

Finite Element Analysis with
Error Estimators

An Introduction to the FEM and
Adaptive Error Analysis for
Engineering Students

Finite Element Analysis
with
Error Estimators

An Introduction to the FEM
and Adaptive Error Analysis
for Engineering Students

J. E. Akin

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Elsevier Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Burlington, MA 01803

First published 2005

Copyright 2005, J.E. Akin. All rights reserved

The right of J.E. Akin to be identified as the author of this work
has been asserted in accordance with the Copyright, Designs and
Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether
or not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder's written
permission to reproduce any part of this publication should be addressed
to the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via
the Elsevier homepage (http://www.elsevier.com), by selecting ‘Customer Support’
and then ‘Obtaining Permissions’

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 6722 2

Printed and bound in Great Britain

For information on all Elsevier Butterworth-Heinemann
publications visit our website at http://books.elsevier.com

Contents

Preface ... xi

Notation .. xiii

1. Introduction ... 1

1.1 Finite element methods ... 1

1.2 Capabilities of FEA ... 3

1.3 Outline of finite element procedures ... 8

1.4 Assembly into the system equations ... 12

1.5 Error concepts ... 21

1.6 Exercises ... 22

1.7 Bibliography ... 24

2. Mathematical preliminaries ... 26

2.1 Introduction ... 26

2.2 Linear spaces and norms ... 28

2.3 Sobolev norms* .. 29

2.4 Dual problems, self-adjointness .. 29

2.5 Weighted residuals .. 31

2.6 Boundary condition terms ... 35

2.7 Adding more unknowns .. 39

2.8 Numerical integration ... 39

2.9 Integration by parts ... 41

2.10 Finite element model problem .. 41

2.11 Continuous nodal flux recovery .. 56

2.12 A one-dimensional example error analysis ... 59

2.13 General boundary condition choices ... 67

2.14 General matrix partitions .. 69

2.15 Elliptic boundary value problems ... 70

2.16 Initial value problems ... 77

2.17 Eigen-problems ... 80

vi Contents

2.18 Equivalent forms* ... 83

2.19 Exercises ... 86

2.20 Bibliography ... 90

3. Element interpolation and local coordinates .. 92

3.1 Introduction ... 92

3.2 Linear interpolation ... 92

3.3 Quadratic interpolation ... 96

3.4 Lagrange interpolation .. 97

3.5 Hermitian interpolation ... 98

3.6 Hierarchial interpolation ... 101

3.7 Space-time interpolation* ... 106

3.8 Nodally exact interpolations* ... 106

3.9 Interpolation error* ... 107

3.10 Gradient estimates* .. 110

3.11 Exercises ... 113

3.12 Bibliography ... 115

4. One-dimensional integration ... 116

4.1 Introduction ... 116

4.2 Local coordinate Jacobian ... 116

4.3 Exact polynomial integration* .. 117

4.4 Numerical integration ... 119

4.5 Variable Jacobians ... 123

4.6 Exercises ... 126

4.7 Bibliography ... 126

5. Error estimates for elliptic problems .. 127

5.1 Introduction ... 127

5.2 Error estimates .. 131

5.3 Hierarchical error indicator ... 132

5.4 Flux balancing error estimates .. 136

5.5 Element adaptivity .. 138

5.6 H adaptivity ... 139

5.7 P adaptivity ... 139

5.8 HP adaptivity .. 140

5.9 Exercises ... 141

5.10 Bibliography ... 143

Contents vii

6. Super-convergent patch recovery .. 146

6.1 Patch implementation database ... 146

6.2 SCP nodal flux averaging .. 158

6.3 Computing the SCP element error estimate .. 164

6.4 Hessian matrix* .. 166

6.5 Exercises ... 176

6.6 Bibliography ... 176

7. Variational methods .. 178

7.1 Introduction ... 178

7.2 Structural mechanics ... 179

7.3 Finite element analysis .. 180

7.4 Continuous elastic bar ... 185

7.5 Thermal loads on a bar* ... 192

7.6 Reaction flux recovery for an element* .. 196

7.7 Heat transfer in a rod ... 199

7.8 Element validation* .. 202

7.9 Euler’s equations of variational calculus* .. 208

7.10 Exercises ... 210

7.11 Bibliography ... 213

8. Cylindrical analysis problems .. 215

8.1 Introduction ... 215

8.2 Heat conduction in a cylinder ... 215

8.3 Cylindrical stress analysis ... 225

8.4 Exercises ... 229

8.4 Bibliography ... 229

9. General interpolation .. 231

9.1 Introduction ... 231

9.2 Unit coordinate interpolation .. 231

9.3 Natural coordinates ... 238

9.4 Isoparametric and subparametric elements ... 239

9.5 Hierarchical interpolation ... 247

9.6 Differential geometry* .. 252

9.7 Mass properties* ... 256

9.9 Interpolation error* ... 257

9.9 Element distortion ... 258

9.10 Space-time interpolation* ... 260

9.11 Exercises ... 262

9.12 Bibliography ... 263

viii Contents

10. Integration methods .. 265

10.1 Introduction ... 265

10.2 Unit coordinate integration ... 265

10.3 Simplex coordinate integration ... 267

10.4 Numerical integration ... 270

10.5 Typical source distribution integrals* ... 273

10.6 Minimal, optimal, reduced and selected integration* 276

10.7 Exercises ... 279

10.8 Bibliography ... 280

11. Scalar fields .. 281

11.1 Introduction ... 281

11.2 Variational formulation ... 281

11.3 Element and boundary matrices .. 284

11.4 Linear triangle element ... 289

11.5 Linear triangle applications ... 291

11.6 Bilinear rectangles* .. 316

11.7 General 2-d elements .. 318

11.8 Numerically integrated arrays ... 319

11.9 Strong diagonal gradient SCP test case .. 322

11.10 Orthtropic conduction ... 337

11.11 Axisymmetric conduction ... 344

11.12 Torsion .. 350

11.13 Introduction to linear flows ... 358

11.14 Potential flow .. 358

11.15 Axisymmetric plasma equilibria* ... 365

11.16 Slider bearing lubrication .. 370

11.17 Transient scalar fields .. 377

11.18 Exercises ... 381

11.19 Bibliography ... 382

12. Vector fields ... 384

12.1 Introduction ... 384

12.2 Displacement based stress analysis ... 384

12.3 Planar models .. 389

12.4 Matrices for the constant strain triangle .. 395

12.5 Stress and strain transformations* .. 407

12.6 Axisymmetric solid stress* ... 412

12.7 General solid stress* ... 413

12.8 Anisotropic materials* .. 413

Contents ix

12.9 Circular hole in an infinite plate .. 416

12.10 Dynamics of solids .. 428

12.11 Exercises ... 435

12.11 Bibliography ... 435

Index ... 437

* Denotes sections or chapters that can be omitted for a first reading or shorter course.

xi

Preface

There are many good texts on the application of finite element analysis techniques. Most

do not address the concept and implementation of error estimation. Now that computers

are so powerful there is no reason not to carry out a re-analysis until the error levels reach

the point that the user is satisfied. Having an error estimation is critical to automating the

adaptation of the finite element analysis process. Today several commercial programs

include automatic adaptation, based on an error analysis. The user of such programs

should have a clear concept of the theory and limitations of such tools. Thus, this text

includes the basic finite element theory and its mathematical foundations, the error

estimation processes, and the associated computational procedures, as well as several

example applications.

This book is primarily intended for advanced undergraduate engineering students

and beginning graduate students. The text contains more material than could be covered

in a single quarter or semester course. Therefore, a number of chapters or sections that

could be omitted in a first course have been marked with an asterisk (*). Most of the

subject matter deals with linear heat transfer and elementary stress analysis.

The future of finite element analysis will probably heavily involve adaptive analysis

methods. One should have a course in Functional Analysis to best understand those

techniques. Most undergraduate curriculums do not contain such courses. Therefore, a

chapter on mathematical preliminaries is included.

All the Fortran 95 source programs for the general finite element library (called

MODEL), and the corresponding application and supporting data file can be downloaded

from the World Wide Web (for non-commercial use only). They can be found at the

Elsevier site http://www.books.elsevier.com/companions/. The same is true of a large

library of small Matlab plotting scripts that display the input and output results shown in

the text.

I would like to thank many current and former students at Rice University for their

constructive criticisms and comments during the evolution of this book. Special thanks

go to Prof. R. L. Taylor, of the University of California at Berkeley for his many detailed

and constructive suggestions. Mr. Don Schroder helped with the preparation of a large

part of the manuscript. Finally, this book would not have been completed without the

support and patience of my wife Kimberly.

Ed Akin

Houston, Texas

2005

xii

Features of the text and accompanying resources

End of chapter exercises
Each chapter ends with a range of exercises that are suitable for homework and assignment
work, as well as for private study.

Worked solutions to the exercises are freely available to teachers who adopt or recommend the
text to their students. For details on accessing this material please visit
http://books.elsevier.com/manuals and follow the registration instructions on screen.

Fortran 95 source programs
Source programs for the general finite element library, and the corresponding application and
supporting data file can be freely downloaded from the accompanying website. Go to
http://books.elsevier.com/companions and follow the instructions on screen. This material is
presented for non-commercial use only.

Matlab plotting scripts library
A library of Matlab plotting scripts that display the input and output results shown in the text are
also available for free download from the accompanying website. Go to
http://books.elsevier.com/companions and follow the instructions on screen. This material is
presented for non-commercial use only.

 xiii

Notation

The symbols most commonly used throughout the book are defined below. When

appearing in the text matrices, tensors, and vectors are identified by boldface type.

Mathematical symbols

(.̂) Based on element gradient

(.*) Based on nodally continuous gradient

{.} Column vector, n by 1

| . | Determinant of a matrix

∆∆T Divergence operator

∅ Empty set

∇∇ Gradient operator

∈ In

∩ Intersection

[.] −1 Inverse of a square matrix

Non-dimensional parametric space

|| . || Norm of a matrix or vector

]. , . [Open one-dimensional domain

T

 Outer product square matrix, m by m

, (.) Partial differentiation with respect to (.)

∂∂G , ∂∂Ω Partial derivatives in global Cartesian space

∂∂L , ∂∂ Partial derivatives in local parametric space

∝ Proportional to

[.] Rectangular, m by n, or square matrix

 . Row vector, 1 by m

⊂ Subset

[.]T Transpose of a matrix

∪ Union

xiv Notation

Latin Symbols

A Area

a Acceleration vector

a, b, c Natural coordinates on −1 to +1

(.)b Relating to a boundary domain

B Differential operator acting on interpolation matrix H or N

b Differential operator acting on global interpolation matrix h

C
n Field continuity of degree n

C System source vector

Cb Source vector from a boundary segment

Ce Source vector from an element

D System degrees of freedom vector

D Differential operator.

Db Boundary segment degrees of freedom vector

De Element degrees of freedom vector

d Cartesian gradient of H

dx First row of d, etc. for y, z

dof Degree(s) of freedom

E Modulus of elasticity of a material

E Constitutive law (stress-strain) matrix

e Error

(.)e Relating to an element domain

F Resultant force vector

G Shear modulus of a material

G Geometry interpolation row matrix (usually G = H)

Hb Boundary interpolation row matrix for a scalar

He Element interpolation row matrix for a scalar

h Characteristic length. Convection coefficient

h Global interpolation matrix

I
e
, Ie Integral of a scalar or matrix, respectively, on an element

I Identity matrix

J Jacobian matrix of a geometric transformation

K Stiffness matrix

k Thermal conductivity of a material, or spring stiffness

L Differential operator

L Length

Lk Barycentric coordinates, Σ Lk = 1

M Mass matrix of the system

me Mass matrix, or thermal capacity matrix of an element

m Mass

N Interpolation matrix for generalized degrees of freedom (often N = H)

n Unit normal vector

na Number of adjacent elements, NEIGH_L

nb Number of boundary segments, N_MIXED + N_SEG

nc Number of constraint equations, N_CEQ

Notation xv

nd Number of system degrees of freedom (nm × ng), N_D_FRE

ne Number of elements in the system, N_ELEMS

n f Maximum number of flux components, N_G_FLUX

ng Number of generalized dof per node, N_G_DOF

nh Number of scalar interpolations in H, LT _FREE

ni Number of element equation index terms (nn × ng), LT _FREE

nl Number of elements in a patch, L_IN_PATCH

nm Maximum node number in the system, MAX_NP

nn Maximum number of nodes per element, NOD_PER_EL

no Number of mixed or Robin BC segments, N_MIXED

n p Dimension of the parametric space, N_PARM

nq Number of quadrature points, N_QP

nr Number of rows in the B matrix, N_R_B

ns Dimension of the physical space, N_SPACE

nt Number of different element types, N_L_TYPE

nv Number of vector interpolations in V, LT _FREE

nx Number of element geometry definition nodes, N_GEOM

P Polynomial row matrix. Reaction vector

p Pressure

Q Source per unit volume

Qe Source per unit volume at element node points

q Source per unit length

qn Heat flux normal to boundary (q
n

= qn n)

q Heat flux vector at a point

R Matrix of position vectors, R = [x y z]

R Residual error in Ωe

r, s, t Unit coordinates on 0 to 1

S Square matrix of the system

Sb Square matrix from a boundary segment

Se Square matrix from an element

t Thickness, time

T Transformation matrix, or boundary traction matrix

U Strain energy

u Displacement vector. Velocity vector

u, v, w Components of displacement vector

V Volume

v Velocity vector

W Mechanical work

x, y, z Cartesian coordinates

X Body force vector

x Vector of x-coordinates

xe Vector of x-coordinates of the element nodes

y Vector of y-coordinates

z Vector of z-coordinates

xvi Notation

Greek symbols

α Coefficient of thermal expansion

ββ Boolean gather matrix

ββ T Boolean scatter matrix

e

Σ ββ eT
Ce Column vector element assembly process

e

Σ ββ eT
Se ββ e Square matrix element assembly process

ΓΓ Boundary of a domain, Ω
ΓΓ b Segment of the boundary ΓΓ
ΓΓ e Boundary of an element domain, Ωe

γ Weight per unit volume

∆∆ Local derivatives of the interpolation matrix H or N

δδ Element or boundary segment dof.

εε Strain or gradient

ζ Refinement parameter

η Allowed percentage error

θ Temperature, or angle

Θ Effectivity index

λ Direction cosine wrt x. Lame’ constant.

µ Direction cosine wrt y. Lame’ constant.

ν Poisson’s ratio of a material. Direction cosine wrt z.

ΠΠ Total potential energy, ΠΠ = U − W

π Mathematical constant 3.14159...

ρ Mass density of a material

ρρ Position vector to a point, ρρ = [x, y, z]

σσ Flux or stress

σσ * Smoothed flux or stress approximation

σ̂σ Finite element flux or stress approximation

τ Stabilization parameter

ττ Shear stress

Φ System degrees of freedom vector

Φk k-th unknown

φ Scalar unknown. Velocity potential

ψ Stream function

ω Angular velocity

ΩΩ Domain

ΩΩe Element domain

Notation xvii

Selected program notation (Array sizes follow in parentheses.)

AJ Jacobian matrix: (N_SPACE, N_SPACE)

AVE Average quantities at a system node: (N_R_B + 2, MAX_NP)

B Gradient versus dof matrix: (N_R_B, LT_FREE)

C Element column matrix: (LT_FREE)

CC Column matrix of system equations: (N_D_FRE)

COORD Coordinates of all nodes on an element: (LT_N, N_SPACE)

C_B Boundary segment column matrix: (LT_FREE)

D Nodal parameters associated with an element: (LT_FREE)

DD System list of nodal parameters: (N_D_FRE)

DGH Global derivatives of scalar functions H : (N_SPACE, LT_N)

DGV Global derivatives of vector functions V : (N_SPACE, LT_FREE)

DLG Local derivatives of geometry functions G : (LT_PARM, LT_GEOM)

DLH Local derivatives of scalar functions H : (LT_PARM, LT_N)

E Constitutive matrix: (N_R_B, N_R_B)

EL_M Element mass matrix: (LT_FREE, LT_FREE)

FLUX_LT Flux at element nodes from a SCP: (SCP_FIT, LT_N

G Interpolation functions for geometry: (LT_GEOM)

GLOBAL Global derivatives of scalar interpolation functions H

H Interpolation functions for an element scalar: (LT_N)

H_INTG Integral of scalar interpolation functions H : (LT_N)

H_QP Interpolation for H at quadrature point: (LT_N, LT_QP)

INDEX System degree of freedom numbers array: (LT_FREE)

L_B_N Maximum number of nodes on an element boundary segment

LT Element type number

LT_FREE Number of degrees of freedom per element

LT_GEOM Number of geometric nodes per element

LT_N Maximum number of nodes for element type

LT_PARM Dimension of parametric space for element type

LT_QP Number of quadrature points for element type

LT_SHAP Current element type shape flag number

L_B_N Number of nodes on an element boundary segment

L_SHAPE Shape: 0=Point 1=Line 2=Triangle 3=Quadrilateral 4=Hexahedron 5=Tetrahedron etc.

L_TYPE Type number array of all elements: (L_S_TOT)

MAT_FLO Number of real material properties

MAX_NP Number of system nodes

MISC_FL Number of miscellaneous floating point (real) system properties

MISC_FX Number of miscellaneous fixed point (integer) system properties

M_B_N Number of nodes on a mixed boundagy condition segment

NODES Node incidences of all elements: (L_S_TOT, NOD_PER_EL)

NOD_PER_EL Maximum number of nodes per element

N_BS_FIX Number of boundary segment integer properties

N_BS_FLO Number of boundary segment real properties

N_CEQ Number of system constraint equations

N_D_FLUX Maximum number of flux segment dof = L_B_N * N_G_DOF

xviii Notation

N_D_FRE Total number of system degrees of freedom

N_ELEMS Number of elements in the system

N_EL_FRE Maximum number of degrees of freedom per element

N_GEOM Maximum number of element geometry nodes

N_G_DOF Number of generalized parameters (dof) per node

N_G_FLUX Number of flux components per segment node

N_LP_FIX Number of integer element properties

N_LP_FLO Number of floating point (real) element properties

N_MAT Number of materail types

N_MX_FIX Number of fixed point (integer) mixed segment properties

N_MX_FLO Number of floating point (real) mixed segment properties

N_NP_FIX Number of fixed point (integer) nodal properties

N_NP_FLO Number of floating point (real) nodal properties

N_PARM Dimension of parametric space

N_PATCH Number of SCP patches = MAX_NP or N_ELEMS

N_QP Maximum number of element quadrature points

N_R_B Number of rows in B and E matrices

N_SEG Number of element boundary segments with given flux

N_SPACE Dimension of space

PATCH_FIT Local patch flux values at its nodes: (SCP_N, SCP_FIT)

PT Quadrature coordinates: (LT_PARM, LT_QP)

S Element square matrix: (LT_FREE, LT_FREE)

SCP_COUNTS Number of patches used for each nodal averages: (MAX_NP)

SCP_FIT Number of terms being fit in a patch, N_R_B usually

SCP_GEOM Number of patch geometry nodes

SCP_H Interpolation functions for patch, usually is H (SCP_N)

SCP_LT Patch type number

SCP_N Number of nodes per patch

SCP_PARM Number of parametric spaces for patch

SCP_QP Number of quadrature points needed in a SCP patch

SIGMA_HAT Flux components at a point in original element: (SCP_FIT)

SIGMA_SCP Flux components at a point in smoothed SCP: (SCP_FIT)

SS Square matrix of system equations: (N_D_FREE, N_D_FREE)

STRAIN Strain or gradient vector: (N_R_B + 2)

STRAIN_0 Initial strain or gradient vector, if any: (N_R_B)

STRESS Stress vector at a point: (N_R_B + 2)

S_B Boundary segment square matrix, if any: (LT_FREE, LT_FREE)

THIS_EL Current element number

THIS_LT Current element type number

THIS_STEP Current time step number

TIME Current time in dynamic or transient solution

V Interpolation functions for vectors: (LT_FREE)

WT Quadrature weights: (LT_QP)

X Coordinates of all system nodes: (MAX_NP, N_SPACE)

XYZ Spatial coordinates at a point: (N_SPACE)

Chapter 1

Introduction

1.1 Finite element methods

The goal of this text is to introduce finite element methods from a rather broad

perspective. We will consider the basic theory of finite element methods as utilized as an

engineering tool. Likewise, example engineering applications will be presented to

illustrate practical concepts of heat transfer, stress analysis, and other fields. Today the

subject of error analysis for adaptivity of finite element methods has reached the point

that it is both economical and reliable and should be considered in an engineering

analysis. Finally, we will consider in some detail the typical computational procedures

required to apply modern finite element analysis, and the associated error analysis. In

this chapter we will begin with an overview of the finite element method. We close it

with consideration of modern programming approaches and a discussion of how the

software provided differs from the author’s previous implementations of finite element

computational procedures.

In modern engineering analysis it is rare to find a project that does not require some

type of finite element analysis (FEA). The practical advantages of FEA in stress analysis

and structural dynamics have made it the accepted tool for the last two decades. It is also

heavily employed in thermal analysis, especially for thermal stress analysis.

Clearly, the greatest advantage of FEA is its ability to handle truly arbitrary

geometry. Probably its next most important features are the ability to deal with general

boundary conditions and to include nonhomogeneous and anisotropic materials. These

features alone mean that we can treat systems of arbitrary shape that are made up of

numerous different material regions. Each material could have constant properties or the

properties could vary with spatial location. To these very desirable features we can add a

large amount of freedom in prescribing the loading conditions and in the post-processing

of items such as the stresses and strains. For elliptical boundary value problems the FEA

procedures offer significant computational and storage efficiencies that further enhance its

use. That class of problems include stress analysis, heat conduction, electrical fields,

magnetic fields, ideal fluid flow, etc. FEA also gives us an important solution technique

for other problem classes such as the nonlinear Navier - Stokes equations for fluid

dynamics, and for plasticity in nonlinear solids.

2 Finite Element Analysis with Error Estimators

Here we will show what FEA has to offer and illustrate some of its theoretical

formulations and practical applications. A design engineer should study finite element

methods in more detail than we can consider here. It is still an active area of research.

The current trends are toward the use of error estimators and automatic adaptive FEA

procedures that give the maximum accuracy for the minimum computational cost. This is

also closely tied to shape modification and optimization procedures.

(e)

(b)

(e)

(b)

U (x, y)

U eU
b

Figure 1.1 Piecewise approximation of a scalar function

Chapter 1, Introduction 3

1.2 Capabilities of FEA

There are many commercial and public-domain finite element systems that are

available today. To summarize the typical capabilities, several of the most widely used

software systems have been compared to identify what they hav e in common. Often we

find about 90 percent of the options are available in all the systems. Some offer very

specialized capabilities such as aeroelastic flutter or hydroelastic lubrication. The

mainstream capabilities to be listed here are found to be included in the majority of the

commercial systems. The newer adaptive systems may have fewer options installed but

they are rapidly adding features common to those given above. Most of these systems are

available on engineering workstations and personal computers as well as mainframes and

supercomputers. The extent of the usefulness of an FEA system is directly related to the

extent of its element library. The typical elements found within a single system usually

include membrane, solid, and axisymmetric elements that offer linear, quadratic, and

cubic approximations with a fixed number of unknowns per node. The new hierarchical

elements have relatively few basic shapes but they do offer a potentially large number of

unknowns per node (more than 80). Thus, the actual effective element library size is

extremely large.

In the finite element method, the boundary and interior of the region are subdivided

by lines (or surfaces) into a finite number of discrete sized subregions or finite elements.

A number of nodal points are established with the mesh. The size of an element is

usually associated with a reference length denoted by h. It, for example, may be the

diameter of the smallest sphere that can enclose the element. These nodal points can lie

anywhere along, or inside, the subdividing mesh, but they are usually located at

intersecting mesh lines (or surfaces). The elements may have straight boundaries and

thus, some geometric approximations will be introduced in the geometric idealization if

the actual region of interest has curvilinear boundaries. These concepts are graphically

represented in Fig. 1.1.

The nodal points and elements are assigned identifying integer numbers beginning

with unity and ranging to some maximum value. The assignment of the nodal numbers

and element numbers will have a significant effect on the solution time and storage

requirements. The analyst assigns a number of generalized degrees of freedom to each

and every node. These are the unknown nodal parameters that have been chosen by the

analyst to govern the formulation of the problem of interest. Common nodal parameters

are displacement components, temperatures, and velocity components. The nodal

parameters do not have to hav e a physical meaning, although they usually do. For

example, the hierarchical elements typically use the derivatives up to order six as the

midside nodal parameters. This idealization procedure defines the total number of

degrees of freedom associated with a typical node, a typical element, and the total

system. Data must be supplied to define the spatial coordinates of each nodal point. It is

common to associate some code to each node to indicate which, if any, of the parameters

at the node have boundary constraints specified. In the new adaptive systems the number

of nodes, elements, and parameters per node usually all change with each new iteration.

Another important concept is that of element connectivity, (or topology) i.e., the list

of global node numbers that are attached to an element. The element connectivity data

defines the topology of the (initial) mesh, which is used, in turn, to assemble the system

4 Finite Element Analysis with Error Estimators

Define
geometry,

materials, axes

Generate
mesh

Type of
calculation

?

Define pressure,
gravity, loads, ...

Define heat flux,
heat generation

Generate and assemble element
and boundary matrices

Apply essential boundary conditions,
solve algebraic equations,
recover system reactions

Average nodal fluxes,
post-process elements,
estimate element errors

Adapt mesh

Prescribed
temperature

data

Prescribed
displacement

data

Error
acceptable

?

Thermal Stress

No StopYes

Figure 1.2 Typical stages in a finite element analysis

Chapter 1, Introduction 5

algebraic equations. Thus, for each element it is necessary to input, in some consistent

order, the node numbers that are associated with that particular element. The list of node

numbers connected to a particular element is usually referred to as the element incident

list for that element. We usually assign a material code, or properties, to each element.

Finite element analysis can require very large amounts of input data. Thus, most

FEA systems offer the user significant data generation or supplemental capabilities. The

common data generation and validation options include the generation and/or replication

of coordinate systems, node locations, element connectivity, loading sets, restraint

conditions, etc. The verification of such extensive amounts of input and generated data is

greatly enhanced by the use of computer graphics.

In the adaptive methods we must also compute the error indicators, error estimators,

and various energy norms. All these quantities are usually output at 1 to 27 points in

each of thousands of elements. The most commonly needed information in an

engineering analysis is the state of temperatures, or displacements and stresses. Thus,

almost every system offers linear static stress analysis capabilities, and linear thermal

analysis capabilities for conduction and convection that are often needed to provide

temperature distributions for thermal stress analysis. Usually the same mesh geometry is

used for the temperature analysis and the thermal stress analysis. Of course, some studies

require information on the natural frequencies of vibration or the response to dynamic

forces or the effect of frequency driven excitations. Thus, dynamic analysis options are

usually available. The efficient utilization of materials often requires us to employ

nonlinear material properties and/or nonlinear equations. Such resources require a more

experienced and sophisticated user. The usual nonlinear stress analysis features in large

commercial FEA systems include buckling, creep, large deflections, and plasticity. Those

advanced methods will not be considered here.

There are certain features of finite element systems which are so important from a

practical point of view that, essentially, we cannot get along without them. Basically we

Table 1.1 Typical unknown variables in finite element analysis

Application Primary Associated Secondary

Stress analysis Displacement, Force, Stress,

Rotation Moment Failure criterion

Error estimates

Heat transfer Temperature Flux Interior flux

Error estimates

Potential flow Potential function Normal velocity Interior velocity

Error estimates

Navier-Stokes Velocity Pressure Error estimates

Eigen-problem Eigenvalues Eigenvectors Error estimates

6 Finite Element Analysis with Error Estimators

Table 1.2 Typical given variables and corresponding reactions

Application Given Reaction

Stress analysis Displacement Force

Rotation Moment

Force Displacement

Couple Rotation

Heat transfer Temperature Heat flux

Heat flux Temperature

Potential flow Potential Normal velocity

Normal velocity Potential

Navier-Stokes Velocity Force

have the ability to handle completely arbitrary geometries, which is essential to practical

engineering analysis. Almost all the structural analysis, whether static, dynamic, linear or

nonlinear, is done by finite element techniques on large problems. The other abilities

provide a lot of flexibility in specifying loading and restraints (support capabilities).

Typically, we will have sev eral different materials at different arbitrary locations within

an object and we automatically have the capability to handle these nonhomogeneous

materials. Just as importantly, the boundary conditions that attach one material to another

are usually automatic, and we don’t hav e to do anything to describe them unless it is

possible for gaps to open between materials. Most important, or practical, engineering

components are made up of more than one material, and we need an easy way to handle

that. What takes place less often is the fact that we have anisotropic materials (one

whose properties vary with direction, instead of being the same in all directions). There

is a great wealth of materials that have this behavior, although at the undergraduate level,

anisotropic materials are rarely mentioned. Many materials, such as reinforced concrete,

plywood, any filament-wound material, and composite materials, are essentially

anisotropic. Likewise, for heat-transfer problems, we will have thermal conductivities

that are directionally dependent and, therefore, we would have to enter two or three

thermal conductivities that indicate how this material is directionally dependent. These

advantages mean that for practical use finite element analysis is very important to us.

The biggest disadvantage of the finite element method is that it has so much power that

large amounts of data and computation will be required.

All real objects are three-dimensional but several common special cases have been

defined that allow two-dimensional studies to provide useful insight. The most common

examples in solid mechanics are the states of plane stress (covered in undergraduate

mechanics of materials) and plane strain, the axisymmetric solid model, the thin-plate

model, and the thin-shell model. The latter is defined in terms of two parametric surface

coordinates even though the shell exists in three dimensions. The thin beam can be

thought of as a degenerate case of the thin-plate model. Even though today’s solid

modelers can generate three-dimensional meshes relatively easily one should learn to

Chapter 1, Introduction 7

approach such problems carefully. A well planned series of two-dimensional

approximations can provide important insight into planning a good three-dimensional

model. They also provide good ‘ball-park’ checks on the three-dimensional answers. Of

course, the use of basic handbook calculations in estimating the answer before

approaching an FEA system is also highly recommended.

The typical unknown variables in a finite element analysis are listed in Table 1.1 and

a list of related action-reaction variables are cited in Table 1.2. Figure 1.2 outlines as a

flow chart the major steps needed for either a thermal analysis or stress analysis. Note

that these segments are very similar. One of the benefits of developing a finite element

approach is that most of the changes related to a new field of application occur at the

element level and usually represent less than 5 percent of the total coding.

0 0 0 0 0 1 0
0 0 0 1 0 0 0

=

(b)

(e)

Elements

Mesh

Nodes

Positions

Unknowns

1 3 5 7 6 4 2

x
1
 x

3
 x

5
 x

7
 x

6
 x

4
 x

2

D
1
 D

3
 D

5
 D

7
 D

6
 D

4
 D

2

 (1) (a) … (b) (6)

1 2

(e)

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
1

D
2

(a)

D
1

D
2

(b)

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
1

x
2

(a)

(b)

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
1

C
2

(a)

(b)

x
1

x
2

C
1

C
2

Gather geometry

for Se, Ce

Gather answers

to post-process

Scatter element vectors

for assembly of C

xe = x
(e)

De = D
(e)

C = Ce
e

S D = C

Figure 1.3 Gather and scatter concepts for finite elements

8 Finite Element Analysis with Error Estimators

1.3 Outline of finite element procedures

From the mathematical point of view the finite element method is an integral

formulation. Modern finite element integral formulations are usually obtained by either

of two different procedures: weighted residual or variational formulations. The

following sections briefly outline the common procedures for establishing finite element

models. It is fortunate that all these techniques use the same bookkeeping operations to

generate the final assembly of algebraic equations that must be solved for the unknowns.

The generation of finite element models by the utilization of weighted residual

techniques is increasingly important in the solution of differential equations for non-

structural applications. The weighted residual method starts with the governing

differential equation to be satisfied in a domain Ω:

(1.1)L(φ) = Q ,

where L denotes a differential operator acting on the primary unknown, φ , and Q is a

source term. Generally we assume an approximate solution, say φ *, for the spatial

distribution of the unknown, say

(1.2)φ (x) ≈ φ * =
n

i

Σ hi(x) Φ*
i

,

where the hi(x) are spatial distributions associated with the coefficient Φ*
i
. That

assumption leads to a corresponding assumption for the spatial gradient of the assumed

behavior. Next we substitute these assumptions on spatial distributions into the

differential equation. Since the assumption is approximate, this operation defines a

residual error term, R, in the differential equation

(1.3)L(φ *) − Q = R ≠ 0 .

Although we cannot force the residual term to vanish, it is possible to force a weighted

integral, over the solution domain, of the residual to vanish. That is, the integral of the

product of the residual term and some weighting function is set equal to zero, so that

(1.4)Ii =
Ω
∫ R wi dΩ = 0

leads to the same number of equations as there are unknown Φ*
i

values. Most of the time

we will find it very useful to employ integration by parts on this governing integral.

Substituting an assumed spatial behavior for the approximate solution, φ *, and the

weighting function, w, results in a set of algebraic equations that can be solved for the

unknown nodal coefficients in the approximate solution. This is because the unknown

coefficients can be pulled out of the spatial integrals involved in the assembly process.

The choice of weighting function defines the type of weighted residual technique

being utilized. The Galerkin criterion selects

(1.5)wi = hi(x) ,

to make the residual error orthogonal to the approximate solution. Use of integration by

parts with the Galerkin procedure (i.e., the Divergence Theorem) reduces the continuity

requirements of the approximating functions. If a Euler variational procedure exists, the

Galerkin criterion will lead to the same element matrices.

Chapter 1, Introduction 9

A spatial interpolation, or blending function is assumed for the purpose of relating

the quantity of interest within the element in terms of the values of the nodal parameters

at the nodes connected to that particular element. For both weighted residual and

variational formulations, the following restrictions are accepted for establishing

convergence of the finite element model as the mesh refinement increases:

1. The element interpolation functions must be capable of modeling any constant

values of the dependent variable or its derivatives, to the order present in the

defining integral statement, in the limit as the element size decreases.

2. The element interpolation functions should be chosen so that at element interfaces

the dependent variable and its derivatives, of one order less than those occurring in

the defining integral statement, are continuous.

Through the assumption of the spatial interpolations, the variables of interest and

their derivatives are uniquely specified throughout the solution domain by the nodal

parameters associated with the nodal points of the system. The parameters at a particular

node directly influence only the elements connected to that particular node. The domain

will be split into a mesh. That will require that we establish some bookkeeping processes

to keep up with data going to, or coming from a node or element. Those processes are

commonly called gather and scatter, respectively. Figure 1.3 shows some of these

processes for a simple mesh with one generalized scalar unknown per node, ng = 1, in a

one-dimensional physical space. There the system node numbers are shown numbered in

an arbitrary fashion. To establish the local element space domain we must usually gather

the coordinates of each of its nodes. For example, for element b(= 5) it gathers the data

for system node numbers 6 and 4, respectively, so that the element length, L
(5) = x6 − x4,

can be computed. Usually we also have to gather some data on the coefficients in the

differential equation (material properties). If the coefficients vary over space they may be

supplied as data at the nodes that must also be gathered to form the element matrices.

After the element behavior has been described by spatial assumptions, then the

derivatives of the space functions are used to approximate the spatial derivatives required

in the integral form. The remaining fundamental problem is to establish the element

matrices, Se and Ce. This involves substituting the approximation space functions and

their derivatives into the governing integral form and moving the unknown coefficients,

De, outside the integrals. Historically, the resulting matrices have been called the element

stiffness matrix and load vector, respectively.

Once the element equations have been established the contribution of each element

is added, using its topology (or connectivity), to form the system equations. The system

of algebraic equations resulting from FEA (of a linear system) will be of the form

S D = C. The vector D contains the unknown nodal parameters, and the matrices S and C

are obtained by assembling the known element matrices, Se and Ce, respectively. Figure

1.3 shows how the local coefficients of the element source vector, Ce, are scattered and

added into the resultant system source, C. That illustration shows a conversion of local

row numbers to the corresponding system row numbers (by using the element

connectivity data). An identical conversion is used to convert the local and system

column numbers needed in assembling each Se into S. In the majority of problems Se,

and thus, S, will be symmetric. Also, the system square matrix, S, is usually banded

10 Finite Element Analysis with Error Estimators

about the diagonal or at least sparse. If S is unsymmetric its upper and lower triangles

have the same sparsity.

After the system equations have been assembled, it is necessary to apply the

essential boundary constraints before solving for the unknown nodal parameters. The

most common types of essential boundary conditions (EBC) are (1) defining explicit

values of the parameter at a node and (2) defining constraint equations that are linear

combinations of the unknown nodal quantities. The latter constraints are often referred to

in the literature as multi-point constraints (MPC). An essential boundary condition

should not be confused with a forcing condition of the type that involves a flux or traction

on the boundary of one or more elements. These element boundary source, or forcing,

terms contribute additional terms to the governing integral form and thus to the element

square and/or column matrices for the elements on which the sources were applied.

Thus, although these (Neumann-type, and Robin or mixed-type) conditions do enter into

the system equations, their presence may not be obvious at the system level. Wherever

essential boundary conditions do not act on part of the boundary, then at such locations,

source terms from a lower order differential equation automatically apply. If one does

not supply data for the source terms, then they default to zero. Such portions of the

boundary are said to be subject to natural boundary conditions (NBC). The natural

boundary condition varies with the integral form, and typical examples will appear later.

The initial sparseness (the relative percentage of zero entries) of the square matrix,

S, is an important consideration since we only want to store non-zero terms. If we

employ a direct solver then many initially zero terms will become non-zero during the

solution process and the assigned storage must allow for that. The ‘fill-in’ depends on the

numbering of the nodes. If the FEA system being employed does not have an automatic

renumbering system to increase sparseness, then the user must learn how to number

nodes (or elements) efficiently. After the system algebraic equations have been solved for

the unknown nodal parameters, it is usually necessary to output the parameters, D. For

ev ery essential boundary condition on D, there is a corresponding unknown reaction term

in C that can be computed after D is known. These usually have physical meanings and

should be output to help check the results.

In rare cases the problem would be considered completed at this point, but in most

cases it is necessary to use the calculated values of the nodal parameters to calculate other

quantities of interest. For example, in stress analysis we use the calculated nodal

displacements to solve for the strains and stresses. All adaptive programs must do a very

large amount of post-processing to be sure that the solution, D, has been obtained to the

level of accuracy specified by the analyst. Figure 1.3 also shows that the gather operation

is needed again for extracting the local results, De, from the total results, D, so they can

be employed in special element post-processing and/or error estimates.

Usually the post-processing calculations involve determining the spatial derivatives

of the solution throughout the mesh. Those gradients are continuous within each element

domain, but are discontinuous across the inter-element boundaries. The true solution

usually has continuous derivatives so it is desirable to somehow average the individual

element gradient estimates to create continuous gradient estimate values that can be

reported at the nodes. Fortunately, this addition gradient averaging process also provides

Chapter 1, Introduction 11

new information that allows the estimate of the problem error norm to be calculated.

That gradient averaging process will be presented in Chapters 2 and 6.

In the next chapter we will review the historical approach of the method of weighted

residuals and its extension to finite element analysis. The earliest formulations for finite

element models were based on variational techniques. This is especially true in the areas

of structural mechanics and stress analysis. Modern analysis in these areas has come to

rely on FEA almost exclusively. Variational models find the nodal parameters that yield a

minimum (or stationary) value of an integral known as a functional. In most cases it is

possible to assign a physical meaning to the integral. For example, in solid mechanics the

integral represents the total potential energy, whereas in a fluid mechanics problem it

may correspond to the rate of entropy production. Most physical problems with

variational formulations result in quadratic forms that yield algebraic equations for the

system which are symmetric and positive definite. The solution that yields a minimum

value of the integral functional and satisfies the essential boundary conditions is

equivalent to the solution of an associated differential equation. This is known as the

Euler theorem.

Compared to the method of weighted residuals, where we start with the differential

equation, it may seem strange to start a variational formulation with an integral form and

then check to see if it corresponds to the differential equation we want. However, from

Euler’s work more than two centuries ago we know the variational forms of most even

order differential equations that appear in science, engineering, and applied mathematics.

This is especially true for elliptical equations. Euler’s Theorem of Variational Calculus

states that the solution, u, that satisfies the essential boundary conditions and renders

stationary the functional

(1.6)I =
Ω
∫ f

x, y, z, φ ,
∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

dΩ +
Γ
∫

qφ + aφ 2 / 2

d Γ

also satisfies the partial differential equation

(1.7)
∂ f

∂φ
−

∂
∂x

∂ f

∂ (∂φ / ∂x)
−

∂
∂y

∂ f

∂ (∂φ / ∂y)
−

∂
∂z

∂ f

∂ (∂φ / ∂z)
= 0

in Ω, and satisfies the natural boundary condition that

(1.8)nx

∂ f

∂ (∂φ / ∂x)
+ ny

∂ f

∂ (∂φ / ∂y)
+ nz

∂ f

∂ (∂φ / ∂z)
+ q + aφ = 0

on Γ that is not subject to an essential boundary. Here nx , ny, nz are the components of

the normal vector on the boundary, Γ. Note that this theorem also defines the natural

boundary condition, as well as the corresponding differential equation. In Chapter 7 we

will examine some common Euler variational forms for finite element analysis.

12 Finite Element Analysis with Error Estimators

1.4 Assembly into the system equations

1.4.1 Introduction

An important but often misunderstood topic is the procedure for assembling the

system equations from the element equations and any boundary contributions. Here

assemblying is defined as the operation of adding the coefficients of the element

equations into the proper locations in the system equations. There are various methods

for accomplishing this but most are numerically inefficient. The numerically efficient

direct assembly technique will be described here in some detail. We begin by reviewing

the simple but important relationship between a set of local (nodal point, or element)

degree of freedom numbers and the corresponding system degree of freedom numbers.

The assembly process, introduced in part in Fig. 1.3, is graphically illustrated in

Fig. 1.4 for a mesh consisting of six nodes (nm = 6), three elements (ne = 3). It has a

four-node quadrilateral and two three-node triangles, with one generalized parameter per

node (ng = 1). The top of the figure shows the nodal connectivity of the three elements

and a cross-hatching to define the source of the various coefficients that are occurring in

the matrices assembled in the lower part of the figure. The assembly of the system S and

C matrices is graphically coded to denote the sources of the contributing terms but not

their values. A hatched area indicates a term that was added in from an element that has

the same hash code. For example, the load vector term C(6), coming from the only

parameter at node 6, is seen to be the sum of contributions from elements 1 and 2, which

are hatched with horizontal (-) and vertical (|) lines, respectively. The connectivity table

implies the same thing since node 6 is only connected to those two elements. By way of

comparison, the term C(1) has a contribution only from element 2. The connectivity

table shows only that element is connected to that corner node.

