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Preface

By writing this monograph, I would like first to provide a useful gathering of
some knowledge that everybody involved in the numerical simulation of hyperbolic
conservation laws could have learned in journals, in conferences communications,
or simply by discussing with researchers or engineers. Most of the notions discussed
along the chapters are indeed either extracted from journal articles, or are natural
extensions of basic ideas introduced in these articles. At the moment I write this
book, it seems that the materials concerning the subject of this book, the nonlinear
stability of finite volume methods for hyperbolic systems of conservation laws, have
never been put together and detailed systematically in unified notation. Indeed
only the scalar case is fully developed in the existing textbooks. For this reason, I
shall intentionally and systematically skip the notions that are almost restricted to
scalar equations, like total variation bounds, or monotonicity properties. The most
well-known system is the system of gas dynamics, and the examples I consider are
all of gas dynamics type.

The presentation I make does not intend to be an extensive list of all the
existing methods, but rather a development centered on a very precise aim, which
is the design of schemes for which one can rigorously prove nonlinear stability
properties. At the same time, I would not like this work to be a too theoretical
exposition, but rather a useful guide for the engineer that needs very practical
advice on how to get such desired stability properties. In this respect, the nonlinear
stability criteria I consider, the preservation of invariant domains and the existence
of entropy inequalities, meet this requirement. The first one enables to ensure
that the computed quantities remain in the physical range: nonnegative density or
energy, volume fraction between 0 and 1. . . . The second one is twofold: it ensures
the computation of admissible discontinuities, and at the same time it provides a
global stability, by the property that a quantity measuring the global size of the
data should not increase. This replaces in the nonlinear context the analysis by
Fourier modes for linear problems.

Again in the aim of direct applicability, I consider only fully discrete ex-
plicit schemes. The main subject is therefore the study of first-order Godunov-type
schemes in one dimension, and in the analysis it is always taken care of the suitable
CFL condition that is necessary. I nevertheless describe a classical second-order
extension method that has the nonlinear stability property we are especially inter-
ested in here, and also the usual procedure to apply the one-dimensional solvers
to multi-dimensional problems interface by interface.

When establishing rigorous stability properties, the difficulty to face is not
to put too much numerical diffusion, that would definitely remove any practical
interest in the scheme. In this respect, in the Godunov approach, the best choice
is the exact Riemann solver. However, it is computationally extremely expensive,
especially for systems with large dimension. For this reason, it is necessary to
design fast solvers that have minimal diffusion when the computed solution has
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some features that need especially be captured. This is the case when one wants to
compute contact discontinuities. Indeed these discontinuities are the most diffused
ones, since they do not take benefit of any spatial compression phenomena that
occurs in shock waves. This is the reason why, in the first part of the monograph,
I especially make emphasis on these waves, and completely disregard shock waves
and rarefaction waves, the latter being indeed continuous. There has been an
important progress over the last years concerning the justification of the stability
of solvers that have minimal diffusion on contact discontinuities, similar as in
the exact Riemann solver. I especially detail the approach by relaxation, that is
extremely adapted to this aim, with the most recent developments that underly
the resolution of a quasilinear approximate system with only linearly degenerate
eigenvalues. This seems to be a very interesting level of simplification of a general
nonlinear system, which allows better properties than the methods involving only
a purely linear system, like the Roe method or the kinetic method. I indeed provide
a presentation that progressively explains the different approaches, from the most
general to the most particular. Kinetic schemes form a particular class in relaxation
schemes, that form a particular class in approximate Riemann solvers, that lead
themselves to a particular class of numerical fluxes.

The second part of the monograph is devoted to the numerical treatment of
source terms that can appear additionally in hyperbolic conservation laws. This
problem has been the object of intensive studies recently, at the level of analysis
with the occurrence of the resonance phenomenon, as well as at the level of numer-
ical methods. The numerical difficulty here is to treat the differential term and the
source as a whole, in such a way that the well-balanced property is achieved, which
is the preservation with respect to time of some particular steady states exactly
at the discrete level. This topic is indeed related to the above described difficulty
associated to contact discontinuities. In this second part of the book, my intention
is to provide a systematic study in this context, with the extension of the notions
of invariant domains, entropy inequalities, and approximate Riemann solvers. The
consistency is quite subtle with sources, because a particularity of unsplit schemes
is that they are not written in conservative form. This leads to a difficulty in jus-
tifying the consistency, and I explain this topic very precisely, including at second
order and in multidimension. I present several methods that have been proposed
in the literature, mainly for the Saint Venant problem which is the typical system
with source having this difficulty of preserving steady states. They are compared
concerning positivity and concerning the ability to treat resonant data. In partic-
ular, I provide a detailed analysis of the hydrostatic reconstruction method, which
is extremely interesting because of its simplicity and stability properties.

I wish to thank especially F. Coquel, B. Perthame, L. Gosse, A. Vasseur, C.
Simeoni, T. Katsaounis, M.-O. Bristeau, E. Audusse, N. Seguin, who enabled me
to understand many things, and contributed a lot in this way to the existence of
this monograph.

Paris, March 2004 François Bouchut



Chapter 1

Quasilinear systems and
conservation laws

Our aim is not to develop here a full theory of the Cauchy problem for hyperbolic
systems. We would like rather to introduce a few concepts that will be useful in
our analysis, from a practical point of view. For more details the interested reader
can consult [91], [92], [31], [44], [45], [33].

1.1 Quasilinear systems

A one-dimensional first-order quasilinear system is a system of partial differential
equations of the form

∂tU +A(U)∂xU = 0, t > 0, x ∈ R, (1.1)

where U(t, x) is a vector with p components, U(t, x) ∈ R
p, and A(U) is a p × p

matrix, assumed to be smoothly dependent on U . The system is completed with
an initial data

U(0, x) = U0(x). (1.2)

An important property of the system (1.1) is that its form is invariant under any
smooth change of variable V = ϕ(U). It becomes

∂tV +B(V )∂xV = 0, (1.3)

with
B(V ) = ϕ′(U)A(U)ϕ′(U)−1. (1.4)

The system (1.1) is said hyperbolic if for any U , A(U) is diagonalizable, which
means that it has only real eigenvalues, and a full set of eigenvectors. According
to (1.4), this property is invariant under any nonlinear change of variables. We
shall only consider in this presentation systems that are hyperbolic. Let us denote
the distinct eigenvalues of A(U) by

λ1(U) < · · · < λr(U). (1.5)

The system is called strictly hyperbolic if all eigenvalues have simple multiplicity.
We shall assume that the eigenvalues λj(U) depend smoothly on U , and have
constant multiplicity. In particular, this implies that the eigenvalues cannot cross.



2 Chapter 1. Quasilinear systems and conservation laws

Then, the eigenvalue λj(U) is genuinely nonlinear if it has multiplicity one and if,
denoting by rj(U) an associated eigenvector of A(U), one has for all U

∂Uλj(U) · rj(U) �= 0. (1.6)

The eigenvalue λj(U) is linearly degenerate if for all U

∀r ∈ ker (A(U) − λj(U) Id) , ∂Uλj(U) · r = 0. (1.7)

Again, according to (1.4), these notions are easily seen to be invariant under
nonlinear change of variables.

1.2 Conservative systems

It is well known that for quasilinear systems, the solution U naturally develops
discontinuities (shock waves). The main difficulty in such systems is therefore to
give a sense to (1.1). Since ∂xU contains some Dirac distributions, and A(U) is
discontinuous in general, the product A(U)×∂xU can be defined in many different
ways, leading to different notions of solutions. This difficulty is somehow solved
when we consider conservative systems, also called systems of conservation laws,
which means that they can be put in the form

∂tU + ∂x(F (U)) = 0, (1.8)

for some nonlinearity F that takes values in R
p. In other words, it means that A

takes the form of a jacobian matrix, A(U) = F ′(U). However, this property is not
invariant under change of variables. Then, a weak solution for (1.8) is defined to be
any possibly discontinuous function U satisfying (1.8) in the sense of distributions,
see for example [44], [45]. The variable U in which the system takes the form (1.8)
is called the conservative variable.

Example 1.1. The system of isentropic gas dynamics in eulerian coordinates reads
as {

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ)) = 0, (1.9)

where ρ(t, x) ≥ 0 is the density, u(t, x) ∈ R is the velocity, and the pressure law
p(ρ) is assumed to be increasing,

p′(ρ) > 0. (1.10)

One can check easily that this conservative system is hyperbolic under condition
(1.10), with eigenvalues λ1 = u− √

p′(ρ), λ2 = u+
√
p′(ρ).

Example 1.2. The system of full gas dynamics in eulerian coordinates reads


∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρ(u2/2 + e)) + ∂x((ρ(u2/2 + e) + p)u) = 0,

(1.11)
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where ρ(t, x) ≥ 0 is the density, u(t, x) ∈ R is the velocity, e(t, x) > 0 is the
internal energy, and p = p(ρ, e). Thermodynamic considerations lead to assume
that

de+ p d(1/ρ) = Tds, (1.12)

for some temperature T (ρ, e) > 0, and specific entropy s(ρ, e). Taking then (ρ, s)
as variables, the hyperbolicity condition is (see [45])

(
∂p

∂ρ

)
s

> 0, (1.13)

where the index s means that the derivative is taken at s constant. The eigenvalues

are λ1 = u−
√(

∂p
∂ρ

)
s
, λ2 = u, λ3 = u+

√(
∂p
∂ρ

)
s
, and

√(
∂p
∂ρ

)
s

is called the sound

speed.
An important point is that the equations (1.11) can be combined to give

∂ts+ u ∂xs = 0. (1.14)

This can be obtained by following the lines of (1.28)–(1.32). Thus smooth solutions
of the isentropic system (1.9) can be viewed as special solutions of (1.11) where s
is constant.

The discontinuous weak solutions of (1.8) can be characterized by the so
called Rankine–Hugoniot jump relation.

Lemma 1.1. Let C be a C1 curve in R
2 defined by x = ξ(t), ξ ∈ C1, that cuts the

open set Ω ⊂ R
2 in two open sets Ω− and Ω+, defined respectively by x < ξ(t) and

x > ξ(t) (see Figure 1.1). Consider a function U defined on Ω that is of class C1

in Ω− and in Ω+. Then U solves (1.8) in the sense of distributions in Ω if and
only if U is a classical solution in Ω− and Ω+, and the Rankine–Hugoniot jump
relation

F (U+) − F (U−) = ξ̇ (U+ − U−) on C ∩ Ω (1.15)

is satisfied, where U∓ are the values of U on each side of C.

Proof. We can write

U = U−1x<ξ(t) + U+1x>ξ(t), F (U) = F (U−)1x<ξ(t) + F (U+)1x>ξ(t). (1.16)

This gives

∂tU = (∂tU−)1x<ξ(t) + (∂tU+)1x>ξ(t)

+ U−ξ̇(t)δ(ξ(t)− x) − U+ξ̇(t)δ(x− ξ(t)),

∂xF (U) = ∂xF (U−)1x<ξ(t) + ∂xF (U+)1x>ξ(t)

− F (U−)δ(ξ(t)− x) + F (U+)δ(x− ξ(t)),

(1.17)
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C

Ω

Ω

−

+

t

x

Figure 1.1: Curve C cutting Ω in Ω− and Ω+

thus

∂tU + ∂xF (U) = (∂tU− + ∂xF (U−))1x<ξ(t) + (∂tU+ + ∂xF (U+))1x>ξ(t)

+
(
F (U+) − F (U−) − ξ̇(t)(U+ − U−)

)
δ(x− ξ(t)),

(1.18)
and this concludes the result. �

1.3 Invariant domains

The notion of invariant domain plays an important role in the resolution of a
system of conservation laws. We say that a convex set U ⊂ Rp is an invariant
domain for (1.8) if it has the property that

U0(x) ∈ U for all x ⇒ U(t, x) ∈ U for all x, t. (1.19)

Notice that the convexity property is with respect to the conservative variable U .
There is a full theory that enables to determine the invariant domains of a system of
conservation laws. Here we are just going to assume known such invariant domain,
and we refer to [92] for the theory.

Example 1.3. For a scalar law (p=1), any closed interval is an invariant domain.

Example 1.4. For the system of isentropic gas dynamics (1.9), the set U = {U =

(ρ, ρu); ρ ≥ 0} is an invariant domain. It is also true that whenever d(ρ
√
p′(ρ))
dρ

≥
0, the sets

{(ρ, ρu) ; u+ ϕ(ρ) ≤ c} , {(ρ, ρu) ; u− ϕ(ρ) ≥ c} , (1.20)
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are convex invariant domains for any constant c, with

ϕ′(ρ) =

√
p′(ρ)
ρ

. (1.21)

The convexity can be seen by observing that the function (ρ, ρu) 	→ ρϕ(ρ)±ρu∓cρ
is convex under the above assumption.

Example 1.5. For the full gas dynamics system (1.11), the set where e > 0 is an
invariant domain (check that this set is convex with respect to the conservative
variables (ρ, ρu, ρ(u2/2 + e)).

The property for a scheme to preserve an invariant domain is an important
issue of stability, as can be easily understood. In particular, the occurrence of
negative values for density of for internal energy in gas dynamics calculations
leads rapidly to breakdown in the computation.

1.4 Entropy

A companion notion of stability for numerical schemes is deduced from the exis-
tence of an entropy. By definition, an entropy for the quasilinear system (1.1) is a
function η(U) with real values such that there exists another real valued function
G(U), called the entropy flux, satisfying

G′(U) = η′(U)A(U), (1.22)

where prime denotes differentiation with respect to U . In other words, η′A needs
to be an exact differential form. The existence of a strictly convex entropy is
connected to hyperbolicity, by the following property.

Lemma 1.2. If the conservative system (1.8) has a strictly convex entropy, then it
is hyperbolic.

Proof. Since η is an entropy, η′F ′ is an exact differential form, which can be
expressed by the fact that (η′F ′)′ is symmetric. Writing (η′F ′)′ = (F ′)tη′′ + η′F ′′,
the fact that F ′′ is itself symmetric implies that (F ′)tη′′ is symmetric. Since η′′

is positive definite, this can be interpreted by the property that F ′ is self-adjoint
for the scalar product defined by η′′. As is well-known, any self-adjoint operator is
diagonalizable, which proves the hyperbolicity. Moreover we can even conclude a
more precise result: there is an orthogonal basis for η′′ in which F ′ is diagonal. �

The existence of an entropy enables, by multiplying (1.1) by η′(U), to es-
tablish another conservation law ∂t(η(U)) + ∂x(G(U)) = 0. However, since we
consider discontinuous functions U(t, x), this identity cannot be satisfied. Instead,
one should have whenever η is convex,

∂t(η(U)) + ∂x(G(U)) ≤ 0. (1.23)
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A weak solution U(t, x) of (1.8) is said to be entropy satisfying if (1.23) holds.
This property is indeed a criteria to select a unique solution to the system, that
can have many weak solutions otherwise. Other criteria can be used also, but they
are practically difficult to consider in numerical methods, see [45]. In the case
of a piecewise C1 function U , as in Lemma 1.1, the entropy inequality (1.23) is
characterized by the Rankine–Hugoniot inequality

G(U+) −G(U−) ≤ ξ̇
(
η(U+) − η(U−)

)
on C ∩ Ω. (1.24)

A practical method to prove that a function η is an entropy is to try to establish a
conservative identity ∂t(η(U))+∂x(G(U)) = 0 for some function G(U), for smooth
solutions of (1.1). Then (1.22) follows automatically.

Example 1.6. For the isentropic gas dynamics system (1.9), a convex entropy is
the physical energy, given by

η = ρu2/2 + ρe(ρ), (1.25)

where the internal energy is defined by

e′(ρ) =
p(ρ)
ρ2

. (1.26)

Its associated entropy flux is

G =
(
ρu2/2 + ρe(ρ) + p(ρ)

)
u. (1.27)

The justification of this result is as follows. We first subtract u times the first
equation in (1.9) to the second, and divide the result by ρ. It gives

∂tu+ u∂xu+
1
ρ
∂xp(ρ) = 0. (1.28)

Multiplying then this equation by u gives

∂t(u2/2) + u∂x(u2/2) +
u

ρ
∂xp(ρ) = 0. (1.29)

Next, developing the density equation in (1.9) and multiplying by p(ρ)/ρ2 gives

∂te(ρ) + u∂xe(ρ) +
p(ρ)
ρ
∂xu = 0, (1.30)

so that by addition to (1.29) we get

∂t(u2/2 + e(ρ)) + u∂x(u2/2 + e(ρ)) +
1
ρ
∂x(p(ρ)u) = 0. (1.31)
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Finally, multiplying this by ρ and adding to u2/2+e(ρ) times the density equation
gives

∂t(ρ(u2/2 + e(ρ))) + ∂x(ρ(u2/2 + e(ρ))u+ p(ρ)u) = 0, (1.32)

which is coherent with the formulas (1.25), (1.27). The convexity of η with respect
to (ρ, ρu) is left to the reader.

Example 1.7. For the full gas dynamics system (1.11), according to (1.14) we have
a family of entropies

η = ρ φ(s), (1.33)

with entropy fluxes
G = ρ φ(s)u, (1.34)

where φ is an arbitrary function such that η is convex with respect to the conser-
vative variables (ρ, ρu, ρ(u2/2 + e)). One can deduce that the sets where s ≥ k, k
constant, are convex invariant domains. This is obtained by taking φ(s) = (k−s)+
(this choice has to be somehow adapted if η = ρ φ(s) is not convex). Then
{s ≥ k} = {η ≤ 0} is convex, and integrating (1.23) in x gives d/dt(

∫
η dx) ≤ 0,

telling that η has to vanish identically if it does initially.

Lemma 1.3. A necessary condition for η in (1.33) to be convex with respect to
(ρ, ρu, ρ(u2/2+e)) is that φ′ ≤ 0. Conversely, if −s is a convex function of (1/ρ, e)
and if φ′ ≤ 0 and φ′′ ≥ 0, then η is convex.

Proof. Applying Lemma 1.4 below, we have to check whether φ(s) is convex with
respect to (1/ρ, u, u2/2 + e). Call τ = 1/ρ, E = u2/2 + e. We have according to
(1.12) ds = (pdτ + de)/T = (pdτ − udu+ dE)/T , thus

d [φ(s)] = φ′(s)ds =
φ′(s)
T

(pdτ − udu+ dE) , (1.35)

and the hessian of φ(s) with respect to (τ, u, E) is

D2
τ,u,E [φ(s)] = φ′′(s)ds⊗ ds+ φ′(s)D2

τ,u,Es

=
φ′′(s)
T 2

(pdτ − udu+ dE)⊗2

+ φ′(s)(pdτ − udu+ dE) ⊗ d
1
T

+
φ′(s)
T

(dτ ⊗ dp− du⊗ du) .

(1.36)
Taking the value of this bilinear form at twice the vector (0, 1, u) gives

D2
τ,u,E [φ(s)] · (0, 1, u) · (0, 1, u) = −φ

′(s)
T

, (1.37)

so that its nonnegativity implies that φ′(s) ≤ 0.
Conversely, from ds = (pdτ + de)/T we write that

D2
τ,es = (pdτ + de) ⊗ d

1
T

+
1
T
dτ ⊗ dp, (1.38)
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and inserting this into (1.36) gives

D2
τ,u,E [φ(s)] = φ′′(s)ds⊗ ds+ φ′(s)(D2

τ,es− du⊗ du/T ), (1.39)

thus the result follows. �
Lemma 1.4. A scalar function η(ρ, q), where ρ > 0 and q is a vector, is convex
with respect to (ρ, q) if and only if η/ρ is convex with respect to (1/ρ, q/ρ).

Proof. Define τ = 1/ρ and v = q/ρ. Then we have

(ρ, q) = ϕ(τ, v), (1.40)

with
ϕ(τ, v) = (1/τ, v/τ ). (1.41)

Define also η/ρ = S(τ, v), or equivalently

S(τ, v) = τη(ϕ(τ, v)). (1.42)

Then,
dS(τ, v) = η(ϕ(τ, v))dτ + τη′(ϕ(τ, v))dϕ(τ, v), (1.43)

and

D2
τ,vS(τ, v) = dτ ⊗

(
η′(ϕ(τ, v))dϕ(τ, v)

)
+

(
η′(ϕ(τ, v))dϕ(τ, v)

)
⊗ dτ

+ τη′(ϕ(τ, v))D2
τ,vϕ(τ, v)

+ τη′′(ϕ(τ, v)) · dϕ(τ, v) · dϕ(τ, v).

(1.44)

We compute from (1.41)

dϕ(τ, v) = (−dτ/τ2, dv/τ − vdτ/τ2), (1.45)

D2
τ,vϕ(τ, v) =

(
2dτ ⊗ dτ/τ3,−dv ⊗ dτ/τ2 − dτ ⊗ dv/τ2 + 2vdτ ⊗ dτ/τ3

)
.

(1.46)
Now, denote

η′(ϕ(τ, v)) = (α, β). (1.47)

We have with (1.45)–(1.46)

dτ ⊗
(
η′(ϕ(τ, v))dϕ(τ, v)

)
+

(
η′(ϕ(τ, v))dϕ(τ, v)

)
⊗ dτ

+ τη′(ϕ(τ, v))D2
τ,vϕ(τ, v)

= dτ ⊗
(
− α

τ2
dτ + β

dv

τ
− βv

dτ

τ2

)
+

(
− α

τ2
dτ + β

dv

τ
− βv

dτ

τ2

)
⊗ dτ

+ τ

(
α

2dτ ⊗ dτ

τ3
− β

dv ⊗ dτ

τ2
− β

dτ ⊗ dv

τ2
+ 2βv

dτ ⊗ dτ

τ3

)

= 0,

(1.48)
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thus (1.44) gives

D2
τ,vS(τ, v) = τη′′(ϕ(τ, v)) · dϕ(τ, v) · dϕ(τ, v). (1.49)

Since τ > 0 and dϕ(τ, v) is invertible, we deduce that D2
τ,vS(τ, v) is nonnegative

if and only if η′′(ϕ(τ, v)) is nonnegative, which gives the result. �

1.5 Riemann invariants, contact discontinuities

In this section we consider a general hyperbolic quasilinear system as defined in
Section 1.1, and we wish to introduce some notions that are invariant under change
of variables.

Consider an eigenvalue λj(U). We say that a scalar function w(U) is a (weak)
j-Riemann invariant if for all U

∀r ∈ ker (A(U) − λj(U) Id) , ∂Uw(U) · r = 0. (1.50)

This notion is obviously invariant under change of variables. A nonlinear func-
tion of several j-Riemann invariants is again a j-Riemann invariant. Applying the
Frobenius theorem, we have the following.

Lemma 1.5. Assume that λj has multiplicity 1. Then in the neighborhood of any
point U0, there exist p− 1 j-Riemann invariants with linearly independent differ-
entials. Moreover, all j-Riemann invariants are then nonlinear functions of these
ones.

In the case of multiplicity mj > 1 one could expect the same result with
p − mj independent Riemann invariants. However this is wrong in general, be-
cause the Frobenius theorem requires some integrability conditions on the space
ker (A(U) − λj(U) Id). Nevertheless, these integrability conditions are satisfied for
most of the physically relevant quasilinear systems.

Consider still an eigenvalue λj(U). We say that a scalar function w(U) is
a strong j-Riemann invariant if for all U ∂Uw(U) is an eigenform associated to
λj(U), i.e.

∂Uw(U)A = λj(U) ∂Uw(U). (1.51)

Again this notion is invariant under change of variables, and any nonlinear func-
tion of several strong j-Riemann invariants is a strong j-Riemann invariant. The
interest of this notion lies in the fact that it can be characterized by the prop-
erty that a smooth solution U(t, x) to (1.1) satisfies ∂tw(U) + λj(U)∂xw(U) = 0.
However, a system may have no strong Riemann invariant at all.

Lemma 1.6. A function w(U) is a strong j-Riemann invariant if and only if for
any k �= j, w(U) is a weak k-Riemann invariant.
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Proof. This follows from the property that if (bi) is a basis of eigenvectors of a
diagonalizable matrix A, then its dual basis, i.e. the forms (lr) such that lrbi = δir,
is a basis of eigenforms of A. This is because lrAbi = lrλibi = λiδir = λrδir, which
gives lrA = λrlr. �

Consider now λj a linearly degenerate eigenvalue. We say that two constant
states Ul, Ur can be joined by a j-contact discontinuity if there exist some C1 path
U(τ ) for τ in some interval [τ1, τ2], such that




dU

dτ
(τ ) ∈ ker (A(U(τ )) − λj(U(τ )) Id) for τ1 ≤ τ ≤ τ2,

U(τ1) = Ul, U(τ2) = Ur.
(1.52)

The definition is again invariant under change of variables. We observe that if Ul,
Ur can be joined by a j-contact discontinuity, we have for any j-Riemann invariant
w, (d/dτ )[w(U(τ ))] = ∂Uw(U(τ ))dU/dτ = 0, thus w(U(τ )) = cst = w(Ul) =
w(Ur). This is true in particular for w = λj which is a j-Riemann invariant since
λj is assumed linearly degenerate.

If Ul, Ur can be joined by a j-contact discontinuity, we define a j-contact
discontinuity to be a function U(t, x) taking the values Ul and Ur respectively on
each side of a straight line of slope dx/dt = λj(Ul) = λj(Ur). Such a function
will then be considered as a generalized solution to (1.1). Indeed it satisfies ∂tU +
λj∂xU = 0, and this definition is justified by the following lemma, that implies
that if (1.1) has a conservative form, then U(t, x) is a solution in the sense of
distributions.

Lemma 1.7. Assume that the quasilinear hyperbolic system (1.1) admits an entropy
η, with entropy flux G. Then any contact discontinuity U(t, x) associated to a
linearly degenerate eigenvalue λj satisfies ∂tη(U) + ∂xG(U) = 0 in the sense of
distributions.

Proof. Let w(U) = G(U) − λj(U)η(U). Then by (1.22) ∂Uw = ∂Uη (A− λj Id) −
η ∂Uλj , thus w is a j-Riemann invariant. It implies that w(Ul) = w(Ur), i.e.
G(Ur) −G(Ul) = λj(η(Ur) − η(Ul)), the desired Rankine–Hugoniot relation. �

The j-contact discontinuities can indeed be characterized by the property
that the j-Riemann invariants do not jump.

Lemma 1.8. Let λj be a linearly degenerate eigenvalue of multiplicity mj, and as-
sume that in the neighborhood of some state U0, there exist p − mj j-Riemann
invariants with linearly independent differentials. Then two states Ul, Ur suffi-
ciently close to U0 can be joined by a j-contact discontinuity if and only if for any
of these j-Riemann invariants, one has w(Ul) = w(Ur).

Proof. Since we have p −mj linearly independent forms ∂Uwn in the orthogonal
of ker (A(U) − λj(U) Id), they form a basis of this space. In particular, a vector r
belongs to ker (A(U) − λj(U) Id) if and only if ∂Uwn · r = 0 for n = 1, . . . , p−mj .
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Therefore, the conditions (1.52) can be written (d/dτ )[wn(U(τ ))] = 0 for n =
1, . . . , p −mj and U(τ1) = Ul, U(τ2) = Ur. We deduce that Ul, Ur can be joined
by a j-contact discontinuity if and only if there exists some C1 path joining Ul to
Ur remaining in the set where wn(U) = wn(Ul) for n = 1, . . . , p −mj . But since
the differentials of wn are independent, this set is a manifold of dimension mj ,
thus it is locally connected, which gives the result. �
Example 1.8. For the full gas dynamics system (1.11), one can check that the
eigenvalue λ2 = u is linearly degenerate. By (1.14), s is a strong 2-Riemann
invariant. Two independent weak 2-Riemann invariants are u and p.

Example 1.9. Consider a quasilinear system that can be put in the diagonal form

∂twj + λj∂xwj = 0, (1.53)

for some independent variables wj , j = 1, . . . , r, that can eventually be vector
valued wj ∈ Rmj , and some scalars λj(w1, . . . , wr) with λ1 < · · · < λr. Then in
the variables (w1, . . . , wr), the matrix of the system is diagonal with eigenvalues
λj of multicity mj . Thus the system is hyperbolic, and the components of wj

are strong j-Riemann invariants. For any j we have p − mj independent weak
j-Riemann invariants, that are the components of the wk for k �= j. Moreover,
the eigenvalue λj is linearly degenerate if and only if it does not depend on wj ,
λj = λj(w1, . . . , wj−1, wj+1, . . . , wr). If this is the case, two states can be joined
by a j-contact discontinuity if and only if the wk for all k �= j do not jump.





Chapter 2

Conservative schemes

The notions introduced here can be found in [33], [44], [45], [97], [77].

Let us consider a system of conservation laws (1.8). We would like to approx-
imate its solution U(t, x), x ∈ R, t ≥ 0, by discrete values Un

i , i ∈ Z, n ∈ N. In
order to do so we consider a grid of points xi+1/2, i ∈ Z,

· · · < x−1/2 < x1/2 < x3/2 < . . . , (2.1)

and we define the cells (or finite volumes) and their lengths

Ci =]xi−1/2, xi+1/2[, ∆xi = xi+1/2 − xi−1/2 > 0. (2.2)

We shall denote also xi = (xi−1/2 +xi+1/2)/2 the centers of the cells. We consider
a constant timestep ∆t > 0 and define the discrete times by

tn = n∆t, n ∈ N. (2.3)

The discrete values Un
i intend to be approximations of the averages of the exact

solutions over the cells,

Un
i 
 1

∆xi

∫
Ci

U(tn, x) dx. (2.4)

A finite volume conservative scheme for solving (1.8) is a formula of the form

Un+1
i − Un

i +
∆t
∆xi

(Fi+1/2 − Fi−1/2) = 0, (2.5)

telling how to compute the values Un+1
i at the next time level, knowing the values

Un
i at time tn. We consider here only first-order explicit three points schemes

where
Fi+1/2 = F (Un

i , U
n
i+1). (2.6)

The function F (Ul, Ur) ∈ Rp is called the numerical flux, and determines the
scheme.

It is important to say that it is always necessary to impose what is called
a CFL condition (for Courant, Friedrichs, Levy) on the timestep to prevent the
blow up of the numerical values, under the form

∆t a ≤ ∆xi, i ∈ Z, (2.7)

where a is an approximation of the speed of propagation.

We shall often denote Ui instead of Un
i , whenever there is no ambiguity.
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2.1 Consistency

Many methods exist to determine a numerical flux. The two main criteria that
enter in its choice are its stability properties, and the precision qualities it has,
which can be measured by the amount of viscosity it produces and by the property
of exact computation of particular solutions.

The consistency is the minimal property required for a scheme to ensure that
we approximate the desired equation. For a conservative scheme, we define it as
follows.

Definition 2.1. We say that the scheme (2.5)–(2.6) is consistent with (1.8) if the
numerical flux satisfies

F (U,U) = F (U) for all U. (2.8)

We can see that this condition guarantees obviously that if for all i, Un
i = U

a constant, then also Un+1
i = U . A deeper motivation for this definition is the

following.

Proposition 2.2. Assume that for all i,

Un
i =

1
∆xi

∫
Ci

U(tn, x) dx, (2.9)

for some smooth solution U(t, x) to (1.8), and define Un+1
i by (2.5)–(2.6). If the

scheme is consistent, then for all i,

Un+1
i =

1
∆xi

∫
Ci

U(tn+1, x) dx+ ∆t
(

1
∆xi

(Fi+1/2 −Fi−1/2)
)
, (2.10)

where
Fi+1/2 → 0, (2.11)

as ∆t and supi ∆xi tend to 0.

Proof. Let us integrate the equation (1.8) satisfied by U(t, x) with respect to t
and x over ]tn, tn+1[×Ci, and divide the result by ∆xi. We obtain

1
∆xi

∫
Ci

U(tn+1, x) dx− 1
∆xi

∫
Ci

U(tn, x) dx+
∆t
∆xi

(F i+1/2−F i−1/2) = 0, (2.12)

where F i+1/2 is the exact flux

F i+1/2 =
1

∆t

∫ tn+1

tn

F
(
U(t, xi+1/2)

)
dt. (2.13)

Therefore, by subtracting (2.12) to (2.5), we get (2.10) with

Fi+1/2 = F i+1/2 − Fi+1/2. (2.14)
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In order to conclude, we just observe that if the numerical flux is consistent (and
Lipschitz continuous), Fi+1/2 = F (Un

i , U
n
i+1) = F (U(tn, xi+1/2)) + O(∆xi) +

O(∆xi+1), and since from (2.13) F i+1/2 = F (U(tn, xi+1/2)) + O(∆t), we get
Fi+1/2 = O(∆t) + O(∆xi) + O(∆xi+1). We can notice here that (2.11) holds
indeed for a continuous numerical flux. �

The formulation (2.10)–(2.11) tells that we have an error of the form (Fi+1/2−
Fi−1/2)/∆xi, which is the discrete derivative of a small term F . It implies by dis-
crete integration by parts that the error is small in the weak sense, the convergence
holds only against a test function: if Uh(t, x) is taken to be piecewise constant in
space-time with values Un

i , then one has as ∆t and h tend to 0
∫∫

Uh(t, x)ϕ(t, x) dtdx→
∫∫

U(t, x)ϕ(t, x) dtdx, (2.15)

for any test function ϕ(t, x) smooth with compact support. For the justification
of such a property, we refer to [33].

2.2 Stability

The stability of the scheme can be analyzed in different ways, but we shall retain
here the conservation of an invariant domain and the existence of a discrete entropy
inequality. They are analyzed in a very similar way.

