Registrar implementing the interface IRegistrar has the structure
given below. The methods scheduleCourse and deleteCourse representing the
corresponding use cases require procedural code which is still left unspecified at
this point.

class Registrar implements IRegistrar {
public Collection<Course> getAllCourses() {
return courses;
}
public Collection<Course> getInstructors() {
return instructors;
}
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public Collection<Course> getStudents() {
return students;
}
public Collection<Room> getRooms() {
return rooms;
}
public void scheduleCourse(Course c) {

// code
}
public void deleteCourse(Course c) {

// code
}

// . . .
}

4.3 Model and Code Management

A model that has been designed and implemented will typically require changes
over time that would reflect changes in the application environment.

4.3.1 Forward Engineering

The term forward engineering refers to the design and implementation of a model
of an application environment. For example, assume that the result of design is the
following model with two entity types Asset and Portfolio and their many to many
relationship (Fig. 4.8).

Fig. 4.8 Assets and
portfolios model Asset Portfolio

1..* 0..*

This model could be implemented by the code whose general structure is
specified as follows.

class InvestmentManagement {
Collection<Asset> assets;
Collection<Portfolio> portfolios;
interface IAsset
{ . . . }
interface IPortfolio
{ . . . }
class Asset implements IAsset
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{ . . . }
class Portfolio implements IPortfolio
{ . . . }

// . . .
}

In the interfaces IAsset and IPortfolio given below methods getPortfolios and
getAssets implement the many to many association between entity types Asset and
Portfolio.

interface IAsset {
String getName();
String getCode();
Collection <Portfolio> getPortfolios();

}

interface IPortfolio {
float getTotalValue();
Collection <Asset> getAssets();

}

4.3.2 Model Transformation

Among possible transformations of an object-oriented model those that are based
on inheritance are in fact in the core of the object-oriented paradigm and require the
least amount of reengineering effort. These transformations amount to extending
the existing model by introducing their subtypes to reflect the evolution of the
requirements of an application environment. This kind of model transformation is
performed in the above initial model of the investment management application to
produce the model given below. In this model transformation two subtypes Stock
and Bond of the entity type Asset are introduced.

4.3.3 Refactoring

The term refactoring refers to producing new code from the existing code. In
our example we rely on inheritance. New code is produced by inheritance. The
class ExtendedInvestmentManagement is derived by inheritance from the class
InvestmentManagement by introducing new subtypes Stock and Bond of the type
Asset (Fig. 4.9).
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Asset Portfolio

Bond

1..* 0..*

Stock

Fig. 4.9 Extended assets and portfolios model

class ExtendedInvestmentManagement extends InvestmentManagement {
interface IStock extends IAsset
{ float getShareValue();
}
interface IBond extends IAsset
{ float getYield();
}
class Stock implements IStock
{ . . . }
class Bond implements IAsset
{ . . . }

}

4.3.4 Model Transformation

A different type of model transformation is actually required if we want to
implement the produced object-oriented model using object-relational technology.
This technology is typically used to manage data of an application environment.
The transformation that reflects the requirements of the object-relational model
amounts to representing the many to many relationship in terms of two many to
one relationships as in the figure below (Fig. 4.10).

Fig. 4.10 Toward relational
representation Asset Portfolio

PortfolioAsset

1 1

0..* 0..*
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4.3.5 Forward Engineering

An implementation of the above model in the object-relational technology will
include three tables Asset, Portfolio, and PortfolioAsset where the table Portfo-
lioAsset represents the many to many association between entity types Asset and
Portfolio. In the relational model each table will be equipped with a key which
uniquely identifies a tuple of a relation. This representation is specified below in
the notation of LINQ to SQL of C#. The special attribute [Table] specifies that the
underlying class corresponds to a database table. The attribute [Column] specifies
that the field that it annotates in fact represents a column of the underlying database
table. The annotation [IsPrimaryKey=true] specifies a field that in fact represents the
primary key of the underlying table. All of this will be further elaborated in Chap. 5.

[Table]
class Asset {
[Column] [IsPrimaryKey=true]
String assetId;

[Column]
String name;

}

[Table]
class Portfolio {
[Column] [IsPrimaryKey=true]
String portfolioId;

[Column]
float totalValue;

}

Elements of the table PortfolioAsset are pairs consisting of an asset key and a
portfolio key.

[Table]
class PortfolioAsset {
[Column]
String portfolioId;

[Column]
String assetId;

}
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4.3.6 Refactoring

Changing the original object-oriented code to reflect the object-relational model is
nontrivial. The structure of the new code has the following code in which Table is a
parametric class developed to fit the requirements of the relational model.

class InvestmentManagement {
Table<Asset> assets;
Table<Portfolio> portfolios;
Table<PortfolioAsset> portfolioAssets;
interface IAsset
{ . . . }
interface IPortfolio
{ . . . }
interface IPortfolioAsset
{ . . . }
class Asset implements IAsset
{ . . . }
class Portfolio implements IPortfolio
{ . . . }
class PortfolioAsset implements IPortfolioAsset
{ . . . }

}

In the class Asset given below of particular interest is the method getPortfolios.
This method requires traversal of the table PortfolioAsset and matching the asset id
in the table Asset with the asset id in the table PortfolioAsset. This is a very basic
implementation of the relational operation called join.

class Asset implements IAsset {
String assetId;
String name;
String getAssetId() {
return assetId;
}
String getName() {
return name;
}
Asset getAsset(String assetId)
{ return (from a in assets

where a.assetId = assetId
select a);

}
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Table<Portfolio> getPortfolios()
{ Table<Portfolio> result;
for (PortfolioAsset pA: portfolioAssets)

if (pA.assetId = this.assetId)
result.include(getPortfolio(pA.portfolioId));

return result;
}

Likewise, in the class Portfolio given below of particular interest is the method
getAssets. This method requires traversal of the table PortfolioAsset and matching
the portfolio id in the table Portfolio with the portfolio id in the table PortfolioAsset.

class Portfolio implements IPortfolio {
String portfolioId;
float totalValue;
String getPortfolioId() {
return portfolioId;
}
Float getTotalValue() {
return totalValue;
}
Portfolio getPortfolio(String portfolioId) {
{ if (this.portfolioId = portfolioId) return this

else return null;
}

Table<Portfolio> getAssets()
{ Table<Asset> result;
for (PortfolioAsset pA: portfolioAssets)

if (pA.portfolioId = this.portfolioId)
result.include(getAsset(pA.assetId));

return result;
}

4.3.7 Reverse Engineering

The term reverse engineering refers to a process in which the starting point is the
existing code and the model is not necessarily available. If in our example all we
have is the object-relational code given above, a correct methodology would require
reconstructing a model from the code. From that point one may transform the
model to the object-oriented model and produce the corresponding code by forward
engineering.

The above discussed types of model and code transformation are shown in
Fig. 4.11.
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Reverse engineering

Forward engineering
Object-oriented model

Model transformation Refactoring

Object-relational model

Object-oriented code

Object-relational code
Forward engineering

Fig. 4.11 Model and code transformations

4.4 Interplay of Inheritance and Constraints

Interplay between constraints and inheritance is nontrivial and OCL specifications
do not address these subtleties. Consider an airport model which consists of two
entity types Airport and Runway with many to one association between runways
and airports. Inheritance appears in this model if we consider two types of airports:
domestic and international, as in Fig. 4.12.

An airport is associated with a number of runways (at least one) and a runway
belongs to a single airport. The invariant of the class Airport specifies that the
number of runways must be greater than zero and less than 30.

Airport
airport

1 1..*
Runway

runways

DomesticAirport InternationalAirport

Fig. 4.12 Airports and runways

interface IAirport {
int getNoOfRunways();
Collection<Runway> getRunways();
void addRunway(Runway strip);
void closeRunway(Runway strip);
// other methods

}
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interface InternationalAirportI extends IAirport {
// additional methods

}

context Airport inv
self.getNoOfRunways() >D 1 and
self.getNoOfRunways() <D 30

The method addRunway has a precondition requiring that the runway to be added
does not already exist in the collection of runways of the airport. The postcondition
ensures that the specified runway is added to the collection of runways of the airport
following the association link runways.

context Airport:: addRunway(strip: Runway)
pre not (self.getRunways() � > exists(r: Runway j r=strip))
post self.getRunways() � > exists(r: Runway j r=strip)

The method closeRunway of the class Airport has a precondition that the runway
to be closed exists in the collection of the runways of the airport. There are several
postconditions. The first postcondition ensures that the airport still has at least one
runway. The second postcondition ensures that the number of runways of the airport
was reduced by one. The third postcondition ensures that the closed runway does
not exist in the collection of runways of the airport.

context Airport:: closeRunway(strip: Runway)
pre self.getRunways() � > exists(r:Runway j r=strip)
post self.getNoOfRunways() >D 1
post self.getNoOfRunways() = self.getNoOfRunways()@pre -1
post self.getRunways() � >forAll (r: Runway j r <> strip)

Consider now an entity type InternationalAirport derived by inheritance from
the interface Airport. The invariant of this class is strengthened in comparison with
the invariant of the class Airport and it requires that an international airport must
have ten or more runways. In addition, at least one of them must be an international
airport as specified in the second invariant.

context InternationalAirport inv
self.getNOfRunways() >D 10
self.getRunways() � > exists (r: Runway j r.international=true)
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Consider now the method closeRunway of the class InternationalAirport. This
method is inherited from the class Airport and it is redefined. Its postcondition
strengthens the postcondition of the inherited method. The number of runways is
required to be greater than or equal to 10 and at least one of the remaining runways
must be an international one.

One would want to strengthen the precondition of the redefined method
closeRunway to require that the runway to be closed is not the only international
runway, but this is not possible. The precondition of the inherited method is required
to be the same as in the class Airport.

context InternationalAirport:: closeRunway(strip: Runway)
post self.getNoOfRunways() >D 10
post self.getRunways() � > exists (r: Runway j r.international=true)

UML diagram in Fig. 4.13 illustrates the above situation.

4.5 Models with Complex Constraints

In this section we specify the interfaces and the associated constraints for the flight
management model given in Fig. 4.14. This is an example of a complex application
with elaborate constraints.

The interface for the entity type Flight is given below. A flight has a flight
id, origin and destination of type Airport, departure time and arrival time, and an
aircraft assigned to the flight.

interface IFlight {
String getFlightId();
Airport getOrigin();
Airport getDestination();
Time getDepartureTime();
Time getArrivalTime();
String getFlightStatus();
Aircraft getAircraft();

}

The invariant of the entity type Flight given below guarantees that the origin
and the destination of a flight are different and that the departure time precedes the
arrival time. If the departure time is less than the current time, the flight status is idle.
If the departure time is less than the arrival time the flight status is either takeoff,
flying or landing.
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<<interface>>
IAirport

<<invariant>>

<<invariant>>

<<precondition>>

<<postcondition>>

<<postcondition>>

<<postcondition>>

<<postcondition>>

<<postcondition>>

<<precondition>>

self.getNoOfRunways() >= 1 and
self.getNoOfRunways() <= 30

not(self.getRunways() ->

self.getRunways() ->

self.getRunways() -> exists(r: Runway
                     r=strip)

self.getRunways() -> forAll(
        r:Runway| r <> strip)

self.getNoOfRunways() =

self.getNoOfRunways() > 0

self.getNoOfRunways() >= 10 and
self.getRunways() -> exists (
r:Runway| r.international=true)

self.getNoOfRunways() >= 10
self.getRunways() -> exists(
r:Runway|r.international = true)

self.getNoOfRunways()@pre - 1

exists(r: Runway| r = strip))

exists(r: Runway| r = strip)

<<interface>>
InternationalAirport

getNoOfRunways (): Integer

getRunways():
CollectionOfRunways
addRunway(Runway strip)
closeRunway(Runway strip)

additional methods

closeRunway(Runway strip)

Fig. 4.13 Specifications and inheritance
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Flight
flights

DomesticFlight InternationalFlight

InternationalAirportDomesticAirport

FlightSchedule

schedule

airports

schedule

0..*

2..*

1
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planesschedule
Aircraft

Airport

Fig. 4.14 Flight management relationships

context IFlight inv
self.getOrigin() <> self.getDestination()
self.getDepartureTime() < self.getArrivalTime()
Time::now() < self.getDepartureTime() implies self.getFlightStatus() =”idle”
Time::now() > self.getDepartureTime() and Time::now()
<D self.getArrivalTime()
implies (self.getFlightStatus()=”takeoff” or

self.getFlightStatus() = ”flying” or self.getFlightStatus()=”landing”)

The above invariants are specified in a UML like diagram given in Fig. 4.15.