Note that we have to set S = 0 to begin the summation. Referring to Fig. 1.4 we see

that 10 of the coefficients in S remain initially zero. So that example is initially about 27

percent sparse. (This will changed if a direct solution process is used.) In practical

problems the assembled matrix may initially be 90 percent sparse, or more. Special

equation solving techniques take advantage of this feature to save on memory and

operation counts.

1.4.2 Computing the equation index

There are a number of ways to assign the equation numbers of the algebraic system

that results from a finite element analysis procedure. Here we will select one that has a

simple equation that is valid for most applications. Consider a typical nodal point in the

system and assume that there are ng parameters associated with each node. Thus, at a

typical node there will be ng local degree of freedom numbers (1 ≤ J ≤ ng) and a

corresponding set of system degree of freedom numbers. If I denotes the system node

number of the point, then the ng corresponding system degrees of freedom, Φk have their

equation number, k assigned as

(1.9)k (I , J) = ng * (I − 1) + J 1 ≤ I ≤ nm , 1 ≤ J ≤ ng ,

where nm is the maximum node number in the system. That is, they start at 1 and range

to ng at the first system node then at the second node they range from (ng + 1) to (2 ng)

Chapter 1, Introduction 13

5

4

62

1

3

Element Topology

1 2, 6, 3, 1

2 6, 4, 3, 0

3 5, 3, 4, 0

local 1, 2, 3, 4

1

3

2

1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

D1

D
2

D
3

D4

D
5

D
6

* =

Global

Global assembly: S * D = C

1

1

1

2

2

2

4

3

3

3

0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0

2

 =

Figure 1.4 Graphical illustration of matrix assembly

14 Finite Element Analysis with Error Estimators

FUNCTION GET_INDEX_AT_PT (I_PT) RESULT (INDEX) ! 1
! * ! 2
! DETERMINE DEGREES OF FREEDOM NUMBERS AT A NODE ! 3
! * ! 4
Use System_Constants ! for N_G_DOF ! 5
IMPLICIT NONE ! 6
INTEGER, INTENT(IN) :: I_PT ! 7
INTEGER :: INDEX (N_G_DOF) ! 8
INTEGER :: J ! implied loop ! 9

!10
! N_G_DOF = NUMBER OF PARAMETERS (DOF) PER NODE !11
! I_PT = SYSTEM NODE NUMBER !12
! INDEX = SYSTEM DOF NOS OF NODAL DOF !13
! INDEX (J) = N_G_DOF*(I_PT - 1) + J !14

!15
INDEX = (/ (N_G_DOF*(I_PT - 1) + J, J = 1, N_G_DOF) /) !16

END FUNCTION GET_INDEX_AT_PT !17

FUNCTION GET_ELEM_INDEX (LT_N, ELEM_NODES) RESULT(INDEX) ! 1
! * ! 2
! DETERMINE DEGREES OF FREEDOM NUMBERS OF ELEMENT ! 3
! * ! 4
Use System_Constants ! for N_G_DOF ! 5
IMPLICIT NONE ! 6
INTEGER, INTENT(IN) :: LT_N, ELEM_NODES (LT_N) ! 7
INTEGER :: INDEX (LT_N * N_G_DOF) ! OUT ! 8
INTEGER :: EQ_ELEM, EQ_SYS, IG, K, SYS_K ! LOOPS ! 9

!10
! ELEM_NODES = NODAL INCIDENCES OF THE ELEMENT !11
! EQ_ELEM = LOCAL EQUATION NUMBER !12
! EQ_SYS = SYSTEM EQUATION NUMBER !13
! INDEX = SYSTEM DOF NUMBERS OF ELEMENT DOF NUMBERS !14
! INDEX (N_G_DOF*(K-1)+IG) = N_G_DOF*(ELEM_NODES(K)-1) + IG !15
! LT_N = NUMBER OF NODES PER ELEMENT !16
! N_G_DOF = NUMBER OF GENERAL PARAMETERS (DOF) PER NODE !17

!18
DO K = 1, LT_N ! LOOP OVER NODES OF ELEMENT !19

SYS_K = ELEM_NODES (K) ! SYSTEM NODE NUMBER !20
DO IG = 1, N_G_DOF ! LOOP OVER GENERALIZED DOF !21

EQ_ELEM = IG + N_G_DOF * (K - 1) ! LOCAL EQ !22
EQ_SYS = IG + N_G_DOF * (SYS_K - 1) ! SYSTEM EQ !23
IF (SYS_K > 0) THEN ! VALID NODE !24

INDEX (EQ_ELEM) = EQ_SYS !25
ELSE ! ALLOW MISSING NODE !26

INDEX (EQ_ELEM) = 0 !27
END IF ! MISSING NODE !28

END DO ! OVER DOF !29
END DO ! OVER LOCAL NODES !30

END FUNCTION GET_ELEM_INDEX !31

Figure 1.5 Computing equation numbers for homogeneous nodal dof

Chapter 1, Introduction 15

Element Topology Equations

1 1, 3 1, 2, 5, 6

2 3, 4 5, 6, 7, 8

3 4, 2 7, 8, 3, 4

1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

D
1

D
2

D
3

D
4

D
5

D
6

* =

Global

Global assembly: S * D = C

(1) (2) (3)

1 3 4 2

7 8

7

8

7

8

D
7

D
8

(e)

j k

u
k

v
k

u
j

v
j

1

2

3

4

1

2

3

4

1

2

3

4

5

6

7

8

1

2

5

6

7

8

3

4

1 2 5 6 5 6 7 8 7 8 3 4

(1) (2) (3)

Element square matrices:

Mesh:

Global

L

o
c
a
l

Global

Figure 1.6 Assembling two unknowns per node

16 Finite Element Analysis with Error Estimators

SUBROUTINE STORE_COLUMN (N_D_FRE, N_EL_FRE, INDEX, C, CC) ! 1
! * ! 2
! STORE ELEMENT COLUMN MATRIX IN SYSTEM COLUMN MATRIX ! 3
! * ! 4
Use Precision_Module ! Defines DP for double precision ! 5
IMPLICIT NONE ! 6
INTEGER, INTENT(IN) :: N_D_FRE, N_EL_FRE ! 7
INTEGER, INTENT(IN) :: INDEX (N_EL_FRE) ! 8
REAL(DP), INTENT(IN) :: C (N_EL_FRE) ! 9
REAL(DP), INTENT(INOUT) :: CC (N_D_FRE) !10
INTEGER :: I, J !11

!12
! N_D_FRE = NO DEGREES OF FREEDOM IN THE SYSTEM !13
! N_EL_FRE = NUMBER OF DEGREES OF FREEDOM PER ELEMENT !14
! INDEX = SYSTEM DOF NOS OF THE ELEMENT DOF !15
! C = ELEMENT COLUMN MATRIX !16
! CC = SYSTEM COLUMN MATRIX !17

!18
DO I = 1, N_EL_FRE ! ELEMENT ROW !19

J = INDEX (I) ! SYSTEM ROW NUMBER !20
IF (J > 0) CC (J) = CC (J) + C (I) ! SKIP INACTIVE ROW !21

END DO ! OVER ROWS !22
END SUBROUTINE STORE_COLUMN !23

SUBROUTINE STORE_FULL_SQUARE (N_D_FRE, N_EL_FRE, S, SS, INDEX) ! 1
! * ! 2
! STORE ELEMENT SQ MATRIX IN FULL SYSTEM SQ MATRIX ! 3
! * ! 4
Use Precision_Module ! Defines DP for double precision ! 5
IMPLICIT NONE ! 6
INTEGER, INTENT(IN) :: N_D_FRE, N_EL_FRE ! 7
INTEGER, INTENT(IN) :: INDEX (N_EL_FRE) ! 8
REAL(DP), INTENT(IN) :: S (N_EL_FRE, N_EL_FRE) ! 9
REAL(DP), INTENT(INOUT) :: SS (N_D_FRE, N_D_FRE) !10
INTEGER :: I, II, J, JJ !11

!12
! N_D_FRE = TOTAL NO OF SYSTEM DEGREES OF FREEDOM !13
! N_EL_FRE = NO DEGREES OF FREEDOM PER ELEMENT !14
! INDEX = SYSTEM DOF NOS OF ELEMENT PARAMETERS !15
! S = FULL ELEMENT SQUARE MATRIX !16
! SS = FULL SYSTEM SQUARE MATRIX !17

!18
DO I = 1, N_EL_FRE ! ELEMENT ROW !19

II = INDEX (I) ! SYSTEM ROW NUMBER !20
IF (II > 0) THEN ! SKIP INACTIVE ROW !21

DO J = 1, N_EL_FRE ! ELEMENT COLUMN !22
JJ = INDEX (J) ! SYSTEM COLUMN !23
IF (JJ > 0) SS (II, JJ) = SS (II, JJ) + S (I, J) !24

END DO ! OVER COLUMNS !25
END IF !26

END DO ! OVER ROWS !27
END SUBROUTINE STORE_FULL_SQUARE !28

Figure 1.7 Assembly of element arrays into system arrays

and so on through the mesh. These elementary calculations are carried out by subroutine

GET _INDEX_AT _PT . The program assigns ng storage locations for the vector, say

INDEX , containing the system degree of freedom numbers associated with the specified

nodal point — see Tables 1.3 and 1.4 for the related details.

Chapter 1, Introduction 17

A similar expression defines the local equation numbers in an element or on a

boundary segment. The difference is that then I corresponds to a local node number and

has an upper limit of nn or nb, respectively. In the latter two cases the local equation

number is the subscript for the INDEX array and the corresponding system equation

number is the integer value stored in INDEX at that position. In other words, Eq. 1.9 is

used to find local or system equation numbers and J always refers to the specific dof of

interest and I corresponds to the type of node number (IS for a system node, IE for a

local element node, or IB for a local boundary segment node). For a typical element type

subroutine GET_ELEM_INDEX, Fig. 1.5, fills the above element INDEX vector for any

standard or boundary element. In that subroutine storage locations are likewise

established for the nn element incidences (extracted by subroutine GET_ELEM_NODES)

and the corresponding ni = nn × ng system degree of freedom numbers associated with

the element, in vector INDEX .

Figure 1.6 illustrates the use of Eq. 1.9 for calculating the system equation numbers

for ng = 2 and nm = 4. The D vector in the bottom portion shows that at each node we

count its dof before moving to the next node. In the middle section the cross-hatched

element matrices show the 4 local equation numbers to the left of the square matrix, and

the corresponding system equation numbers are shown to the right of the square matrix,

in bold font. Noting that there are ng = 2 dof per node explains why the top left topology

list (element connectivity with nn = 2) is expanded to the system equation number list

with 4 columns.

Once the system degree of freedom numbers for the element have been stored in a

vector, say INDEX , then the subscripts of a coefficient in the element equation can be

directly converted to the subscripts of the corresponding system coefficient to which it is

to be added. This correspondence between local and system subscripts is illustrated in

Fig. 1.6. The expressions for these assembly, or scatter, operations are generally of the

form

(1.10)C I = C I + C
e

i
, S I , J = S I , J + S

e

i, j

where i and j are the local subscripts of a coefficient in the element square matrix, Se,

and I , J are the corresponding subscripts of the system equation coefficient, in S, to

which the element contribution is to be added. The direct conversions are given by

I = INDEX(i), J = INDEX(j), where the INDEX array for element, e, is generated from

Eq. 1.1 by subroutine GET_ELEM_INDEX.

Figure 1.5 shows how that index could be computed for a node or element for the

common case where the number of generalized degrees of freedom per node is

ev erywhere constant. For a single unknown per node (ng = 1), as shown in Fig. 1.4, then

the nodal degree of freedom loop (at lines 16 and 21 in Fig. 1.5) simply equates the

equation number to the global node number. An example where there are two unknowns

per node is illustrated in Fig. 1.6. That figure shows a line element mesh with two nodes

per element and two dof per node (such as a standard beam element). In that case it is

similar to the assembly of Fig. 1.4, but instead of a single coefficient we are adding a set

of smaller square sub-matrices into S. Figure 1.7 shows how the assembly can be

implemented for column matrices (subroutine STORE_COLUMN) and full (non-sparse)

18 Finite Element Analysis with Error Estimators

Table 1.3 Degree of freedom numbers at system node I s

Local System†

1 INDEX (1)

2 INDEX (2)
. .
. .
. .
J INDEX (J)
. .
. .
. .

ng INDEX (ng)

†
INDEX (J) = ng * (Is − 1) + J

Table 1.4 Relating local and system equation numbers

Element degree of freedom numbers

Local Parameter System

node number node Local System

IL J IS = node (IL) ng * (IL − 1) + J ng * (IS − 1) + J

1 1 node(1) 1 ng * [node(1)−1] + 1

1 2 node(1) 2
. . .
.
1 ng node(1) . .
2 1 node(2) . .
. . .
. . .
. . .
K Jg node(K) ng * (K−1) + Jg ng * [node(K)−1] + Jg

. . .

.
nn 1 node(nn) . .
.
. . .

nn ng node(nn) nn * ng ng * [node(nn)−1] + ng

Chapter 1, Introduction 19

square matrices (STORE_FULL_SQUARE) if one has an integer index that relates the

local element degrees of freedom to the system dof.

1.4.3 Example equation numbers

Consider a two-dimensional problem (ns = 2) inv olving 400 nodal points (nm = 400)

and 35 elements (ne = 35). Assume two parameters per node (ng = 2) and let these

parameters represent the horizontal and vertical components of some vector. In a stress

analysis problem, the vector could represent the displacement vector of the node, whereas

in a fluid flow problem it could represent the velocity vector at the nodal point. Assume

the elements to be triangular with three corner nodes (nn = 3). The local numbers of

these nodes will be defined in some consistent manner, e.g., by numbering counter-

clockwise from one corner. This mesh is illustrated in Fig. 1.8.

By utilizing the above control parameters, it is easy to determine the total number of

degrees of freedom in the system, nd , and associated with a typical element, ni are:

nd = nm * ng = 400 * 2 = 800, and ni = nn * ng = 3 * 2 = 6, respectively. In addition to

the total number of degrees of freedom in the system, it is important to be able to identify

the system degree of freedom number that is associated with any parameter in the system.

Table 1.4, or subroutine GET_DOF_INDEX, provides this information. This relation has

many practical uses. For example, when one specifies that the first parameter (J = 1) at

system node 50 (IS = 50) has some given value what one is indirectly saying is that

system degree of freedom number DOF = 2 * (50 − 1) + 1 = 99 has a given value. In a

1

2
3

4

9

261

270

310

11

400

397

380

1

2
3

21

35

Figure 1.8 Mesh for assembly equation number calculations

20 Finite Element Analysis with Error Estimators

Table 1.5 Example mesh connectivity

Element Element indices
1 1 2 9

2 2 3 11

3 3 4 11
...

...
...

...
21 261 270 310
...

...
...

...
35 397 398 400

Array NODES

Table 1.6 Example element and system equation numbers

Node Number Parameter Degree of Freedom

local system number System Local

iL IS J DOFS DOFL

1 261 1 521 1

1 261 2 522 2

2 270 1 539 3

2 270 2 540 4

3 310 1 619 5

3 310 2 620 6

Array Array

ELEM_NODES INDEX

similar manner, we often need to identify the system degree of freedom numbers that

correspond to the ni local degrees of freedom of the element. In order to utilize Eq. 1.9 to

do this, one must be able to identify the nn node numbers associated with the element of

interest. This is relatively easy to accomplish since those data are part of the input data

(element incidences). For example from Table 1.5, for element number 21 we find the

three element incidences (row 21 of the system connectivity array) to be

System 261 270 310 ← Array ELEM_NODES

Local 1 2 3 (1 × nn)

Chapter 1, Introduction 21

Therefore, by applying Eq. 1.9, we find the degree of freedom numbers in Table 1.6. The

element array INDEX has many programming uses. Its most important application is to

aid in the assembly (scatter) of the element equations to form the governing system

equations. We see from Fig. 1.5 that the element equations are expressed in terms of

local degree of freedom numbers. In order to add these element coefficients into the

system equations one must identify the relation between the local degree of freedom

numbers and the corresponding system degree of freedom numbers. Array INDEX

provides this information for a specific element. In practice, the assembly procedure is as

follows. First the system matrices S and C are set equal to zero. Then a loop over all the

elements if performed. For each element, the element matrices are generated in terms of

the local degrees of freedom. The coefficients of the element matrices are added to the

corresponding coefficients in the system matrices. Before the addition is carried out, the

element array INDEX is used to convert the local subscripts of the coefficient to the

system subscripts of the term in the system equations to which the coefficient is to be

added. That is, we scatter

(1.11)S
e

i , j

+
→ S I , J , C

e

i

+
→ C I

where IS = INDEX (iL) and JS = INDEX (jL) are the corresponding row and column

numbers in the system equations, iL , jL are the subscripts of the coefficients in terms of

the local degrees of freedom, and the symbol +
→ reads as ’is added to’. Considering

all of the terms in the element matrices for element 21 in the previous example, one finds

six typical scatters from the Se and Ce arrays are

S
e

1 , 1

+
→ S521 , 521 C

e

1

+
→ C521

S
e

2 , 3

+
→ S522 , 539 C

e

2

+
→ C522

S
e

3 , 4

+
→ S539 , 540 C

e

3

+
→ C539

S
e

4 , 5

+
→ S540 , 620 C

e

4

+
→ C540

S
e

5 , 6

+
→ S619 , 620 C

e

5

+
→ C619

S
e

1 , 6

+
→ S521 , 620 C

e

6

+
→ C620 .

1.5 Error concepts

Part of the emphasis of this book will be on error analysis in finite element studies.

Thus this will be a good point to mention some of the items that will be of interest to us

later. We will always employ integral forms. Denote the highest derivative occurring in

the integral by the integer m. Assume all elements have the same shape and use the same

interpolation polynomial. Let the characteristic element length size be the real value h,

and assume that we are using a complete polynomial of integer degree p. Later we will

22 Finite Element Analysis with Error Estimators

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X
Y

FE Mesh Geometry: 346 Elements, 197 Nodes (3 per element)

Figure 1.9 Relating element size to expected gradients

be interested in the asymptotic convergence rate, in some norm, as the element size

approaches zero, h → 0. Here we will just mention the point wise error that provides the

insight into creating a good manual mesh or a reasonable starting point for an adaptive

mesh. For a problem with a smooth solution the local finite element error is proportional

to the product of the m − th derivative at the point and the element size, h, raised to the

p − th power. That is,

(1.12)e(x) ∝ h
p ∂m

u(x) / ∂xm .

This provides some engineering judgement in establishing an initial mesh. Where

you expect the gradients (the m − th derivative) to be high then make the elements very

small. Conversely, where the gradients will be zero or small we can have large elements

to reduce the cost. These concepts are illustrated in Fig. 1.9 where the stresses around a

hole in a large flat plate are shown. There we see linear three noded triangles (so p = 1)

in a quarter symmetry mesh. Later we will show that the integral form contains the first

derivatives (gradient, so m = 1). Undergraduate studies refer to this as a stress

concentration problem and show that the gradients rapidly increase by a factor of about 3

over a very small region near the top of the hole. Thus we need small elements there. At

the far boundaries the tractions are constant so the gradient of the displacements are

nearly zero there and the elements can be big. Later we will automate estimating local

error calculations and the associated element size changes needed for an accurate and

cost effective solution.

1.6 Exercises

1. Assume (unrealistically) that all the entries in an element square matrix and column

vector are equal to the element number. Carry out the assembly of the system in

Chapter 1, Introduction 23

Fig. 1.4 to obtain the final numerical values for each coefficient in the S and C

matrices. Hint: manually loop over each element and carry out the line by line steps

given in GET _ELEM_INDEX , and then those in STORE_COLUMN , and finally

those in STORE_FULL_SQUARE before going to the next element.

2. Assume (unrealistically) that all the entries in an element square matrix and column

vector are equal to the element number. Carry out the assembly of the system in

Fig. 1.6 to obtain the final numerical values for each coefficient in the S and C

matrices.

3. In Fig. 1.6 assume that the global nodes are numbered consecutively from 1 to 4

(from left to right). Write the element index vector for each of the three elements.

4. List the topology (connectivity data) for the six elements in Fig. 1.3.

5. Why does the ββ Boolean array in Fig. 1.3 have two rows and seven columns?

6. What is the Boolean array, ββ , for element a(= 2) in Fig. 1.3?

7. What is the percent of sparsity of the S matrix in Fig. 1.6?

8. What is the Boolean array, ββ , for element 3 in Fig. 1.4?

9. What is the size of the Boolean array, ββ , for any element in Fig. 1.6? Explain why.

10. What is the Boolean array, ββ , for element 1 in Fig. 1.6?

11. Referring to Fig. 1.4, multiply the given 6 × 1 D array by the 3 × 6 Boolean array,

ββ , for the second element to gather its corresponding De local dof.

12. In an FEA stress analysis where a translational displacement is prescribed the

reaction necessary for equilibrium is _____: a) heat flux, b) force vector, c) pressure,

d) temperature, e) moment (couple) vector.

13. In an FEA stress analysis where a rotational displacement is prescribed the reaction

necessary for equilibrium is ____: a) heat flux, b) force vector, c) pressure, d)

temperature, e) moment (couple) vector.

14. In an FEA thermal analysis where a temperature is prescribed the reaction necessary

for equilibrium is _____: a) heat flux, b) force vector, c) pressure, d) temperature, e)

moment (couple) vector.

15. A material that is the same at all points is ___: a) homogeneous, b) non-

homogeneous, c) isotropic, d) anisotropic, e) orthotropic.

16. A material that is the same in all directions at a point is ___: a) homogeneous, b)

non-homogeneous, c) isotropic, d) anisotropic, e) orthotropic.

17. A material that has at least 2 preferred directions is ___: a) homogeneous, b) non-

homogeneous, c) isotropic, d) anisotropic, e) orthotropic.

18. A material with the most general directional dependence is ___: a) homogeneous, b)

non-homogeneous, c) isotropic d) anisotropic, e) orthotropic.

24 Finite Element Analysis with Error Estimators

19. Define a scalar, vector, and tensor quantity to have zero, one, and two subscripts,

respectively. Identify which of the above describe the following items: _____ mass,

_____ time, _____ position, _____ centroid, _____ volume, _____ surface area,

_____ displacement, _____ temperature, _____ heat flux, _____ heat source, _____

stress, _____ moment of inertia, _____ force, _____ moment, _____ velocity.

20. In a finite element solution at a node, the _____: a) primary variable is most

accurate, b) primary variable is least accurate, c) secondary variable is most

accurate, d) secondary variable is least accurate.

21. Interior to an element in an FEA solution, the _____: a) primary variable is most

accurate, b) primary variable is least accurate, c) secondary variable is most

accurate, d) secondary variable is least accurate.

22. An eigen-problem will define two independent square matrices. Can you still use

Eqs. 1.9-10 to assemble each of them? If so why?

23. A transient problem will define two independent square matrices. Can you still use

Eqs. 1.9-10 to assemble each of them? If so why?

24. A dynamics problem defines two or three independent square matrices. Can you

still use Eqs. 1.9-10 to assemble each of them? If so why?

25. If we allow the number of generalized unknowns, ng, to vary at each node rather

than being a global constant then Eq. 1.9 is invalid. Assume that the number of

unknowns at each node are available as an input array, say DOF_PT (1: nm). Create

a new array, DOF_PT _SUM(0: nm), and use it to develop an alternate to Eq. 1.9 to

find the equation number for the j − th unknown at the i − th node.

1.7 Bibliography

[1] Adams, V. and Askenazi, A., Building Better Products with Finite Element Analysis,

Santa Fe: Onword Press (1999).

[2] Akin, J.E., Finite Elements for Analysis and Design, London: Academic

Press (1994).

[3] Akin, J.E. and Singh, M., "Object-Oriented Fortran 90 P-Adaptive Finite Element

Method," pp. 141−149 in Developments in Engineering Computational Technology,

ed. B.H.V. Topping, Edinburgh: Civil_Comp Press (2000).

[4] Axelsson, O. and Baker, V.A., Finite Element Solution of Boundary Value Problems,

Philadelphia, PA: SIAM (2001).

[5] Bathe, K.J., Finite Element Procedures, Englewood Cliffs: Prentice Hall (1996).

[6] Becker, E.B., Carey, G.F., and Oden, J.T., Finite Elements − An Introduction,

Englewood Cliffs: Prentice Hall (1981).

Chapter 1, Introduction 25

[7] Cook, R.D., Malkus, D.S., and Plesha, N.E., Concepts and Applications of Finite

Element Analysis, New York: John Wiley (1989).

[8] Cook, R.D., Malkus, D.S., Plesha, N.E., and Witt, R.J., Concepts and Applications

of Finite Element Analysis, New York: John Wiley (2002).

[9] Desai, C.S. and Kundu, T., Introduction to the Finite Element Method, Boca Raton:

CRC Press (2001).

[10] Gupta, K.K. and Meek, J.L., Finite Element Multidisciplinary Analysis, Reston:

AIAA (2000).

[11] Huebner, K.H., Thornton, E.A., and Byrom, T.G., Finite Element Method for

Engineers, New York: John Wiley (1994).

[12] Hughes, T.J.R., The Finite Element Method, Mineola: Dover Publications (2003).

[13] Kwon, Y.W. and Bang, H., The Finite Element Method using Matlab, Boca Raton:

CRC Press (1997).

[14] Logan, D.L., A First Course in the Finite Element Method, 3rd Edition, Pacific

Grove: Brooks Cole (2002).

[15] Nassehi, V., Practical Aspects of Finite Element Modeling of Polymer Processing,

New York: John Wiley (2002).

[16] Norrie, D.H. and DeVries, G., Finite Element Bibliography, New York: Plenum

Press (1976).

[17] Pironneau, O., Finite Element Methods for Fluids, New York: John Wiley (1991).

[18] Portela, A. and Charafi, A., Finite Elements Using Maple, Berlin: Springer (2002).

[19] Rao, S.S., The Finite Element Method in Engineering, Boston: Butterworth

Heinemann (1999).

[20] Reddy, J.N., An Introduction to the Finite Element Method, 2nd Edition,

McGraw-Hill (1993).

[21] Segerlind, L.J., Applied Finite Element Analysis, New York: John Wiley (1987).

[22] Silvester, P.P. and Ferrari, R.L., Finite Elements for Electrical Engineers,

Cambridge: Cambridge University Press (1996).

[23] Smith, I.M. and Griffiths, D.V., Programming the Finite Element Method, 3rd

Edition, Chichester: John Wiley (1998).

[24] Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).

[25] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 4th Edition, New

York: McGraw-Hill (1991).

[26] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 2

Mathematical preliminaries

2.1 Introduction

The earliest forms of finite element analysis were based on physical intuition with

little recourse to higher mathematics. As the range of applications expanded, for example

to the theory of plates and shells, some physical approaches failed and some succeeded.

The use of higher mathematics such as variational calculus explained why the successful

methods worked. At the same time the mathematicians were attracted by this new field

of study. In the last few years the mathematical theory of finite element analysis has

grown quite large. Since the state of the art now depends heavily on error estimators and

error indicators it is necessary for an engineer to be aware of some basic mathematical

topics of finite element analysis. We will consider load vectors and solution vectors, and

residuals of various weak forms. All of these require us to define some method to

‘measure’ these entities. For the above linear vectors with discrete coefficients,

VT = [V1 V2
... Vn], we might want to use a measure like the root mean square, RMS:

RMS
2 =

1

n

n

i=1
Σ V

2
i

=
1

n
VT V

which we will come to call a norm of the linear vector space. Other quantities vary with

spatial position and appear in integrals over the solution domain and/or its boundaries.

We will introduce various other norms to measure these integral quantities.

The finite element method always involves integrals so it is useful to review some

integral identities such as Gauss’ Theorem (Divergence Theorem):

Ω
∫ ∇ . u d Ω =

Γ
∫ u . n d Γ =

Γ
∫

∂u

∂n
dΓ

which is expressed in Cartesian tensor form as

Ω
∫ ui,i d Ω =

Γ
∫ ui ni d Γ

where there is an implied summation over subscripts that occurs an even number of times

and a comma denotes partial differentiation with respect to the directions that follow it.

That is, (),i = ∂() / ∂xi. The above theorem can be generalized to a tensor with any

Chapter 2, Mathematical preliminaries 27

number of subscripts:

Ω
∫ Aijk...q,r d Ω =

Γ
∫ Aijk...q nr d Γ.

We will often have need for one of the Green’s Theorems:

Ω
∫ (∇ A . ∇ B + A∇ 2B) dΩ =

Γ
∫ A

∂B

∂n
dΓ

and

Γ
∫ (A∇ 2

B − B∇ 2
A) d Ω =

Γ
∫ (A∇ B − B∇ A) . n dΓ

which in Cartesian tensor form are

Ω
∫ (A,i B,i + AB,ii) d Ω =

Γ
∫ AB,i ni d Γ

and

Ω
∫ (AB,ii − BA,ii) d Ω =

Γ
∫ (AB,i − BA,i) ni d Γ .

We need these relations to derive the Galerkin weak form statements and to manipulate

the associated error estimators. Usually, we are interested in removing the highest

derivative term in an integral and use the second from last equation in the form

(2.1)
Ω
∫ AB,ii d Ω =

Γ
∫ AB,i ni d Γ −

Ω
∫ A,i B,i d Ω .

In one-dimensional applications this process is called integration by parts:

b

a

∫ p dq = pq

b

a

−
b

a

∫ q dp.

Error estimator proofs utilize inequalities like the Schwarz inequality

(2.2)|a . b| ≤ |a| |b|

and the triangle inequality
(2.3)|a + b| ≤ |a| + |b|.

Finite element error estimates often use the Minkowski inequality

(2.4)

n

i=1
Σ |xi ± yi |

p

1/p

≤

n

i=1
Σ |xi |

p

1/p

+

n

i=1
Σ |yi |

p

1/p

, 1 < p < ∞,

and the corresponding integral inequality

(2.5)

 Ω
∫ |x ± y|p

dΩ

1/p

≤

 Ω
∫ |x|p

dΩ

1/p

+

 Ω
∫ |y|p

dΩ

1/p

, 1 < p < ∞.

We begin the preliminary concepts by introducing linear spaces. These are a collection of

objects for which the operations of addition and scalar multiplication are defined in a

simple and logical fashion.

28 Finite Element Analysis with Error Estimators

2.2 Linear spaces and norms

The increased practical importance of error estimates and adaptive methods makes

the use of functional analysis a necessary tool in finite element analysis. Today’s student

should consider taking a course in functional analysis, or studying texts such as those of

Liusternik [10], Nowinski [12], or Oden [14]. This chapter will only cover certain basic

topics. Other related advanced works, such as that of Hughes [9], should also be

consulted. We are usually seeking to approximate a more complicated solution by a finite

element solution. To dev elop a feel for the ‘closeness’ or ‘distance between’ these

solutions, we need to have some basic mathematical tools. Since the approximation and

the true solution vary throughout the spatial domain of interest, we are not interested in

examining their difference at every point. The error at specific points is important and

methods for estimating such an error are given by Ainsworth and Oden [1] but will not be

considered here. Instead, we will want to examine integrals of the solutions, or integrals

of differences between the solutions. This leads us naturally into the concepts of linear

spaces and norms. We will also be interested in integrals of the derivatives of the

solution. That will lead us to the Sobolev norm which includes both the function and its

derivatives. Consider a set of functions φ 1 (x), φ 2 (x), ... φ n (x). If the functions can

be linearly combined they are called elements of a linear space. The following properties

hold for the space of real numbers, R:

(2.6)

α , β ∈ R

φ 1 + φ 2 = φ 2 + φ 1

(α + β) φ = α φ + β φ

α (φ 1 + φ 2) = α φ 1 + α φ 2 .

An inner product, < • , • > , on a real linear space A is a map that assigns to an ordered

pair x, y ∈ A a real number R denoted by < x, y > . This process is often represented by

the symbolic notation: < • , • > : A × A → R. It has the following properties

i. < x, y > = < y, x > symmetry

ii.

iii.

< α x, y > = α < y, x >

< (x + y), z > = < x, z > + < y, z >

linearity

iv. < x, x > ≥ 0 and

< x, x > = 0 iff x = 0

positive-definiteness.

The pair x, y ∈ A are said to be orthogonal if < x, y > = 0. Another useful property is

the Schwarz inequality: < x, y >2 ≤ < x, x > < y, y > . An inner product also represents

an operation such as

(2.7)< u, v > = ∫
x2

x1

u(x) v(x) dx.

Note that when the inner product operations is an integration the symbol < u, v > is

often replaced by the symbol (u, v) and may be called the bilinear form. A norm, || • || , on

a linear space A is a map of the function to a real number, || • ||: A → R, with the

properties (for x, y ∈ A and α ∈ R)

Chapter 2, Mathematical preliminaries 29

i. || x || ≥ 0 and

|| x || = 0 iff x = 0

positive-definiteness

(2.8)
ii.

iii.

|| α x || = | α | || x ||

|| x + y || ≤ || x || + || y ||, triangle inequality.

A semi-norm, | x |, is defined in a similar manner except that it is positive semi-definite.

That is, condition i is weakened so we can have |x| = 0 for x not zero. A measure or

natural norm of a function x can be taken as the square root of the inner product with

itself. This is denoted as

(2.9)|| x || = < x, x >
1
2

2.3 Sobolev norms *

The L2 (Ω) inner product norm involves only the inner product of the functions, and

no derivatives: (u, v) = ∫Ω
uv d Ω where Ω ⊂ R

n
, n ≥ 1. Then the norm is

(2.10)|| u ||L2
= || u ||0 = (u, u)

1
2 = [∫Ω

u
2

d Ω]
1
2 .

The H
1 (Ω) inner product and norm includes both the functions and their first derivatives

(u, v)1 = ∫Ω
[uv +

n

k=1
Σ u,k v, k] d Ω

where (),k = ∂ () / ∂ xk , and

(2.11)|| u ||1
H

= || u ||1 = (u, u)
1
2

1 =

 Ω
∫

u

2 +
n

k=1
Σ u,2

k

d Ω

1
2

.

Note H
0 = L2. Likewise, we can extend H

s (Ω) to include the S-th order derivatives.

2.4 Dual problem, self-adjointness

One often hears references to a boundary condition as either being an essential or a

natural condition. Usually an essential boundary condition simply specifies a value of the

primary unknown at a point. However, there is an established mathematical definition of

these terms. Consider a homogeneous differential operator represented as

(2.12)L(u) = 0 ∈ Ω .

We form the inner product of L(u) with another function, say v, to get

(2.13)< L(u), v > = ∫
1

0
u

d
2

v

dx2
dx.

If we integrate by parts (sometimes repeatedly) we obtain the alternate form

(2.14)< L(u), v > = < u, L
* (v) > + ∫Ω

[F(v) G(u) − F(u) G
* (v)] dΩ,

where F and G are differential operators whose forms follow naturally from integration

by parts. The operator L
* is the adjoint of L. If L

* = L then L is self-adjoint and

G
* = G, also. The F(u) are called the essential boundary conditions and G(u) are the

30 Finite Element Analysis with Error Estimators

natural boundary conditions. When L
* = L, then F(u) is prescribed on Γ1, and G(u) is

prescribed on Γ2 where Γ = Γ1 ∪ Γ 2, Γ1 ∩ Γ 2 = ∅ . We say that< L(u), u > > 0 is

positive definite iff L
* = L, and u ≠ 0. A self-adjoint problem will lead to a set of

symmetric bilinear forms and a corresponding set of symmetric algebraic equations for

the unknown coefficients in the problem. The weak form given by Eq. 2.14 is also

referred to as the dual problem. If both the original weak form and the dual problem are

solved it is possible to compute both an upper bound and a lower bound of the error in the

approximation. Having both bounds is not always worth the extra computational cost.

To illustrate how to classify the boundary conditions, or to establish a dual problem,

consider the model differential equation

L(u) =
d

2
u

dx2
x ∈]0, 1[

has the inner product

< v, L(u) > = ∫
1

0
v L(u) dx = ∫

1

0
v

d
2

u

dx2
dx.

Using integration by parts:

b

a

∫ pdq = pq

b

a

−
b

a

∫ q dp. Here we let p = v so that its

derivative is dp = (dv / dx) dx, and dq = (d2
u / dx

2) dx, so q = du / dx, such that

< v, L(u) > = v
du

dx

1

0

− ∫
1

0

du

dx

dv

dx
dx.

Integrate by parts again

< v, L(u) > = v
du

dx

1

0

− [u
dv

dx

1

0

− ∫
1

0
u

d
2

v

dx2
dx]

= < L
* (v), u > + [v

du

dx
− u

dv

dx
]

1

0

.

Comparing this result to the definitions in Eq. 2.14 we see that the adjoint operator is

L
* = L = d

2() / dx
2, the essential boundary condition involves F(v) = 1 * v so it

applies to the primary variable. The natural boundary condition assigns

G() = G
*() = d() / dx, which is the gradient or slope of the primary variable. The

original ordinary differential equation requires two boundary conditions. Our usual

options are: a) give u at x = 0 and x = 1 and recover du / dx at x = 0 and x = 1 from the

solution, b) give u at x = 0 and du / dx at x = 1 (or vice versa). We compute u for all x

and recover du / dx at x = 0, c) give du / dx at x = 0 and x = 1. This determines u to

within an arbitrary constant.

There are some other general observations about the types of boundary conditions

and solution continuity that are associated with even order differential equations. Let the

highest order derivative be 2m. Then the essential boundary conditions involve

derivatives of order zero (i.e., the solution itself) through (m − 1). The non-essential

boundary conditions involve the remaining derivatives of order m through (2m − 1). The

approximation must maintain continuity of the zero-th through (m − 1) derivatives.

Chapter 2, Mathematical preliminaries 31

2.5 Weighted residuals

Here we will introduce the concept of approximating the solution to a differential

equation by the method of weighted residuals (MWR) as it was originally used: on a

global basis. That approach requires that we guess the solution over the entire domain

and that our guess exactly satisfy the boundary conditions. Then we will introduce the

simple but important change that the finite element approach adds to the MWR process.

Guessing a solution that satisfies the boundary conditions is very difficult in two- and

three-dimensional space, but it is relatively easy in one-dimension. To illustrate a global

(or single element solution) consider the following model equation:

(2.15)L(u) =
d

2
u

dx2
+ u + Q(x) = 0, x ∈]0, 1[

with a spatially varying source term Q(x) = x, essential boundary conditions of u = 0 at

x = 0 and u = 0 at x = 1 so that the exact solution to this problem is

u = Sin x / Sin 1 − x. We want to find a global approximate solution involving

constants Φi, 1 ≤ i ≤ n that will lead to a set of n simultaneous equations. For

homogeneous essential boundary conditions we usually pick a global product

approximation of the form

(2.16)u
* = g(x) f (x, Φi)

where g(x) ≡ 0 on Γ. Here the boundary is x = 0 and x − 1 = 0 so we select a form such

as g1 (x) = x (1 − x), or g2 (x) = x − Sin x / Sin 1. We could pick f (x, Φi) as a

polynomial f (x) = Φ1 + Φ2 x + ... Φn x
(n−1). For simplicity, select n = 2 and use g1 (x)

so the approximate solution is

(2.17)u
* (x) = x (1 − x) (Φ1 + Φ2 x) = h(x) ΦΦ.

Expanding, this gives:

u
* (x) = (x − x

2) Φ1 + (x
2 − x

3) Φ2 = h1(x) Φ1 + h2(x) Φ2.

Here we will employ the MWR to find the ΦΦ’s. From them we will know the value

of u
* (x) at all points and compute the error in the solution, e = u (x) − u

* (x), and its

norm, ||u||. Here, however, we will focus on the residual error in the governing

differential equation. From Eqs. 2.15 and 17 we see that the residual error in the

differential equation at any point is R(x) = u
*′′ + u

* + Q(x), or in expanded form:

R(x) = Q(x) + [
d

2

dx2
+ 1] h(x) ΦΦ

R(x) = Q(x) + [h ′′ + h] ΦΦ = Q(x) + b(x) ΦΦ

(2.18)R(x) = Q(x) + (− 2 + x − x
2) Φ1 + (2 − 6x + x

2 − x
3) Φ2 ≠ 0.

where b1 = h1′′ + h1(x) = (0 − 2) + (x − x
2). For an approximate solution with n

constants we can split the residual R into parts including and independent of the Φ j , say

(2.19)R (x) = R (x)0 +
n

j=1
Σ b j (x) Φ j = R0 + b(x) ΦΦ

32 Finite Element Analysis with Error Estimators

where b is a row matrix and ΦΦ is a column vector. Usually R0 is associated with the

source term in the differential equation. Note for future reference that the partial

derivatives of the residual with respect to the unknown degrees of freedom are:

∂R / ∂Φ1 = (− 2 + x − x
2), ∂R / ∂Φ2 = (2 − 6x + x

2 − x
3),

or in general ∂R / ∂Φ j = b j(x). The residual error will vanish everywhere only if we

guess the exact solution. Since that is usually not possible the method of weighted

residuals requires that a weighted integral of the residual vanish instead;

(2.20)∫
1

0
R(x) w(x) dx ≡ 0

where w(x) is a weighting function. We use n weights to get the necessary system of

algebraic equations to find the unknown Φ j . Substituting Eq. 2.19 gives

Ω
∫ R wk d Ω =

Ω
∫

R0 +

n

j=1
Σ b j (x) Φ j

wk d Ω = 0k , 1 ≤ k ≤ n

or

(2.21)

n

j =1
Σ

Ω
∫ b j (x) wk (x) Φ j d Ω = −

Ω
∫ R0 (x) wk (x) d Ω, 1 ≤ k ≤ n.

In matrix form this system of equations is written as:

(2.22)
[S]

n × n

{D}

n × 1

= {C}

n × 1.

Usually we call S and C the stiffness matrix and source vector, respectively. Clearly,

there are many ways to pick the weighting functions, wk . Mathematical analysis and

engineering experience have lead to the following five most common choices of the

weights used in various weighted residual methods:

A) Collocation Method: For this method we force the residual error to vanish at n

arbitrarily selected points. Thus, we select

(2.23)wk(x) = δ (x − xk), 1 ≤ k ≤ n

where the Dirac Delta distribution δ (x − xk) which has the properties

δ (x − xk) =

0

∞
x ≠ xk

x = xk

∞

− ∞
∫ δ (x − xk) dx =

xk + a

xk − a

∫ δ (x − xk) dx = 1

and for any function f (x) continuous at xk

(2.24)

∞

− ∞
∫ δ (x − xk) f (x) dx =

xk + a

xk − a

∫ δ (x − xk) f (x) dx = f (xk).