2.2.1 Invariant domains

Definition 2.3. We say that the scheme (2.5)–(2.6) preserves a convex invariant
domain U for (1.8), if under some CFL condition,

Un
i ∈ U for all i ⇒ Un+1

i ∈ U for all i. (2.16)

A difficulty that occurs when trying to obtain (2.16) is that the three values
Ui−1, Ui, Ui+1 are involved in the computation of Un+1

i . Interface conditions with
only Ui, Ui+1can be written instead as follows, at the price of diminishing the CFL
condition.

Definition 2.4. We say that the numerical flux F (Ul, Ur) preserves a convex in-
variant domain U for (1.8) by interface if for some σl(Ul, Ur) < 0 < σr(Ul, Ur),

Ul, Ur ∈ U ⇒




Ul +
F (Ul, Ur) − F (Ul)

σl
∈ U ,

Ur +
F (Ul, Ur) − F (Ur)

σr
∈ U .

(2.17)
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Notice that if (2.17) holds for some σl, σr, then it also holds for σl
′ ≤ σl and

σr
′ ≥ σr, because of the convexity of U and of the formulas

Ul +
F (Ul, Ur) − F (Ul)

σl
′ =

(
1 − σl

σl
′

)
Ul +

σl

σl
′

(
Ul +

F (Ul, Ur) − F (Ul)
σl

)
,

Ur +
F (Ul, Ur) − F (Ur)

σr
′ =

(
1 − σr

σr
′

)
Ur +

σr

σr
′

(
Ur +

F (Ul, Ur) − F (Ur)
σr

)
.

(2.18)

Proposition 2.5. (i) If the scheme preserves an invariant domain U (Definition
2.3), then its numerical flux preserves U by interface (Definition 2.4), with σl =
−∆xi/∆t, σr = ∆xi+1/∆t.
(ii) If the numerical flux preserves an invariant domain U by interface (Definition
2.4), then the scheme preserves U (Definition 2.3), under the half CFL condition
|σl(Ui, Ui+1)|∆t ≤ ∆xi/2, σr(Ui−1, Ui)∆t ≤ ∆xi/2.

Proof. For (i), apply (2.16) with Ui−1 = Ui = Ul, Ui+1 = Ur. We get the first line of
(2.17) with σl = −∆xi/∆t. Similarly, applying the inequality (2.16) corresponding
to cell i+ 1 with Ui = Ul, Ui+1 = Ui+2 = Ur gives the second line of (2.17) with
σr = ∆xi+1/∆t. Conversely, for (ii), define the half-cell averages

Un+1−
i+1/4 = Ui − 2

∆t
∆xi

(F (Ui, Ui+1) − F (Ui)),

Un+1−
i−1/4 = Ui − 2

∆t
∆xi

(F (Ui) − F (Ui−1, Ui)).
(2.19)

Then we have
Un+1

i =
1
2
(Un+1−

i−1/4 + Un+1−
i+1/4 ). (2.20)

According to the remark above and since we have σl(Ui, Ui+1) ≥ −∆xi/(2∆t)
and σr(Ui−1, Ui) ≤ ∆xi/(2∆t), we can apply (2.17) successively with Ul = Ui,
Ur = Ui+1, σl replaced by −∆xi/(2∆t), and with Ul = Ui−1, Ur = Ui, σr replaced
by ∆xi/(2∆t). This gives that Un+1−

i+1/4 , Un+1−
i−1/4 ∈ U , thus by convexity Un+1

i ∈ U
also. �

2.2.2 Entropy inequalities

Definition 2.6. We say that the scheme (2.5)–(2.6) satisfies a discrete entropy
inequality associated to the convex entropy η for (1.8), if there exists a numerical
entropy flux function G(Ul, Ur) which is consistent with the exact entropy flux
(in the sense that G(U,U) = G(U)), such that, under some CFL condition, the
discrete values computed by (2.5)–(2.6) automatically satisfy

η(Un+1
i ) − η(Un

i ) +
∆t
∆xi

(Gi+1/2 −Gi−1/2) ≤ 0, (2.21)

with
Gi+1/2 = G(Un

i , U
n
i+1). (2.22)
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Definition 2.7. We say that the numerical flux F (Ul, Ur) satisfies an interface
entropy inequality associated to the convex entropy η, if there exists a numerical
entropy flux function G(Ul, Ur) which is consistent with the exact entropy flux (in
the sense that G(U,U) = G(U)), such that for some σl(Ul, Ur) < 0 < σr(Ul, Ur),

G(Ur) + σr

[
η

(
Ur +

F (Ul, Ur) − F (Ur)
σr

)
− η(Ur)

]
≤ G(Ul, Ur), (2.23)

G(Ul, Ur) ≤ G(Ul) + σl

[
η

(
Ul +

F (Ul, Ur) − F (Ul)
σl

)
− η(Ul)

]
. (2.24)

Lemma 2.8. The left-hand side of (2.23) and the right-hand side of (2.24) are
nonincreasing functions of σr and σl respectively. In particular, for (2.23) and
(2.24) to hold it is necessary that the inequalities obtained when σr → ∞ and
σl → −∞ (semi-discrete limit) hold,

G(Ur) + η′(Ur)(F (Ul, Ur) − F (Ur)) ≤ G(Ul, Ur), (2.25)

G(Ul, Ur) ≤ G(Ul) + η′(Ul)(F (Ul, Ur) − F (Ul)). (2.26)

Proof. Since for any convex function S of a real variable, the ratio (S(b)− S(a))/
(b − a) is a nondecreasing function of a and b, we easily get the result by taking
S(a) = η(Ur + a(F (Ul, Ur) − F (Ur))) and S(a) = η(Ul + a(F (Ul, Ur) − F (Ul)))
respectively. �

Remark 2.1. In (2.23)–(2.24) (or in (2.25)–(2.26)), we only need to require that the
left-hand side of the first inequality is less than the right-hand side of the second
inequality, because then any value G(Ul, Ur) between them will be acceptable
as numerical entropy flux, since the consistency condition G(U,U) = G(U) is
automatically satisfied if the scheme is consistent.

Proposition 2.9. (i) If the scheme is entropy satisfying (Definition 2.6), then its nu-
merical flux is entropy satisfying by interface (Definition 2.7), with σl = −∆xi/∆t,
σr = ∆xi+1/∆t.
(ii) If the numerical flux is entropy satisfying by interface (Definition 2.7), then
the scheme is entropy satisfying (Definition 2.6), under the half CFL condition
|σl(Ui, Ui+1)|∆t ≤ ∆xi/2, σr(Ui−1, Ui)∆t ≤ ∆xi/2.

Proof. For (i), apply (2.21) with Ui−1 = Ui = Ul, Ui+1 = Ur. We get (2.24) with
σl = −∆xi/∆t. Similarly, applying the inequality (2.21) corresponding to cell i+1
with Ui = Ul, Ui+1 = Ui+2 = Ur gives (2.23) with σr = ∆xi+1/∆t. Conversely,
for (ii), define the half-cell averages

Un+1−
i+1/4 = Ui − 2

∆t
∆xi

(F (Ui, Ui+1) − F (Ui)),

Un+1−
i−1/4 = Ui − 2

∆t
∆xi

(F (Ui) − F (Ui−1, Ui)).
(2.27)
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Then we have
Un+1

i =
1
2
(Un+1−

i−1/4 + Un+1−
i+1/4 ), (2.28)

thus by convexity η(Un+1
i ) ≤ (η(Un+1−

i−1/4 ) + η(Un+1−
i+1/4 ))/2. Since σl(Ui, Ui+1) ≥

−∆xi/(2∆t) and σr(Ui−1, Ui) ≤ ∆xi/(2∆t), according to Lemma 2.8 we can apply
the inequalities (2.24) with Ul = Ui, Ur = Ui+1, σl replaced by −∆xi/(2∆t), and
(2.23) with Ul = Ui−1, Ur = Ui, σr replaced by ∆xi/(2∆t), which give

Gi+1/2 ≤ G(Ui) − ∆xi

2∆t

(
η(Un+1−

i+1/4 ) − η(Ui)
)
,

G(Ui) +
∆xi

2∆t

(
η(Un+1−

i−1/4 ) − η(Ui)
)
≤ Gi−1/2.

(2.29)

By addition this gives (2.21). �

Semi-discrete entropy inequalities

Here we would like to make the link with semi-discrete schemes, where the time
variable t is kept continuous and only the space variable x is discretized. Thus,
(2.5)–(2.6) is replaced by

dUi(t)
dt

+
1

∆xi
(Fi+1/2 − Fi−1/2) = 0, Fi+1/2 = F (Ui(t), Ui+1(t)), (2.30)

for some numerical flux F (Ul, Ur). In this situation, a discrete entropy inequality
writes
d

dt
η(Ui(t)) +

1
∆xi

(Gi+1/2 −Gi−1/2) ≤ 0, Gi+1/2 = G(Ui(t), Ui+1(t)), (2.31)

for some consistent numerical entropy flux G(Ul, Ur), and it must hold for all
solutions of (2.30) (here there is no notion of CFL condition). Multiplying (2.30)
by η′(Ui(t)), it can be written equivalently

Gi+1/2 −Gi−1/2 − η′(Ui(t))
(
Fi+1/2 − Fi−1/2

) ≤ 0. (2.32)

In other words, this means that for any Ui−1, Ui, Ui+1,

G(Ui, Ui+1) −G(Ui−1, Ui) − η′(Ui) (F (Ui, Ui+1) − F (Ui−1, Ui)) ≤ 0. (2.33)

Taking successively Ui−1 = Ul, Ui = Ui+1 = Ur, and Ui−1 = Ui = Ul, Ui+1 = Ur,
we get (2.25)–(2.26). Conversely, if (2.25)–(2.26) hold, then taking Ul = Ui−1, Ur =
Ui in (2.25), and Ul = Ui, Ur = Ui+1 in (2.26) and combining the results we obtain
(2.33). Therefore, in the semi-discrete case, the entropy condition exactly writes
as (2.25)–(2.26), which means that the in-cell formulation (2.31) and the interface
formulation (2.25)–(2.26) are fully equivalent, which is coherent with the limit
∆t → 0 in Proposition 2.9. As stated in Lemma 2.8, if a numerical flux satisfies
a fully discrete entropy inequality, then the associated semi-discrete scheme also
satisfies this property (this can be seen also directly by letting ∆t→ 0 in (2.21)).
However, the converse is not true. We refer to [95] for entropy inequalities for
semi-discrete schemes.
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2.3 Approximate Riemann solver of Harten, Lax,

Van Leer

This section is devoted to an introduction to the most general tool involved in the
construction of numerical schemes, the notion of approximate Riemann solver in
the sense of Harten, Lax, Van Leer [56]. In fact, relaxation solvers, kinetic solvers
and Roe solvers enter this framework. In the methods presented here, only the
VFRoe method introduced in [24] does not.

We define the Riemann problem for (1.8) to be the problem of finding the
solution to (1.8) with Riemann initial data

U0(x) =
{
Ul if x < 0,
Ur if x > 0, (2.34)

for two given constants Ul and Ur. By a simple scaling argument, this solution is
indeed a function only of x/t.

Definition 2.10. An approximate Riemann solver for (1.8) is a vector function
R(x/t, Ul, Ur) that is an approximation of the solution to the Riemann problem,
in the sense that it must satisfy the consistency relation

R(x/t, U, U) = U, (2.35)

and the conservativity identity

Fl(Ul, Ur) = Fr(Ul, Ur), (2.36)

where the left and right numerical fluxes are defined by

Fl(Ul, Ur) = F (Ul) −
∫ 0

−∞

(
R(v, Ul, Ur) − Ul

)
dv,

Fr(Ul, Ur) = F (Ur) +
∫ ∞

0

(
R(v, Ul, Ur) − Ur

)
dv.

(2.37)

It is called dissipative with respect to a convex entropy η for (1.8) if

Gr(Ul, Ur) −Gl(Ul, Ur) ≤ 0, (2.38)

where

Gl(Ul, Ur) = G(Ul) −
∫ 0

−∞

(
η(R(v, Ul, Ur)) − η(Ul)

)
dv,

Gr(Ul, Ur) = G(Ur) +
∫ ∞

0

(
η(R(v, Ul, Ur)) − η(Ur)

)
dv,

(2.39)

and G is the entropy flux associated to η, G′ = η′F ′.
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Figure 2.1: Approximate solution

It is possible to prove that the exact solution to the Riemann problem satisfies
these properties. However, the above definition is rather motivated by numerical
schemes. Indeed to an approximate Riemann solver we can associate a conserva-
tive numerical scheme. Let us explain how.

Consider a discrete sequence Un
i , i ∈ Z. Then we can interpret Un

i to be
the cell average of the function Un(x) which is piecewise constant over the mesh
with value Un

i in each cell Ci. In order to solve (1.8) with data Un(x) at time
tn, we can consider that close to each interface point xi+1/2, we have to solve a
translated Riemann problem. Since (1.8) is invariant under translation in time and
space, we can think of sticking together the local approximate Riemann solutions
R((x− xi+1/2)/(t− tn), Un

i , U
n
i+1), at least for times such that these solutions do

not interact. This is possible until time tn+1 under a CFL condition 1/2, in the
sense that

x/t < −∆xi

2∆t
⇒ R(x/t, Ui, Ui+1) = Ui,

x/t >
∆xi+1

2∆t
⇒ R(x/t, Ui, Ui+1) = Ui+1.

(2.40)

Thus, as illustrated in Figure 2.1, we define an approximate solution U(t, x) for
tn ≤ t < tn+1 by

U(t, x) = R

(
x− xi+1/2

t− tn
, Un

i , U
n
i+1

)
if xi < x < xi+1. (2.41)

Then, we define Un+1
i to be the average over Ci of this approximate solution at

time tn+1 −0. According to the definition (2.37) of Fl and Fr and by using (2.40),
we get
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Un+1
i =

1
∆xi

∫ xi+1/2

xi−1/2

U(tn+1 − 0, x) dx

=
1

∆xi

∫ ∆xi/2

0

R(x/∆t, Un
i−1, U

n
i ) dx+

1
∆xi

∫ 0

−∆xi/2

R(x/∆t, Un
i , U

n
i+1) dx

= Un
i +

1
∆xi

∫ ∆xi/2

0

(
R(x/∆t, Un

i−1, U
n
i ) − Un

i

)
dx

+
1

∆xi

∫ 0

−∆xi/2

(
R(x/∆t, Un

i , U
n
i+1) − Un

i

)
dx

= Un
i − ∆t

∆xi
[Fl(Un

i , U
n
i+1) − Fr(Un

i−1, U
n
i )].

(2.42)
Therefore we see that with the conservativity assumption (2.36), this is a conser-
vative scheme, with numerical flux

F (Ul, Ur) = Fl(Ul, Ur) = Fr(Ul, Ur). (2.43)

The consistency assumption (2.35) ensures that this numerical flux is consistent,
in the sense of Definition 2.1.

Remark 2.2. The approximate Riemann solver framework works as well with inter-
face dependent solvers Ri+1/2. This is used in practice to choose a solver adapted
to the data Ui, Ui+1, so as to produce a viscosity which is as small as possible.

Now let us examine condition (2.38). Since η is convex, we can use Jensen’s
inequality in (2.42), and we get

η(Un+1
i ) ≤ 1

∆xi

∫ ∆xi/2

0

η

(
R(x/∆t, Un

i−1, U
n
i )

)
dx

+
1

∆xi

∫ 0

−∆xi/2

η

(
R(x/∆t, Un

i , U
n
i+1)

)
dx

= η(Un
i ) − ∆t

∆xi
[Gl(Un

i , U
n
i+1) −Gr(Un

i−1, U
n
i )].

(2.44)

Under assumption (2.38), we get

η(Un+1
i ) − η(Un

i ) +
∆t
∆xi

[G(Un
i , U

n
i+1) −G(Un

i−1, U
n
i )] ≤ 0, (2.45)

for any numerical entropy flux function G(Ul, Ur) such that

Gr(Ul, Ur) ≤ G(Ul, Ur) ≤ Gl(Ul, Ur), (2.46)

thus we recover the conditions of Definition 2.6, since (2.35) ensures that this
numerical entropy flux is consistent.
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Another way to get (2.45) is to apply Proposition 2.9(ii). Indeed if σl and σr

are chosen so that x/t < σl ⇒ R(x/t, Ul, Ur) = Ul and x/t > σr ⇒ R(x/t, Ul, Ur)
= Ur, then with (2.37) and Jensen’s inequality

G(Ur) + σr

[
η

(
Ur +

Fr(Ul, Ur) − F (Ur)
σr

)
− η(Ur)

]

= G(Ur) + σr

[
η

(
1
σr

∫ σr

0

R(v, Ul, Ur) dv
)
− η(Ur)

]

≤ Gr(Ul, Ur),

(2.47)

G(Ul) + σl

[
η

(
Ul +

Fl(Ul, Ur) − F (Ul)
σl

)
− η(Ul)

]

= G(Ul) + σl

[
η

(−1
σl

∫ 0

σl

R(v, Ul, Ur) dv
)
− η(Ul)

]

≥ Gl(Ul, Ur).

(2.48)

Therefore, (2.46) implies that the inequalities (2.23)-(2.24) of Definition 2.7 are
satisfied, and the numerical flux is entropy satisfying by interface.

The invariant domains can also be recovered within this framework.

Proposition 2.11. Assume that R is an approximate Riemann solver that preserves
a convex invariant domain U for (1.8), in the sense that

Ul, Ur ∈ U ⇒ R(x/t, Ul, Ur) ∈ U for any value of x/t. (2.49)

Then the numerical scheme associated to R also preserves U in the sense of Defi-
nition 2.3.

Proof. This is obvious with the convex formula in the first line of (2.42). Another
proof is to verify that the numerical flux preserves U by interface, by using the
convex formulas in (2.47), (2.48). �

We have seen that to any approximate Riemann solver R we can associate a
conservative numerical scheme. In particular, if we use the exact Riemann solver,
the scheme we get is called the (exact) Godunov scheme. But in practice, the exact
resolution of the Riemann problem is too complicate and too expensive, especially
for systems with large dimension. Thus we rather use approximate solvers. The
most simple choice is the following.

2.3.1 Simple solvers

We shall call simple solver an approximate Riemann solver consisting of a set of
finitely many simple discontinuities. This means that there exists a finite number
m ≥ 1 of speeds

σ0 = −∞ < σ1 < · · · < σm < σm+1 = +∞, (2.50)
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Figure 2.2: A simple solver

and intermediate states

U0 = Ul, U1, . . . , Um−1, Um = Ur (2.51)

(depending on Ul and Ur), such that, as illustrated in Figure 2.2,

R(x/t, Ul, Ur) = Uk if σk < x/t < σk+1. (2.52)

Then the conservativity identity (2.36) becomes
m∑

k=1

σk(Uk − Uk−1) = F (Ur) − F (Ul), (2.53)

and the entropy inequality (2.38) becomes
m∑

k=1

σk (η(Uk) − η(Uk−1)) ≥ G(Ur) −G(Ul). (2.54)

Conservativity thus enables to define the intermediate fluxes Fk, k = 0, . . . ,m, by

Fk − Fk−1 = σk(Uk − Uk−1), F0 = F (Ul), Fm = F (Ur), (2.55)

which is a kind of generalization of the Rankine–Hugoniot relation. The numerical
flux is then given by

F (Ul, Ur) = Fk, where k is such that σk ≤ 0 ≤ σk+1. (2.56)

We can observe that if it happens that σk = 0 for some k, there is no ambiguity
in this definition since (2.55) gives in this case Fk = Fk−1. An explicit formula for
the numerical flux is indeed

F (Ul, Ur) = F (Ul) +
∑

σk<0

σk(Uk − Uk−1)

= F (Ur) −
∑

σk>0

σk(Uk − Uk−1).
(2.57)
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2.3.2 Roe solver

The Roe solver [89] is an example of simple solver. It is obtained as follows. We
need first to find a p × p diagonalizable matrix A(Ul, Ur) (called a Roe matrix),
such that

F (Ur) − F (Ul) = A(Ul, Ur)(Ur − Ul),
A(U,U) = F ′(U).

(2.58)

Then we define R(x/t, Ul, Ur) to be the solution to the linear problem

∂tU +A(Ul, Ur)∂xU = 0, (2.59)

with initial Riemann data (2.34). Denoting by σ1, . . . , σm the distinct eigenvalues
of A(Ul, Ur), we can decompose Ur − Ul along the eigenspaces

Ur − Ul =
m∑

k=1

δUk, A(Ul, Ur)δUk = σkδUk, (2.60)

and the solution is given by

R(x/t, Ul, Ur) = Ul +
k0∑

k=1

δUk, if σk0 < x/t < σk0+1. (2.61)

This defines a simple solver, the assumption (2.58) gives indeed the conservativity
(2.53), since

∑
k

σkδUk = A(Ul, Ur)(Ur − Ul) = F (Ur) − F (Ul). (2.62)

However, this method does generally not preserve invariant domains, and is not
entropy satisfying, entropy fixes have to be designed. We refer the reader to the
literature [45], [97], [76] for this class of schemes. For our purpose here, we shall
not consider this method because it is not possible to analyze its positivity, which
is a big problem when vacuum is involved.

2.3.3 CFL condition

For a simple solver we can define the local speed by

a(Ul, Ur) = sup
1≤k≤m

|σk|. (2.63)

Then the CFL condition (2.40) reads

∆t a(Ui, Ui+1) ≤ 1
2

min(∆xi,∆xi+1). (2.64)
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Figure 2.4: Bad interaction at CFL 1

This is called a CFL condition 1/2. However, in practice, it is almost always
possible to use a CFL 1 condition,

∆t a(Ui, Ui+1) ≤ min(∆xi,∆xi+1). (2.65)

The reason is that since the numerical flux somehow involves only the solution on
the line x = xi+1/2 (as is seen in (2.13)), we do not really need that no interaction
occurs between the Riemann problems, as was assumed in Figure 2.1. A situation
like Figure 2.3 should be enough. But of course we need some kind of interaction to
exist, and that the domain with question mark corresponds to acceptable values of
U . A bad situation is illustrated in Figure 2.4, where even if the local problems are
solved with CFL 1, the interaction produces larger speeds, and the waves attain
the neighboring cells. Schemes that handle the interaction of waves at CFL larger
than 1 are analyzed in [101] and the references therein.

2.3.4 Vacuum

As already mentioned, the computation of the solution to isentropic gas dynamics
(1.9), or full gas dynamics (1.11) with data having vacuum is a difficult point,
mainly because hyperbolicity is lost there. In the computation of an approximate
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Riemann solver, if the two values Ul, Ur are vacuum data Ul = Ur = 0, there is
no difficulty, we can simply set R = 0. The problem occurs when one of the two
values is zero and the other is not. We shall say that an approximate Riemann
solver can resolve the vacuum if in this case of two values Ul, Ur which are zero
and nonzero, it gives a solution R(x/t, Ul, Ur) with nonnegative density and with
finite speed of propagation, otherwise the CFL condition (2.65) would give a zero
timestep. The construction of solvers that are able to resolve vacuum is a main
point for applications to flows in rivers with Saint Venant type equations.

2.4 Relaxation solvers

The relaxation method is the most recent between the ones presented here. It is
used in [63], [30], [17], [11], [26]. We follow here the presentation of [27], [18] (see
also [78]).

Definition 2.12. A relaxation system for (1.8) is another system of conservation
laws in higher dimension q > p,

∂tf + ∂x(A(f)) = 0, (2.66)

where f(t, x) ∈ Rq, and A(f) ∈ Rq. We assume that this system is also hyperbolic.
The link between (2.66) and (1.8) is made by the assumption that we have a linear
operator

L : Rq → Rp (2.67)

and for any U , an equilibrium M(U) ∈ Rq, the maxwellian equilibrium, such that
for any U

LM(U) = U, (2.68)

LA(M(U)) = F (U). (2.69)

When solving (2.66), we define
U ≡ Lf. (2.70)

This cannot make any confusion since by (2.68) this gives the expected value when
f is a maxwellian, f = M(U).

The heart of the notion of relaxation system is the idea that U = Lf should be
an approximate solution to (1.8) when f solves (2.66) (exactly or approximately),
and is close to maxwellian data. We have to mention that we do not consider here
right-hand sides in (2.66) to achieve the relaxation to the maxwellian state, like
(M(Lf) − f)/ε, as is usual, but rather replace this by time discrete projections
onto maxwellians, an approach that was introduced in [23]. It is more adapted to
the numerical resolution of the conservation law (1.8) without right-hand side, see
[18]. The whole process of transport in (2.66) followed by relaxation to maxwellian
states, can be formalized as follows.
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Proposition 2.13. Let R(x/t, fl, fr) be an approximate Riemann solver for the
relaxation system (2.66). Then

R(x/t, Ul, Ur) = LR
(
x/t,M(Ul),M(Ur)

)
(2.71)

is an approximate Riemann solver for (1.8).

Proof. We have obviously from the consistency of R

R(x/t, U, U) = LR(x/t,M(U),M(U)) = LM(U) = U, (2.72)

which gives the consistency of R, (2.35). Next, denote by Al(fl, fr) and Ar(fl, fr)
the left and right numerical fluxes for the relaxation system (2.66). We have

Fl(Ul, Ur)

= F (Ul) −
∫ 0

−∞

(
R(v, Ul, Ur) − Ul

)
dv

= F (Ul) − L

∫ 0

−∞

(
R(v,M(Ul),M(Ur)) −M(Ul)

)
dv

= F (Ul) + L
[
Al(M(Ul),M(Ur)) −A(M(Ul))

]
= LAl(M(Ul),M(Ur)),

(2.73)

and similarly

Fr(Ul, Ur)

= F (Ur) +
∫ ∞

0

(
R(v, Ul, Ur) − Ur

)
dv

= F (Ur) + L

∫ ∞

0

(
R(v,M(Ul),M(Ur)) −M(Ur)

)
dv

= F (Ur) + L
[
Ar(M(Ul),M(Ur)) −A(M(Ur))

]
= LAr(M(Ul),M(Ur)).

(2.74)

Since R is conservative, Al = Ar and we deduce the conservativity of R (2.36),
with numerical flux

F (Ul, Ur) = LA(M(Ul),M(Ur)). (2.75)

Therefore the result is proved. �

A very interesting property of relaxation systems is that they can handle
naturally entropy inequalities, as follows. Assume that η is a convex entropy for
(1.8), and denote by G its entropy flux.
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Definition 2.14. We say that the relaxation system (2.66) has an entropy extension
relative to η if there exists some convex function H(f), which is an entropy for
(2.66), which means that there exist some entropy flux G(f) such that

G′ = H′A′, (2.76)

that these entropy and entropy-flux are extensions of the ones of the relaxed system
(1.8),

H(M(U)) = η(U) + cst, (2.77)

G(M(U)) = G(U) + cst, (2.78)

and that the minimization principle holds,

H(M(U)) ≤ H(f) whenever U = Lf. (2.79)

An analysis of the occurrence of such minimization principle is provided in
[18]. The interest of this notion lies in the following.

Proposition 2.15. Assume that the relaxation system (2.66) has an entropy exten-
sion H relative to η, and let R(x/t, fl, fr) be an associated approximate Riemann
solver, assumed to be H entropy satisfying. Then the approximate Riemann solver
R defined by (2.71) is η entropy satisfying.

Proof. Denote by Gl(fl, fr) and Gr(fl, fr) the left and right numerical entropy
fluxes associated to R. We have according to (2.77) and to the entropy minimiza-
tion principle (2.79)

Gl(Ul, Ur)

= G(Ul) −
∫ 0

−∞

(
η(R(v, Ul, Ur)) − η(Ul)

)
dv

≥ G(Ul) −
∫ 0

−∞

(
H(R(v,M(Ul),M(Ur))) −H(M(Ul))

)
dv

= Gl(M(Ul),M(Ur)) − G(M(Ul)) +G(Ul),

(2.80)

and

Gr(Ul, Ur)

= G(Ur) +
∫ ∞

0

(
η(R(v, Ul, Ur)) − η(Ur)

)
dv

≤ G(Ur) +
∫ ∞

0

(
H(R(v,M(Ul),M(Ur))) −H(M(Ur))

)
dv

= Gr(M(Ul),M(Ur)) − G(M(Ur)) +G(Ur).

(2.81)

But because of (2.78), −G(M(Ul)) + G(Ul) = −G(M(Ur)) + G(Ur), thus the
entropy dissipativity of R, i.e. Gr −Gl ≤ 0, implies that of R, i.e. Gr −Gl ≤ 0. �
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2.4.1 Nonlocal approach

The global approach to build a numerical scheme from a relaxation system is the
following. We start from the piecewise constant function

fn(x) = fn
i = M(Un

i ), if xi−1/2 < x < xi+1/2, (2.82)

and then solve
∂tf + ∂x(A(f)) = 0 in ]tn, tn+1[×R (2.83)

with this initial data. Next we define

U(t, x) = Lf(t, x), for tn ≤ t < tn+1, (2.84)

and the new discrete values at time tn+1 are obtained by

Un+1
i =

1
∆xi

∫ xi+1/2

xi−1/2

U(tn+1−, x) dx. (2.85)

By taking L in (2.83) and then averaging as in the proof of Proposition 2.2, we
get a conservative scheme with numerical flux

Fi+1/2 =
1

∆t

∫ tn+1

tn

LA(f(t, xi+1/2)) dt. (2.86)

Obviously, under a CFL condition 1/2, this is the same scheme as the one ob-
tained from the approximate solver of Proposition 2.13, with R the exact solver,
because U(t, x) is identically the approximate solution defined in (2.41). However,
the global approach has the advantage to work with CFL 1, because the wave
interaction of Figure 2.3 is here exactly computed in (2.83). The only counterpart
is that with this approach, we are not able to use an interface dependent solver,
as stated in Remark 2.2.

Under the assumption that the relaxation system has an entropy extension
H relative to η (Definition 2.14), we can also obtain the entropy inequality, as
follows. Since f is the exact entropy solution to (2.83), we have

∂t(H(f)) + ∂x(G(f)) ≤ 0. (2.87)

Integrating this inequality with respect to time and space, this gives

1
∆xi

∫ xi+1/2

xi−1/2

H(f(tn+1−, x)) dx− 1
∆xi

∫ xi+1/2

xi−1/2

H(f(tn, x)) dx

+
∆t
∆xi

(
Gi+1/2 −Gi−1/2

) ≤ 0,
(2.88)

with

Gi+1/2 =
1

∆t

∫ tn+1

tn

G(f(t, xi+1/2)) dt, (2.89)
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which is consistent with G by (2.78). But by the minimization principle (2.79),

H(M(U(tn+1−, x))) ≤ H(f(tn+1−, x)). (2.90)

Finally, with (2.77), (2.82) and the Jensen inequality

η(Un+1
i ) ≤ 1

∆xi

∫ xi+1/2

xi−1/2

η(U(tn+1−, x)) dx, (2.91)

we obtain
η(Un+1

i ) − η(Un
i ) +

∆t
∆xi

(
Gi+1/2 −Gi−1/2

) ≤ 0. (2.92)

2.4.2 Rusanov flux

The most simple numerical flux for solving the general system of conservation laws
(1.8) is the well-known Lax–Friedrichs numerical flux given by

F (Ul, Ur) =
F (Ul) + F (Ur)

2
− c

Ur − Ul

2
, (2.93)

where c > 0 is a parameter. The consistency of this numerical flux is obvious.
However, the analysis of invariant domains and entropy inequalities requires a bit
of work, and can be performed via a relaxation interpretation of it, that has been
proposed in [63].
This relaxation system has dimension q = 2p, and reads

{
∂tU + ∂xV = 0,
∂tV + c2∂xU = 0.

(2.94)

Following Definition 2.12, we have here f = (U, V ), A(U, V ) = (V, c2U), L(U, V ) =
U , M(U) = (U,F (U)), so that (2.68), (2.69) hold. Notice that the notation f =
(U, V ) is coherent with the fact that we always identify U with Lf .
A slightly different way of writing (2.94) is to write it in its diagonal form,

{
∂t(U + V/c) + c ∂x(U + V/c) = 0,
∂t(U − V/c) − c ∂x(U − V/c) = 0. (2.95)

In this form we can rather make the (equivalent) interpretation

f = (f1, f2) =
(
U − V/c

2
,
U + V/c

2

)
, (2.96)

A(f) = (−cf1, cf2), Lf = f1 + f2, (2.97)

M(U) =
(
U − F (U)/c

2
,
U + F (U)/c

2

)
, (2.98)
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for which (2.68), (2.69) is again satisfied. We can apply Proposition 2.13 with R
the exact solver, which is given by

R(x/t, f l, fr) =




(f l
1, f

l
2) if x/t < −c,

(fr
1 , f

l
2) if − c < x/t < c,

(fr
1 , f

r
2 ) if c < x/t.

(2.99)

Thus (2.71) gives the simple approximate Riemann solver

R(x/t, Ul, Ur) =




Ul if x/t < −c,
(Ul + Ur)/2 − (F (Ur) − F (Ul))/2c if − c < x/t < c,
Ur if c < x/t.

(2.100)
Using (2.37) or (2.75), its associated numerical flux is given by (2.93).