<<interface>>

<<invariant>>

<<invariant>>

<<invariant>>

<<invariant>>

self.getOrigin() <> self.getDestination()

self.getDepartureTime() < self.getArrivalTime()

Time::now < self.getDepartureTime()

Time::now() > self.DepartureTime() and
Time::now() < self.arrivalTime() implies
(self.getFlightStatus()="takeoff” or
self.getFlightStatus()="flying” or
self.getFlightStatus()= "landing”)

implies self.getFlightStatus() = "idle"

getFlightId(): String
getOrigin(): Airport

getDestination(): Airport

getDepartureTime(): Time
getArrivalTime(): Time
getPlane(): Aircraft
getFlightStatus(): String

IFlight

Fig. 4.15 Flight invariants
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The interface for the entity type FlightSchedule is given below. A flight schedule
consists of a collection of flights and a collection of airports. The methods of this
interface allow scheduling a flight, cancelling a flight, and redirecting a flight.

interface IFlightSchedule {
Collection<Flight> getFlights();
Collection<Airport> getAirports();
Collection<Aircraft> getAircraft();
void scheduleFlight(Flight f);
void cancelFlight(String flightId);
void redirectFlight(String flightId; Airport newDestination);

}

The invariants of the class FlightSchedule specify that the flightId is a key in
the collection of flights associated with the flight schedule. This invariant requires
traversal of the association flights. It says that if the flight ids of two flights are
the same, then these flights are in fact equal. In order to specify this invariant, the
universal quantifier forAll is required.

The next invariant specifies a referential integrity constraint. It requires that all
references to airplanes in the flight schedule indeed refer to aircraft existing in the
collection of aircraft as specified by the association planes. This constraint requires
both the universal and existential quantifiers.

The third and the fourth invariants are similar referential constraints that apply
to references to airports in the flight schedule as specified by the association
airports.

context IFlightSchedule inv
self.getFlights() � > forAll(f1, f2: Flight j

f1.getFlightId() = f2.getFlightId() implies f1=f2)
self.getFlights() � > forAll (f: Flight j

self.getPlanes() � > exists (a: Aircraft j f.getAircraft() = a))
self.getFlights() � > forAll(f: Flight j self.getAirports() � >

exists (a: Airport j f.getOrigin() = a))
self.getFlights() � > forAll(f: Flight j self.getAirports() j

exists (a: Airport j f.getDestination()= a))

The invariants of the entity type FlightSchedule are given in a UML like diagram
in Fig. 4.16.

The method scheduleFlight of the interface IFlightSchedule takes as its argu-
ments flight id, the origin and the destination airports, the departure and the arrival
time, and the aircraft to be scheduled. The precondition of this method requires
that the origin and the destination airports are different and that the departure time
precedes the arrival time. In addition, the third precondition requires that the flight
is not already scheduled. The fourth precondition requires that the aircraft to be
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<<interface>>

<<invariant>>

<<invariant>>

<<invariant>>

<<invariant>>

self.getFlights() -> forAll(f1,f2: Flight |

self.getFlights() -> forAll(f:Flight |

self.getFlights() -> forAll(f: Flight |

self.getFlights() -> forAll(f: Flight |

self.getAircraft() -> exists( a: Aircraft |

self.getAirports() -> exists( a: Airport |

self.getAirports() -> exists( a: Airport |

f.getAircraft()= a))

f.getOrigin() = a))

f.getDestination() = a))

f1.getFlightId() = f2.getFlightId() implies
f1 = f2)

getFlightS(): CollectionOfFlight

getgetAirports(): CollectionOfAirport

getAircraft(): CollectionOfAircraft

scheduleFlight(Flight f)
cancelFlight(String flightId)
redirectFlight(String flightid,

String newDestination)

IFlightSchedule

Fig. 4.16 Flight schedule invariants

scheduled indeed exists in the collection of all aircraft associated with the flight
schedule. The postcondition guarantees that the flight is indeed scheduled, i.e., it
exists in the flight schedule.

context FlightSchedule :: scheduleFlight(
flightId: String,
to, from :Airport,
departureTime, arrivalTime : DateTime,
plane: Aircraft)

pre to <> from
pre departureTime < arrivalTime
pre this.getFlights() � > forAll (f: Flight j f.getFlightId() <> flightId())
pre this.getPlanes() � > exists (a: Aircraft j a=plane)
post self.getFlights() � > exists ( f: Flight j f.getFlightId() D flightId)

The method cancelFlight of the class FlightSchedule has a precondition that
requires that the flight to be canceled exists in the flight schedule. The second
precondition requires that the status of the flight to be cancelled is not landing. The
postcondition ensures that the cancelled flight is not in the schedule any more.

context FlightSchedule :: cancelFlight(flightId: String)
pre self.getFlights() � > exists (f: Flight j f.getFlightId() = flightId)
pre self.getFlights() � > exists (f: Flight j f.getFlightId() = flightId
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implies f.getFlightStatus() <> “landing”)
post self.getFlights() � > forAll ( f: Flight j f.getFlightId() <> flightId)

The method redirectFlight has as its arguments the flight id and the new
destination of the flight. The first precondition requires that the specified flight
id actually exists in the schedule. The second precondition requires that the new
destination is different from the original destination. The postcondition ensures that
the destination of the specified flight is the new destination.

context FlightSchedule::redirectFlight(flightId: String,
newDestination: Airport)

pre self.getFlights() � > exists (f: Flight j f.getFlightId() = flightId)
pre self.getFlights() � > forAll (f: Flight j f.getFlightId() = flightId implies

f.getOrigin() <> newDestination)
post self.getFlights() � > forAll ( f: Flight j f.getFlightI() = flightId implies

f.getDestination() =newDestination)

An example of a query method is flightDepartureWithin. This method selects
a set of flights with the departure time within a specified time interval. The first
precondition requires that the specified interval is not empty and that the end of the
interval is greater than the current time. The postcondition specifies the result of the
query denoted by the keyword result. The result contains flights with the departure
time in the specified interval.

context FlightSchedule :: flightDepartureWithin (
beginTime, endTime: DateTime): Set(Flight)
pre beginTime < endTime
pre endTime > DateTime::now()
post result� > forAll ( f: Flight j

f.getDepartureTime() >D beginTime and f.getArrivalTime() <D endTime)

4.6 Exercises

1. Specify the code for the class Flight that implements the interface IFlight so
that constraints specified for the interface IFlight will be satisfied.

2. Specify the code for the class FlightSchedule that implements the interface
IFlightSchedule in such a way that all constraints specified for the interface
IFlightSchedule will be satisfied.

3. Specify the interfaces for the Reservation subsystem of the Flight management
system with the required constraints such as those for the methods makeReser-
vation and cancelReservation.
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4. Specify the code for the classes implementing the interfaces of the reservation
subsystem of the Flight management application in such a way that the
constraints specified for those interfaces are satisfied.

5. Refactor the implementation of the Flight management system extending the
model with inheritance as follows: Flight has two subtypes DomesticFlight
and InternationalFlight and Airport has two subtypes InternationalAirport and
DomesticAirport.

6. The model of Flight management system is actually object-relational in many
ways. There are three collections (relations) of flights, airports and aircraft
and the flight schedule represents their ternary relationship specified by keys.
Transform this model into a true object-oriented model and refactor the code.

7. Refactor the code implementing the Course management model assuming that
the initial model without inheritance is extended with subtypes as in Fig. 4.4.

8. Transform the object-oriented model of the Course management application
into an object-relational model and refactor the code accordingly.

9. Specify the constraints of the subclasses Undergraduate and Graduate of the
class Student of the Course management application that makes the constraints
of these two subtypes compatible with the constraints of the class Student.
Implement these two subclasses in such a way that the specified constraints
are satisfied.
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Assume that a model is designed as a collection of interrelated entity types with
association and inheritance relationships along with use cases. Consider now the
lifetimes of instances of the entity types in the model.

Objects (instances of entity types) that have long lifetimes that extend beyond
activations of use cases are called persistent objects. By way of comparison, during
activation of a use case, objects whose lifetime does not extend that activation may
be created. Such objects are called transient objects. Managing persistent objects
in addition to managing transient objects is a major technical issue and requires a
special software technology to be elaborated in this chapter.

A use case is implemented as a sequence of actions on persistent and transient
objects. In UML such a sequence is specified by the sequence diagram of a use
case. This sequence should have special properties which make such a sequence
a transaction. Basically, the notion of a transaction allows a sequence of actions
representing a use case to be considered as a logical unit. In this chapter we define
more precisely properties of use cases viewed as transactions and we describe a
software technology that is needed in order to implement use cases so that these
properties are satisfied.

5.1 Implementing Use Cases

Consider now two critical and related technical issues in implementing uses cases.
We will look again at the use cases BuyAsset and SellAsset of the investment
management application.

Use case: BuyAsset

Entities: Investor, Asset, Portfolio, Broker

Actors: Investor, Broker
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Constraints:

Preconditions: assetPriceOK, brokerApproves

PostCondition: assetInPortfolio

Frame: All other assets in portfolio unaffected

Use case: SellAsset

Entities: Investor, Asset, Portfolio, Broker

Actors: Investor, Broker

Preconditions: assetInPortfolio, brokerApproves

Postcondition: not assetInPortfolio

Frame: All other assets in portfolio unaffected

Entity types Investor, Asset, Portfolio, and Broker have a distinctive property.
Instances of these entity types, and in fact their collections, have long lifetimes.
They existed (were created) before these use cases are activated and they continue
to exist (unless explicitly destroyed by a use case) beyond activation of these use
cases. In fact, we have collections of these instances that have this property. Those
are: a collection of investors, a collection of assets, a collection of portfolios and a
collection of brokers. A sequence diagram for the use cases BuyAsset and SellAsset
shows that these use cases are implemented as sequences of messages. In our view,
each such sequence should have the following properties:

– Atomicity
A use case is executed completely as a unit. Partial executions caused by errors

and other failures are unacceptable. If they happen, they will have no impact on
the entities involved in the use case. That is, a use case is executed completely,
or else it will have no effect at all. This property is called atomicity.

– Consistency
The second property is that an implementation of a use case must satisfy all

the constraints associated with a use case. This means the preconditions, the
postconditions, and the frame constraints of the use case, as well as constraints
associated with each entity type involved in the use case, such as class invariants,
and preconditions and postconditions of methods used in the implementation of
the use case. This property is called consistency.

– Isolation
The third property is related to the fact that multiple use cases are activated and

executed concurrently. In this particular case, multiple investors are concurrently
buying and selling assets. An obvious requirement is that individual activations
of a use case should not be affected by concurrently executed use cases. This
property is called isolation.
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– Durability
Finally, if a use case is successfully (and hence completely) executed, the

effect of this execution will persist. In this particular example, purchases and
sales of assets will persist beyond executions of the corresponding use cases.
This property is called durability.

The above four properties are properties of ACID transactions. The above
informal analysis shows that use cases should be implemented as transactions that
act on persistent objects.

5.2 Persistence

A persistent object is an object whose lifetime extends beyond execution of the
program that created that object. Persistent objects are thus objects with possibly
very long lifetimes. This concept is implemented by providing some form of a
persistent store containing objects that are promoted to persistence.