By inspection this reduces Eq. 2.21 to simply

Chapter 2, Mathematical preliminaries 33

n

j =1
Σ b j (xk) Φ j = − R0 (xk), 1 ≤ k ≤ n.

Our problem is that we have an infinite number of choices for the collocation points, xk .

For n = 2, we could pick two points where R is large, or the third point, or the Gaussian

quadrature points that are used in numerical integration, etc. Pick the two collocation

points as x1 = 1/4 and x2 = 1/2; then

29

16
7

4

−
35

64
7

8

Φ1

Φ2

=

1

4
1

2

is our unsymmetric algebraic system. Since the essential boundary conditions have

already been satisfied by the assumed solution we can solve these equations without

additional modifications. Here we obtain Φ1 = 6 / 31 and Φ2 = 40 / 217 so that our

first approximate solution is given by u
* = x(1 − x) (42 + 40 x) / 217. Selected interior

results compared to the exact solution are:

x u u
*

1/4 0.044 0.045

1/2 0.070 0.071

3/4 0.060 0.062

Note that u(xk) − u
*(xk) ≠ 0 even though R(xk) = 0. That is, the error in the differential

equation is zero at these collocation points, but the error in the solution is not zero. This

can be viewed as similar to a finite difference solution.

B) Least Squares Method: For the n equations pick

∫
1

0
R(x) wi (x) dx = 0, 1 ≤ i ≤ n

with the weights defined as
(2.25)wi (x) =

∂R(x)

∂Φi

= bi (x),

from Eq. 2.19. This choice is equivalent to solving the minimization problem:

(2.26)
1

2 ∫
1

0
R

2 (x) dx → stationary (minimum).

Equation 2.26 means in this case Eq. 2.21 becomes

n

j =1
Σ

Ω
∫ b j (x) bi (x) Φ j d Ω = −

Ω
∫ R0 (x) bi (x) d Ω, 1 ≤ i ≤ n.

For this example

∫
1

0
R(x)

∂R

∂Φ1

dx = 0, ∫
1

0
R(x)

∂R

∂Φ2

dx = 0

and substitutions from Eq. 2.18 gives

34 Finite Element Analysis with Error Estimators

202

60
Φ1 +

101

60
Φ2 =

55

60

101

60
Φ1 +

393

105
Φ2 =

57

60
.

It should be noted from Eqs. 2.19, 21, 25 that this procedure yields a square matrix which

is always symmetric. Solving gives Φ1 = 0. 188, Φ2 = 0. 170 and selected results at the

three interior points of: 0.043, 0.068, and 0.059, respectively.

C) Galerkin Method: The concept here is to make the residual error orthogonal to the

functions associated with the spatial influence of the constants. That is, let

u
* (x) = g(x) f (x, Φi) =

n

i=1
Σ hi (x) Φi.

Here the hi term defines how we hav e assumed the contribution from Φi will vary over

space. Here for n = 2 and h1 = (x − x
2) and h2 = (x

2 − x
3), we set

(2.27)wi (x) ≡ hi (x)
so Eq. 2.21 simplifies to

(2.28)

n

j =1
Σ

Ω
∫ b j (x) hi (x) Φ j d Ω = −

Ω
∫ R0 (x) hi (x) d Ω, 1 ≤ i ≤ n.

and for this specific example we require

∫
1

0
R(x) h1 (x) dx = 0, ∫

1

0
R(x) h2 (x) dx = 0

and Eq. 2.18 yields
3

10
Φ1 +

3

20
Φ2 =

1

12

3

20
Φ1 +

13

105
Φ2 =

1

20

which is again symmetric (for the self-adjoint equation). Solving gives degree of

freedom values of Φ1 = 71 / 369, Φ2 = 7 / 41 and selected results at the three interior

points of: 0.044, 0.070, and 0.060, respectively.

D) Method of Moments: Pick a spatial coordinate lever arm as a weight:

(2.29)wi (x) ≡ x
(i−1)

so that in the current one-dimensional example

(2.30)∫
1

0
R(x) x

0
dx = 0, ∫

1

0
R(x) x

1
dx = 0

gives the algebraic system
11

6
Φ1 +

11

12
Φ2 =

1

2

11

12
Φ1 +

19

20
Φ2 =

1

3

with the solution Φ1 = 122 / 649, Φ2 = 110 / 649 and selected results at the three interior

Chapter 2, Mathematical preliminaries 35

points of: 0.043, 0.068, and 0.059, respectively. This method usually yields an

unsymmetrical system. It is popular in certain physics applications.

E) Subdomain Method: For this final method we split the solution domain, Ω, into n

arbitrary non-overlapping subdomains, Ωk , that completely fill the space such that

(2.31)Ω =
n

k =1
∪ Ω k

Then we define
(2.32)wk (x) ≡ 1 for x ∈ Ω k

and it is zero elsewhere. This makes the residual error vanish on each of n different

regions. Here n = 2, so we arbitrarily pick Ω1 =]0, 1

2
[and Ω2 =] 1

2
, 1[. Then

(2.33)
Ω1

∫ R(x) dx = 0,

Ω2

∫ R(x) dx = 0

yields the unsymmetric algebraic system

11

12

11

12

−53

192

229

192

Φ1

Φ2

=

1

8

3

8

.

This results in ΦT = [388 352] / 2068 and selected results at the three interior points of:

0.043, 0.068, and 0.059, respectively.

These examples show how analytical approximations can be obtained for differential

equations. These approximate methods offer some practical advantages. Instead of

solving a differential equation we are now presented with the easier problem of solving

an algebraic problem, resulting from an integral relation, for a set of coefficients that

define the approximation. The weighted residual procedure is valid of any number of

spatial dimensions. The procedure is valid for any shaped domain Ω. It allows non-

homogeneous coefficients. That is, the coefficient multiplying the derivatives in the

differential operator L can vary with location. Note that so far we have not yet made any

references to finite element methods. Later, you may look back on these examples as

special cases of a single element solution. These simple examples could have been

solved with matrix inversion routines. In practice, inversions are much too

computationally expressive, and one must solve the equations by iterative methods or by

a factorization process such as the process outlined in Fig. 2.1. By starting with a

triangular matrix the substitution processes have only one unknown per row. The

factored triangular arrays are stored in the locations of the original square matrix.

Practical implementations of direct solvers must account for sparse array storage options

and the fact that the factorization operations increases the ‘fill-in’ and thus the total

storage requirement.

2.6 Boundary condition terms

If a boundary condition involves a non-zero value then we must extend the assumed

approximate solution to include additional constants to be used to satisfy the essential

boundary conditions. Usually these conditions are invoked prior to or during the solution

36 Finite Element Analysis with Error Estimators

S * D = F

Algebraic

system

S = L * U

Factorization

L * (U * D) = F
Rename

(U * D) = G

L * G = F

Forward

substitution

S D F

S L U

=

G

L U

=

=

FD

L F

=

G

U D

=

G

U * D = G

Backward

substitution

D

Figure 2.1 Steps in the factorization process

Chapter 2, Mathematical preliminaries 37

of the corresponding algebraic equations. Of course, since we are going to satisfy both

the differential equation and the boundary conditions th total number of algebraic

equations developed must be equal to the number of unknown parameters. To illustrate

the algebraic procedure that is usually used we will solve the ODE in Eq. 2.15 with an

approximation that allows any value to be assigned as the boundary condition at x = 0,

say u(0) = Φ1. To apply the boundary condition after we have selected an approximate

solution we will use Eq. 2.16 and pick g(x) = (1 − x) so that only the boundary condition

at x = 1 is satisfied in advance. We can add another constant to f (x) to allow any

boundary condition at x = 0: f (x) = Φ1 + Φ2 x + Φ3 x
2. Then the residual error is

R = x + (1 − x) Φ1 + (x + 2 − x
2) Φ2 + (x

2 + 2 − 6x − x
3) Φ3.

Since we now hav e three unknown degrees of freedom, Φ, we must have three weighted

residual equations. For simplicity we will choose the collocation method and pick three

equally spaced collocation points. Evaluating the residual at the quarter points and

multiplying by the common denominator gives the three equations

−48

−32

−16

116

112

116

−35

56

151

Φ1

Φ2

Φ3

=

16

32

48

.

Note that since we know u at x = 0 these unknowns are not independent. Substituting

x = 0 into our approximate solution and equating it to the assign boundary value there

gives u(0) = Φ1. We call this an essential boundary condition on Φ1. There are an

infinite number of possible boundary conditions and we gain flexibility by allowing extra

constants to satisfy them. Since Φ1 will be a known number only the last two rows are

independent for determining the remaining terms in Φ. Note that the first column of

numbers, in the last two rows, is now multiplied by a known value and thus they can be

carried to the right hand side to give the reduced algebraic system for the independent Φ:

112

116

56

151

Φ2

Φ3

=

32

48

+

32

16

Φ1.

An equivalent matrix modification routine in the MODEL code deletes the redundant

coefficients, but keeps the matrix the same size to avoid re-ordering all the coefficients as

done above. For the common original boundary condition of u (0) = 0, we have Φ1 = 0

and the changes to the right hand side (RHS) are not necessary. But the above form also

allows us the option of specifying any non-zero boundary condition we need. Using the

zero value gives a solution of Φ2 = 0. 2058 and Φ3 = 0. 1598. The resulting values at the

interior quarter points are 0. 046, 0. 071, and 0. 061, respectively. These compare well

with the previous results.

If the second boundary condition had been applied other than at x = 0 then we

would have a more complicated relation between the Φ. For example, assume we move

the boundary condition to x = 0. 5. Then evaluating the approximate solution there yields

u(0. 5) = 0. 5 Φ1 + 0. 25 Φ2 + 0. 125 Φ3

which is called a linear constraint equation on Φ, or a multipoint constraint (MPC). In

38 Finite Element Analysis with Error Estimators

Application dependent software

Term / Process Required (or use

keyword example)

Optional

Differential operator,

 Save for flux averages

Volumetric source

Mixed or Robin BC

Boundary flux

Save for post-processing

Exact essential BC

Energy norm error estimate

Post-process element

APPLICATION_B_MATRIX
my_b_matrix_incELEM_SQ_MATRIX

my_el_sq_inc
APPLICATION_E_MATRIX

my_e_matrix_inc

ELEM_SQ_MATRIX
my_el_sq_inc

ELEM_COL_MATRIX
my_el_col_inc

or

MIXED_SQ_MATRIX
my_mixed_sq_inc

S
K

E

C
Q

E

S
h

B, C
h

B

SEG_COL_MATRIX
my_seg_col_inc

EXACT_NORMAL_FLUX
my_exact_normal_flux_incC

F
B

or

ELEM_POST_DATA
my_el_post_inc

Generate matrices

POST_PROCESS_ELEM
my_post_el_inc

APPLICATION_B_MATRIX my_b_matrix_inc

APPLICATION_E_MATRIX my_e_matrix_inc

Use an exact solution

EXACT_SOLUTION

my_exact_inc

List exact solution

List exact fluxes

EXACT_SOLUTION
my_exact_inc

EXACT_SOLUTION_FLUX
my_exact_flux_inc

Use exact source EXACT_SOURCE

my_exact_source_inc

, ME

ELEM_SQ_MATRIX

my_el_sq_inc

Figure 2.2 User software interfaces in MODEL

Chapter 2, Mathematical preliminaries 39

other words we would have to solve the weighted residual algebraic system subject to a

linear constraint. This is a fairly common situation in practical design problems and

adaptive analysis procedures. The computational details for enforcing the above essential

boundary conditions are discussed in detail later.

2.7 Adding more unknowns

Since the exact solution of the model problem is not a polynomial our global

polynomial approach can never yield an exact solution. However, we can significantly

improve the accuracy by adding more unknown coefficients to the expansion in Eq. 2.17.

In matrix notation the original global Galerkin matrices become

Se =
L

∫ hT b dx , Ce = −
L

∫ hT
Q(x) dx

where Q(x) = x is the source term, b = h′′ + h comes from the differential operator

acting on u, and where a prime denotes a derivative. Likewise, using Least Squares:

Se =
L

∫ bT b dx , Ce =
L

∫ bT
Q(x) dx

Here we see that the Least Squares square matrix will always be symmetric, but the

Galerkin form may not be. As we add more unknown coefficients we just increase the

size of the functions in h, and thus in b, and increase the number of integration points to

account for the higher degree polynomials occurring in the matrices. A disadvantage of

adding more unknowns to a global solution is that the unknown parameters are fully

coupled to each other. That means the algebraic equations to be solved are fully

populated, and thus very expensive to solve. The finite element method will lead to very

sparse equations that are efficient to solve.

2.8 Numerical integration

Since numerical integration simply replaces an integral with a special summation

this approach has the potential for automating all the above integrals required by the

MWR. Then we can include thousands of unknown coefficients, Φi, in our test solution.

Here we are dealing with polynomials. It is well known that in one-dimension Gaussian

quadrature with nq terms will exactly integrate a polynomial of order (2 nq − 1). Gauss

proved that this is the minimum number of points that can be used in a summation to

yield the exact results. Therefore, it is the most efficient method available for integrating

polynomials. Thus, we could replace the above integrals with a two-point Gauss rule.

(This will be considered in full detail later in Sec. 4.4, and Table 4.2.) For example, the

Galerkin source term is

(2.34)C
e

1 = ∫
1

0
x h1 (x) dx =

nq

j=1
Σ x j h1 (x j) w j

where the x j and w j are tabulated data. For nq = 2 on the domain Ω =]0, 1[we hav e

w1 = w2 = 1 / 2 and x j = (1 ± 1 / √ 3) / 2, or x1 = 0. 2113325 and x2 = 0. 788675. So

40 Finite Element Analysis with Error Estimators

∫
1

0
x (x − x

2) dx =
nq

j=1
Σ (x

2
j

− x
3
j
) w j =

2

j=1
Σ x

2
j

(1 − x j) w j

= [(0. 2113248)2 (0. 7886751) 1/2 + (0. 7886751)2 (0. 2113248) 1/2]

= (0. 16666667) 1/2 = 0. 083333 .

If we had an infinite word length machine this process would yield the exact value of 1/12

which was previously found in Eq. 2.28.

Interface from MODEL to ELEM_SQ_MATRIX, 1

Note: MODEL requires strong typing (implicit none). Any item not
defined here (and later) in the interface must have its variable
type and size defined by the user.

Type Status Name Remarks

INTEGER (IN) DP Double precision kind for this hardware
INTEGER (IN) LT_GEOM Number of element type geometric nodes
INTEGER (IN) LT_FREE Number of element type unknowns
INTEGER (IN) LT_N Number of element type solution nodes
INTEGER (IN) LT_PARM Parametric dimension of element type
INTEGER (IN) LT_QP Number of element type quadrature points
INTEGER (IN) N_SPACE Physical space dimension of problem (space)

REAL(DP) (IN) COORD (LT_N,N_SPACE) Element type coordinates
REAL(DP) (IN) PT (LT_PARM,LT_QP) Quadrature parametric points
REAL(DP) (IN) WT (LT_QP) Quadrature parametric weights
REAL(DP) (IN) X (MAX_NP,N_SPACE) All nodal coordinates

REAL(DP) (OUT) C (LT_FREE) Element column matrix
REAL(DP) (OUT) DGH (N_SPACE,LT_N) Global derivatives of H
REAL(DP) (OUT) DLH (LT_PARM,LT_N) Local derivatives of H
REAL(DP) (OUT) G (LT_GEOM) Geometry interpolation array
REAL(DP) (OUT) H (LT_N) Solution interpolation array
REAL(DP) (OUT) S (LT_FREE,LT_FREE) Element square matrix
REAL(DP) (OUT) EL_M (LT_FREE,LT_FREE) Element square matrix

GET_G_AT_QP Form G array at quadrature point
GET_H_AT_QP Form H array at quadrature point
GET_DLH_AT_QP Form DLH array at quadrature point

Figure 2.3 User interface to ELEM_SQ_MATRIX (part 1)

A typical partial implementation of these global Galerkin and Least Squares

procedures will be illustrated with the MODEL program. Only a very small part of it

changes for each application. Every application requires that we formulate a square

matrix. That is done in subroutine ELEM_SQ_MATRIX , which also allows the optional

calculation of an element column matrix. A number of prior applications are supplied in

a library form and will be discussed later. The coding for a totally new application is

usually supplied by an ‘include file’ that the compiler inserts into the necessary

subprogram. Figure 2.2 shows all of the user subroutines and INCLUDE files that we

will use in this book. Note that for educational purposes it includes access to selected

exact solutions so they can be compared to the finite element model solution and the error

estimator to be consider later. By using the keyword controls in a data file MODEL

allocates space for the most commonly needed items in a finite element analysis. As we

find need for such items we will declare how they interface to subroutine

Chapter 2, Mathematical preliminaries 41

ELEM_SQ_MATRIX , and others. Figure 2.3 lists the portion of the interface arguments

that will be used here. The coding of the above problems, by numerical integration, is

shown in Figs. 2.4 and 2.6, respectively. The results agree well, as do all of our weighted

residual solutions. The global Galerkin and Least Squares results are listed in Fig. 2.5.

Plotting the resulting solutions shows very similar curves from all five approaches to the

methods of weighted residuals.

2.9 Integration by parts

The use of integration by parts will be very important in most finite element

Galerkin methods. From the matrix definitions in the previous sections we see that the

Least Square process involves the same order derivative in both terms in the matrix

product in the square matrix and thus can not benefit from integration by parts. However,

in the Galerkin square matrix since b = h′′ + h, the first product involves h and h′′ so

integration by parts can be applied to that one matrix product. Returning to the original

scalar form causing that term we see:

(2.35)

L

∫ w u ′′ dx = w u ′

L

0

−
L

∫ w′u ′ dx.

Here the assumed solution is zero at the two ends so the appearance of the boundary

terms is not clearly important in this global analysis. But in finite element analysis, where

we will have extra unknown coefficients at the end points, they will be very important and

yield physically significant reaction recovery data. When we utilize the above integration

by parts, and change all the signs, the previous coding in Fig. 2.4 changes to that in

Fig. 2.7. Note that the square matrix is now clearly symmetric (see lines 52 & 56 of Fig.

2.7), and we no longer need the storage array for the second derivative of h (see line 49 of

Figs 2.4 & 5). The numerical results are identical to the original ones given in Fig. 2.6.

The full cubic approximation is seen in Fig. 2.8. If we had only one degree of freedom

(Φ2 = 0) this would reduce to a quadratic approximation with much higher error as seen

in Fig. 2.8. Increasing the number of degrees of freedom quickly decreases the error to

the point that it can not be seen, but can be computed by an error estimator.

2.10 Finite element model problem

In order to extend the previous introductory concepts on the global MWR to the

more powerful finite element method consider the same one-dimensional model problem

as our first example. The differential equation of interest, Eq. 2.15, is

L(u) =
d

2
u

dx2
+ u + Q(x) = 0, x ∈]0, L[

on the closed domain, x ∈] 0, L [, and is subjected to two boundary conditions to yield a

unique solution. Here Q(x) = x denotes a source term per unit length, as before. The

corresponding governing integral statement to be used for the finite element model is

obtained from the Galerkin weighted residual method, followed by integration by parts

which introduces the term du / dx = − q, which we will define as the flux. In higher

42 Finite Element Analysis with Error Estimators

! ... Partial Global Access Arrays ! 1
REAL(DP) :: C (LT_FREE), S (LT_FREE, LT_FREE) ! Results ! 2
REAL(DP) :: PT (LT_PARM, LT_QP), WT (LT_QP) ! Quadratures ! 3
REAL(DP) :: H (LT_N), DGH (N_SPACE, LT_N) ! Solution ! 4
REAL(DP) :: G (LT_GEOM) ! Geometry ! 5
REAL(DP) :: COORD (LT_N, N_SPACE) ! Coordinates ! 6

! 7
! ... Partial Notations List ! 8
! COORD = SPATIAL COORDINATES OF ELEMENT’S NODES ! 9
! DGH = GLOBAL DERIVATIVES OF INTERPOLATION FUNCTIONS !10
! G = GEOMETRIC INTERPOLATION FUNCTIONS !11
! H = SCALAR INTERPOLATION FUNCTIONS !12
! LT_FREE = NUMBER OF DEGREES OF FREEDOM !13
! LT_GEOM = NUMBER OF GEOMETRY NODES !14
! LT_PARM = DIMENSION OF PARAMETRIC SPACE !15
! LT_QP = NUMBER OF QUADRATURE POINTS !16
! LT_N = NUMBER OF NODES PER ELEMENT !17
! N_SPACE = DIMENSION OF PHYSICAL SPACE !18
! PT = QUADRATURE COORDINATES !19
! WT = QUADRATURE WEIGHTS !20
! ... see full notation file !21

!22
! ... !23
! ** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ** !24
! ... !25
! Define any new local array or variable types !26
! !27
! GLOBAL (SINGLE ELEMENT) Galerkin MWR FOR ODE !28
! U,xx + U + X = 0, U(0)=0=U(1), U = sin(x)/sin(1) - x !29
! Without integration by parts !30

!31
REAL(DP) :: D2GH (1, 1:2) ! Second global derivative !32
REAL(DP) :: DL, DX_DN, X_Q ! Length, Jacobian, Position !33
INTEGER :: IQ ! Loops !34

!35
DL = COORD (LT_N, 1) - COORD (1, 1) ! LENGTH !36
DX_DN = DL / 2. ! CONSTANT JACOBIAN !37
S = 0.d0; C = 0.d0 ! ZERO SUMS !38

!39
DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES !40

!41
! GET GEOMETRIC INTERPOLATION FUNCTIONS, AND X-COORD !42

G = GET_G_AT_QP (IQ) ! parametric !43
X_Q = DOT_PRODUCT (G, COORD (1:LT_GEOM, 1)) ! x at point !44

!45
! GLOBAL INTERPOLATION, 1st & 2nd GLOBAL DERIVATIVES !46

H (:) = (/ (X_Q - X_Q**2), (X_Q**2 - X_Q**3) /) !47
DGH (1,:) = (/ (1 - 2*X_Q), (2*X_Q - 3*X_Q**2) /) !48
D2GH (1,:) = (/ (-2), (2 - 3*X_Q) /) !49

!50
C = C - H * X_Q * WT (IQ) * DX_DN ! SOURCE, from Q(x) !51

!52
! SQUARE MATRIX (? SYMMETRIC ?) !53

S = S + (MATMUL (TRANSPOSE(D2GH), H) & ! from u" !54
+ OUTER_PRODUCT (H, H)) * WT (IQ) * DX_DN ! from u !55

END DO ! QUADRATURE !56
! Outer product C_sub_jk = A_sub_j * B_sub_k !57
! End of application dependent code !58

Figure 2.4 A global Galerkin implementation

Chapter 2, Mathematical preliminaries 43

! ... Partial Global Access Arrays ! 1
REAL(DP) :: C (LT_FREE), S (LT_FREE, LT_FREE) ! Results ! 2
REAL(DP) :: PT (LT_PARM, LT_QP), WT (LT_QP) ! Quadratures ! 3
REAL(DP) :: H (LT_N), DGH (N_SPACE, LT_N) ! Solution ! 4
REAL(DP) :: G (LT_GEOM) ! Geometry ! 5
REAL(DP) :: COORD (LT_N, N_SPACE) ! Coordinates ! 6

! 7
! ... Partial Notations List ! 8
! COORD = SPATIAL COORDINATES OF ELEMENT’S NODES ! 9
! DGH = GLOBAL DERIVATIVES OF INTERPOLATION FUNCTIONS !10
! G = GEOMETRIC INTERPOLATION FUNCTIONS !11
! H = SCALAR INTERPOLATION FUNCTIONS !12
! LT_FREE = NUMBER OF DEGREES OF FREEDOM !13
! LT_GEOM = NUMBER OF GEOMETRY NODES !14
! LT_PARM = DIMENSION OF PARAMETRIC SPACE !15
! LT_QP = NUMBER OF QUADRATURE POINTS !16
! LT_N = NUMBER OF NODES PER ELEMENT !17
! N_SPACE = DIMENSION OF PHYSICAL SPACE !18
! PT = QUADRATURE COORDINATES !19
! WT = QUADRATURE WEIGHTS !20
! ... see full notation file !21

!22
! ... !23
! ** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ** !24
! ... !25
! Define new local array or variable types, then statements !26
! !27
! GLOBAL (SINGLE ELEMENT) LEAST SQUARE METHOD FOR ODE !28
! U,xx + U + X = 0, U(0)=0=U(1), U = sin(x)/sin(1) - x !29

!30
REAL(DP) :: DL, DX_DN, X_IQ ! Length, Jacobian, Position !31
REAL(DP) :: D2GH (1, 2) ! Second derivative !32
REAL(DP) :: F (2) ! H’’ + H, Work space !33
INTEGER :: IQ ! Loops !34

!35
DL = COORD (LT_N, 1) - COORD (1, 1) ! LENGTH !36
DX_DN = DL / 2. ! CONSTANT JACOBIAN !37
S = 0.d0; C = 0.d0 ! ZERO SUMS !38

!39
DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES !40

!41
! GET GEOMETRIC INTERPOLATION FUNCTIONS, AND X-COORD !42

G = GET_G_AT_QP (IQ) ! parametric !43
X_Q = DOT_PRODUCT (G, COORD (1:LT_GEOM, 1)) ! x at point !44

!45
! GLOBAL INTERPOLATION, 1st & 2nd GLOBAL DERIVATIVES !46

H (:) = (/ (X_Q - X_Q**2), (X_Q**2 - X_Q**3) /) !47
DGH (1,:) = (/ (1 - 2*X_Q), (2*X_Q - 3*X_Q**2) /) !48
D2GH (1,:) = (/ (-2), (2 - 6*X_Q) /) !49
F (:) = D2GH (1,:) + H (:) !50

!51
C = C - F * X_Q * WT (IQ) * DX_DN ! SOURCE, from Q(x) !52

!53
! SQUARE MATRIX, from U" and U, SYMMETRIC !54

S = S + OUTER_PRODUCT (F, F) * WT (IQ) * DX_DN !55
END DO ! QUADRATURE !56

! Outer product C_sub_jk = A_sub_j * B_sub_k !57
! End of application dependent code !58

Figure 2.5 A global least squares implementation

44 Finite Element Analysis with Error Estimators

U,xx + U + X = 0, U(0)=0=U(1), Exact U = sin(x)/sin(1) - x ! 1
! 2

Single cubic element (Global) Galerkin Solution: ! 3
-- ! 4

! 5
*** OUTPUT OF RESULTS IN NODAL ORDER *** ! 6

NODE, 1 COORDINATES, 1 PARAMETERS. ! 7
1 0.00000E+00 1.92412E-01 ! 8
2 1.00000E+00 1.70732E-01 ! 9

!10
** ELEMENT GAUSS POINT RESULTS ** !11
ELEM X EXACT FEA GRADIENT FE_GRADIENT !12
1 0.000 0.0000E+00 0.0000E+00 1.88395E-01 1.92412E-01 !13
1 0.069 1.3014E-02 1.3198E-02 1.85532E-01 1.86932E-01 !14
1 0.330 5.5092E-02 5.5001E-02 1.24268E-01 1.22321E-01 !15
1 0.670 6.7974E-02 6.7835E-02 -6.85032E-02 -6.65570E-02 !16
1 0.931 2.2476E-02 2.2697E-02 -2.90078E-01 -2.91477E-01 !17
1 1.000 0.0000E+00 0.0000E+00 -3.57907E-01 -3.63144E-01 !18

!19
Single cubic element (Global) Least square Solution: !20
-- !21

!22
*** OUTPUT OF RESULTS IN NODAL ORDER *** !23

NODE, 1 COORDINATES, 1 PARAMETERS. !24
1 0.00000E+00 1.87542E-01 !25
2 1.00000E+00 1.69471E-01 !26

!27
** ELEMENT GAUSS POINT RESULTS ** !28
ELEM X EXACT FEA GRADIENT FE_GRADIENT !29
1 0.000 0.0000E+00 0.0000E+00 1.88395E-01 1.87542E-01 !30
1 0.034 6.3536E-03 6.3053E-03 1.87718E-01 1.85742E-01 !31
1 0.169 3.0952E-02 3.0426E-02 1.71385E-01 1.66831E-01 !32
1 0.381 6.0872E-02 5.9426E-02 1.03316E-01 1.00101E-01 !33
1 0.619 7.0522E-02 6.8960E-02 -3.23143E-02 -2.98400E-02 !34
1 0.831 4.6834E-02 4.6193E-02 -1.98511E-01 -1.93234E-01 !35
1 0.966 1.1519E-02 1.1461E-02 -3.24515E-01 -3.22039E-01 !36
1 1.000 0.0000E+00 0.0000E+00 -3.57907E-01 -3.57013E-01 !37

!38
! Notes: !39
! The "nodal parameters" above do not actually occur !40
! at the nodes for a global solution as they will later !41
! for all later finite element solutions. !42
! !43
! There must be as many "nodes" as global degrees of !44
! freedom to trick the MODEL code into doing a global !45
! solution. Likewise, there needs to be one fake "element" !46
! connected to all the nodes. !47

!48

Figure 2.6 Global MWR solutions and gradients

Chapter 2, Mathematical preliminaries 45

! ... Partial Global Access Arrays ! 1
REAL(DP) :: C (LT_FREE), S (LT_FREE, LT_FREE) ! Results ! 2
REAL(DP) :: PT (LT_PARM, LT_QP), WT (LT_QP) ! Quadratures ! 3
REAL(DP) :: H (LT_N), DGH (N_SPACE, LT_N) ! Solution ! 4
REAL(DP) :: G (LT_GEOM) ! Geometry ! 5
REAL(DP) :: COORD (LT_N, N_SPACE) ! Coordinates ! 6

! 7
! ... Partial Notations List ! 8
! COORD = SPATIAL COORDINATES OF ELEMENT’S NODES ! 9
! DGH = GLOBAL DERIVATIVES OF INTERPOLATION FUNCTIONS !10
! G = GEOMETRIC INTERPOLATION FUNCTIONS !11
! H = SCALAR INTERPOLATION FUNCTIONS !12
! LT_FREE = NUMBER OF DEGREES OF FREEDOM !13
! LT_GEOM = NUMBER OF GEOMETRY NODES !14
! LT_PARM = DIMENSION OF PARAMETRIC SPACE !15
! LT_QP = NUMBER OF QUADRATURE POINTS !16
! LT_N = NUMBER OF NODES PER ELEMENT !17
! N_SPACE = DIMENSION OF PHYSICAL SPACE !18
! PT = QUADRATURE COORDINATES !19
! WT = QUADRATURE WEIGHTS !20
! ... !21

!22
! .. !23
! ** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ** !24
! .. !25
! Define new local array or variable types, then statements !26
! !27
! GLOBAL (SINGLE ELEMENT) Galerkin MWR FOR ODE !28
! U,xx + U + X = 0, U(0)=0=U(1), U = sin(x)/sin(1) - x !29
! With integration by parts !30

!31
REAL(DP) :: DL, DX_DN, X_Q ! Length, Jacobian, Position !32
INTEGER :: IQ ! Loops !33

!34
DL = COORD (LT_N, 1) - COORD (1, 1) ! LENGTH !35
DX_DN = DL / 2. ! CONSTANT JACOBIAN !36
S = 0.d0; C = 0.d0 ! ZERO SUMS !37

!38
DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES !39

!40
! GET GEOMETRIC INTERPOLATION FUNCTIONS, AND X-COORD !41

G = GET_G_AT_QP (IQ) ! parametric !42
X_Q = DOT_PRODUCT (G, COORD (1:LT_GEOM, 1)) ! x at point !43

!44
! GLOBAL INTERPOLATION AND GLOBAL DERIVATIVES (ONLY) !45

H (:) = (/ (X_Q - X_Q**2), (X_Q**2 - X_Q**3) /) !46
DGH (1,:) = (/ (1 - 2*X_Q), (2*X_Q - 3*X_Q**2) /) !47

!48
C = C + H * X_Q * WT (IQ) * DX_DN ! SOURCE, from Q(x) !49

!50
! SQUARE MATRIX (SYMMETRIC) !51

S = S + (MATMUL (TRANSPOSE(DGH), DGH) & ! from u" !52
- OUTER_PRODUCT (H, H)) * WT (IQ) * DX_DN ! from u !53

!54
END DO ! QUADRATURE !55

! Outer product C_sub_jk = A_sub_j * B_sub_k !56
! End of application dependent code !57

Figure 2.7 Global Galerkin with integration by parts

46 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Cubic Global Galerkin, by parts, u"+u+x=0, u(0)=0=u(1)

X

u,
 *

 =
 F

E
A

 a
pp

ro
xi

m
at

io
n

Figure 2.8 Exact (-) and cubic global Galerkin (*) solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Quadratic Global Galerkin, by parts, u"+u+x=0, u(0)=0=u(1)

X

u,
 o

 =
 F

E
A

 a
pp

ro
xi

m
at

io
n

Figure 2.9 Exact (-) and quadratic global Galerkin (o) solutions

Chapter 2, Mathematical preliminaries 47

dimension problems it is the flux vector, q. On a boundary we may be interested in a

related scalar term, qn = q . n, which is the flux normal to the boundary defined by the

unit normal vector n. For the special case of the one-dimensional form being considered

here we need to note that at the left limit of the domain n = − 1 i while at the right limit it

is n = + 1 i. In this case, the Galerkin method states that the function, w, that satisfies the

boundary conditions and the integral form:

(2.36)I = ∫
L

0
[
dw

dx

du

dx
− w u − w Q] dx + u ′ (0) w (0) − u ′ (L) w (L) = 0,

also satisfies Eq. 2.15. For a finite element model we must generate a mesh that

subdivides the domain and (usually) its boundary. The unknown coefficients in the finite

element model, D, will be assigned to the node points of the mesh. Within each element

the solution will be approximated by an assumed local spatial behavior. That in turn

defines the assumptions for spatial derivatives in an element domain. To illustrate this in

one-dimension consider Fig. 2.10 which compares an exact solution (dashed) and a

piecewise linear finite element model. The domains of influence of a typical element and

a typical node are sketched there. In a finite element model, I is assumed to be the sum

of the ne element and nb boundary segment contributions so that

(2.37)I =
ne

e=1
Σ I

e +
nb

b=1
Σ I

b
,

where here nb = 2 and consists of the last two terms given in Eq. 2.36. A typical element

term is

I
e =

Le

∫

(du
e / dx)2 − (ue)2 − Q

e
u

e

dx,

where L
e is the length of the element. To evaluate such a typical element contribution, it

is necessary to introduce a set of interpolation functions, H, so u
e(x) = He(x) De, and

(2.38)du
e / dx = dHe / dx De = De

T

dHe
T

/dx,

where De denotes the nodal values of u for element e. One of the few standard notations

in finite element analysis is to denote the result of the differential operator acting on the

interpolation functions, H, by the symbol B. That is, Be ≡ d He / dx. Thus, a typical

element contribution is

(2.39)I
e = De

T

Se De − De
T

Ce
,

with Se = (Se

1 − Se

2) and where the first contribution to the square matrix is

Se

1 ≡
Le

∫
dHe

T

dx

dHe

dx
dx =

Le

∫ Be
T

Be
dx,

which, for this linear element, has a constant integrand and can be integrated by

inspection. The second square matrix contribution and the resultant source vector are:

Se

2 ≡
Le

∫ He
T

He
dx, Ce ≡

Le

∫ Q
e He

T

dx.

Clearly, both the element degrees of freedom, De, and the boundary degrees of freedom,

Db, are subsets of the total vector of unknown parameters, D. That is, De ⊆ D and

Db ⊂ D. Of course, the Db are usually a subset of the De (i.e., Db ⊂ De and in higher

48 Finite Element Analysis with Error Estimators

L (u) + Q(x) = 0, q = du / dx

D
1

D
2

D
3

D
k

D
m

u
a

or
q

a

u
b

or
q

b

1 2 3 k mNode:

Element: 1 2 e N

D
1

e

D
2

e� �� �� �� �
ue (x)

x1 2
e

Element influence

Domain

ue(x) = He(x) De

 = He
1
(x) D

1
e + He

2
(x) D

2
e

He
2
(x) D

2
e

He
1
(x) D

1
e

� �� �� �
� �� �� �

e k N

He
2
(x) D

k
HN

1
(x) D

k

D
k

Nodal influence

Domain

u
exact

uh

X: a bx
k

x
2

x
3

Local:

Figure 2.10 Finite element influence domains

dimensional problems Hb ⊂ He). The main point here is that I = I (D), and that fact must

be considered in the summation. The consideration of the subset relations is merely a

bookkeeping problem. This allows Eq. 2.39 to be written as

I = DT S D − DT C = DT (S D − C) = 0
where

(2.40)S =
ne

e = 1
Σ ββ e

T

Se ββ e
, C =

ne

e = 1
Σ ββ e

T

Ce +
nb

b=1
Σ ββ b

T

Cb
,

and where ββ denotes a set of symbolic bookkeeping operations. The combination of the

summations and bookkeeping is commonly referred to as the assembly process. Note that

one set of operations acts on the rows of the column vector and the square matrix while a

second set acts on the columns of the square matrix. This is often called ‘scattering’ the

element contributions into the corresponding system coefficients.

Chapter 2, Mathematical preliminaries 49

It is easily shown that for a non-trivial solution, D ≠ O, we must have O = S D − C,

as the governing algebraic equations to be solved for the unknown nodal parameters, D.

To be specific, consider a linear interpolation element with two nodes per element,

(nn = 2). If the element length is L
e = (x2 − x1)e, then the element interpolation, written

in physical coordinates, is

He(x) =

(x2
e − x)

Le

(x − x1
e)

Le

,

so that

Be =
dHe

dx
=

−
1

Le

1

Le

.

Therefore, the two parts (diffusion and convection) to the element square matrix are

(2.41)Se

1 =
1

Le

1

−1

−1

1

, Se

2 =
L

e

6

2

1

1

2

,

while the element column (source) matrix is

Ce =
Le

∫ He
T

Q
e
dx =

Le

∫
Q

e

Le

(x2
e − x)

(x − x1
e)

d x.

If we were to assume that Q = Q0, a constant, the constant source would simplify to

Ce
T

= 1 1 Q0 L
e / 2. That is, the finite element model would replace the constant

source per unit length by lumping half its resultant, Q0 L
e, at each of the two nodes of the

element. In the given case of Q(x) = x, the source vector reduces to

(2.42)Ce =
L

e

6

2

1

1

2

Q1

Q2

,

where Q1 = x1 and Q2 = x2 are the nodal values of the source. The latter form is what

results if we make the usual assumption that spatially varying data are to be input at the

system nodes and interpolated inside the element. In other words, it is common to

interpolate from gathered nodal data to define Q(x) = He(x)Qe where Qe are the local

nodal values of the source. Then the resulting integral is the same as in Se

2, so

Ce = Se

2Qe as given above. If we set Q1 = Q2 = Q0 this agrees with the constant source

resultant, as noted above.

These are all the arrays needed to carry out an analysis if no post-processing

information is needed. Thus it is relatively easy to hard-code the source for this model

problem. Figure 2.11 gives such an implementation as well as including comment

statements that look ahead to saving data typically needed for post-processing operations

to be introduced later. The element square matrices are defined at lines 18-20 and the

matrix multiplication to form Ce is carried out at line 23, using the nodal values of x

which happens in this example to be the nodal values of Q(x). Two optional lines appear

as comments at lines 15 and 28. They can be used to save data that can be used later in

an error estimate or post-processing. Alternatively, those data could simply be re-

computed in a later phase of the program.

50 Finite Element Analysis with Error Estimators

! .. ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! Hard Coded Galerkin MWR for the ODE (MODEL example 124) ! 4
! E * U,xx + U + x = 0, with E = 1 & boundary conditions like ! 5
! U(0)=0=U(1), so U = sin(x)/sin(1) - x or ! 6
! U(0)=0, U’(1)=0, so U = sin(x)/cos(1) - x etc ! 7

! 8
REAL(DP) :: DL ! Length ! 9
REAL(DP) :: S_1 (2, 2), S_2 (2, 2) ! stiffness, mass !10

!11
DL = COORD (LT_N, 1) - COORD (1, 1) ! Length !12

!13
! E = 1.d0 ; LT_QP = 1 ! constitutive array, quadrature !14
! CALL STORE_FLUX_POINT_COUNT ! Save LT_QP, for post-processing !15

!16
! SQUARE MATRIX, CONDUCTION & CONVECTION !17

S_1 = RESHAPE ((/ 1, -1, -1, 1 /), (/2,2/)) / DL ! stiffness !18
S_2 = DL * RESHAPE ((/ 2, 1, 1, 2 /), (/2,2/)) / 6.d0 ! mass !19
S = S_1 - S_2 ! net !20

!21
! INTERNAL SOURCE (EXACT INTEGRATION) !22

C = MATMUL (S_2, COORD (1:2, 1)) ! linear source term !23
!24

! SAVE FOR FLUX AVERAGING OR POST PROCESSING !25
! B (1, :) = (/ -1, 1 /) / DL ! dH / dx !26
! XYZ (1) = (COORD (LT_N, 1) + COORD (1, 1))/2 ! center point !27
! CALL STORE_FLUX_POINT_DATA (XYZ, E, DGH) ! to postprocess !28

!29
! End of application dependent code !30

Figure 2.11 Exact integration linear element model for U" + U + X = 0

U'' + U + Q(x) = 0

U (0) = 0 = U (L)

x = 0 x = L = 1

1 2 31 2

Source per unit length: Q(x) = x

Resultant: Area under

curve

1 2 31 2

FE Consistent Sources:

1/24
2/24

4/24

5/24

1 2 31 2

1/24

5/24

6/24

FE Assembled Sources

Figure 2.12 A two element mesh for Q(x) = x

Chapter 2, Mathematical preliminaries 51

To compare a finite element spatial approximation with the exact one, and the

previous global MWR, select a two element model, as illustrated in Fig. 2.12 (which is

stored as MODEL example 124). Let the elements be of equal length, L
e = L / 2. Here

we set L = 1 as in the previous global MWR. Then the element square matrices are the

same for both elements and forming a common denominator gives the values:

Se
1

1/2

1

−1

−1

1

+
1/2

6

2

1

1

2

=
1

24

44

−50

−50

44

.