Now with this relaxation interpretation of the Lax–Friedrichs scheme, an
analysis of entropy compatibility can be performed. A main idea is to define an
extended entropy H with extended entropy flux G corresponding to an entropy η
with entropy flux G of (1.8) by

H(f) =
η(U−) −G(U−)/c

2
+
η(U+) +G(U+)/c

2
,

G(f) = −cη(U
−) −G(U−)/c

2
+ c

η(U+) +G(U+)/c
2

,

(2.101)

where U−, U+ are defined by

U− − F (U−)/c
2

= f1,
U+ + F (U+)/c

2
= f2. (2.102)

This construction requires that the relations (2.102) have a solution, which means
more or less that the eigenvalues λj(U) of F ′(U) satisfy

|λj(U)| ≤ c. (2.103)

This condition is called a subcharacteristic condition, it means that the eigenval-
ues of the system to be solved (1.8) lie between the eigenvalues of the relaxation
system, which are −c and +c here. General relations between entropy conditions
and subcharacteristic conditions can be found in [27] and [18]. Additional geomet-
rical assumptions related to global convexity are indeed also necessary in order
to justify the entropy inequalities. We shall not give the details here, they can be
found in [17] in the more general context of flux vector splitting fluxes. Similar
assumptions lead to the preservation of invariant domains, see [35], [36].

Finally, the Rusanov flux is obtained according to Remark 2.2 by optimizing
(2.103), and taking for c in (2.93)

c = sup
U=Ul,Ur

sup
j

|λj(U)|. (2.104)
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This is of course not fully justified, one should at least involve the intermediate
state of (2.100) in the supremum, but in practice this works quite well except an
excessive numerical diffusion of waves associated to intermediate eigenvalues.

For the isentropic gas dynamics system, (2.104) gives

c = max
(
|ul| +

√
p′(ρl), |ur| +

√
p′(ρr)

)
. (2.105)

The Rusanov flux preserves the positiveness of density because the intermediate
state in (2.100) has positive density (ρl + ρlul/c)/2 + (ρr − ρrur/c)/2 ≥ 0 (apply
Proposition 2.11), and handles data with vacuum since c does not blow up at
vacuum.

2.4.3 HLL flux

A generalization of the previous solver is obtained if we take two parameters
c1 < c2 (instead of −c and c), and consider the relaxation system for f = (f1, f2){

∂tf1 + c1∂xf1 = 0,
∂tf2 + c2∂xf2 = 0. (2.106)

Then
A(f) = (c1f1, c2f2), Lf = f1 + f2. (2.107)

The conditions (2.68), (2.69) read M1(U) + M2(U) = U , c1M1(U) + c2M2(U) =
F (U), thus we need to take

M1(U) =
c2U − F (U)
c2 − c1

, M2(U) =
−c1U + F (U)

c2 − c1
. (2.108)

We apply Proposition 2.13 with R the exact solver, which is given by

R(x/t, f l, fr) =




(f l
1, f

l
2) if x/t < c1,

(fr
1 , f

l
2) if c1 < x/t < c2,

(fr
1 , f

r
2 ) if c2 < x/t,

(2.109)

thus we get the approximate Riemann solver

R(x/t, Ul, Ur) =




Ul if x/t < c1,

c2Ur − F (Ur)
c2 − c1

+
−c1Ul + F (Ul)

c2 − c1
if c1 < x/t < c2,

Ur if c2 < x/t.
(2.110)

According to (2.56), the HLL numerical flux is

F (Ul, Ur) =




F (Ul) if 0 < c1,

c2F (Ul) − c1F (Ur)
c2 − c1

+
c1c2
c2 − c1

(Ur − Ul) if c1 < 0 < c2,

F (Ur) if c2 < 0.
(2.111)
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The subcharacteristic condition, related to the invertibility of M1(U) and M2(U),
is now

c1 ≤ λj(U) ≤ c2, (2.112)

and the invariant domains and entropy conditions are analyzed similarly as for
the Lax–Friedrichs flux. The HLL numerical flux was introduced in [56], and was
indeed the first example of approximate Riemann solver. This numerical flux is
a little less diffusive than the Lax-Friedrichs flux, but has the same drawback to
be too diffusive for waves corresponding to eigenvalues other than the lowest and
largest ones. Again a local optimization of (2.112) leads to the choice

c1 = inf
U=Ul,Ur

inf
j
λj(U), c2 = sup

U=Ul,Ur

sup
j
λj(U). (2.113)

2.4.4 Suliciu relaxation system

The situation where the relaxation approach is particularly interesting is when
we use a relaxation system for which it is quite easy to find the exact Riemann
solution. Then we take indeed for R in Proposition 2.13 the exact solver. Apart
from the case of a linear relaxation system, a more general situation where it is
quite easy to find an exact Riemann solution is when all eigenvalues are linearly
degenerate. This is what happens with the Suliciu relaxation system.

The Suliciu relaxation system is described in [93], [94], [30], [17], [26], [11],
and is attached to the resolution of the isentropic gas dynamics system (1.9). It
can also handle full gas dynamics, see Section 2.4.6.

A way to introduce this relaxation system is to start with a smooth solution
to the isentropic system (1.9), and to derive an equation on the pressure p(ρ).
Developing the density equation as ∂tρ + u ∂xρ + ρ ∂xu = 0, and multiplying
by p′(ρ), we obtain ∂t p(ρ) + u ∂x p(ρ) + ρp′(ρ)∂xu = 0. Using again the density
equation one gets

∂t (ρp(ρ)) + ∂x (ρp(ρ)u) + ρ2p′(ρ)∂xu = 0. (2.114)

Then replacing p(ρ) by a new variable π and ρ2p′(ρ) by a constant c2, we get the
relaxation system 


∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + π) = 0,
∂t(ρπ) + ∂x(ρπu) + c2∂xu = 0.

(2.115)

This system has q = 3 unknowns, f = (ρ, ρu, ρπ), for p = 2 unknowns ρ, ρu for
the original system. Hence here L(f1, f2, f3) = (f1, f2) (observe that we make the
identification (2.70)), and

A(ρ, ρu, ρπ) =
(
ρu, ρu2 + π, ρπu+ c2u

)
, (2.116)
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where c > 0 is a parameter. The maxwellian equilibrium is defined here by

M(ρ, ρu) =
(
ρ, ρu, ρp(ρ)

)
, (2.117)

and the equations (2.68)–(2.69) are obviously satisfied. The exact resolution of the
Riemann problem for (2.115) is quite simple, because it can be put in diagonal
form 


∂t(π + cu) + (u+ c/ρ)∂x(π + cu) = 0,
∂t(π − cu) + (u− c/ρ)∂x(π − cu) = 0,
∂t(1/ρ+ π/c2) + u ∂x(1/ρ+ π/c2) = 0,

(2.118)

and we can observe that all eigenvalues are linearly degenerate, leading to only
contact discontinuities (see Example 1.9). Thus the approximate solver we get for
(1.9) is simple in the sense of Section 2.3.1. The speeds and the intermediate values
are given as a special case of (2.133), (2.135) when cl = cr = c.

This solver is entropy satisfying if the parameter c is chosen sufficiently large
in the sense of the following subcharacteristic condition, meaning that the eigen-
values of the system to be solved lie between the eigenvalues of the relaxation
system (2.115), which are u− c/ρ, u, u+ c/ρ according to (2.118).

Lemma 2.16. If c is chosen in such a way that the Riemann solution to (2.115)
has a density lying in some interval, ρ(t, x) ∈ I, such that I ⊂ (0,∞) and

∀ρ ∈ I, ρ2p′(ρ) ≤ c2, (2.119)

then the approximate Riemann solver obtained by Proposition 2.13 preserves pos-
itiveness of density and is entropy satisfying.

Proof. The positiveness of density follows from Proposition 2.11. For the entropy
inequality, in order to apply Proposition 2.15, we have to build an entropy exten-
sion in the sense of Definition 2.14. Following [17], this is done by setting

H(ρ, u, π) = ρ u2/2 + ρϕ
(
1/ρ+ π/c2

)
+ ρ π2/2c2, (2.120)

where ϕ is given for any g ∈ J ≡ {1/ρ+ p(ρ)/c2}ρ∈I by

ϕ(g) = sup
ρ∈I

{
e(ρ) − p(ρ)2/2c2 − p(ρ)

(
g − (1/ρ+ p(ρ)/c2)

)}
, (2.121)

or equivalently by

ϕ
(
1/ρ+ p(ρ)/c2

)
= e(ρ) − p(ρ)2/2c2, ρ ∈ I. (2.122)

The entropy flux is
G(ρ, u, π) = (H(ρ, u, π) + π)u. (2.123)

In order to justify these definitions, let us first prove the equivalence between
(2.121) and (2.122). We notice that

d

dρ

(
1/ρ+ p(ρ)/c2

)
= − 1

ρ2

(
1 − ρ2p′(ρ)/c2

) ≤ 0, (2.124)
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thus ρ 	→ 1/ρ+ p(ρ)/c2 is a nonincreasing function from I to J . Then, let χ(ρ) be
the function between braces in (2.121). One can check that

χ′(ρ) = p′(ρ)
(
1/ρ+ p(ρ)/c2 − g

)
, (2.125)

thus writing that g = 1/ρg + p(ρg)/c2 for some ρg ∈ I (ρg may be not unique), we
have that χ′(ρ) ≥ 0 for ρ ≤ ρg, and χ′(ρ) ≤ 0 for ρ ≥ ρg. Therefore, the supremum
in (2.121) is attained at ρ = ρg, which gives (2.122).

Then, we observe that according to the last equation in (2.118), 1/ρ+ π/c2

remains in J , thus H in (2.120) is well-defined. Applying Lemma 1.4, the convexity
of H with respect to ρ, ρu, ρπ is equivalent to the convexity of u2/2 + ϕ(1/ρ +
π/c2) + π2/2c2 with respect to (1/ρ, u, π), which is obvious since by (2.121), ϕ(g)
is a convex function of g. In order to prove that H is an entropy, we write from
(2.118)

∂t(π + cu)2 + (u+ c/ρ)∂x(π + cu)2 = 0,
∂t(π − cu)2 + (u− c/ρ)∂x(π − cu)2 = 0,
∂tϕ(1/ρ+ π/c2) + u ∂xϕ(1/ρ+ π/c2) = 0,

(2.126)

thus by addition

(∂t + u∂x)
(
u2/2 + π2/2c2 + ϕ(1/ρ+ π/c2)

)
+

1
ρ
∂x(πu) = 0, (2.127)

which together with the first equation of (2.115) gives ∂tH + ∂xG = 0, proving
that H is an entropy for (2.115), with G as entropy flux.

The fact that H and G are extensions of η and G in (1.25) and (1.27) is
obvious since replacing π by p(ρ) gives directly (2.77), (2.78).

Finally, it remains to check the minimization principle (2.79). It means here
that whenever ρ ∈ I and 1/ρ+ π/c2 ∈ J ,

η(ρ, u) ≤ H(ρ, u, π). (2.128)

But according to (2.121),

ϕ(1/ρ+ π/c2) ≥ e(ρ) − p(ρ)2/2c2 − p(ρ) (π − p(ρ)) /c2, (2.129)

thus

H(ρ, u, π) ≥ ρu2/2 + ρ
(
e(ρ) − p(ρ)2/2c2 − p(ρ) (π − p(ρ)) /c2

)
+ ρ π2/2c2

= η(ρ, u) + ρ(π − p(ρ))2/2c2

≥ η(ρ, u),
(2.130)

which gives (2.128) and concludes the Lemma. �
In order to apply Lemma 2.16, we can take a value c depending on Ul,

Ur which is the smallest possible to satisfy (2.119) (see Remark 2.2). An iterative
procedure to compute this optimal value is proposed in [17]. However, in practice a
more explicit choice is preferable, as we explain in the next section, see in particular
Proposition 2.18.
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Figure 2.5: Suliciu approximate Riemann solver

2.4.5 Suliciu relaxation adapted to vacuum

The problem with the previous solver is that it cannot handle vacuum, in the sense
of Section 2.3.4. Indeed since the extreme eigenvalues are ul − c/ρl, ur + c/ρr, we
see that if one of the two densities ρl or ρr tends to 0 while the other remains
finite, the propagation speed will tend to infinity, unless c tends to zero, which is
not possible by (2.119) since the other density remains finite.

In order to cure this defect, we take c nonconstant in (2.115), and we choose
to solve

∂tc+ u ∂xc = 0. (2.131)

We see then that the whole system (2.115),(2.131) can be put in conservative form




∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + π) = 0,
∂t(ρπ/c2) + ∂x(ρπu/c2) + ∂xu = 0,
∂t(ρc) + ∂x(ρcu) = 0.

(2.132)

One can check that all eigenvalues are again linearly degenerate, thus we can
compute the exact solution to the Riemann problem. It has three wave speeds σ1,
σ2, σ3, with two intermediate states that we shall index by l∗ and r∗ (see Figure
2.5). We notice that c∗l = cl, c∗r = cr. Then, according to the diagonal form
(2.118) and to the fact that u and π are two independent Riemann invariants for
the central wave (see Section 1.5), the wave speeds are given by

σ1 = ul − cl/ρl, σ2 = u∗l = u∗r , σ3 = ur + cr/ρr, (2.133)

and the intermediate states are obtained by the relations

u∗l = u∗r , π∗
l = π∗

r ,
(π + cu)∗l = (π + cu)l, (π − cu)∗r = (π − cu)r,(

1/ρ+ π/c2
)∗
l

=
(
1/ρ+ π/c2

)
l
,

(
1/ρ+ π/c2

)∗
r

=
(
1/ρ+ π/c2

)
r
.

(2.134)
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The solution is easily found to be

u∗l = u∗r =
clul + crur + πl − πr

cl + cr
, π∗

l = π∗
r =

crπl + clπr − clcr(ur − ul)
cl + cr

,

1
ρ∗l

=
1
ρl

+
cr(ur − ul) + πl − πr

cl(cl + cr)
,

1
ρ∗r

=
1
ρr

+
cl(ur − ul) + πr − πl

cr(cl + cr)
.

(2.135)
Since we have to start with maxwellian initial data, this means that we take
πl = p(ρl), πr = p(ρr). The intermediate fluxes of (2.55) are

F ∗
l =

(
ρ∗l u

∗
l , ρ

∗
l (u

∗
l )

2 + π∗
l

)
, F ∗

r =
(
ρ∗ru

∗
r , ρ

∗
r(u

∗
r)

2 + π∗
r

)
. (2.136)

The positiveness of ρ∗l and ρ∗r is not guaranteed a priori in (2.135), this is a
requirement that constraints cl, cr to be large enough. Another requirement is
that σ1 < σ2 < σ3, but indeed this property follows from the previous one since
one has σ2−σ1 = cl/ρ

∗
l , σ3−σ2 = cr/ρ

∗
r . However, as we shall see, the positiveness

of ρ∗l , ρ
∗
r is less restrictive on the possible choice of cl, cr than the subcharacteristic

condition we derive below.
Even if the system (2.132) is not strictly speaking a relaxation system, we still

get a simple approximate Riemann solver for the isentropic gas dynamics system
(1.9). The subcharacteristic condition of Lemma 2.16 has now to be written more
precisely. Going through the analysis of [17] (the proof is provided in the more
general setting of Lemma 2.20), it takes the following form.

Lemma 2.17. With the formulas (2.135), if cl and cr are chosen in such a way
that the densities ρl, ρr, ρ∗l , ρ

∗
r are positive and satisfy

∀ρ ∈ [ρl, ρ
∗
l ], ρ2p′(ρ) ≤ c2l ,

∀ρ ∈ [ρr, ρ
∗
r ], ρ2p′(ρ) ≤ c2r,

(2.137)

then the approximate Riemann solver preserves positiveness of density and is en-
tropy satisfying.

Indeed the entropy inequality then follows from the resolution of

∂t

(
ρu2/2 + ρe

)
+ ∂x

(
(ρu2/2 + ρe+ π)u

)
= 0, (2.138)

with el = e(ρl), er = e(ρr), the subcharacteristic conditions (2.137) ensuring the
decrease at the projection step. The equation (2.138) can be combined with (2.132)
to obtain

∂t(e− π2/2c2) + u ∂x(e− π2/2c2) = 0, (2.139)

and therefore we can take for intermediate entropy fluxes

G∗
l =

(
ρ∗l (u

∗
l )

2/2 + ρ∗l e
∗
l + π∗

l

)
u∗l , G∗

r =
(
ρ∗r(u

∗
r)

2/2 + ρ∗re
∗
r + π∗

r

)
u∗r , (2.140)
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where the intermediate values for e are

e∗l = el − π2
l /2c

2
l + (π∗

l )2/2c2l , e∗r = er − π2
r/2c

2
r + (π∗

r )2/2c2r. (2.141)

We are now going to explain how to choose the two parameters cl, cr, in
such a way that the subcharacteristic conditions (2.137) are satisfied and that the
scheme is able to treat the vacuum, in the sense of Section 2.3.4. Indeed, noticing
the value of the speeds in (2.133), we need to have that cl/ρl and cr/ρr both remain
bounded when one of the two densities ρl, ρr tends to zero, the other remaining
nonzero. A possible solution is to impose the relation cl/ρl = cr/ρr = a > 0, and
then to find the smallest a such that the inequalities (2.137) are satisfied. Because
of the strong nonlinearity of this problem, we rather choose here a direct estimate.
We make the following assumptions:

∀ρ > 0,
d

dρ

(
ρ
√
p′(ρ)

)
> 0 (2.142)

ρ
√
p′(ρ) → ∞ as ρ→ ∞, (2.143)

d

dρ

(
ρ
√
p′(ρ)

)
≤ α

√
p′(ρ), for some constant α ≥ 1. (2.144)

These assumptions are very natural, and are satisfied for a gamma law p(ρ) = κργ

with κ > 0, γ ≥ 1, with the value α = (γ + 1)/2. Indeed, (2.142) is equivalent to
the convexity of p with respect to 1/ρ, and according to [45] it means that both
eigenvalues of the system are genuinely nonlinear.

Proposition 2.18. Under the assumptions (2.142)–(2.144), when ρl, ρr > 0, define
the relaxation speeds by

if pr − pl ≥ 0,




cl
ρl

=
√
p′(ρl) + α

(
pr − pl

ρr

√
p′(ρr)

+ ul − ur

)

+

,

cr
ρr

=
√
p′(ρr) + α

(
pl − pr

cl
+ ul − ur

)

+

,

(2.145)

if pr − pl ≤ 0,




cr
ρr

=
√
p′(ρr) + α

(
pl − pr

ρl

√
p′(ρl)

+ ul − ur

)

+

,

cl
ρl

=
√
p′(ρl) + α

(
pr − pl

cr
+ ul − ur

)

+

.

(2.146)

Then the intermediate densities ρ∗l , ρ
∗
r are positive and the subcharacteristic con-

ditions (2.137) are satisfied. In particular, we obtain a positive entropy satisfying
approximate Riemann solver for the isentropic gas dynamics system (1.9) that
handles the vacuum.
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The property to treat the vacuum is seen just by observing that there is
no blow-up in (2.145)–(2.146) when one of the densities tends to 0, because of
the overall positive parts. Observe also that our choice of the relaxation speeds
is sharp, in the sense that when Ul = Ur, (2.133) gives the exact eigenvalues of
F ′(U). This ensures the optimality of the CFL condition when Ul and Ur are not
too far.

In order to prove Proposition 2.18, let us first rewrite the subcharacteristic
conditions (2.137). The assumptions (2.142)–(2.143) ensure that we have an inverse
function ψ : (0,∞) → (0,∞) such that

ρ
√
p′(ρ) = c ⇔ ρ = ψ(c). (2.147)

Then, (2.144) means that ψ′(c) ≥ ψ(c)/αc. Writing that d
dc (ψ(c)c−1/α) ≥ 0, we

get that
∀λ ≥ 1, ψ(λc) ≥ λ1/αψ(c). (2.148)

According to the monotonicity of ψ and to (2.135), the conditions (2.137) read

ρl

√
p′(ρl) ≤ cl,

1
ρl

+
cr(ur − ul) + pl − pr

cl(cl + cr)
≥ 1
ψ(cl)

,

ρr

√
p′(ρr) ≤ cr,

1
ρr

+
cl(ur − ul) + pr − pl

cr(cl + cr)
≥ 1
ψ(cr)

.

(2.149)

Observe that these conditions include the positivity of ρ∗l and ρ∗r .

Lemma 2.19. For any given cr > 0, if we define

cl
ρl

=
√
p′(ρl) + α

(
pr − pl

cr
+ ul − ur

)
+

, (2.150)

then the two first conditions in the first line of (2.149) are met.

Proof. We have obviously cl ≥ ρl

√
p′(ρl), thus the first condition is trivial. For

the second, if cr(ur − ul) + pl − pr ≥ 0, it is obviously satisfied. Assume now that
cr(ur − ul) + pl − pr ≤ 0, and define

X =
pr − pl

cr
+ ul − ur ≥ 0. (2.151)

Then cl = ρl(
√
p′(ρl) + αX), thus multiplying by ρl, the condition reads

1 − cr
cl + cr

X√
p′(ρl) + αX

≥ ρl

ψ(cl)
. (2.152)

Denoting by

θ =

√
p′(ρl)√

p′(ρl) + αX
, 1 − θ =

αX√
p′(ρl) + αX

, (2.153)
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and since cr/(cl + cr) ≤ 1, it is enough to have

1 − 1 − θ

α
− ρl

ψ(ρl

√
p′(ρl)/θ)

≥ 0. (2.154)

Then, since 0 < θ ≤ 1 and ψ(ρl

√
p′(ρl)) = ρl, according to (2.148) it is enough to

have
1 − 1 − θ

α
− θ1/α ≥ 0, (2.155)

and this is indeed the case when 0 < θ ≤ 1 and α ≥ 1. �

Proof of Proposition 2.18. The result of Lemma 2.19 can of course be symme-
trized, and for any cl > 0, the value

cr
ρr

=
√
p′(ρr) + α

(
pl − pr

cl
+ ul − ur

)
+

(2.156)

satisfies the second line of (2.149). Consider now the choice of cl, cr given by
(2.145)–(2.146), and assume for instance that pr − pl ≥ 0. Then by the previous
remark, the second line of (2.149) is satisfied. Concerning the first line, in the case
cr(ur − ul) + pl − pr ≥ 0 it is trivial since cl ≥ ρl

√
p′(ρl). Thus let us assume that

cr(ur − ul) + pl − pr ≤ 0. Then since cr ≥ ρr

√
p′(ρr) and pr − pl ≥ 0, we have

that cl ≥ c̃l, with

c̃l
ρl

=
√
p′(ρl) + α

(
pr − pl

cr
+ ul − ur

)
+

. (2.157)

But by Lemma 2.19, the couple (c̃l, cr) fulfills the first line of (2.149). Since cr(ur−
ul) + pl − pr ≤ 0, this condition is monotone with respect to cl, thus we conclude
that (cl, cr) also satisfies this condition. �

2.4.6 Suliciu relaxation/HLLC solver for full gas dynamics

2.4.6.a Reduction to an almost isentropic system

The full gas dynamics system (1.11) can be handled via a general idea introduced
in [30], which consists in reversing the role of energy conservation and entropy
inequality, thus considering the system




∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρs) + ∂x(ρsu) = 0,

(2.158)

with the entropy inequality

∂t(ρ(u2/2 + e)) + ∂x((ρ(u2/2 + e) + p)u) ≤ 0. (2.159)
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The convexity of this entropy with respect to (ρ, ρu, ρs) is ensured by the physically
relevant condition

−s is a convex function of (1/ρ, e), (2.160)

see [45]. Assume that we have a conservative numerical scheme for solving (2.158),

ρn+1
i − ρi +

∆t
∆xi

(
F ρ

i+1/2 − F ρ
i−1/2

)
= 0,

ρn+1
i un+1

i − ρi ui +
∆t
∆xi

(
F ρu

i+1/2 − F ρu
i−1/2

)
= 0,

ρn+1
i sn+1

i − ρi si +
∆t
∆xi

(
F ρs

i+1/2 − F ρs
i−1/2

)
= 0,

(2.161)

satisfying an entropy inequality

ρn+1
i ((un+1

i )2/2+e(ρn+1
i , sn+1

i ))−ρi(u2
i /2+e(ρi, si))+

∆t
∆xi

(
F e

i+1/2−F e
i−1/2

)
≤ 0.

(2.162)
We assume moreover that the scheme satisfies for any φ convex the inequalities

ρn+1
i φ(sn+1

i ) − ρi φ(si) +
∆t
∆xi

(
F

ρφ(s)
i+1/2 − F

ρφ(s)
i−1/2

)
≤ 0. (2.163)

Then we define the scheme for the gas dynamics system (1.11) by

ρn+1
i − ρi +

∆t
∆xi

(
F ρ

i+1/2 − F ρ
i−1/2

)
= 0,

ρn+1
i un+1

i − ρi ui +
∆t
∆xi

(
F ρu

i+1/2 − F ρu
i−1/2

)
= 0,

ρn+1
i ((un+1

i )2/2 + en+1
i ) − ρi(u2

i /2 + ei) +
∆t
∆xi

(
F e

i+1/2 − F e
i−1/2

)
= 0,

(2.164)
where of course we take initially si = s(ρi, ei), or equivalently ei = e(ρi, si). Then
by comparing the last equation in (2.164) to (2.162), we deduce that

en+1
i ≥ e(ρn+1

i , sn+1
i ), (2.165)

where sn+1
i is computed by (2.161). Therefore, en+1

i ≥ 0, and since by (1.12)
(∂s

∂e)ρ = 1/T > 0, this yields s(ρn+1
i , en+1

i ) ≥ sn+1
i . Combining this with (2.163)

we obtain for any φ convex and nonincreasing

ρn+1
i φ(s(ρn+1

i , en+1
i )) − ρi φ(s(ρi, ei)) +

∆t
∆xi

(
F

ρφ(s)
i+1/2 − F

ρφ(s)
i−1/2

)
≤ 0, (2.166)

which is the desired discrete entropy inequality corresponding to (1.33) (recall
Lemma 1.3).

We conclude that in order to solve the full gas dynamics system, it is enough
to solve the problem (2.158)–(2.159), which is formally the same as the isentropic
system (1.9), except that instead of being constant, s is transported by the flow
through ∂ts+ u ∂xs = 0.
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2.4.6.b Resolution of an extended Suliciu relaxation system

The system (2.158) can be resolved with the same relaxation system (2.132),
(2.138) to which we add the transport of specific entropy,




∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + π) = 0,
∂t

(
ρu2/2 + ρe

)
+ ∂x

(
(ρu2/2 + ρe+ π)u

)
= 0,

∂t(ρπ/c2) + ∂x(ρπu/c2) + ∂xu = 0,
∂t(ρc) + ∂x(ρcu) = 0,
∂t(ρs) + ∂x(ρsu) = 0.

(2.167)

One has to take care that in (2.167), ρ, e, s, π are understood as independent
variables. According to the previous paragraph, for the resolution of (2.158), the
equation on ρs is taken as conservative variable and the energy e is just forgotten
at time tn+1, being replaced by e(ρn+1, sn+1). On the contrary, in the case of true
gas dynamics, e is kept while s is replaced by s(ρn+1, en+1). The last variable π is
in any case replaced by the true pressure, p(ρn+1, sn+1) or p(ρn+1, en+1).

The solution to the Riemann problem for (2.167) is obvious since s is not
coupled, it is the same as before (2.133), (2.135), (2.141), to which we prescribe
s∗l = sl, s∗r = sr. Only the initialization is modified, now

πl = pl = p(ρl, sl), πr = pr = p(ρr, sr). (2.168)

In order to get (2.162), we use the following generalization of Lemma 2.17.

Lemma 2.20. In the Riemann problem for (2.167) with initially (2.168) and el =
e(ρl, sl), er = e(ρr, sr), if cl and cr are chosen in such a way that the densities ρl,
ρr, ρ∗l , ρ

∗
r are positive and satisfy

∀ρ ∈ [ρl, ρ
∗
l ], ρ2

(
∂p

∂ρ

)
s

(ρ, sl) ≤ c2l ,

∀ρ ∈ [ρr, ρ
∗
r ], ρ2

(
∂p

∂ρ

)
s

(ρ, sr) ≤ c2r,
(2.169)

then we get an approximate Riemann solver for the almost isentropic system
(2.158), that is entropy satisfying with respect to the entropy in (2.159).

Proof. Recall that the index s in (2.169) means that the derivative is taken
at s constant. Consider the three speeds σ1, σ2, σ3 of (2.133), and the inter-
mediate states for U = (ρ, ρu, ρs) coming from the solution of the Riemann
problem (2.167). In order that these values form a simple approximate solver
in the sense of Section 2.3.1, we need to check the relation (2.53). But since
from (2.167) we have ∂tU + ∂xΞ = 0 with Ξ = (ρu, ρu2 + π, ρsu), we deduce
the Rankine–Hugoniot jump relations σk(Uk − Uk−1) = Ξk − Ξk−1. Therefore,∑3

k=1 σk(Uk − Uk−1) = Ξ3 − Ξ0 = F (Ur) − F (Ul) with F the flux of (2.158),
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which proves the conservative relation. Notice that it gives also the fluxes of (2.55),
Fk = Ξk.

In order to prove the entropy inequality (2.54), we notice that by the third
equation in (2.167), σk(Ek − Ek−1) = ξk − ξk−1, with E = ρu2/2 + ρe and ξ =
(ρu2/2+ρe+π)u. Recall that here e is an independent variable. We deduce with G
the entropy flux of (2.159) that G(Ur)−G(Ul) = ξ3−ξ0 =

∑3
k=1 σk(Ek−Ek−1) =

−σ1E0 +(σ1−σ2)E1 +(σ2−σ3)E2 +σ3E3. But since E0 = η(Ul) and E3 = η(Ur),
we conclude by comparison to (2.54) that we only need to prove that E1 ≥ η(U1)
and E2 ≥ η(U2), or in other words

e∗l ≥ e(ρ∗l , sl), e∗r ≥ e(ρ∗r , sr). (2.170)

Notice that once this is known, one could argue here as in the previous Paragraph
2.4.6.a to conclude directly that we have an entropy approximate Riemann solver
for the true gas dynamics system.

Let us now prove (2.170). We use a decomposition in elementary entropy
dissipation terms along each of the three waves that was introduced in [17]. We
denote now by U only the density and velocity variables, and define the derivative
of the isentropic entropy in Lagrange variable at fixed s by Vs(U),

U = (ρ, ρu), Vs(U) =
(
−p(ρ, s), u

)
. (2.171)

Then we have the following decomposition along the waves,

e(ρ∗r , sr) − e∗r = Dr
−(U∗

r , π
∗
r − cru

∗
r) +Dr

+(U∗
r , π

∗
r + cru

∗
r) +Dr

0(U
∗
r , Ur),

e(ρ∗l , sl) − e∗l = Dl
−(U∗

l , π
∗
l − clu

∗
l ) +Dl

+(U∗
l , π

∗
l + clu

∗
l ) +Dl

0(U
∗
l , Ul),

(2.172)
where the upper indices l or r on the elementary dissipations D−, D+, D0 mean
that c, s are taken either cl or cr, respectively sl or sr, and

D−(U,Λ)=
1

4c2
(p− cu)2 − 1

4c2
Λ2 − Vs(U)

(
− 1

2c2
(p− cu− Λ),− 1

2c
(p− cu− Λ)

)
,

(2.173)

D+(U,Λ)=
1

4c2
(p+ cu)2 − 1

4c2
Λ2 − Vs(U)

(
− 1

2c2
(p+ cu− Λ),

1
2c

(p+ cu− Λ)
)
,

(2.174)

D0(U1, U2)= e(ρ1, s) − p2
1

2c2
−

(
e(ρ2, s) − p2

2

2c2

)
− Vs(U1)

(
1
ρ1

+
p1

c2
− 1
ρ2

− p2

c2
, 0

)
.

(2.175)
In (2.173) and (2.174), p stands for p(ρ, s), while in (2.175), p1 = p(ρ1, s), p2 =
p(ρ2, s). The identities (2.172) can be checked directly, indeed the sum of the terms
in factor of Vs(U) vanish according to the relations of the last line in (2.134), and
the sum of the terms which are not in factor of Vs(U) simplify with (2.141).
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Now that we have (2.172), it is enough to prove that D−, D+, D0 are all
nonpositive. For D− and D+ this is trivial since using the definition of Vs(U) one
directly simplifies

D−(U,Λ) = − 1
4c2

(p− cu− Λ)2, D+(U,Λ) = − 1
4c2

(p+ cu− Λ)2. (2.176)

For the last dissipation term D0, we have two values ρ1, ρ2 but single values for c
and s, thus we can use the analysis of Lemma 2.16. It ensures that whenever we
have some interval I, I ⊂ (0,∞) satisfying (2.119), we have the equivalence of the
two definitions of ϕ, (2.121) and (2.122). In particular, if ρ1, ρ2 ∈ I, one has

e(ρ2) − p(ρ2)2/2c2

= ϕ
(
1/ρ2 + p(ρ2)/c2

)
≥ e(ρ1) − p(ρ1)2/2c2 − p(ρ1)

(
1/ρ2 + p(ρ2)/c2 −

(
1/ρ1 + p(ρ1)/c2

))
,

(2.177)

thus D0(U1, U2) ≤ 0. In order to get this inequality for Dr
0(U∗

r , Ur) and Dl
0(U∗

l , Ul)
in (2.172), we just take respectively I = [ρl, ρ

∗
l ] and I = [ρr, ρ

∗
r ], which satisfy

(2.119) by the assumptions (2.169). �
With the convention that p′ stands for (∂p

∂ρ )s, one checks easily by using
Lemma 2.20 instead of Lemma 2.17, that Proposition 2.18 is still valid with p′(ρ, sl)
for the left condition and p′(ρ, sr) for the right condition. Gathering the results
and using the approach explained in the previous subsection (see also Remark 2.10
in Section 2.7), we deduce the following result.