Among a variety of models of persistence the model of orthogonal persistence
deserves special attention. This model has the following properties:

– Orthogonality
Persistence is independent of types, i.e., an object (or a value) of any type may

be persistent.
– Transitivity (reachability)

If an object is promoted to persistence, so are all of its components, direct or
indirect.

– Transparency
The details of the persistence supporting architecture are completely hidden

from the users.

Widely used technologies typically support only some of the above properties.
For example, in relational systems only objects of type relation are persistent. Even
tuples can persist only as long as they appear in relations, not by themselves. In
Java, only objects of classes that implement a special interface Serializable can
persist. In relational systems transparency is supported. In Java, a user must deal
with opening and closing files, writing objects to files and reading objects from
files. Basic relational systems do not have complex objects per se. Java supports
transitivity, with some issues to be explained in this section.

The main issues related to persistence will be illustrated using the following
classes.

public class Aircraft
{ private String model;
private Pilot pilot;
public Aircraft(String aModel)
{ model = aModel; pilot = null; }
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public assignPilot(Pilot p)
{ pilot=p;}
// other methods

}

public class Pilot
{ private String name;
private int points;
public Pilot(String pName, int pPoints)
{ name = pName; points = pPoints; }
// other methods

}

The transparency property hides non-trivial complexity of the underlying persis-
tence architecture. This is illustrated in Fig. 5.1.

Heap

Aircraft

Aircraft

Pilot

Pilot

Persistent store

Fig. 5.1 Persistent complex objects

Heap is a main memory area where objects are created. Persistent store is an
external memory (like disc) that holds persistent objects. The structure of the aircraft
object is represented on the heap using pointers that are in fact heap addresses. So an
aircraft object will contain a pointer to a pilot object on the heap. When a complex
object is promoted to persistence, its structure must be maintained. However, the
pointers in the persistent store (typically disc addresses) are different from the heap
pointers. This means that the whole complex object structure of an object must
be preserved in the persistent store, and pointers to component objects must be
implemented as disc addresses. This procedure is called swizzelling out. The reverse
operation is swizzelling in. It restores the complete persistent object structure on
the heap. In a transparent model of persistence these procedures are automatic and
completely hidden from the users.

One implication of transitivity is that if an object is promoted to persistence, its
class object should also be promoted to persistence. The reason is that an object
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contains a reference to its class object. In addition, in order to perform actions on
complex objects, one needs to know what types of objects are in the persistent store.

5.3 File-Based Persistence

The Java model of persistence offers transitivity, but not transparency nor orthog-
onality. Only objects of types that implement a special interface Serializable
could be made persistent. This leads to a paradox: it is not possible to define a
persistent collection whose elements are of the type Object, because Object does
not implement Serializable. That would have to be the case in order for the Java
model of persistence to be orthogonal.

The Java model does not satisfy the transparency requirement because it is based
on the file system, so users have to open and close files, read and write objects from
and to files, etc. However, transitivity is supported to the extent that it is possible to
write a complete complex object to a file with a single statement, and read a complex
object from a file in a single statement. This is accomplished through interfaces
ObjectInput and ObjectOutput and their implementing classes. These interfaces also
have methods for reading and writing values of simple types that are specified in the
Java interfaces DataInput and DataOutput.

The method writeObject takes an object of any type and writes it to the output
file stream. The underlying algorithm represents the structure of a complex object
as a sequence of bytes, hence the term serialization. This is illustrated in Fig. 5.2.

Heap

Aircraft

Pllot

Aircraft bytes Pilot bytes

File system

Serialized aircraft object

Fig. 5.2 Serialized complex object
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public interface ObjectOutput extends DataOutput
{
void writeObject(Object obj);

throws IOexception;
// other methods

}

The method readObject reads an object from a file input stream. The complex
object structure is restored on the heap based on its serialized representation.

public interface ObjectInput extends DataInput
{
Object readObject()

throws ClassNotFoundException, IOexception;
// other methods
}

The argument of the method writeObject is necessarily of type Object and the
result of the method readObject is necessarily of type Object as well. This reflects
the requirement that objects of any type may be read or written. This means that a
type cast is necessary when reading an object in order to perform specific actions on
the object read. This dynamic check is unavoidable. In general, an object is written
by one program and read by a different program. The type cast verifies that the type
assumption made by the second program is in fact correct. This is illustrated in the
following code:

public class Aircraft implements Serializable {
// . . .
}

FileOutputStream fileOut = new FileOutputStream(”AircraftFile”);
ObjectOutput out = new ObjectOutputStream(fileOut);
aircraftObj = new Aircraft(”Boeing777”);
out.writeObject(aircraftObj);
out.flush();
out.close();

FileInputStream fileIn = new FileInputStream(”AircraftFile”);
ObjectInput in = new ObjectInputStream(fileIn);
Aircraft aircraftObj= (Aircraft) in.readObject();
in.close();



5.4 Transactions 119

In the Java model of persistence, class objects are not written to the file streams.
Strictly speaking, this means that the model does not fully support transitivity. Java
uses a shortcut to store the class type information using a hashed value that is
subsequently used in a type cast to verify its type correctness.

5.4 Transactions

The Java model of persistence has several limitations. Since we are looking at
techniques for implementing use cases, a particularly important limitation is lack of
support for transactions. In this chapter we consider two of the available persistent
technologies that provide support for transactions.

The JDO (Java Data Objects) model of persistence is not orthogonal. It is based
on the notion of persistent capable classes. Only objects of persistent capable classes
can persist. A persistence capable class is declared as follows:

@PersistenceCapable
public class Aircraft
{ . . .
{

In addition, if objects of a class manipulate persistent objects, such a class must
be declared as persistent aware.

JDO has the notion of persistent manager which controls actions on persistent
objects in a collection of persistent objects associated with a particular persistent
manager. A persistent manager is declared as follows:

PersistentManagerFactory pmf = get persistent manager factory;
PersistentManager pm = pmf.getPersistentManager();

In order to make an object persistent, the method makePersistent of the class Per-
sistentManager is invoked. So promoting an object a to persistence is accomplished
by the following statement.

pm.makePersistent(a)

The basic actions of the class Transaction are begin, commit and rollback. A
persistent manager keeps track of the currently executed transaction. An example
of such a transaction is given below. Tx.begin() starts the transaction. An aircraft
object is then created and promoted to persistence. If there are no exceptions, the
transaction is committed by the statement Tx.commit() and its effects persist. Oth-
erwise, exceptions are handled. Finally, if the transaction has not been successfully
committed, its effects are rolled back executing the statement Tx.rollBack().
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Transaction Tx = pm.currentTransaction();
try
{Tx.begin();
// transaction code
Tx.commit();

}
catch (Exception ex)
{ exception handling }

finally
{ if (Tx.isActive())

Tx.rollback();
}
pm.close();

}

JDO has the notion of the extent of a persistent capable class. The extent of a
class is the collection of all objects of that class. A persistent capable class maintains
this collection through its persistent manager. Getting access to the extent of a class
Aircraft is accomplished by the following statement:

Extent e = pm.getExtent(Aircraft.class)

Notice that this statement refers to the class object. JDO supports reachability
or transitive persistence. When an object is promoted to persistence, all objects
that it refers to directly or indirectly are promoted to persistence as in the sample
transaction given below. So making an aircraft object persistent will also make its
associated pilot object persistent.

Transaction Tx = pm.currentTransaction();
try
{Tx.begin();
Aircraft a= new Aircraft(”Boeing 777”);
pm.makePersistent(a);
Tx.commit();

}
catch (Exception ex)
{ exception handling }

finally
{ if (Tx.isActive())

Tx.rollback();
}
pm.close();

}
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Accessing persistent objects is accomplished by searching the extent of their
class. A sample transaction given below creates an iterator over the extent of the
class Aircraft and displays the pilot of each aircraft in the extent.

Transaction Tx = pm.currentTransaction();
try
{
Tx.begin();
Extent e = pm.getExtent(Aircraft.class);
Iterator it = e.iterator();
while (it.hasNext());
{ Aircraft a = (Aircraft)it.next();
a.pilot.display();
}
Tx.commit();

}
catch (Exception ex)
{ exception handling }

finally
{if (Tx.isActive())
Tx.rollback();

}
pm.close();

}

The above example is written in the spirit of JDO where parametric types are
not used. It shows how important those types are for persistent collections. If the
dynamic type check caused by the type cast (Aircraft)it.next() fails, so will the
transaction unless this error is handled successfully.

Updating a persistent object requires a search of the extent of its class to locate
that object, as in a sample transaction given below. This transaction assigns a new
pilot to aircraft objects of a particular aircraft model.

Transaction Tx = pm.currentTransaction();
try
{
Tx.begin();
Extent e = pm.getExtent(Aircraft.class);
Iterator it = e.iterator();
while (it.hasNext());
{ Aircraft a = (Aircraft)it.next();
Pilot p = get pilot;
if (a.model D ”Boeing 777”)

a.assignPilot(p);
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}
Tx.commit();

}
catch (Exception ex)
{ exception handling }

finally
{if (Tx.isActive())
Tx.rollback();

}
pm.close();

}

The method deletePersistent of the class PersistentManager deletes a persistent
object from the persistent store, as in the statement that deletes an aircraft object a:

pm.deletePersistent(a)

This type of statement appears in the delete transaction given below. The aircraft
objects of a particular make are first located and then their pilots are deleted.

Transaction Tx = pm.currentTransaction();
try
{
Tx.begin();
Extent e = pm.getExtent(Aircraft.class);
Iterator it = e.iterator();
while (it.hasNext();
{ Aircraft a = (Aircraft)it.next();
if (a.model D ”Boeing”) ;
pm.deletePersistent(a.pilot);

Tx.commit();
}
catch (Exception ex)
{ exception handling }

finally
{if (Tx.isActive())
Tx.rollback();

}
pm.close();

}

When a persistent object is deleted, the objects that it refers to may also be
deleted. This is called cascade deletion because it propagates all the way following
object references to immediate and indirect components of the deleted object.
Sometimes that is not a correct procedure. For example, deleting an aircraft object
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does not necessarily mean that the associated pilot object should be deleted. Pilots
may exist independently of particular aircraft. Systems like JDO allow selection of
the delete procedure by a special parameter.

5.5 Object-Relational Technology

JDO manages objects in the persistent store. The prevailing object-relational
database technology manages persistent relations, i.e., flat tables. Because of this,
using object-relational technology requires mapping of the object-oriented model
developed in the design phase to its relational representation as a collection of flat
tables. This mapping comes with nontrivial problems as the object-oriented and
the relational models are so very different. On the positive side, object-relational
systems offer features of database systems such as concurrent transactions and
queries.

In Java Persistence API persistent capable classes are called entity classes. An
entity aircraft class is declared as follows:

@Entity
public class Aircraft
{ . . .
}

Object-relational systems have explicit support for user-defined identifiers called
primary keys. A primary key determines a unique object of an entity class. In the
example below aircraftId is declared as the primary key of the class Aircraft.

@Entity
public abstract class Aircraft
{
@Id
protected String aircraftId;

. . .
}

Unlike system-managed object identities in object-oriented systems, this identi-
fier is based on the values of attributes of an object and must be properly managed
by the persistent manager to guarantee uniqueness.

An example of inheritance as it applies to entity classes is given below. Entity
classes PasssengerPlane and CargoPlane are derived by inheritance from the
abstract entity class Aircraft.



124 5 Data Management

@Entity
public class PassengerPlane extends Aircraft
{
int capacity;

. . .
}

@Entity
public class CargoPlane extends Aircraft
{
float maxLoad;

. . .
}

Java persistence API also has the notion of an entity manager associated with a
persistent context which is a collection of entity classes and their persistent objects.
A persistent manager is declared as follows:

@PersistentContext
EntityManager em;

A user transaction is declared as a resource as follows:

@Resource
UserTransaction Tx;

Objects are accessed using the method find of the class EntityManager. This
search is based on the primary key, as in the example below:

@PersistentContext
EntityManager em;
public void findAircraft(String id)
{
Aircraft a = em.find(Aircraft.class, id);
a.getPilot().display();

}

Making an object persistent is accomplished by invoking the method persist of
the class EntityManager as in the example below. An aircraft object is created and
then made persistent in the specified persistent context.
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@PersistentContext
EntityManager em;
public void newAircraft(String id, String model)
{
Aircraft a = new Aircraft(”US1”, ”Boeing747”);
em.persist(a);

}

Deleting a persistent object is accomplished by invoking the method remove of
the class EntityManager, as in the example below. Whether the deletion will be
cascaded to immediate and indirect components or not is determined by a parameter
which we do not show.