The two column matrices will differ because they occupy different regions of space, and

thus different sources Q(x). The reader should verify that their numerical values are:

C(e = 1)
T = 1 2 /24, C(e = 2)

T = 4 5 /24.

Note from Fig. 2.12 that these two resultant element vectors account for the total applied

source, Q(x), because the sum of the coefficients of the above two vectors is 1 / 2 which

is the value of the integral of Q(x) over the entire domain.

For the last two terms in Eq. 2.36 note that u (0) = φ 1 and u (L) = φ 3 so those terms

become φ 1 u ′ (0) − φ 3 u ′ (L). It is now clear that we can write the last two terms as the

system level scalar (dot) product DT Cq, where the only two non-zero entries in Cq are

u ′ (0) and − u ′ (L), and they are carried to the RHS. The assembly process applied to

the element matrices and the boundary matrices yields, S D = C, as

(2.43)
1

24

44

−50

0

−50

(44 + 44)

−50

0

−50

44

φ 1

φ 2

φ 3

=
1

24

1

(2 + 4)

5

+

−u′ (0)

0

u ′ (L)

.

However, these equations do not yet satisfy the two essential boundary conditions of

u (0) = φ 1 = u 0 = 0, and u (L) = φ 3 = u L = 0. That is, the above system does not have

a unique solution because it is a system of three equations for five unknowns

(φ 1, φ 2, φ 3, u ′ (0), u ′ (L)). Note that the essential boundary conditions have assigned

values to the two end nodal values (φ 1 , φ 3), so we move their columns (1 and 3) from S to

the right hand side. After applying these conditions and simplifying:

0

0

0

−50

88

−50

0

0

0

φ 1

φ 2

φ 3

=

1

6

5

+

−24 u ′ (0)

0

24 u ′ (L)

− φ 1

44

−50

0

− φ 3

0

−50

44

.

Now there are three unknowns (φ 2 , u ′ (0), u ′ (L)) and the system is non-singular.

Retaining only the second row, which is the only independent sub-set of equations for a

nodal value, and substituting the zero values for φ 1, φ 3 gives: 88φ 2 = 6 + 0 + 0, or

φ 2 = 0. 06818 versus an exact value at that node of u = 0. 06975.

Now it is possible to return to the remaining unused rows (1 and 3) in the algebraic

system to recover the flux ‘reactions’ that are necessary to enforce the two essential

boundary conditions. From the first row

52 Finite Element Analysis with Error Estimators

title "Two L2 solution of U,xx + U + X = 0" ! begin keywords ! 1
example 124 ! Application source code library number ! 2
nodes 3 ! Number of nodes in the mesh ! 3
elems 2 ! Number of elements in the system ! 4
dof 1 ! Number of unknowns per node ! 5
el_nodes 2 ! Maximum number of nodes per element ! 6
bar_chart ! Include bar chart printing in output ! 7
exact_case 9 ! Analytic solution for list_exact, etc ! 8
list_exact ! List given exact answers at nodes, etc ! 9
remarks 3 ! Number of user remarks !10
quit ! keyword input, remarks follow !11
1 U,xx + U + X = 0, U(0)=0=U(1), U = sin(x)/sin(1) - x !12
2 Here we use two linear (L2) line elements. !13
3 Defaults to 1-D space, and line element !14
1 1 0. ! node, bc_flag, x !15
2 0 0.5 ! node, bc_flag, x !16
3 1 1.00 ! node, bc_flag, x !17
1 1 2 ! elem, two nodes !18
2 2 3 ! elem, two nodes !19
1 1 0. ! node, dof, essential BC value !20
3 1 0. ! end of data !21

Figure 2.13 Data for a two L2 element Galerkin model

TITLE: "Two L2 solution of U,xx + U + x = 0" ! 1
! 2

*** INPUT SOURCE RESULTANTS *** ! 3
ITEM SUM POSITIVE NEGATIVE ! 4

1 5.0000E-01 5.0000E-01 0.0000E+00 ! 5
! 6

*** REACTION RECOVERY *** ! 7
NODE, PARAMETER, REACTION, EQUATION ! 8

1, DOF_1, 1.8371E-01 1 ! 9
3, DOF_1, -3.5038E-01 3 !10

!11
*** RESULTS AND EXACT VALUES IN NODAL ORDER *** !12

NODE, X-Coord, DOF_1, EXACT1, !13
1 0.0000E+00 0.0000E+00 0.0000E+00 !14
2 5.0000E-01 6.8182E-02 6.9747E-02 !15
3 1.0000E+00 0.0000E+00 0.0000E+00 !16

Figure 2.14 Selected two L2 simple Galerkin model results

0 − 50 φ 2 + 0 = 1 − 24u ′ (0) − 44φ 1 − 0

or −4. 4091 = − 24u ′ (0), so u ′ (0) = 0. 1837 which compares to the exact flux (slope) of

u ′ (0) = 0. 1884 at x = 0. Likewise, the third row of the system yields the reaction

0 − 50 φ 2 + 0 = 5 + 24u ′ (L) + 0 − 44φ 3 so u ′ (L) = − 0. 3504 versus the exact

u ′ (L) = − 0. 3579. Note the reduced equations would allow any values to be assigned to

φ 1 and φ 3 and the required reaction flux values would change in proportion. Several finite

element codes compute the boundary fluxes by computing the gradients in those elements

that are adjacent to the boundary where the essential boundary conditions are applied.

Getting those fluxes from the integral form, as done above, is usually much more

Chapter 2, Mathematical preliminaries 53

accurate. This will be demonstrated in the typical post-processing steps where we

recover the gradients in all the elements in the mesh.

We usually want to recover the element gradients at selected points inside the

element. Here we have selected a linear interpolation, so the gradient is constant

throughout each element. In such a case we usually report the gradient value at the

centroid (center) of the element. Later we will show that location is the most accurate

location for the gradient. Gathering each element’s nodal values back from the solution,

DT = 0. 0. 06818 0. , we compute the fluxes, say ε = du / dx, in the elements from

Eq. 2.38 as

(2.44)εε e =
1

Le
 − 1 1

φ e

1

φ e

2

ε (1) =
1

0. 5
[− 1 1]

0. 0

0. 06818

= 0. 1364

ε (2) =
1

0. 5
[− 1 1]

0. 06818

0. 0

= −0. 1364

which are the two equal and opposite slopes of this crude approximate solution. Trying

to extrapolate these fluxes from elements at the boundary to the point on the boundary

would give much less accurate boundary fluxes (slopes) than those obtained above from

the governing integral form.

The data for the two element model is shown in Fig. 2.13. They begin with a group

of problem control words and are followed by the numerical data for the nodes, the

elements, and the essential boundary conditions. The results from this crude

approximation are listed in Fig. 2.14 and shown in Fig. 2.15 along with the exact solution

(as a dashed line). While not exact, the function values are noticed to be most accurate at

the nodes. Conversely, the approximate gradients are least accurate (and discontinuous)

at the nodes. The poor function accuracy compared to the previous global MWR solution

using three constants is due in part to the fact that two of the three constants have been

used to satisfy the boundary conditions and that the prior solution was cubic while the

local finite element solution is currently piecewise linear. If we simply increase the

number of elements the quality of the approximation will increase as shown in Fig. 2.16

where six elements were employed.

The previous discussion of the model differential equation showed that to implement

a numerical solution we must, as a minimum, code the calculation of an element square

matrix, and often also need a column matrix due to a source term. The first six lines of

Fig. 2.17 hint that there must be some sort of software interface to a routine that governs

such calculations, and that interface provides the storage of the arrays that are generally

required for interpolation, integration, position evaluation, etc., and access to any user

supplied data. In the MODEL code the routine that is always required is called

ELEM_SQ_MATRIX . Figure 2.2 summarized other optional and required routines

contained within the software library. In order to carry out the above gradient recoveries

we either have to recompute the B matrix or store it at each quadrature point. That is the

54 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

X, Node number at 45 deg, Element number at 90 deg

Exact (dash) & FEA Solution Component_1: 2 Elements, 3 Nodes

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.0

68
18

2,
 m

in
 =

 0
)

(1

)

(2

)

1

2

3

−−−min

−−−max

U’’ + U + X = 0, Two L2 elements

Figure 2.15 Results from exact (-) and two linear elements (solid)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

X, Node number at 45 deg, Element number at 90 deg

Exact (dash) & FEA Solution Component_1: 6 Elements, 7 Nodes

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.0

69
56

8,
 m

in
 =

 0
)

(1

)

(2

)

(3

)

(4

)

(5

)

(6

)

1

2

3

4

5

6

7

−−−min

−−−max

U’’ + U + X = 0. Six L2 Elements

Figure 2.16 Results from exact (-) and six linear elements (solid)

Chapter 2, Mathematical preliminaries 55

! ... Partial Global Access Arrays ! 1
REAL(DP) :: C (LT_FREE), S (LT_FREE, LT_FREE) ! Results ! 2
REAL(DP) :: PT (LT_PARM, LT_QP), WT (LT_QP) ! Quadratures ! 3
REAL(DP) :: H (LT_N), DGH (N_SPACE, LT_N) ! Solution & deriv ! 4
REAL(DP) :: COORD (LT_N, N_SPACE) ! Elem coordinates ! 5
REAL(DP) :: XYZ (N_SPACE) ! Pt coordinates ! 6

! 7
! ... Partial Notations List ! 8
! COORD = SPATIAL COORDINATES OF ELEMENT’S NODES ! 9
! DGH = GLOBAL DERIVATIVES SCALAR INTERPOLATION FUNCTIONS !10
! H = SCALAR INTERPOLATION FUNCTIONS !11
! LT_FREE = NUMBER OF DEGREES OF FREEDOM !12
! LT_PARM = DIMENSION OF PARAMETRIC SPACE !13
! LT_QP = NUMBER OF QUADRATURE POINTS !14
! LT_N = NUMBER OF NODES PER ELEMENT !15
! N_SPACE = DIMENSION OF PHYSICAL SPACE !16
! PT = QUADRATURE COORDINATES !17
! WT = QUADRATURE WEIGHTS !18
! XYZ = PHYSICAL POINT !19

!20
! .. !21
! ** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ** !22
! .. !23
! (Stored as application example source file number 104.) !24
! !25
! APPLICATION DEPENDENT Galerkin MWR via Gauss quadratures !26
! U,xx + U + X = 0, with boundary conditions like !27
! U(0)=0=U(1), so U = sin(x)/sin(1) - x or !28
! U(0)=0,U’(1)=0, so U = sin(x)/cos(1) - x etc !29

!30
REAL(DP) :: DL, DX_DN ! Length, Jacobian !31
INTEGER :: IQ ! Loops !32

!33
DL = COORD (LT_N, 1) - COORD (1, 1) ! LENGTH !34
DX_DN = DL / 2. ! CONSTANT JACOBIAN !35
E = 1.d0 ! CONSTANT E !36

!37
CALL STORE_FLUX_POINT_COUNT ! Save LT_QP for post-process !38

!39
DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES !40

!41
! GET INTERPOLATION FUNCTIONS, AND X-COORD !42

H = GET_H_AT_QP (IQ) !43
XYZ = MATMUL (H, COORD) ! ISOPARAMETRIC !44

!45
! LOCAL AND GLOBAL DERIVATIVES, B = DGH !46

DLH = GET_DLH_AT_QP (IQ) ; DGH = DLH / DX_DN !47
!48

! SOURCE VECTOR WITH Q(X) = X = XYZ (1) !49
C = C + H * XYZ (1) * WT (IQ) * DX_DN !50

!51
! SQUARE MATRIX !52

S = S + (MATMUL (TRANSPOSE(DGH), DGH) & !53
- OUTER_PRODUCT (H, H)) * WT (IQ) * DX_DN !54

!55
! SAVE FOR FLUX AVERAGING OR POST PROCESSING, B == DGH !56

CALL STORE_FLUX_POINT_DATA (XYZ, E, DGH) ! for post-proc !57
END DO ! QUADRATURE !58

! End of application dependent code !59

Figure 2.17 Element quadrature implementation for U" + U + X = 0

56 Finite Element Analysis with Error Estimators

purpose of lines 38 and 57 in Fig. 2.11. The former declares how many quadrature points

are being used by this element type, and the later line saves the B matrix and the spatial

coordinate(s) of the point. (In this example, the ‘constitutive data’ are simply unity and

are not really needed.) Thus, the post-processing loop has a similar pair of operations to

gather those data and carry out the matrix products used above.

A typical subroutine segment for implementing any one-dimensional finite element

by numerical integration is shown in Fig. 2.17. The coding is valid for any line element

in the library of interpolation functions (currently linear through cubic) and the selection

of element type is set in the control data, as noted later. For a linear element a one point

quadrature rule would exactly integrate the first square matrix contribution, but a two

point quadrature rule would be needed for the second square matrix contribution and for

the column matrix. Clearly higher degree elements require a corresponding increase in

the quadrature rule employed. The first 20 lines of that figure relate to an interface that

has not yet been described. Only lines 26 and on change with each new application class.

Lines 38 and 57 are optional for later post-processing uses. Line 36 accounts for the unit

coefficient multiplying the d
2
u / dx

2 term in the differential equation. Usually it has some

other assigned user input value.

2.11 Continuous nodal flux recovery

Zienkiewicz and Zhu [20, 23, 24] developed the concept of utilizing a local patch of

elements, sampled at their super-convergent points, to yield a smooth set of least square

fit nodal gradients or fluxes. As noted earlier, the super-convergent points of an element

are the special interior locations where the gradients of the element are most accurate.

That is, those gradient locations match those of polynomials of one or more degrees

higher. Numerous minor improvements to their original process have shown the SCP

recovery process to be a practical way to get continuous nodal fluxes, σσ *. They hav e

demonstrated numerically that one can generate super-convergence estimates for σσ * at a

node by employing patches of elements surrounding the node. These concepts are

illustrated in Fig. 2.18.

A local least squares fit is generated over the patch of elements in the following way.

Assume a polynomial approximation of the form

(2.45)σσ * = P (φ , η) a

where P denotes a polynomial (in a local parametric coordinate system selected for each

patch) that is of the same degree and completeness that was used to approximate the

original solution, uh. That is, P is similar or identical to the solution interpolation array

H. Here a represents a rectangular array that contains the nodal values of the flux.

Since σ̂σ was computed using the physical derivatives of H, σ̂σ = EeBeφφ e. To compute the

estimate for σσ * at the nodes inside the patch, we minimize the function

F (a) =
n

j =1
Σ (σσ *

j
− σ̂̂σ j) 2 → min

where n is the total number of integration points (or super-convergent points) used in the

elements that define the patch and σσ j is the flux evaluated at point x j . Substituting the

two different interpolation functions gives

Chapter 2, Mathematical preliminaries 57

a) Discontinuous element

fluxes in a patch

b) Patch

c) Smoothed nodal fluxes

from the patch

*
*

*
*

* *
*
*

*
**

*

*

*
*

*
**

*
*

*
* *

* *

**
*

Interpolated solution: u
h
 = N(x) U at node points,

 Element flux: q
h
 = E B(x) U at Gauss points,

Least squares patch fit of flux, F
p

 at patch points,

Interpolated node flux in patch: q
p
 = N(x) F

p
 at nodes in patch,

Element flux error estimate: eq = qp - qh

*

Figure 2.18 Smoothing flux values on a node based patch

58 Finite Element Analysis with Error Estimators

� �� �

� �
� �� �� � � �� �

a) Mesh with node

or element

b) Adjacent elements

 patch

c) Facing elements

patch

d) Patch of elements

at node

Figure 2.19 Examples of element based and node based patches

(2.46)F (a) =
n pe

e=1
Σ

nq

j =1
Σ

P j a − Ee Be

j
φφ e

2

where n pe denotes the number of elements in the patch and nq is the number of

integration points used to form σ̂̂σ e. That is, we are seeking a least squares fit through the

n =
n pe

e=1
Σ

nq

j =1
Σ

data points to compute the unknown coefficients, a, which is a rectangular matrix of flux

components at each node of the patch. Note that the number rows in the least squares

system will be equal to the number of nodes defining the patch ‘element’. Thus the above

value of n sampling points must be equal to or greater than the number of nodes on the

patch ‘element’ (i.e., the number of coefficients in P). The standard least squares

minimization gives the local algebraic problem S a = C where

S =
n pe

e=1
Σ

nq

j =1
Σ PT (φ j , η j) P(φ j , η j), C =

n pe

e=1
Σ

nq

j =1
Σ PT

j
Ee Be

j
ΦΦe.

This is solved for the coefficients a of the local patch fit. It is the cost of solving this

small system of equations, for each patch, that we must pay in order to obtain the

Chapter 2, Mathematical preliminaries 59

continuous nodal values for the fluxes. To avoid ill-conditioning common to least

squares, the local patch fitting parametric space (φ , η) is mapped to enclose the patch of

elements while using a constant Jacobian for the patch. The use of the constant Jacobian

is the key to the efficient conversion of the physical stress location, x j , to the

corresponding patch location, φφ
j
. Here the implementation actually employs a diagonal

constant Jacobian to map the patch onto the physical domain.

Zienkiewicz and Zhu have verified numerically that the derivatives estimated in this

way hav e an accuracy of at least order O (h
p+1), where h is the size of the element and p

is the degree of the interpolation, N, used for the solution. There is a theorem that states

that if the σσ * are super-convergent of order O (h
p+α) for α > 0, then the error estimator

will be asymptotically exact. That is, the effectivity index should approach unity, Θ →1.

This means that we have the ability to accurately estimate the error and, thus, to get the

maximum accuracy for a given number of degrees of freedom. There is not yet a

theoretical explanation for the ‘hyperconvergent’ convergence (two orders higher)

reported in some of the SCP numerical studies. It may be because the least square fit

does not go exactly through the given Barlow points. Thus, they are really sampling

nearby. In Sec. 3.10 we show that derivative sampling points for a cubic are at ± 0. 577,

while those for the quartic are at ± 0. 707. The patch smoothing may effectively be

picking up those quartic derivative estimates and jumping to a higher degree of precision.

It is also possible to make other logical choices for selecting the elements that will

constitute a patch. Figure 2.19 shows two types of element based patches as well as the

above node based patch. Regardless of the types of patches selected they almost always

overlap with other patches which means that the mesh nodes receive sev eral different

estimates for the continuous nodal flux value. They should be quite close to each other

but they need to be averaged to get the final values for the continuous nodal fluxes. It is

possible to weight that averaging by the size of the contributing patch but it is simpler to

just employ a straight numerical average. The implementation of the SCP recovery

method will be given in full detail in the next chapter after considering other error

indicator techniques.

2.12 A one-dimensional example error analysis

As a simple example of the process for recovering estimates of the continuous nodal

flux values we will return to one of the one-dimensional models considered earlier.

Figure 2.20 shows a five element model for a second order ODE, while the corresponding

analytic, Gauss point (o), and patch averaged flux estimates are shown in Fig. 2.21. The

piecewise linear flux estimate (solid line) in the latter figure was obtained by using the

SCP process described above. It is the relation that will be used to describe σσ * (x) for

general post-processing or for use as in the stress error estimate.

For linear interpolation elements we recall that the gradient in each element is

constant. The elements used two Gaussian quadrature points (in order to exactly

integrate the ‘mass’ matrix). In Figs. 2.22 and 23 we see a zoomed view of the various

flux representations near element number 2 (in a 5 element mesh). The horizontal dash-

dot line through the quadrature point flux values represents the standard finite element

spatial distribution, Be φφ e, of the flux in that element. Again, the solid line is the spatial

form of an averaged flux from a set of patches, and the dashed line is the exact flux

60 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

X, Node number at 45 deg, Element number at 90 deg

Exact (dash) & FEA Solution Component_1: 5 Elements, 6 Nodes

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.0

70
75

7,
 m

in
 =

 0
)

(1

)

(2

)

(3

)

(4

)

(5

)

1

2

3

4

5

6

−−−min

−−−max

U,xx + U + X = 0, U(0) = 0 = U(1)

Figure 2.20 Analytic and linear element solution results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

X, Node number at 45 deg, Element number at 90 deg

Exact (dash), FEA SCP (solid) & GP Flux Component_1: 5 Elements, 6 Nodes

C
om

po
ne

nt
 1

 (
S

C
P

 m
ax

 =
 0

.2
00

99
, m

in
 =

 −
0.

30
49

4)

(1

)

(2

)

(3

)

(4

)

(5

)

1

2

3

4

5

6

−−−min

−−−max

Figure 2.21 Exact, patch averaged, and Gauss point flux distribution

Chapter 2, Mathematical preliminaries 61

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

X, Near Element 2 (of 5 Elements, 6 Nodes)

Exact (dash), FEA SCP (solid), Gauss Point (dash dot) Flux. True Error (vertical)

C
om

po
ne

nt
 1

 (
S

C
P

 m
ax

 =
 0

.2
00

99
, m

in
 =

 −
0.

30
49

4)

Figure 2.22 Zoom of exact flux error near the second element

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

X, Near Element 2 (of 5 Elements, 6 Nodes)

Exact (dash), FEA SCP (solid), Gauss Point (dash dot) Flux. Estimated Error (vertical)

C
om

po
ne

nt
 1

 (
S

C
P

 m
ax

 =
 0

.2
00

99
, m

in
 =

 −
0.

30
49

4)

Figure 2.23 Zoom of estimated flux error near the second element

62 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

X, Node number at 45 deg, Element number at 90 deg

Flux Value at Element Quadrature Points: 5 Elements, 6 Nodes

F
lu

x
 (

m
ax

 =
 0

.1
79

81
, m

in
 =

 −
0.

26
15

6)

1

2

3

4

5

6

−−−min

−−−max +

+

+

+
+

+

+

+

+

+

+

Patch 1 fit

Patch 3 fit

Patch 5 fit

Interpolated nodal flux

Figure 2.24 Element flux and linear patch fits (odd elements)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

X, Node number at 45 deg, Element number at 90 deg

Flux Value at Element Quadrature Points: 5 Elements, 6 Nodes

F
lu

x
 (

m
ax

 =
 0

.1
79

81
, m

in
 =

 −
0.

26
15

6)

1

2

3

4

5

6

−−−min

−−−max +

+

+

+

+

+

+

+

+

+

Patch 2 fit

Patch 4 fit

Interpolated nodal flux

Figure 2.25 Element flux and linear patch fits (even elements)

Chapter 2, Mathematical preliminaries 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X, Node number at 45 deg

Exact Error in Element Flux Component_1: 5 Elements, 6 Nodes

E
rr

or
 in

 F
lu

x

1

2

3

4

5

6

U,xx + U + X = 0, U(0) = 0 = U(1)

Figure 2.26 Exact error in element flux distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X, Node number at 45 deg

Estimated Error in Element Flux Component_1: 5 Elements, 6 Nodes

E
rr

or
 in

 F
lu

x

1

2

3

4

5

6

U,xx + U + X = 0, U(0) = 0 = U(1)

Figure 2.27 Estimated error in element flux distribution

64 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

9

10
x 10

−3

X, Node number at 45 deg

Exact Error Squared in Element Flux Component_1: 5 Elements, 6 Nodes

F
lu

x
E

rr
or

 S
qu

ar
ed

1

2

3

4

5

6

U,xx + U + X = 0, U(0) = 0 = U(1)

Figure 2.28 Square of exact error in element flux distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

7

8

9

x 10
−3

X, Node number at 45 deg

Estimated Error Squared in Element Flux Component_1: 5 Elements, 6 Nodes

E
rr

or
 in

 F
lu

x

1

2

3

4

5

6

U,xx + U + X = 0, U(0) = 0 = U(1)

Area under curve is proportional to error norm

Figure 2.29 Square of estimated error in element flux distribution

Chapter 2, Mathematical preliminaries 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

X, Node number at 45 deg, Element number at 90 deg

Estimated Element Energy Norm Error, % * 100: 5 Elements, 6 Nodes

E
rr

or
 E

st
im

at
e

 (
m

ax
 =

 1
4.

97
6,

 m
in

 =
 3

.3
22

4)

(1

)

(2

)

(3

)

(4

)

(5

)

1

2

3

4

5

6

−−−min

−−−max

U,xx + U + X = 0, U(0) = 0 = U(1)

Figure 2.30 Estimated energy norm error in each element

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

X, Node number at 45 deg, Element number at 90 deg

Exact (dash), SCP (solid) Nodal Energy Norm Error: 5 Elements, 6 Nodes

E
ne

rg
y

N
or

m
 E

rr
or

, %
 *

 1
00

(1

)

(2

)

(3

)

(4

)

(5

)

1

2

3

4

5

6

−−−min

−−−max

U,xx + U + X = 0, U(0) = 0 = U(1)

Figure 2.31 Exact and averaged energy norm error at the mesh nodes

66 Finite Element Analysis with Error Estimators

distribution. In Fig. 2.22, the vertical lines show the exact error in the flux, eσ . We will

see later that it is the quantity whose norm can be used to establish an error indicator. Of

course, in practice one does not know the exact flux distribution. However, even for this

very crude mesh we can see that the patch averaged flux, σσ *, is a much better estimate of

the true flux,σ , than the standard element estimate, σ̂σ = Beφφ e. This is confirmed by

comparing Fig. 2.23 to 2.22 where the vertical lines are the difference between the patch

av eraged and standard element flux values, i.e. σσ * − σ̂σ .

The flux at each Gauss point is again plotted (as open circles) in Figs. 2.24 and 25.

Also shown there are solid lines that represent the linear fit (same degree as the assumed

element solution) over the elements in each patch. There were five different element

patches corresponding to the five elements in the mesh. The first and last patches

contained only two elements because the originating elements occurred on the boundary.

The interior patches consisted of three elements each: the original element and the

adjacent ‘facing’ element on the left and right. Once a patch fit has been obtained it is

used to interpolate to the nodal values on that line (marked with a plus symbol). In that

process each node in the original mesh receives multiple estimated flux values.

Av eraging all the estimates from each patch containing the node gives the (solid line)

values shown earlier in Fig. 2.21. We will assume that the piecewise linear averaged fit

for the flux in Fig. 2.21 is more accurate than the piecewise constant steps from the

original element estimates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X, Node number at 45 deg

Exact Error in FEA SCP Flux Component_1: 5 Elements, 6 Nodes

F
lu

x
E

rr
or

 (
m

ax
 =

 0
.0

52
97

, m
in

 =
 −

0.
00

38
74

3)

1

2

3

4

5

6

U,xx + U + X = 0, U(0) = 0 = U(1)

Figure 2.32 Exact error in the averaged patch flux estimate

Chapter 2, Mathematical preliminaries 67

The exact error in the flux, eσ (x) ≡ σσ (x) − σ̂σ (x), is shown in Fig. 2.26. The

estimated error in the flux, eσ ≈ σσ * (x) − σ̂σ (x), obtained from the SCP average flux

data is shown to the same scale in Fig. 2.27. The comparisons are reasonably good and

would improve as the mesh is refined or adapted. Both plots clearly show that the flux

error from a standard element calculation, σ̂σ , is usually largest at the nodes on the

element interfaces. Note that the integral of the square of the above stress error

distribution would define a stress error norm. Likewise, each element contributes to that

norm and we could compare the local error to the average error to select elements for

refinement or de-refinement. If we use the Ee matrix to scale the product of the stress

error we would obtain the more common strain energy norm of the error. In either case

the norm can be viewed as being directly proportional to the area under the curve defined

by the stress error. Those exact and estimated error norms are shown as the hatched

portions of Figs. 2.28 and 29, respectively.

Referring to Fig. 2.29, the area under the curve for each element can be used to

assign a (constant) error value to each element. They are shown in Fig. 2.30. After all

elements have been assigned an error value those values can be gathered at the nodes of

the mesh to give a spatial approximation of the true energy norm error. Figure 2.31

illustrates such an averaging process and compares it to a similar average of the exact

error. Of course, the exact error in the energy norm is a continuous function and we

expect the nodally averaged values would approach the continuous values as the mesh is

refined. For the crude mesh used in this example one can actually see the differences in

exact and approximate plots, but for a fine mesh they usually look the same and one must

rely on the numerical process to obtain useful error estimates.

Above we noted that the standard element level flux estimate, σ̂σ = EeBeφφ e is

discontinuous at element interfaces and least accurate at those locations. Figure 2.32

shows the exact error in the SCP averaged flux estimates for this problem, to the same

scale used to give the standard flux error in Fig. 2.26. There we see a number of

improvements. The flux is continuous at the nodes. Its error is usually smallest at the

element interfaces, except for nodes on the domain boundary. Usually the boundary has a

significant effect and it is desirable to use smaller elements near the boundary. Special

patch processes can be added to try to improve the flux estimates near boundaries but we

will not consider such processes. Having illustrated the process in one-dimension we

next consider a common two-dimensional test case for error estimators.

2.13 General boundary condition choices

Our discussion of the model differential equation in Eq. 2.15 has not yet led us to

the need to introduce the general range of boundary condition choices that we commonly

encounter in applying finite element analysis. Assume our model equation is generalized

to the form

(2.47)−
d

dx
(a

du

dx
) + b u + c = 0, 0 < x < L.

Tw o physical examples, in one-dimension, readily come to mind where one can assign

meanings to the three coefficients in this differential equation. For axial heat transfer u

represents the unknown temperature, a the thermal conductivity of the material, b a

convection coefficient (per unit length) on the surface, and c a heat source per unit length

68 Finite Element Analysis with Error Estimators

(and/or information on the external convection temperature). Likewise, for an axial

elastic bar u is the displacement, a the material elastic modulus, b a resisting foundation

stiffness, and c an axial force per unit length (like gravity). For an eigen-problem we

would have c = 0 and b would be an unknown global constant (eigenvalue) to be

computed from the finite element square matrices.

At either end of the domain one of three conditions can typically be prescribed as

possible boundary conditions. The choices are known as a:

1. Dirichlet (essential) boundary condition that specifies the value of the solution

on a portion of the boundary; u(xD) = UD.

2. Neumann (natural) boundary condition that specified the derivative of the

solution normal to a portion of the boundary; ± a ∂u (xN) / ∂n = g. This usually

represents a known flux or force, in the direction of the normal vector, defined in

terms of the gradient of the solution. The sign of the a coefficient usually depends

on the use of a constitutive relation, like Fourier’s law, Flick’s law, or Hooke’s law.

x, u(x)

L

a = k
u(0)= U

0

x, u(x)

L

a = E
u(0)= U

0

c

b = k
b

d
L

k
L

h
L

t
L

b = h
b

c = Q

t
b
 = 0

d
b
 = 0

(a u’ v’ + b u v) dx = c v dx + k
L
 (d

L
 - u(L)) v(L)

L L

- (a u’)’ + b u + c = 0

Figure 2.33 Rods with a mixed (Robin) boundary condition, from hL and kL

Chapter 2, Mathematical preliminaries 69

In heat transfer it is negative. Note that in one-dimension the direction of the

outward normal reverses directions and ∂ / ∂n = ± ∂ / ∂x.

3. Robin (mixed) boundary condition that specifies a linear combination of the

normal derivative and solution value on a portion of the boundary;

± a ∂u(xR) / ∂n + f u(xR) = g. The mixed condition occurs often in heat transfer

as a convection boundary condition and sometimes as a linearized approximation to

a radiation condition. In stress analysis it is less common and usually represents

the effect of an elastic support foundation, with settlement. The generalized mixed

condition notation here is: a ∂u(xR) / ∂n + r1 u(xR) + r2 = 0. The most common

example of this type of boundary condition is heat convection from a surface where

the normal flux is −kn(xR) ∂u(xR) / ∂n − h(xR) [u(xR) − u∞(xR)] = 0 so that

r1 = h and r2 = − hu∞, where u(xR) is the unknown temperature on the convecting

surface, u∞(xR) is the known surrounding fluid temperature, h is the convection

coefficient, and kn the thermal conductivity normal to the boundary.

In terms of the effects on the corresponding algebraic equation system a Dirichlet

condition reduces the number of primary unknowns to be solved. That is, it reduces the

size of the effective algebraic system that must be solved (see the following section).

However, it also introduces an unknown nodal reaction term in the RHS that can

optionally be recovered, as noted below. A Neumann condition does not change the size

of the algebraic system; it simply adds known additional terms to the RHS. If that value

is zero then no action is required and it is then usually called a natural boundary

condition. A Robin, or mixed, condition likewise adds known additional terms to the

RHS but, more importantly, it also adds a known symmetric square matrix contribution to

the LHS in the rows and columns that correspond to the Robin surface nodes (usually

heat convection nodes). For the one-dimensional problems considered in this chapter the

Robin, or mixed condition can only occur at an end point (a single dof). For that node

number the value of r1 is added to the diagonal of the system square matrix, and the value

of − r2 is added to the corresponding row on the RHS (or for the common convection

case add h
b

A
b and h

b
A

b
u

b

∞, respectively for a convecting area A at the point). The

corresponding Robin boundary contributions in 2-D will be covered in Sec. 4.3. Figure

2.33 illustrates a thermal (top) and stress problem, in 1-D, with a Dirichlet condition on

the left (x = 0) end and a Robin condition on the right end (x = L).

2.14 General matrix partitions

The above small example has led to the most general form of the algebraic system

that results from satisfying the required integral form: a singular matrix system with more

unknowns that equations. That is because we chose to apply the essential boundary

conditions last and there is not a unique solution until that is done. The algebraic system

can be written in a general matrix form that more clearly defines what must be done to

reduce the system to a solvable form by utilizing essential boundary condition values.

Note that the system degrees of freedom, D, and the full equations could always be re-

arranged in the following partitioned matrix form

70 Finite Element Analysis with Error Estimators

(2.48)

Suu

Sk u

Su k

Sk k

Du

Dk

=

Cu

Ck + Pk

where Du represents the unknown nodal parameters, and Dk represents the known

essential boundary values of the other parameters. The sub-matrices Suu and Sk k are

square, whereas Su k and Sk u are rectangular, in general. In a finite element formulation

all of the coefficients in the S and C matrices are known. The Pk term represents that

there are usually unknown generalized reactions associated with essential boundary

conditions. This means that in general after the essential boundary conditions (Dk) are

prescribed the remaining unknowns are Du and Pk . Then the net number of unknowns

corresponds to the number of equations, but they must be re-arranged before all the

remaining unknowns can be computed.

Here, for simplicity, it has been assumed that the equations have been numbered in a

manner that places the prescribed parameters (essential boundary conditions) at the end

of the system equations. The above matrix relations can be rewritten as

Suu Du + Su k Dk = Cu

Sk u Du + Sk k Dk = Ck + Pk

so that the unknown nodal parameters are obtained by inverting the non-singular square

matrix Suu in the top partitioned rows. That is,

Du = S−1
uu

(Cu − Su k Dk).

Most books on numerical analysis assume that you have reduced the system to the non-

singular form given above where the essential conditions, Du, hav e already been moved

to the right hand side. Many authors use examples with null conditions (Dk is zero) so

the solution is the simplest form, Du = S−1
uu

Cu. If desired, the values of the necessary

reactions, Pk , can now be determined from

Pk = Sk u Du + Sk k Dk − Ck

In nonlinear and time dependent applications the reactions can be found from similar

calculations. In most applications the reaction data have physical meanings that are

important in their own right, or useful in validating the solution. However, this part of the

calculations is optional. If one formulates a finite element model that satisfies the

essential boundary conditions in advance then the second row of the partitioned system S

matrix is usually not generated and one can not recover reaction data.

2.15 Elliptic boundary value problems

2.15.1 One-dimensional equations Since the previous model equation had an exact

solution that was trigonometric our approximation with polynomials could never giv e an

exact solution (but could reach a specified level of accuracy). Here we will consider an

example where the finite element solution can be nodally exact and possibly exact

ev erywhere. The following one-dimensional (ns = 1) model problem which will serve as

an analytical example:

Chapter 2, Mathematical preliminaries 71

(2.49)k
d

2φ

dx2
+ Q = 0

on the closed domain, x ∈] 0, L [, and is subjected to the boundary conditions

φ (L) = φ L , and k dφ / dx (0) = q0. Note that we have dropped the second term in the

previous ODE. The corresponding governing integral statement to be used for the finite

element model is obtained from the Galerkin weighted residual method, followed by

integration by parts and is very similar to the first example. In this case, it states that the

function, φ , which satisfies the essential condition, φ (L) = φ L , and satisfies

(2.50)I = ∫
L

0

k (dφ / dx)2 − φ Q

dx + q0 φ (0) − qL φ (L) = 0,

also satisfies the new ODE. A typical element contribution is:

(2.51)I
e = De

T

Se De − De
T

Ce
,

where

Se ≡
Le

∫ k
e

dHe
T

dx

dHe

dx
dx =

Le

∫ Be
T

k
e Be

dx, Ce ≡
Le

∫ Q
e He

T

dx.

The system of algebraic equations from the weak form is S D = C where

S =
ne

e = 1
Σ ββ e

T

Se ββ e
, C =

ne

e = 1
Σ ββ e

T

Ce +
nb

b=1
Σ ββ b

T

Cb
,

and where, as before, ββ denotes a set of symbolic bookkeeping operations. If we select a

linear element with the interpolation relations given previously the element matrices are:

Se =
k

e

Le

1

−1

−1

1

, Ce =

Le

∫
Q

e

Le

(x2
e − x)

(x − x1
e)

d x.

Assuming that Q = Q0, a constant, this simplifies to Ce
T

= 1 1 Q0 L
e / 2. The exact

solution of the original problem for constant Q = Q0 is

(2.52)k φ (x) = k φ L + q(x − L) + Q0 (L
2 − x

2) / 2.

Since for Q0 ≠ 0 the exact value is quadratic and the selected element is linear, our finite

element model can give only an approximate solution. However, for the homogeneous

problem Q0 = 0, the model can (and does) give an exact solution. To compare a finite

element spatial approximation with the exact one, select a two element model. Let the

elements be of equal length, L
e = L / 2. Then the element matrices are the same for both

elements. The assembly process (including boundary effects) yields, S D = C:

2k

L

1

−1

0

−1

(1 + 1)

−1

0

−1

1

φ 1

φ 2

φ 3

=
Q0 L

4

1

(1 + 1)

1

−

q0

0

−qL

.

However, these equations do not yet satisfy the essential boundary condition of

φ (L) = φ 3 = φ L . That is, S is singular and can not be inverted. After applying this

essential boundary condition, the reduced equations are

72 Finite Element Analysis with Error Estimators

2k

L

1

−1

− 1

2

φ 1

φ 2

=
Q2 L

4

1

2

−

q

0

+
2ktL

L

0

1

,

or Sr Dr = Cr . Inv erting Sr and solving for Dr = S−1
r

Cr yields

S−1
r

=
L

2k

2

1

1

1

, Dr =

φ 1

φ 2

=
Q0 L

2

8k

4

3

−
qL

2k

2

1

+ t L

1

1

.

These are the exact nodal values as can be verified by evaluating the solution at x = 0 and

x = L / 2, respectively. Thus, our finite element solution is giving an interpolate solution.

That is, it interpolates the solution exactly at the node points, and is approximate at all

other points on the interior of the element. For the homogeneous problem, Q0 = 0, the

finite element solution is exact at all points. These properties are common to other finite

element problems. The exact and finite element solutions are illustrated in Fig. 2.34,

where shaded regions show the error in the solution and its gradient. Note that the

derivatives are also exact at least at one point in each element. The optimal derivative

sampling points will be considered in a later section. For this differential operation, it can

be shown that the center point gives a derivative estimate accurate to order 0 (L
e2), while

all other points are only order 0 (L
e) accurate. For Q = Q0, the center point derivatives

are exact in the example.

Next, we want to utilize the last equation from the weighted residual algebraic

system to recover the flux ‘reaction’ that is necessary to enforce the essential boundary

condition at x = L:

k d2t / dx2 + Q = 0

x

t

t
exact

= t
L
 + q

0
(x - L) + Q(L2 - x2)/2

t (1)

t (2)

0 L / 2 L

t
L

dt / dx

x0
L

q
0

QL / 2

q
L

q
0

QL / 2

(1) (2)

a) b)

c)

Figure 2.34 Example interpolate solution

Chapter 2, Mathematical preliminaries 73

2k

L

0 − 1 φ 2 + 1 φ 3

= Q0

L

4
− (− qL)

or −Q0 L + q0 = qL , which states the flux equilibrium: that which was generated

internally, Q0 L, minus that which exited at x = 0, must equal that which exits at x = L. If

one is going to save the reaction data for post-solution recovery, as illustrated above, then

one could use programs like SYSTEM_ROW_SAVE and GET _REACTIONS to store and

later recover the associated rows of the square matrix. It is not necessary to save these

data when they are first generated since they can clearly be recomputed in a post-

processing segment if desired. In the later examples we will invoke functions to save

these data as they are created.

2.15.2 Two-dimensional equations

As an example of the utilization of Galerkin’s method in higher dimensions,

consider the following model transient linear operator:

(2.53)L(u) =
∂

∂x

k x

∂u

∂x

+
∂
∂y

k y

∂u

∂y

− Q − ζ
∂u

∂t
= 0.

We get the weak form by multiplying by a test function, w(x), and setting the integral to

zero. The last two terms are simply

IQ = ∫Ω
Q w d Ω, Iζ = ∫Ω

ζ w
∂u

∂t
d Ω.

Our main interest is with the first two terms

Ik =
Ω
∫

w
∂

∂x

k x

∂u

∂x

+ w
∂
∂y

k y

∂u

∂y

d Ω

which involve the second order partial derivatives. We can remove them by invoking

Green’s theorem

Ω
∫

∂Ψ
∂x

−
∂γ

∂y

d Ω =
Γ
∫

γ dx + Ψdy

where we define Ψ = w k x ∂u / ∂x, and γ = −w k y ∂u / ∂y. We note that an alternate

form of Ik is

Ik =
Ω
∫

∂
∂x

w k x

∂u

∂x

+
∂
∂y

w k y

∂u

∂y

d Ω

−
Ω
∫

∂w

∂x
k x

∂u

∂x
+

∂w

∂y
k y

∂u

∂y

d Ω .

The first term is re-written by Green’s theorem

74 Finite Element Analysis with Error Estimators

Ik =
Γ
∫

−

w k y

∂u

∂y

dx +

w k x

∂u

∂x

dy

−
Ω
∫

k x

∂w

∂x

∂u

∂x
+ k y

∂w

∂y

∂u

∂y

d Ω .