Proposition 2.21. If (2.160) is satisfied and if the assumptions (2.142)–(2.144)
hold at fixed s, the simple solver defined by the wave speeds (2.133) and inter-
mediate states (2.135), (2.141), with (2.168) and with the choice of the relaxation
speeds (2.145)–(2.146) is an approximate Riemann solver for the full gas dynamics
system (1.11). It has the following properties:
(i) it preserves the nonnegativity of ρ,
(ii) it preserves the positivity of e,
(iii) it satisfies discrete entropy inequalities,
(iv) if satisfies the maximum principle on the specific entropy.
(v) stationary contact discontinuities where u = 0, p = cst are exactly resolved.
(vi) it handles data with vacuum.
The numerical fluxes are given by (2.136), (2.140).

Only the property (v) has not been discussed previously. It can be seen either
by the formulas (2.135), (2.141), (2.133) that give for such initial data u∗l = u∗r = 0,
π∗

l = π∗
r = p, ρ∗l = ρl, ρ∗r = ρr, e∗l = el, e∗r = er, σ2 = 0, or either by observing

more generally that a solution to the full gas dynamics system such that u = cst,
p = cst, and ∂tρ + u∂xρ = 0 gives a particular solution to (2.167) with π = p. In
this property, the choice of cl and cr does not matter at all.
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We can observe that the approximate Riemann solver we get can be identified
with the HLLC solver that can be found in [97], [10], or the solver proposed in [32],
or [37]. Here by the relaxation and subcharacteristic analysis we have provided for
the first time a full proof of the entropy conditions valid for arbitrary large data
and in particular for vacuum, and with explicit and sharp values of the wavespeeds,
for general (convex) pressure laws.

Remark 2.3. The method works the same to treat the full gas dynamics system
with transverse velocity.

2.5 Kinetic solvers

Kinetic solvers and related kinetic formulations can be found in [86]. We propose
here the vector approach of [16], [17].

Definition 2.22. A kinetic system associated to the conservation law (1.8) is an
equation

∂tf + a(ξ)∂xf = 0, (2.178)

where f(t, x, ξ) ∈ Rp, and ξ ∈ Ξ is a new variable lying in a measure space Ξ
with nonnegative measure dξ. The link between (2.178) and (1.8) is made by the
assumption that we have an equilibrium function M(U, ξ) ∈ Rp, the maxwellian
equilibrium, such that ∫

Ξ

M(U, ξ) dξ = U, (2.179)

∫
Ξ

a(ξ)M(U, ξ) dξ = F (U). (2.180)

We can see that indeed a kinetic system is a particular case of relaxation
system (Definition 2.12), where we replace Rq by a space of infinite dimension,
the space (Rp)Ξ of functions of ξ with values in Rp. The operator L is given by
Lf =

∫
f(ξ)dξ, and the flux is linear diagonal, A(f)(ξ) = a(ξ)f(ξ). Therefore, the

notions and the results introduced in Section 2.4 remain valid. The main point is
that the solution to (2.178) can be computed easily, it is given by

f(t, x, ξ) = fn(x− (t− tn)a(ξ), ξ). (2.181)

Therefore, we take for R in Proposition 2.13 the exact solver, and a simple com-
putation gives then the approximate Riemann solver

R(x/t, Ul, Ur) =
∫

x/t<a(ξ)

M(Ul, ξ) dξ +
∫

x/t>a(ξ)

M(Ur, ξ) dξ, (2.182)

which looks like a simple solver, except that it has continuously many speeds a(ξ),
ξ ∈ Ξ.



46 Chapter 2. Conservative schemes

Remark 2.4. We notice from (2.182) that if we have a convex invariant domain
U which is a cone, i.e. it is stable by multiplication by positive scalars, such that
M(U, ξ) ∈ U for any U ∈ U and ξ ∈ Ξ, then R(x/t, Ul, Ur) ∈ U also, and therefore
according to Proposition 2.11, the solver preserves U .

From (2.37), we get the numerical flux

F (Ul, Ur) = F+(Ul) + F−(Ur), (2.183)

with

F+(U) =
∫

a(ξ)>0

a(ξ)M(U, ξ) dξ, F−(U) =
∫

a(ξ)<0

a(ξ)M(U, ξ) dξ. (2.184)

The nonlocal approach of Section 2.4.1 is of particular interest here, it allows to
justify the use of a CFL 1 condition

∆t sup
M(Ui,ξ) �=0,M(Ui+1,ξ) �=0

|a(ξ)| ≤ min(∆xi,∆xi+1), (2.185)

just because the linear interaction of waves is fully computed in (2.181).
The entropy analysis of Section 2.4 is of course valid, and we notice that a

convex entropy H for (2.178) and its entropy flux G need to be given by

H(f) =
∫

Ξ

H(f(ξ), ξ) dξ, G(f) =
∫

Ξ

a(ξ)H(f(ξ), ξ) dξ, (2.186)

where H(f, ξ) is a scalar function which is convex with respect to the first variable.
Thus the numerical entropy flux is

G(Ul, Ur) = G+(Ul) +G−(Ur), (2.187)

with
G±(U) =

∫
±a(ξ)>0

a(ξ)H(M(U, ξ), ξ) dξ. (2.188)

According to [16], a necessary condition for H to be an entropy extension of η is
that

H ′(M(U, ξ), ξ) = η′(U). (2.189)

This implies in particular that (2.77) and (2.78) hold (differentiate with respect
to U and use (2.179), (2.180)), and that

G±′(U) = η′(U)F±′(U). (2.190)

Example 2.5. The relaxation interpretation of the Lax–Friedrichs scheme (2.95)–
(2.98) gives indeed a kinetic solver with Ξ = {−1, 1}, a(−1) = −c, a(1) = c, and
with dξ the counting measure. Other kinetic solvers with finite sets Ξ can be found
in [5].
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Remark 2.6. The numerical flux associated to a kinetic method takes the form of
a flux vector splitting scheme,

F (Ul, Ur) = F+(Ul) + F−(Ur), (2.191)

where F+, F− satisfy
F+(U) + F−(U) = F (U). (2.192)

Conversely, it is proved in [17] that any flux vector splitting scheme (2.191)–(2.192)
can be interpreted as a kinetic method. Moreover, the entropy conditions for such
a scheme can be characterized precisely, and the entropy fluxes always take the
form (2.187), (2.190). A major inconvenient with flux vector splitting schemes is
that for full gas dynamics they cannot resolve exactly contact discontinuities, they
somehow put too much numerical viscosity.

2.5.1 Kinetic solver for isentropic gas dynamics

The classical kinetic models take the form

M(U, ξ) = K(ξ)M(U, ξ), f(U, ξ) = K(ξ)f(U, ξ), (2.193)

where K(ξ) ∈ Rp is a given vector, and M(U, ξ), f(U, ξ) are real. Thus the kinetic
equation on f simplifies in a scalar equation

∂tf + a(ξ)∂xf = 0, (2.194)

and the relations (2.179),(2.180) become moment relations,∫
Ξ

K(ξ)M(U, ξ) dξ = U,

∫
Ξ

a(ξ)K(ξ)M(U, ξ) dξ = F (U). (2.195)

For the system of isentropic gas dynamics (1.9) and if we take

p(ρ) = κργ , κ > 0, 1 < γ ≤ 3, (2.196)

the fundamental kinetic model is obtained as Ξ = R with the Lebesgue measure,
a(ξ) = ξ, K(ξ) = (1, ξ),

M(U, ξ) = c2

(
2γκ
γ − 1

ργ−1 − |ξ − u|2
)λ

+

, (2.197)

with

λ =
1

γ − 1
− 1

2
, c2 =

(
2γκ
γ − 1

)−1/(γ−1) Γ
(

γ
γ−1

)
√
πΓ(λ+ 1)

. (2.198)

Under a CFL 1 condition (2.185), this solver preserves positiveness of density
(apply Remark 2.4), and is entropy satisfying, with here

H(f, ξ) = f |ξ|2/2 +
1

2c1/λ
2

f1+1/λ

1 + 1/λ
. (2.199)
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Thus this kinetic method naturally treats the vacuum in the sense of Section 2.3.4.
However, the CFL condition (2.185) is not sharp, because when Ui = Ui+1 = U ,
sup |a(ξ)| = |u|+

√
2

γ−1p
′(ρ) and there is an overall factor

√
2

γ−1 ≥ 1 with respect
to the real sound speed, that induces smaller timesteps than expected. A difficulty
arises in trying to obtain explicit formulas for the integrals (2.184) involved in the
numerical flux (2.183). This is not possible for all values of γ. But for γ = 2 this
works with arcos functions.

2.6 VFRoe method

The VFRoe method has been introduced in [24], [38], [39]. It relies on some ap-
proximate resolution of the Riemann problem (2.34) by linearization in the spirit
of the method of Roe, but it does not enter the framework of approximate Rie-
mann solvers of Section 2.3 because the numerical flux is not deduced from taking
the average of the approximate solution (2.42), but is rather defined directly as
the value of the flux at the approximate interface value.

For the nonconservative variable version VFRoencv, the first step is, starting
from the conservation law (1.8), to perform a nonlinear change of variables Y (U)
(with inverse U(Y )), to get a quasilinear system

∂tY +B(Y )∂xY = 0, (2.200)

with according to (1.4), B(Y ) = (dY/dU)F ′(U)(dY/dU)−1. Then, as in the Roe
method (2.59), we solve a linearized problem

∂tY +B(Ŷ )∂xY = 0, (2.201)

with Riemann initial data

Y 0(x) =
{
Y (Ul) if x < 0,
Y (Ur) if x > 0, (2.202)

and with
Ŷ =

Y (Ul) + Y (Ur)
2

. (2.203)

Finally, the numerical flux is defined by

F (Ul, Ur) = F
(
U(Y (x/t = 0, Ul, Ur))

)
, (2.204)

at least if 0 is not an eigenvalue of B(Ŷ ). If this is the case, Y (x/t = 0) is not
well defined and some other formula needs to be used, for example by defining
Y (0) = (Y (0−) + Y (0+))/2. This numerical flux is obviously consistent.

However, it is not possible for this scheme to analyze the preservation of
invariant domains and the existence of entropy inequalities. In practice the scheme
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can produce negative densities and violate entropy conditions (a correction is
proposed in [24]). But the idea of [38] is to choose the change of variable Y (U)
in such a way that the scheme almost never produces negative densities for gas
dynamics (1.9). This is obtained by the choice of a variable related to the Riemann
invariants involved in (1.20),

Y = (ϕ(ρ), u), (2.205)

where ϕ is defined by (1.21). According to [45], for p(ρ) = κργ , the necessary and
sufficient condition for the appearance of vacuum in the exact Riemann solution
is

ul − ur + ϕl + ϕr ≤ 0. (2.206)

With the choice (2.205), the quasilinear formulation (2.200) of the isentropic sys-
tem (1.9) becomes {

∂tϕ+ u∂xϕ+
√
p′(ρ)∂xu = 0,

∂tu+ u∂xu+
√
p′(ρ)∂xϕ = 0.

(2.207)

Therefore, the linearized version (2.201) is
{

∂tϕ+ û∂xϕ+
√
p′(ρ̂)∂xu = 0,

∂tu+ û∂xu+
√
p′(ρ̂)∂xϕ = 0,

(2.208)

or in diagonal form
{

∂t(u+ ϕ) + (û+
√
p′(ρ̂))∂x(u+ ϕ) = 0,

∂t(u− ϕ) + (û−
√
p′(ρ̂))∂x(u− ϕ) = 0,

(2.209)

with

û =
ul + ur

2
, ϕ(ρ̂) =

ϕ(ρl) + ϕ(ρr)
2

. (2.210)

Solving the Riemann problem for (2.209), we get an intermediate state between
the two eigenvalues, i.e. for λ1 = û − √

p′(ρ̂) < x/t < λ2 = û +
√
p′(ρ̂), which is

defined by

u∗ =
1
2

(ul + ϕl + ur − ϕr) , ϕ∗ =
1
2

(ul + ϕl − ur + ϕr) . (2.211)

The second formula defines a density ρ∗ > 0 only if the assigned value is pos-
itive. Therefore, a natural way to extend the solution is to put a positive part,
ϕ∗ = 1

2 (ul + ϕl − ur + ϕr)+. Then the condition of appearance of vacuum in this
approximate solution is exactly the same (2.206) as for the exact solver. This
property is the motivation of the choice of the variable (2.205). The numerical
flux is given by (2.204), and the state at which the nonlinearity is evaluated is
left if λ1 > 0, right if λ2 < 0, and star if λ1 < 0 < λ2. This numerical flux is
discontinuous when one of the eigenvalues crosses 0.
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2.7 Passive transport

We would like here to mention a well-known general method to solve a transport
problem for the unknown φ

∂t(ρφ) + ∂x(ρuφ) = 0, (2.212)

where ρ ≥ 0, u are assumed to be given solving

∂tρ+ ∂x(ρu) = 0. (2.213)

For smooth solutions, the two equations can be combined to give

∂tφ+ u∂xφ = 0. (2.214)

This problem occurs in many fluid dynamics problems, (2.214) means that φ is
simply passively transported with the flow. The functions ρ, u can be thought to
be obtained by solving a system of equations that can involve other quantities,
but we need not specify how they are obtained for what we explain here.

An important property of (2.212)-(2.213) is that it gives directly a fam-
ily of entropy inequalities, because if we multiply (2.214) by S′(φ) for any func-
tion S, we get ∂t(S(φ)) + u∂x(S(φ)) = 0, thus combining it with (2.213) we get
∂t(ρS(φ)) + ∂x(ρuS(φ)) = 0. Now, if S is convex, one can easily check that ρS(φ)
is a convex function of (ρ, ρφ). Therefore, one expects for weak solutions a family
of inequalities,

∂t(ρS(φ)) + ∂x(ρuS(φ)) ≤ 0, S convex. (2.215)

In particular, taking S(φ) = (φ−k)+ or S(φ) = (k−φ)+ we deduce the maximum
principle

inf
y
φ0(y) ≤ φ(t, x) ≤ sup

y
φ0(y). (2.216)

At the numerical level, we assume that we have a discrete conservative formula
for solving (2.213),

ρn+1
i − ρi +

∆t
∆xi

(
F 0

i+1/2 − F 0
i−1/2

)
= 0, (2.217)

for some numerical flux F 0
i+1/2. Then the natural scheme for solving (2.212) is

ρn+1
i φn+1

i − ρiφi +
∆t
∆xi

(
Fφ

i+1/2 − Fφ
i−1/2

)
= 0, (2.218)

where

Fφ
i+1/2 =

{
F 0

i+1/2 φi if F 0
i+1/2 ≥ 0,

F 0
i+1/2 φi+1 if F 0

i+1/2 ≤ 0.
(2.219)
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This formula has been introduced in [71], and was inspired by the fact that it holds
true in the exact resolution of the Riemann problem for gas dynamics equations.
Denoting x+ = max(0, x) and x− = min(0, x), another way to write (2.219) is
Fφ

i+1/2 = (F 0
i+1/2)+φi + (F 0

i+1/2)−φi+1.

Proposition 2.23. The upwind scheme (2.218)–(2.219) is consistent with (2.212),
and under the CFL condition

ρi − ∆t
∆xi

(F 0
i+1/2)+ +

∆t
∆xi

(F 0
i−1/2)− ≥ 0, (2.220)

it satisfies the discrete maximum principle and discrete entropy inequalities.

Proof. The consistency is obvious since when φi = φi+1, F
φ
i+1/2 = F 0

i+1/2 φi. Then,
we have from (2.218)

ρn+1
i φn+1

i = φi

(
ρi − ∆t

∆xi
(F 0

i+1/2)+ +
∆t
∆xi

(F 0
i−1/2)−

)

− φi+1
∆t
∆xi

(F 0
i+1/2)− + φi−1

∆t
∆xi

(F 0
i−1/2)+.

(2.221)

But since from (2.217)

ρn+1
i = ρi − ∆t

∆xi
(F 0

i+1/2)+ +
∆t
∆xi

(F 0
i−1/2)−

− ∆t
∆xi

(F 0
i+1/2)− +

∆t
∆xi

(F 0
i−1/2)+,

(2.222)

we deduce by dividing (2.221) by ρn+1
i that under the CFL condition (2.220), φn+1

i

is a convex combination of φi−1, φi and φi+1. In particular we have the discrete
form of the maximum principle,

min(φi−1, φi, φi+1) ≤ φn+1
i ≤ max(φi−1, φi, φi+1). (2.223)

Moreover, for any convex S, according to the Jensen inequality,

ρn+1
i S(φn+1

i ) ≤ S(φi)
(
ρi − ∆t

∆xi
(F 0

i+1/2)+ +
∆t
∆xi

(F 0
i−1/2)−

)

− S(φi+1)
∆t
∆xi

(F 0
i+1/2)− + S(φi−1)

∆t
∆xi

(F 0
i−1/2)+,

(2.224)

therefore we have the entropy inequality

ρn+1
i S(φn+1

i ) − ρiS(φi) +
∆t
∆xi

(
FS

i+1/2 − FS
i−1/2

)
≤ 0, S convex, (2.225)

with

FS
i+1/2 =

{
F 0

i+1/2 S(φi) if F 0
i+1/2 ≥ 0,

F 0
i+1/2 S(φi+1) if F 0

i+1/2 ≤ 0,
(2.226)

which completes the proof. �
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Remark 2.7. Under the same CFL condition, one can check that the total variation
diminishing (TVD) property holds for φ, by the classical Harten criterion.

The CFL condition (2.220) is indeed very natural in this context, it can be
verified as follows.

Lemma 2.24. The CFL condition (2.220) is automatically satisfied if the original
scheme involving F 0 preserves the nonnegativity of ρ by interface, under CFL 1/2,
and if ∆t

∆xi
|ui| ≤ 1/2.

Proof. The CFL condition (2.220) can be written

1
2

(
ρi − 2∆t

∆xi
((F 0

i+1/2)+ − ρiui)
)

+
1
2

(
ρi +

2∆t
∆xi

((F 0
i−1/2)− − ρiui)

)
≥ 0,

(2.227)
and it is enough to check that each of the two terms is nonnegative. For the first one
for example, if F 0

i+1/2 ≤ 0, then it is obvious since ∆t
∆xi

|ui| ≤ 1/2. To the contrary,
if F 0

i+1/2 ≥ 0, this comes directly from the nonnegativity of ρ by interface and the
CFL 1/2 condition, see Definition 2.4. �

Remark 2.8. The half CFL condition can be replaced by a usual CFL condition if
one uses the notion of maximum principle by interface (observe that the maximum
principle is a form of invariant domain property).

Remark 2.9. Another passive transport scheme can also be considered in the
context of flux vector splitting schemes. Indeed, if F 0 in (2.217) comes from a
FVS scheme (2.191), then we have a decomposition F 0

i+1/2 = F 0+
i+1/2 + F 0−

i+1/2.
The condition for the scheme to preserve nonnegativity of ρ implies then that
F 0+

i+1/2 ≥ 0, F 0−
i+1/2 ≤ 0. The natural scheme in the FVS spirit is then given by

Fφ
i+1/2 = F 0+

i+1/2 φi + F 0−
i+1/2 φi+1. One can check that this scheme satisfies similar

properties as in Proposition 2.23.

Remark 2.10. In the resolution of the Riemann problem for (2.167), s can be
considered as passively transported. In fact, in this case, the numerical flux for
ρs deduced from the solution of the Riemann problem coincides with the upwind
flux (2.219). This is due to the fact that

F 0 ≥ 0 if and only if σ2 = u∗ ≥ 0. (2.228)

Indeed, when σ1 ≤ 0 ≤ σ3 this is obvious since F 0 = ρ∗l u
∗ or F 0 = ρ∗ru

∗ according
to the sign of u∗. In the case σ1 = ul − cl/ρl ≥ 0, F 0 = ρlul ≥ cl ≥ 0 while
u∗ ≥ σ1 ≥ 0, and in the case σ3 = ur + cr/ρr ≤ 0, F 0 = ρrur ≤ −cr ≤ 0 while
u∗ ≤ σ3 ≤ 0. This proves (2.228). Then, applying Proposition 2.23 we deduce the
entropy inequalities (2.163).
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2.8 Second-order extension

Several methods exist to go to second-order accuracy, but we shall only describe
here one general method, which has the advantage to respect invariant domains.
We still consider a mesh as in (2.1), (2.2), and define

h = sup
i

∆xi. (2.229)

Classically, a basic ingredient in second-order schemes is a reconstruction operator.

Definition 2.25. A second-order reconstruction is an operator which to a sequence
Ui associates values Ui+1/2−, Ui+1/2+ for i ∈ Z, in such a way that it is conser-
vative,

Ui−1/2+ + Ui+1/2−
2

= Ui, (2.230)

and it is second-order in the sense that whenever for all i,

Ui =
1

∆xi

∫
Ci

U(x) dx, (2.231)

for some smooth function U(x), then

Ui+1/2− = U(xi+1/2) +O(h2), Ui+1/2+ = U(xi+1/2) +O(h2). (2.232)

The reconstruction is said to preserve a convex invariant domain U if

Ui ∈ U for all i ⇒ Ui+1/2± ∈ U for all i. (2.233)

Once a second-order reconstruction and a first-order numerical flux F (Ul, Ur)
are given, we define the associated second-order scheme by

Un+1
i − Un

i +
∆t
∆xi

(Fi+1/2 − Fi−1/2) = 0, (2.234)

Fi+1/2 = F (Un
i+1/2−, U

n
i+1/2+). (2.235)

We can justify the second-order accuracy in the weak sense, as in Proposition 2.2.

Proposition 2.26. Assume that the numerical flux is Lipschitz continuous and con-
sistent. If for all i,

Un
i =

1
∆xi

∫
Ci

U(tn, x) dx, (2.236)

for some smooth solution U(t, x) to (1.8), then Un+1
i defined by (2.234)–(2.235)

satisfies for all i

Un+1
i =

1
∆xi

∫
Ci

U(tn+1, x) dx+ ∆t
(

1
∆xi

(Fi+1/2 −Fi−1/2)
)
, (2.237)

where
Fi+1/2 = O(∆t) +O(h2), (2.238)

as ∆t and h tend to 0.
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�
xi−1 xi−1/2 xi xi+1/2 x

Ui−3/4
Ui−1/4

Ui+1/4
Ui+3/4

Figure 2.6: Half mesh values

Proof. It is similar to the one of Proposition 2.2. We have that (2.237) holds with
Fi+1/2 = F i+1/2 − Fi+1/2, and F i+1/2 is the exact flux (2.13). Then, since the
numerical flux is Lipschitz continuous and consistent, and by (2.232),

Fi+1/2 = F (Un
i+1/2−, U

n
i+1/2+) = F (U(tn, xi+1/2)) +O(h2). (2.239)

Since F i+1/2 = F (U(tn, xi+1/2)) +O(∆t), we obtain the result. �

Remark 2.11. As explained after Proposition 2.2, the convergence is in the weak
sense. Consequently, even if the rate of convergence is h2 in the weak sense, if we
measure the error in strong L1 norm, it might converge to 0 with a slower rate.
When the solution is not smooth, there is an even bigger loss of accuracy.

It is extremely difficult to obtain second-order schemes that verify an entropy
inequality. Only the preservation of invariant domains can be analyzed.

Proposition 2.27. If under a CFL condition the numerical flux preserves a convex
invariant domain U in the sense of Definition 2.3, and if the reconstruction also
preserves this invariant domain, then under the half original CFL condition, the
second-order scheme also preserves this invariant domain.

Proof. Assume that Un
i ∈ U are given. Since the reconstruction is U preserving

we have also that Un
i+1/2± ∈ U . Consider then a submesh with cells half of the

original ones, with nodes · · · < xi−1 < xi−1/2 < xi < xi+1/2 < . . . , and de-
fine discrete data on this mesh Ui−3/4 = Ui−1/2−, Ui−1/4 = Ui−1/2+, Ui+1/4 =
Ui+1/2−,. . . corresponding respectively to the cells ]xi−1, xi−1/2[, ]xi−1/2, xi[,
]xi, xi+1/2[,. . . (see Figure 2.6). By applying the first-order scheme to these data,
we get new values

Un+1
i−1/4 = Ui−1/4 − 2∆t

∆xi

(
Fi − Fi−1/2

)
,

Un+1
i+1/4 = Ui+1/4 − 2∆t

∆xi

(
Fi+1/2 − Fi

)
,

(2.240)
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with
Fi = F (Ui−1/4, Ui+1/4), Fi+1/2 = F (Ui+1/4, Ui+3/4). (2.241)

We notice that with the definition of Ui+1/4 and Ui+3/4, the value of Fi+1/2 in
(2.241) coincides with the one of (2.235) (at least if the numerical flux does not
depend explicitly on the size of the mesh). But since the numerical flux preserves
U , we deduce that Un+1

i−1/4, U
n+1
i+1/4 ∈ U under the half original CFL condition

because the half mesh has half size of the original one. Finally (and only now),
we invoke the conservativity (2.230) that tells that (Ui−1/4 + Ui+1/4)/2 = Ui. By
summing the two equations in (2.240) and comparing to (2.234), we conclude that
Un+1

i = (Un+1
i−1/4 + Un+1

i+1/4)/2 ∈ U by convexity. �

The second-order reconstruction must also be nonoscillatory in some sense,
but we refer to [33] or [44] for such notions. We only give here the most well known
examples of reconstructions.

Example 2.12. In the case of a scalar function U ∈ R, the second-order minmod
reconstruction is defined as follows,

Ui−1/2+ = Ui − ∆xi

2
DUi, Ui+1/2− = Ui +

∆xi

2
DUi, (2.242)

with

DUi = minmod
(

Ui − Ui−1

(∆xi−1 + ∆xi)/2
,

Ui+1 − Ui

(∆xi + ∆xi+1)/2

)
, (2.243)

and

minmod(x, y) =




min(x, y) if x, y ≥ 0,
max(x, y) if x, y ≤ 0,
0 otherwise.

(2.244)

Example 2.13. As commented in Remark 2.11, a loss of accuracy can come from
the weak consistency formulation. A remedy for this is to ensure that not only
Ui+1/2± are second-order accurate, but also the discrete derivative DUi. This is
what does the second-order ENO (essentially non oscillatory) reconstruction. For
a uniform mesh, it is defined as follows for a scalar sequence Ui,

Ui−1/2+ = Ui − ∆x
2
DenoUi, Ui+1/2− = Ui +

∆x
2
DenoUi, (2.245)

where

DenoUi = minmod

(
Ui − Ui−1

∆x
+

∆x
2
D2Ui−1/2,

Ui+1 − Ui

∆x
− ∆x

2
D2Ui+1/2

)
,

(2.246)

D2Ui+1/2 = minmod
(
Ui+1 − 2Ui + Ui−1

∆x2
,
Ui+2 − 2Ui+1 + Ui

∆x2

)
. (2.247)
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A counterpart of this increased accuracy is the loss of the maximum principle,
which is often needed, for example for positiveness of density. A possible way to
obtain this is to consider the modified ENO reconstruction, defined still by (2.245)
but with slopes

DenomUi = minmod (DenoUi, 2DmmUi) , (2.248)

where DmmUi is the minmod slope of (2.243) (the coefficient 2 can also be lowered
down a bit for security). Then the maximum principle is recovered, at the price of
loosing the second-order accuracy of the slope close to local extrema.

Example 2.14. For the isentropic gas dynamics system (1.9), a second-order recon-
struction can be performed for Ui = (ρi, ρiui) as follows. Let us denote Ui+1/2± ≡
(ρi+1/2±, ρi+1/2±ui+1/2±) the reconstructed values. Then the conservation con-
straint (2.230) reads

ρi−1/2+ + ρi+1/2−
2

= ρi,

ρi−1/2+ui−1/2+ + ρi+1/2−ui+1/2−
2

= ρiui.
(2.249)

It is easily seen to be equivalent to the representation

ρi−1/2+ = ρi − ∆xi

2
Dρi, ρi+1/2− = ρi +

∆xi

2
Dρi,

ui−1/2+ = ui −
ρi+1/2−
ρi

∆xi

2
Dui,

ui+1/2− = ui +
ρi−1/2+

ρi

∆xi

2
Dui,

(2.250)

for some slopes Dρi, Dui. Moreover, the second-order accuracy (2.232) means that
Dρi, Dui have to be consistent with dρ/dx and du/dx respectively. Thus we can
take for Dρi and Dui the minmod reconstruction (2.243), where we put the values
ρi or ui respectively in the right-hand side. A variant is possible where we use the
Denom slope (2.248) for Dρi and the Deno slope (2.246) for Dui.

Example 2.15. Let us consider now the full gas dynamics system (1.11), for which
the conservative variable is

U ≡ (
ρ, ρu, ρu2/2 + ρe

)
. (2.251)

Given the values Ui, we would like to find second-order accurate values Ui+1/2±
such that

Ui−1/2+ + Ui+1/2−
2

= Ui. (2.252)

Knowing that the Ui have positive densities and positive internal energies

ρi > 0, ei > 0, (2.253)
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we require the same properties for the reconstructed values,

ρi+1/2± > 0, ei+1/2± > 0. (2.254)

We could also require the maximum principle on the specific entropy, but this
would lead to very complicated formulas, and in practice the stability seems to be
not affected by this property.

The first step of the construction is to write a parametrization of all possible
values Ui−1/2+, Ui+1/2− satisfying (2.252). An algebraic computation gives that
they must be of the form

ρi−1/2+ = ρi − ∆xi

2
Dρi, ρi+1/2− = ρi +

∆xi

2
Dρi (2.255)

for some slope Dρi,

ui−1/2+ = ui −
ρi+1/2−
ρi

∆xi

2
Dui,

ui+1/2− = ui +
ρi−1/2+

ρi

∆xi

2
Dui

(2.256)

for some slope Dui, and

ρi−1/2+ei−1/2+ = ρiẽi − ∆xi

2
D(ρe)i,

ρi+1/2−ei+1/2− = ρiẽi +
∆xi

2
D(ρe)i

(2.257)

for some slope D(ρe)i, with

ẽi = ei −
ρi−1/2+ρi+1/2−

ρ2
i

∆x2
i

8
Du2

i . (2.258)

We observe then that the second-order accuracy means that Dρi, Dui, D(ρe)i

must be consistent with the derivatives of ρ, u, ρe respectively. Concerning the
positivity conditions (2.254), they can be expressed as

∆xi

2
|Dρi| < ρi,

∆x2
i

8
Du2

i <
ρi

ρi−1/2+ρi+1/2−

(
ρiei − ∆xi

2
|D(ρe)i|

)
. (2.259)

Therefore, the computation of the slopes can be done as follows: we first compute
Dρi, Dui, D(ρe)i by the minmod slope formula (2.243) where the Ui are replaced
by ρi, ui, ρiei respectively, and then we eventually diminish the absolute value
of Dui so as to satisfy the second inequality in (2.259). This computation gives
consistent values of Dρi, Dui, D(ρe)i, thus the reconstruction is second-order
accurate. It has the good property to give constant ui+1/2± and (ρe)i+1/2± if
ui and ρiei are constant, so that it is especially adapted to the computation of
contact discontinuities for a gamma pressure law where p and ρe are proportional
(recall that contact discontinuities are characterized by the fact that u and p do
not jump).
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2.8.1 Second-order accuracy in time

The second-order accuracy in time is usually recovered by the Heun method, which
reads as follows. The second-order method in x defined by (2.234)–(2.235) can be
written as

Un+1 = Un + ∆tΦ(Un), (2.260)

where U = (Ui)i∈Z, and Φ is a nonlinear operator depending on the mesh. Then
the second-order scheme in time and space is

Ũn+1 = Un + ∆tΦ(Un),

Ũn+2 = Ũn+1 + ∆tΦ(Ũn+1),

Un+1 =
Un + Ũn+2

2
.

(2.261)

It is easy to see that if the numerical flux does not depend explicitly on ∆t, this
procedure gives a fully second-order scheme in the sense that we getO(∆t2)+O(h2)
in (2.238). The invariant domains are also preserved because of the average in
(2.261), without any further limitation on the CFL.

2.9 Numerical tests

Since many tests can be found in the literature on all the schemes discussed, we
only assess here the vacuum treatment, that has been especially analyzed in the
previous sections.

Test 1: Rarefaction into vacuum for isentropic gas dynamics

We consider the isentropic system (1.9), with pressure law p(ρ) = κργ , γ > 1,
κ > 0. The initial data is the one of a Riemann problem, U0(x) = Ul for x < x0,
U0(x) = Ur for x > x0, with vacuum on the left Ul = 0. The exact solution is then
given by




u(t, x) =
2

γ + 1

(
max

(
x− x0

t
,− 2

γ − 1

√
p′(ρr)

)
−

√
p′(ρr)

)
−
,

ρ(t, x) = ρr

(
1 +

γ − 1
2

u(t, x)√
p′(ρr)

)2/(γ−1)

+

.