@PersistentContext
EntityManager em;
public void removeAircraft(String id)
{
Aircraft a = em.find(id);
em.remove(a);

}

5.6 Representing Associations

Modeling an application environment as a collection of entities and their rela-
tionships was actually introduced in the entity-relationship data model. This is
why object-relational systems pay special attention to relationships as they have
a well-established relational representation. The relationships are represented in
object-oriented systems combining relational features such as keys and foreign keys
and object-oriented features such as methods. These techniques are illustrated below
as they appear in Java Persistence API for the investment management application.

The relationship between entity types Investor and Portfolio is one to one. That
is, an investor has a unique portfolio and a portfolio has a unique owner. This
binary relationship is represented by annotating the method getPortfolio of the class
Investor by the special attribute OneToOne. This method returns the portfolio of an
investor.

public class Investor
{ . . .
@OneToOne
public Portfolio getPortfolio() {

return myPortfolio;
}
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The inverse relationship is specified in the same manner annotating the method
getOwner of the class Portfolio. This method returns the investor who is the owner
of a portfolio.

public class Portfolio
{ . . .
@OneToOne
public Investor getOwner() {

return owner;
}

The relationship between entity types Portfolio and Broker is many to one. That
is, a portfolio has a unique broker and a broker manages a number of portfolios. So
the method getBroker of the class Portfolio which returns the broker of a portfolio
is annotated with the attribute ManyToOne.

public class Portfolio
{ . . .
@ManyToOne
public Broker getBroker() {

return manager;}
}

The method getMyPortfolios of the class Broker returns a collection of portfolios
managed by that broker and it is annotated by the attribute OneToMany.

public class Broker
{ . . .
@OneToMany
public Collection<Portfolio> getMyPortfolios() {

// select portfolios of this broker;
}
}

The relationship between entity types Asset and Portfolio is many to many. An
asset is associated with many portfolios and a portfolio is associated with many
assets. This is why the method getPortfolios of the class Asset is annotated with the
attribute ManyToMany.

public class Asset
{ . . .
@ManyToMany
public Collection<Portfolio> getMyPortfolios() {
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select portfolios having this asset;}
}

Likewise, the method getPortfolioAssets of the class Portfolio is also annotated
with the attribute ManyToMany.

public class Portfolio
{ . . .
@ManyToMany
public Collection<Asset> getPortfolioAssets() {

select assets of this portfolio;}
}

5.7 Relational Representation

The above described technique of representing relationships among entity types
using annotated methods is based on what Java Persistence API does. But in
this technology the underlying representation of entity types is relational. We
will explain what that representation involves using object-oriented notation which
amounts to classes having only simple types of attributes.

The one to one relationship between an investor and a portfolio is represented by
the Investor class having a field that refers to the primary key of portfolio and the
Portfolio class has a field that refers to the primary key of the investor. These fields
are called foreign keys.

public class Investor {
@Id
String investorId;
String portfolioId; // foreign key
. . .
}

UML has the notion of a table which allows specification of attributes of such a
table as columns along with specification of primary(<<PK>>) and foreign keys
(<<FK>>). A UML like investor table is specified in Fig. 5.3.

public class Portfolio {
@Id
String portfolioId;
String ownerId; // foreign key
. . .
}
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Fig. 5.3 Investor table
<<table>>
Investor

<<PK>> <<column>> investorId: String

<<FK>> <<column>> portfolioId: String

<<column>> name: String

other attributes

Fig. 5.4 Portfolio table
<<table>>
Portfolio

<<FK>> <<column>> ownerId: String

<<PK>> <<column>> portfolioId: String

other attributes

Fig. 5.5 Broker table
<<table>>

Broker

<<PK>> <<column>> brokerId: String

other columns

A UML like diagram representing the portfolio table is given in Fig. 5.4.
The one to many relationship between brokers and portfolios is represented by

having a field brokerId in the class Portfolio referencing the primary key of the
broker that manages that portfolio.

public class Broker {
@Id
String brokerId;
. . .
}

A diagram representing the broker table is given in Fig. 5.5.

public class Portfolio {
@Id
String portfolioId;
String ownerId; // foreign key
String brokerId; // foreign key
. . .
}
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Fig. 5.6 Portfolio table
<<table>>
Portfolio

<<FK>> <<column>> ownerId: String

<<FK>> <<column>> brokerId: String

<<PK>> <<column>> portfolioId: String

other attributes

The revised portfolio table is represented in Fig. 5.6.
The many to many relationship between assets and portfolios requires a table

that specifies this relationship. Fields of the PortfolioAsset class are portfolioId and
assetId referencing primary keys of the classes Asset and Portfolio.

public class Asset {
@Id
String assetId;
. . .
}

The table representing the many to many association between portfolios and assets
is given in Fig. 5.7.

public class PortfolioAsset {
String portfolioId; // foreign key
String assetId; // foreign key
. . .
}

Fig. 5.7 PortfolioAsset table
<<table>>

PortfolioAsset

<<FK>> <<column>> assetId: String

<<FK>> <<column>> portfolioId: String

other columns
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5.8 Representing Inheritance

Representing inheritance in the relational model comes with nontrivial issues. In the
aircraft inheritance hierarchy one technique which is the default in Java Persistence
API is to flatten the hierarchy as follows:

public class Aircraft {
@Id
String aircraftId;
String model;
int capacity;
float maxLoad;
String discriminator;
. . .
}

In the corresponding relational representation there is one table given in Fig. 5.8
which contains the attributes of all three entity types in this inheritance hierarchy. In
addition, there is a discriminator field which indicates whether a tuple represents a
passenger plane of a cargo plane. This discriminator determines the actual subtype
of an aircraft object.

Another representation amounts to three different entity types in which the
subtypes PassengerPlane and CargoPlane have all the inherited as well as specific
attributes as follows:

public class Aircraft {
@Id
String aircraftId;
String model;
. . .
}

Fig. 5.8 Aircraft table
<<table>>

Aircraft

<<column>> model: String

<<column>> capacity: integer

<<column>> maxLoad: float

<<column>> discriminator: String

<<PK>> <<column>> aircraftId: String
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public class PassengerPlane {
@Id
String aircraftId;
String model;
int capacity;
. . .
}

public class CargoPlane {
@Id
String aircraftId;
String model;
float maxLoad;
. . .
}

Finally, in the third representation the table representing the type Aircraft has
only the generic fields, and the tables representing PassengerPlane and CargoPlane
just the specific attributes in addition to the primary key which identifies the object
of type Aircraft. The aircraft table in this representation is given in Fig. 5.9.

public class Aircraft {
@Id
String aircraftId;
String model;
. . .
}

The passenger aircraft table corresponding to this representation is given in
Fig. 5.10.

Fig. 5.9 Aircraft table
<<table>>

Aircraft

<<column>>model: String

<<PK>> <<column>> aircraftId: String

Fig. 5.10 Passenger plane
table <<table>>

PassengerPlane

<<column>> capacity: integer
<<PK>> <<column>> aircraftId: String
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public class PassengerPlane {
@Id
String aircraftId;
int capacity;
. . .
}

The cargo plane table in this representation is given in Fig. 5.11.

Fig. 5.11 Cargo plane table
<<table>>

CargoPlane

<<column>> maxLoad: float

<<PK>> <<column>> aircraftId: String

public class CargoPlane {
@Id
String aircraftId;
float maxLoad;
. . .
}

There are different tradeoffs in the above representations none of which is an
accurate representation of the object-oriented view of this hierarchy. The single
table representation has attributes (columns) that should have undefined values for
attributes of cargo planes if a tuple (object) represents a passenger plane. Likewise,
a tuple representing a cargo plane should have undefined values of attributes of
passenger planes. In the last representation this problem does not occur, but this
representation does not indicate that the passenger plane table and the cargo plane
table represent subtypes of the aircraft table. That is, the inheritance relationship is
lost. In addition, actions and queries about these two subtypes require join of their
tables with the aircraft table. This is a complexity which is not required in a true
object-oriented representation. In addition, it carries a run-time efficiency penalty.

5.9 Queries

A major advantage of using a database technology is that those technologies are
equipped with query languages. Query languages reveal the problem that is called
the impedance mismatch between data and programming languages. Queries will
be illustrated as they appear in Java Persistence API although JDO also has them
with the same problems. A named query findCheapStocks is declared representing
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an SQL query below. The query itself is specified as a string because Java compiler
would not know anything about SQL queries. Because of this the query cannot be
parsed or type checked at compile time.

@NamedQuery(
name= ”findCheapStocks”,
query =”SELECT s FROM Stock
WHERE s.price < 100”

)

A query is executed by invoking the method createNamedQuery of the class
EntityManager. At that point the query is parsed, type checked and executed.

@PersistentContext
EntityManager em;
List cheapStocks = em.createNamedQuery(
“findCheapStocks”.getResultList());

LINQ (Language Integrated Queries) attempts to resolve the impedance mis-
match between data and programming languages by incorporating object-oriented
view of SQL queries into C#. LINQ is thus an integrated query and object-oriented
language that overcomes many problems that other persistence interfaces have.

LINQ operates on linearly ordered collections or sequences of elements. The
interfaces Enumerator and Enumerable specify the required features that classes
specifying enumerable collections must implement. An enumerator object is a
cursor over an enumerable collection. It is equipped with a method moveNext that
moves the cursor to the next element in the underlying sequence. The method
current returns the current element determined by the cursor.

The two enumerator interfaces are:

System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An enumerator class will typically have the following specification:

class EnumeratorClass
// implements IEnumerator or IEnumerator<T>

{
public IteratorVariableType Current { get {...} }
public bool moveNext() {...}

}

The two enumerable interfaces are:

System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>
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An enumerable collection will typically have the following specification:

class EnumerableClass
// implements IEnumerable or IEnumerable<T>

{
public Enumerator getEnumerator() {...}

}

A query operates on an enumerable collection transforming it into another
sequence representing the result of the query. LINQ queries have the form that is
very similar to the SQL select-from-where block as illustrated below. The class Stock
with two properties StockId and Price is defined as follows. Note that in C# default
access right is private, so we did not explicitly specify that in the examples that
follow:

class Stock {
String stockId;
float price;
// other fields
// constructor
public String StockId
{ get { return stockId; }
public float Price
{ get { return price; }

set { price = value; }
}
// other properties

}

IEnumerable<String> query =
from s in stocks
where s.Price < 100
orderby s.Price
select s.StockId;

The above is just a specification of a query. A query is executed by a foreach
statement over a query as follows:

foreach (String s in query) Console.WriteLine (s);

The above SQL-like queries are called comprehension queries. LINQ also has
static methods of the class Enumerable that perform operations specified in the
select, where and order by clauses in comprehension queries. These queries are
called lambda queries because arguments are lambda expressions. Specifically, the
where operator has a predicate specified as a function with the boolean result. The
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operator select projects elements of the input sequence into elements of the output
sequence where this projection is specified as a function in lambda notation. Lambda
expressions are here simply unnamed (anonymous) functions. The argument is
bound to an element of the input sequence, and the result of the function is specified
by an expression that shows how the argument is used to compute the result. The
previous query has the following lambda query form.

IEnumerable<String> query = stocks
.Where (s ) s.Price < 100)
.OrderBy (s ) s.Price)
.Select (s ) s.StockId);

Queries can generate enumerable collections of objects rather than just enumer-
ations of values. In the example below the type of objects in the sequence generated
by a query is defined first, and then objects of that sequence are generated in the
query.

class StockPrice {
String stockId;
float price;
public String StockId;

{get}
public float Price;

{ get and set }
// . . .