For a contour integral with a unit normal vector, n, with components [nx ny], we note

the geometric relationships are that (see Fig. 2.35) −dx = ds Cos θ y = ds ny, and that

dy = ds Cos θ x = ds nx which reduces the boundary integral to

Γ
∫ w

k x

∂u

∂x
nx + k y

∂u

∂y
ny

ds =
Γ
∫ w kn

∂u

∂n
ds

where ∂u / ∂n is the normal gradient of u, that is ∇ u . n, and kn is the value of the

orthotropic k in the direction of the normal. The resulting Galerkin form is

− I =
Ω
∫

k x

∂w

∂x

∂u

∂x
+ k y

∂w

∂y

∂u

∂y

d Ω +
Ω
∫ Q w d Ω

+
Ω
∫ ζ w

∂u

∂t
d Ω −

Γ
∫ w kn

∂u

∂n
ds = 0 .

Note that Green’s theorem brought in the information on the conditions of the surface. If

we split this into the union of all element domains so that Ω =
e
∪ Ω e and likewise the

Source, Q

Unit normal, n

Conductivities, k
x
, k

y

dy

dx

dx

dy
ds

o
x

o
x

Figure 2.35 The unit normal vector components

Chapter 2, Mathematical preliminaries 75

boundary becomes the union of the boundary segments created by the mesh, Γ =
b

∪ Γ b,

we generate four typical matrices from these terms. We interpolate, as before, with the

weights w(x, y) = He(x, y) Ve
, but include transient time effects by assuming that the

degrees of freedom become time dependent, Ue = Ue(t), so that

u (x, y, t) = He(x, y) Ue(t). This assumption for the time behavior makes

(2.54)
∂u

∂t
= He(x, y)

∂
∂t

φφ e(t) = He(x, y) φ̇̇φ
e

.

These assumptions result in two square matrices

(2.55)Ke =
Ωe

∫

He
T

, x
k x He

, x
+ He

T

, y
k y He

, y

dΩ, Me =
Ωe

∫ He
T

He ζ e
dΩ

and the two source vectors

(2.56)F e

Q
=

Ωe

∫ He
T

Q
e

dΩ, F b

q
=

Γb

∫ Hb
T

k
b

n

∂u
b

∂n
dΓ =

Γb

∫ Hb
T

q
b

n
dΓ,

which when assembled yield a system of ordinary differential equations in time such that

VT (M φ̇̇φ + K φφ − F) = 0 , so that for arbitrary V ≠ 0, we hav e

(2.57)M φ̇̇φ (t) + K φφ (t) = F (t),

which is an initial value problem to be solved from the initial condition state at

φφ (x, y, t = 0). Here we will note that Me and M are usually called the element and

system mass (or capacity) matrices, respectively. By making assumptions about how to

approximate the time dependent vector φ̇̇φ (t) this system can be rearranged to yield a

linear system S φφ (t) = C(t) to be solved at each time step for the current value of φφ (t).

For the steady state case, ∂ / ∂t = 0, this reduces to the system of algebraic equations

S φφ = C considered earlier. The same procedure is easily carried out in three

dimensions. Matrix Ke changes by having a third term involving z and for F b

q
we think

of dΓ as a surface area instead of a line segment.

We also note in passing that in addition to using classical finite differences in time

there are two other choices for methods to treat time dependence. One is to do a

separation of variables and also interpolate the element behavior over one or more time

steps with u (x, y, t) = He(x, y) he(t) φφ e [22]. That allows one to carry out weighted

residual methods in time also. These first two choices are usually referred to as ‘semi-

discrete’ methods for time integration. Another approach is to carry out a full space-time

interpolation with u (x, y, t) = He(x, y, t) φφ e and include three-dimensional space via

four-dimensional elements. The 4-D element solutions have very large memory

requirements (by today’s standards), and are usually restricted to a time slab (a constant

time step) which simplifies the 4-D elements and the associated 4-D mesh generation.

Like the above example, most 4-D models begin with the classical mechanics laws in 3-D

space and then interpolate through time also. It is also possible to begin the formulation

using relativity physics laws in a 4-D space-time and to form the 4-D elements

therein [11]. Such an approach is not required unless the velocities involved are not small

relative to the speed of light.

76 Finite Element Analysis with Error Estimators

! .. ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! For required REAL (DP) :: S (LT_FREE, LT_FREE) ! 3
! and optional REAL (DP) :: C (LT_FREE) ! 4
! using previous solution D (LT_FREE) with ! 5
! D = D_OLD + RELAXATION (D_NEW - D_OLD) via key relaxation 1.0 ! 6
! Globals TIME_METHOD, TIME_STEP, TIME along with mass matrix ! 7
! options EL_M ((LT_FREE, LT_FREE), and DIAG_M (LT_FREE). ! 8
! .. ! 9
! APPLICATION DEPENDENT Galerkin FOR TRANSIENT PDE via the ! 10
! iterative element level assembly of semi-discrete form(s). ! 11
! K_e U,xx + Q - Rho_e U,t = 0, with U(x,0) given by keyword ! 12
! start_value, U(0,t) and U(L,t) given by EBC constant in time ! 13
! Keywords time_step, time_method, scalar_source, initial_value, ! 14
! diagonal_mass, etc. are also available. Stored as inefficeint ! 15
! source example 121, redone as efficient in example 122 ! 16
REAL(DP) :: DL, DX_DN, Q = 0.d0 ! Length, Jacobian, source ! 17
INTEGER :: IQ, J ! Loops ! 18

! 19
! Work items for time integration ! 20
REAL(DP), SAVE :: Del_t = 1, K_e = 1, Rho_e = 1 ! defaults ! 21
REAL(DP) :: K (LT_FREE, LT_FREE), M (LT_FREE, LT_FREE) ! 22
REAL(DP) :: F (LT_FREE), WORK (LT_FREE, LT_FREE) ! 23

! 24
IF (THIS_EL == 1) THEN ! first action for each iteration ! 25

IF (TIME_STEP /= 1.d0) Del_t = TIME_STEP ! non-default ! 26
TIME = START_TIME + THIS_ITER * Del_t ! via globals ! 27
PRINT *, ’(VIA ITERATION) TIME = ’, TIME ! 28

END IF ! 29
! 30

K = 0 ; M = 0 ; F = 0 ! Initialize conduction, mass, source ! 31
IF (EL_REAL > 1) THEN ! use non-default element properties ! 32

K_e = GET_REAL_LP (1) ! thermal conductivity ! 33
Rho_e = GET_REAL_LP (2) ! rho*c_p ! 34

END IF ! 35
E = K_e ! Diffusion ! 36
DL = COORD (LT_N, 1) - COORD (1, 1) ! Length ! 37
DX_DN = DL / 2. ! Jacobian ! 38
IF (SCALAR_SOURCE /= 0.d0) Q = SCALAR_SOURCE ! Source ! 39

! 40
CALL STORE_FLUX_POINT_COUNT ! Save LT_QP for post-processing ! 41
DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES ! 42

! 43
! GET INTERPOLATION FUNCTIONS, AND X-COORD ! 44

H = GET_H_AT_QP (IQ) ! SHAPE FUNCTIONS HERE ! 45
XYZ = MATMUL (H, COORD) ! ISOPARAMETRIC ! 46

! 47
! LOCAL AND GLOBAL DERIVATIVES, B = DGH ! 48

DLH = GET_DLH_AT_QP (IQ) ! dH / dr ! 49
DGH = DLH / DX_DN ! dH / dx ! 50

! 51
! SQUARE MATRICES (STIFFNESS & MASS) & SOURCE VECTOR ! 52

K = K + MATMUL (TRANSPOSE(DGH), DGH)* WT (IQ) * DX_DN * K_e ! 53
M = M + OUTER_PRODUCT (H, H) * WT (IQ) * DX_DN * Rho_e ! 54
F = F + H * Q * WT (IQ) * DX_DN ! 55

! 56
CALL STORE_FLUX_POINT_DATA (XYZ, E, DGH) ! for post-processing ! 57

END DO ! QUADRATURE ! 58

Figure 2.36a Element matrices before time step changes

Chapter 2, Mathematical preliminaries 77

! 59
! Assemble for semi-discrete one-step time rule, via iteration: ! 60
! NOTE: This is very inefficient since the assembly, boundary ! 61
! conditions, and factorization are repeated ever "time step". ! 62
! (Inefficent source example 121, see efficient example 122) ! 63

! 64
IF (DIAGONAL_MASS) THEN ! use the scaled diagonal mass form ! 65

CALL DIAGONALIZE_SQ_MATRIX (LT_FREE, M, DIAG_M) ; M = 0.d0 ! 66
DO J = 1, LT_FREE ! 67

M (J, J) = DIAG_M (J) ! 68
END DO ! 69

END IF ! diagonal instead of consistent or averaged mass matrix ! 70
! 71

SELECT CASE (TIME_METHOD) ! for one-step time integration rule ! 72
CASE (2) ! Crank-Nicolson, accuracy order O(Del_tˆ2) ! 73

WORK = M / Del_t - K / 2 ! 74
C = F + MATMUL (WORK, D) ! 75
S = M / Del_t + K / 2 ! 76

CASE (3) ! Galerkin in time, accuracy order O(Del_tˆ2) ! 77
WORK = M / Del_t - K / 3 ! 78
C = F + MATMUL (WORK, D) ! 79
S = 2 * K / 3.d0 + M / Del_t ! 80

CASE (4) ! Least Squares in time, F constant in time ! 81
WORK = MATMUL (TRANSPOSE(M), M) / Del_t & ! 82

+ MATMUL (TRANSPOSE(K), M) / 2 & ! 83
- MATMUL (TRANSPOSE(M), K) / 2 & ! 84
- MATMUL (TRANSPOSE(K), K) * Del_t / 6 ! 85

C = -MATMUL (TRANSPOSE(K), F) * Del_t / 2 & ! 86
- MATMUL (TRANSPOSE(M), F) & ! 87
+ MATMUL (WORK, D) ! 88

S = MATMUL (TRANSPOSE(K), K) * Del_t / 3 & ! 89
+ MATMUL (TRANSPOSE(K), M) / 2 & ! 90
+ MATMUL (TRANSPOSE(M), K) / 2 & ! 91
+ MATMUL (TRANSPOSE(M), M) / Del_t ! 92

! Add generalized trapezoidal method as CASE (5) ! 93
CASE DEFAULT ! Method 1, forward difference, order O(Del_t) ! 94

WORK = M / Del_t ! 95
C = F + MATMUL (WORK, D) ! 96
S = K + M / Del_t ! 97

END SELECT ! a one-step rule ! 98
! 99

! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !100

Figure 2.36b New element matrices after time step changes

If we had also included a second time derivative term, we could then see by

inspection that it would simply introduce another mass matrix (with a different

coefficient) times the second time derivative of the nodal degrees of freedom. This would

then represent the wave equation whose solution in time could be accomplished by

techniques to be presented later. If the time derivative terms are not present, and if the

term c u is included in the PDE and if the coefficient c is an unknown global constant,

then this reduces to an eigen-problem. That is, we wish to determine a set of eigenvalues,

ci, and a corresponding set of eigenvectors, or mode shapes.

2.16 Initial value problems
Many applications, like Eq. 2.53, involve the first partial derivative with respect to

time and get converted through the finite element process to a matrix system of ordinary

78 Finite Element Analysis with Error Estimators

differential equations in time, like Eq. 2.57. These are known as initial value problems,

or parabolic problems, and require the additional description of the spatial value of φφ at

the starting time (known as the initial condition). There are hundreds of ways to

numerically integrate these matrices in time. One has to be concerned about the relative

costs (storage and operation counts), stability, and accuracy of the chosen method. These

topics are covered in many books on numerical methods and we will not go into them

here. Instead we will simply give some insight to a few approaches.

If one assumes that Eq. 2.57 is valid at an element level for time ts one could write

Me φ̇̇φ
e
(ts) + K φφ e(ts) = Fe (ts),

and assume that at step number s

φ̇̇φ
s

=
φφ

s+1 − φφ
s

∆ts+1

where ∆t is the time step size, and contemplate rewriting the element relations as

(2.58)[Me / ∆ts+1]φφ e

s+1 = [Me / ∆ts+1 − Ke]φφ e

s
+ Fe

s
,

or as Se(∆ts+1) φφ e

s+1 = Ce

s
(∆ts+1,t). Then the effective element square matrix would not

change with time if the step size, ∆ts+1 were held constant.

One could begin the time stepping with the initial condition, φφ 0, and loop through

the time steps, in an iterative fashion, to get the next φφ
s+1. While this type of concept is

illustrated in the element level calculations of Fig. 2.36 it is very inefficient to use this

element looping (or iteration) process. It is more proper to carry out a similar process

after the proper system assembly of Eq. 2.57, invoke the system initial conditions, and

solve for φφ
s+1, after applying the essential boundary conditions and/or flux conditions

both of which can now hav e time dependent values. We will omit that level of detail here

and simply note that control keyword transient is available in MODEL to carry out a

transient study (see Table 2.1). It defaults to zero initial conditions and the Crank-

Nicolson time integration scheme which is unconditionally stable and second order

accurate in time, O(∆t
2). The application of transient methods will be given in Chapter

11, but the main interest in this book is on spatial error estimates. The book by Huang

and Usmani [8], covers two-dimensional transient error estimators in more detail than

space allows here.

However, to giv e a brief overview of how all the transient calculations proceed we

will use a simple (and slightly corrected) example from Desai [6], where he used 3 linear

elements to solve the transient heat conduction problem of

α
∂2φ

∂x2
=

∂φ

∂t
,

where α = k/ρc p is the thermal diffusivity, φ is temperature, t is time, and x is position.

The bar has an initial condition of zero temperature, φ (x, 0) = 0, when the two ends

suddenly have different non-zero temperatures enforced and held constant with time,

φ (0, t) = 10, φ (L, t) = 20. The element size and time step size are chosen to make the

element Fourier Number, Fo = α ∆t / ∆x
2, equal to unity. Here ∆x = L

e = 1 (so L = 3)

Chapter 2, Mathematical preliminaries 79

Table 2.1 Typical keywords for transient problems

TIME_CONTROL, VALUE ! REMARKS [DEFAULT]
average_mass ! Average consistent & diagonal mass matrices [F]
crank_nicolson ! Select transient one-step method 2 [F]
diagonal_mass ! Use diagonalized mass matrix [F]
euler_forward ! Select transient one-step method 1 [T]
galerkin_in_time ! Select transient one-step method 3 [F]
gen_trapezoidal ! Select transient one-step method 5 [F]
gen_trap_next .5 ! Weight of next time step, 0 to 1 [0.5]
history_dof 12 ! DOF number for time-history graph output [0]
history_node 3 ! Node number for time-history graph outputs [0]
inc_save 1 ! Save after steps inc, 2*inc, 3*inc, ... [0]
initial_value 0. ! Initial value of transient scalar everywhere [0]
least_sq_in_time ! Select transient one-step method 4 [F]
save_1248 ! Save after steps 1, 2, 4, 8, 16 ... [F]
start_time 0. ! A time history starting time [0]
start_value 1. ! Initial value of transient scalar everywhere [0]
time_method 1 ! 1-Euler, 2-Crank-Nicolson, 3-Galerkin, etc [1]
time_step 1.d-3 ! Time step size for time dependent solution [1]
time_steps 128 ! Number of time steps to employ [5]
transient ! Problem is first order in time [F]

and the time step is also taken as unity, ∆t = 1. The thermal stiffness and mass matrix for

each element are

(2.59)Ke =
α

Le

1

−1

−1

1

, Me =

L
e

6

2

1

1

2

,

and the element source vector is null, Ce

Q
= 00. Applying the Euler (forward difference)

one-step time integration rule for a uniform mesh gives system equations

K{ΦΦ}s+1 +
1

∆t
M{ΦΦ}s+1 = {CQ}s+1 +

1

∆t
M{ΦΦ}s + {Cq}s+1 .

Selecting the above numerical values, so Fo = 1, and assemblying the four equations,

including the initial condition vector, ΦΦ0, but before applying the essential boundary

conditions at the first and last nodes gives:

1

6

8

−5

0

0

−5

16

−5

0

0

−5

16

−5

0

0

−5

8

Φ1 = 10

Φ2

Φ3

Φ4 = 20

 1

= CQ +
1

6

2

1

0

0

1

4

1

0

0

1

4

1

0

0

1

2

Φ1

Φ2

Φ3

Φ4

 0

+

−q1

0

0

q4

 1

where the initial condition nodal vector is zero here, ΦΦ0 = 0. Applying the essential

boundary conditions at this (and all) time steps (with EBC identities inserted in rows 1

and 4 after saving the originals for later reaction recovery) gives

1

6

6

0

0

0

0

16

−5

0

0

−5

16

0

0

0

0

6

Φ1 = 10

Φ2

Φ3

Φ4 = 20

 1

=

0

0

0

0

+
−10

6

−6

−5

0

0

+
−20

6

0

0

−5

−6

=
1

6

60

50

100

120

which is solved for the first time step result of

80 Finite Element Analysis with Error Estimators

ΦΦT

1 = [10. 00 5. 63 8. 01 20. 00].

For the second time step we have system equations of

1

6

8

−5

0

0

−5

16

−5

0

0

−5

16

−5

0

0

−5

8

Φ1 = 10

Φ2

Φ3

Φ4 = 20

 2

=
1

6

2

1

0

0

1

4

1

0

0

1

4

1

0

0

1

2

10. 00

5. 63

8. 01

20. 00

=
1

6

25. 63

40. 53

57. 67

48. 01

.

Applying the essential boundary conditions at this time gives the system equations

1

6

6

0

0

0

0

16

−5

0

0

−5

16

0

0

0

0

6

Φ1 = 10

Φ2

Φ3

Φ4 = 20

 2

=
1

6

60. 00

90. 43

157. 67

120. 00

,

so ΦΦT

2 = [10. 00 9. 68 12. 88 20. 00] and so on for each later step. Likewise, as

done before we can recover the heat flux reactions necessary to maintain the essential

boundary conditions at each step. For the first time step they can be shown to be

q1 = 8. 64, and q4 = 19. 99 BTU /sec while at the second step they were q1 = 0. 99, and

q4 = 7. 93. These eventually transition to the steady state reactions of q1 = − 3. 33, and

q4 = 3. 33 after about 11 steps. The corresponding steady state temperatures are linear

between the two essential boundary conditions ΦΦT = [10. 00 13. 33 16. 67 20. 00].

To illustrate a simple one-dimensional initial value problem consider a uniform bar

that is initially at a temperature of unity when suddenly the two ends are reduced to a

zero temperature and we want to see the time history of the bar as it cools toward zero

ev erywhere. The analytic solution is known for this widely used example, and is

included in the MODEL library as exact_case 34. Here we use a half-symmetry model

with 5 nodes and 4 linear elements. The natural BC occurs at the center point. A set of

sample data for this problem are given in Fig. 2.37 and the nodal time histories are shown

in Fig. 2.38 from this crude model (top) and from the exact solution (bottom, evaluated

only at the nodes). The early time history of the temperature at the center (symmetry)

point is given in Fig. 2.39 for a diagonal mass matrix option. The default finite element

formulation employs the full consistent mass matrix. In this example we have used a

diagonal form (see line 14 of Fig. 2.37). The average of the two approaches has been

demonstrated to be better for some element families, like the L2 element used here. The

example used the numerically integrated element matrices and thus could have used

quadratic or cubic elements as well.

2.17 Eigen-problems
The square mass matrix also often occurs in eigen-problems where the assembled

equations are often of the form

(2.60)[K − ω 2
j
M] δδ j = 0.0.

Chapter 2, Mathematical preliminaries 81

x = 1

U (x, 0) = 1

x = 0

U (1, t) = 0U (0, t) = 0

U,xx - 4 U,t = 0

1 2 3 4 5

x = 0 x = 0.5

1 4

title "L2 Solution K_e U,xx - Rho_e U,t = 0, Myers values" ! 1
example 122 ! Application source code library number ! 2
exact_case 34 ! Analytic solution for list_exact ! 3
list_exact ! List given exact answers at nodes, etc ! 4
transient ! Problem is first order in time ! 5
save_pt_ans ! Create node_results.tmp for matlab ! 6
save_exact ! Save exact result to exact_node_solution.tmp ! 7
save_1248 ! Save after steps 1, 2, 4, 8, 16 ... ! 8
time_groups 1 ! Number of groups of constant time_steps ! 9
time_method 3 ! 1-Euler, 2-Crank-Nicolson, 3-Galerkin, 4-L Sq !10
time_steps 64 ! Number of time steps !11
start_value 1. ! Initial value of transient scalar everywhere !12
time_step 1.d-2 ! Time step size for time dependent solution !13
diagonal_mass ! Use diagonalized mass matrix !14
average_mass ! Average consistent & diagonal mass matrices !15
bar_chart ! Include bar chart printing in output !16
no_scp_ave ! Do NOT get superconvergent patch averages !17
no_error_est ! Do NOT compute SCP element error estimates !18
nodes 5 ! Number of nodes in the mesh !19
elems 4 ! Number of elements in the system !20
dof 1 ! Number of unknowns per node !21
el_nodes 2 ! Maximum number of nodes per element !22
el_real 2 ! Number of real properties per element !23
el_homo ! Element properties are homogeneous !24
space 1 ! Solution space dimension !25
b_rows 1 ! Number of rows in the B (operator) matrix !26
shape 1 ! Element shape, 1=line, 2=tri, 3=quad, 4=hex !27
gauss 2 ! Maximum number of quadrature points !28
remarks 5 ! Number of user remarks !29
quit ! keyword input, remarks follow !30
APPLICATION DEPENDENT Galerkin FOR TRANSIENT SOLUTION !31
K U,xx - R U,t = 0, with U(x,0)=1, U(0,t)=0, U(L,t)=0 !32

Myers/Akin time integration example, Fig 17.2.3 , L_e = 1/8 !33
Time integrations: 1-Euler, 2-Crank-Nicolson, 3-Galerkin in time !34
K, R default to 1 else real el properties 1 & 2, R= 1/(16 L_eˆ2) !35
1 1 0. ! node, bc_flag, x !36
2 0 0.125 ! node, bc_flag, x !37
3 0 0.25 ! node, bc_flag, x !38
4 0 0.375 ! node, bc_flag, x !39
5 0 0.5 ! natural BC at this center node !40

1 1 2 ! elem, two nodes !41
2 2 3 ! elem, two nodes !42
3 3 4 ! elem, two nodes !43
4 4 5 ! elem, two nodes !44
1 1 0. ! node, dof, essential value !45

1 1. 4.0 ! el, K_e, Rho_e !46

Figure 2.37 Data for sudden cooling of a bar

82 Finite Element Analysis with Error Estimators

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
, m

in
 =

 0
)

Steps 1, 4, 16, 64 Component_1: 4 Elements, 5 Nodes, (2 per Element)

Step 1
Step 4
Step 16
Step 64

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
, m

in
 =

 0
)

Steps 1, 4, 16, 64 Exact Component_1: 4 Elements, 5 Nodes, (2 per Element)

Step 1
Step 4
Step 16
Step 64

Figure 2.38 Cooling bar finite element (top) and exact nodal time-histories

Chapter 2, Mathematical preliminaries 83

0 0.1 0.2 0.3 0.4 0.5 0.6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

FEA Time−History for Component_1 at Node 5

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
, m

in
 =

 0
.2

68
21

)

Figure 2.39 Cooling bar center point early time history

Such problems are discussed in detail by Bathe [4] but since we are concentrating on

error estimates we will only briefly touch on such problems. Here we will use the well

known Jacobi iteration process to solve small eigen-problems for the eigenvalues, ω j , and

the corresponding eigenvectors, δδ j of the full symmetric K and M. Choosing the Jacobi

method usually limits the problem size to a few hundred degrees of freedom. An eigen-

problem is signaled by placing the keyword jacobi in the control data (see Table 2.2).

Table 2.2 Typical keywords for eigen-problems

EIGEN_CONTROL, VALUE ! REMARKS [DEFAULT]
eigen_post 3 ! Number of eigenvectors to postprocess [0]
eigen_scp 2 ! Mode to use for scp and/or averaging fluxes [1]
eigen_show 5 ! Number of eigen values & vectors to list [10]
jacobi ! Use full matrix general Jacobi eigensolution [F]
jacobi_sweeps 20 ! Max sweeps in general Jacobi eigensolution [15]

2.18 Equivalent forms *

Analysis problems can be stated in different formats or forms. In finite element

methods, we do not deal with the original differential equation (which is called the strong

form). Instead, we convert to some equivalent integral form. In this optional section, we

84 Finite Element Analysis with Error Estimators

go through some mathematical manipulations in the one-dimensional case to assure the

reader that they are, indeed, mathematically equivalent approaches to the solution. Here

we will consider equivalent forms of certain model differential equations. For most

elliptic Boundary Value Problems (BVP) we will find that there are three equivalent

forms; the original strong form (S), the variational form (V), and the weak form, (W).

The latter two integral forms will be reduced to a matrix form, (M). Consider the one-

dimensional two-point boundary value problem where we use, () ′ = d()/dx:

(S)

with

− u ′′ (x) = f (x)

u (0) = 0

u (1) = g.

x ∈]0, 1[

That is, given f : Ω → R and g ∈ R find u: Ω → R such that u ′′ + f = 0 on Ω and

u(0) = 0, u(1) = g. The Hilbert space properties that the function, u, and its first

derivative must be square integrable

H
1 = [u; ∫

1

0
[u

2 + u
2
x

] dx < ∞] ,

and introduce a linear trial solution space with the properties that it satisfies certain

boundary conditions, is a Hilbert space, and produces a real number when evaluated on

the closure of the solution domain: S = [u; u: Ω → R, u ∈ H
1, u (1) = g, u (0) = 0],

and a similar linear space of weighting functions with a different set of boundary

conditions: V = [ω ; ω : Ω → R, ω ∈ H
1, ω (0) = 0, ω (1) = 0].

The Variational Problem is: given a linear functional, F , that maps S into a real

number, F : S → R, giv en by

(V)

F(ω) = 1

2
< ω ′ , ω ′ > − < f , ω >

Find u ∈ S such that F(u) ≤ F(ω) for all ω ∈ S

(W)

The Weak Problem is find u ∈ S such that for all ω ∈ V

< u ′ , ω ′ > = < f , ω > .

For this problem, we can show that the strong, variational, and weak form imply the

existence of each other: (S)<===>(V)<===>(W). In solid mechanics applications (S) would

represent the differential equations of equilibrium, (V) would denote the Principle of

Minimum Total Potential Energy, and (W) would be the Principle of Virtual Work. Other

physical applications have similar interpretations but the three equivalent forms often

have no physical meaning. Here, we will introduce the definitions of the common

symbols for the bilinear form a(u, v) and the linear form (f , v):

a(u, v) ≡ < u ′ , v ′ > = ∫
1

0
u ′ v ′ dx, (f , v) ≡ ∫

1

0
f v dx.

Here we want to prove the relation that the strong and weak forms imply the

existence of each other, (S)<===>(W). Let u be a solution of (S). Note that u ∈ S since

u (1) = g. Assume that ω ∈ V . Now set 0 = (u ′′ + f); then we can say

Chapter 2, Mathematical preliminaries 85

0 = − ∫
1

0
(u ′′ + f) ω dx = − ∫

1

0
u ′′ ω dx − ∫

1

0
f ω dx

integrating by parts

0 = − u ′ ω

1

0

+ ∫
1

0
u ′ ω ′ dx − ∫

1

0
f w dx .

Note that since ω ∈ V we have ω (1) = 0 = ω (0) so that

u ′ ω

1

0

= u ′ (1) ω (1) − u ′ (0) ω (0) ≡ 0 ,

and finally
0 = ∫

1

0
u ′ ω ′ dx − ∫

1

0
f ω dx .

Thus, we conclude that u (x) is a solution of the weak problem, (W). That is,

a (u, ω) = (f , ω) for all ω ∈ V . Next, we want to verify that the weak solution also

implies the existence of the strong form, (W)<===>(S). Assume that u (x) ∈ S so that

u(0) = 0, u(1) = g, and assume that ω ∈ V :

∫
1

0
u ′ ω ′ dx = ∫

1

0
f ω dx for all ω ∈ V .

Integrating by parts

− ∫
1

0
(u ′′ + f) ω dx + u ′ ω

1

0

= 0

but,

u ′ ω

1

0

= u ′ (1) ω (1) − u ′ (0) ω (0) ≡ 0 ,

since ω ∈ V , and thus

0 = ∫
1

0
(u ′′ + f) ω (x) dx, for all ω ∈ V .

Now we pick ω (x) ≡ φ (x) (u ′′ + f) such that φ produces a real positive number when

evaluated on the domain, φ : Ω → R, and φ (x) > 0, when x ∈]0, 1[and φ (0) = φ (1) = 0.

Is ω ∈ V ? Since ω (0) = 0 and ω (1) = 0, we see that it is and proceed with that

substitution,

0 = ∫
1

0
(u ′′ + f)2 φ (x) dx = ∫ (≥ 0) (> 0) dx

which implies (u ′′ + f) ≡ 0. Thus, the weak form does imply the strong form,

(W)<===>(S) and combining the above two results we find (S)<===>(W).

Next, we will consider the proposition that the variational form implies the existence

of the weak form, (V)<===>(W). Assume u ∈ S is a solution to the weak form (W) and

note that v (1) = ω (1) + u (1) = 0 + g. Therefore, v ∈ S. Now set ω = v − u such

that v = ω + u, and ω ∈ V . Giv en F(v) = 1

2
< v ′, v ′ > − < f , v > and expanding

F(v) = F(u + ω) = 1

2
< (u ′ + ω ′), (u ′ + ω ′) > − < f , u + ω >

= 1

2
< u ′ , u ′ > + < u ′ , ω ′ > + 1

2
< ω ′ , ω ′ > .

But, since u is a solution to (W) we hav e < u ′ , ω ′ > − < f , ω > ≡ 0, and the above

86 Finite Element Analysis with Error Estimators

simplifies to F(v) = F(u) + 1

2
< ω ′, ω ′ > so that F(v) ≥ F(u) for all v ∈ S since

< ω ′, ω ′ > ≥ 0. This shows that u is also a solution of the variational form, (V). That

is, (W)<===>(V), which is what we wished to show. Finally, we verify the uniqueness of

the weak form, (W). Assume that there are two solutions u1 and u2 that are both in the

space S. Then we have both a (u1, v) = (f , v), and a (u2, v) = (f , v) for all v ∈ V and

subtracting the second from the first result yields a (u1 − u2, v) = 0, so

< (u1 ′ − u2 ′), v ′ > = 0 for all v ∈ V . Consider the choice v(x) ≡ u1 (x) − u2 (x). Is

it in V ? We note that v(0) = 0 − 0 = 0 and v(1) = g − g = 0, so it is in V and we

proceed with this choice. Thus, v ′ = u1′ − u2′ and the inner product is

< (u1′ − u2′), (u1′ − u2′) > = 0 = ∫
1

0

u1′ (x) − u2′ (x)

2
dx.

This means u1 (x) − u2 (x) = c, and the constant, c, is evaluated from the boundary

condition at x = 0 so u1 (0) − u2 (0) = 0 − 0 = c which means that u1 (x) = u2 (x), and

the weak form solution, (W), is unique.

2.19 Exercises

1. The example ordinary differential equation (ODE) d
2
u / dx

2 + u + x = 0 with

u(0) = 0 = u(1) has the exact solution of u = sin(x)/sin(1) − x. Our weighted

residual approximations for a global (or single element) solution assumed a cubic

polynomial

u
*(x) = x(1 − x)(c1 + c2 x) = h1(x)c1 + h2(x)c2.

The results were (where below + denotes a non-unique process):

Method c1 c2

Collocation+ 0.1935 0.1843

Least Square 0.1875 0.1695

Galerkin 0.1924 0.1707

Moments+ 0.1880 0.1695

Sub-Domain+ 0.1880 0.1695

a. Write a program (or spread-sheet) to plot the exact solution and the

approximations on the same scale. b. Modify the above program to plot the error,

u − u
*, for the Galerkin and Least Square approximations. c. In the future we will

compare such solutions by using their norm, ||u||2 L2 = ∫L

u
2
dx or

||u||2 H1 = ∫L

[u2 + (du/dx)2]dx. Compute the L2 norms of the exact and Galerkin

solutions. Numerical integration is acceptable. d. Compute the L2 norms of the

error, u − u
*, for the Galerkin and Least Square approximation. Numerical

integration is acceptable.

2. Obtain a global Galerkin approximation for the ODE u ′′ + x
n = 0, for x ε] 0, 1[,

with u(0) = 0 = u(1). Assume a cubic polynomial that satisfies the two boundary

conditions:

Chapter 2, Mathematical preliminaries 87

u
*(x) = x(1 − x) (∆1 + x ∆2) .

Form the S and C matrices. Solve for D from S D = C. Compare to the exact

solution for a) n = 0, b) n = 1, c) n = 2 where uexact = (x − x
n + 2) / [(n + 1) (n + 2)].

3. For the one-dimensional problems, with constant coefficients, we often need to

evaluate the following four integrals:

a) CC
e = ∫Le

HH
T

dx, b) MM
e = ∫Le

HH
T

HH dx,

c) SS
e = ∫Le

d HH
T

dx

d HH

dx
dx , d) UU

e = ∫Le

HH
T

d HH

dx
dx

which are usually called the resultant source vector, the mass matrix, the stiffness

matrix, and the advection matrix, respectively. Analytically integrate these four

matrices for the two-noded line element using the physical coordinate ‘interpolation

matrix’: HH(x) = H1(x) H2(x) , where H1 = (x
e

2 − x)/Le, H2 = (x − x
e

1)/Le,

and L
e = x

e

2 − x
e

1. Then repeat the four integrals for unit local coordinate

interpolations: H1(r) = (1 − r), H2(r) = r, where we map the coordinate from

0 ≤ r ≤ 1 into x(r) = x
e

1 + L
e
r using the physical element length of L

e so dx = L
e
dr

relates the two differential measures, and the mapping yields the physical derivative

as d()/dx = d()/dr dr/dx = d()/dr(1/Le). (Which makes the physical units of the

results the same as before.) Of course, the two approaches should yield identical

algebraic matrix forms.

4. In general, we have a differential operator, L(u) in Ω with essential boundary

conditions u(x) = 0 on Γ1 and/or flux boundary conditions q = ∂u / ∂n = q(x) on Γ2

where Γ1 and Γ2 are non-overlapping parts of the total boundary Γ = Γ1 ∪ Γ2. An

approximate solution defines a residual error in Ω, R(x). Errors in the boundary

conditions may define two other boundary residual errors, such as:

R1(x) ≡ u(x) − u(x), x on Γ1, R2(x) ≡ q(x) − q, x on Γ2. Extend our method of

weighted residuals to require:

∫Ω
Rw dΩ = ∫Γ2

(q − q)wdΓ − ∫Γ1

(u − u)
∂w

∂n
dΓ.

(Note that these units are consistent.) Assume L(u) is the Laplacian ∇ 2
u. a)

Integrating by parts (using Green’s Theorem) show that the above form becomes

∫Ω

∂u

∂xk

∂w

∂xk

dΩ = ∫Γ2

qw dΓ + ∫Γ1

qw dΓ − ∫Γ1

u
∂w

∂n
dΓ + ∫Γ1

u
∂w

∂n
dΓ.

(Hint: ∫Γ
f dΓ = ∫Γ1

f dΓ + ∫Γ2

f dΓ.) This form is often used in finite element

analysis. b) Integrate by parts again. Show that you obtain

∫Ω
(∇ 2

w)u dΩ = − ∫Γ1

qw dΓ − ∫Γ1

qw dΓ + ∫Γ2

u
∂w

∂n
dΓ + ∫Γ1

u
∂w

∂n
dΓ

Picking w(x) such that ∇ 2
w ≡ 0 becomes the basis for a boundary element model

since only integrals over the boundary remain. We will not consider such methods

further.

88 Finite Element Analysis with Error Estimators

5. Carry out the integrations necessary to verify the matrix coefficients in S and C for

the model problem in Sec. 2.5 by: a) collocation method, b) least squares, c)

Galerkin method, d) subdomain method, e. method of moments.

6. Formulate the first order equation dy / dx + Ay = F by a) least squares, b) Galerkin

method. Use analytic integration for the linear line element (L2) to form the two

element matrices. Compute a solution for y(0) = 0 with A = 2, F = 10 for 5 uniform

elements over x ≤ 0. 5.

7. If the model equation Problem 1 changes to d[a(x) du / dx] / dx + b(x)u + Q(x) = 0

show that the Se, Me, and Ce matrices of Problem 3 change to

SS
e = ∫Le

d HH
T

dx
a(x)

d HH

dx
dx , MM

e = ∫Le

HH
T

b(x) HH dx, CC
e = ∫Le

HH
T

Q(x) dx.

8. If the model equation in Problem 1 changes to d
2
u / dx

2 + λu = 0 with

u(0) = 0 = u(1), where λ is an unknown global constant, how does the Me matrix

change? How does the classification of the assembled algebraic equations change?

9. For the global approximation examples of Sec. 2.5 plot, or accurately sketch, the

weight function, w(x), for each of the five methods.

10. The first two linear element Galerkin model example yielded the algebraic equation

system, of Eq. 2.43, which has 3 equations with 5 unknowns. The system is

singular until 2 boundary conditions are supplied to define a unique problem.

Employ a pair of Dirichlet and Neumann conditions such that u(0) = 0 and

du(1)/dx = 0 so that the new exact solution is u(x) = Sin (x) / Cos (1) − x. In

other words, set D1 = 0 and qL = 0. a) From the algebraic system compute D2 and

D3 and then the reaction q0. Compare them to the exact values. b) Post-process

both elements to compute the element flux, du/dx. c) Sketch the exact and

approximate solution versus position, x. d) Sketch the exact and approximate flux

versus position, x.

11. For the two element mesh in Fig. 2.12 use Boolean arrays and matrix multiplication

and addition to assemble the given example results in Eq. 2.43.

12. Heat conduction through a layered wall is modeled by k d
2
u / dx

2 = 0, where k is

the thermal conductivity. With two essential boundary conditions the linear (L2)

element will yield exact results, when nodes are placed on any internal material

interfaces. A furnace wall has inside and outside temperatures of 1500 F and 150 F,

respectively, and it is made of firebrick, insulator, and red brick having

conductivities of 0.72, 0.08, and 0.5 BTU/hr ft F, respectively. The corresponding

layer thicknesses are 9, 5, and 7.5 inches. Use three unequal length elements to find

the internal interface temperatures and the two wall reaction heat fluxes. Post-

process the elements for their gradient, and for the flux q = − k du/dx. Hint, we

expect the same q value in each element.

13. Use three equal length elements to solve the problem in Fig. 2.15 (L
e = 1/3).

Obtain the nodal values, reactions, and post process for the element gradients.

Compare the nodal values to the exact solution.

Chapter 2, Mathematical preliminaries 89

14. The transverse deflection, v, of a thin beam is given by the fourth order ODE:

d
2[EI (x)d2

v / dx
2]/dx

2 = p(x), where E is the material modulus of elasticity, I is

the moment of inertia of the cross-section, and p is a distributed load per unit

length. Obtain a Galerkin integral form by integrating the first term twice by parts.

In the boundary terms we usually call Θ = dv / dx the slope, M = EI d
2
v / dx

2 the

moment (or couple) at a point, and F = EI d
3
v / dx

3 the transverse shear (or force)

at the point.

15. Solve Eq 2.43 for a non-zero Neumann condition of du/dx(1) = Cotan(1) − 1 and

u(0) = 0, and compare the results to the same exact solution.

16. The system d
2
u / dx

2 + Q(x) = 0 with u(0) = 0 = u(1) has a source of Q = 1 for

x ≤ 1/2 and 0 for x > 1/2. a) Explain why it is preferable for an element end to be

placed at x = 1/2. b) If you used 3 linear (L2) elements explain why it is better to

place the two smaller elements in the left half of the domain. c) Using element

length ratios of 1:1:2 verify that the interior nodal values both have an exact value of

1/16. d) Using three equal length (L
e = 1/3) elements verify that the source vector

for the second element is CeT = [3 1]/24 and that the (exact) interior nodal values

are 5/72 and 1/24.

17. Obtain a Galerkin solution of y′′ − 2y′ x / g + 2y / g = g, for g = (x
2 + 1), on

0 ≤ x ≤ 1 with the boundary conditions y(0) = 2, y(1) = 5 / 3.

18. For the differential equation in Problem 2.17 if we have one essential boundary

condition of y(0) = 1 and one Neumann flux boundary condition of

dy/dx(1) = − 4/3 the exact solution is unchanged. Obtain a Galerkin finite element

solution and compare it to the exact result.

19. The Couette steady flow velocity, u, of an incompressible viscous fluid between two

parallel plates, with a constant pressure gradient of dP / dx, is: µd
2
u / dy

2

= dP / dx, where u(0) = 0 and u(H) = UH describe a lower (y = 0) fixed plate and

an upper plate (y = −h) moving with a speed of UH . One can obtain a finite element

solution for the interior nodal velocities across the fluid. The associated volume

flow, per unit z thickness, is Q = ∫
H

0
u(y)dy. Describe how you would post-process

the elements to obtain it.

20. For the above Couette flow would you expect to obtain the exact u(y) and Q values

for a) one quadratic element, b) two quadratic elements, c) two linear elements?

Explain why.

21. Differences between Galerkin and least squares finite element procedures are

_______: a) Galerkin allows integration by parts, b) least squares always yield

symmetric algebraic equations, c) least squares requires C
1 continuity for second

order differential equations, d) all of the above.

22. Repeat the graphical source assembly shown in Fig. 2.12 using three elements

instead of two.

23. Burnett presents detailes of a symmetric bi-material bar with non-symmetrical

boundary conditions. The length is L = 100 cm with the center 20 cm section being

copper (kc = 0. 92 cal / sec − cm − C, ρ = 8. 5 gm / cm
3, c p = 0. 092 cal / gm − C)

90 Finite Element Analysis with Error Estimators

while the other two ends of the bar are made of 40 cm of steel

(kc = 0. 12 cal / sec − cm − C, ρ = 7. 8 gm / cm
3, c p = 0. 11 cal / gm − C). The

circular bar has a radius of 2 cm. Along its full length it convects to surrounding air

at U∞ = 20 C. The end area at x = 0 receives a flux of q = 0. 1 cal/sec − cm
2 and

the end at x = 100 has a temperature of U100 = 0 C. Obtain: a) a steady state

solution with 5 equal length elements, b) a transient solution assuming an initial

condition of U(x, 0) = 20 C. Note that the two end ‘thermal shocks’ will require a

finer mesh at the ends if the early time history is important. Would the steady state

solution also need that mesh feature?