(2.262)

Note that the value of u where ρ = 0 is irrelevant in this exact solution. However,
it could influence the result in the numerical methods. The parameters are chosen
as

γ = 2, κ = 1, (2.263)

ρl = 0, ul = 0, ρr = 1, ur = 0. (2.264)
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Cells HLL Suliciu Kinetic VFRoe
50 3.19E-2 / 2.83E-2 / 2.70E-2 / 2.49E-2 /
100 2.03E-2 0.65 1.83E-2 0.63 1.85E-2 0.55 1.73E-2 0.53
200 1.25E-2 0.70 1.16E-2 0.66 1.19E-2 0.64 1.14E-2 0.60
400 7.51E-3 0.74 7.18E-3 0.69 7.42E-3 0.68 7.21E-3 0.66
800 4.47E-3 0.75 4.39E-3 0.71 4.49E-3 0.72 4.41E-3 0.71

Table 2.1: L1 error and numerical order of accuracy for Test 1, first-order

The runs use x0 = 0.5, x lies in [0, 1], and the final time is t = 0.15. Each of the
methods tested really handles vanishing densities, without need of putting small
positive values, because even if in the analysis positive densities were considered,
the numerical fluxes nevertheless extend continuously until the vacuum.

Table 2.1 shows the L1 error
∑

i ∆xi(|ρi−ρ(xi)|+ |ρiui−ρ(xi)u(xi)|) at final
time, for four methods that handle vacuum: the HLL solver of Section 2.4.3, the
Suliciu solver of Section 2.4.5, the kinetic solver of Section 2.5.1 and the VFRoe
solver of Section 2.6. Table 2.1 shows also the numerical order of accuracy, com-
puted by comparison between two runs with different mesh sizes. It is by definition
the real number α such that the error can be written C∆xα. The CFL number
used is 1 for all methods except VFRoe for which we take 0.99 to prevent nega-
tive densities (note however the overall restriction by a factor

√
2 inherent in the

kinetic method). Recall that only the situation of Figure 2.4 could make fail the
value 1 of the CFL for a scheme that is stable interface by interface, indeed this
never occurs in practice. To give an idea of the CPU we provide the number of
timesteps used for 100 cells, respectively 33, 35, 37, 35. For the VFRoe method
we use the entropy fix of [24] otherwise it gives a wrong solution. The density and
velocity profiles are plotted on Figures 2.7, 2.8, 2.9 for 30 cells.
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Figure 2.7: Density for Test 1, first-order
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Figure 2.8: Zoom of density for Test 1, first-order
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Figure 2.9: Velocity for Test 1, first-order

On Tables 2.2 and 2.3 are reported the same diagnostics for the second-order
in time and space method described in Section 2.8, Example 2.14, with either the
minmod limiter or the ENOm limiter of Examples 2.12, 2.13. The CFL condition
is taken half of the one of the first-order method. Figures 2.10, 2.11 show a zoom
of the density for 30 cells.

The results of the four methods are quite similar. We see that the presence
of vacuum induces extremely low numerical orders of accuracy. The second-order
methods with minmod or ENOm slope limiters give the same rate of convergence,
the latter improving only by an approximate factor 0.6. On Figures 2.8 and 2.9
we can see that the density and velocity are systematically under-estimated on
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Cells HLL Suliciu Kinetic VFRoe
50 2.16E-2 / 2.03E-2 / 1.84E-2 / 1.83E-2 /
100 1.11E-2 0.96 1.05E-2 0.95 9.88E-3 0.90 9.88E-3 0.89
200 5.60E-3 0.99 5.29E-3 0.99 5.17E-3 0.93 5.29E-3 0.90
400 2.85E-3 0.97 2.69E-3 0.98 2.63E-3 0.98 2.70E-3 0.97
800 1.44E-3 0.98 1.37E-3 0.97 1.34E-3 0.97 1.37E-3 0.98

Table 2.2: L1 error and numerical order of accuracy for Test 1, second-order min-
mod

Cells HLL Suliciu Kinetic VFRoe
50 1.27E-2 / 1.12E-2 / 8.76E-3 / 8.47E-3 /
100 6.68E-3 0.93 5.84E-3 0.94 4.62E-3 0.92 4.25E-3 0.99
200 3.47E-3 0.94 3.05E-3 0.94 2.46E-3 0.91 2.17E-3 0.97
400 1.77E-3 0.97 1.57E-3 0.96 1.27E-3 0.95 1.09E-3 0.99
800 8.99E-4 0.98 7.97E-4 0.98 6.52E-4 0.96 5.49E-4 0.98

Table 2.3: L1 error and numerical order of accuracy for Test 1, second-order ENO

the front. The kinetic solver behaves a little better than the Suliciu solver in this
respect. On Figures 2.10 and 2.11 we observe the same phenomenon at second-
order, but the ENO reconstruction greatly improves this behavior.
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Figure 2.10: Zoom of density for Test 1, second-order minmod
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Figure 2.11: Zoom of density for Test 1, second-order ENO

Test 2: Rarefaction into vacuum for full gas dynamics

We consider now the full gas dynamics system (1.11), for a perfect polytropic gas
p(ρ, e) = (γ − 1)ρe with γ > 1. The initial data is that of a Riemann problem
with vacuum on the left Ul = 0. Defining κ = pr/ρ

γ
r , the exact solution is then

the same as in the isentropic case (2.262), with e(t, x) = κρ(t, x)γ−1/(γ − 1). The
choice of the parameters corresponds to Test 1, γ = 2 and

ρl = 0, ul = 0, el = 10−15, ρr = 1, ur = 0, er = 1/(γ − 1). (2.265)

We use again x0 = 0.5, x lies in [0, 1], and the final time is t = 0.15. We only
consider here the Suliciu/HLLC solver of Section 2.4.6 (Proposition 2.21). Table
2.4 shows the L1 error at final time and the numerical order of accuracy, for first-
order with CFL number 1, and for second-order in time-space with CFL 1/2, with
the reconstruction of Example 2.15 and respectively the minmod and ENOm slope
evaluations. On Figures 2.12 and 2.13 are plotted the density and velocity at first-
order for 30 points. They are compared to the corresponding results obtained in
Test 1 by the isentropic algorithm, which differs in the fact that energy is dissipated
instead of being conserved, and the specific entropy is conserved instead of being
dissipated. Figure 2.14 shows the internal energy for first-order and second-order
runs for 30 points.

We can see on Table 2.4 that again the ENO reconstruction gives just a factor
of improvement with respect to the minmod reconstruction. The convergence rates
at first or second order are even lower than in the isentropic case. However, we
observe on Figures 2.12 and 2.13 that the front behaves much better than in the
isentropic case.
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Cells First-order Second-order minmod Second-order ENO
50 4.90E-2 / 3.60E-2 / 2.57E-2 /
100 3.56E-2 0.46 2.07E-2 0.80 1.54E-2 0.74
200 2.47E-2 0.53 1.19E-2 0.79 8.96E-3 0.78
400 1.65E-2 0.58 6.66E-3 0.84 4.88E-3 0.88
800 1.07E-2 0.62 3.69E-3 0.85 2.69E-3 0.86

Table 2.4: L1 error and numerical order of accuracy for Test 2
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Figure 2.12: Density for Test 2, first-order

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

Exact
Suliciu FGD
Suliciu isentropic

Figure 2.13: Velocity for Test 2, first-order
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Figure 2.14: Internal energy for Test 2



Chapter 3

Source terms

The aim of this section is to describe special features arising when the system
of conservation laws (1.8) is completed with a source term. We shall consider in
Chapters 3 and 4 systems of the form

∂tU + ∂x(F (U,Z)) +B(U,Z)Zx = 0, (3.1)

where U(t, x) ∈ Rp is the unknown, Z(x) ∈ Rr is a smooth vector valued function,
and Zx = ∂xZ. The nonlinearities are supposed to be smooth also, F (U,Z) ∈ Rp,
and B(U,Z) is a p× r matrix.

The case when Z is scalar (r = 1) is already interesting, and it covers the
special choice Z(x) = x, which writes if we take F = F (U), B = B(U),

∂tU + ∂x(F (U)) = −B(U). (3.2)

This system (3.2) is the most simple system of conservation laws with source,
and it has already the interesting structure which comes from the competition
between the differential term and the right-hand side during the time evolution.
In particular, the steady states are the solutions U(x) which are independent of
time, and hence solve ∂x(F (U)) = −B(U). These solutions play an important
role because they are usually obtained as limits when time tends to infinity of the
general solutions of (3.2).

The advantage of the formulation (3.1) is that this problem can be interpreted
as a quasilinear system in the variable Ũ = (U,Z),

{
∂tU + ∂x(F (U,Z)) +B(U,Z)Zx = 0,
∂tZ = 0. (3.3)

However, this system has a nonconservative term B(U,Z)Zx, which is not well
defined if Z is discontinuous. The problem of giving a sense to the solution to
quasilinear systems which are not in conservative form is extremely difficult in
general, and we refer to [72] for this question. In our case, since our main goal
is to solve (3.1) for smooth Z, this question will be of minor concern, even if we
nevertheless consider (3.3) for discontinuous Z, in particular when for numeri-
cal purpose we replace Z by a piecewise constant function. Indeed when we shall
consider a solution to (3.3) with discontinuous Z, this means a solution in any rea-
sonable sense, the only condition being that the generalized product B(U,Z)Zx

should coincide with the usual product if Z or B(U,Z) is continuous. Examples of
possible definitions are provided in [47], [48]. We have to mention that however,
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the solutions of (3.3) are almost well-defined, see below. The formulation (3.1) also
includes when B = 0 the problem of discontinuous flux function, if for example Z
takes only two values.

We shall always assume that the system is hyperbolic with respect to U ,
which means that FU (U,Z) is diagonalizable. Critical points will play a special
role in the whole system (3.3).

Definition 3.1. A critical (or resonant) point for (3.3) is a point (U,Z) such that
FU (U,Z) is not invertible.

Lemma 3.2. The quasilinear system (3.3) is hyperbolic at every noncritical point.

Proof. The matrix of the system (in the sense of Section 1.1) is

A(U,Z) =
(
FU FZ +B
0 0

)
. (3.4)

Thus the eigenvalues of A(U,Z) are those of FU , to which we adjoin the value 0.
At a noncritical point, FU is diagonalizable and does not have 0 as eigenvalue,
thus obviously A(U,Z) is diagonalizable. �

The occurrence of resonant points prevents from having a smooth depen-
dence of the eigenvalues and eigenvectors, as was stated in Section 1.1. However,
we can observe that outside of the resonance, we have a smooth dependence, and
the eigenvalue 0 is obviously linearly degenerate. In particular, 0-contact disconti-
nuities are well-defined, even if the system is not in conservative form (see Section
1.5). Since here the only nonconservative term involves Zx, and Z is stationary,
the only difficulty could come from stationary discontinuities, which are 0-contact
discontinuities. Therefore, finally, the solutions are indeed well-defined out of the
resonance, at least for piecewise smooth solutions. Notice that contact discontinu-
ities associated to the vanishing eigenvalue are in particular steady states, which
explains the critical role played by these solutions. In practice, the Riemann in-
variants associated to the 0-wave can be found each time it is possible to write
conservative equations, because by the proof of Lemma 1.7, the associated flux is
a Riemann invariant.

Nevertheless, our aim here is not to give a detailed description of the conse-
quences of the existence of nonconservative products and resonant points to the
resolution of the Cauchy problem for (3.1). We rather restrict here to the notions
we shall use in the context of numerical methods. Concerning theoretical results,
the reader is referred in particular to [81], [82], [57], [58], [59], [84], [99], [1], [2],
[42], [73], [54] for sources, and to [96], [41], [69], [70], [64] for discontinuous fluxes.

3.1 Invariant domains and entropy

The notions of invariant domains and entropy inequalities are available for the
quasilinear system (3.3) and we do not repeat here the definitions of Sections 1.3
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and 1.4. Of course here an entropy η̃ and its entropy flux G̃ are both functions of
(U,Z). Here η̃ need only be convex with respect to U , because the equation on Z
is linearly degenerate.

We can define also the notion of partial entropy η(U,Z) and partial entropy
flux G(U,Z) that satisfy GU = ηUFU , and for which we have

∂t (η(U,Z)) + ∂x (G(U,Z)) +Q(U,Z)Zx ≤ 0, (3.5)

with Q = ηU (FZ + B) − GZ . This notion is enough if we only consider smooth
Z(x). Again η need only be convex with respect to U .

3.2 Saint Venant system

The main example of a system with source, resonance and nontrivial steady states
is the Saint Venant system for shallow water with topography. This system is
naturally under the form (3.1). We denote here ρ(t, x) ≥ 0 the water height in
analogy with the isentropic gas dynamics system (1.9), and u(t, x) the velocity.
Then the system reads{

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ)) + ρgzx = 0, (3.6)

where g > 0 is the gravitational constant and z(x) is the topography. We shall
denote

Z = gz, (3.7)

hence the system has the form (3.3) with U = (ρ, ρu),

F (U,Z) = F (U) = (F 0(U), F 1(U)) = (ρu, ρu2 + p(ρ)), (3.8)

B(U,Z) = B(U) = (B0(U), B1(U)) = (0, ρ). (3.9)

We assume the hyperbolicity with respect to U , p′(ρ) > 0. The physically relevant
case is indeed p(ρ) = gρ2/2, but we shall deal with the generalized case p(ρ). Then
the critical points are defined by u = ±√

p′(ρ).

Steady states

In order to obtain the steady states, we subtract u times the first equation in (3.6)
to the second, and divide the result by ρ. We get

∂tu+ ∂x

(
u2/2 + e(ρ) + p(ρ)/ρ+ Z

)
= 0, (3.10)

where the internal energy is still defined by e′(ρ) = p(ρ)/ρ2. Therefore, the steady
states are exactly the functions ρ(x), u(x) satisfying


ρu = cst,

u2

2
+ e(ρ) +

p(ρ)
ρ

+ Z = cst.
(3.11)
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Indeed, out of the resonance, the two expressions on the left-hand side are two in-
dependent 0-Riemann invariants (see the comments above). Between these steady
states, some play an important role, the steady state at rest for which the first
constant is 0, or equivalently




u = 0,

e(ρ) +
p(ρ)
ρ

+ Z = cst.
(3.12)

In the physically relevant case p(ρ) = gρ2/2, the second equation simplifies to
ρ+ z = cst.

Entropy

An entropy can be obtained as follows. We multiply the first equation in (3.6) by
u2/2 + e(ρ) + p(ρ)/ρ, we multiply (3.10) by ρu, and add the results. This gives

∂tη + ∂xG+ ρuZx ≤ 0, (3.13)

where η and G are defined by (1.25) and (1.27). The inequality stands here just
because of discontinuous solutions, as usual. Thus η is a partial entropy. Next, we
add to (3.13) the first equation in (3.6) multiplied by Z, and since ∂tZ = 0, this
yields

∂t(η + ρZ) + ∂x(G+ ρuZ) ≤ 0. (3.14)

Thus we have the entropy and entropy flux

η̃ = η + ρZ, G̃ = G+ ρuZ. (3.15)

A remark is that we can indeed take the inequality (3.13) as entropy inequal-
ity instead of (3.14), because here it is really equivalent to (3.14). Indeed the
nonconservative product ρuZx is well-defined, because Z has only stationary dis-
continuities, and ρu is the flux in the first equation of (3.6), and thus does not
have any jump through stationary curves.

Other specific properties

The Saint Venant system has other specific properties that are worthwhile to state.
The first is that, as in gas dynamics, the density needs to remain nonnegative.
Also the total amount of water need to be preserved, which means that the first
equation is conservative. Another property is that the system (3.6) is invariant
under translations in Z, in the sense that adding a constant to Z does not modify
the equations. The inequality (3.13) has the advantage to have this property also,
in contrast with (3.14).
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Nonconservative schemes

The numerical treatment of sources can be performed very classically by the frac-
tional step method and with an ODE solver [77]. However, the big defect of this
approach is that it gives very inaccurate results when U is close to a steady state.
Therefore, methods taking both terms into account in a coherent way need to be
used. Several methods have been proposed [49], [52], [53], [76], [12], [13], [100],
[40], [7], [61], [25], [48], [38], [6]. Even if our main concern is for sources, we give
also for completion a few references for the case of discontinuous fluxes, [79], [80],
[98], [9], [90], and for the case of source with small parameter, [60], [62], [85], [68],
[50].

We shall retain here the formulation by interface source [65], which is quite
general and flexible. It includes most of the known methods. It handles data Zi

attached to each cell, instead of interface values used for example in [61].
A main idea is to treat the system (3.1) as a quasilinear system (3.3), so that

the differential term and source term are both resolved at the same level. Then,
when considering piecewise constant data and solving the Riemann problem, we
are faced to solutions involving some kind of nonconservative product, as was com-
mented in Chapter 3. However, this incursion is only temporary since at the end
we wish to converge to a continuous profile Z.

In order to solve (3.3), we consider discrete data Ũn
i = (Un

i , Zi) over a mesh,
similarly as in Chapter 2. We consider first-order three point nonconservative
schemes that take the form

Un+1
i − Un

i +
∆t
∆xi

(Fi+1/2− − Fi−1/2+) = 0, (4.1)

with

Fi+1/2− = Fl(Ũn
i , Ũ

n
i+1), Fi+1/2+ = Fr(Ũn

i , Ũ
n
i+1). (4.2)

The functions

Fl(Ũl, Ũr) ≡ Fl(Ul, Ur, Zl, Zr), Fr(Ũl, Ũr) ≡ Fr(Ul, Ur, Zl, Zr) (4.3)

are the left and right numerical fluxes. Of course, we need not write any formula
for Z because we always use the trivial equation Zn+1

i = Zn
i .
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4.1 Well-balancing

A main feature that is desirable for the scheme (4.1)–(4.2) is that it preserves some
discrete steady states, approximating the exact ones defined as smooth functions
(U(x), Z(x)) satisfying

∂x(F (U,Z)) +B(U,Z)Zx = 0. (4.4)

These discrete steady states are discrete sequences (Ui, Zi)i∈Z that satisfy an ap-
proximation of (4.4), under the form of a nonlinear relation at each interface,
linking Ui, Ui+1, Zi, Zi+1,

D(Ui, Ui+1, Zi, Zi+1) = 0. (4.5)

We shall often write this relation only locally, as D(Ul, Ur, Zl, Zr) = 0. These
discrete steady states can be defined in various ways.

Example 4.1. For a scalar law U ∈ R, and if F (U,Z) = F (U), B(U,Z) = B(U) >
0, we can define D(U) by

D′(U) =
F ′(U)
B(U)

. (4.6)

Then (4.4) becomes
∂x(D(U) + Z) = 0. (4.7)

Therefore, we can take for discrete steady states the relation

D(Ul) + Zl = D(Ur) + Zr. (4.8)

Example 4.2. For the Saint Venant system, since the continuous steady states are
those solving (3.11), we can take for discrete steady states the relations


ρlul = ρrur,
u2

l

2
+ e(ρl) +

p(ρl)
ρl

+ Zl =
u2

r

2
+ e(ρr) +

p(ρr)
ρr

+ Zr.
(4.9)

In particular, the discrete steady states at rest are those for which


ul = ur = 0,

e(ρl) +
p(ρl)
ρl

+ Zl = e(ρr) +
p(ρr)
ρr

+ Zr.
(4.10)

Example 4.3. If we assume that F = F (U) and B = B(U) do not depend on Z in
the system (3.3), we can take for discrete steady states the relation

F (Ur) − F (Ul) +B(Ul, Ur,∆Z)∆Z = 0, (4.11)

where ∆Z = Zr −Zl, and B(Ul, Ur,∆Z) is any consistent discretization of B(U).
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Once some discrete steady states are selected, we define the well-balanced
schemes as follows.

Definition 4.1. The scheme (4.1)–(4.2) is well-balanced relatively to some discrete
steady state if one has for this steady state

Fl(Ul, Ur, Zl, Zr) = F (Ul, Zl), Fr(Ul, Ur, Zl, Zr) = F (Ur, Zr). (4.12)

According to (4.1)–(4.2), this property guarantees obviously that if at time
tn we start with a steady state sequence (Ui), then it remains unchanged at the
next time level.

4.2 Consistency

One can find quite strange the fact that the source does not appear explicitly in
(4.1). This formula is however consistent, as we shall now justify, generalizing [88],
[65].

Definition 4.2. We say that the scheme (4.1)–(4.2) is consistent with (3.1) if the
numerical fluxes satisfy the consistency with the exact flux

Fl(U,U, Z, Z) = Fr(U,U, Z, Z) = F (U,Z) for any (U,Z) ∈ Rp ×Rr, (4.13)

and the asymptotic conservativity/consistency with the source

Fr(Ul, Ur, Zl, Zr) − Fl(Ul, Ur, Zl, Zr) = −B(U,Z)(Zr − Zl) + o(Zr − Zl), (4.14)

as Ul, Ur → U and Zl, Zr → Z.

We shall always assume the minimal regularity Fl, Fr continuous and δF =
Fr − Fl of class C1.

A more general assumption than (4.14) is

Fr(Ul, Ur, Zl, Zr) − Fl(Ul, Ur, Zl, Zr)
= −B(U,Z)(Zr − Zl) + o(|Ul − U | + |Ur − U | + |Zl − Z| + |Zr − Z|), (4.15)

as Ul, Ur → U and Zl, Zr → Z. This means equivalently, since δF ∈ C1, that
δF (U,U, Z, Z) = 0 (but this is contained in (4.13)), and

∂1δF (U,U, Z, Z) = 0, ∂2δF (U,U, Z, Z) = 0,
∂3δF (U,U, Z, Z) = B(U,Z), ∂4δF (U,U, Z, Z) = −B(U,Z). (4.16)

Another natural assumption is that the differential term becomes conservative for
smooth Z, which can be stated as

Fl(Ul, Ur, Z, Z) = Fr(Ul, Ur, Z, Z). (4.17)
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We can then observe that (4.14) means exactly the conjunction of (4.15) and
(4.17). Indeed, if (4.14) holds, then obviously (4.15) and (4.17) hold. Conversely,
if (4.15) and (4.17) hold, then

δF (Ul, Ur, Zl, Zr) = δF (Ul, Ur, Zl, Zr) − δF (Ul, Ur, Zl, Zl)

=
∫ 1

0

∂4δF
(
Ul, Ur, Zl, (1 − θ)Zl + θZr

)
dθ (Zr − Zl),

(4.18)

and as Ul, Ur → U and Zl, Zr → Z, the integral tends to ∂4δF (U,U, Z, Z) =
−B(U,Z) by (4.16), thus we deduce that (4.14) holds.

Remark 4.4. In Definition 4.2, condition (4.14) only requires a property when Zl

and Zr are asymptotically close, thus it only concerns continuous functions Z(x),
and there is no information about any consistency with the source for discontinuous
Z(x). However, discontinuities of U are properly handled because of the property
(4.17) that ensures conservativity for continuous Z and therefore suitable Rankine–
Hugoniot conditions.

The previous definition is justified by the following estimate, which is again
formulated in the weak sense.

Proposition 4.3. Assume that for all i,

Un
i =

1
∆xi

∫
Ci

U(tn, x) dx, Zi = Z(xi) +O(∆xi), (4.19)

for some smooth solution (U(t, x), Z(x)) to (3.3), and define Un+1
i by (4.1)–(4.2).

If the scheme is consistent in the generalized sense (4.13), (4.15), then for all i,

Un+1
i =

1
∆xi

∫
Ci

U(tn+1, x) dx+ ∆t
(

1
∆xi

(Fi+1/2 −Fi−1/2) + Ei

)
, (4.20)

where
Fi+1/2 → 0, Ei → 0, (4.21)

as ∆t and h = supi ∆xi tend to 0.

Proof. Integrate the equation (3.1) satisfied by U(t, x) with respect to t and x over
]tn, tn+1[×Ci, and divide the result by ∆xi. We obtain

1
∆xi

∫
Ci

U(tn+1, x) dx− 1
∆xi

∫
Ci

U(tn, x) dx+
∆t
∆xi

(F i+1/2 −F i−1/2) + ∆tEi =0,

(4.22)
where F i+1/2 is the exact flux

F i+1/2 =
1

∆t

∫ tn+1

tn

F
(
U(t, xi+1/2), Z(xi+1/2)

)
dt, (4.23)
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and Ei is the exact source

Ei =
1

∆t∆xi

∫ tn+1

tn

∫
Ci

B
(
U(t, x), Z(x)

)
Zx(x) dtdx. (4.24)

Then, define

Zi+1/2 = Z(xi+1/2), Bi+1/2 = B
(
U(tn, xi+1/2), Z(xi+1/2)

)
, (4.25)

Bi = B
(
U(tn, xi), Z(xi)

)
, (4.26)

and the mean flux

Fi+1/2 =
∆xi+1Fi+1/2− + ∆xiFi+1/2+

∆xi + ∆xi+1
+Bi+1/2

(
∆xi+1Zi + ∆xiZi+1

∆xi + ∆xi+1
− Zi+1/2

)
.

(4.27)
The equation (4.1) can be rewritten

Un+1
i − Un

i +
∆t
∆xi

(Fi+1/2 − Fi−1/2) + ∆tEi = 0, (4.28)

with
Ei =

1
∆xi

(Fi+1/2− − Fi+1/2 + Fi−1/2 − Fi−1/2+)

=
Fi+1/2− − Fi+1/2+

∆xi + ∆xi+1
+
Fi−1/2− − Fi−1/2+

∆xi−1 + ∆xi

− Bi+1/2

∆xi

(
∆xi+1Zi + ∆xiZi+1

∆xi + ∆xi+1
− Zi+1/2

)

+
Bi−1/2

∆xi

(
∆xiZi−1 + ∆xi−1Zi

∆xi−1 + ∆xi
− Zi−1/2

)
.

(4.29)

Therefore, by subtracting (4.22) to (4.28), we get (4.20) with

Fi+1/2 = F i+1/2 − Fi+1/2, Ei = Ei − Ei. (4.30)

We observe that

F i+1/2 = F
(
U(tn, xi+1/2), Z(xi+1/2)

)
+O(∆t), (4.31)

and that from (4.13), since the numerical fluxes are continuous,

Fi+1/2 = F
(
U(tn, xi+1/2), Z(xi+1/2)

)
+ o(1), (4.32)

which gives Fi+1/2 = O(∆t) + o(1). Then, (4.15) gives

Fi+1/2+ − Fi+1/2− = −Bi+1/2(Zi+1 − Zi) + o(∆xi + ∆xi+1)
= −Bi(Zi+1 − Zi) + o(∆xi + ∆xi+1),

(4.33)
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and similarly

Fi−1/2+ − Fi−1/2− = −Bi−1/2(Zi − Zi−1) + o(∆xi−1 + ∆xi)
= −Bi(Zi − Zi−1) + o(∆xi−1 + ∆xi).

(4.34)

Therefore, putting (4.33) and (4.34) in (4.29) and using thatBi+1/2 = Bi+O(∆xi),
Bi−1/2 = Bi +O(∆xi), it yields

Ei = Bi
Zi+1 − Zi

∆xi + ∆xi+1
+Bi

Zi − Zi−1

∆xi−1 + ∆xi

− Bi

∆xi

(
∆xi+1Zi + ∆xiZi+1

∆xi + ∆xi+1
− Zi+1/2

)

+
Bi

∆xi

(
∆xiZi−1 + ∆xi−1Zi

∆xi−1 + ∆xi
− Zi−1/2

)
+ o(1)

= Bi

Zi+1/2 − Zi−1/2

∆xi
+ o(1)

= BiZx(xi) + o(1).

(4.35)

We conclude with (4.24) that Ei = o(1). �
Remark 4.5. The smoothness of the numerical fluxes is more involved in Proposi-
tion 4.3 than in the classical conservative case. Here in order to get a better rate
than (4.21) we can assume for example that Fl, Fr ∈ C0,α and δF = Fr−Fl ∈ C1,α

with 0 < α ≤ 1. Then we get O(hα) in (4.32) thus Fi+1/2 = O(∆t) +O(hα), and
(4.15) holds with an error inO(|Ul−U |1+α+|Ur−U |1+α+|Zl−Z|1+α+|Zr−Z|1+α),
and this gives that Ei = O(∆t) +O(hα).

4.3 Stability

Stability can be analyzed, as in the conservative case, via invariant domains and
entropy. The definitions and properties of the scheme with respect to the preser-
vation of invariant domains that do not involve the variable Z in their definition
are the same as in Section 2.2.1, except that we need to replace the numerical flux
F (Ul, Ur) in (2.17) by Fl(Ul, Ur, Zl, Zr) and Fr(Ul, Ur, Zl, Zr) respectively. Thus
we do not recopy the statements and proofs, which are identical. We only write
explicitly the results concerning entropy inequalities.

Definition 4.4. We say that the scheme (4.1)–(4.2) satisfies a discrete entropy
inequality associated to the convex entropy η̃ for (3.3), if there exists a numerical
entropy flux function G̃(Ul, Ur, Zl, Zr) which is consistent with the exact entropy
flux (in the sense that G̃(U,U, Z, Z) = G̃(U,Z)), such that, under some CFL
condition, the discrete values computed by (4.1)–(4.2) automatically satisfy

η̃(Un+1
i , Zi) − η̃(Un

i , Zi) +
∆t
∆xi

(G̃i+1/2 − G̃i−1/2) ≤ 0, (4.36)
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with
G̃i+1/2 = G̃(Un

i , U
n
i+1, Zi, Zi+1). (4.37)

Definition 4.5. We say that the numerical fluxes Fl, Fr satisfy an interface en-
tropy inequality associated to the convex entropy η̃ for (3.3), if there exists a nu-
merical entropy flux function G̃(Ul, Ur, Zl, Zr) which is consistent with the ex-
act entropy flux (in the sense that G̃(U,U, Z, Z) = G̃(U,Z)), such that for some
σl(Ul, Ur, Zl, Zr) < 0 < σr(Ul, Ur, Zl, Zr),

G̃(Ur, Zr) + σr

[
η̃

(
Ur +

Fr(Ul, Ur, Zl, Zr) − F (Ur, Zr)
σr

, Zr

)
− η̃(Ur, Zr)

]

≤ G̃(Ul, Ur, Zl, Zr),

(4.38)
G̃(Ul, Ur, Zl, Zr)

≤ G̃(Ul, Zl) + σl

[
η̃

(
Ul +

Fl(Ul, Ur, Zl, Zr) − F (Ul, Zl)
σl

, Zl

)
− η̃(Ul, Zl)

]
.

(4.39)

Lemma 4.6. The left-hand side of (4.38) and the right-hand side of (4.39) are
nonincreasing functions of σr and σl respectively. In particular, for (4.38) and
(4.39) to hold it is necessary that the inequalities obtained when σr → ∞ and
σl → −∞ (semi-discrete limit) hold,

G̃(Ur, Zr)+ η̃′(Ur, Zr)(Fr(Ul, Ur, Zl, Zr)−F (Ur, Zr)) ≤ G̃(Ul, Ur, Zl, Zr), (4.40)

G̃(Ul, Ur, Zl, Zr) ≤ G̃(Ul, Zl) + η̃′(Ul, Zl)(Fl(Ul, Ur, Zl, Zr) − F (Ul, Zl)). (4.41)

The proof is the same as in Lemma 2.8, noticing that η̃ is convex with respect
to the first variable. In (4.40), (4.41), η̃′ denotes the derivative of η̃ with respect
to the first argument. Remark 2.1 is also valid here, and we have the same result
as in Proposition 2.9, with same proof.

Proposition 4.7. (i) If the scheme is entropy satisfying (Definition 4.4), then its
numerical fluxes are entropy satisfying by interface (Definition 4.5), with σl =
−∆xi/∆t, σr = ∆xi+1/∆t.
(ii) If the numerical fluxes are entropy satisfying by interface (Definition 4.5), then
the scheme is entropy satisfying (Definition 4.4), under the half CFL condition
|σl(Ui, Ui+1, Zi, Zi+1)|∆t ≤ ∆xi/2, σr(Ui−1, Ui, Zi−1, Zi)∆t ≤ ∆xi/2.

4.4 Required properties for Saint Venant schemes

In order to be more explicit, let us apply the notions previously introduced to the
particular case of Saint Venant system. This will give all the properties that an
ideal scheme should satisfy.
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Following Section 3.2, the natural schemes for solving (3.6) should depend
only on ∆Z = Zr − Zl, and not separately on Zl and Zr, in order to preserve the
translation invariance with respect to Z. Thus a generic scheme for Saint Venant
system reads, with Un

i = (ρn
i , ρ

n
i u

n
i ),

Un+1
i − Un

i +
∆t
∆xi

(Fi+1/2− − Fi−1/2+) = 0, (4.42)

with

Fi+1/2− = Fl(Un
i , U

n
i+1,∆Zi+1/2), Fi+1/2+ = Fr(Un

i , U
n
i+1,∆Zi+1/2), (4.43)

∆Zi+1/2 = Zi+1 − Zi. (4.44)

Conservativity

Denoting Fl = (F 0
l , F

1
l ) and Fr = (F 0

r , F
1
r ), the conservativity of the water height

reads
F 0

l = F 0
r ≡ F 0. (4.45)

Consistency

Taking (4.45) into account, the consistency (4.13)–(4.14) becomes
{
F 0(U,U, 0) = ρu,
F 1

l (U,U, 0) = F 1
r (U,U, 0) = ρu2 + p(ρ),

(4.46)

F 1
r (Ul, Ur,∆Z) − F 1

l (Ul, Ur,∆Z) = −ρ∆Z + o(∆Z), (4.47)

as Ul, Ur → U and ∆Z → 0.