}

IEnumerable<StockPrice> =
from s in stocks
select new StockPrice

{ StockId = s.StockId;
Price= s.Price;

}
where s.Price < 100;

Queries can be nested. The query that follows produces a sequence of stock ids of
those stocks whose price is larger than the price of any stock of the same company.

IEnumerable<String> =
from s in stocks
where s.Price() �

Max(from f in stocks
where s.Company=f.Coompany
select f.Price)

select s.StockId;
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Interfacing with a relational database works as follows. Consider a simple
specification of an SQL table Stock:

create table Stock
(
StockId varchar(4) not null primary key,
Price float

)

LINQ makes use of optional predefined attributes that C# has to indicate that a
class in fact corresponds to a database relation (table). Likewise, using predefined
attributes, fields of a class can be specified as columns of a table.

ŒTable�

public class Stock
{
ŒColumn(IsPrimaryKey=true)�
public String stockId;
ŒColumn�

public float price;
}

Access to a relational database is defined by providing a connection string that
identifies the database. The class DataContext is equipped with a method getTable
that delivers a table of the database with elements of a given type. There is only one
such table in a relational database. So Table is a parametric class that implements
the interface Queryable. This interface extends the interface Enumerable, hence
queries that operate on sequences can be specified on objects of type Queryable
as in the example below. While objects of type Enumerable are internal sequences,
objects of type Queryable are meant to be database sequences that allow queries to
be optimized.

DataContext dataContext = new DataContext (”connection string”);
Table<Stock> stocks = dataContext.getTable <Stock>();
IQueryable<String> query =
from s in stocks
where s.StockId=”SP500”
orderby s.StockId
select s.StockId;

The above query is executed by the following foreach statement:

foreach (String s in query) Console.WriteLine(s);
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5.10 Exercises

1. Specify in the JDO style BuyAsset and SellAsset transactions of the Investment
management application.

2. Specify in the Java persistence API style transactions BuyAsset and SellAsset
for the object-relational model of the Investment management application.

3. Specify a LINQ style interface for the object-relational model of the Investment
management application in which classes are specified and annotated as tables.

4. For the object-relational model of the investment management application
specify a LINQ query that produces a sequence of all assets (stocks and bonds)
in a portfolio of a particular investor.

5. Modify the query from the previous exercise so that it will produce a sequence
of pairs of assets of a particular investor along with the value of each asset.

6. Assuming that the queries produced in the previous two exercises are compre-
hension queries, specify their corresponding lambda queries.

7. Specify a LINQ style interface for the Flight management model in which
classes are specified and annotated as tables.

8. Specify in the Java Persistence API style transactions ScheduleFlight and
CancelFlight of the object-relational model of this application.

9. Specify in the JDO style transactions ScheduleCourse and DeleteCourse for the
object-oriented Course management model.

10. Specify in the JDO style transactions EnrollInCourse and DropCourse for the
object-oriented Course management model.

11. Specify an object-relational model of the Course management application as in
Java Persistence API.

12. Specify in the Java Persistence API style transactions EnrollInCourse and
DropCourse for the object-relational model of the Course management appli-
cation.



Chapter 6
Software Verification

Promoting assertion languages comes with several challenges. OCL is a
specification language independent of any particular object-oriented programming
language. A major technical challenge is integrating such declarative specifications
into a full-fledged object-oriented programming language in such a way that those
specifications are enforced in the procedural code. This would be preferably done
statically, i.e., by inspecting the code equipped with assertions and verifying
that the code satisfies the specifications. If that is not possible, then a dynamic
verification should be in place, i.e., the specifications will be enforced as the code
is executed. Extending an object-oriented programming language with declarative
specifications such as those in OCL requires significant changes of the underlying
object-oriented programming language and a complex implementation technique if
static verification of assertions is supported.

In this chapter a system called Code Contracts is used to specify assertions with
no changes to the underlying C# language. Code Contracts is at the moment an open
source system developed at Microsoft Research. All assertions of Code Contracts
appear as invocations of methods of the class Contract. The actual assertions are
specified as boolean expressions, arguments of these methods. This approach leads
to dynamic checking of assertions as methods of the class Contract are executed.
Code Contracts also has some static checking capabilities.

6.1 Preconditions and Postconditions

In this section we will show how pre and post conditions of methods are specified
in Code Contracts.
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Investor Portfolio

portfolioAssets

0..*

1..*

Asset

myPortfolio

11

Fig. 6.1 Associations for investing

6.1.1 Investment Management Application

The two critical methods in the investment management application that correspond
to two use cases are buying and selling assets. The associations relevant to buying
and selling assets are given in Fig. 6.1.

The precondition of the method buyAsset requires that the investor’s portfolio
does not already contain that asset. The postcondition ensures that the asset is in the
investor’s portfolio

void buyAsset(Asset a)
{ Contract.Requires(!this.getMyPortfolio().getPortfolioAssets().Contains(a));
Contract.Ensures(this.getMyPortfolio().getPortfolioAssets().Contains(a));

// code
}

The precondition of the method sellAsset requires that the asset is in the investor’s
portfolio. The postcondition ensures that the asset is not any more in the investor’s
portfolio.

void sellAsset(Asset a)
{ Contract.Requires(this.getMyPortfolio().getPortfolioAssets().Contains(a));
Contract.Ensures(!this.getMyPortfolio().getPortfolioAssets().Contains(a));

// code
}

Pure methods, i.e., methods with no side effects, of the class Investor used in the
above specifications are annotated as follows:

class Investor: InvestorI {
[Pure]
Portfolio getMyPortfolio()
{// code
}
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void buyAsset(Asset a)
{ // code
}

void sellAsset(Asset a)
{ // code
}

}

The class Portfolio has the following structure in which pure methods are
annotated as such.

class Portfolio: IPortfolio {
[Pure]
Collection<Asset> getPortfolioAssets()
{ // code
}

[Pure]
Broker getBroker()
{ // code
}

[Pure]
Investor getInvestor()
{// code
}

}

6.1.2 Course Management Application

Consider the class Registrar that implements the interface IRegistrar of the course
management application. The relevant associations are given in Fig. 6.2.

Registrar

Course

Instructor

Room

Rooms

allCourses

Instructors

0..*

1

1

1

0..*

0..*

Fig. 6.2 Associations for scheduling a course
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Specification of the method scheduleCourse includes two preconditions
expressed by invoking the method Requires of the class Contract. The first
precondition

Contract.Requires(!this.getAllCourses().Contains(c))

requires that the course to be scheduled is not already scheduled, i.e., that it is
not in the list of scheduled courses. The second precondition

Contract.Requires(Contract.Exists( this.getRooms(), r D> r.suitableFor(c))

requires that there is a suitable room for scheduling the course. The postcondition

Contract.Ensures(this.getAllCourses().Contains(c))

expressed invoking the method Ensures of the class Contract ensures that the
course is actually scheduled, i.e. it exists in the collection of all scheduled courses.

Assertions are specified as expressions of the boolean type that appear as argu-
ments of the methods of the class Contract. Boolean expressions of object-oriented
programming languages do not include universal and existential quantifications over
collection types. Code Contracts solves this problem by having method ForAll
and Exists of the class Contract. These methods take two parameters. The first
parameter (this.getRooms() in the above assertion) specifies the collection over
which quantification occurs. The second parameter

r D> r.suitableFor(c)

in the above assertion is a C# lambda expression. This expression specifies a
variable that ranges over that collection and a boolean expression that elements that
qualify must satisfy. In the case of the ForAll method, all elements of the collection
must satisfy that condition in order for the assertion to be true. In the case of the
method Exists at least one element must satisfy the condition for the assertion to be
true.

void scheduleCourse(Course c)
{ Contract.Requires(!this.getAllCourses().Contains(c));

Contract.Requires(Contract.Exists(
this.getRooms(), r D> r.suitableFor(c))

Contract.Ensures(this.getAllCourses().Contains(c));
// code
}

The precondition of the method deleteCourse requires that the course to
be deleted is actually in the list of all scheduled courses. The postcondition
ensures that the course is actually deleted from the collection of all scheduled
courses.
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void deleteCourse(Course c)
{ Contract.Requires(this.getAllCourses().Contains(c));
Contract.Ensures(!this.getAllCourses().Contains(c));

// code
}

Boolean expressions that appear as arguments of the methods such as Requires,
Ensures, ForAll, Exists and other methods of the class Contract include invocations
of other methods. The above example contains invocation of the methods getAll-
Courses, and getAllRooms. These methods must be pure functions which means
that they cause no side effects. Pure methods are annotated by the attribute [Pure].
So the structure of the class Registrar looks like this.

class Registrar: IRegistrar {
[Pure]
Collection<Course> getAllCourses()
{ // code
}

[Pure]
Collection<Instructor> getInstructors()
{// code
}

[Pure]
Collection<Students> getStudents()
{ // code
}

[Pure]
Collection<Room> getRooms()
{ // code
}

void scheduleCourse(Course c)
{ // code
}

void deleteCourse(Course c)
{ // code
}

}

The associations relevant for enrolling in a course are specified in Fig. 6.3.
The first precondition of the method enrollInCourse of the class Student

Contract.Requires(!this.getMyCourses().Contains(c))
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Fig. 6.3 Associations for enrolling in a course

requires that the course is not already in the collection of all courses of the
receiver student object. The second precondition

Contract.Requires(Contract.ForAll(c.getPrerequisites(),
p D> this.getMyCourses().Contains(p)))

specifies that the student satisfies the prerequisites for the course. This precondi-
tion involves quantification over all prerequisites of the course and checking whether
those prerequisite courses are in the set of courses already taken by the student. This
quantification is expressed by invoking the method ForAll of the class Contract as
explained above. The postcondition

Contract.Ensures(this.getMyCourses().Contains(c))

ensures that the course is in the collection of all courses of the student.

void enrollInCourse(Course c)
{ Contract.Requires(!this.getMyCourses().Contains(c));
Contract.Requires(Contract.ForAll(

c.getPrerequisites(), p D> this.getMyCourses().Contains(p)));
Contract.Ensures(this.getMyCourses().Contains(c));

// code
}

The precondition of the method dropCourse

Contract.Requires(this.getMyCourses().Contains(c))

requires that the course is in the collection of courses taken by the student. The
postcondition

Contract.Ensures(!this.getMyCourses().Contains(c))

ensures that the course is not in that collection any more.

void dropCourse(Course c)
{ Contract.Requires(this.getMyCourses().Contains(c));
Contract.Ensures(!this.getMyCourses().Contains(c));

// code
}
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The above specifications contain invocations of the pure method getMyCourses.
A reference to the state before method execution is accomplished by a parametric
method OldValue< T >. For example, an additional postcondition of the method
enrollInCourse might be:

Contract.Ensures(this.getMyCourses().Count()=
OldValue<int>(this.getMyCourses().Count()) +1

A reference to the result of a method is accomplished by invoking a parametric
method Result< T > of the class Contract. For example, the postcondition of the
method

float gradeAverage()

of the class Student may be defined as follows:

Contract.Ensures(Result<float> >D 1 &&
Result<float> <D 5)

The structure of the class Student in which pure methods are annotated with the
attribute [Pure] looks like this:

class Student: IStudent {
[Pure]
Collection<Course> getAllCourses()
{ // code
}

[Pure]
Collection<Course> getMyCourses();
{// code
}

void enrollInCourse(Course c)
{ // code
}

void dropCourse(Course c)
{ // code
}

}

6.2 Object Invariants

The class Flight shows how Code Contracts specifies object invariants. An object
invariant is specified in a distinguished method marked with a special attribute
[ContractInvariantMethod]. This method contains calls of the method Invariant
of the class Contract. Code Contract enforces object invariants after execution of
public methods.
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Object invariants of the class Flight are specified below in the method Object-
Invariant. Each invariant is specified by invoking the method Invariant of the
class Contract. The first invariant requires that the origin and the destination of
a flight must be different. The second invariant specifies that the departure time
must precede the arrival time. The third invariant specifies that if the flight status is
idle, then the current time precedes the departure time. The third invariant specifies
that if the current time is past the departure time and it precedes the arrival time,
the flight status must be either takeoff, flying or landing. The form of the Boolean
expression in the third invariant is a consequence of the lack of the explicit Boolean
operation of implication in C#. This pattern will appear in other assertions in this
chapter.

class Flight: IFlight {
// fields etc.