24. A popular one step transient integration technique is the generalized trapezoidal rule

where the user provides a coefficient, 0 ≤ α ≤ 1, for the assumption that

φφ
s + 1 = φφ

s
+ [(1 − α)φφ

ṡ
+ α φφ

s + 1]∆t. Show that this yields the assembled system:

(M / ∆t + α K)φφ
s + 1 = (M / ∆t + (1 − α)K)φφ

s
+ (1 − α)Ps + α Ps + 1. The

choice of α = 1 yields the unconditionally stable backward differences method.

Verify that the above form reduces to the forms shown in Fig. 2.16b with: a) α = 0

being the Euler method, b) α = 1/2 yielding the Crank-Nicolson process, c) α = 2/3

giving the Galerkin method.

25. The two matrices in Eq. 2.59 can represent the longitudinal (axial) vibration of a

uniform elastic bar if α = E / ρ where E is its elastic modulus and ρ its mass

density. Assume such a bar is fixed at x = 0 and free at x = L. Solve the eigen-

problem for two assembled elements of equal length (L
e = L / 2), and show that the

first frequency differs by less than 3 percent from the exact value given by

ω 1 = [π / 2L]√ E / ρ .

26. Repeat the previous problem using three equal length elements and compare the first

three natural frequences (eigenvalues) to the exact values given by

ω n = [(2n − 1)π / 2L]√ E / ρ where n is the mode number. Sketch the normalized

mode shapes (eigenvectors) and compare them to the exact eigenfunctions of

Sin ((2n − 1)π x / 2L).

2.20 Bibliography

[1] Ainsworth, M. and Oden, J.T., A Posteriori Error Estimation in Finite Element

Analysis, New York: John Wiley (2000).

[2] Axelsson, O. and Baker, V.A., Finite Element Solution of Boundary Value Problems,

Philadelphia, PA: SIAM (2001).

[3] Babuska, I. and Strouboulis, T., The Finite Element Method and its Reliability,

Oxford: Oxford University Press (2001).

[4] Bathe, K.J., Finite Element Procedures, Englewood Cliffs: Prentice Hall (1996).

[5] Ciarlet, P.G., The Finite Element Method for Elliptical Problems, Philadelphia, PA:

SIAM (2002).

Chapter 2, Mathematical preliminaries 91

[6] Desai, C.S. and Kundu, T., Introduction to the Finite Element Method, Boca Raton:

CRC Press (2001).

[7] Heinrich, J.C. and Pepper, D.W., Intermediate Finite Element Method, Philadelphia,

PA: Taylor & Francis (1999).

[8] Huang, H.C. and Usmani, A.S., in Finite Element Analysis for Heat Transfer,

London: Springer-Verlag (1994).

[9] Hughes, T.J.R., The Finite Element Method, Mineola: Dover Publications (2003).

[10] Liusternik, L.A. and Sobolev, V.J., Elements of Functional Analysis, New York:

Frederick Ungar (1961).

[11] Meier, D.L., "Multi-Dimensional Astrophysical Structural and Dynamical Analysis,

Development of a Nonlinear Finite Element Approach," Astrophysics J., 518,

pp. 788−813 (1999).

[12] Nowinski, J.L., Applications of Functional Analysis in Engineering, New York:

Plenum Press (1981).

[13] Oden, J.T. and Reddy, J.N., An Introduction to the Mathematical Theory of Finite

Elements, New York: John Wiley (1976).

[14] Oden, J.T., Applied Functional Analysis, Englewood Cliffs: Prentice Hall (1979).

[15] Oden, J.T. and Carey, G.F., Finite Elements: Mathematical Aspects, Prentice

Hall (1983).

[16] Oden, J.T., "The Best FEM," Finite Elements in Analysis and Design, 7,

pp. 103−114 (1990).

[17] Reddy, J.N. and Gartling, D.K., The Finite Element Method in Heat Transfer and

Fluid Dynamics, Boca Raton: CRC Press (2001).

[18] Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).

[19] Whiteman, J.R., "Some Aspects of the Mathematics of Finite Elements," pp. 25−42

in The Mathematics of Finite Elements and Applications, Vol. II, ed. J.R. Whiteman,

London: Academic Press (1976).

[20] Zhu, J.Z. and Zienkiewicz, O.C., "Superconvergence Recovery Techniques and

A Posteriori Error Estimators," Int. J. Num. Meth. Eng., 30, pp. 1321−1339 (1990).

[21] Zienkiewicz, O.C. and Morgan, K., Finite Elements and Approximation, Chichester:

John Wiley (1983).

[22] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 4th Edition, New

York: McGraw-Hill (1991).

[23] Zienkiewicz, O.C. and Zhu, J.Z., "Superconvergent Patch Recovery Techniques and

Adaptive Finite Element Refinement," Comp. Meth. Appl. Mech. Eng., 101,

pp. 207−224 (1992).

[24] Zienkiewicz, O.C. and Zhu, J.Z., "The Superconvergent Patch Recovery and a

Posteriori Error Estimates. Part 2: Error Estimates and Adaptivity," Int. J. Num.

Meth. Eng., 33, pp. 1365−1382 (1992).

[25] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 3

Element interpolation

and local coordinates

3.1 Introduction

Up to this point we have relied on the use of a linear interpolation relation that was

expressed in global coordinates and given by inspection. In the previous chapter we saw

numerous uses of these interpolation functions. By introducing more advanced

interpolation functions, H, we can obtain more accurate solutions. Here we will show

how the common interpolation functions are derived. Then a number of expansions will

be given without proof. Also, we will introduce the concept of non-dimensional local or

element coordinate systems. These will help simplify the algebra and make it practical to

automate some of the integration procedures.

3.2 Linear interpolation

Assume that we desire to define a quantity, u, by interpolating in space, from certain

given values, u. The simplest interpolation would be linear and the simplest space is the

line, e.g. x-axis. Thus to define u(x) in terms of its values, ue, at selected points on an

element we could choose a linear polynomial in x. That is:

(3.1)u
e(x) = c

e

1 + c
e

2 x = P(x) ce

where P = 1 x denotes the linear polynomial behavior in space and ce
T

= [c
e

1 c
e

2]

are undetermined constants that relate to the given values, ue. Referring to Fig. 3.1, we

note that the element has a physical length of L
e and we have defined the nodal values

such that u
e(x1) = u

e

1 and u
e(x2) = u

e

2. To be useful, Eq. 3.1 will be required to be valid at

all points on the element, including the nodes. Evaluating Eq. 3.1 at each node of the

element gives the set of identities: u
e(x

e

1) = u
e

1 = c
e

1 + c
e

2 x
e

1, or

(3.2)ue = ge ce

where

Chapter 3, Element interpolation and local coordinates 93

u
2

e

u
1

e

1 2 x

x
1

e x
2

e

u (x)

u
2

e

u
1

e

1 2 r

0 1

u (r)

u
2

e

u
1

e

1 2

n
-1 +1

u (n) � � �
� � �

H
1

e

H
2

e

1

1

Figure 3.1 One-dimensional linear interpolation

(3.3)ge =

1

1

x
e

1

x
e

2

.

This shows that the physical constants, ue, are related to the polynomial constants, ce by

information on the geometry of the element, ge. Since ge is a square matrix we can

(usually) solve Eq. 3.2 to get the polynomial constants:

(3.4)ce = ge
−1

ue .

In this case the element geometry matrix can be easily inverted to give

(3.5)ge
−1

=
1

x
e

2 − x
e

1

x
e

2

−1

−x
e

1

1

.

By putting these results into our original assumption, Eq. 3.1, it is possible to write u
e(x)

directly in terms of the nodal values ue. That is,

(3.6)u
e(x) = P(x) ge

−1

ue = He(x) ue

or

(3.7)u
e(x) = 1 x

1

Le

x
e

2

−1

−x
e

1

1

u
e

1

u
e

2

=

x
e

2 − x

Le

x − x
e

1

Le

{ue}

where H
e is called the element interpolation array. Clearly

(3.8)He(x) = P(x) ge
−1

.

From Eq. 3.6 we can see that the approximate value, u
e(x) depends on the assumed

behavior in space, P, the element geometry, ge, and the element nodal parameters, ue.

This is also true for two- and three-dimensional problems. Since this element

interpolation has been defined in a global or physical space the geometry matrix, ge, and

thus He will be different for every element. Of course, the algebraic form is common but

the numerical terms differ from element to element. For a giv en type of element it is

possible to make H unique if a local non-dimensional coordinate is utilized. This will

94 Finite Element Analysis with Error Estimators

also help reduce the amount of calculus that must be done by hand. Local coordinates are

usually selected to range from 0 to 1, or from −1 to +1. These two options are also

illustrated in Fig. 3.1. For example, consider the unit coordinates shown in Fig. 3.1

where the linear polynomial is now P = [1 r]. Repeating the previous steps yields

(3.9)u
e(r) = P(r) g−1 ue

, g =

1

1

0

1

, g−1 =

1

−1

0

1

so that
(3.10)u

e(r) = H(r) ue

where the unit coordinate interpolation function is

(3.11)H(r) = (1 − r) r = P g−1 .

Expanding back to scalar form this means

u
e(r) = H1(r) u

e

1 + H2(r) u
e

2 = (1 − r) u
e

1 + ru
e

2 = u
e

1 + r(ue

2 − u
e

1)

so that at r = 0, u
e(0) = u

e

1 and at r = 1, u
e(1) = u

e

2 as required.

A possible problem here is that while this simplifies H one may not know ‘where’ a

given r point is located in global or physical space. In other words, what is x when r is

given? One simple way to solve this problem is to note that the nodal values of the global

coordinates of the nodes, x
e, are given data. Therefore, we can use the concepts in Eq.

3.10 and define x
e(r) = H(r) xe, or

(3.12)x
e(r) = (1 − r) x

e

1 + r x
e

2 = x
e

1 + L
e

r

for any r in a given element, e. If we make this popular choice for relating the local and

global coordinates, we call this an isoparametric element. The name implies that a single

(iso) set of parametric relations, H(r), is to be used to define the geometry, x(r), as well

as the primary unknowns, u(r).

If we select the symmetric, or natural, local coordinates such that −1 ≤ n ≤ + 1, then

a similar set of interpolation functions are obtained. Specifically, u
e(n) = H(n) ue with

H1(n) = (1 − n)/2, H2(n) = (1 + n)/2, or simply

(3.13)Hi(n) = (1 + ni n)/2

where ni is the local coordinate of node i. This coordinate system is often called a

natural coordinate system. Of course, the relation to the global system is

(3.14)x
e(n) = H(n) xe or x

e(r) = H(r) xe .

The relationship between the unit and natural coordinates is r = (1 + n)/2. This will

sometimes be useful in converting tabulated data in one system to the other. The above

local coordinates can be used to define how an approximation changes in space. They

also allow one to calculate derivatives. For example, from Eq. 3.10

(3.15)du
e/dr = d H(r)/dr ue

and similarly for other quantities of interest. Another quantity that we will find very

important is the Jacobian, J = dx/dr. In a typical linear element, Eq. 3.12 gives

dx
e(r)/dr = dH1/dr x

e

1 + dH2/dr x
e

2 = − x
e

1 + x
e

2

Chapter 3, Element interpolation and local coordinates 95

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

1 2

3

4

r

s

t

(0, 0)

(0, 1)

(1, 0)

1 2

3

r

s

(0) (1)

1 2 r

x

y

z

x

y

z

x

y

z

1

2

r

1

2

r

1

2

r

s

3

s

3
4

t

V

A

L

Figure 3.2 The simplex element family in unit coordinates

x

y

u

1 2

3

s

r

u
j

u
k

u
i

(x
k
, y

k
)

(x
i
, y

i
)

(x
j
, y

j
)

*

*

*

Figure 3.3 Isoparametric interpolation on a simplex triangle

96 Finite Element Analysis with Error Estimators

or simply J
e = dx

e/dr = L
e. By way of comparison, if the natural coordinate is utilized

(3.16)J
e = dx

e(n)/dn = L
e/2.

This illustrates that the choice of the local coordinates has more effect on the derivatives

than it does on the interpolation itself. The use of unit coordinates is more popular with

simplex elements. These are elements where the number of nodes is one higher than the

dimension of the space. The generalization of unit coordinates for common simplex

elements is illustrated in Fig. 3.2. It illustrates the general fact that for parametric

element interpolation the face of a solid will degenerate to a surface element, and the

edge of a volume or face element degenerates to a line element. We will prove this in

Chapter 9 where we set t = 0 in the lower part to get the face of the middle part and there

setting s = 0 also yields the parametric line element considered here. For simplex

elements the natural coordinates becomes area coordinates and volume coordinates,

which the author finds rather unnatural. Fig. 3.3 shows how the same parametric

interpolations can be used for more than one purpose in an analysis. There we see that

the spatial positions of points on the element are interpolated from a linear parametric

triangle, and the function value is interpolated in the same way. Both unit and natural

coordinates are effective for use on squares or cubes in the local space. In global space

those shapes become quadrilaterals or hexahedra. The natural coordinates are more

popular for those shapes.

3.3 Quadratic interpolation

The next logical spatial form to pick is that of a quadratic polynomial. Select three

nodes on the line element, two at the ends and the third inside the element. In local space

the third node is at the element center. Thus, the local unit coordinates are r1 = 0, r2 = 1

2
,

and r3 = 1. It is usually desirable to have x3 also at the center of the element in global

space. If we repeat the previous procedure using u(r) = c1 + c2r + c3r
2, then the element

interpolation functions are found to be

(3.17)

H1(r) = 1 − 3r + 2r
2

H2(r) = 4r − 4r
2

H3(r) = − r + 2r
2

.

Σ Hi (r) = 1

These quadratic functions are completely different from the linear functions. Note that

these functions have a sum that is unity at any point, r, in the element. These three

functions illustrate another common feature of all C
0 Lagrangian interpolation functions.

They are unity at one node and zero at all others: Hi (r j) = δ ij . In natural coordinates,

on −1 ≤ n ≤ 1, they transform to

(3.18)H1(n) =
n (n − 1)

2
, H2(n) = 1 − n

2 , H3(n) =
n (n + 1)

2
.

Chapter 3, Element interpolation and local coordinates 97

− 1 < n < 1 0 < r < 1

a) Linear 1 − − − − − − − 2

H1 = (1 − n) / 2 H1 = (1 − r)

H2 = (1 + n) / 2 H2 = r

b) Quadratic 1 − − − 2 − − − 3

H1 = n(n − 1) / 2 H1 = (r − 1) (2r − 1)

H2 = (1 + n) (1 − n) H2 = 4r(1 − r)

H3 = n(n + 1) / 2 H3 = r(2r − 1)

c) Cubic 1 − − 2 − − 3 − − 4

H1 = (1 − n) (3n + 1) (3n − 1) / 16 H1 = (1 − r) (2 − 3r) (1 − 3r) / 2

H2 = 9(1 + n) (n − 1) (3n − 1) / 16 H2 = 9r(1 − r) (2 − 3r) / 2

H3 = 9(1 + n) (1 − n) (3n + 1) / 16 H3 = 9r(1 − r) (3r − 1) / 2

H4 = (1 + n) (3n + 1) (3n − 1) / 16 H4 = r(2 − 3r) (1 − 3r) / 2

Figure 3.4 Typical Lagrange interpolations in natural and unit coordinates

3.4 Lagrange interpolation

Clearly this one dimensional procedure can be readily extended by adding more

nodes to the interior of the element. Usually the additional nodes are equally spaced

along the element. However, they can be placed in arbitrary locations. The interpolation

function for such an element is known as the Lagrange interpolation polynomial. The

one-dimensional m-th order Lagrange interpolation polynomial is the ratio of two

products. For an element with (m + 1) nodes, ri, i = 1, 2, . . . , (m + 1), the interpolation

function for the k-th node is defined in terms of the ratio of two product operators as

(3.19)H
m

k
(n) =

(x − x1)...(x − x(k−1))(x − x(k+1))...(x − x(m+1))

(xk − x1)...(xk − x(k−1))(xk − x(k+1))...(xk − x(m+1))
.

This is a complete m-th order polynomial in one dimension. It has the property that

Hk(ni) = δ ik . That is, the function for node k is unity at that node but zero at all other

nodes on the element.

For local coordinates, say n, giv en on the domain [−1, 1], a typical quadratic term

(m = 2) for the center node at n = 0 (k = 2) on an element with three equally spaced

nodes is given by

H2(n) =
(n − (−1)) (n − 1)

(0 − (−1)) (0 − 1)
= (1 − n

2) .

This validates the second term in Eq. 3.18. The leftmost and middle node parametric

interpolations are found in a similar way. Their algebraic sum, for any n value, is unity,

98 Finite Element Analysis with Error Estimators

as seen from Eq. 3.18. Figure 3.4 shows typical node locations and interpolation

functions for members of this family of complete polynomial functions on simplex

elements. Of course, the two choices for the parametric spaces in that figure are related

by n = 2r − 1. Figure 3.5 shows the typical coding of a quadratic line element

(subroutines SHAPE_3_L and DERIV_3_L).

3.5 Hermitian interpolation

All of the interpolation functions considered so far have C
0 continuity between

elements. That is, the function being approximated is continuous between elements but

its derivative is discontinuous. However, we know that some applications, such as a beam

analysis, also require that their derivative be continuous. These C
1 functions are most

easily generated by using derivatives, or slopes, as nodal degrees of freedom.

SUBROUTINE SHAPE_3_L (X, H) ! 1
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 2
! CALCULATE SHAPE FUNCTIONS OF A 3 NODE LINE ELEMENT ! 3
! IN NATURAL COORDINATES ! 4
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 5
Use Precision_Module ! 6
IMPLICIT NONE ! 7
REAL(DP), INTENT(IN) :: X ! 8
REAL(DP), INTENT(OUT) :: H (3) ! 9

!10
! H = ELEMENT SHAPE FUNCTIONS !11
! X = LOCAL COORDINATE OF POINT, -1 TO +1 !12
! LOCAL NODE COORD. ARE -1,0,+1 1-----2-----3 !13

!14
H (1) = 0.5d0*(X*X - X) !15
H (2) = 1.d0 - X*X !16
H (3) = 0.5d0*(X*X + X) !17

END SUBROUTINE SHAPE_3_L !18
!19

SUBROUTINE DERIV_3_L (X, DH) !20
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !21
! FIND LOCAL DERIVATIVES FOR A 3 NODE LINE ELEMENT !22
! IN NATURAL COORDINATES !23
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !24
Use Precision_Module !25
IMPLICIT NONE !26
REAL(DP), INTENT(IN) :: X !27
REAL(DP), INTENT(OUT) :: DH (3) !28

!29
! DH = LOCAL DERIVATIVES OF SHAPE FUNCTIONS (SHAPE_3_L) !30
! X = LOCAL COORDINATE OF POINT, -1 TO +1 !31
! LOCAL NODE COORD. ARE -1,0,+1 1----2----3 !32

!33
DH (1) = X - 0.5d0 !34
DH (2) = - 2.d0 * X !35
DH (3) = X + 0.5d0 !36

END SUBROUTINE DERIV_3_L !37

Figure 3.5 Coding a Lagrangian quadratic line element

Chapter 3, Element interpolation and local coordinates 99

x = L r ()′ = d () / d x

a) C
1 : u = H1 u1 + H2 u1′ + H3 u2 + H4 u2′

H1(r) = (2r
3 − 3r

2 + 1)

H2(r) = (r3 − 2r
2 + r) L

H3(r) = (3r
2 − 2r

3)

H4(r) = (r3 − r
2) L

b) C
2 : u = H1 u1 + H2 u1′ + H3 u1 ′′ + H4 u2 + H5 u2′ + H6 u2′′

H1 = (1 − 10r
3 + 15r

4 − 6r
5)

H2 = (r − 6r
3 + 8r

4 − 3r
5) L

H3 = (r2 − 3r
3 + 3r

4 − r
5) L

2 / 2

H4 = (10r
3 − 15r

4 + 6r
5)

H5 = (7r
4 − 3r

5 − 4r
3) L

H6 = (r3 − 2r
4 + r

5) L
2 / 2

c) C
3 : u = H1 u1 + H2 u1′ + H3 u1′′ + H4 u1′′′

+ H5 u2 + H6 u2′ + H7 u2′′ + H8 u2′′′

H1 = (1 − 35r
4 + 84r

5 − 70r
6 + 20r

7)

H2 = (r − 20r
4 + 45r

5 − 36r
6 + 10r

7) / L

H3 = (r2 − 10r
4 + 20r

5 − 15r
6 + 4r

7) L
2 / 2

H4 = (r3 − 4r
4 + 6r

5 − 4r
6 + r

7) L
3 / 6

H5 = (35r
4 − 84r

5 + 70r
6 − 20r

7)

H6 = (10r
7 − 34r

6 + 39r
5 − 15r

4) L

H7 = (5r
4 − 14r

5 + 13r
6 − 4r

7) L
2 / 2

H8 = (r7 − 3r
6 + 3r

5 − r
4) L

3 / 6

Figure 3.6 C
1

to C
3

Hermitian interpolation in unit coordinates

The simplest element in this family is the two node line element where both y and

dy/dx are taken as nodal degrees of freedom. Note that a global derivative has been

selected as a degree of freedom. Since there are two nodes with two dof each, the

interpolation function has four constants, thus, it is a cubic polynomial. The form of this

Hermite polynomial is well known. The element is shown in Fig. 3.7 along with the

interpolation functions and their global derivatives. The latter quantities are obtained

from the relation between local and global coordinates, e.g., Eq. 3.12. On rare occasions

one may also need to have the second derivatives continuous between elements. Typical

C
2 equations of this type are also given in Fig. 3.6 and elsewhere. Since derivatives hav e

also been introduced as nodal parameters, the previous statement that Σ Hi = 1 is no

longer true (unless i is limited to the ui values).

100 Finite Element Analysis with Error Estimators

SUBROUTINE SHAPE_C1_L (R, L, H) ! 1
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 2
! SHAPE FUNCTIONS FOR CUBIC HERMITE IN UNIT COORDINATES ! 3
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 4
Use Precision_Module ! 5
IMPLICIT NONE ! 6
REAL(DP), INTENT(IN) :: R, L ! 7
REAL(DP), INTENT(OUT) :: H (4) ! 8

! 9
! L = PHYSICAL LENGTH OF ELEMENT 1----------2 ---> R !10
! R = LOCAL COORDINATE OF POINT R=0 R=1 !11
! H = SHAPE FUNCTIONS ARRAY !12
! DOF ARE FUNCTION AND SLOPE, WRT X, AT EACH NODE !13
! D()/DX = D()/DR DR/DX = 1/L * D()/DR !14

!15
H(1) = 1.d0 - 3.0*R*R + 2.0*R*R*R !16
H(2) = (R - 2.0*R*R + R*R*R)*L !17
H(3) = 3.0*R*R - 2.0*R*R*R !18
H(4) = (R*R*R - R*R)*L !19

END SUBROUTINE SHAPE_C1_L !20
!21

SUBROUTINE DERIV_C1_L (R, L, DH) !22
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !23
! FIRST DERIVATIVES OF CUBIC HERMITE IN UNIT COORDINATES !24
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !25
Use Precision_Module !26
IMPLICIT NONE !27
REAL(DP), INTENT(IN) :: R, L !28
REAL(DP), INTENT(OUT) :: DH (4) !29

!30
! L = PHYSICAL LENGTH OF ELEMENT 1 -------- 2 --> R !31
! R = LOCAL COORDINATE OF POINT R=0 R=1 !32
! DH = FIRST PHYSICAL DERIVATIVES OF H !33

!34
DH (1) = 6.d0 * (R * R - R) / L !35
DH (2) = 1.d0 - 4.d0 * R + 3.d0 * R * R !36
DH (3) = 6.d0 * (R - R * R) / L !37
DH (4) = 3.d0 * R * R - 2.d0 * R !38

END SUBROUTINE DERIV_C1_L !39
!40

SUBROUTINE DERIV2_C1_L (R, L, D2H) !41
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !42
! 2ND DERIVATIVES OF CUBIC HERMITE IN UNIT COORDINATES !43
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !44
Use Precision_Module !45
IMPLICIT NONE !46
REAL(DP), INTENT(IN) :: R, L !47
REAL(DP), INTENT(OUT) :: D2H (4) !48

!49
! L = PHYSICAL LENGTH OF ELEMENT 1 -------- 2 --> R !50
! R = LOCAL COORDINATE OF POINT R=0 R=1 !51
! D2H = SECOND DERIVATIVES OF H !52

!53
D2H (1) = 6.d0 * (R + R - 1.d0) / L**2 !54
D2H (2) = (- 4.d0 + 6.d0 * R) / L !55
D2H (3) = 6.d0 * (1.d0 - R - R) / L**2 !56
D2H (4) = (6.d0 * R - 2.d0) / L !57

END SUBROUTINE DERIV2_C1_L !58

Figure 3.7 The C
1

Hermite cubic line element

Chapter 3, Element interpolation and local coordinates 101

3.6 Hierarchical interpolation

Recently some alternate types of interpolation have become popular. They are

called hierarchical functions. The unique feature of these polynomials is that the higher

order polynomials contain the lower order ones. This concept is shown in Fig. 3.8. Thus,

to get new functions you simply add some terms to the old functions. To illustrate this

concept let us return to the linear element in local natural coordinates. In that element

(3.20)u
e(n) = H1(n) u

e

1 + H2(n) u
e

2

where the two Hi are given in Eq. 3.10. We want to generate a quadratic interpolation

form that will not destroy these Hi as Eq. 3.17 did. The key to accomplishing this goal is

to note that the second derivative of Eq. 3.11 is everywhere zero. Thus, if we introduce

an additional degree of freedom related to the second derivative of u it will not affect the

linear terms. Figure 3.8 shows the linear element where we have added a third midpoint

(n = 0) control node to be associated with the quadratic additions. At the third node let

the degree of freedom be the second local derivative, d
2
u/dr

2. Upgrade the

approximation by setting

(3.21)u(n) = H1(n) u
e

1 + H2(n) u
e

2 + H3(n) d
2

u
e / dn

2

where the hierarchical quadratic addition is: H3(n) = c1 + c2 n + c3 n
2. The three

constants are found from the conditions that it vanishes at the two original nodes, so as

not to change H1 and H2, and the second derivative is unity at the new midpoint node.

The result is
(3.22)H3(n) = (n2 − 1) / 2 .

The concept is extended to a cubic hierarchical element by using the new function in

conjunction with the third tangential derivative at the center.

The higher order hierarchical functions are becoming increasingly popular. They

utilize the higher derivatives at the center node. We introduce the notation m → n to

denote the presence of consecutive tangential derivatives from order m to order n. The

value of the function is implied by m = 0. These functions must vanish at the end nodes.

Finally, we usually want the function H p+1(n), p ≥ 2 to hav e its p-th derivative take on a

value of unity at the center node. The resulting functions are not unique. A common set

of hierarchical functions in natural coordinates −1 ≤ n ≤ 1 are

(3.23)H p(n) = (n p − b) / p !, p ≥ 2

where b = 1 if p is even, and b = n if p is odd. The first six members of this family are

shown in Fig. 3.9. Note that the even functions approach a rectangular shape as p → ∞,

but there is not much change in their form beyond the fourth order polynomial. Likewise,

the odd functions approach a sawtooth as p → ∞, but they change relatively little after

the cubic order polynomial. These observations suggest that for the above hierarchical

choice it may be better to stop at the fourth order polynomial and refine the mesh rather

than adding more hierarchical degrees of freedom. However, this form might capture

shape boundary layers or shocks better than other choices. These relations are zero at the

ends, n = ± 1. The first derivatives of these functions are

H ′ p+1 = [pn
(p−1) − b′] / p !

and since b′′ is always zero, the second derivatives are

102 Finite Element Analysis with Error Estimators

u
2

e

u
1

e

1 2

n
-1 +1

u (n)

H
1

e

H
2

e

1

1

u
2

e

u
1

e

1 2

n
-1 +1

u (n) H
3

e

3

2 2

u
3
" e * H

3
e

H
4

e

Figure 3.8 Concept of hierarchical shape functions

−1 −0.5 0 0.5 1
−1

−0.5

0
Degree = 1

−1 −0.5 0 0.5 1
−1

−0.5

0
Degree = 2

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4
Degree = 3

−1 −0.5 0 0.5 1
−1

−0.5

0
Degree = 4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Degree = 5

−1 −0.5 0 0.5 1
−1

−0.5

0
Degree = 6

Figure 3.9 A C
0

hierarchical family

Chapter 3, Element interpolation and local coordinates 103

H ′′ p+1 = p (p − 1) n
(p−2) / p ! = n

(p−2) / (p − 2) ! .

Proceeding in this manner it is easy to show by induction that the m-th derivative is

(3.24)H
(m)
p+1 (n) = n

(p−m) / (p − m) ! , m ≥ 2 .

At the center point, n = 0, the derivative has a value of

H
(m)
p+1 (0) =

0 if m ≠ p

1 if m = p .

We will see later that when hierarchical functions are utilized, the element matrices for a

p-th order polynomial are partitions of the element matrices for a (p + 1) order

polynomial. A typical cubic element would be built by using the degree 2 and 3

hierarchical functions shown in Fig. 3.9.

The element square matrix will always involve an integral of the product of the

derivatives of the interpolation functions. If those derivatives were orthogonal then they

would result in a diagonal square matrix. That would be very desirable. Thus, it is

becoming popular to search for interpolation functions whose derivatives are close to

being orthogonal. It is well known that integrals of products of Legendre polynomials are

orthogonal. This suggests that a useful trick would be to pick interpolation functions that

are integrals of Legendre polynomials so that their derivatives are Legendre polynomials.

Such a trick is very useful in the so-called p − method and hp − method of adaptive finite

element analysis. For future reference we will observe that the first four Legendre

polynomials on the domain of −1 ≤ x ≤ 1 are [1, 11]:

(3.25)

P0(x) = 1

P1(x) = x

P2(x) = (3x
2 − 1)/2

P3(x) = (5x
3 − 3x)/2

P4(x) = (35x
4 − 30x

2 + 3)/8

Legendre polynomials can be generated from the recursion formula:

(n + 1) Pn+1(x) = (2n + 1) x Pn(x) − nPn−1(x), n ≥ 1

and
(3.26)n P

′
n+1 (x) = (2n + 1) x P

′
n

(x) − (n + 1) P
′
n−1(x) .

To avoid roundoff error and unnecessary calculations, these recursion relations should be

used instead of Eq. 3.25 when computing these polynomials. They hav e the

orthogonality property:

(3.27)

+1

−1

∫ Pi (x) P j (x) dx =

2

2i + 1
for i = j

0 for i ≠ j .

To create a family of functions for potential use as hierarchical interpolation

functions we next consider the integral of the above polynomials. Define a new function

104 Finite Element Analysis with Error Estimators

(3.28)γ j (x) = ∫
x

−1

P j−1(t) dt .

A handbook of mathematical functions [1] shows the useful relation for Legendre

polynomials that
(3.29)(2 j − 1) P j−1(t) = P′j(t) − P′j−2(t)

where ()′ denotes dP/dt. The integral of the derivative is evaluated by inspection so

(3.30)γ j (x) = [P j (x) − P j−2 (x)]/(2 j − 1)

since the lower limit terms cancel each other because

P j (−1) =

1 j even

−1 j odd .

We may want to multiply by a constant to scale such a function in a special way. For

example, to make its second derivative unity at x = 0. Thus, for use as interpolation

functions we will consider the family of functions defined as

(3.31)φ j(x) = [P j (x) − P j−2 (x)] / λ j ≡ ψ j (x)/λ j

where λ j is a constant to be selected later. From the definition of the Legendre

polynomials, we see that the first few values of ψ j (x) that are of interest are:

(3.32)

ψ 2(x) = 3(x
2 − 1)/2

ψ 3(x) = 5(x
3 − x)/2

ψ 4(x) = 7(5x
4 − 6x

2 + 1)/8

ψ 5(x) = 9(7x
5 − 10x

3 + 3x)/8

ψ 6(x) = 11(21x
6 − 35x

4 + 15x
2 − 1)/16

These functions are shown in Fig. 3.10 along with a linear polynomial. Note that

each function has its number of roots (zero values) equal to the order of the polynomial.

The previous set had only two roots for the even order polynomials and three roots for the

odd order polynomials (excluding the linear one). Thus, this is clearly a different type of

function for hierarchical use. These would be more expensive to integrate numerically

since there are more terms in each function. Note that the ψ j(x) hav e the property that

they vanish at the ends of the domain: ψ j (± 1) ≡ 0, j ≥ 2. A popular choice for the

midpoint hierarchical interpolation functions is to pick

(3.33)H j (x) = φ j−1(x), j ≥ 3

where the scaling is chosen to be
(3.34)λ j ≡ √ 4 j − 2 .

The reader should note for future reference that if the above domain of −1 ≤ x ≤ 1

was the edge of a two-dimensional element then the above derivatives would be viewed

as tangential derivatives on that edge. The same is true for edges of solid elements.

Hierarchical enrichment is not just restricted to C
0 functions, but has also been used with

Hermite functions as well. Earlier we saw the C
1 cubic Hermite and the C

2 fifth order

Hermite polynomials. The cubic has nodal dof that are the value and slope of the

solution at each end. If we desire to add a center hierarchical enrichment, then that

Chapter 3, Element interpolation and local coordinates 105

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Degree = 1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Degree = 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Degree = 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Degree = 4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Degree = 5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Degree = 6

Figure 3.10 Integrals of Legendre polynomials

function should have a zero value and slope at each end. In addition, since the fourth

derivative of the cubic polynomial is zero, we select that quantity as the first hierarchical

dof . In natural coordinates −1 ≤ a ≤ 1, we have p − 3 internal functions for p ≥ 3. One

possible choice is

(3.35)

H
(0)
p

=
1

p !

a
p/2 − 1

2

, p ≥ 4, even

1

p !

a
(p−1)/2 − 1

2

, p ≥ 5, odd .

For example, for p = 4, H
(0)
p

= [a
4 − 2a

2 + 1] / 24 , which is zero at both ends as is its

first derivative d H
(0)
p

/ d a = [4a
3 − 4a] / 24, while its fourth local derivative is unity

for all a. We associate that constant dof with the center point, a = 0. A similar set of

enhancements that have zero second derivatives at the ends can be used to enrich the C
2

Hermite family of elements.

106 Finite Element Analysis with Error Estimators

3.7 Space-time interpolations *

Most books on finite elements limit the interpolation methods to physical space and

do not cover combined space-time interpolations even though they hav e proved useful for

more than three decades. As their name implies they are used in transient problems, like

those of Section 2.16, or in wav e propagation, computational fluid dynamics or structural

dynamics. Very early applications of space-time elements were given by Oden for

structural dynamics and by Bruch and Zyvoloski [6, 7] who described transient heat

transfer. Space-time elements can be made continuous in time, like the one step semi-

discrete time integration methods of Section 2.16. However, then they would generally

be unstructured in time and the dimension of the problem (and mesh) formulation

increases by one. That can be particularly confusing for mesh generation and for result

visualization when normal transient three-dimensional problems become four-

dimensional. That is not too bad for one-dimensional space, as given in [6] and as

illustrated in Fig. 3.11.

There we see the parametric local forms of a linear 1-D space element with 2 nodes

extended to a full unstructured 2-D triangle (simplex) with 3 nodes in space-time, or a

structured rectangular element with 4 nodes. In the latter case, for simplicity, we assume

that it covers a fixed interval, or ‘slab’, of time so local nodes 1 and 2 are at the same first

time while nodes 3 and 4 are at the same later time. (That is different from a space-time

quadrilateral where all four nodes could be at a different time.) View that as simply

translating the space element in time and you can see that any space-time slab element (in

any dimension of physical space) will simply have twice as many nodes as its spatial

form. Thus, you can use the common interpolations give earlier in this chapter and later

in Chapter 9 for the spatial forms. You also only have to input the usual spatial

coordinates and connectivity and the program hides the doubling of the element nodes

and their translation in time.

The accuracy of the time integrations are the same as the classical semi-discrete

methods when the space-time slabs are made continuous with each other. Howev er,

many users of space-time slab elements employ elements discontinuous in time. Dettmer

and Peric [9] have shown that such formulations have accuracy in time of order ∆t
3

instead of ∆t as obtained in the continuous linear interpolation in time. That happens

because the time interface is treated with a weak (integral) continuity requirement.

Tezduyar and his research group, see [12, 13] for example, have solved numerous very

large transient, non-linear, 3-D complex flow geometries with such techniques.

3.8 Nodally exact interpolations *

The analytic solution to a differential equation is generally viewed as the sum of a

homogeneous solution and a particular solution. It has been proved by Tong [14] and

others [15] that if the finite element interpolation functions are the exact solution to the

homogeneous differential equation (Q = 0), then the finite element solution of a non-

homogeneous (non-zero) source term will always be exact at the nodes. Clearly, this also

means that if the source is zero, then this type of solution would be exact everywhere. It

is well known that the exact solution of the homogeneous equations for the bar on an

elastic foundation (or a rod conducting and convecting heat) will generally involve

Chapter 3, Element interpolation and local coordinates 107

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

1

2

3

4

r

s

t

(0, 0)

(0, 1)

(1, 0)

1 2

3

r

s

(0) (1)

1 2 r

(0, 0)

(0, 1)

(1, 0)

1 2

3

r

s

(0, 0)

(0, 1)

(1, 0)

1 2

4

r

s

(1, 1)

3

Space simplex

Space-time simplex

Space-linear-time slab

(0, 0, 0)

(0, 1, 0)

(0, 0, 1)

1 2

3

r

s

t

(1, 0, 0)

4

5

6

(1, 0, 1)

(0, 1, 1)

Figure 3.11 Space-time options for 1-D and 2-D space simplex elements

hyperbolic functions. Therefore, if we replaced the polynomial interpolations with the

homogeneous hyperbolic functions we can assure ourselves of results that are at least

exact at the nodes. For the problems considered here, it can be shown that the typical

element 1-d matrices obtained from interpolating with the exact homogeneous solutions

are summarized in Tables 3.1 and 3.2. In practice, using hyperbolic functions with large

arguments can break down due to the way their values are computed.

3.9 Interpolation error *

To obtain a physical feel for the typical errors involved, we consider a one-

dimensional model. A hueristic argument will be used. The Taylor’s series of a function

v at a point x:

108 Finite Element Analysis with Error Estimators

Table 3.1 Homogeneous solution interpolation for

semi-infinite axial bar on a foundation

a) PDE :
d

dx

EA
d u

d x

− k u = Q, m = k / EA, k > 0

b) Homogeneous interpolation : H1 = e
−m x

c) Stiffness matrix : K11 =
m EA

2
+

k

2 m

d) Force vector : F1 = Q / m, Q = constant

e) Mass matrix : M11 = ρ / 2 m

Table 3.2 Homogeneous solution interpolation for

finite axial bar on a foundation

a) PDE :
d

dx

EA
d u

d x

− k u = Q, m = k / EA, k > 0

b) Homogeneous interpolation : S = sinh (mL
e), C = cosh (mL

e)

H =
1

S
[sinh [m(L − x)] sinh (mx)]

c) Stiffness matrix : a = k + EA m
2
, b = k − EA m

2

K =
1

2m S2

(a sinh (2 mL
e) − b mL

e)

symmetric

(b sinh (2 mL
e) − a S)

(a sinh (2 mL
e) − b mL

e)

d) Force vector : Q = Q1 (1 − x / L
e) + Q2 x / L

e

e) Mass matrix : M =
ζ

2m S2

(sinh (2 mL
e) − mL

e)

symmetric

(S + sinh (2 mL
e))

(sinh (2 mL
e) − mL

e)

F =
1

m

Q1 (C − 1)

S
+

(Q2 − Q1) (1 − mL
e / S)

m Le

Q1 (C − 1)

S
+

(Q2 − Q1) (mL
e coth (mL

e) − 1)

m Le

Chapter 3, Element interpolation and local coordinates 109

(3.36)v(x + h) = v(x) + h
∂v

∂x
(x) +

h
2

2

∂2
v

∂x2
(x) + ...

The objective here is to show that if the third term is neglected, then the relations for the

linear line element are obtained. That is, the third term is a measure of the interpolation

error in the linear element. For an element with nodes at i and j, we use Eq. 3.36 to

estimate the function at node j when h is the length of the element:

v j = vi + h
∂v

∂x
(xi) .

Solving for the gradient at node i yields

∂v

∂x
(xi) =

(v j − vi)

h
=

∂v

∂x
(x j)

which is the constant previously obtained for the derivative in the linear line element.

Thus, we can think of this type of element as representing the first two terms of the

Taylor series. The omitted third term is a measure of the error associated with the

element. Its value is proportional to the product of the second derivative and the square

of the element size.

If the exact solution is linear so that the first derivative is constant, then the second

derivative, ∂2
v / ∂x

2, is zero and there is no error in the element. Otherwise, the second

derivative and element error do not vanish. If the user wishes to exercise control over this

relative error, then the element size, h, must be varied, or we must use a higher degree

interpolation for the element. If we think in terms of the bar element, then v and ∂v / ∂x

represent the displacement and strain, respectively. The contribution to the error

represents the strain gradient (and stress gradient). Therefore, we must use our

engineering judgment to make the element size, h, small in regions of large strain

gradients (stress concentrations). Conversely, where the strain gradients are small, we

can increase the element size, h, to reduce the computational cost. A similar argument

can be stated for the heat conduction problem. Then, v is the temperature, ∂v / ∂x

describes the temperature gradient (heat flux), and the error is proportional to the flux

gradient. If one does not wish to vary the element sizes, h, then to reduce the error, one

must add higher order polynomial terms of the element interpolation functions so that the

second derivative is present in the element. These two approaches to error control are

known as the h-method and the p-method, respectively.

The previous comments have assumed the use of a uniform mesh, that is, h was the

same for all elements in the mesh. Thus, the above error discussions have not considered

the interaction of adjacent elements. The effects of adjacent element sizes have been

evaluated for the case of a continuous bar subject to an axial load. An error term, in the

governing differential equation, due to the finite element approximation at node j has

been shown to be

(3.37)E = −
h

3
(1 − a)

∂3
v

∂x3
(x j) +

h
2

12

1 + a
3

1 + a

∂4
v

∂x4
(x j) + ...

where h is the size of one element and ah is the size of the adjacent element. Here it is

seen that for a smooth variation (a =. 1) or a uniform mesh (a = 1), the error in the

approximated ODE is of the order h squared. However, if the adjacent element sizes

110 Finite Element Analysis with Error Estimators

differ greatly (a ≠ 1), then a larger error of order h is present. This suggests that it is

desirable to have a gradual change in element sizes when possible. One should avoid

placing a small element adjacent to one that is many times larger. Today the process of

error estimation in a finite element analysis is a well established field of applied

mathematics. This knowledge can be incorporated into a finite element software system.