Well-balancing

A natural requirement is the well-balancing property (4.12) only for the discrete
steady states at rest (4.10). This gives for any ρl, ρr ≥ 0,

Fl

(
(ρl, 0), (ρr, 0), e(ρl) +

p(ρl)
ρl

− e(ρr) − p(ρr)
ρr

)
=

(
0, p(ρl)

)
,

Fr

(
(ρl, 0), (ρr, 0), e(ρl) +

p(ρl)
ρl

− e(ρr) − p(ρr)
ρr

)
=

(
0, p(ρr)

)
.

(4.48)

Vacuum

As in the conservative gas dynamics system, an ideal scheme for Saint Venant
system should keep water height ρ nonnegative under some CFL condition that
does not blow up at vacuum, as explained in Section 2.3.4.
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Entropy inequality

An entropy inequality may also be required. Since (3.14) is not translation invari-
ant in Z, we rather discretize (3.13) as

η(Un+1
i ) − η(Un

i ) +
∆t
∆xi

(
Gi+1/2− −Gi−1/2+

)
≤ 0, (4.49)

Gi+1/2− = Gi+1/2 +
1
2
F 0

i+1/2∆Zi+1/2,

Gi+1/2+ = Gi+1/2 − 1
2
F 0

i+1/2∆Zi+1/2,

(4.50)

with ∆Zi+1/2 = Zi+1 −Zi, and Gi+1/2 = G(Un
i , U

n
i+1,∆Zi+1/2) is a mean numer-

ical entropy flux consistent with the exact flux,

G(U,U, 0) =
(
ρu2/2 + ρe(ρ) + p(ρ)

)
u. (4.51)

We notice that adding Zi times the first equation in (4.42) to (4.49), we get

η(Un+1
i ) + ρn+1

i Zi − η(Un
i ) − ρn

i Zi +
∆t
∆xi

(
G̃i+1/2 − G̃i−1/2

)
≤ 0, (4.52)

with

G̃i+1/2 =Gi+1/2− +F 0
i+1/2Zi =Gi+1/2+ +F 0

i+1/2Zi+1 =Gi+1/2 +F 0
i+1/2

Zi + Zi+1

2
,

(4.53)
thus we recover the formulation (4.36)–(4.37) corresponding to (3.14).

4.5 Explicitly well-balanced schemes

By explicitly well-balanced schemes we mean schemes that are defined via the
resolution of the discrete steady states. Such schemes were first derived for scalar
laws, where an exact resolution of the Riemann problem for (3.3) directly involves
such discrete steady states [49], [52], [53], [14], [88], [46], [74].

We shall not discuss the general case for equation (3.1), but only consider an
example of such scheme when F = F (U), B = B(U) do not depend on Z. Let us
define the discrete steady states, as in Example 4.3, by the relation

F (Ur) − F (Ul) +B(Ul, Ur,∆Z)∆Z = 0, (4.54)

where ∆Z = Zr −Zl, and B(Ul, Ur,∆Z) is any consistent discretization of B(U).
Assume that F has no critical points. Then one should be able to find some unique
values U∗r

l and U∗l
r satisfying

F (U∗r
l ) − F (Ul) +B(Ul, Ur,∆Z)∆Z = 0,

F (Ur) − F (U∗l
r ) +B(Ul, Ur,∆Z)∆Z = 0.

(4.55)
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We define the numerical fluxes by

Fl(Ul, Ur,∆Z) = F(Ul, U
∗l
r ), Fr(Ul, Ur,∆Z) = F(U∗r

l , Ur), (4.56)

where F(Ul, Ur) is any consistent C1 numerical flux for solving the equation with-
out source.

Proposition 4.8. The scheme (4.55)–(4.56) is well-balanced and consistent.

Proof. If we have a discrete steady state in the sense of (4.54), then obviously
U∗r

l = Ur and U∗l
r = Ul. Therefore,

Fl(Ul, Ur,∆Z) = F(Ul, Ul) = F (Ul), (4.57)

and
Fr(Ul, Ur,∆Z) = F(Ur, Ur) = F (Ur), (4.58)

which gives the well-balanced identities (4.12).
Next, the first consistency identity (4.13) is obvious. Let us prove (4.14). We

have

Fr(Ul, Ur,∆Z) − Fl(Ul, Ur,∆Z)

= F(U∗r
l , Ur) −F(Ul, U

∗l
r )

= F(Ul, Ur) + ∂1F(Ul, Ur)(U∗r
l − Ul) −F(Ul, Ur) − ∂2F(Ul, Ur)(U∗l

r − Ur)

+o(|U∗r
l − Ul|) + o(|U∗l

r − Ur|).
(4.59)

But since the conservative numerical flux is consistent, F(U,U) = F (U) and

∂1F(U,U) + ∂2F(U,U) = F ′(U). (4.60)

Performing an expansion in (4.55) gives

U∗r
l − Ul = −F ′(Ul)−1B(Ul, Ur,∆Z)∆Z + o(∆Z),

U∗l
r − Ur = F ′(Ur)−1B(Ul, Ur,∆Z)∆Z + o(∆Z),

(4.61)

and therefore we obtain, as ∆Z, Ur − Ul → 0,

Fr(Ul, Ur,∆Z) − Fl(Ul, Ur,∆Z) = −B(Ul, Ur,∆Z)∆Z + o(∆Z), (4.62)

which gives the result. �
The method (4.55)–(4.56) is very simple, but is unfortunately not adapted

to treat critical points. When critical points arise, the first difficulty is to solve
(4.55). This is possible in the scalar case with a suitable interpretation [14]. Then,
another difficulty is that unless the numerical conservative flux F(Ul, Ur) has a
singular jacobian matrix at critical points, the fluxes Fl and Fr have a very low
regularity there, which leads to unconsistency. This is definitely bad for systems,
for which it is almost impossible to find such numerical fluxes.
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Remark 4.6. A variant of the above scheme is

Fl(Ul, Ur,∆Z) = F(U∗r
l , U∗l

r ) − F (U∗r
l ) + F (Ul),

Fr(Ul, Ur,∆Z) = F(U∗r
l , U∗l

r ) − F (U∗l
r ) + F (Ur),

(4.63)

where now
F (U∗r

l ) − F (Ul) +B(Ul, Ur,∆Z)(∆Z)+ = 0,

F (Ur) − F (U∗l
r ) +B(Ul, Ur,∆Z)(∆Z)− = 0,

(4.64)

and where ∆Z = (∆Z)+ +(∆Z)− is some appropriate decomposition. In this case
the consistency is merely trivial. The hydrostatic reconstruction scheme explained
in Section 4.11 is indeed very close to these formulas.

4.6 Approximate Riemann solvers

The Harten, Lax, Van Leer approximate Riemann solver approach can easily be
extended to the system with source (3.3), by considering the variable Ũ = (U,Z).
The relaxation solvers and kinetic solvers exposed in the next sections enter this
framework.

The Riemann problem for (3.3) is the problem of solving the system with
Riemann data

U0(x) =
{
Ul if x < 0,
Ur if x > 0, Z(x) =

{
Zl if x < 0,
Zr if x > 0. (4.65)

Since the Z component of the solution is obvious, we shall define only the U
component of the approximate Riemann solver.

Definition 4.9. An approximate Riemann solver for (3.3) is a vector function
R(x/t, Ul, Ur, Zl, Zr) that is an approximation of the solution to the Riemann prob-
lem, in the sense that it must satisfy the basic consistency relation

R(x/t, U, U, Z, Z) = U, (4.66)

and the asymptotic conservativity/consistency with the source (4.14), with Fl, Fr

defined by

Fl(Ul, Ur, Zl, Zr) = F (Ul, Zl) −
∫ 0

−∞

(
R(v, Ul, Ur, Zl, Zr) − Ul

)
dv,

Fr(Ul, Ur, Zl, Zr) = F (Ur, Zr) +
∫ ∞

0

(
R(v, Ul, Ur, Zl, Zr) − Ur

)
dv.

(4.67)

It is called dissipative with respect to a convex entropy η̃ for (3.3) if

G̃r(Ul, Ur, Zl, Zr) − G̃l(Ul, Ur, Zl, Zr) ≤ 0, (4.68)
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where

G̃l(Ul, Ur, Zl, Zr)

= G̃(Ul, Zl) −
∫ 0

−∞

(
η̃(R(v, Ul, Ur, Zl, Zr), Zl) − η̃(Ul, Zl)

)
dv,

G̃r(Ul, Ur, Zl, Zr)

= G̃(Ur, Zr) +
∫ ∞

0

(
η̃(R(v, Ul, Ur, Zl, Zr), Zr) − η̃(Ur, Zr)

)
dv,

(4.69)

and G̃ is the entropy flux associated to η̃.

With this definition, the numerical scheme (4.1)–(4.2) defined from the fluxes
Fl, Fr of an approximate Riemann solver is obviously consistent. The interest
of this definition lies in the interpretation of the scheme as the average of an
approximate solution, exactly as in the conservative case.

Proposition 4.10. Consider discrete data (Un
i , Zi) at time tn, and the associated

piecewise constant functions Un(x) and Z(x). Define an approximate solution to
(3.1) for tn ≤ t < tn+1 by

U(t, x) = R

(
x− xi+1/2

t− tn
, Un

i , U
n
i+1, Zi, Zi+1

)
if xi < x < xi+1. (4.70)

This is meaningful under a CFL condition 1/2, in the sense that

x/t < −∆xi

2∆t
⇒ R(x/t, Ui, Ui+1, Zi, Zi+1) = Ui,

x/t >
∆xi+1

2∆t
⇒ R(x/t, Ui, Ui+1, Zi, Zi+1) = Ui+1.

(4.71)

Then the numerical scheme (4.1)–(4.2) is equivalent to the formula

Un+1
i =

1
∆xi

∫ xi+1/2

xi−1/2

U(tn+1 − 0, x) dx. (4.72)

Obviously this convex formula enables to provide invariant domains. This
gives also discrete entropy inequalities.

Proposition 4.11. If an approximate Riemann solver R is entropy dissipative in the
sense of (4.68)–(4.69), then the associated numerical scheme is entropy satisfying
in the sense of Definition 4.4, with any numerical entropy flux G̃(Ul, Ur, Zl, Zr)
such that

G̃r(Ul, Ur, Zl, Zr) ≤ G̃(Ul, Ur, Zl, Zr) ≤ G̃l(Ul, Ur, Zl, Zr). (4.73)

It is also entropy satisfying by interface in the sense of Definition 4.5, for any σl,
σr such that

x/t < σl ⇒ R(x/t, Ul, Ur, Zl, Zr) = Ul,

x/t > σr ⇒ R(x/t, Ul, Ur, Zl, Zr) = Ur.
(4.74)
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4.6.1 Exact solver

Another justification of Definition 4.9 is to prove that the exact Godunov solver
satisfies the requirements. In order to do so, we need first to give a precise definition
of discrete steady states.

Definition 4.12. We say that a (Ul, Ur, Zl, Zr) is an exact discrete steady state if
the associated piecewise constant function (U(x), Z(x)) defined by

U(x) = Ul, Z(x) = Zl, for x < 0,
U(x) = Ur, Z(x) = Zr, for x > 0,

(4.75)

is a generalized solution to (4.4).

We do not make precise the meaning of generalized solution, since a non-
conservative product is involved, and resonance can occur. The reader concerned
by this question can consult the references proposed in Chapter 3. Indeed in the
following the implicit assumptions that we make on this generalized solution can
be understood within the (formal) proof. Notice that this is discussed in [28], [43],
[29], [3], where exact solvers are used.

Proposition 4.13. If R(x/t, Ul, Ur, Zl, Zr) is an exact solver for (3.1), in the sense
that it gives a generalized solution for all values of the arguments, then it is an
approximate solver in the sense of Definition 4.9, and it is well-balanced with
respect to exact discrete steady states. Moreover, if the generalized solution satisfies
an entropy inequality, then this solver is entropy dissipative in the sense of (4.68)–
(4.69).

Proof. The basic consistency (4.66) is obvious. Let us prove (4.14). Since the
second component of the solution is Z(x) as in (4.65), we have

Zx(x) = (Zr − Zl)δ(x), B(U,Z)Zx(x) = B∗ (Zr − Zl)δ(x), (4.76)

for some constant B∗. Thus writing that the component proportional to δ(x) in
(3.1) vanishes, we get

F (U+, Zr) − F (U−, Zl) +B∗ (Zr − Zl) = 0, (4.77)

with

U− = R(0−, Ul, Ur, Zl, Zr), U+ = R(0+, Ul, Ur, Zl, Zr). (4.78)

Then, let us integrate the equation over ]0,∆t[×] − ∆x, 0[, for some ∆t, ∆x > 0
satisfying a CFL condition. Since the source does not appear, we get

1
∆x

∫ 0

−∆x

R(x/∆t, Ul, Ur, Zl, Zr) dx− Ul +
∆t
∆x

(
F (U−, Zl) − F (Ul, Zl)

)
= 0.

(4.79)
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Similarly we integrate over ]0,∆t[×]0,∆x[ and get

1
∆x

∫ ∆x

0

R(x/∆t, Ul, Ur, Zl, Zr) dx− Ur +
∆t
∆x

(
F (Ur, Zr) − F (U+, Zr)

)
= 0.

(4.80)
According to the CFL condition, this gives the value of the fluxes defined in (4.67),
namely

Fl(Ul, Ur, Zl, Zr) = F (U−, Zl), Fr(Ul, Ur, Zl, Zr) = F (U+, Zr). (4.81)

With (4.77), we conclude that (4.14) holds, if B∗ is consistent with B(U), which
is the least we can ask for a generalized solution.

Next, if the data (Ul, Ur, Zl, Zr) are those of a local exact discrete steady
state, we have that the exact solution to the Riemann problem is stationary,
R(x/t, Ul, Ur, Zl, Zr) = U0(x), and therefore U− = Ul, U+ = Ur, which gives
obviously (4.12).

Finally, let us assume that the solution satisfies an entropy inequality

∂t η̃(U,Z) + ∂x G̃(U,Z) ≤ 0. (4.82)

Taking the component proportional to δ(x) gives

G̃(U+, Zr) − G̃(U−, Zl) ≤ 0. (4.83)

But integrating (4.82) as in (4.79), (4.80), we obtain

G̃l(Ul, Ur, Zl, Zr) ≥ G̃(U−, Zl), G̃r(Ul, Ur, Zl, Zr) ≤ G̃(U+, Zr), (4.84)

and with (4.83) we get (4.68). �

4.6.2 Simple solvers

As in the conservative case, simple solvers are approximate Riemann solvers that
have finitely many simple discontinuities. This means that there exists a finite
number m ≥ 1 of speeds

σ0 = −∞ < σ1 < · · · < σm < σm+1 = +∞, (4.85)

and intermediate states

U0 = Ul, U1, . . . , Um−1, Um = Ur (4.86)

(depending on Ul, Ur, Zl, Zr), such that

R(x/t, Ul, Ur, Zl, Zr) = Uk if σk < x/t < σk+1. (4.87)
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Since the system (3.3) always has the eigenvalue 0, we must have the speed 0, thus
for some m0,

σm0 = 0. (4.88)

We complete the intermediate states by

Ũk =
{

(Uk, Zl) if k < m0,
(Uk, Zr) if k ≥ m0.

(4.89)

The intermediate fluxes Fk, k = 0, . . . ,m are defined by

Fk − Fk−1 = σk(Uk − Uk−1), k �= m0, F0 = F (Ul, Zl), Fm = F (Ur, Zr).
(4.90)

The numerical fluxes are obtained as

Fl(Ul, Ur, Zl, Zr) = Fm0−1, Fr(Ul, Ur, Zl, Zr) = Fm0 , (4.91)

or equivalently

Fl(Ul, Ur, Zl, Zr) = F (Ul, Zl) +
m0−1∑
k=1

σk(Uk − Uk−1),

Fr(Ul, Ur, Zl, Zr) = F (Ur, Zr) −
m∑

k=m0+1

σk(Uk − Uk−1).

(4.92)

The entropy inequality (4.68) becomes

m∑
k=1

σk

(
η̃(Ũk) − η̃(Ũk−1)

)
≥ G̃(Ur, Zr) − G̃(Ul, Zl). (4.93)

4.7 Suliciu relaxation solver

We shall not describe here a generalized relaxation framework for solving (3.3),
but just write the Suliciu relaxation for Saint Venant system (3.6).

Starting from data Ul = (ρl, ρlul), Ur = (ρr, ρrur), Zl, Zr, we solve the relax-
ation system 



∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + π) + ρZx = 0,
∂t(ρπ/c2) + ∂x(ρπu/c2) + ∂xu = 0,
∂t(ρc) + ∂x(ρcu) = 0,
∂tZ = 0,

(4.94)

with Riemann initial data, that are completed with

πl = p(ρl), πr = p(ρr), (4.95)
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and the arbitrary values cl, cr > 0. The quasilinear system (4.94) has eigenvalues
u − c/ρ, u (double), u + c/ρ, 0, and all are linearly degenerate. Therefore, the
meaning of the nonconservative product in (4.94) need not be precised, and it is
possible to obtain the solution explicitly. However we shall not describe this in
detail here, because this would be too lengthy. Retaining in the solution only the
U component, we get a simple approximate Riemann solver for the Saint Venant
system, that is entropy dissipative under the subcharacteristic condition (2.119),
where c has to be understood as the local value. Integrating the two first equations
in (4.94) as in (4.79), (4.80), we get the numerical fluxes

Fl =
(
ρu, ρu2 + π

)
−
, Fr =

(
ρu, ρu2 + π

)
+
, (4.96)

where − and + denote the values at x/t = 0− or x/t = 0+ respectively. A
possible choice of cl and cr is cl/ρl = cr/ρr = a > 0, where a is computed as small
as possible satisfying the subcharacteristic conditions. This choice enables to treat
the vacuum. The scheme we get is well-balanced with respect to steady states
at rest (4.10), because such data give obviously a stationary solution to (4.94)
(observe that the third equation becomes stationary when u = 0). Therefore, this
scheme satisfies all the properties proposed in Section 4.4. We can notice here
that the numerical viscosity is minimal, in the sense that when Ul, Ur → U and
Zl, Zr → Z, the speeds involved in the approximate Riemann solver tend to the
true eigenvalues, since the subcharacteristic condition allows to take a2 = p′(ρ) in
this case.

4.8 Kinetic solver

The kinetic solver of Section 2.5.1 can be extended to treat the source in the Saint
Venant system. As proposed in [87] (see also [7] for related methods), we solve

∂tf + ξ∂xf − Zx∂ξf = 0, (4.97)

with piecewise constant initial maxwellian data, with the maxwellian equilibrium
defined by (2.197). Then we define the approximate solution

U(t, x) =
∫ (

1, ξ
)
f(t, x, ξ) dξ, (4.98)

and integrate this over the cell to get the new cell average. This is the nonlocal
approach, but of course locally, we have to solve (4.97) with Riemann maxwellian
data. One can check that again it gives an approximate Riemann solver for the
Saint Venant system with pressure law (2.196), that is entropy dissipative. Inte-
grating (4.97) as in (4.79), (4.80), we get the numerical fluxes

Fl =
∫
ξ
(
1, ξ

)
f(x/t = 0−, ξ) dξ, Fr =

∫
ξ
(
1, ξ

)
f(x/t = 0+, ξ) dξ. (4.99)
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The solution f is obtained by writing generalized characteristics for (4.97), and
this gives the maximal speed in the resolution of the Riemann problem

a(Ul, Ur,∆Z) = max
(

sup
M(Ul,ξ) �=0

√
ξ2 + max(0,−2∆Z),

sup
M(Ur,ξ) �=0

√
ξ2 + max(0, 2∆Z)

)
,

(4.100)

which is involved in the CFL condition. The interface values are

f(x/t = 0−, ξ) = 1ξ>0M(Ul, ξ) + 1ξ<0, ξ2−2∆Z<0M(Ul,−ξ)
+1ξ<0, ξ2−2∆Z>0M(Ur,−

√
ξ2 − 2∆Z),

(4.101)

f(x/t = 0+, ξ) = 1ξ<0M(Ur, ξ) + 1ξ>0, ξ2+2∆Z<0M(Ur,−ξ)
+1ξ>0, ξ2+2∆Z>0M(Ul,

√
ξ2 + 2∆Z).

(4.102)

The scheme we obtain is well-balanced with respect to steady states at rest, and
naturally treats the vacuum. Therefore, this scheme satisfies all the properties
proposed in Section 4.4. A practical difficulty that occurs however is that the
numerical fluxes cannot be computed explicitly, they involve integrals in ξ that
need to be computed numerically.

4.9 VFRoe solver

The VFRoe method for solving the Saint Venant system (3.6) has been introduced
in [38]. The method does not enter the framework of the Harten, Lax, Van Leer
approximate Riemann solver with source of Section 4.6, but is rather inspired by
the formula for the fluxes in the exact solver (4.78), (4.81).

As in the conservative case explained in Section 2.6, we perform a nonlinear
change of variables, starting from the quasilinear Saint Venant system. The choice
is

Y = (ϕ(ρ), u, Z), (4.103)

where ϕ(ρ) is defined by (1.21), and this gives the new quasilinear system



∂tϕ+ u∂xϕ+
√
p′(ρ) ∂xu = 0,

∂tu+ u∂xu+
√
p′(ρ) ∂xϕ+ Zx = 0,

∂tZ = 0.
(4.104)

Then, we perform the linearization (2.201)–(2.203), which gives



∂tϕ+ û∂xϕ+
√
p′(ρ̂) ∂xu = 0,

∂tu+ û∂xu+
√
p′(ρ̂) ∂xϕ+ Zx = 0,

∂tZ = 0,
(4.105)
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or equivalently



∂t(u+ ϕ) + (û+
√
p′(ρ̂))∂x(u+ ϕ) + Zx = 0,

∂t(u− ϕ) + (û−
√
p′(ρ̂))∂x(u− ϕ) + Zx = 0,

∂tZ = 0,
(4.106)

with Riemann initial data, where

û =
ul + ur

2
, ϕ(ρ̂) =

ϕ(ρl) + ϕ(ρr)
2

. (4.107)

The left and right numerical fluxes are defined as

Fl =
(

(ρu)− + (ρu)+
2

, (ρu2 + p(ρ))−

)
,

Fr =
(

(ρu)− + (ρu)+
2

, (ρu2 + p(ρ))+

)
,

(4.108)

where − and + denote the values of the solution to (4.105) at x/t = 0− and
x/t = 0+ respectively, as in (4.78). This formula can easily be proved to be water
height conservative, and consistent away from critical points.

The scheme is well-balanced with respect to steady states at rest, because in
this case √

p′(ρ̂)
(
ϕ(ρr) − ϕ(ρl)

)
+ Zr − Zl = 0, (4.109)

leading to a stationary solution for (4.105). Indeed this is true only for a pressure
law p(ρ) = κργ , but this is enough for applications.

For completeness we give the formula of the Riemann solution to (4.106).
Denote the eigenvalues

λ1 = û−
√
p′(ρ̂) < λ2 = û+

√
p′(ρ̂). (4.110)

The values at x/t = 0± are indexed by ± as before, and when relevant, an inter-
mediate state for λ1 < x/t < λ2 is indexed by ’∗’. Then,
If 0 < λ1 < λ2,


u+ = ul − ∆Z
2

(1/λ1 + 1/λ2),

ϕ+ = ϕl − ∆Z
2

(1/λ2 − 1/λ1),




u∗ =
1
2
(ul + ϕl + ur − ϕr − ∆Z/λ2),

ϕ∗ =
1
2
(ul + ϕl − ur + ϕr − ∆Z/λ2).

(4.111)
If λ1 < λ2 < 0,



u− = ur +
∆Z
2

(1/λ1 + 1/λ2),

ϕ− = ϕr +
∆Z
2

(1/λ2 − 1/λ1),




u∗ =
1
2
(ul + ϕl + ur − ϕr + ∆Z/λ1),

ϕ∗ =
1
2
(ul + ϕl − ur + ϕr − ∆Z/λ1).

(4.112)
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If λ1 < 0 < λ2, 


u− =
1
2
(ul + ϕl + ur − ϕr + ∆Z/λ1),

ϕ− =
1
2
(ul + ϕl − ur + ϕr − ∆Z/λ1),


u+ =

1
2
(ul + ϕl + ur − ϕr − ∆Z/λ2),

ϕ+ =
1
2
(ul + ϕl − ur + ϕr − ∆Z/λ2).

(4.113)

Indeed, in order to get nonnegative densities, one has to put positive parts, as
was done in Section 2.6. We observe that when ∆Z ≡ Zr − Zl �= 0, the numerical
flux is not only discontinuous when λ1 or λ2 crosses 0, but can even take infinite
values.

This scheme is extremely simple, and leads to fast execution. However, even
if, as was explained in Section 2.6, the variable Y is chosen in order to almost
never produce negative densities, this is not always the case. We observe also that
non-entropy discontinuities can occur.

4.10 F-wave decomposition method

Generalizations of the Roe method to the case of nonconservative sources are
proposed in [12], [13], [100], [25]. The F-wave decomposition method is also a
generalization of the Roe method, and has been proposed in [9]. It can be put
under the form of a simple approximate Riemann solver, as formulated in Section
4.6.2. Knowing the form (3.4) of the matrix of our system (3.1), and assuming no
resonance, one has to take one speed σm0 = 0, and the other speeds nonzero. An
approximation of the jump in the flux accross the stationary contact discontinuity
can be taken as

δFm0 = −B̂(Zr − Zl), (4.114)

for some approximation B̂ of B(U,Z) that needs to be chosen. Then, noticing that
for the waves with nonzero eigenvalues, Z has no jump, we can write

δFk = σkδUk for k �= m0. (4.115)

Now we write F (Ur, Zr) − F (Ul, Zl) =
∑m

k=1 δFk, so that with (4.114) it gives

F (Ur, Zr) − F (Ul, Zl) + B̂(Zr − Zl) =
∑

k �=m0

δFk. (4.116)

It is natural to take δUk, eigenvector of Â for k �= m0, where Â is a diagonalizable
matrix (with nonzero eigenvalues) approximating FU (U,Z), i.e. ÂδUk = σkδUk.
Therefore, by (4.115), δFk is also an eigenvector,

Â δFk = σkδFk for k �= m0. (4.117)
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The relations (4.116)–(4.117) define in a unique way the values σk for k �= m0,
which are the distinct eigenvalues of Â, and the δFk for k �= m0. The δUk are also
determined by (4.115), thus we recover the intermediate states by

Uk − Uk−1 = δUk, k �= m0. (4.118)

Finally, according to (4.92), the fluxes are given by

Fl(Ul, Ur, Zl, Zr) = F (Ul, Zl) +
∑

σk<0

δFk,

Fr(Ul, Ur, Zl, Zr) = F (Ur, Zr) −
∑

σk>0

δFk.
(4.119)

The name of the method, the F-wave decomposition method, comes from the
decomposition (4.116) of the jump in fluxes into components δFk in the eigenspaces
of Â, that directly come into the definition of the numerical fluxes (4.119).

The consistency condition (4.66) is obvious since if Zl = Zr and Ul = Ur, all
δFk for k �= m0 vanish by (4.116), thus the δUk also by (4.115), and Uk = Ul = Ur

by (4.118). The consistency with the source (4.14) is also easy to get since by
(4.119) and (4.116), Fr −Fl = F (Ur, Zr)−F (Ul, Zl)−

∑
k �=m0

δFk = −B̂(Zr −Zl),
which reduces therefore to the consistency of B̂.

We notice that in the case without source Zl = Zr, the method reduces to
the Roe method only if Um0 = Um0−1, i.e. Ul +

∑m0−1
k=1 δUk = Ur −

∑m
k=m0+1 δUk,

and applying Â, which is supposed invertible, this gives Â(Ur −Ul) = F (Ur, Zr)−
F (Ul, Zl) i.e. the condition on Â to be a Roe matrix. Therefore, this method
is naturally a generalization of the Roe method, and a possible choice is Â =
A(Ul, Ur, Ẑ), a Roe matrix obtained by freezing Z to a value Ẑ.

The well-balancing property is also easy to obtain from (4.119), it means that
δFk = 0 for all k �= m0, or equivalently F (Ur, Zr) − F (Ul, Zl) + B̂(Zr − Zl) = 0.
In the case of the Saint Venant system, one can take

B̂ = (0, ρ̂) , ρ̂ =
p(ρr) − p(ρl)

e(ρr) + p(ρr)/ρr − e(ρl) − p(ρl)/ρl
. (4.120)

This gives the well-balanced property with respect to the steady states at rest.
Moreover the first component of B̂ being 0, this gives the conservativity of the
density. However, as in the Roe method, it is not possible to analyze the nonneg-
ativity of density and the entropy inequality.

4.11 Hydrostatic reconstruction scheme

The hydrostatic reconstruction scheme is especially designed to solve Saint Venant
type problems. It has been introduced in [6], and is derived from the previous works
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[7], [15]. Numerical tests can be found also in [19], [75], [8], [34]. The construc-
tion can be seen as a modification of the explicitly well-balanced scheme (4.63),
involving the mirror values U∗r

l , U∗l
r computed by (4.64), or more generally by

solving some approximate steaty state equations. The problem in (4.64) is that
the occurrence of critical points prevents from finding unique solutions U∗r

l , U∗l
r .

The idea is then to replace the steady state relations (3.11) for the Saint Venant
problem by more simple relations,


u = cst,

e(ρ) +
p(ρ)
ρ

+ Z = cst.
(4.121)

The interests of these new relations are first that they coincide with the original
ones when u = 0, the rest steady states, and second that the singularity at critical
points is removed when solving the system with arbitrarily given two constants.
However, since the relations are not the exact ones, the consistency has to be looked
at carefully. Denoting as before U = (ρ, ρu), the numerical fluxes are defined by

Fl(Ul, Ur, Zl, Zr) = F(U∗
l , U

∗
r ) +

(
0

p(ρl) − p(ρ∗l )

)
,

Fr(Ul, Ur, Zl, Zr) = F(U∗
l , U

∗
r ) +

(
0

p(ρr) − p(ρ∗r)

)
,

(4.122)

where F(Ul, Ur) is a given consistent numerical flux for the Saint Venant problem
without source. The name “hydrostatic” comes from the fact that in (4.122) and
(4.121), only the pressure part of the system is really involved, the advection part
being neglected. The reconstructed states U∗

l , U∗
r are defined, according to (4.121),

by
U∗

l = (ρ∗l , ρ
∗
l ul), U∗

r = (ρ∗r , ρ
∗
rur), (4.123)

(e+ p/ρ)(ρ∗l ) = ((e+ p/ρ)(ρl) + Zl − Z∗)+ ,
(e+ p/ρ)(ρ∗r) = ((e+ p/ρ)(ρr) + Zr − Z∗)+ ,

(4.124)

where we recall that e′(ρ) = p(ρ)/ρ2. The positive parts in the right-hand sides
of (4.124) are just to ensure that we get some nonnegative densities ρ∗l , ρ

∗
r . The

value Z∗ is defined by
Z∗ = max(Zl, Zr), (4.125)

and another way of writing (4.124)-(4.125) is, with ∆Z = Zr − Zl,

(e+ p/ρ)(ρ∗l ) = ((e+ p/ρ)(ρl) − (∆Z)+)+ ,
(e+ p/ρ)(ρ∗r) = ((e+ p/ρ)(ρr) − (−∆Z)+)+ ,

(4.126)

which shows that Fl, Fr do indeed depend only on the difference ∆Z. The strengh
of this scheme is that it is extremely fast, the numerical fluxes being defined
directly, without any approximate Riemann solver, and it is indeed also extremely
stable.
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Proposition 4.14. Consider a consistent numerical flux F for the homogeneous
Saint Venant problem (i.e. with Z = cst), that preserves nonnegativity of the
density by interface and satisfies a semi-discrete entropy inequality corresponding
to the entropy η in (1.25). Then the scheme defined by the numerical fluxes (4.122),
(4.123), (4.126)
(0) is conservative in density,
(i) preserves the nonnegativity of ρ by interface,
(ii) is well-balanced, i.e. it preserves the discrete steady states at rest (4.10),
(iii) is consistent with the Saint Venant system (3.6),
(iv) satisfies a semi-discrete entropy inequality associated to the entropy η̃ in
(3.15).