[ContractInvariantMethod]
void ObjectInvariant()
{ Contract.Invariant(

this.to Š D this.from);
Contract.Invariant(

this.departureTime.precedes(this.arrivalTime));
Contract.Invariant(

this.flightStatus Š D ”idle” jj Time.now().precedes(this.departureTime));
Contract.Invariant(

Time.now().after(this.departureTime) &&
(!Time.now().precedes(arrivalTime) jj

(flightStatus = ”takeoff” jj flightStatus = ”flying” jj

this.flightStatus = ”landing”)))
// dummy code
}

}

Note that the method ObjectInvariant has a body which contains some dummy
code just to satisfy the C# compiler. This is a consequence of the design decision
that the assertions must be added to C# without any changes to the language so that
the C# compiler will compile the code with assertions.

The first object invariant of the class FlightSchedule specifies that the flightId
attribute is a key in the collection of all flights. That is, if two flights have the
same value of the flightId attribute, then they are in fact the same flight. Note
the usage of the ForAll method of the class Contract. The key constraint requires
universal quantification and two range variables in the lambda expression. The
second invariant specifies a referential integrity constraint which requires that a
flight refers to an existing plane. The third and the fourth invariants specify that a
flight must refer to existing airports as its origin and its destination. Note that these
constraints require first the ForAll method because the assertion applies to all flights.
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The nested usage of the method Exists then guarantees that the flight origin and its
destination refer to an existing airport. This involves existential quantification over
all airports.

class FlightSchedule: IFlightSchedule {
//... ;

[ContractInvariantMethod]
void ObjectInvariant()
{ Contract.Invariant(
Contract.ForAll( this.flights,

(f1,f2) D>!(f1.flightId = f2.flightId) jj f1.Equals(f2))
Contract.Invariant(ForAll(this.flights,

f D>Contract.Exists(this.planes,
p D> f.plane=p))

Contract.Invariant(Contract.ForAll(this.flights,
f D> Contract.Exists(this.airports,
a D> f.from=a)));

Contract.Invariant(Contract.ForAll(this.flights,
f D> Contract.Exists(this.airports,
a D> f.to=a)));

// dummy code
}

}

The associations relevant for flight scheduling are given in Fig. 6.4.
The first precondition of the method scheduleFlight requires that the origin and

the destination airport of the flight to be scheduled must be different. The second
precondition requires that the departure time must precede the arrival time. The third
precondition requires that the flight with the flightId given as the first argument of
this method does not already exist in the schedule. The fourth precondition requires
that the plane given as an argument of this method actually exists. The postcondition
ensures that a flight with a given flight id actually exists in the flight schedule.

Flight
flights schedule planesschedule

schedule

airports

0..* 0..*1 1

1

0..*

FlightSchedule

Airport

Aircraft

Fig. 6.4 Associations for flight scheduling
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void scheduleFlight(String flightId,
Airport from,to,
Time departureTime, arrivalTime
Aircraft plane)

{ Contract.Requires(!to.Equals(from));
Contract.Requires(departureTime.precedes(arrivalTime));
Contract.Requires(Contract.ForAll(this.flights,

f D> f.flightId Š D flightId);
Contract.Requires(ContractExists(this.planes,

p D> plane=p))
Contract.Ensures(Contract.Exists(this.flights,

f D> f.flightId=flightId))
// code
}

The first precondition of the method cancelFlight requires that a flight with
a flight id given as the argument of this method actually exists in the schedule.
The second precondition requires that the status of the flight to be cancelled is
not landing. The postcondition ensures that the cancelled flight is not in the flight
schedule any more.

void cancelFlight(String flightId)
Contract.Requires(ContractExists(this.flights,

f D> f.flightId=flightId))
Contract.Requires(ContractForAll(this.flights,

f D> f.flightId Š D flightId jj f.flightStatus Š D ”landing”))
Contract.Ensures(Contract.ForAll(this.flights,

f D> f.flightId Š D flightId))
// code
}

The first precondition of the method redirectFlight requires that the flight to be
redirected exists in the schedule of all flights. The second precondition requires that
the new destination is different from the flight’s origin. The postcondition ensures
that the redirected flight indeed has a new destination as specified by the second
argument of this method.

void redirectFlight(String flightId,
Airport newDestination)

Contract.Requires(ContractExists(this.flights,
f D> f.flightId=flightId))

Contract.Requires(ContractForAll(this.flights,
f D> f.flightId Š D flightId jj f.from Š D newDestination))

Contract.Ensures(Contract.ForAll(this.flights,
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f D> f.flightId Š D flightId jj

f.destination.Equals(newDestination)))
// code
}

6.3 Assertions and Inheritance

The interplay of assertions and inheritance leads to nontrivial subtleties that we
discussed in Chap. 2. The reason is that behavior of an object is determined by the
assertions specified in its class. Consider now a subclass equipped with assertions
that determine behavior of objects of that subclass. Since an object of a subclass may
be substituted where an object of the superclass is expected, one would naturally
expect that the substituted object behaves like an object of the superclass. This
reasoning leads to rules that apply to assertions in a subclass with respect to the
assertions in its superclass.

These rules will be explained looking again at a class Airport and its subclass
InternationalAirport, both equipped with assertions that will be now expressed in
Code Contracts. The invariant of the class Airport requires that an airport has at least
one runway and at most 30 as in Fig. 6.5

class Airport {
... ;

[ContractInvariantMethod]
void ObjectInvariant ()
{ Contract.Invariant(this.numOfRunways >D 1 &&

this.numOfRunways <D 30)
// dummycode
}

Airport Runway
runways

1..301

InternationalAirport

Fig. 6.5 Inheritance for airports
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The precondition of the method addRunway of the class Airport requires that a
runway to be added is not already one of the airport’s runways. The postcondition
guarantees that the new runway is indeed one of the airport’s runways.

void addRunway(Runway strip)
{ Contract.Requires(Contract.ForAll(this.runways,

r D> !r.Equals(strip)));
Contract.Ensures(Contract.Exists(this.runways,

r D> r.Equals(strip)))
// code
}

The first precondition of the method closeRunway requires that the runway to
be closed is indeed one of the existing runways. The second precondition requires
that the number of runways of the airport is greater than 1, or else closing the only
runway will violate the invariant. The postcondition ensures that the closed runway
is not any more one of the airport’s runways.

void closeRunway(Runway strip)
{ Contract.Requires(Contract.Exists(this.runways,

r D> r.Equals(strip)));
Contract.Requires(this.numOfRunways > 1);
Contract.Ensures(Contract.ForAll(this.runways,

r D> !r.Equals(strip)));
// code
}

Consider now the class InternationalAirport derived by inheritance from the
class Airport. The object invariant of the class Airport is inherited in the class
InternationalAirport or else an object of a class InternationalAirport would not
behave like an object of the class Airport. In addition, the object invariant of the
class InternationalAirport is strengthened by adding two new invariants. The first
invariant requires that an international airport has at least 10 runways. The second
invariant requires that an international airport must have at least one international
runway.

class InternationaAirport: Airport {
... ;

[ContractInvariantMethod]
void ObjectInvariant ()
{ Contract.Invariant(this.numOfRunways >D 10);
Contract.Invariant(Contract.Exists(this.runways,

r D> r.international=true))
// dummy code
}
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The method addRunway is inherited as defined in the class Airport. In the method
closeRunway of the class InternationalAirport we would like to strengthen the
inherited precondition by requiring that the runway to be closed is not the only
international runway. But strengthening the preconditions of an inherited method
violates the behavioral compatibility rules so that an international airport object
would not behave like an airport object.

Strengthening the postcondition of an inherited method does not create such a
problem. The first postcondition ensures that the number of runways is greater than
or equal to 10. The second postcondition ensures that the airport contains at least
one international runway.

void closeRunway(Runway strip)
{ Contract.Ensures(this.noOfRunways >D 10);
Contract.Ensures(Contract.Exist(this.runways,
r D> r.international=true))

// code
}

6.4 Assertions for Interfaces

Interfaces in Java and C# suffer from a major contradiction. The only way to
understand the specific meaning of the methods of an interface is to look into
the method code in the implementing class, contrary to the intent for introducing
interfaces. This is why specifying assertions in interfaces is so very important.
However, assertions such as object invariants often require the knowledge of the
object state which is not available in interfaces. Code Contracts resolves this
situation by specifying assertions of an interface in a special class associated with
the interface. This class is used only to specify the assertions and it is never executed
like other classes. But these assertions will be enforced in any class that implements
the interface.

Consider an interface IRegistrar as specified below.

[ContractClass(typeof(ContractforIRegistrar))]
interface IRegistrar
{ void scheduleCourse(Course c);
void deleteCourse(Course c);

}
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The assertions for this interface are specified in the associated class Contract-
forIRegistrar. Special attributes of the interface and the associated class specify
this relationship. In the class ContractforIRegistrar the preconditions and the
postconditions of the methods scheduleCourse and deleteCourse are specified as
previously shown. Dummy bodies of these methods will never be executed and are
required only to satisfy the C# compiler.

[ContractClassFor(typeof(IRegistrar))]
sealed class ContractforIRegistrar: IRegistrar
{ void scheduleCourse(Course c)
{ Contract.Requires(!this.getAllCourses().Contains(c));
Contract.Requires(Contract.Exists(

this.getAllRooms(), r D> r.suitableFor(c))
Contract.Ensures(this.getAllCourses().Contains(c));

// dummy code
}
void deleteCourse(Course c)
{ Contract.Requires(this.getAllCourses().Contains(c));
Contract.Ensures(!this.getAllCourses().Contains(c));

// dummy code
}

}

The above described situation is presented in a UML like diagram in Fig. 6.6.
The contracts for the interface IStudent are specified in the class ContractforIS-

tudent.

[ContractClass(typeof(ContractforIStudent))]
interface IStudent
{ void enrollInCourse(Course c);
void dropCourse(Course c);

}

The methods enrollInCourse and dropCourse are equipped with preconditions
and postconditions as previously specified.

[ContractClassFor(typeof(IStudent))]
sealed class ContractforIStudent: IStudent
void enrollInCourse(Course c)
{ Contract.Requires(!this.getMyCourses().Contains(c));
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deleteCourse(c: Course)

scheduleCourses(c: Course)
deleteCourses(c: Course)

deleteCourse(c: Course)

Fig. 6.6 Constraints for the interface IRegistrar

ContractRequires(Contract.ForAll(
c.getPrerequisites(), p D> this.getMyCourses().Contains(p)));

Contract.Ensures(this.getMyCourses().Contains(c));
// dummy code
}

void dropCourse(Course c)
{ Contract.Requires(this.getMyCourses().Contains(c));
Contract.Ensures(!this.getMyCourses().Contains(c));

// dummycode
}

}

The above described technique for specifying assertions for the interface IStudent
is presented in a UML like diagram in Fig. 6.7.
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<<interface>>
IStudent

<<precondition>>

<<precondition>>

<<postcondition>>

<<postcondition>>

<<precondition>>

!this.getMyCourses().Contains(c)

Contract.ForAll(c.getPrerequisites(),

this.getMyCourses().contains(c)

p => this.getMyCourses().Contains(p))

this.getMyCourses.contains(c)

!this.getMyCourses().Contains(c)

<<sealed>>
ContractforIStudent

IStudent

enrollInCourse(c: Course)

enrollInCourse(c: Course)

dropCourse(c: Course)

enrollInCourse(c: Course)

dropCourse(c: Course)

dropCourse(c: Course)

Fig. 6.7 Constraints for interface IStudent

6.5 Sample Application

The tournament management application has several types of users, two of which
we specify. A tournament has a manager and a list of players. This is represented in
Fig. 6.8. The notation in this figure indicates that a tournament has a unique manager
and it is associated with multiple players.