The MODEL code has this ability.

3.10 Gradient estimates *

In our finite element calculations we often have a need for accurate estimates of the

derivatives of the primary variable. For example, in plane stress or plane strain analysis,

the primary unknowns which we compute are the displacement components of the nodes.

However, we often are equally concerned about the strains and stresses which are

computed from the derivatives of the displacements. Likewise, when we model an ideal

fluid with a velocity potential, we actually have little or no interest in the computed

potential; but we are very interested in the velocity components which are the derivatives

of the potential. A logical question at this point is: what location in the element will give

me the most accurate estimate of derivatives? Such points are called optimal points or

Barlow points [5] or superconvergent points. A heuristic argument for determining their

location can be easily presented. Let us begin by recalling some of our previous

observations. In Secs. 2.6.2 and 3.4, we found that our finite element solution example

was an interpolate solution, that is, it was exact at the node points and approximate

elsewhere. Such accuracy is rare but, in general, one finds that the computed values of

the primary variable are most accurate at the node points. Thus, for the sake of simplicity

we will assume that the element’s nodal values are exact, or superconvergent.

We hav e taken our finite element approximation to be a polynomial of some specific

order, say m. If the exact solution is also a polynomial of order m, then our finite element

a

bb s

r

Function 1-st Derivative 2-nd Derivative

Figure 3.12 Sampling points for quadratic elements

Chapter 3, Element interpolation and local coordinates 111

solution will be exact everywhere in the element. In addition, the finite element

derivative estimates will also be exact. It is rare to have such good luck. In general, we

must expect our results to only be approximate. However, we can hope for the next best

thing to an exact solution. That would be where the exact solution is a polynomial that is

one order higher, say n = m + 1, than our finite element polynomial. Let the subscripts

E and F denote the exact and finite element solutions, respectively. Consider a one-

dimensional formulation in natural coordinates, −1 < a < + 1. Then the exact solution

could be written as

UE (a) = PE (a) VE =

1 a a
2 ... a

m
a

n

VE ,

and our approximate finite element polynominal solution would be

UF (a) = PF (a) VF =

1 a a
2 ... a

m

VF

where n = (m + 1), as assumed above. In the above VE and VF represent different

vectors of unknown constants. In the domain of a typical element, these two forms

should be almost equal. If we assume that they are equal at the nodes, then we can equate

uE (a j) = uF (a j) where a j is the local coordinate of node j. Then the following

identities are obtained: PF (a j) VF = PE (a j) VE , 1 ≤ k ≤ m, or symbolically

(3.38)AF VF = AE VE

where the rectangular array AE has one more column than the square matrix AF , but

otherwise they are the same. Indeed, upon closer inspection we should observe that AE

can be partitioned into a square matrix that is the same as AF and an additional column so

that AE = [AF | CE] where the column is CT

E
= [a

n

1 a
n

2 a
n

3
... a

n

m
]. If we solve

Eq. 3.38 we can relate the finite element constants, VF , to the exact constants, VE , at the

nodes of the element. Thus, multiplying by the inverse of the square matrix AF , Eq. 3.38

gives the relationship between the finite element nodal values and exact values as

VF = A−1
F

AE VE = [I | A−1
F

CE] VE = [I | E] VE or simply

(3.39)VF = K VE

where K = A−1
F

AE is a rectangular matrix with constant coefficients. Therefore, we can

return to Eq. 3.38 and relate everything to VE . This gives uF (a) = PF (a) KVE =
PE (a) VE = uE (a) so that for arbitrary VE , one probably has the finite element

polynomial and the exact polynomial related by PF (a) K = PE (a). Likewise, the

derivatives of this relation should be approximately equal.

As an example, assume a quadratic finite element in one-dimensional natural

coordinates, −1 < a < + 1. The exact solution is assumed to be cubic. Therefore,

PF =

1 a a
2

,

PE =

1 a a
2

a

3

,

VT

F
= V1 V2 V3 F

,

VT

E
= V1 V2 V3 V4 E

.

Selecting the nodes at the standard positions of a1 = − 1, a2 = 0, and a3 = 1 giv es:

112 Finite Element Analysis with Error Estimators

AF =

1

1

1

− 1

0

1

1

0

1

, A−1
F

=
1

2

0

−1

1

2

0

− 2

0

1

1

,

AE =

1

1

1

− 1

0

1

1

0

1

−1

0

1

, CE =

−1

0

1

,

A−1
F

CE =

0

1

0

≡ E, K =

1

0

0

0

1

0

0

0

1

0

1

0

.

For an interpolate solution, the two equivalent forms are exact at the three nodes

(a = ± 1, a = 0) and inside the element. Then the product expands to

PF K = [1 a a
2

a] . Only the last polynomial term differs from PE . By inspection

we see that term is a V4 = a
3

V4 which is valid when a is evaluated at any of the three

nodes. Equating the first derivatives at the optimum point a0,

 0 1 2a0 1 =

0 1 2a0 3a
2
0

,

or simply 1 = 3a
2
0 so that a0 = ± 1 / √ 3 = ± 0. 577. These are the usual Gauss points

used in the two point integration rule. Similarly, the optimal location, as, for the second

derivative is found from 0 0 2 0 = 0 0 2 6as , so that as = 0, the

center of the element. The same sort of procedure can be applied to 2-D and 3-D

elements. Generally, we find that derivative estimates are least accurate at the nodes.

The derivative estimates are usually most accurate at the tabulated integration points.

That is indeed fortunate, since it means we get a good approximation of the element

square matrix. The typical sampling positions for the C
0 quadratic elements are shown in

Fig. 3.12. The C
1 line elements have the same points except that the function and slope

are most accurate at the end points while the best second and third derivative locations are

at the marked interior points. It is easy to show that the center of the linear element is the

optimum position for sampling the first derivative. Since the front of partition K is an

identity matrix, I, we are really saying that an exact nodal interpolate solution implies

that PF (a) A−1
F

CE = a
n. Let the vector A−1

F
CE denote an extrapolation vector, say E.

Then, the derivatives would be the same in the two systems at points where

(3.40)

d
k

dak
PF (a)

E =

d
k

dak
a

n

, 0 ≤ k ≤ n − 1 .

For example, the above quadratic element interpolate of a cubic solution gav e

k = 0,

k = 1,

k = 2,

[1 a a
2]

[0 1 2a]

[0 0 2]

0

1

0

=
a

3

3 a
2

6 a

Chapter 3, Element interpolation and local coordinates 113

which are only satisfied for
k ak

0 −1 , 0 , + 1

1 ± 1 / √ 3

2 0

which are the locations shown for the line element in Fig. 3.12. That figure also

illustrates that the first derivatives are usually most accurate at the quadrature points.

3.11 Exercises

1. For a quadratic element, with J
e = dx/dr = L

e use the unit coordinate interpolation

in Fig. 3.4 to evaluate the matrices:

a) Ce = ∫Le

HT
dx, b) Me = ∫Le

HT H dx,

c) Se = ∫Le

dHT

dx

dH

dx
dx, d) Ue = ∫Le

HT
dH

dx
dx .

Also give the sum of all of the coefficients of each matrix.

2. Solve the above problem by using the natural coordinate version, −1 ≤ n ≤ 1, from

Fig, 3.4.

3. Referring to Fig. 3.4 verify, in both coordinate systems, that Σ H j = 1 for the a)

linear, b) quadratic, c) cubic interpolations.

4. Referring to the linear interpolations in Fig. 3.4 verify that H j(ri) = δ ij for both local

coordinate systems.

5. For a quadratic (3 node) line element in parametric space assume the the solution

value is constant, say c, at each node. Write and simplify the analytic interpolated

value in terms of the parametric coordinate. Also obtain the local (parametric)

derivative of the interpolated value.

6. Problem 2.13 involved 3 elements and 4 degrees of freedom. We could have used a

single 4 node cubic element instead. If you do that the 2 internal (non-zero) node

values are u2 = 0. 055405, u3 = 0. 068052. Use these computed values with the

cubic interpolation functions in Fig. 3.4 to plot the single element solution in

comparison to the exact solution. Also plot the element and exact gradient.

7. The beam element of Problem 2.14 requires C
1 continuity provided by the cubic

Hermite in Fig. 3.6. The element stiffness matrix and resultant generalized load

vector are

Se = ∫Le

Be(x)T
EI

e(x) Be(x) dx , Ce

p
= ∫Le

He(x)T
p

e(x) dx ,

where

114 Finite Element Analysis with Error Estimators

Be =
d

2H

dx2
=

1

(Le)2

d
2H

dr2
=

1

L2

(12r − 6) L(6r − 4) (6 − 12r) L(6r − 2)

.

a) Verify that the results for a cubic element are:

Se =
EI

L3

12

6L

−12

6L

4L
2

− 6L

2L
2

12

−6L

sym.

4L
2

, Ce

p
= p

e
L

1 / 2

L/12

1 / 2

−L/12

where L denotes the element length, and p
e is assumed constant. b) Assume p(x)

varies linearly from p
e

1 to p
e

2 at the nodes of the element and verify that

Ce

p
=

L

20

7

L

3

−2L/3

3

2L/3

7

−L

p1

p2

e

.

8. Use the 3 node element interpolation of Eq. 3.17 in the geometry mapping of Eq.

3.14 to evaluate the local Jacobian J
e(r). a) Show that it will not be constant except

for the special case where the interior node is exactly in the middle of the element in

physical space, x
e

2 = (x
e

1 + x
e

3) /2. b) Evaluate J
e if the interior node is placed at the

quarter length position instead.

9. Solve Problem P2.17 using the least squares finite element method instead.

10. A bar hanging under its own weight has its axial deflection, u, governed by

EA d
2
u/dx

2 + γ A = 0 over the length, 0 ≤ x ≤ L, Where E is the material’s elastic

modulus, γ its weight per unit volume, and A is the cross-sectional area. The top

point is restrained, u(0) = 0. The stress on any cross-section is σ = E du/dx. The

free end (at x = L) is stress free so du/dx(L) = 0. Assume a constant area, A, so

that the exact deflection is γ L
2/2E. a) Analytically solve this problem with one

quadratic element where the stiffness matrix and resultant force vector are:

Se =
E

e
A

e

3 Le

7

−8

1

−8

16

−8

1

−8

7

, Ce =
γ e

A
e

L
e

6

1

4

1

,

and the local derivative, du/dr, can be obtained from Eq. 3.14. Compute the end

and mid-length deflections, and the reaction force at the top (which should be equal

and opposite to the total weight W = γ AL). Also recover the stress values at the

two ends and the mid-length. b) Repeat the study with two linear elements, c)

compare the two solutions.

Chapter 3, Element interpolation and local coordinates 115

3.12 Bibliography

[1] Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, National

Bureau of Standards (1964).

[2] Akin, J.E., Finite Elements for Analysis and Design, London: Academic

Press (1994).

[3] Babuska, I., Griebel, M., and Pitkaranta, J., "The Problem of Selecting Shape

Functions for a p-Type Finite Element," Int. J. Num. Meth. Eng., 28,

pp. 1891−1908 (1989).

[4] Bank, R.E., "Hierarchical Bases and the Finite Element Method," Acta Numerica, 5,

pp. 1−45 (1996).

[5] Barlow, J., "Optimal Stress Locations in Finite Element Models," Int. J. Num. Meth.

Eng., 10, pp. 243−251 (1976).

[6] Bruch, J.C. Jr. and Zyvoloski, G., "A Finite Element Weighted Residual Solution to

One - Dimensional Field Problems," Int. J. Num. Meth. Eng., 6, pp. 577−585 (1973).

[7] Bruch, J.C. Jr. and Zyvoloski, G., "Transient Two - Dimensional Heat Conduction

Problems Solved by the Finite Element Method," Int. J. Num. Meth. Eng., 8,

pp. 481−494 (1974).

[8] Desai, C.S. and Kundu, T., Introduction to the Finite Element Method, Boca Raton:

CRC Press (2001).

[9] Dettmer, W. and Peric, D., "An Analysis of the Time Integration Algorithms for the

Finite Element Solutions of Incompressible Navier-Stokes Equations Based on a

Stabilised Formulation," Comp. Meth. Appl. Mech. Eng., 192, pp. 1177−

1226 (2003).

[10] Krishnamoorthy, C.S., Finite Element Analysis: Theory and Programming, New

York: McGraw-Hill (1994).

[11] Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).

[12] Tezduyar, T.E. and Ganjoo, D.K., "Petrov-Galerkin Formulations with Weighting

Functions Dependent Upon Spatial and Temporal Discretization," Comp. Meth.

Appl. Mech. Eng., 59, pp. 47−71 (1986).

[13] Tezduyar, T.E., "Stabilized Finite Element Formulations for Incompressible Flow

Computations," Advances in Applied Mechanics, 28, pp. 1−44 (1991).

[14] Tong, P. and Rossettos, J.N., Finite Element Method: Basic Techniques and

Implementation, MIT Press (1977).

[15] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 4th Edition, New

York: McGraw-Hill (1991).

[16] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 4

One - dimensional integration

4.1 Introduction

Since the finite element method is based on integral relations it is logical to expect

that one should strive to carry out the integrations as efficiently as possible. In some

cases we will employ exact integration. In others we may find that the integrals can

become too complicated to integrate exactly. In such cases the use of numerical

integration will prove useful or essential. The important topics of local coordinate

integration and Gaussian quadratures will be introduced here. They will prove useful

when dealing with higher order interpolation functions in complicated element integrals.

4.2 Local coordinate Jacobian

We hav e previously seen that the utilization of local element coordinates can greatly

reduce the algebra required to establish a set of interpolation functions. Later we will see

that some 2-D elements must be formulated in local coordinates in order to meet the

interelement continuity requirements. Thus, we should expect to often encounter local

coordinate interpolation. However, the governing integral expressions must be evaluated

with respect to a unique global or physical coordinate system. Clearly, these two

coordinate systems must be related. The relationship for integration with a change of

variable (change of coordinate) was defined in elementary concepts from calculus. At

this point it would be useful to review these concepts from calculus. Consider a definite

integral

(4.1)I = ∫
b

a

f (x) dx, a < x < b

where a new variable of integration, r, is to be introduced such that x = x (r). Here it is

required that the function x (r) be continuous and have a continuous derivative in the

interval α ≤ r ≤ β . The region of r directly corresponds to the region of x such that

when r varies between α and β , then x varies between a = x (α) and b = x (β). In that

case

(4.2)I = ∫
b

a

f (x) dx = ∫
β

α
f (x(r))

dx

dr
dr

Chapter 4, One-dimensional integration 117

or (4.3)I = ∫
β

α
f (r) J dr

where J = dx/dr is called the Jacobian of the coordinate transformation.

4.3 Exact polynomial integration *

If we utilize the unit coordinates, then α = 0 and β = 1. Then from Sec. 3.2, the

Jacobian is J = L
e in an element domain defined by linear interpolation. By way of

comparison, if one employs natural coordinates, then α = − 1, β = + 1, and from Eq. 3.16

J = L
e/2. Generally, we will use interpolation functions that are polynomials. Thus, the

element integrals of them and/or their derivatives will also contain polynomial terms.

Therefore, it will be useful to consider expressions related to typical polynomial terms. A

typical polynomial term is r
m where m is an integer. Thus, from the above

(4.4)I = ∫
x

e

2x
e

2

x
e

1x
e

1

r
m

dx = ∫
1

0
r

m
L

e
dr = L

e
r

(1+m)

1 + m

1

0

=
L

e

(1 + m)
.

A similar expression can be developed for the natural coordinates. It gives

(4.5)I =
Le

∫ n
m

dx =
L

e

m + 1

0 if m is odd

1 if m is even .

Later we will tabulate the extension of these concepts to two- and three-dimensional

integrals. As an example of the use of Eq. 4.5, consider the integration of the outer

product of He with itself:

I =
Le

∫ He
T

He
dx .

Recall that the integral of a matrix is the matrix resulting from the integration of each of

the elements of the original matrix. If linear interpolation is selected for He on a line

element then typical terms will include H
2
1 , H1 H2, etc. Thus, one obtains:

I11 =
Le

∫ H
2
1 (r) dx =

Le

∫ (1 − r)2
dx = L

e(1 − 2/2 + 1/3) = L
e/3

I12 =
Le

∫ H1 H2 dx =
Le

∫ (1 − r) rdx = L
e (1/2 − 1/3) = L

e/6

I22 =
Le

∫ H
2
2 dx =

Le

∫ r
2

dx = L
e/3

so that

(4.6)I =
L

e

6

2

1

1

2

.

Similarly, if one employs the Lagrangian quadratic H in Eq. 3.17 one obtains:

(4.7)I =
L

e

30

4

−1

2

− 1

4

2

2

2

16

.

118 Finite Element Analysis with Error Estimators

By way of comparison, if one selects the hierarchical quadratic polynomial in

Eq. 3.22 the above integral becomes

I =
L

e

6

2

1

−
−1/4

1

2

−
− 1/4

|

|

|

|

−1/4

−1/4

−
1/10

.

Note that the top left portion of this equation is the same as Eq. 4.6 which was obtained

from the linear polynomial. This desirable feature of hierarchical elements was

mentioned in Sec. 3.6.

Of course, all of the above integrals are so simple one could note that the integral is

simply the area under the curve and there are simple algebraic relations for defining the

area under power law curves. Figure 4.1 reviews such relations and illustrates the terms

needed in Eq. 4.6.

Before leaving the subject of simplex integrations one should give consideration to

the common special case of axisymmetric geometries, with coordinates (rho , z). Recall

from calculus that the Theorem of Pappus relates a differential volume and surface area to

a differential area and length in the (rho , z) plane of symmetry, respectively. That is,

dV = 2π ρ dA and dS = 2π ρ dl, where ρ denotes the radial distance to the differential

element. Thus, typical axisymmetric surface integrals reduce to

h

x

y

b

y = c x n

Area = b h / (n + 1)

1

L

H
1

Area = L / 2

Area = L / 3

1

L

H
1

 2

L

0.25

H
1
 * H

2

Area = L / 4 - 2(L / 2)(¼) / 3 = L / 6

Figure 4.1 Exact integrals by inspection

Chapter 4, One-dimensional integration 119

IΓ =
Γ
∫ HT

d Γ = 2π

Le

∫ HT ρ d l = 2π

 Le

∫ HT H dl

ρρ e =
2π L

e

6

2

1

1

2

ρρ e
,

since ρ = Hρρ e. Many workers like to omit the 2π term and work on a per-unit-radian

basis so that they can more easily do both two-dimensional and axisymmetric

calculations with a single program.

4.4 Numerical integration

Numerical integration is simply a procedure that approximates (usually) an integral

by a summation. To review this subject we refer to Fig. 4.2. Recall that the integral

(4.8)I = ∫
b

a

f (x) dx

can be viewed graphically as the area between the x-axis and the curve y = f (x) in the

region of the limits of integration. Thus, we can interpret numerical integration as an

approximation of that area. The trapezoidal rule of numerical integration simply

approximates the area by the sum of several equally spaced trapezoids under the curve

between the limits of a and b. The height of a trapezoid is found from the integrand,

y j = y (x j), evaluated at equally spaced points, x j and x j+1. Thus, a typical contribution

is A = h (y j + y j+1)/2, where h = x j+1 − x j is the spacing. Thus, for nq points (and

nq − 1 spaces), the well-known approximation is

y

a b

y = f(x)

A = area

x

y

a b

x

y
y

j
 = f(x

j
)

x

d-d

x
1

x
2

x
3

y
1

y
2

y
3

h

y
1

y
2

y
n

a = x
1

x
2

x
n
=bx

3

y
3

polynomial

...

w
1
=w

n
=h/2

w
j
=h

y
j
 = f(x

j
)

A = y dx

a

b

w
j
 f (x

j
)

j

Figure 4.2 One-dimensional numerical integration

120 Finite Element Analysis with Error Estimators

(4.9)I ≈ h

1

2
y1 + y2 + y3 + ... + yn−1 +

1

2
yn

, I ≈
n

j=1
Σ w j f (x j)

where w j = h, except w1 = wn = h/2. A geometrical interpretation of this is that the area

under curve, I , is the sum of the products of certain heights, f (x j) times some

corresponding widths, w j . In the terminology of numerical integration, the locations of

the points, x j , where the heights are computed are called abscissae and the widths, w j ,

are called weights. Another well-known approximation is the Simpson rule, which uses

parabolic segments in the area approximation. For most functions the above rules may

require 20 to 40 terms in the summation to yield acceptable accuracy. We want to carry

out the summation with the minimum number of terms, nq, in order to reduce the

computational cost. What is the minimum number of terms? The answer depends on the

form of the integrand f (x). Since the parametric geometry usually involves polynomials

we will consider that common special case for f (x).

The famous mathematician Gauss posed this question: What is the minimum

number of points, nq, required to exactly integrate a polynomial, and what are the

corresponding abscissae and weights? If we require the summation to be exact when

f (x) is any one of the power functions 1, x, x
2 , . . . , x

2n−1, we obtain a set of 2n

conditions that allow us to determine the nq abscissae, xi, and their corresponding nq

weights, w j . The nq Gaussian quadrature points are symmetrically placed with respect

to the center of the interval, and will exactly integrate a polynomial of order (2nq − 1).

The center point location is included in the abscissae list when nq is odd, but the end

points are never utilized in a Gauss rule. The Gauss rule data are usually tabulated for a

non-dimensional unit coordinate range of 0 ≤ t ≤ 1, or for a natural coordinate range of

−1 ≤ t ≤ +1. Table 4.1 presents the low-order Gauss rule data in natural coordinates, and

the alternate unit coordinate data are in Table 4.2. A two-point Gauss rule can often

exceed the accuracy of a 20-point trapezoidal rule. When computing norms of an exact

solution, to be compared to the finite element solution, we often use the trapezoidal rule.

That is because the exact solution is usually not a polynomial and the Gauss rule may not

be accurate.

Sometimes it is desirable to have a numerical integration rule that specifically

includes the two end points in the abscissae list when (n ≥ 2). The Lobatto rule is such

an alternate choice. Its nq points will exactly integrate a polynomial of order (2n − 3)

for nq > 2. Its data are included in Table 4.3. It is usually less accurate than the Gauss

rule but it can be useful. Mathematical handbooks give tables of Gauss or Lobatto data

for much higher values of nq. Some results of Gauss’s work are outlined below. Let y

denote f (x) in the integral to be computed. Define a change of variable

(4.10)x(n) = 1/2 (b − a) n + 1/2 (b + a)

so that the non-dimensional limits of integration of n become −1 and +1 . The new

value of y(n) is
(4.11)y = f (x) = f [1/2 (b − a) n + 1/2 (b + a)] = Φ(n) .

Noting from Eq. 4.10 that dx = 1/2 (b − a) dn, the original integral becomes

Chapter 4, One-dimensional integration 121

Table 4.1 Abscissas and weights for Gaussian quadrature

∫
+1

−1
f (x) dx =

nqnq

i=1
Σ wi f (xi)

± xi wi

0.00000 00000 00000 00000 0000 nq = 1 2.00000 00000 00000 00000 000

0.57735 02691 89625 76450 9149 nq = 2 1.00000 00000 00000 00000 000

0.77459 66692 41483 37703 5835 nq = 3 0.55555 55555 55555 55555 556

0.00000 00000 00000 00000 0000 0.88888 88888 88888 88888 889

0.86113 63115 94052 57522 3946 nq = 4 0.34785 48451 37453 85737 306

0.33998 10435 84856 26480 2666 0.65214 51548 62546 14262 694

0.90617 98459 38663 99279 7627 nq = 5 0.23692 68850 56189 08751 426

0.53846 93101 05683 09103 6314 0.47862 86704 99366 46804 129

0.00000 00000 00000 00000 0000 0.56888 88888 88888 88888 889

0.93246 95142 03152 02781 2302 nq = 6 0.17132 44923 79170 34504 030

0.66120 93864 66264 51366 1400 0.36076 15730 48138 60756 983

0.23861 91860 83196 90863 0502 0.46791 39345 72691 04738 987

0.94910 79123 42758 52452 6190 nq = 7 0.12948 49661 68869 69327 061

0.74153 11855 99394 43986 3865 0.27970 53914 89276 66790 147

0.40584 51513 77397 16690 6607 0.38183 00505 05118 94495 037

0.00000 00000 00000 00000 0000 0.41795 91836 73469 38775 510

Table 4.2 Unit abscissas and weights for Gaussian quadrature

∫
1

0
f (x) dx =

nqnq

i=1
Σ wi f (xi)

xi wi

0.50000 00000 00000 00000 000 nq = 1 1.00000 00000 00000 00000 000

0.21132 48654 05187 11774 543 nq = 2 0.50000 00000 00000 00000 000

0.78867 51345 94812 88225 457 0.50000 00000 00000 00000 000

0.11270 16653 79258 31148 208 nq = 3 0.27777 77777 77777 77777 778

0.50000 00000 00000 00000 000 0.44444 44444 44444 44444 444

0.88729 83346 20741 68851 792 0.27777 77777 77777 77777 778

0.06943 18442 02973 71238 803 nq = 4 0.17392 74225 68726 92868 653

0.33000 94782 07571 86759 867 0.32607 25774 31273 07131 347

0.66999 05217 92428 13240 133 0.32607 25774 31273 07131 347

0.93056 81557 97026 28761 197 0.17392 74225 68726 92868 653

0.04691 00770 30668 00360 119 nq = 5 0.11846 34425 28094 54375 713

0.02307 65344 94715 84544 818 0.23931 43352 49683 23402 065

0.50000 00000 00000 00000 000 0.28444 44444 44444 44444 444

0.76923 46550 52841 54551 816 0.23931 43352 49683 23402 065

0.95308 99229 69331 99639 881 0.11846 34425 28094 54375 713

122 Finite Element Analysis with Error Estimators

Table 4.3 Abscissas and weight factors for Lobatto integration

∫
+1

−1
f (x) dx ≈

nqnq

i = 1
Σ wi f (xi)

± xi wi

0.00000 00000 00000 nq = 1 2.00000 00000 00000

1.00000 00000 00000 nq = 2 1.00000 00000 00000

1.00000 00000 00000 nq = 3 0.33333 33333 33333

0.00000 00000 00000 1.33333 33333 33333

1.00000 00000 00000 nq = 4 0.16666 66666 66667

0.44721 35954 99958 0.83333 33333 33333

1.00000 00000 00000 nq = 5 0.10000 00000 00000

0.65465 36707 07977 0.54444 44444 44444

0.00000 00000 00000 0.71111 11111 11111

1.00000 00000 00000 nq = 6 0.06666 66666 66667

0.76505 53239 29465 0.37847 49562 97847

0.28523 15164 80645 0.55485 83770 35486

(4.12)I =
1

2
(b − a) ∫

1

−1
Φ(n) dn .

Gauss showed that the integral in Eq. 4.12 is given by

∫
1

−1
Φ(n) dn =

nqnq

i=1
Σ Wi Φ (ni) ,

where Wi and ni represent tabulated values of the weight functions and abscissae

associated with the nq points in the non-dimensional interval (−1, 1). The final result is

(4.13)I =
1

2
(b − a)

nqnq

i=1
ΣWi Φ(ni) =

nqnq

i=1
Σ f (x(ni)) Wi .

Gauss also showed that this equation will exactly integrate a polynomial of degree

(2nq − 1). For a higher number of space dimensions (which range from −1 to +1), one

obtains a multiple summation. Since Gaussian quadrature data are often tabulated in

references for the range −1 ≤ n ≤ + 1, it is popular to use the natural coordinates in

defining element integrals. However, one can convert the tabulated data to any

convenient system such as the unit coordinate system where 0 ≤ r ≤ 1. The latter may be

more useful on triangular regions. As an example of Gaussian quadratures, consider the

following one-dimensional integral:

I =
2

1

∫

2

2x

2x

(1 + 2x
2)

dx =
2

1

∫ F(x) dx .

If two Gauss points are selected (nq = 2), then the tabulated values from Table 4.1 give

W1 = W2 = 1 and r1 = 0. 57735 = − r2. The change of variable gives x(r) = (r + 3)/2, so

that x(r1) = 1. 788675 and x(r2) = 1. 211325. Therefore, from Eq. 4.13

Chapter 4, One-dimensional integration 123

I = 1

2
(2 − 1)

W1 F(x(r1)) + W2 F(x(r2))

= 1

2
(1)

(1)

2

sym.

2(1. 788675)

1 + 2(1. 788675)2

+ (1)

2

sym.

2(1. 211325)

1 + 2(1. 211325)2

I =

2. 00000

3. 00000

3. 00000

5. 66667

,

which is easily shown to be in good agreement with the exact solution. As another

example consider a typical term in Eq. 4.8. Specifically, from Eqs. 3.16 and 3.18

I33 =
Le

∫ H
2
3 dx =

L
e

2 ∫
+1

−1
(1 − n

2)2
dn .

Since the polynomial terms to be integrated are fourth order, we should select

(2nq − 1) = 4, or nq = 3 for an integer number of Gaussian points. Then,

I33 =
Le

∫ H
2
3 dx =

L
e

2 ∫
+1

−1
H

2
3 (n) dn

I33 =
L

e

2

0. 55556

1. 00000 − (−0. 77459)2

2

+ 0. 88889

1. 00000 − (0. 0)2

2

+ 0. 55556

1. 00000 − (+0. 77459)2

2

I33 =
L

e

2
(0. 08889 + 0. 88889 + 0. 08889) = 0. 5333 L

e
,

which agrees well with the exact value of 16 L
e/30, when using 6 digits.

4.5 Variable Jacobians

When the parametric space and physical space have the same number of dimensions

then the Jacobian is a square matrix. Otherwise, we need to use more calculus to evaluate

the integrals. For example, we often find the need to execute integrations along a two-

dimensional curve defined by our one-dimensional parametric representation. Consider a

planar boundary curve in the xy-plane such as that shown in Fig. 4.3. We may need to

know its length and first moments (centroid), which are defined as

L =
L

∫ ds , x L =
L

∫ x(r) ds, y L =
L

∫ y(r) ds,

respectively, where ds denotes the physical length of a segment, dr, of the parametric

length. To evaluate these quantities we need to convert to an integral in the parametric

space. For example,

L =
L

∫ ds = ∫
1

0

ds

dr
dr .

To relate the physical and parametric length scales, we use the planar relation that

124 Finite Element Analysis with Error Estimators

r
y

x

x = x (r)

y = y (r)

dr

dx

dyds

ds = J(r) dr

r

22
)/()/(drdydrdxJ +≡

Figure 4.3 A variable curve metric or Jacobian

ds
2 = dx

2 + dy
2. Since both x and y are defined in terms of r, we can extend this

identity to the needed quantity

ds

dr

2

=

dx

dr

2

+

dy

dr

2

where dx/dr can be found from the spatial interpolation functions, etc. for dy/dr. Thus,

our physical length is defined in terms of the parametric coordinate, r, and the spatial data

for the nodes defining the curve location in the xy-plane (i.e., x
e and y

e) :

L =
1

0

∫ √

dx

dr

2

+

dy

dr

2

dr

where
dx(r)

dr
=

nbnb

i=1
Σ d Hi (r)

dr
x

e

i
,

dy(r)

dr
=

nbnb

i=1
Σ d Hi (r)

dr
y

e

i
.

Note that this does preserve the proper units for L, and it has what we could refer to as a

variable Jacobian. The preceding integral is trivial only when the planar curve is a

straight line (nb = 2). Then, from linear geometric interpolation dx/dr = x
e

2 − x
e

1 and

dy/dr = y
e

2 − y
e

1 are both constant, and the result simplifies to

L
e = √

x

e

2 − x
e

1

2

+

y
e

2 − y
e

1

2 1

0

∫ dr = L

which, by inspection, is exact. For any other curve shape, these integrals become

unpleasant to evaluate, and we would consider their automation by means of numerical

integration.

Chapter 4, One-dimensional integration 125

To complete this section we outline an algorithm to automate the calculation of the

y-centroid:

1. Recover the nb points describing the curve, xe
, ye.

2. Recover the nq-point quadrature data, r j and w j .

3. Zero the integrals: L = 0, y L = 0.

4. Loop over all the quadrature points: 1 ≤ j ≤ nq. At each local quadrature point, t j:

A. Find the length scales (i.e., Jacobian):

(i) Compute local derivatives of the nb interpolation functions

DL_Hj ≡
∂H

∂r

 r=rj

(ii) Get x- and y-derivatives from curve data

dx

dr j

≡ DL_Hj xe =
nb

i=1
Σ

∂Hi (r j)

∂r
x

e

i
,

dy

dr j

≡ DL_Hj ye

(iii) Find length scale at point r j

ds

dr j

= √

dx

dr

2

j

+

dy

dr

2

j

B. Evaluate the integrand at point r j:

(i) Evaluate the nb interpolation functions:

H j ≡ H(r j)

(ii) Evaluate y from curve data

y j = H j ye =
N

i=1
Σ Hi (r j) y

e

i

C. Form products and add to previous values

L = L +
ds

dr j

w j , y L = y L + y j

ds

dr j

w j .

5. Evaluate items computed from the completed integrals: y = y L/L, etc. for x.

Note that to automate the integration we simply need: 1) storage of the quadrature

data, r j and w j , 2) access to the curve data, xe, ye, 3) a subroutine to find the parametric

derivative of the interpolation functions at any point, r, and 4) a function program to

evaluate the integrand(s) at any point, r. This usually requires (see Step 4B) a subroutine

to evaluate the interpolation functions at any point, r. The evaluations of the

interpolation products, at a point r j , can be thought of as a dot product of the data array

xe and the evaluated interpolation quantities H j and DL_Hj .

126 Finite Element Analysis with Error Estimators

4.6 Exercises

1. In Tables 4.1 and 4.3 the sum of the weights is exactly 2, but in Table 4.2 the sum is

exactly 1. Explain why.

2. Note that the Gauss abscissas are always interior to the domain and symmetrically

placed. The Lobatto rules for nq ≥ 2 always includes the two end points. Discuss

an advantage or disadvantage of including the end points.

3. For a one-dimensional quadratic element, with a constant Jacobian, use Gaussian

quadratures to numerically evaluate the matrices:

a) Ce = ∫Le

HT
dx, b) Me = ∫Le

HT H dx,

c) Se = ∫Le

dHT

dx

dH

dx
dx, d) Ue = ∫Le

HT
dH

dx
dx .

4 Use the exact integrals for Se and Me from Problem 3 to hard code the equivalent of

Fig. 2.11 for a three node quadratic line element. Note that such an element will

also allow for Q(x) = x
2 as well as the original linear source term. In that case, of

course, the exact solution changes.

5. Use Lobatto quadrature to evaluate the matrices in Problem 3. Note that Me

becomes a diagonal matrix.

4.7 Bibliography

[1] Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, National

Bureau of Standards (1964).

[2] Carey, G.F. and Oden, J.T., Finite Elements − Computational Aspects, Englewood

Cliffs: Prentice Hall (1984).

[3] Hinton, E. and Owen, D.R.J., Finite Element Programming, London: Academic

Press (1977).

[4] Hughes, T.J.R., The Finite Element Method, Mineola: Dover Publications (2003).

[5] Smith, I.M. and Griffiths, D.V., Programming the Finite Element Method, 3rd

Edition, Chichester: John Wiley (1998).

[6] Stroud, A.H. and Secrest, D., Gaussian Quadrature Formulas, Englewood Cliffs:

Prentice Hall (1966).

[7] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 5

Error estimates

for elliptic problems

5.1 Introduction

Having obtained a finite element solution, we would like to be able to estimate the

error in that solution and, perhaps, have the analysis program correct itself. Currently,

that is a practical option for an elliptic partial differential equation (PDE). Here we will

outline the basic method and notation of that class of error estimation. Consider a

problem posed by the PDE written as

(5.1)L φ + Q = 0 in Ω

with the essential boundary condition φ = φ o on boundary Γφ , and a prescribed traction,

or flux, t = to on the boundary Γ t with Γ = Γφ ∪ Γ t . Here L is a linear differential

operator that can usually be written in the symmetric form

(5.2)L ≡ D
T E D

where D is a lower order operator and the symmetric constitutive array E contains

material information. The gradient quantities of interest are denoted as

(5.3)εε ≡ D φ

and the flux quantities, q, by some constitutive relation

(5.4)q = ± E εε .

On the boundary, Γ, of Ω we are often interested in a traction, t, defined in terms of the

fluxes by

(5.5)t = G q

where G is usually defined in terms of the components of the normal vector, n.

For example, in isotropic conduction φ is the temperature, Q, in internal volumetric

heat source, E = k I, where k is the thermal conductivity, I is the identity matrix, and D is

simply the gradient operator

128 Finite Element Analysis with Error Estimators

D
T = ∇∇ T =

∂
∂x

∂
∂y

∂
∂z

so that L becomes the Laplacian, L = ∇∇ T
k I ∇∇ , and for the common case of constant k:

L = k

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

.

In this example εε is simply the gradient vector

εε = ∇∇ φ , εε T =

∂φ

∂x

∂φ

∂y

∂φ

∂z

and the Fourier Law (note the negative sign) defines the heat flux vector

q = − k I ∇∇ φ = − k ∇∇ φ , q
T = [qx qy qz].

Likewise, for G = n the boundary traction is the normal heat flux:

t = n.q = qx nx + qy ny + qz nz = qn = − k ∂φ / ∂n.

For the one-dimensional case of heat conduction these all reduce to scalars with

D = ∂ / ∂x , E = k , εε = ∂φ / ∂x , nx = ± 1 , q = qx = − k ∂φ / ∂x , t = ± qx ,

and the governing differential equation Lφ + Q = 0 becomes

∂
∂x

k
∂φ

∂x

+ Q = 0

in Ω with φ = φ 0 on Γ0. While on the boundary Γ t , the traction t = qn = −k nx ∂φ / ∂x,

and has an assigned value of qn = t0.

Likewise, for a problem in planar elasticity, φφ and εε become the displacement vector

components φφ = [u v]T and strain matrix components εε = [ε x ε y γ] , respectively,

which are related by the differential operator

D =

∂
∂x

0

∂
∂y

0

∂
∂y

∂
∂x

.

The corresponding fluxes or stress tensor components are q = σσ ≡ [σ x σ y τ]T

which are related to the strains, εε , by the symmetric Hooke’s Law ‘stress - strain’ matrix,

E (without a minus sign). The source Q generalizes to the body force vector

Q = X = [X x X y]T . Finally, the surface traction vector t = T = [T x T y] is related

to the surface stresses, σσ , and the components of the outward unit normal vector, n , by

T = G σσ where

G =

nx

0

0

ny

ny

nx

.

Chapter 5, Error estimates for elliptic problems 129

In a finite element method we seek a solution φ̂ which, in turn, yields the

approximations for the gradient and flux terms, ε̂̂ε and q̂q. The standard interpolation gives

(5.6)φ ≈ φ̂ = N(x) ΦΦe x in Ωe

with a corresponding gradient estimate

(5.7)εε ≈ ε̂ε = D N(x) ΦΦe ≡ Be(x) ΦΦe

for x in Ωe. Likewise, the flux approximation is

(5.8)σσ ≈ σ̂σ = Ee Be(x) ΦΦe.

In this notation the element square matrix and source vector are

(5.9)Se =
Ωe

∫ Be
T

Ee Be
dΩ , Ce

Q
=

Ωe

∫ Q
e Ne

T

dΩ

and the boundary traction contribution, if any, is

(5.10)Cb

qn
=

Γb

∫ q
b

n
Nb

T

dΓ.

When the element degrees of freedom subset, ΦΦe ⊂ ΦΦ, hav e been computed and gathered

from substitution into Eqs. 5.6-8, the local errors in an element domain are

(5.11)eφ (x) ≡ φ (x) − φ̂ (x)

(5.12)eε (x) ≡ εε (x) − ε̂ε (x) , x ε Ωe

(5.13)eσ (x) ≡ σσ (x) − σ̂σ (x).

These quantities can be either positive or neg ative so we will mainly be interested in their

absolute value or some normalized measure of them. We will employ integral norms for

our error measures. On a linear space we can show that a norm has the properties given

in Sec. 2.2. In finite elements we often use the inner product defined as

(5.14)< u, v > ≡
Ω
∫ u(x) v(x) dΩ

which possesses a natural norm defined as

(5.15)|| φ ||2 = < φ , φ > =
Ω
∫ φ (x) φ (x) dΩ.

This is also called the L2 norm, since it involves the integral of the square of the

argument. We wish to minimize the error in the solution, eφ . Howev er, for elliptical

problems it can be shown that this corresponds to minimizing the error energy norm, or

other related measures. Error estimates commonly employ one of the following norms:

1. The error energy norm || e || defined as

130 Finite Element Analysis with Error Estimators

(5.16)

|| e || =

 Ω
∫ (εε − ε̂ε)T E(εε − ε̂ε) dΩ

1
2

=

 Ω
∫ (εε − ε̂ε)T (σσ − σ̂σ) dΩ

1
2

=

 Ω
∫ eT

ε eσ dΩ

1
2

=

 Ω
∫ (σ − σ̂)T E−1(σ − σ̂) dΩ

1
2

.

2. The L2 flux or stress error norm

(5.17)|| eσ || L2
=

 Ω
∫ (σσ − σ̂σ)T (σσ − σ̂σ) dΩ

1
2

=

 Ω
∫ eT

σ eσ dΩ

1
2

.

3. The root mean square stress error, ∆σ , giv en by

(5.18)∆σ = || eσ || L2
/ Ω

1
2 .

4. In general, any of these norms is the sum of the corresponding element norms:

(5.19)|| φ ||2 =
e

Σ || φ ||2
e
, || φ ||2

e
=

Ωe

∫ φ 2
dΩ

and the domain is the union of all of the element domains, Ω =
e

∪ Ω e.

A relative percentage error can be defined as η = 100 × || e || / || φ || which

represents a weighted root mean square percentage error in the stresses. We can compute

a similar estimate relative to the L2 norms. In most of the literature on the subject of

error estimators there is a discussion of the effectivity index, Θ. It is simply the ratio of

the estimated error divided by the exact error, Θ = || e || fea / || e ||exact . Usually an

Log

Error

Mesh size, Log h

Log

Error

Number of equations, Log N

p

1

C

E = C hp

p
2

C
2

1

p/n_space

1

Figure 5.1 Asymptotic convergence rates for finite elements

Chapter 5, Error estimates for elliptic problems 131

analytical solution is employed to compute the exact error (and to assign the problem

source, Q, and boundary conditions, φ 0), but sometimes very high precision numerical

results are used. Clearly, one should search for methods where the effectivity index is

very close to unity. Some methods employ a constant, determined by numerical

experiment, to increase their effectivity index to near unity for a specific element type.