Proof. Denote the components by Fl = (F 0
l , F

1
l ), Fr = (F 0

r , F
1
r ). Then the con-

servativity property (0) is obvious since (4.122) gives that F 0
l = F 0

r .
For property (ii) of well-balancing, consider discrete steady states at rest, i.e.

ul = ur = 0, (e+ p/ρ)(ρl) +Zl = (e+ p/ρ)(ρr) +Zr. Then, (4.124) gives ρ∗l = ρ∗r ,
and by (4.123), U∗

l = U∗
r . Therefore, by consistency of F and since ul = ur = 0,

(4.122) gives

Fl = F (U∗
l ) +

(
0

p(ρl) − p(ρ∗l )

)
= F (Ul), (4.127)

Fr = F (U∗
r ) +

(
0

p(ρr) − p(ρ∗r)

)
= F (Ur), (4.128)

which gives (4.12).
To prove the consistency (iii), we have to check the two properties of Defi-

nition 4.2. The consistency with the exact flux Fl(U,U, Z, Z) = Fr(U,U, Z, Z) =
F (U) is obvious since U∗

l = Ul and U∗
r = Ur whenever Zr = Zl. For consistency

with the source (4.47), we write

Fr − Fl =
(

0
p(ρ∗l ) − p(ρl) + p(ρr) − p(ρ∗r)

)
. (4.129)

Now, we can write p(ρ∗l ) − p(ρl) = [(e + p/ρ)(ρ∗l ) − (e + p/ρ)(ρl)]ρ∗∗l for some
ρ∗∗l between ρl and ρ∗l , and p(ρ∗r) − p(ρr) = [(e + p/ρ)(ρ∗r) − (e + p/ρ)(ρr)]ρ∗∗r

for some ρ∗∗r between ρr and ρ∗r . Then, assuming ρ > 0, the positive parts in
(4.126) play no role if ρl − ρ, ρr − ρ and ∆Z are small enough. Thus we have
p(ρ∗l ) − p(ρl) = −ρ∗∗l (∆Z)+, p(ρ∗r) − p(ρr) = −ρ∗∗r (−∆Z)+, which gives (4.47).
In the special case ρ = 0, the positive parts in (4.126) can play a role only when
(e+ p/ρ)(ρl) = O(∆Z), or respectively (e+ p/ρ)(ρr) = O(∆Z), and we conclude
that (4.47) always holds, proving (iii).

Let us now prove the nonnegativity statement (i). It is a consequence of the
property

ρ∗l ≤ ρl, ρ∗r ≤ ρr, (4.130)
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that comes directly from the definition (4.126). By assumption the numerical flux
F preserves the nonnegativity or ρ by interface. By Definition 2.4, this means that
there exists some σl(Ul, Ur) < 0 < σr(Ul, Ur) such that

ρl +
F0(Ul, Ur) − ρlul

σl(Ul, Ur)
≥ 0, ρr +

F0(Ul, Ur) − ρrur

σr(Ul, Ur)
≥ 0, (4.131)

for any Ul and Ur (with nonnegative densities ρl, ρr). This implies in particular
that

ρ∗l +
F0(U∗

l , U
∗
r ) − ρ∗l ul

σl(U∗
l , U

∗
r )

≥ 0, ρ∗r +
F0(U∗

l , U
∗
r ) − ρ∗rur

σr(U∗
l , U

∗
r )

≥ 0. (4.132)

But since necessarily 1 − ul/σl(U∗
l , U

∗
r ) ≥ 0, 1 − ur/σr(U∗

l , U
∗
r ) ≥ 0, we deduce

with (4.130) that

ρl +
F 0

l (Ul, Ur, Zl, Zr) − ρlul

σl(U∗
l , U

∗
r )

≥ 0, ρr +
F 0

r (Ul, Ur, Zl, Zr) − ρrur

σr(U∗
l , U

∗
r )

≥ 0,

(4.133)
which means that the scheme preserves the nonnegativity of ρ by interface. Note in
particular that the speeds are σl(U∗

l , U
∗
r ) and σr(U∗

l , U
∗
r ), thus the CFL condition

associated to the scheme is the one of F corresponding to the data U∗
l and U∗

r .
Surprisingly, since the sound speed is usually a monotone function of the density
and because of (4.130), this is slightly less restrictive than expected.

Let us finally prove the entropy inequality statement (iv). Here “semi-dis-
crete” refers to the limit when the timestep ∆t tends to 0, and therefore we have
to prove the existence of some consistent numerical entropy flux G̃(Ul, Ur, Zl, Zr)
such that the inequalities (4.40), (4.41) hold. By assumption, F satisfies a semi-
discrete entropy inequality for the problem without source, thus there exists some
numerical entropy flux G, consistent withG in (1.27), such that according to (2.25),
(2.26)

G(Ur) + η′(Ur)(F(Ul, Ur) − F (Ur)) ≤ G(Ul, Ur),
G(Ul, Ur) ≤ G(Ul) + η′(Ul)(F(Ul, Ur) − F (Ul)).

(4.134)

Note that since differentiation is with respect to U = (ρ, ρu),

η′(U) =
(
e(ρ) + p(ρ)/ρ− u2/2, u

)
. (4.135)

Let us start by applying (4.134) to U∗
l , U∗

r . We get

G(U∗
r ) + η′(U∗

r )(F(U∗
l , U

∗
r ) − F (U∗

r )) ≤ G(U∗
l , U

∗
r ),

G(U∗
l , U

∗
r ) ≤ G(U∗

l ) + η′(U∗
l )(F(U∗

l , U
∗
r ) − F (U∗

l )).
(4.136)

We are going to prove that (4.40), (4.41) hold with

G̃(Ul, Ur, Zl, Zr) = G(U∗
l , U

∗
r ) + F0(U∗

l , U
∗
r )Z∗. (4.137)
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This formula is obviously consistent with G̃, recall that G̃ = G + ρuZ and η̃ =
η+ρZ from (3.15). Since both inequalities are obtained exactly in the same way, let
us prove only the left inequality (4.41). By comparison with (4.136), it is enough
to prove that

G(U∗
l ) + η′(U∗

l )
(F(U∗

l , U
∗
r ) − F (U∗

l )
)

+ F0(U∗
l , U

∗
r )Z∗

≤ G(Ul) + η′(Ul)(Fl − F (Ul)) + F0(U∗
l , U

∗
r )Zl.

(4.138)

Adopting the shorthand notation F(U∗
l , U

∗
r ) = (F0,F1), this inequality can be

written

(u2
l /2 + (e+ p/ρ)(ρ∗l ))ρ

∗
l ul + ((e+ p/ρ)(ρ∗l ) − u2

l /2)(F0 − ρ∗l ul)
+ul(F1 − ρ∗l u

2
l − p(ρ∗l )) + F0(Z∗ − Zl)

≤ (u2
l /2 + (e+ p/ρ)(ρl))ρlul + ((e+ p/ρ)(ρl) − u2

l /2)(F0 − ρlul)
+ul(F 1

l − ρlu
2
l − p(ρl)),

(4.139)

or after simplification

ul(F1−p(ρ∗l ))+F0((e+p/ρ)(ρ∗l )−(e+p/ρ)(ρl)+Z∗−Zl) ≤ ul(F 1
l −p(ρl)). (4.140)

Since F 1
l − p(ρl) = F1 − p(ρ∗l ) by definition of Fl in (4.122), our inequality finally

reduces to

F0(U∗
l , U

∗
r )((e+ p/ρ)(ρ∗l ) − (e+ p/ρ)(ρl) + Z∗ − Zl) ≤ 0. (4.141)

Now, according to (4.124), when this quantity is nonzero, we have ρ∗l = 0 and the
expression between parentheses is nonnegative. But since F preserves nonnegativ-
ity of density, we have by (4.132) that F0(ρ∗l = 0, ul, ρ

∗
r , ur) ≤ 0 and we conclude

that (4.141) always holds. This completes the proof of (iv). �

The hydrostatic reconstruction scheme satisfies all the properties of Section
4.4, except that the entropy inequality is only semi-discrete. One can check that
indeed it does not satisfy a fully discrete entropy inequality. There exist some data
with (e + p/ρ)(ρi) + Zi = cst, ui = cst �= 0 such that for any ∆t > 0, the fully
discrete entropy inequality η̃(Un+1

i , Zi)− η̃(Un
i , Zi)+ ∆t

∆xi
(G̃i+1/2 − G̃i−1/2) ≤ 0 is

violated. However these data are not preserved by the scheme. The consequence is
that in practice we do not observe instabilities, as long as ρi remains nonnegative,
which is the case under the CFL condition of the homogeneous numerical flux F .

Additionally to its low cost, the hydrostatic reconstruction scheme has the
property to be easily adaptable to systems of the same type as the Saint Venant
problem. We give two examples of such extensions: the Saint Venant problem with
variable pressure, and the nozzle problem. We mention also that the method can
be modified to preserve exactly all the subsonic steady states, this is explained in
[21].



4.11. Hydrostatic reconstruction scheme 93

4.11.1 Saint Venant problem with variable pressure

This problem occurs in the same physical situation as the Saint Venant problem,
when the topography slope is not supposed small, see [20]. It reads as

{
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ)ι) + ρgzx + ρe(ρ)ιx = 0, (4.142)

where g > 0, z = z(x), and ι = ι(x) > 0. As before the pressure p(ρ) is increasing,
and e′(ρ) = p(ρ)/ρ2. This system takes the form (3.1), with U = (ρ, ρu) and
Z = (gz, ι) which is here two-dimensional. The interesting feature is that here the
conservative part of the equation also depends on Z. Combining the two equations
in (4.142), we get for smooth solutions

∂tu+ ∂x

(
u2/2 + (e(ρ) + p(ρ)/ρ)ι+ gz

)
= 0, (4.143)

and thus multiplying (4.143) by ρu and the first line of (4.142) by u2/2 + (e(ρ) +
p(ρ)/ρ)ι + gz, it yields by addition the energy conservation, that becomes an
inequality for weak solutions

∂t

(
ρu2/2 + ρe(ρ)ι+ ρgz

)
+ ∂x

[(
ρu2/2 + (ρe(ρ) + p(ρ))ι+ ρgz

)
u
] ≤ 0. (4.144)

This shows that η̃ = ρu2/2 + ρe(ρ)ι + ρgz is an entropy, with entropy flux G̃ =
(ρu2/2 + (ρe(ρ) + p(ρ))ι + ρgz)u. From the first line of (4.142) and (4.143) we
obtain the steady states, characterized by


ρu = cst,
u2

2
+

(
e(ρ) +

p(ρ)
ρ

)
ι+ gz = cst.

(4.145)

In particular, we are again especially interested in steady states at rest where


u = 0,(
e(ρ) +

p(ρ)
ρ

)
ι+ gz = cst.

(4.146)

In order to apply the hydrostatic reconstruction method to this problem,
we consider a numerical flux for the problem without source. Since here the flux
function depends on Z via ι, F (U, ι) = (ρu, ρu2 + p(ρ)ι), we have to give a precise
sense to this, and this means that we solve the problem (4.142) when Z = cst.
Thus ι > 0 is just a parameter, and a numerical flux for this problem is a function
F(Ul, Ur, ι). Then the hydrostatic reconstruction scheme for the full problem with
source is obtained with the left and right numerical fluxes computed as follows,

Fl(Ul, Ur, Zl, Zr) = F(U∗
l , U

∗
r , ι

∗) +
(

0
p(ρl)ιl − p(ρ∗l )ι

∗

)
,

Fr(Ul, Ur, Zl, Zr) = F(U∗
l , U

∗
r , ι

∗) +
(

0
p(ρr)ιr − p(ρ∗r)ι∗

)
,

(4.147)
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where
U∗

l = (ρ∗l , ρ
∗
l ul), U∗

r = (ρ∗r , ρ
∗
rur), (4.148)

(e+ p/ρ)(ρ∗l ) =
(
(e+ p/ρ)(ρl)ιl + gzl − gz∗

)
+
/ι∗,

(e+ p/ρ)(ρ∗r) =
(
(e+ p/ρ)(ρr)ιr + gzr − gz∗

)
+
/ι∗,

(4.149)

z∗ = max(zl, zr), ι∗ = max(ιl, ιr). (4.150)

Proposition 4.15. Consider a consistent numerical flux F(Ul, Ur, ι) for the problem
(4.142) without source, i.e. with z = cst and ι = cst, that preserves nonnegativity
of the density by interface and satisfies a semi-discrete entropy inequality cor-
responding to the entropy η = ρu2/2 + ρe(ρ)ι. Then the scheme defined by the
numerical fluxes (4.147)–(4.150)
(0) is conservative in density,
(i) preserves the nonnegativity of ρ by interface,
(ii) is well-balanced, i.e. it preserves the discrete steady states at rest,
(iii) is consistent with the Saint Venant system with variable pressure (4.142),
(iv) satisfies a semi-discrete entropy inequality associated to the entropy η̃ in
(4.144).

We do not give the proof of this proposition, which follows exactly the one
of Proposition 4.14. We just mention that the choice (4.150) is made to have

ρ∗l ≤ ρl, ρ∗r ≤ ρr, (4.151)

which ensures as before the nonnegativity property. For the semi-discrete en-
tropy inequality, the numerical entropy flux is obtained as G̃(Ul, Ur, Zl, Zr) =
G(U∗

l , U
∗
r , ι

∗) + F0(U∗
l , U

∗
r , ι

∗)gz∗, where G is the numerical entropy flux for the
problem without source.

4.11.2 Nozzle problem

This system describes the evolution of a gas in a nozzle, see [73], [4], and writes
as {

∂t(Zρ) + ∂x(Zρu) = 0,
∂t(Zρu) + ∂x

(
Z(ρu2 + p(ρ))

)
= p(ρ)Zx,

(4.152)

where Z = Z(x) > 0 is the nozzle section, and as usual p′(ρ) > 0. The system is
of the form (3.1) with conservative variables Zρ and Zρu. For smooth solutions,
a combination of the two equations gives

∂tu+ ∂x(u2/2 + e(ρ) + p(ρ)/ρ) = 0, (4.153)

with as before e′(ρ) = p(ρ)/ρ2. Then, multiplying (4.153) by Zρu and the first
line of (4.152) by u2/2 + e(ρ) + p(ρ)/ρ, the sum gives the energy inequality

∂t

(
Z(ρu2/2 + ρe(ρ))

)
+ ∂x

(
Z(ρu2/2 + ρe(ρ) + p(ρ))u

)
≤ 0. (4.154)



4.11. Hydrostatic reconstruction scheme 95

With (4.153) and the first line of (4.152), the steady states are given by




Zρu = cst,

u2

2
+ e(ρ) +

p(ρ)
ρ

= cst.
(4.155)

The steady states at rest are very simple for this system,
{
u = 0,
ρ = cst.

(4.156)

In order to apply the hydrostatic reconstruction method to this problem, we
first consider the problem without source, i.e. when Z = cst. In this case, (4.152)
simplifies to the usual isentropic gas dynamics system. Therefore, let us consider
given a numerical flux F(Ul, Ur) for the isentropic gas dynamics system, the cor-
responding numerical flux for (4.152) with constant Z being just F(Ul, Ur, Z) =
Z F(Ul, Ur). Then, for the full problem (4.152), we denote U = (ρ, ρu) (which is
not the conservative variable here), and we define the numerical fluxes by

Fl(Ul, Ur, Zl, Zr) = Z∗F(Ul, Ur) +
(

0
Zlp(ρl) − Z∗p(ρl)

)
,

Fr(Ul, Ur, Zl, Zr) = Z∗F(Ul, Ur) +
(

0
Zrp(ρr) − Z∗p(ρr)

)
,

(4.157)

Z∗ = min(Zl, Zr). (4.158)

Indeed, this means that we have chosen U∗
l = Ul and U∗

r = Ur, which is coher-
ent with (4.156). The choice (4.158) is motivated as before by the nonnegativity
property.

Proposition 4.16. Consider a consistent numerical flux F for the isentropic gas
dynamics system, that preserves nonnegativity of the density by interface and sat-
isfies a semi-discrete entropy inequality corresponding to the entropy η in (1.25).
Then the scheme defined by the numerical fluxes (4.157), (4.158)
(0) is conservative in density,
(i) preserves the nonnegativity of ρ by interface,
(ii) is well-balanced, i.e. it preserves the discrete steady states at rest (4.156),
(iii) is consistent with the system (4.152),
(iv) satisfies a semi-discrete entropy inequality associated to the entropy η̃ = Zη.

Proof. Only (i) and (iv) are nontrivial. Let us prove (i). Since the numerical flux
F is nonnegative by interface, according to Definition 2.4 there exists some σl <
0 < σr such that

ρl +
F0(Ul, Ur) − ρlul

σl
≥ 0, ρr +

F0(Ul, Ur) − ρrur

σr
≥ 0. (4.159)
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Then, since 1 − ul/σl ≥ 0 and 1 − ur/σr ≥ 0, multiplying by Z∗ and using that
Z∗ ≤ Zl and Z∗ ≤ Zr we get

Zlρl +
Z∗F0(Ul, Ur) − Zlρlul

σl
≥ 0, Zrρr +

Z∗F0(Ul, Ur) − Zrρrur

σr
≥ 0,

(4.160)
which is the nonnegativity property for our scheme.

Next, let us prove (iv). We have F (U,Z) = ZF (U), η̃(U,Z) = Zη(U),
G̃(U,Z) = ZG(U), and η̃′(U,Z) = η′(U) = (e+ p/ρ− u2/2, u) because the differ-
entiation is with respect to the conservative variable ZU . By assumption we have
a numerical entropy flux G(Ul, Ur) such that

G(Ur) + η′(Ur)(F(Ul, Ur) − F (Ur)) ≤ G(Ul, Ur),
G(Ul, Ur) ≤ G(Ul) + η′(Ul)(F(Ul, Ur) − F (Ul)).

(4.161)

Multiplying (4.161) by Z∗ and using the identity

G(U) + η′(U)
((

0
p(ρ)

)
− F (U)

)
= 0, (4.162)

we get
ZrG(Ur) + η′(Ur)(Fr − ZrF (Ur)) ≤ Z∗G(Ul, Ur),
Z∗G(Ul, Ur) ≤ ZlG(Ul) + η′(Ul)(Fl − ZlF (Ul)),

(4.163)

which means that the scheme satisfies a semi-discrete entropy intequality, with
numerical entropy flux G̃(Ul, Ur, Zl, Zr) = Z∗G(Ul, Ur). �

4.12 Additional source terms

The method that we propose here to treat additional zero-order source terms with
the well-balanced property is general, but for clarity we restrict here to the Saint
Venant problem. A more general formulation is proposed in Chapter 5 in the
multidimensional context. This method has been showed to be very efficient when
dealing with Coriolis force in [19], [75].

Consider the Saint Venant system with topography and external force f ,{
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ)) + ρZx = ρf,

(4.164)

where Z = Z(x), f = f(t, x). One can think in particular of a nonlinear coupling
like f(t, x) = g(ρ, u). Now the velocity equation writes

∂tu+ ∂x(u2/2 + e(ρ) + p(ρ)/ρ+ Z) = f, (4.165)

and the steady states at rest are given by

u = 0, ∂x(e(ρ) + p(ρ)/ρ+ Z) = f. (4.166)
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The idea to solve (4.164) is to identify the system as the usual Saint Venant
problem with a new topography Z +B, where Bx = −f . Now, B depends also on
time while it should be time independent, but when using discrete times tn, we
can freeze the value on a time interval, thus we take Bn

x = −fn and solve the Saint
Venant system on the time interval (tn, tn+1) with topography Z +Bn. Note that
for stationary solutions, this approximation is exact, thus the stationary solutions
are preserved by this procedure.

At the fully discrete level, this is done as follows. We define

∆Bn
i+1/2 = −fn

i+1/2∆xi+1/2, (4.167)

where ∆xi+1/2 = xi+1 − xi, and update U = (ρ, ρu) via

Un+1
i − Un

i +
∆t
∆xi

(Fi+1/2− − Fi−1/2+) = 0, (4.168)

with
Fi+1/2− = Fl(Ui, Ui+1,∆Zi+1/2 + ∆Bn

i+1/2),

Fi+1/2+ = Fr(Ui, Ui+1,∆Zi+1/2 + ∆Bn
i+1/2),

(4.169)

where ∆Zi+1/2 =Zi+1−Zi and the numerical fluxes Fl(Ul, Ur,∆Z), Fr(Ul, Ur,∆Z)
are associated to the usual Saint Venant problem. If the numerical fluxes Fl, Fr

are consistent with the Saint Venant system, then the new scheme (4.167)–(4.169)
is consistent with (4.164), in a sense that is an obvious generalization of Definition
4.2. Moreover, if the numerical fluxes Fl, Fr are well-balanced with respect to
steady states at rest, then the new scheme (4.167)–(4.169) automatically preserves
the data satisfying

ui = 0, e(ρi+1) + p(ρi+1)/ρi+1 + Zi+1 = e(ρi) + p(ρi)/ρi + Zi + fi+1/2∆xi+1/2,
(4.170)

which can be considered as discrete steady states approximating the relations
(4.166). Concerning discrete entropy inequalities, there is no reason in general to
have a special compatibility with this method, but however if f is bounded, this
should not be a problem because the right-hand side is a lower-order term that
should not influence the global stability.

4.12.1 Saint Venant problem with Coulomb friction

In order to illustrate the treatment of additional source terms, let us consider the
Saint Venant system with Coulomb friction

{
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ)) + ρZx = −ρgµ sgnu, (4.171)

where µ ≥ 0 is the friction coefficient. Such a model arises in the modeling of
debris avalanches, see for example [22]. The term sgnu has to be understood as
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multivalued: sgn 0 can be any value in [−1, 1]. A rigorous definition of the meaning
of (4.171) is indeed that there must exist some function f(t, x) such that

{
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ)) + ρZx = ρf,

(4.172)

and {
|f(t, x)| ≤ gµ,

u(t, x) �= 0 ⇒ f(t, x) = −gµ sgn u(t, x).
(4.173)

An existence result within this formulation can be found in [55]. By putting to-
gether (4.166) and (4.173) we obtain he steady states at rest, given by

u = 0,
∣∣∣∂x(e(ρ) + p(ρ)/ρ+ Z)

∣∣∣ ≤ gµ. (4.174)

In order to apply the scheme (4.167)-(4.169), we just need to define a con-
sistent value for fn

i+1/2. This is done by setting

fn
i+1/2 =− proj

gµ

(
e(ρi)+p(ρi)/ρi−e(ρi+1)−p(ρi+1)/ρi+1−∆Zi+1/2

∆xi+1/2
+
ui+1/2

∆t

)
,

(4.175)
where

proj
gµ

(X) =




X if |X| ≤ gµ,

gµ
X

|X| if |X| > gµ,
(4.176)

and for example

ui+1/2 =
ρiui + ρi+1ui+1

ρi + ρi+1
. (4.177)

These formula define a value of fn
i+1/2 which is consistent with (4.173) because

|fn
i+1/2| ≤ gµ, and if ui+1/2 �= 0, then for ∆t small enough the ratio ui+1/2/∆t in

(4.175) will dominate the other term, giving fn
i+1/2 = −gµ sgn ui+1/2.

This construction is also well-balanced. Indeed the data such that

ui = 0,
∣∣∣e(ρi) + p(ρi)/ρi − e(ρi+1) − p(ρi+1)/ρi+1 − ∆Zi+1/2

∣∣∣ ≤ gµ∆xi+1/2

(4.178)
are preserved by the scheme, because this yields ∆Zi+1/2 + ∆Bn

i+1/2 = e(ρi) +
p(ρi)/ρi − e(ρi+1) − p(ρi+1)/ρi+1, which is the relation that gives no evolution in
(4.168)–(4.169).

Another interesting property of (4.175) can be seen if we consider particular
solutions of (4.171) that satisfy ρ = cst, Zx = cst, and u = u(t). Then the system
simplifies to

du

dt
+ Zx = −gµ sgnu. (4.179)
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This ordinary differential equation with multivalued right-hand side has indeed
unique solutions because the right-hand side is a monotone operator. The solu-
tions have discontinuous derivative, thus the usual forward Euler scheme suffers
from very low accuracy when the derivative is discontinuous. On the contrary, our
scheme is here

un+1 = un + ∆t(fn − Zx), fn = − proj
gµ

(−Zx + un/∆t
)
. (4.180)

It has the property that when |Zx| < gµ and un is small enough, it gives directly
the exact solution un+1 = 0, and then it remains at 0. However, it is still imprecise
in the case |Zx| > gµ where the solution has to cross 0 with a discontinuity in the
derivative. In order to have an exact resolution in both cases, one have to use a
variant of the above scheme, replacing (4.175) by

fn
i+1/2 = −ϕgµ

(
e(ρi) + p(ρi)/ρi − e(ρi+1) − p(ρi+1)/ρi+1 − ∆Zi+1/2

∆xi+1/2
,
ui+1/2

∆t

)
,

(4.181)
where

ϕgµ(X,Y ) = proj
gµ

(
proj
gµ

(X) +
2

1 + max(1,−X · Y/gµ|Y |)Y
)
, (4.182)

instead of ϕgµ(X,Y ) = proj
gµ

(X + Y ) before.

4.13 Second-order extension

Few authors have proposed second-order accurate well-balanced schemes. We shall
give here a general method derived from [66], [67], which is a natural extension of
Section 2.8. It shares also ideas with [76]. The method uses a second-order recon-
struction operator, and consistent first-order fluxes Fl, Fr in the sense of Definition
4.2. Since second-order accuracy in time will be obtained as usual by the Heun
method (2.261), it is enough to build a scheme that is second-order in space only.

The second-order reconstruction operator is as in Definition 2.25, but acts
on the sequence (Ui, Zi)i∈Z, thus giving values (Ui+1/2−, Zi+1/2−) and (Ui+1/2+,
Zi+1/2+). We only modify slightly the conservativity (2.230) that is assumed only
for U (not for Z).
The second-order scheme is defined by

Un+1
i − Un

i +
∆t
∆xi

(Fi+1/2− − Fi−1/2+ − δFi) = 0, (4.183)

with
Fi+1/2− = Fl

(
Un

i+1/2−, U
n
i+1/2+, Z

n
i+1/2−, Z

n
i+1/2+

)
,

Fi+1/2+ = Fr

(
Un

i+1/2−, U
n
i+1/2+, Z

n
i+1/2−, Z

n
i+1/2+

)
,

δFi = Fc

(
Un

i−1/2+, U
n
i+1/2−, Z

n
i−1/2+, Z

n
i+1/2−

)
,

(4.184)
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and the function Fc needs to be chosen. We remark that although Zi does not
change with time, the interface values Zn

i+1/2± can be time dependent if the re-
construction operator is not performed componentwise. We define

∆Zn
i+1/2 = Zn

i+1/2+ − Zn
i+1/2−, ∆Zn

i = Zn
i+1/2− − Zn

i−1/2+. (4.185)

4.13.1 Second-order accuracy

The idea in (4.183)–(4.184) is that depending on the smoothness of the computed
solution, the source term is either discretized at the interfaces or at the centers of
the cells. One one hand, if the solution has large discontinuities, the reconstruction
step should give (U,Z)n

i+1/2− = (U,Z)n
i−1/2+ = (Un

i , Zi), thus reducing to the
first-order scheme. This indicates that we have to impose

Fc(U,U, Z, Z) = 0. (4.186)

On the other hand, if the solution is smooth, the interface jumps (U,Z)i+1/2+ −
(U,Z)i+1/2− should be small, and the source cannot appear at the interface, be-
cause (4.14) gives nothing if ∆Zn

i+1/2 is small. It has to be handled by the centered
term δFi. In order that this term gives a second-order resolution, we shall require
that

Fc(Ul, Ur, Zl, Zr)

= −
(
B

(
Ul + Ur

2
,
Zl + Zr

2

)
+O(|Ur − Ul|2 + |Zr − Zl|2)

)
(Zr − Zl),

(4.187)
as Ur −Ul → 0 and Zr −Zl → 0. This condition implies that Fc(Ul, Ur, Z, Z) = 0,
which is stronger than (4.186).

In view of (4.14), a candidate for Fc would be Fc = Fr − Fl. But in general
there is no chance that it satisfies the centered expansion (4.187), because Fr −Fl

involves somehow some upwinding. This choice would be also good for invariant
domains.

Lemma 4.17. If under a CFL condition the numerical fluxes preserve a convex
invariant domain U ∈ U , and if the reconstruction also preserves this invari-
ant domain, then under the half original CFL condition, the second-order scheme
(4.183)–(4.184) with Fc = Fr − Fl also preserves this invariant domain.

Proof. This is straightforward with the interpretation by half cells of the proof
of Proposition 2.27. Indeed applying the first-order scheme to the half cell values
gives

Un+1
i−1/4 = Ui−1/4 − 2∆t

∆xi

(
Fi− − Fi−1/2+

)
,

Un+1
i+1/4 = Ui+1/4 − 2∆t

∆xi

(
Fi+1/2− − Fi+

)
,

(4.188)
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with
Fi− = Fl

(
Un

i−1/2+, U
n
i+1/2−, Z

n
i−1/2+, Z

n
i+1/2−

)
,

Fi+ = Fr

(
Un

i−1/2+, U
n
i+1/2−, Z

n
i−1/2+, Z

n
i+1/2−

)
.

(4.189)

By summing the two equations in (4.188) and using (2.230), we conclude that
Un+1

i = (Un+1
i−1/4 + Un+1

i+1/4)/2 if Fc = Fr − Fl, which gives the result. �

In practice, the choice Fr − Fl cannot be used, because (4.187) is really
necessary. A slight restriction on the reconstruction is also necessary, which is
that whenever the sequence (Ui, Zi) is realized as the cell averages of smooth
functions (U(x), Z(x)), then

Zi+1/2+ − Zi+1/2− = O
(
(∆xi + ∆xi+1)h

)
,

Zi+1/2− − Zi−1/2+ = O(∆xi).
(4.190)

These assumptions are very weak and of local nature, since in general one would
have according to the definition of a second-order reconstruction operator errors
in h2 and h respectively on the right-hand sides of (4.190). These conditions are
satisfied for example for the minmod reconstruction.

Proposition 4.18. Let us assume that the numerical fluxes Fl, Fr are consistent in
the sense of Definition 4.2, that Fl, Fr are Lipschitz continuous, that Fr − Fl ∈
C1 with d(Fr − Fl) Lipschitz continuous, that Fc satisfies (4.187) and that the
reconstruction operator satisfies (4.190).
If for all i,

Un
i =

1
∆xi

∫
Ci

U(tn, x) dx, Zi =
1

∆xi

∫
Ci

Z(x) dx, (4.191)

for some smooth solution (U(t, x), Z(x)) to (3.3), then Un+1
i defined by (4.183)–

(4.184) satisfies for all i

Un+1
i =

1
∆xi

∫
Ci

U(tn+1, x) dx+ ∆t
(

1
∆xi

(Fi+1/2 −Fi−1/2) + Ei

)
, (4.192)

where
Fi+1/2 = O(∆t) +O(h2), Ei = O(∆t) +O(h2), (4.193)

as ∆t and h = supi ∆xi tend to 0.

Proof. Following the proof of Proposition 4.3, we have that (4.22) holds with (4.23)
and (4.24). We use again the definitions (4.25), (4.26) of Zi+1/2, Bi+1/2, Bi, and
define the mean flux Fi+1/2 by

Fi+1/2 =
∆xi+1Fi+1/2− + ∆xiFi+1/2+

∆xi + ∆xi+1

+Bi+1/2

(
∆xi+1Zi+1/2− + ∆xiZi+1/2+

∆xi + ∆xi+1
− Zi+1/2

)
.

(4.194)



102 Chapter 4. Nonconservative schemes

Notice that by the definition of a second-order reconstruction, we have Zi+1/2− =
Zi+1/2+O(h2), Zi+1/2+ = Zi+1/2+O(h2), thus the second line of (4.194) is O(h2).
Then, we can rewrite (4.183) as (4.28), with

Ei =
1

∆xi
(Fi+1/2− − Fi+1/2 + Fi−1/2 − Fi−1/2+ − δFi)

= − δFi

∆xi
+
Fi+1/2− − Fi+1/2+

∆xi + ∆xi+1
+
Fi−1/2− − Fi−1/2+

∆xi−1 + ∆xi

− Bi+1/2

∆xi

(
∆xi+1Zi+1/2− + ∆xiZi+1/2+

∆xi + ∆xi+1
− Zi+1/2

)

+
Bi−1/2

∆xi

(
∆xiZi−1/2− + ∆xi−1Zi−1/2+

∆xi−1 + ∆xi
− Zi−1/2

)
.

(4.195)

Therefore, by subtracting (4.22) to (4.28), we get (4.192) with

Fi+1/2 = F i+1/2 − Fi+1/2, Ei = Ei − Ei. (4.196)

We observe that (4.31) is still valid, and that from (4.13) and the Lipschitz conti-
nuity of Fl, Fr,

Fi+1/2 = F
(
U(tn, xi+1/2), Z(xi+1/2)

)
+O(h2), (4.197)

giving Fi+1/2 = O(∆t)+O(h2). Then, since Fr −Fl ∈ C1,1, as in Remark 4.5 and
because of (4.18), (4.14) holds with an error in |Zr − Zl|(|Ul − U | + |Ur − U | +
|Zl − Z| + |Zr − Z|). Thus

Fi+1/2+ − Fi+1/2− = −Bi+1/2∆Zi+1/2 +O
(
h2∆Zi+1/2

)

= −Bi∆Zi+1/2 +O
(
h∆Zi+1/2

)
,

(4.198)

and

Fi−1/2+ − Fi−1/2− = −Bi−1/2∆Zi−1/2 +O
(
h2∆Zi−1/2

)

= −Bi∆Zi−1/2 +O
(
h∆Zi−1/2

)
.

(4.199)

But by (4.187) and the second line of (4.190), we have

− δFi

∆xi
=

(
B

(
Ui−1/2+ + Ui+1/2−

2
,
Zi−1/2+ + Zi+1/2−

2

)
+O(h2)

)
∆Zi

∆xi

=
(
Bi +O(h2)

) ∆Zi

∆xi

= Bi
∆Zi

∆xi
+O(h2).