The class Tournament given below specifies the features of tournament objects. It
contains self-explanatory fields, properties and a constructor. Note that in C# default
access right is private, so the fields name and manager are private.

class Tournament {
String name;
Manager manager;
List<Player> players = new List<Player>();
// other fields
// constructor
public String Name
{ get { return name; }

set { name = value; }



6.5 Sample Application 155

Toumament Player

Manager

User

1 0..*

1

1

Fig. 6.8 Tournament management application

}
// other properties

}

Generic properties of a tournament user are specified below in a class User in the
C# style. As explained in Chap. 3, a property in C# is a pair of methods. The method
get returns the value of a property and the method set assigns a value to a property.
Note that private is the default accessibility for members of a class in C#. So in
the above example the underlying (backing) fields are private and the properties are
public.

In the class User the invariants are that the user name cannot be null and the user
ID number cannot be null.

abstract class User {
String IDNum;
String name;
String role;
[ContractInvariantMethod]
void ObjectInvariant() {

Contract.Invariant(this.UserName != null);
Contract.Invariant(this.ID != null);

}
public String ID
{ get { return IDNum; }

set { IDNum = value; }
}
public String UserName
{ get { return name; }

set { user = value; }
}
// Role property

}
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There are two subtypes of the type User that we define: players and tournament
managers. The type Player introduces an additional invariant requiring that the
number of wins of a player must be nonnegative. Other object invariants are
inherited from the class User.

class Player : User {
int winCount;
public int WinCount
{ get { return winCount; }

set { winCount = value; }
}
//other properties
[ContractInvariantMethod]
void ObjectInvariant() {

Contract.Invariant(this.WinCount >D 0);
}
// constructor and other methods

}

The class Manager strengthens the object invariant. In addition to the invariants
inherited from the class User, the class Manager requires that the role of a
tournament manager contains the word “MANAGER”.

class Manager : User {
// fields
[ContractInvariantMethod]
void ObjectInvariant() {

{ Contract.Invariant(Role.ToUpper().Contains(”MANAGER”));
}

// methods
}

Consider now a method for adding a new player to a tournament. This would
be a method of the overall application class TournamentManagement that we do
not show. The method addPlayer requires a pure method playerRegistered that
checks whether the player to be added is already in the list of players of the given
tournament.

[Pure]
public boolean playerRegistered(Player newPlayer, Tournament tournament) {
foreach (Player player in tournament.players)
{ if (newPlayer.UserName.ToUpper().Equals(player.UserName.ToUpper()))

return true;
}
return false;

}
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The preconditions of the method addPlayer require that the given player and the
tournament must be non null.

Contract.Requires(newPlayer != null);
Contract.Requires(tournament != null);

In addition, the third precondition requires that the player does not already
participate in the tournament.

Contract.Requires(!playerRegistered(newPlayer, tournament));

The postconditions are that the player participates in the tournament (i.e., it has
been added to the list of players).

Contract.Ensures(playerRegistered(newPlayer, tournament));

In addition, the postconditions require that the number of players has been
increased by one.

Contract.Ensures((tournament.Players.Count) =
(Contract.OldValue(tournament.Players.Count) + 1));

A reference to the number of players before the method execution is specified
by invocation of the method OldValue of the class Contract. Players is a property
whose underlying field is players.

public void addPlayer(Player newPlayer, Tournament tournament) {
Contract.Requires(newPlayer != null);
Contract.Requires(tournament != null);
Contract.Requires(! playerRegistered(newPlayer, tournament));
Contract.Ensures(playerRegistered(newPlayer, tournament));
Contract.Ensures((tournament.Players.Count) =
(Contract.OldValue(tournament.Players.Count) + 1));

tournament.Players.Add(newPlayer);
}

Specification of assertions that require universal and existential quantification is
accomplished by using methods ForAll and Exists of the class Contracts.

Universal quantification is used in order to specify an assertion that the list of
players contains no null entries.

Contract.Invariant(Contract.ForAll(Players, p implies p != null));

Existential quantification is used to specify an assertion that the list of players
contains at least one player whose total number of wins is greater than zero.

Contract.Invariant(Contract.Exists(Players, p implies p.WinCount > 0));
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Fig. 6.9 Tournaments with matches

The simplified view of the tournament management application can be general-
ized so that a tournament has a collection of matches. A match has a number of
players, and a player participates in a number of matches. This extended view is
presented in Fig. 6.9. The associated constraints are elaborated in the exercises.

6.6 Transaction Verification

In Chap. 5 we presented a view in which use cases are typically implemented
as transactions. In addition, we discussed software technologies for managing
persistent data which most software projects require. In this and the following
section we discuss more advanced software verification techniques that apply to
verification of transactions.

The current object technology has nontrivial problems in specifying just the
classical database integrity constraints, such as keys and referential integrity.
No industrial database technology allows object-oriented schemas equipped with
general integrity constraints. More general constraints that are not necessarily
classical database constraints come from complex application environments and
they are often critical for correct functioning of those applications.

Since the integrity constraints cannot be specified in a declarative fashion,
the only option is to enforce them procedurally with nontrivial implications on
efficiency and reliability. Expensive recovery procedures may be required when
a transaction violates the constraints at run-time. A core idea is that if a static
verification of a transaction does not succeed, such a transaction should never be
executed. Knowing in advance that a transaction will violate the integrity constraints
makes a huge difference in any complex application environment as it statically
eliminates the consequences of running such a transaction against the database.
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Fig. 6.10 Transaction verification environment

The overall transaction verification environment is represented in Fig. 6.10. A
schema is a typed specification of persistent (database) objects that are typically
collections. A schema is specified as a class. The novelty is that a schema class will
contain possibly quite general database integrity constraints specified as the schema
invariant.

A transaction is a parametric class. It is instantiated with a specific schema to
which the transaction is bound. Unlike typical database transactions, transactions are
in this environment equipped with constraints specifying the transaction precondi-
tion and the transaction postcondition. In addition to these constraints, a transaction
is required to satisfy the schema invariant.

Both the schema class and the transaction class are compiled by a verifying
compiler. This compiler will statically verify that the transaction code satisfies
the transaction specification. This means that if the transaction precondition and
the schema invariant hold before the transaction is executed, the transaction
postcondition and the schema invariant will hold at the point of the transaction
commit.
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Fig. 6.11 Transaction execution

The schema class object and each specific transaction class object are loaded on
the heap. The schema class object is also promoted to persistence, i.e., stored into
the database. Managing persistent objects (storing, accessing (querying), updating,
deleting) is delegated to a database management system.

Collections of database objects will conform to type and constraint specifications
in the persistent schema object. Transaction actions on persistent objects that do not
satisfy this requirement will have no impact on the database. Violations will be
detected either at compile time by the verifying compiler, or at run time by dynamic
checks for some constraints, such as preconditions. This is a major distinction
between this environment and a typical database environments.

Transaction execution structure is presented in Fig. 6.11. The transaction first
invokes the method begin. The precondition of this method is the transaction
precondition. The postcondition ensures two things before the actual transaction
code is executed. The first one is that the transaction precondition still holds. The
second is that the schema integrity constraints hold. The method update in Fig. 6.11
actually represents the transaction code. If an exception happens during transaction
execution and it is not handled, the method rollback is executed. This method
erases all effects of the transaction and restores a consistent database state. The
postcondition of the rollback method is that the database integrity constraints hold
i.e., a consistent database state is restored. If no exception occurs the method commit
is invoked. If it is successful, the postcondition of this method ensures that both the
transaction postcondition and the database integrity constraint hold after commit.
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We will explain the main issues in transaction verification using the notation of
Code Contracts although Code Contracts is not targeted to transaction technology.
Specific database schemas are derived from the class Schema which is equipped with
an abstract boolean method integrityConstraints. This method will be overridden in
a particular schema to specify the specific integrity constraints.

public abstract class Schema {
[Pure]
public static abstract bool integrityConstraints();
}

The class Transaction is parametric. Its type parameter represents the database
schema with respect of which the transaction is defined. This is why the bound
for the type parameter is the class Schema. Transaction precondition and the
postcondition are specified as abstract boolean methods to be overridden in a
specific transaction class.

As explained above, the method begin requires that the transaction precondition
holds before this method is executed. The postcondition of the method begin
ensures that the transaction postcondition and the database integrity constraints hold
before the transaction body is executed. The postcondition of the method commit
ensures that the transaction postcondition and the database integrity constraints hold
after a successful commit. The postcondition of the method rollback guarantees that
a consistent database state is restored after roll back.

public abstract class Transaction<T> where T: Schema {
[Pure]
public abstract bool preCondition();
[Pure]
public abstract bool postCondition();
public sealed begin() {
Contract.Requires(this.preCondition());
Contract.Ensures(this.preCondition());
Contract.Ensures(T.integrityConstraints());

// system implementation
}
public sealed commit() {
Contract.Ensures(this.postCondition());
Contract.Ensures(T.integrityConstraints());

// system implementation
}
public sealed rollBack() {
Contract.Ensures(T.integrityConstraints());

// system implementation
}
}
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A specific schema FlightSchedule is derived from the class Schema by inher-
itance. This class overrides the abstract method integrityConstraints. In order to
simplify the presentation we specify only one integrity constraint which asserts that
flightId is a key in the table flights.

public class FlightSchedule: Schema {
public Table<Flight> flights;
[Pure]
public static abstract bool integrityConstraints() {
return(Contract.ForAll(this.flights,

(f1,f2) D> (f1.flightId != f2.flightId jj f1.Equals(f2)));

class Flight {
String flightId;
. . .
}

}

A specific transaction class ScheduleFlight is defined with respect to the schema
FlightSchedule. The inherited abstract methods preCondition and postCondition are
overridden. The method preCondition asserts that the new flight does not exist in the
schedule. The method postCondition asserts that it does. Now the actual schedule
method that represents the transaction body is specified with the precondition and
the postcondition as defined by the above two methods. The method schedule
represents the actual transaction update action.

public class ScheduleFlight: Transaction<FlightSchedule> {
[Pure]
public bool preCondition() {
Flight newFlight = get new flight;
return Contract.ForAll(FlightSchedule.flights,

f D> f.flightId Š D newFlight.flightId)
[Pure]
public bool bool postCondition() {
Flight newFlight = get new flight;
return Contract.Exists(FlightSchedule.flights,

f D> f.flightId = newFlight.flightId)
}
public void schedule(Flight newFlight) {
Contract.Requires(this.preCondition());
Contract.Ensures(this.postCondition());
// code
}
}
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A specific transaction requires first of all creation of a transaction object of the
appropriate type. The method begin is invoked first and then the actual scheduling
method. Afterwards an attempt is made to commit the transaction. If an exception
occurs the rollback method is invoked.

Flight newFlight = . . .
ScheduleFlight Tx = new ScheduleFlight();
try {
Tx.begin();
Tx.schedule(newFlight);
Tx.commit();
}

catch (Exception ex)
{ Tx.rollBack;}

6.7 Integrated Specification and Verification Systems

Code Contract was designed with a requirement that constraints are added to C#
without any changes to the language. Since constraints appear as invocations of
methods of the class Contract whose arguments are just Boolean expressions of
C#, the C# compiler has no problem in compiling them. Some changes were still
required in the compiled code so that the constraints will be handled correctly.

The reality is that constraints are declarative specifications whose expressions are
much more general than expressions of object-oriented programming languages.
So a more ambitious goal is to extend the underlying programming language to
support the expressions required by a constraint language. An extended compiler of
the extended language would then be required. One such prototype to be discussed
in this section is Spec#, an extension of C#. Spec# has a verifying compiler that
statically checks whether the procedural C# code satisfies the constraints. This
requires a complex underlying architecture which is one of the reasons why this
technology has not been widely used. But it is the future of software verification
and we discuss it as such.