(4.200)
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Therefore, reporting (4.198), (4.199) and (4.200) in (4.195) gives with the first line
of (4.190)

Ei = Bi
∆Zi

∆xi
+Bi

∆Zi+1/2

∆xi + ∆xi+1
+ Bi

∆Zi−1/2

∆xi−1 + ∆xi

− Bi

∆xi

(
∆xi+1Zi+1/2− + ∆xiZi+1/2+

∆xi + ∆xi+1
− Zi+1/2

)

+
Bi

∆xi

(
∆xiZi−1/2− + ∆xi−1Zi−1/2+

∆xi−1 + ∆xi
− Zi−1/2

)
+O(h2)

= Bi

Zi+1/2 − Zi−1/2

∆xi
+O(h2)

= BiZx(xi) +O(h2).

(4.201)

Since
Ei = BiZx(xi) +O(∆t) +O(h2), (4.202)

we conclude that Ei = O(∆t) +O(h2). �

4.13.2 Well-balancing

The well-balancing property can be achieved if all the ingredients in the scheme
(4.183)–(4.184) satisfy a suitable condition. We assume here that a family of dis-
crete steady states is chosen, as described in Section 4.1.

Definition 4.19. We say that the second-order reconstruction operator is well-
balanced if to a sequence (Ui, Zi) that is a discrete steady state, it associates a
sequence of interface values

. . . , (U,Z)i−1/2−, (U,Z)i−1/2+, (U,Z)i+1/2−, (U,Z)i+1/2+, . . . (4.203)

that is again a discrete steady state.

We remark that here it is important to consider global steady states se-
quences, since the reconstruction operator can have a large dependency stencil.

Proposition 4.20. Assume that the reconstruction operator is well-balanced, that
the numerical fluxes Fl, Fr are well-balanced in the sense of Definition 4.1, and
that the centered flux Fc satisfies that whenever (Ul, Ur, Zl, Zr) is a local steady
state,

Fc(Ul, Ur, Zl, Zr) = F (Ur, Zr) − F (Ul, Zl). (4.204)

Then the second-order scheme (4.183)–(4.184) is well-balanced, in the sense that
steady states sequences are let invariant.

Proof. This is obvious by the formulas (4.183)–(4.184). �
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4.13.3 Centered flux

The centered flux Fc has to satisfy (4.187) for second-order accuracy, and (4.204)
for well-balancing. For Example 4.1 and if F ′(U) > 0, we can take

Fc(Ul, Ur,∆Z) = −F (Ur) − F (Ul)
D(Ur) −D(Ul)

∆Z. (4.205)

For the Saint Venant system and if we retain only steady states at rest, we
have a similar choice

Fc(Ul, Ur,∆Z) =
(
0,−ρ∗∆Z

)
, (4.206)

ρ∗ =
p(ρr) − p(ρl)

e(ρr) + p(ρr)/ρr − e(ρl) − p(ρl)/ρl
. (4.207)

For the physical pressure law p(ρ) = κρ2, this simplifies in ρ∗ = (ρl + ρr)/2. An
important point is that since the first component in (4.206) is 0, which is the same
value as the first component of Fr−Fl by (4.45), we have that the density obtained
by (4.183)–(4.184) is the same as it would be with the choice Fc = Fr − Fl, and
therefore by Lemma 4.17, this density is nonnegative under a half CFL condition.

For systems that can be treated by the hydrostatic reconstruction method
of Section 4.11, there is indeed a general procedure to derive a centered flux. The
idea is to modify the choice Fr − Fl in such a way that we keep the well-balanced
property, while recentering the variables. Let us illustrate this with the case of
the Saint Venant system with variable pressure of Section 4.11.1. We take the
difference in (4.147),

Fc(Ul, Ur, Zl, Zr) =
(
0, p(ρr)ιr − p(ρ∗r)ι

∗ − p(ρl)ιl + p(ρ∗l )ι
∗
)
, (4.208)

we keep (4.149),

(e+ p/ρ)(ρ∗l ) =
(
(e+ p/ρ)(ρl)ιl + gzl − gz∗

)
+
/ι∗,

(e+ p/ρ)(ρ∗r) =
(
(e+ p/ρ)(ρr)ιr + gzr − gz∗

)
+
/ι∗,

(4.209)

but (4.150) is replaced by a centered choice of z∗ and ι∗, for example

z∗ =
zl + zr

2
, ι∗ =

√
ιlιr. (4.210)

Then one can check that this centered flux is well-balanced and satisfies the cen-
tering requirement (4.187). Since the first component of (4.208) vanishes, the
centering does not destroy the nonnegativity property. A variant with cutoff is
also possible if in this centered flux (that depends only on ∆z and not indepen-
dently of zl and zr), we replace g∆z by its projection onto the interval [−2(e +
p/ρ)(ρr)ιr, 2(e+ p/ρ)(ρl)ιl].
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4.13.4 Reconstruction operator

A second-order reconstruction for the Saint Venant system can be performed on
the vector (Ui, Zi) = (ρi, ρiui, Zi) as follows. We use the reconstruction proposed in
Example 2.14 for U , and for the variable Z, we perform the minmod reconstruction
on ζ = e(ρ) + p(ρ)/ρ+Z. This means that we set ζi = e(ρi) + p(ρi)/ρi +Zi, from
these values we compute ζi+1/2±, and we finally set

Zi+1/2± = ζi+1/2± − (
e(ρi+1/2±) + p(ρi+1/2±)/ρi+1/2±

)
. (4.211)

This reconstruction is obviously well-balanced with respect to steady states at
rest. Consequently, according to Proposition 4.20, with this choice of second-order
reconstruction and with Fc defined by (4.206)–(4.207), the whole second-order
scheme is well-balanced. This choice of reconstructing ζ has the advantage to
treat correctly interfaces between dry and wet cells, contrarily to other choices,
see [6].





Chapter 5

Multidimensional finite volumes with
sources

We do not want to give here a full description of finite volume methods in multi-
dimension, but rather to explain a few topics especially related to source terms,
following [13], [7], [75]. Even if our considerations apply to any dimension, our
presentation is restricted for simplicity to the two-dimensional case.

We are going to consider in this chapter a multidimensional system of the
form

∂tU + ∂1(F1(U,Z)) + ∂2(F2(U,Z)) +B1(U,Z)∂1Z + B2(U,Z)∂2Z = 0, (5.1)

where the space variable is x = (x1, x2) ∈ R2, and the partial derivatives ∂1, ∂2

refer to these variables. The unknown is U(t, x) ∈ Rp, Z = Z(x) ∈ Rr is given,
and the nonlinearities F1, F2, B1, B2 are smooth. This system is the natural
generalization of (3.1) to two dimensions, and can be written as a quasilinear
system in multidimension for the variable Ũ = (U,Z),


∂tU + (∂UF1)(U,Z)∂1U + (∂UF2)(U,Z)∂2U

+ ((∂ZF1)(U,Z) +B1(U,Z)) ∂1Z + ((∂ZF2)(U,Z) +B2(U,Z)) ∂2Z = 0,
∂tZ = 0.

(5.2)
For a two-dimensional quasilinear system

∂tŨ +A1(Ũ)∂1Ũ +A2(Ũ)∂2Ũ = 0, (5.3)

we can consider planar solutions, i.e. solutions of the form Ũ(t, x) = Ũ(t, ζ) with
ζ = x · n and n = (n1, n2) is any unit vector in R2, which leads to

∂tŨ +An(Ũ)∂ζŨ = 0, (5.4)

with
An(Ũ) = n1A1(Ũ) + n2A2(Ũ). (5.5)

The notions introduced in Chapter 1 can be applied to the one-dimensional quasi-
linear system (5.4), and by this way one defines hyperbolicity, entropies, and other
notions for (5.3) by requiring the one-dimensional properties for all directions n.
In particular, the system (5.3) is hyperbolic if for any unit vector n in R2 and any
Ũ , An(Ũ) is diagonalizable. One should indeed also require a smooth dependence
with respect to n of the eigenvalues and eigenvectors, but we shall not enter into
details here, the reader is referred to the literature, for example [91].
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5.1 Nonconservative finite volumes

The finite volume method for solving multidimensional systems is described in
detail in [33] for example. It involves a mesh made of cells Ci, the control volumes.
The interface Γij between two cells Ci and Cj is assumed to be a subset of an
hyperplane, thus the unit normal nij oriented from Ci to Cj is well-defined (see
Figure 5.1). In particular, nji = −nij .

n

i

j

ij
Γij

C

C

Figure 5.1: Interface Γij between cells Ci and Cj

A finite volume method for solving (5.1) is a formula for updating the values
Un

i attached to each cell Ci, of the form

Un+1
i − Ui +

∆t
|Ci|

∑
j∈Ki

|Γij |Fij = 0, (5.6)

where as before, Ui stands for Un
i , ∆t is the timestep, |Ci| is the volume of Ci,

|Γij | is the length of Γij , Ki is the set of indices j corresponding to cells Cj having
a common interface with Ci, and Fij is an exchange term between Cj and Ci.
This formula generalizes (4.1). When (5.1) is conservative, i.e. B1 = B2 ≡ 0, it is
natural to ask that (5.6) is also conservative, i.e. Fji = −Fij , that ensures that∑

i |Ci|Un
i is time independent.

In our case, there are nonconservative terms in (5.1), thus we have to take this
into account, by generalizing the nonconservative schemes of Chapter 4. Therefore,
we take the interface fluxes of the form

Fij = F (Ui, Uj , Zi, Zj , nij), (5.7)
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where F (Ul, Ur, Zl, Zr, n) is a numerical flux approximating n1F1 +n2F2, and the
indices l and r are related to the orientation of n. To relate this notation with the
one-dimensional one, one has to understand this numerical flux as the value on
the left of the interface, knowing that n is going from left to right. The value on
the right is then −F (Ur, Ul, Zr, Zl,−n).

5.2 Well-balancing

The above formulation means indeed that we are solving the problem (5.1) by
interface. It follows that the steady states that can be preserved by such a method
are those that can be seen as interface by interface steady states. In particular,
more general steady states where the dependence in x1 and x2 are nontrivially
balanced cannot be preserved. Discrete approximations of the steady states are
selected via an interface relation

D(Ul, Ur, Zl, Zr, n) = 0, (5.8)

and we shall assume for coherence that if (Ul, Ur, Zl, Zr, n) satisfies this relation,
then (Ur, Ul, Zr, Zl,−n) also. The well-balanced property of Definition 4.1 gener-
alizes as follows.

Definition 5.1. The scheme (5.6)–(5.7) is well-balanced relatively to some family
of discrete steady state defined by (5.8) if one has for any data satisfying (5.8)

F (Ul, Ur, Zl, Zr, n) = n1F1(Ul, Zl) + n2F2(Ul, Zl). (5.9)

According to (5.6)–(5.7), this property guarantees that if at time tn we start
with a sequence (Ui) that is a discrete steady state at each interface, then it
remains unchanged at the next time level, because by the Stokes formula,

∑
j∈Ki

|Γij |nij =
∫

∂Ci

n = 0. (5.10)

5.3 Consistency

The consistency Definition 4.2 generalizes as follows.

Definition 5.2. We say that the scheme (5.6)–(5.7) is consistent with (5.1) if the
numerical flux satisfies the consistency with the exact flux

F (U,U, Z, Z, n) = n1F1(U,Z) + n2F2(U,Z) for any U,Z, n, (5.11)

and the asymptotic conservativity/consistency with the source

F (Ul, Ur, Zl, Zr, n) + F (Ur, Ul, Zr, Zl,−n)
= (n1B1(U,Z) + n2B2(U,Z))(Zr − Zl) + o(Zr − Zl),

(5.12)

as Ul, Ur → U and Zl, Zr → Z.
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Note that the property (5.12) implies in particular that F (Ul, Ur, Z, Z, n) +
F (Ur, Ul, Z, Z,−n) = 0, which is the conservativity when Z is constant. The pre-
vious definition is justified by the following result, formulated in the multidimen-
sional weak sense.

Proposition 5.3. Let xi ∈ Ci be chosen arbitrarily, and assume that for all i,

Un
i =

1
|Ci|

∫
Ci

U(tn, x) dx, Zi = Z(xi) +O(diam(Ci)), (5.13)

for some smooth solution (U(t, x), Z(x)) to (5.1), and define Un+1
i by (5.6)–(5.7).

If the numerical flux is consistent and if

diam(Ci)
|Ci|

∑
j∈Ki

|Γij | is bounded, (5.14)

then for all i,

Un+1
i =

1
|Ci|

∫
Ci

U(tn+1, x) dx+ ∆t


 1
|Ci|

∑
j∈Ki

|Γij |Fij + Ei


 , (5.15)

where
Fji = −Fij , (5.16)

and
Fij → 0, Ei → 0, (5.17)

as ∆t and h ≡ supi diam(Ci) tend to 0.

Proof. Integrate the equation (5.1) satisfied by U(t, x) with respect to t and x over
]tn, tn+1[×Ci, and divide the result by |Ci|. According to the Stokes formula, we
get

1
|Ci|

∫
Ci

U(tn+1, x)dx− 1
|Ci|

∫
Ci

U(tn, x)dx+
∆t
|Ci|

∑
j∈Ki

|Γij |F ij + ∆tEi = 0,

(5.18)
where F ij is the exact interface flux

F ij =
1

∆t

∫ tn+1

tn

1
|Γij |

∫
Γij

(
n1

ijF1 + n2
ijF2

)
(U(t, x), Z(x)) dxdt, (5.19)

and Ei is the exact mean source

Ei =
1

∆t

∫ tn+1

tn

1
|Ci|

∫
Ci

(B1(U,Z)∂1Z +B2(U,Z)∂2Z) (t, x) dtdx. (5.20)
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We have obviously F ji = −F ij . Now, denote by xij the middle of Γij , and

Zij = Z(xij), Bij
1 = B1(U(tn, xij), Zij), Bij

2 = B2(U(tn, xij), Zij). (5.21)

We take µij ≥ 0, µij + µji = 1 (to be chosen later on), and define a mean flux

F̃ij = µijFij − µjiFji + (n1
ijB

ij
1 + n2

ijB
ij
2 )(µijZi + µjiZj − Zij). (5.22)

Then F̃ji = −F̃ij , and we can rewrite (5.6) as

Un+1
i − Ui +

∆t
|Ci|

∑
j∈Ki

|Γij |F̃ij + ∆tẼi = 0, (5.23)

with

Ẽi =
1

|Ci|
∑
j∈Ki

|Γij |(Fij − F̃ij). (5.24)

Therefore, subtracting (5.18) to (5.23) gives (5.15) with

Fij = F ij − F̃ij , Ei = Ei − Ẽi. (5.25)

By difference, (5.16) is satisfied, and it only remains to prove (5.17). Noticing that
by (5.13),

Zj − Zi = O(diam(Ci) + diam(Cj)), (5.26)

we have by the consistency (5.11) (if the numerical flux is continuous)

F̃ij = n1
ijF1(U(tn, xij), Zij) + n2

ijF2(U(tn, xij), Zij) + o(1), (5.27)

thus obviously from (5.19),

Fij = O(∆t) + o(1). (5.28)

Now, let us make the choice

µji =
diam(Ci)

diam(Ci) + diam(Cj)
. (5.29)

We compute from (5.22) and the consistency (5.12)

Fij − F̃ij

= µji(Fij + Fji) − (n1
ijB

ij
1 + n2

ijB
ij
2 )(µijZi + µjiZj − Zij)

= (n1
ijB

ij
1 + n2

ijB
ij
2 )(Zij − Zi) + o(µji(diam(Ci) + diam(Cj)))

= (n1
ijB1(Ui, Zi) + n2

ijB2(Ui, Zi))(Zij − Zi) + o(diam(Ci)).

(5.30)
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Then, because of (5.10), when taking the sum (5.24), we can replace Zij−Zi in the
last line of (5.30) by Zij − Z(xi) = ∂xZ(xi) · (xij − xi) + o(diam(Ci)). Therefore,
we obtain

Ẽi =
1

|Ci|
∑
j∈Ki

|Γij |
[
(n1

ijB1(Ui, Zi) + n2
ijB2(Ui, Zi))∂xZ(xi) · (xij − xi)

+o(diam(Ci))
]

= B1(Ui, Zi)∂xZ(xi) · 1
|Ci|

∑
j∈Ki

|Γij |n1
ij(xij − xi)

+B2(Ui, Zi)∂xZ(xi) · 1
|Ci|

∑
j∈Ki

|Γij |n2
ij(xij − xi)

+ o


diam(Ci)

|Ci|
∑
j∈Ki

|Γij |

 .

(5.31)

But according to the Stokes formula,

1
|Ci|

∑
j∈Ki

|Γij |n1
ij(xij −xi)=

1
|Ci|

∫
∂Ci

n1(x−xi)dx=
1

|Ci|
∫

Ci

∂1(x−xi) dx=(1, 0),

(5.32)
and a similar formula holds for the other sum. Therefore, with (5.14) we get

Ẽi = B1(Ui, Zi)∂1Z(xi) +B2(Ui, Zi)∂2Z(xi) + o(1), (5.33)

and this gives obviously that Ei = o(1). �
Remark 5.1. Second-order methods are also possible with sources, see [8].

Invariant domains and entropy inequalities can be described very similar to
the one-dimensional case, and incell properties are deduced again from interface
properties at the price of diminishing the CFL condition. However we shall not
describe this here.

5.4 Additional source terms

A generalization of the approach proposed in Section 4.12 is as follows. Consider
a system of the form (5.1), but where F1, F2, B1, B2 are independent of Z,

∂tU + ∂1(F1(U)) + ∂2(F2(U)) +B1(U)∂1Z +B2(U)∂2Z = 0. (5.34)

This problem is invariant under addition of a constant to Z. Then, assume known
a numerical flux which, coherently with this property, does not depend arbitrarily
on Zl and Zr, but only on the difference ∆Z = Zr − Zl,

F (Ul, Ur, Zl, Zr, n) = F (Ul, Ur,∆Z, n). (5.35)
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Assume then that one would like to solve a problem (5.34) with an additional
zero-order source of the form

∂tU + ∂1(F1(U)) + ∂2(F2(U)) +B1(U)∂1Z +B2(U)∂2Z

= B1(U)f1(t, x) +B2(U)f2(t, x).
(5.36)

A finite volume method for solving (5.36) is

Un+1
i − Ui +

∆t
|Ci|

∑
j∈Ki

|Γij |Fij = 0, (5.37)

with

Fij = F
(
Ui, Uj ,∆Zij − f ij

1 (xj − xi)1 − f ij
2 (xj − xi)2, nij

)
, (5.38)

where ∆Zij = Zj−Zi, xi ∈ Ci is chosen arbitrarily (independently of the interface
Γij), and f ij

1 , f ij
2 are approximate values of f1, f2 on Γij , with f ji = f ij . By

looking at the proof of Proposition 5.3, the scheme (5.37)–(5.38) is easily seen to
be consistent with (5.36) (in a sense that we shall not write down here), and as in
the one-dimensional case it also inherits the well-balanced property of the original
scheme.

5.5 Two-dimensional Saint Venant system

Let us illustrate the notions introduced above with the two-dimensional Saint
Venant system




∂tρ+ ∂1(ρu) + ∂2(ρv) = 0,
∂t(ρu) + ∂1(ρu2 + p(ρ)) + ∂2(ρuv) + ρg∂1z = 0,
∂t(ρv) + ∂1(ρuv) + ∂2(ρv2 + p(ρ)) + ρg∂2z = 0,

(5.39)

where ρ(t, x) ≥ 0 is the water height, u(t, x), v(t, x) are the two components of
the velocity field, the pressure p(ρ) satisfies as usual p′(ρ) > 0 (the physically
relevant case being p(ρ) = gρ2/2), g > 0 is the gravity constant, and z(x) is the
topography. We define as in one dimension

Z = gz, (5.40)

so that the system can be written as (5.1) with

U =


 ρ

ρu
ρv


 , F1 =


 ρu

ρu2 + p(ρ)
ρuv


 , F2 =


 ρv

ρuv
ρv2 + p(ρ)


 , (5.41)
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and

B1 =


 0

ρ
0


 , B2 =


 0

0
ρ


 . (5.42)

The steady states at rest are characterized by

u = v = 0, e(ρ) +
p(ρ)
ρ

+ Z = cst, (5.43)

with e′(ρ) = p(ρ)/ρ2.
A property of this system is that it is invariant under rotation. It can be seen

as follows. Let n = (n1, n2) be a unit vector, and

Rn =
(
n1 −n2

n2 n1

)
(5.44)

its associated rotation. If

x = Rnx
′, (u′, v′) = R−1

n (u, v), U ′ = (ρ, ρu′, ρv′), (5.45)

then U ′ is again a solution as a function of (t, x′). Indeed the flux in the direction
of n is

n1F1(U) + n2F2(U) =


 ρu′

Rn

(
ρu′2 + p(ρ)

ρu′v′

)

 . (5.46)

This rotational invariance enables to define a numerical flux from one-dimensional
numerical fluxes Fl(Ul, Ur,∆Z), Fr(Ul, Ur,∆Z) by the formula

F (Ul, Ur,∆Z, n) =


 F 0

l (U ′
l , U

′
r,∆Z)

Rn

(
F 1

l (U ′
l , U

′
r,∆Z)

F 2
l (U ′

l , U
′
r,∆Z)

)

 . (5.47)

The one-dimensional numerical fluxes Fl(Ul, Ur,∆Z), Fr(Ul, Ur,∆Z) are associ-
ated to the problem


∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ)) + ρ∂xZ = 0,
∂t(ρv) + ∂x(ρuv) = 0,

(5.48)

and one has to impose the symmetry by changing x to −x and u in −u, v in −v,
Fr(Ul, Ur,∆Z) = −Fl(U �

r , U
�
l ,−∆Z)�, (5.49)

with (ρ, ρu, ρv)� ≡ (ρ,−ρu,−ρv). This implies the formula associated to (5.47),

−F (Ur, Ul,−∆Z,−n) =


 F 0

r (U ′
l , U

′
r,∆Z)

Rn

(
F 1

r (U ′
l , U

′
r,∆Z)

F 2
r (U ′

l , U
′
r,∆Z)

)

 . (5.50)

The following result can be checked easily.
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Proposition 5.4. If Fl, Fr are consistent numerical fluxes for (5.48) that satisfy
(5.49), then the numerical flux (5.47) is consistent with (5.39). Moreover, if Fl,
Fr are well-balanced with respect to the discrete steady states at rest, then (5.47)
also.

Notice that the last equation in (5.48) is a passive transport equation, and
can be solved according to Section 2.7.

To illustrate the additional source approach of Section 5.4, consider the Saint
Venant system with force




∂tρ+ ∂1(ρu) + ∂2(ρv) = 0,
∂t(ρu) + ∂1(ρu2 + p(ρ)) + ∂2(ρuv) + ρ∂1Z = ρf1,
∂t(ρv) + ∂1(ρuv) + ∂2(ρv2 + p(ρ)) + ρ∂2Z = ρf2.

(5.51)

It is of the form (5.36), thus we can treat f = (f1, f2) by (5.38), one just has to
define an interface value f ij = f ji and use the argument ∆Zij − f ij · (xj − xi)
in the numerical flux. This can be done for example in the case of Coriolis force
f = ω(x)(−v, u), by taking f ij = ωij(−(vi + vj)/2, (ui + uj)/2), see [19], [75],
where a cartesian mesh is used. Another example is the Coulomb friction in two
dimensions,

f = −gµ (u, v)√
u2 + v2

, (5.52)

with µ ≥ 0, and the ratio is multivalued for (u, v) = 0, as in Section 4.12.1. In this
case, we can take

f ij = −ϕgµ

(
(e(ρi) + p(ρi)/ρi − e(ρj) − p(ρj)/ρj − ∆Zij)

xj − xi

|xj − xi|2 ,
(uij , vij)

∆t

)
,

(5.53)
with (4.182), (4.176), and for example

uij =
ρiui + ρjuj

ρi + ρj
, vij =

ρivi + ρjvj

ρi + ρj
. (5.54)

Numerical results with this method can be found in [83].





Chapter 6

Numerical tests with source

For all tests in this section we take p(ρ) = gρ2/2 with g = 9.81 in the Saint Venant
system.

Test 1: Accuracy test

This test is designed to evaluate the accuracy of the schemes. The solutions are
continuous but have discontinuities in derivatives. The space variable x is taken
in [0, 40], the topography is

z(x) =




0.48

(
1 −

(
x− 20

4

)2
)

if |x− 20| ≤ 4,

0 otherwise,
(6.1)

initial data are ρ0 = 4, u0 = 10/4, and the final time is t = 1. We test the Suliciu
method of Section 4.7, the kinetic method of Section 4.8, the VFRoe method
of Section 4.9, and the hydrostatic reconstruction method of Section 4.11. This
last method is used in conjunction with the Suliciu solver for the problem without
source, but other solvers give very similar results. A reference solution is computed
by using a very fine mesh of 3000 points. Table 6.1 shows the L1 error and the
numerical order of accuracy for first-order computations. The CFL number is
1, except for VFRoe where it is 0.99. Figures 6.1, 6.2, 6.3, 6.4, 6.5 represent
respectively the water level ρ+ z, the velocity u, the discharge ρu, the second 0-
Riemann invariant u2/2+g(ρ+z), and the Froude number u/

√
p′(ρ) for 50 points.

Tables 6.2 and 6.3 show the same diagnostics for second-order in time and space,
with the reconstruction of Section 4.13.4 and respectively minmod and ENOm
slope limiters. The CFL condition is taken half of the one used at first-order.

Cells Suliciu Kinetic VFRoe Hydrostatic
50 3.00E-0 / 4.73E-0 / 2.72E-0 / 3.75E-0 /
100 1.63E-0 0.88 2.73E-0 0.79 1.48E-0 0.88 2.02E-0 0.89
200 8.25E-1 0.98 1.51E-0 0.85 8.09E-1 0.87 1.07E-0 0.92
400 4.30E-1 0.94 8.25E-1 0.87 4.37E-1 0.89 5.61E-1 0.93
800 2.25E-1 0.93 4.40E-1 0.91 2.32E-1 0.91 2.92E-1 0.94

Table 6.1: L1 error and numerical order of accuracy for Test 1, first-order
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The four methods give comparable results, and they are even more similar at
second-order. The numerical order of accuracy for first-order is almost optimal, but
at second-order it is limited by the presence of the discontinuities in the derivatives.
The ENO limiter improves the resolution by a factor say approximately 0.6 with
respect to the minmod limiter.

Cells Suliciu Kinetic VFRoe Hydrostatic
50 3.03E-0 / 3.20E-0 / 3.01E-0 / 3.20E-0 /
100 1.18E-0 1.36 1.24E-0 1.37 1.18E-0 1.35 1.25E-0 1.36
200 4.69E-1 1.33 4.95E-1 1.32 4.69E-1 1.33 4.79E-1 1.38
400 1.90E-1 1.30 2.00E-1 1.31 1.90E-1 1.30 1.90E-1 1.33
800 7.39E-2 1.36 8.40E-2 1.25 7.39E-2 1.36 7.33E-2 1.37

Table 6.2: L1 error and numerical order of accuracy for Test 1, second-order min-
mod

Cells Suliciu Kinetic VFRoe Hydrostatic
50 1.98E-0 / 1.90E-0 / 1.97E-0 / 2.06E-0 /
100 8.60E-1 1.20 7.81E-1 1.28 8.63E-1 1.19 8.42E-1 1.29
200 3.14E-1 1.45 2.86E-1 1.45 3.13E-1 1.46 3.05E-1 1.47
400 1.21E-1 1.38 1.07E-1 1.42 1.20E-1 1.38 1.18E-1 1.37
800 4.24E-2 1.51 4.43E-2 1.27 4.24E-2 1.50 4.14E-2 1.51

Table 6.3: L1 error and numerical order of accuracy for Test 1, second-order ENO
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Figure 6.1: Water level for Test 1, first-order
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Figure 6.2: Velocity for Test 1, first-order
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Figure 6.3: Discharge for Test 1, first-order
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Figure 6.4: Riemann invariant for Test 1, first-order
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Figure 6.5: Froude number for Test 1, first-order
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Test 2: Transcritical flow with shock

This test is taken from [38], [51], and is designed to assess the long time behavior
and convergence to a steady state. The space domain is [0, 25], the topography is

z(x) =
{

0.2 − 0.05(x− 10)2 if 8 < x < 12,
0 otherwise, (6.2)

the initial data are ρ0 = 0.33, u0 = 0.18/0.33, and boundary conditions are ρu(x =
0) = 0.18, ρ(x = 25) = 0.33. The final time is t = 200.

The same four methods as above are tested, with a suitable treatment of
the boundary conditions that we shall not describe here. We use 200 cells in
space. Figure 6.6 shows the water level ρ + z for first-order computations. The
CFL condition is 1 except for VFRoe where it is 0.99, with the entropy fix of
the problem without source. This entropy fix is not satisfactory since it gives
oscillations here, and it gives a wrong solution for smaller CFL number, due to a
nonentropy discontinuity arising at the critical point. According to the authors of
[38], no efficient entropy fix has been found until now. A zoom of the interesting
part is plotted on Figure 6.7, and the Discharge ρu is on Figure 6.8 (it should be
constant in this test). The resolution of the Suliciu solver is a bit imprecise around
the critical point, located at the point of maximum of z. The number of timesteps
used is respectively 5572, 5601, 4932, 5068.

Figures 6.9 and 6.10 show the same test at second-order in time and space
with ENOm slope, at CFL 0.5. We have not been able to obtain a result with
the VFRoe solver. The other methods give similar results. We remark a small
oscillation in front of the shock.
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Figure 6.6: Water level for Test 2, first-order
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Figure 6.7: Zoom of water level for Test 2, first-order
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Figure 6.8: Discharge for Test 2, first-order
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Figure 6.9: Zoom of water level for Test 2, second-order
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Figure 6.10: Discharge for Test 2, second-order
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Test 3: Vacuum occurrence by a double rarefaction

This test is taken from [38], and shows the behavior with vacuum. The domain is
again [0, 25], the topography is

z(x) =
{

1 if 25/3 < x < 12.5,
0 otherwise, (6.3)

and initial conditions are ρ+ z = 10,

ρ(x)u(x) =
{ −350 if x < 50/3,

350 otherwise. (6.4)

Neumann boundary conditions are used, and the final time is t = 0.25.
The runs are performed with 200 points. Figures 6.11 and 6.12 show the wa-

ter level for first-order and second-order schemes respectively, for the hydrostatic
method with either the kinetic solver or the Suliciu solver as underlying homoge-
neous schemes. The CFL conditions are 1 at first-order, and 0.5 at second-order.
The second-order computations take respectively 209 and 194 timesteps. We no-
tice that as in the tests of Section 2.9, the second-order resolution has the defect
to give too low densities around the vacuum. The Suliciu solver behaves a little
better than the kinetic one on this test.
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Figure 6.11: Water level for Test 3, first-order
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Figure 6.12: Water level for Test 3, second-order
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[13] A. Bermúdez, A. Dervieux, J.A. Desideri, M.E. Vásquez, Upwind schemes
for two-dimensional shallow water equations with variable depth using un-
structured meshes, Comput. Methods Appl. Mech. Engrg. 155 (1998), 49-72.

[14] R. Botchorishvili, B. Perthame, A. Vasseur, Eqilibrium schemes for scalar
conservation laws with stiff sources, Math. Comp. 72 (2003), 131-157.

[15] N. Botta, R. Klein, S. Langenberg, S. Lützenkirchen, Well-balanced finite
volume methods for nearly hydrostatic flows, submitted, March 2002.

[16] F. Bouchut, Construction of BGK models with a family of kinetic entropies
for a given system of conservation laws, J. Stat. Phys. 95 (1999), 113-170.

[17] F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models,
Numer. Math. 94 (2003), 623-672.

[18] F. Bouchut, A reduced stability condition for nonlinear relaxation to conser-
vation laws, J. Hyp. Diff. Eq. 1 (2004), 149-170.

[19] F. Bouchut, J. LeSommer, V. Zeitlin, Frontal geostrophic adjustment and
nonlinear-wave phenomena in one dimensional rotating shallow water; Part
2 : high resolution numerical investigation, to appear in J. Fluid Mech.
(2004).

[20] F. Bouchut, A. Mangeney-Castelnau, B. Perthame, J.-P. Vilotte, A new
model of Saint Venant and Savage-Hutter type for gravity driven shallow
water flows, C. R. Acad. Sci. Paris Sér. I Math. 336 (2003), 531-536.

[21] F. Bouchut, T. Morales, A subsonic-well-balanced reconstruction scheme for
shallow water flows, preprint 2004.

[22] F. Bouchut, M. Westdickenberg, Gravity driven shallow water models for
arbitrary topography, preprint 2004.

[23] Y. Brenier, Averaged multivalued solutions for scalar conservation laws,
SIAM J. Numer. Anal. 21 (1984), 1013-1037.
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[40] P. Garćıa-Navarro, M.E. Vázquez-Cendón, On numerical treatment of the
source terms in the shallow water equations, Comput. Fluids 29 (2000), 17-
45.

[41] T. Gimse, N.H. Risebro, Riemann problems with a discontinuous flux func-
tion, In Proc. 3rd Internat. Conf. Hyperbolic Problems, 488-502, Uppsala,
1991, Studentlitteratur.



130 Bibliography

[42] P. Goatin, P.G. LeFloch, The Riemann problem for a class of resonant hy-
perbolic systems of balance Laws, preprint 2003.

[43] G. Godinaud, A.-Y. LeRoux, M.-N. LeRoux, Generation of new solvers in-
volving the source term for a class of nonhomogeneous hyperbolic systems,
preprint.

[44] E. Godlewski, P.-A. Raviart, Hyperbolic systems of conservation laws,
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