In addition to constraints, Spec# has an ownership model which allows specifica-
tion of complex objects defined by the aggregation abstraction. It restricts updates to
components of such complex objects requiring that those updates must first access
the owner before mutating the components. In a constraint-oriented ownership
model these updates are required to comply with the integrity constraints that apply
to entire complex objects.
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Consider a complex object of type StockMarket. Components of a complex object
of this type are a collection of stocks and a collection of bonds, as in Fig. 6.12.
A stock market object owns its component objects. In Spec# this is specified as
follows:
class StockMarket: Schema {
ŒSpecPublic�ŒRep� private Set<Stock> stocks;
ŒSpecPublic�ŒRep� private Set<Broker> brokers;

// . . .

}

The attribute [Rep] indicates that stocks and bonds are components of the stock
market object. The attribute [SpecPublic] indicates that the set of stocks and the
set of bonds are exposed as public only for specification purposes. This makes it
possible to specify object invariants of this schema which are publicly available.

The integrity constraints of a schema are specified in its invariant. The schema
StockMarket is equipped with a key constraint, a referential integrity constraint, and
a value constraint. The first invariant specifies that stockId is a key in the set of
stocks.

invariant
forall {Stock s1,s2 in stocks:
(s1.stockId()=s2.stockId()) implies s1.equals(s2) };

The second invariant specifies that brokerId is a key in the set of brokers:

invariant
forall {Broker b1,b2 in brokers:
(b1.brokerId()= b2.brokerId()) implies b1.equals(b2) };

The third invariant is a referential integrity constraint. It specifies that references
to the stock ids in each set of stocks of individual brokers actually exist in the set of
stocks:
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invariant
forall {Broker b in brokers: forall {Stock sb in b.stocks():

exists {Stock s in stocks: (sb.stockId() = s.stockId()) }
};

The fourth invariant specifies that the price of all stocks is nonnegative:

invariant
forall {Stock s in stocks: s.price() > 0};

The schema StockMarket equipped with the above constraints is specified below:

class Stock {
string stockId();
float price();
// public methods

}
class Broker {
string brokerId();
string name();
Set<Stock> stocks();
// public methods

}
class StockMarket: Schema {
ŒSpecPublic�ŒRep� private Set<Stock> stocks;
ŒSpecPublic�ŒRep� private Set<Broker> brokers;
invariant
forall {Stock s1,s2 in stocks:
(s1.stockId()=s2.stockId()) implies s1.equals(s2) };

invariant
forall {Broker b1,b2 in brokers:
(b1.brokerId()= b2.brokerId()) implies b1.equals(b2) };

invariant
forall {Broker b in brokers: forall {Stock sb in b.stocks():

exists {Stock s in stocks: (sb.stockId() = s.stockId()) }
};

// public methods for insertions, updates, and deletions of stocks and brokers
}

A schema is equipped with a collection of public methods, and the whole schema
class is statically verified. A transaction can access the database only through
schema methods. As an illustration, we specify a public method deleteStock because
it involves maintaining the referential integrity constraint. The frame condition of
this method expressed in the modifies clause specifies that the transaction affects



166 6 Software Verification

only the set of stocks and the set of brokers. Violating this frame constraint will be
detected by the Spec# compiler as a static error.

modifies stocks, brokers;

The precondition requires that a stock with the code of the stock delStock to be
deleted does indeed exist in the set of stocks.

requires exists { Stock s in stocks:
s.stockId()= delStock.stockId()};

There are several postconditions. The first one guarantees that the stock has been
deleted from the set of stocks.

ensures forall { Stock s in stocks:
s.stockId() != delStock.stockId()};

The second postcondition guarantees that the stocks that are different from the
deleted stock have not been affected by this method, i.e., they are still in the set of
stocks with the same price. The keyword old refers to the previous object state, i.e.,
the object state before method execution.

ensures forall {Stock s in old(stocks):
s.stockId() != delStock.stockId() implies

(Stock s in stocks()) ^ (s.price()=old(s.price())} ;

The third postcondition ensures that the brokers are unaffected by the delete
method, i.e., all the brokers that existed before execution of this method are still
in the set of stocks after execution of this method.

ensures forall {Broker b1 in old(brokers):
exists { Broker b2 in brokers: (b2.brokerId()= b1.brokerId()) };

The fourth postcondition ensures that references to stocks of each broker actually
exist in the set of stocks.

ensures
forall {Broker b in brokers:
forall {Stock s in b.stocks():
s.stockId() != delStock.stockId()}
};

The last postcondition ensures that every broker that existed before method
execution has a corresponding broker (that is, with the same id) after method
execution with the same stocks except for the deleted stock.
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ensures
forall {Broker b1 in old(brokers):
exists unique {Broker b2 in brokers: (b2.brokerId()= b1.brokerId() ^

forall {Stock s in b1.stocks():
s.stockId() != delStock.stockId() implies
(s in b2.stocks()); }

}
};

The method deleteStock with its frame constraint, precondition and postcondi-
tions is given below. The frame constraint is specified in the modifies clause. This
clause specifies objects that this method is allowed to modify. An attempt to modify
any other object will be detected as a compile-time error.

void deleteStock (Stock delStock) {
modifies stocks, brokers;
requires exists { Stock s in old(stocks):

s.stockId()= delStock.stockId()};
ensures forall { Stock s in stocks:

s.stockId() != delStock.stockId()};
ensures forall {Stock s in old(stocks):
s.stockId() != delStock.stockId() implies

(s in stocks()) ^ (s.price()=old(s.price())} ;
ensures forall {Broker b1 in old(brokers):
exists b2 in brokers: (b2.brokerId()= b1.brokerId()) };

ensures
forall {Broker b in brokers:
forall {s in b.stocks():
s.stockId() != delStock.stockId()}

ensures
forall {Broker b1 in old(brokers):
exists unique {Broker b2 in brokers: (b2.brokerId()= b1.brokerId() ^

forall {Stock s in b1.stocks():
s.stockId() != delStock.stockId() implies
(s in b2.stocks()); }

}
// code
};

A sample transaction StockMerge is specified below. This transaction performs a
merge of two stocks s1 and s2 to create a new stock. The value of the new stock is
computed by some rule from the values of the stocks to be merged. These two stocks
are then deleted. This transaction is expressed as a composition of public methods
associated with the class StockMarket.

The first two preconditions require that the stocks to be merged actually exist in
the set of stocks.
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requires exists unique {Stock s in stocks: s.stockId()=s1.stockId()};
requires exists unique {Stock s in stocks: s.stockId()=s2.stockId()};

The third postcondition ensures that there is a stock in the set of stocks after
execution of the method update that did not exist in the set of stocks prior to
execution of this method whose price is computed according to the rule specified
in this method.

ensures exists unique {Stock s in stocks: !(s in old(stocks)) ^

(s.price()=(s1.price() + s2.price())/2 };

The fourth postcondition ensures that the merged stocks do not exist any more in
the set of stocks.

ensures forall {Stock s in stocks:
(s.stockId() != s1.stockId()) ^ (s.stockId() != s2.stockId()) };

The next postcondition ensures that stocks different from the merged stocks that
existed in the set of stocks before execution of the method update are still in that set
after execution of this method.

ensures forall {Stock s in old(stocks):
((s.stockId() != s1.stockId()) ^ (s.stockId() != s2.stockId()

implies s in stocks) };

The last postcondition ensures that the brokers and their stocks different from
the merged stocks that existed before execution of the method update still exist after
execution of this method.

ensures forall {Broker b1 in old(brokers):
exists unique { Broker b2 in brokers:

(b2.brokerId()= b1.brokerId()) ^

forall {Stock s in b1.stocks():
^ s.stockId() != s1.stockId())^
s.stockId() != s2.stockId()

implies s in b2.stocks; }
}

The transaction StockMerge with the above specified constraints is specified as
follows:

class StockMerge: Transaction< StockMarket > {
void update(Stock s1,s2) {
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modifies stocks, brokers;
requires exists unique {Stock s in stocks: s.stockId()=s1.stockId()}
requires exists unique {Stock s in stocks:

s.stockId()=s2.stockId()}
ensures exists unique {Stock s in stocks: !(s in old(stocks)) ^

(s.price()=(s1.price() + s2.price())/2 }
ensures forall {Stock s in stocks:
(s.stockId() != s1.stockId()) ^ (s.stockId() != s2.stockId()) }
ensures forall {Stock s in old(stocks):
((s.stockId() != s1.stockId()) ^ (s.stockId() != s2.stockId()

implies s in stocks) };
ensures forall {Broker b1 in old(brokers):
exists unique {Broker b2 in brokers:

(b2.brokerId()= b1.brokerId()) ^

forall {Stock s in b1.stocks():
^ s.stockId() != s1.stockId())^
s.stockId() != s2.stockId()

implies s in b2.stocks; };
// code
}

}

A simplified body of the transaction StockMerge is given below. A new stock is
created and initialized. Then its price is computed and updated based on the price of
the two stocks to be merged. Finally the two stocks that were merged are deleted.

{ Stock s3 = new Stock();
initializeStock(s3);
insertStock(s3);
updateStock(s3, s1.price() + s2.price())/2);
deleteStock(s1);
deleteStock(s2);
}

6.8 Exercises

1. Specify Code Contracts object invariants for the class Portfolio viewed as an
aggregation of a collection of stocks and a collection of bonds.

2. Specify Code Contract object invariants of the class Investor in such a way that
these assertions refer to the investor’s portfolio.

3. Specify Code Contract object invariants of the class Registrar.
4. Specify Code contract object invariants of the class Student.
5. Specify Code Contracts assertions for the interface IPortfolio.
6. Specify Code Contracts assertions for the interface InvestorI.
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7. Specify Code Contracts assertions for classes Asset, Stock and Bond in such
a way that constraints for classes Stock and Bond are compatible with the
constraints for class Asset.

8. Specify Code Contracts assertions for the class Tournament where a tournament
is an aggregation of a collection of matches and a collection of players as in
Fig. 6.9.

9. Specify Code Contracts assertions for the class StockMarket.
10. Specify Code Contracts assertions for the method deleteStock of the StockMar-

ket schema.
11. Specify Code Contracts assertions for the method mergeStocks of the schema

StockMarket.



Bibliographical Remarks

UML

UML website [17] contains various specification documents for UML. A
software engineering textbook that is heavily based on UML is [7].

OCL

OCL specification documents are at the OMG (Object Management Group)
website for OCL [15].

Assertion languages

Three major object-oriented assertion languages that are tied to particular object-
oriented programming languages are Code Contracts [8], Java Modeling Language
(not covered in this book) [16], and Spec # [14]. All of these languages implement
a behavioral compatibility rules establish in [13].

Object-oriented programming languages

The basics of the technology of object-oriented programming languages and
systems presented in this book are based on Java [4] and C# [1].

Software Engineering textbooks

Among many books on Software Engineering we mention [7] and [6]. The
first one is informal, heavily based on UML and documentation. The second one is
much more formal. Neither book covers software technologies that are covered in
this book.

Data management

We presented two persistent technologies. The first one is Java Data Objects
(JDO) which is object-oriented [9]. The second one is Java Persistence API [10],
which is object-relational. A general model of orthogonal persistence is presented

© Springer International Publishing AG 2017
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in [5]. Java model of persistence is explained in [4]. Query languages are presented
using LINQ (Language Integrated Queries) [11].

Object-oriented technology

Various aspects of the object-oriented technology such as type systems, assertion
languages, reflection, concurrent object-oriented programming, virtual platform,
object databases and transactions are presented in a related book [2].

Verification techniques

Code Contracts is specified at its web site [8]. Specification and verification
techniques using Code Contracts [8] are presented in [2]. Specification and
verification techniques using Spec# are described in [12] and [2]. A complex
application of these techniques as they apply to transaction verification is presented
in [3].
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