From studies in interpolation theory, the finite element approximation is known to

converge in the energy norm when || e || ≤ Ch
p, for p > 0, where h is the distance

between nodes on a uniform mesh (the characteristic element length), p is called the rate

of convergence. The rate depends on the degree of the polynomial used to approximate

φ , the order of the highest derivative of φ in the weak form, and whether there are local

singularities in the domain. The constant, C, is independent of φ and will be influenced

by the shape of the domain and whether Dirichlet or Neumann boundary conditions are

employed. Typically p = k + 1 − m > 0 where k is the degree of the highest complete

polynomial used in the interpolation and m is the order of the highest derivative of φ in

the weak form. Remember that simplex elements always use complete polynomials by

Lagrangian and Serendipity elements use incomplete polynomials. Note that the above

equation for the error would be a straight line plot for a log-log plot of error versus mesh

size, as shown in Fig. 5.1. In that case the slope of the line is the rate of convergence, p.

Such a convergence relation can also be expressed in terms of the number of equations

associated with the mesh. In a one-dimensional problem the number of equations, N , is

proportional to 1/h while in two-dimensions it depends on 1 / h
2, etc. Then the (absolute

value of) the slope of the line is the convergence rate divided by the dimension of the

space.

5.2 Error estimates

In general, we do not know the exact strain, εε , or stress values, σσ , in Eqs. 5.3 and

5.4. We do hav e piecewise continuous estimates for the element strains, ε̂ε , and stresses,

σ̂σ , in the element interiors. However, unlike the solution φ , these estimates are generally

discontinuous between elements. For homogeneous domains (homogeneous E), we

expect the exact εε and σσ to be continuous. At the interface of two different homogeneous

materials (E1 and E2), we expect the gradients, εε , to be discontinuous and the fluxes, σσ ,

to usually be continuous normal to the interface of the two materials (or continuous

tangent to the interface in some electromagnetic applications). In most elliptical

problems, we expect the normal flux component to be continuous, but the tangential

component along the interface may be discontinuous. For some electromagnetic

problems the reverse is true for interface flux components. In a homogeneous domain a

continuous estimate of εε and σσ should be more accurate than would be the piecewise

continuous ε̂ε and σ̂σ . Denote such continuous approximations by εε * and σσ *, respectively.

That is, σ̂σ is discontinuous across element boundaries, while the σσ * are constructed to be

continuous across those boundaries. Then, within an element, the error estimators with

good accuracy are

(5.20)eε ≈ εε * (x) − ε̂ε (x) , eσ ≈ σσ * (x) − σ̂σ (x).

There are various procedures for obtaining nodal values of the strains, ε *, or

stresses, σ *, that will yield a continuous solution over the domain. Probably the most

132 Finite Element Analysis with Error Estimators

common early approach was simply an averaging based on the number and/or size of

elements contributing to a node. The continuous nodal stresses were obtained by

av eraging the values from surrounding elements. However, this simple averaging process

does not have any mathematical foundation relative to the original problem and can not

be used as part of an effective error estimator. A precise mathematical procedure for

computing the nodal values directly was given early in the development of finite element

methods by Oden, et al. [8, 17]. However, that ‘Conjugate Stress’ approach required the

assembly of element contributions and solving a system of equations equal in size to the

number of nodes in the system. More recently for elliptical problems it has been shown

that a Super-Convergent Patch (SCP) of elements provides a way to recover accurate

continuous nodal fluxes or nodal gradients that can be used in an error estimator.

Ainsworth and Oden [3] have carried out an extensive review of the most useful error

estimation techniques. They consider both elliptical equations and other classes of

problems such as the Navier-Stokes equations.

In Chapter 2 we showed that a patch based averaging process is one way to estimate

the value of σσ *. While we will employ mainly that SCP approach some other methods

have proven practical. We will look briefly at hierarchical and flux balancing methods as

alternate ways of estimating the error. Then we will follow with a chapter outlining the

details of the super-convergence patch averaging and error estimation.

5.3 Hierarchical error indicator

Zienkiewicz and Morgan [31] have giv en a detailed study of how hierarchical

interpolation functions can be employed to compute an error estimate. Here we will

outline this approach in one-dimension. They define the error norm as

(5.21)|| e ||2
E

= −
Ω
∫ e r d Ω

where the error is e = φ − φ̂ and r is the residual error on the interior of the domain

(5.22)L φ̂ + q = r ≠ 0.

Now we enrich the current approximate solution φ̂ to get a more accurate (higher degree)

approximation by adding the next hierarchical bubble function φ * = φ̂ + Hb ab where ab

is the next unknown hierarchical degree of freedom. If we take this as representing the

correction solution (φ ≈ φ *), then we have e
e = H

e

b
ab and

(5.23)|| e
e ||E = ab

Ωe

∫ H
e

T

b
r

e
d Ω.

If one can estimate the degree of freedom ab, then we have an error indicator. If it is the

only new dof, and if the hierarchical functions are orthogonal, the new system

equilibrium equations are

(5.24)

S

0

0

sbb

a

ab

=

C

cb

,

where S and C were the previous system matrices, and sbb and cb are the new element

(and system) stiffness and source terms, respectively. From this diagonal system, we

Chapter 5, Error estimates for elliptic problems 133

compute the new term ab = cb / sbb, that is,

cb =
Ωe

∫ H
T

b
q

e
d Ω

or from the internal residual definition and the above orthogonality,

cb =
Ωe

∫ H
T

b
(r − L φ̂) d Ω =

Ωe

∫ H
T

b
r

e
d Ω.

Therefore, this error indicator simplifies to || e
e ||E = ab cb = c

2
b
/ sbb.

In the following we will use this approach on a one-dimensional sample problem.

We will see that the effectivity index is only about one-half, which is unacceptably far

from the desired value of unity. While we could introduce a ‘fudge factor’ constant of

two, it is wiser to search for a method, like the SCP recovery, that would yield an

effectivity index that is always much closer to unity. Consider the Zienkiewicz and

Morgan (Z-M) hierarchical error estimator for their Example 8.1 of [31] expanded to

consider the local element errors and flux balances. The model problem is

(5.25)−
d

2φ

dx2
+ Q = 0 , x ∈]0 , L[, φ (0) = 0 , φ (L) = 0

with the exact solution φ = Q(x − L) x / 2, so φ ′ = Q(2x − L)/2. Using the Galerkin

approximation:

L

∫ φQ dx −
L

∫ φ φ , xx dx =
L

∫ φQ dx − φ φ , x

L

0

+
L

∫ φ 2
, x

dx = 0

or finally

L

∫ φ 2
, x

dx = −
L

∫ φQ dx + φ φ , x

L

0

.

Splitting the domain into elements and using our interpolations φ h = He ue this reduces

to the matrix form:

e

Σue
T

Ke ue = −
e

Σue
T

Fe

Q
+ u(L) φ , x(L) − u(0) φ , x(0)

with the typical element matrices defined (with E = I) as

Ke =
Le

∫ He
T

, x
He

, x
dx , Fe

Q
=

Le

∫ He
T

Q
e

dx.

For an initial linear interpolation with constant coefficients

Ke =
1

Le

1

−1

− 1

1

, Fe

Q
=

Q
e
L

e

2

1

1

.

First, consider a trivial single element solution. By inspection, L
e = L so that

1

Le

1

−1

− 1

1

u1

u2

= −
QL

e

2

1

1

+

− φ , x(0)

+ φ , x(L)

134 Finite Element Analysis with Error Estimators

but u1 = u2 = 0 from the boundary conditions. There are no unknown degrees of freedom

to compute so we go directly to the flux recovery and error estimates. Solving for the

flux gives φ , x(0) = − QL
e / 2 and φ , x(L) = QL

e / 2 as the two necessary nodal flux values.

Checking we see that a useless solution has still given nodal fluxes that are exact as

L
e ≡ L. The recovered nodal flux resultants are exact despite the fact that the single

element solution is trivial, i.e., φ h = He ue = He Oe = 0 (which is exact at nodes). The

single element solution is useless in estimating the solution error. In the energy norm the

error measure is

|| e ||2 = − ∫L

(φ − φ h) (− φ h, x x + Qh) dx = − ∫L

e r dx

where r is the interior residual. To compute an error indicator, we add a quadratic

hierarchical term to the linear element so φ *
h

= φ h + u
e

3 H
e

3 where H
e

3(x) = x(L − x) in

global space, or H
e

3(r) = r(1 − r) in a local unit coordinate space. The Z-M error

indicator is

|| e
e ||2 = [∫Le

H3 r dx]2 / K
e

33 , K
e

33 = ∫Le

H3 [− H
′′
3] dx

is the new hierarchical stiffness term, and e
e = φ *

h
− φ h. Here

K
e

33 = ∫Le

r (1 − r) [
−1

Le2
(−2)] dx = 1 / 3L

e

and

I
e = ∫Le

H
e

3 R
e
dx = ∫Le

r (1 − r) Q
e
dx = Q

e
L

e / 6

so || e
e ||2 = [Qe

L
e/6]2 / (1 / 3L

e) = Q
e

2

L
e

3

/ 12 which happens to be exact for one

element. We now repeat the solution and error indicators for two elements of equal size

with L
e = L /2. The equilibrium equations are

1

Le

1

−1

0

− 1

2

−1

0

− 1

1

u1

u2

u3

= −
QL

e

2

1

2

1

+

− φ , x (0)

0

+ φ , x (L)

.

Setting u1 = 0 = u3 the remaining second equation yields u2 = − QL
e

2

/ 2, but L
e = L /2

so that u2 = − QL
2 / 8 which is exact. Recovering the fluxes from equilibrium, we first

check the global reactions: φ , x (0) = − QL
e = − QL / 2, and φ , x (L) = + QL / 2, which are

both exact. Next, we find the fluxes on each element necessary for local equilibrium:

e = 1 ,
1

Le

1

−1

− 1

1

u1

u2

= −
QL

e

2

1

1

+

− φ , x (x1)

+ φ , x (x2)

−
1

Le

−QL
e

2

/2

+QL
e

2

/2

+
QL

e

2

1

1

= QL
e

1

0

=

− φ , x (x1)

+ φ , x (x2)

which are exact since L
e = L /2. Likewise, for e = 2,

Chapter 5, Error estimates for elliptic problems 135

− φ , x(x2)

+ φ , x(x3)

= QL
e

0

1

.

The equilibrium of these global and local fluxes is sketched in Fig. 5.2. Note that the flux

is zero at the symmetry point (x = x2) as expected. Since Q is a constant, the previously

developed element error indicator, || e
e ||2 = Q

e
2

L
e

3

/12 , is still valid for each element and

the system error estimate is || e ||2 =
ne

e=1
Σ = 2 || e

e ||2 = Q
e

2

L
e

3

/6 and since L
e = L /2 we get

|| e ||2 = Q
2
L

3/48 compared to the exact value of Q
2

L
3/24. Thus, the total error is

underestimated by a factor of two, but the indicator correctly shows each to have the

same amount of error.

If we select two unequal elements, we still get exact values for the nodal values and

fluxes. That is, if we let L
e = L /4 and L

e = 3L /4, respectively, we see the results in

Fig. 5.2. There we note drastic differences in the local errors in each of the two elements.

Checking our error indicators we get

e = 1 , || e
e ||2 = Q

e
2

L
e

3

/12 = Q
2
L

3/768

e = 2 , || e
e ||2 = Q

2/12 (3L/4)3 = 27Q
2
L

3/768.

Clearly, this indicates that the error in the second element is 27 times as large as for that

in the first element. Thus, the second element would be selected for refinement. Of

course, the total error estimate for the two unequal elements is

ne

e=1
Σ = 2 || e

e ||2 = 28Q
2
L

3/768 , and || e ||2
exact

=
7

96
Q

2
L

3 = 56 Q
2
L

3/768.

Refining the second mesh by placing a new node at x = 3L /4 giv es the results in Fig. 5.2.

Clearly, the first and third elements have the same indicators || e
e ||2 = Q

2
L

3/768 while

1 2 31 2

-3QL2 / 32

3QL / 4

QL / 4

QL / 4

QL / 4
2QL / 4

2QL / 4

2QL / 4

QL / 4 QL / 4

QL / 4QL / 4

2QL / 42QL / 4

QL / 4

1 1

2 2

3

-3QL2 / 32

Figure 5.2 Sample two and three element solutions, with flux values

136 Finite Element Analysis with Error Estimators

the middle element has a value of || e
e ||2 = Q

2
L

3 / 96. The total error estimate is

|| e ||2 =
ne

e=1
Σ = 2 || e

e ||2 = Q
2
L

3/768 [1 + 8 + 1] = 10 Q
2
L

3/768.

Therefore, we notice that 10 percent of the error is in each of the two small elements and

the remaining 80 percent is in the middle element. The exact error and effectivity

measures are:

|| e ||2
exact

=
10

384
Q

2
L

2
,

|| e ||2

|| e ||2
exact

= 0. 5.

Finally, we observe the effects of four equally spaced elements on the error indicators.

The system error indicator is the same for all elements and

|| e ||2 =
ne

e=1
Σ =4 || e

e ||2 = Q
e

2

L
e

3

/3 = Q
2

L
3/192,

and the exact value is 2 Q
2

L
3/192, and once again we get an effectivity of only 50

percent. Since we want an error estimator with an effectivity index near unity, this

method is not as desirable as the SCP recovery despite correctly giving the relative

element error.

5.4 Flux balancing error estimates

Kelly et al [12-14, 24] conducted early studies, on simple structural and thermal

models, in the use of residual equilibrium in establishing error estimates for the finite

element method. That includes looking at the resultant flux (integral) at the element

interfaces and assigning a percentage of it to each of the two elements so as to maintain

equilibrium (i.e., balance the flux). Generalizing the functional analysis of such a

procedure leads to a powerful flux balancing error estimate.

Ainsworth and Oden [1 − 3] have dev eloped a local patch error estimator that is very

well justified through detailed functional analysis, is robust, and economical to

implement, and gives very accurate local error estimates for any order interpolation

functions. That is, it usually produces an effectivity index that is very close to unity and

is much more reliable than other methods known to the author. By using a dual

variational formulation, they hav e proved that this estimator provides an upper bound

estimate of the true error. The Ainsworth - Oden flux balancing method uses a local patch

of elements for each master node. A typical patch includes all elements connected, or

constrained, to the master node. The goal is to choose a linear averaging function α KL

between each pair of adjacent elements, K and L, such that the residual internal error, r,

and inter-element gradient jumps, R, are in equilibrium; that is,

(5.26)
Ω
∫ r d Ω +

Γ
∫ R d Γ = 0.

They provide a detailed procedure for implementing this method, including pseudo-code

for the flux-splitting algorithm. The equilibrium fluxes are used to compute the local

error estimator. A summary of the method is as follows:

Chapter 5, Error estimates for elliptic problems 137

for each master node in patch A do

begin

calculate a modified topology matrix, T

factorize the matrix, L U ≡ T

for every element e in the patch do

begin

calculate mean flux source, be

calculate inter-element weight, ζ e

j

assemble patch source, b

end

solve for patch constants λλ ; L U λλ = b

for every inter-element edge ΓKL between elements K and L in patch do

begin

α KL = 1

2
+ (λ K − λ L) /ζ KL

end

end

with the topology matrix defined as

T j k =

(1 + number of elements in patch), if j = k

0 , if Ω j and Ωk are neighbors in patch

1 , otherwise.

Letting Ψ be a piecewise linear function that is unity at the master node and zero on the

patch boundary, the mean source is defined in terms of the model equation

(5.27)− ∇∇ . (k ∇∇ u) + b . ∇∇ u + cu = f

as

be = L
e (Ψ) − B

e (û , Ψ) +
Γe \ Γ
∫ Ψ < ne . k ∇∇ û >

1
2

d Γ

L
e (Ψ) =

Ωe

∫ f Ψ d Ω +
Γn

∫ k
∂u

∂n
Ψ d Γ

B
e (û , Ψ) =

Ωe

∫ (k ∇∇ û . ∇∇ Ψ + Ψb . ∇∇ û + c û Ψ) d Ω

< ne . k ∇∇ û > = ne . 1

2

k
e ∇∇ û

 Ωe

+ k
j ∇∇ û

 Ω j

and the inter-element weight is

ζ e

j
= −

Γe

j

∫ Ψ

ne . k
e ∇∇ û

 Ωe

+ n j . k
j ∇∇ û

 Ω j

d Γ.

The actual flux-splitting function on the boundary between nodes K and L is

138 Finite Element Analysis with Error Estimators

α KL(s) =
A

Σ α KL Ψ (s)

where the sum has taken over all patches containing edge KL (and a non-zero Ψ). Once

the fluxes are in equilibrium, the error, e = u − û, is bounded above by the norm

|| e ||2 ≤
1

β 2

ne

e=1
Σ || φ e ||2

where β > 0 is a constant depending on the norm selected (β = 1 for the standard energy

norm), and φ is obtained by solving the element local Neumann problem

(5.28)a
e (φ , w) = L

e (w) − B
e(û , w) +

+
Γe

∫ w ne .

(1 − α KL(s)) k
e ∇∇ û

 Ωe

+ α KL(s) k
j ∇∇ û

 Ω f

d Γ.

The examples by Ainsworth and Oden show this procedure to be accurate and

economical. The effectivity index, Θ, is usually very near unity as desired, and is usually

above 0.9 for even crude initial mesh calculations. While this is also a recommended

method, we choose to implement SCP recovery due to its simplicity.

5.5 Element adaptivity

Upon completing the loop over all elements we have the element norms, the element

volume, the system norms,

(5.29)||e||2 =
ne

e

Σ ||ee ||2 ,

and the system volume. The allowed error energy is obtained from the product of the

strain energy norm and the user input value of the allowed percentage error, η (keyword

input value scp_allow_error_%). That number is used, in turn, to evaluate two allowed

error densities in dividing by the square root of the number of elements and the square

root of the volume to yield mean element and volumetric references, respectively. One of

these reference values will be used to rank the relative error measures in each element.

The system norm values are printed along with the two allowable reference values for the

energy error and the system volume. For each element we will list the element error

norm, its percentage of the strain energy norm, and a refinement parameter for that

element. The element error energy norms are summed to get the total energy in the error

to compare to the total strain energy norm and the allowed percentage of error. Here, the

refinement parameter is based on the volumetric error density, so for element j the

refinement parameter is

ξξ
j

= (||e j || /√ Ω j) / (η ||e || / √ Ω)

or

(5.30)ξξ
j

=
||e j ||

η ||e ||

Ω
Ω j

1
2

.

Here it is informative to note that for a uniform mesh all the ne element volumes are

constant with a value of

Chapter 5, Error estimates for elliptic problems 139

Ω j = Ω / ne

and the refinement indicator becomes the same as originally employed by Zienkiewicz

and Zhu, namely:

(5.31)ξ j =
||e j ||

η ||e || √ ne

.

By combining such an indicator with interpolation error analysis, one can predict the

desired element size or polynomial degree. For each element, i, we define the ratio ξ to

indicate needed refinement when ξ i > 1 and de-refinement when ξ i < 1.

5.6 H-adaptivity

The refinement indicator of Eq. 5.31 is the ratio of the current estimated error in an

element to that desired in the element. From interpolation theory the asymptotic

convergence rates for an element in a uniform mesh is || e || = Ch
p, for p > 0, where h is

the characteristic element length (distance between nodes), p is the degree of the

polynomial, and C is a constant that depends on the shape of the domain and the

boundary conditions (Dirichlet versus Neumann). In h-adaptivity we hold the polynomial

degree, p, constant and seek a new element size, say hnew. Thus, we can also view the

refinement indicator as related to the current and new sizes, namely for the j-th element:

(5.32)ξ j =
Ch

p

j

Ch
p

new

.

Cancelling the problem constant, C, and factoring out the polynomial order, p, the new

element size should be

(5.33)hnew = h j / ξ
1 / p

j
.

It should be noted that some analysts like to normalize the asymptotic rate by dividing the

element size by its initial size. That is, after a few iterations they employ (h/h0)p where

h0 was the element size in the original mesh.

The relation in Eq. 5.33 is used to output a sequential list of desired element sizes to

be utilized as input by an automatic mesh generator. It could be arbitrarily associated

with the element centroid. Here it is output at each current node using the average value

of all the elements connected to the node. Huang and Usmani provide such an automatic

mesh generator for two-dimensional applications [11]. A modified version of their source

code was used for several of the examples given herein.

5.7 P-adaptivity

In p-adaptivity it is less clear how to proceed and several hueristic approaches have

been used. It is clear that the new polynomial degree must be an integer. The change in

degree should be small (1 or 2) because higher order elements are expensive. Also

numerical studies show that the nature of the error is different in even and odd order

polynomials. The interior error (measured well by the SCP) is more important in even

polynomials, while the interface flux jump error is more important in odd order elements.

140 Finite Element Analysis with Error Estimators

Thus, one could simply assume the element size will be constant and note which

integer increase in p would give a refinement indicator slightly smaller that the one

obtained from the error estimator. In global p-refinements typically use the largest

integer found in this way (but limiting the new polynomial to ≤ 6). However, that can be

very expensive. There is another empirical equation for estimating the new polynomial

degree. If one assumes Lagrange interpolation and views h as the distance between

nodes then a real number estimate of the new degree is

(5.34)p
Est

= p × ξ
1 / p

j

which would have to be rounded to an integer value, p
new

. Typical results from this

estimate are illustrated below:

ξ p old ξ 1/pold p Est Operation p
new

4.00 2 2.00 4.0 Enrich 4

1.00 2 1.00 2.0 No Change 2

0.50 2 0.71 1.4 No Change 2

0.05 2 0.22 0.45 Degrade 1

4.00 3 1.59 4.76 Enrich 5

2.00 3 1.26 3.78 Enrich 4

0.50 3 0.79 2.38 Degrade 2

Clearly, arbitrary rules govern how to round the estimated p in the fourth column. The

third line value of 1.4 might just as easily been thought of as a degrade to a linear

polynomial (pnew = 1).

5.8 HP-adaptivity

It has been proved (see Ainsworth and Oden [3] for example) that an hp-adaptive

system gives the optimal convergence (maximum accuracy for a given number of

equations). However, its programming is difficult and requires careful planning of the

data base structure. In an hp-adaptive solution one needs to pick which item to change

first. Since p changes are relatively expensive and must be limited to integers it may be

best to select pnew first and to restrict the change in degree, say n to 0 or + − 1. Then due

to the integer choice on p some of the estimated refinement (or de-refinement) still needs

to occur by also selecting a new mesh size. We can envision the refinement indicator as

having two contributions, ξ = ξ p × ξ h. If the new integer degree, (p + n), was based on

the current element size then the now known numerical value ξ p = h
p / h

(p + n) can be

used to get the needed remaining spatial refinement indicator , ξ h. Note that the product

relation is

(5.35)ξ =
h

p

h
(p + n)
new

=
h

p

h(p + n)
×

h
(p + n)

h
(p + n)
new

= ξ p × ξ h

which with ξ and ξ p known simplifies to

ξ h = (ξ / ξ p) = (h / h
new

)(p + n)

or finally

Chapter 5, Error estimates for elliptic problems 141

(5.36)h
new

= h / ξ
1 / (p + n)
h

.

Even with these rough estimates of desired changes one may need other rules to assure

that the mesh size and local degree do not change rapidly from one solution iteration to

the next, or oscillate between large and small values.

5.9 Exercises

1. A four element model of our previous example differential equation,

u, xx + u + x = 0, u(0) = 0 = u(1) yields the exact and finite element solution as

shown in Prob. 5.1a and the true flux is shown in Prob. 5.1b. The finite element flux

estimates in the elements consist of the four constant steps listed above. Obtain a

nodal continuous flux estimate by using element based patches (four in total). Show

the estimated (eyeball) linear fit on each patch. For each patch use a unique symbol

to show the interpolated nodal flux values. At each original mesh node average the

nodal flux values from all patches. Plot a piecewise linear curve through those

av erage flux values and compare it to the exact flux curve in Prob. 5.1b. Utilize

those numerical results, for the two-noded linear element (L2).

2. Resolve the example in Chapter 2 for k d
2φ / dx

2 + Q = 0 with φ (L) = φ L , and

k dφ / dx (0) = q0 using a four element model. Plot the results compared to the

exact solution. Obtain the gradient estimate in each element at its centroid, and plot

it against the true gradient. Obtain a nodal continuous flux estimate by using

element based patches (four in total). Show the estimated (eyeball) linear fit on each

*** OUTPUT OF RESULTS AND EXACT VALUES IN NODAL ORDER *** ! 1
NODE, X-Coord, DOF_1, EXACT1, ! 2

1 0.0000E+00 0.0000E+00 0.0000E+00 ! 3
2 2.5000E-01 4.3758E-02 4.4014E-02 ! 4
3 5.0000E-01 6.9345E-02 6.9747E-02 ! 5
4 7.5000E-01 5.9715E-02 6.0056E-02 ! 6
5 1.0000E+00 0.0000E+00 -2.2829E-10 ! 7

! 8
*** FE AND EXACT FLUX COMPONENTS AT INTEGRATION POINTS *** ! 9
ELEMENT, PT, X-Coord, FX_1, EX_1, !10

1 1 5.283E-02 1.750E-01 1.867E-01 !11
1 2 1.972E-01 1.750E-01 1.654E-01 !12

ELEMENT, PT, X-Coord, FX_1, EX_1, !13
2 1 3.028E-01 1.023E-01 1.343E-01 !14
2 2 4.472E-01 1.023E-01 7.155E-02 !15

ELEMENT, PT, X-Coord, FX_1, EX_1, !16
3 1 5.528E-01 -3.852E-02 1.137E-02 !17
3 2 6.972E-01 -3.852E-02 -8.890E-02 !18

ELEMENT, PT, X-Coord, FX_1, EX_1, !19
4 1 8.028E-01 -2.389E-01 -1.745E-01 !20
4 2 9.472E-01 -2.389E-01 -3.060E-01 !21

P5.1 Four linear element results

142 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

X, Node number at 45 deg, Element number at 90 deg

Exact (dash) & FEA Solution Component_1: 4 Elements, 5 Nodes

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.0

69
34

5,
 m

in
 =

 0
)

(1

)

(2

)

(3

)

(4

)

1

2

3

4

5

−−−min

−−−max

U " + U + X = 0, U(0) = 0 = U(1)

Prob. 5.1a Exact and FEA solution of ODE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

X, Node number at 45 deg, Element number at 90 deg

Exact (dash) Flux Component_1: 4 Elements, 5 Nodes

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.1

88
4,

 m
in

 =
 −

0.
35

79
1)

1

2

3

4

5

U,xx + U + X = 0, U(0) = 0 = U(1)

Prob. 5.1b Exact flux for ODE

Chapter 5, Error estimates for elliptic problems 143

patch. For each patch use a unique symbol to show the interpolated nodal flux

values. At each original mesh node average the nodal flux values from all patches.

Plot a piecewise linear curve through those average flux values and compare it to the

exact gradient. Use a) L = 1, k = 1, q0 = 2, φ L = 1, and Q = Q0 = 1 so that the

exact solution is given by k φ (x) = k φ L + q0(x − L) + Q0 (L
2 − x

2) / 2, b) L = 1,

k = 1, q0 = 1/12, φ L = 0, and Q = x
2 so the exact solution is φ (x) = (x − x

4) / 12.

5.10 Bibliography

[1] Ainsworth, M. and Oden, J.T., "A Procedure for a Posteriori Error Estimation for

h-p Finite Element Methods," Comp. Meth. Appl. Mech. Eng., 101,

pp. 73−96 (1992).

[2] Ainsworth, M. and Oden, J.T., "A Unified Approach to a Posteriori Error

Estimation Based on Element Residual Methods," Numer. Math., 65,

pp. 23−50 (1993).

[3] Ainsworth, M. and Oden, J.T., A Posteriori Error Estimation in Finite Element

Analysis, New York: John Wiley (2000).

[4] Babuska, I., Strouboulis, T., and Upadhyay, C.S., "A Model Study of the Quality of

a Posteriori Error Estimators for Finite Element Solutions of Linear Elliptic

Problems, with Particular Reference to the Behavior near the Boundary," Int. J.

Num. Meth. Eng., 40, pp. 2521−2577 (1997).

[5] Babuska, I. and Strouboulis, T., The Finite Element Method and its Reliability,

Oxford: Oxford University Press (2001).

[6] Barnhill, R.E. and Whiteman, J.R., "Error Analysis of Finite Element Methods with

Triangles for Elliptic Boundary Value Problems," in The Mathematics of Finite

Elements and Applications, ed. J.R. Whiteman, London: Academic Press (1973).

[7] Blacker, T. and Belytschko, T., "Superconvergent Patch Recovery with Equilibrium

and Conjoint Interpolant Enhancements," Int. J. Num. Meth. Eng., 37,

pp. 517−536 (1995).

[8] Brauchli, H.J. and Oden, J.T., "On the Calculation of Consistent Stress Distribution

in Finite Element Applications," Int. J. Num. Meth. Eng., 3, pp. 317−325 (1971).

[9] Ciarlet, P.G., The Finite Element Method for Elliptical Problems, Philadelphia, PA:

SIAM (2002).

[10] Cook, R.D., Malkus, D.S., Plesha, N.E., and Witt, R.J., Concepts and Applications

of Finite Element Analysis, New York: John Wiley (2002).

[11] Huang, H.C. and Usmani, A.S., in Finite Element Analysis for Heat Transfer,

London: Springer-Verlag (1994).

[12] Kelly, D.W., "The Self Equilibration of Residuals and Complementary a Posteriori

Error Estimates in the Finite Element Method," Int. J. Num. Meth. Eng., 20,

pp. 1491−1506 (1984).

[13] Kelly, D.W. and Isles, J.D., "Procedures for Residual Equilibrium and Local Error

Estimation in the Finite Element Method," Comm. in Applied Num. Methods, 5,

pp. 497−505 (1989).

144 Finite Element Analysis with Error Estimators

[14] Kelly, D.W. and Isles, J.D., "A Procedure for A Posteriori Error Analysis for the

Finite Element Method which Contains a Bounding Measure," Computers &

Structures, 31(1), pp. 63−71 (1989).

[15] Krizek, M., Neittaanmaki, P., and Stenberg, R., Finite Element Methods:

Superconvergence, Post-Processing and a Posteriori Estimates, New York: Marcel

Dekker, Inc. (1998).

[16] Ladeveze, D. and Leguillon, D., "Error Estimate Procedure in the Finite Element

Method and Applications," SIAM J. Num. Anal., 20(3), pp. 485−509 (1983).

[17] Oden, J.T., Finite Elements of Nonlinear Continua, New York:

McGraw-Hill (1972).

[18] Oden, J.T., Applied Functional Analysis, Englewood Cliffs: Prentice Hall (1979).

[19] Oden, J.T., "The Best FEM," Finite Elements in Analysis and Design, 7,

pp. 103−114 (1990).

[20] Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).

[21] Wiberg, N.-E., Abdulwahab, F., and Ziukas, S., "Enhanced Superconvergent Patch

Recovery Incorporating Equilibrium and Boundary Conditions," Int. J. Num. Meth.

Eng., 37, pp. 3417−3440 (1994).

[22] Wiberg, N.-E., Abdulwahab, F., and Ziukas, S., "Improved Element Stresses for

Node and Element Patches Using Superconvergent Patch Recovery," Comm. Num.

Meth. Eng., 11, pp. 619−627 (1995).

[23] Wiberg, N.-E., "Superconvergent Patch Recovery − A Key to Quality Assessed FE

Solutions," Adv. Eng. Software, 28, pp. 85−95 (1997).

[24] Yang, J.D., Kelly, D.W., and Isles, J.D., "A Posteriori Point-wise Upper Bound

Error Estimates in the Finite Element Method," Intern. J. for Num. Meth. Engr., 36,

pp. 1279−1298 (1993).

[25] Zhang, Z. and Zhu, J.Z., "Analysis of the Superconvergent Patch Recovery

Technique and a posteriori Error Estimator in the Finite Element Method (I),"

Computer Methods in Applied Mechanics and Engineering, 123,

pp. 173−187 (1995).

[26] Zhang, Z., "Ultraconvergence of the Patch Recovery Technique," Math. Comp., 65,

pp. 1431−1437 (1996).

[27] Zhang, Z., "Derivative Superconvergence Points in Finite Element Solutions of

Poisson’s Equation for the Serendipity and Intermediate Families − A Theoretical

Justification," Math. Comp., 67, pp. 541−552 (1998).

[28] Zhang, Z. and Zhu, J.Z., "Analysis of the Superconvergent Patch Recovery

Technique and a posteriori Error Estimator in the Finite Element Method (II),"

Computer Methods in Applied Mechanics and Engineering, 163,

pp. 159−170 (1998).

[29] Zhang, Z., "Ultraconvergence of the Patch Recovery Technique II, with Graph,"

Math. Comp., 69, pp. 141−158 (2000).

Chapter 5, Error estimates for elliptic problems 145

[30] Zhu, J.Z. and Zienkiewicz, O.C., "Superconvergence Recovery Techniques and

A Posteriori Error Estimators," Int. J. Num. Meth. Eng., 30, pp. 1321−1339 (1990).

[31] Zienkiewicz, O.C. and Morgan, K., Finite Elements and Approximation, Chichester:

John Wiley (1983).

[32] Zienkiewicz, O.C. and Zhu, J.Z., "A Simple Error Estimator and Adaptive

Procedure for Practical Engineering Analysis," Int. J. Num. Meth. Eng., 24,

pp. 337−357 (1987).

[33] Zienkiewicz, O.C., Kelley, D.W., Gago, J., and Babuska, I., "Hierarchal Finite

Element Approaches Error Estimates and Adaptive Refinement," pp. 313−346 in

The Mathematics of Finite Elements and Applications, VI, ed. J.R. Whiteman,

London: Academic Press (1988).

[34] Zienkiewicz, O.C., Zhu, J.Z., Craig, A.W., and Ainsworth, M., "Simple and

Practical Error Estimation and Adaptivity," pp. 100−114 in Adaptive Methods for

Partial Differential Equations, ed. J.E. Flaherty et al., SIAM (1989).

[35] Zienkiewicz, O.C. and Zhu, J.Z., "Superconvergent Patch Recovery Techniques and

Adaptive Finite Element Refinement," Comp. Meth. Appl. Mech. Eng., 101,

pp. 207−224 (1992).

[36] Zienkiewicz, O.C. and Zhu, J.Z., "The Superconvergent Patch Recovery and a

Posteriori Error Estimates. Part 2: Error Estimates and Adaptivity," Int. J. Num.

Meth. Eng., 33, pp. 1365−1382 (1992).

Chapter 6

Super-convergent

patch recovery

6.1 Patch implementation database

Since the super-convergent patch (SCP) recovery method is relativity easy to

understand and is accurate for a wide range of problems, it was selected for

implementation in the educational program MODEL. Its implementation is designed for

use with most of the numerically integrated 1-D, 2-D, and 3-D elements in the MODEL

library. Most of the literature on the SCP recovery methods is limited to a single element

type and a single patch type. The present version is somewhat more general in allowing a

mixture of element shapes in the mesh and a mesh that is either linear, quadratic, or cubic

in its polynomial degree.

This represents actually the third version of the SCP algorithm and is a

simplification of the first two. The method given here was originally developed for a p-

adaptive code where all the elements could have a different polynomial degree on each

element edge. That version was then extended to an object-oriented F90 p-adaptive

program that also included equilibrium error contributions as suggested by Wiberg [12]

and others. Including the p-adaptive features and the object-oriented features made the

data base more complicated and required more planning and programming than desirable

in an introductory text such as this one. However, the version given here has shown to be

robust and useful.

The SCP recovery process is clearly heuristic in nature, so some arbitrary choices

need to be made in the implementation. We begin by defining a ‘patch’ to be a local

group of elements surrounding at least one interior node or being adjacent to a boundary

node. The original research in SCP recovery methods used patches sequentially built

around each node in the mesh. Later it was widely recognized that one could use a patch

for every element in the mesh. Therefore, three types of patches will be defined here:

1. Node-based patch: An adjacent group of elements associated with a particular node.

2. Element-based patch: All elements adjacent to a particular element.

3. Face-based patch: This subset of the element-based patch includes only the adjacent

elements that share a common face with the selected element. For two-dimensional

Chapter 6, Super-convergent patch recovery 147

elements this means that they share a common edge.

Those three choices for patches were shown in Fig. 2.19. Any of these three

definitions of a patch requires that one have a mesh ‘neighbors list’. That is, we will need

a list of elements adjacent to each node, or a list of elements adjacent to each element, or

the subset list of facing element neighbors. These can be expensive lists to create, but are

often needed for other purposes and are sometime supplied by a mesh generation code or

an equation re-ordering program.

Here several routines are included for creating the lists and printing them.

Normally, since those neighbor lists are of unknown variable lengths, they would be

stored in a linked list data structure. Here, for simplicity, they hav e been placed in

rectangular arrays and padded with trailing zeros. This wastes a little storage space but

keeps the general code simpler. Sev eral of these routines are actually invoked at the mesh

input stage as part of the data checking process. The neighbor lists are usually quite large

and are not usually listed but can be (via keywords list_el_to_el or pt_el_list).

The primary routines for establishing the node-based patches are the subroutines

COUNT_L_AT_NODE and FORM_L_ADJACENT_NODE, seen in Figs. 6.1 and 2, while the

SUBROUTINE COUNT_L_AT_NODES (N_ELEMS, NOD_PER_EL, MAX_NP, & ! 1
NODES, L_TO_N_SUM) ! 2

! * ! 3
! COUNT NUMBER OF ELEMENTS ADJACENT TO EACH NODE ! 4
! (TO SIZE ELEM ADJACENT TO ELEM LIST) ! 5
! * ! 6
IMPLICIT NONE ! 7
INTEGER, INTENT(IN) :: N_ELEMS, NOD_PER_EL, MAX_NP ! 8
INTEGER, INTENT(IN) :: NODES (N_ELEMS, NOD_PER_EL) ! 9
INTEGER, INTENT(OUT) :: L_TO_N_SUM (MAX_NP) !10

!11
INTEGER :: ELEM_NODES (NOD_PER_EL) !12
INTEGER :: IE, IN, N_TEMP !13

!14
! ELEM_NODES = INCIDENCES ARRAY FOR A SINGLE ELEMENT !15
! L_TO_N_SUM (I) = NUMBER OF ELEM NEIGHBORS OF NODE I !16
! MAX_NP = TOTAL NUMBER OF NODES !17
! N_ELEMS = TOTAL NUMBER OF ELEMENTS !18
! NOD_PER_EL = NUMBER OF NODES PER ELEMENT !19
! NODES = SYSTEM ARRAY OF ALL ELEMENTS INCIDENCES !20

!21
L_TO_N_SUM = 0 ! INITIALIZE !22
DO IE = 1, N_ELEMS ! LOOP OVER ALL ELEMENTS !23

! EXTRACT INCIDENCES LIST FOR ELEMENT IE !24
CALL ELEMENT_NODES (IE, NOD_PER_EL, NODES, ELEM_NODES) !25
DO IN = 1, NOD_PER_EL ! loop over each node !26

N_TEMP = ELEM_NODES (IN) !27
IF (N_TEMP < 1) CYCLE ! to a real node !28

L_TO_N_SUM (N_TEMP) = L_TO_N_SUM (N_TEMP) + 1 !29
END DO ! over IN !30

END DO ! over elements !31
END SUBROUTINE COUNT_L_AT_NODES !32

Figure 6.1 Computing the neighbor array sizes

148 Finite Element Analysis with Error Estimators

SUBROUTINE FORM_L_ADJACENT_NODES (N_ELEMS, NOD_PER_EL, MAX_NP, & ! 1
NODES, NEIGH_N, L_TO_N_NEIGH) ! 2

! * ! 3
! TABULATE ELEMENTS ADJACENT TO EACH NODE ! 4
! (TO SIZE ELEM ADJACENT TO ELEM LIST) ! 5
! * ! 6
IMPLICIT NONE ! 7
INTEGER, INTENT(IN) :: N_ELEMS, NOD_PER_EL, MAX_NP, NEIGH_N ! 8
INTEGER, INTENT(IN) :: NODES (N_ELEMS, NOD_PER_EL) ! 9
INTEGER, INTENT(OUT) :: L_TO_N_NEIGH (NEIGH_N, MAX_NP) !10

!11
INTEGER :: ELEM_NODES (NOD_PER_EL), COUNT (MAX_NP) ! scratch !12
INTEGER :: IE, IN, N_TEMP !13

!14
! ELEM_NODES = INCIDENCES ARRAY FOR A SINGLE ELEMENT !15
! L_TO_N_SUM (I) = NUMBER OF ELEM NEIGHBORS OF NODE I !16
! MAX_NP = TOTAL NUMBER OF NODES !17
! N_ELEMS = TOTAL NUMBER OF ELEMENTS !18
! NOD_PER_EL = NUMBER OF NODES PER ELEMENT !19
! NODES = SYSTEM ARRAY OF INCIDENCES OF ALL ELEMENTS !20

!21
L_TO_N_NEIGH = 0 ; COUNT = 0 ! INITIALIZE !22
DO IE = 1, N_ELEMS ! LOOP OVER ALL ELEMENTS !23

!24
! EXTRACT INCIDENCES LIST FOR ELEMENT IE !25

CALL ELEMENT_NODES (IE, NOD_PER_EL, NODES, ELEM_NODES) !26
!27

DO IN = 1, NOD_PER_EL ! loop over each node !28
N_TEMP = ELEM_NODES (IN) !29
IF (N_TEMP < 1) CYCLE ! to a real node !30

COUNT (N_TEMP) = COUNT (N_TEMP) + 1 !31
L_TO_N_NEIGH (COUNT (N_TEMP), N_TEMP) = IE !32

END DO ! over IN nodes !33
END DO ! over elements !34

END SUBROUTINE FORM_L_ADJACENT_NOD !35

Figure 6.2 Find elements at every node

element-based patches use the two similar subroutines COUNT_ELEMS_AT_ELEM and

FORM_ELEMS_AT_EL which are given in Figs. 6.3 and 4. These routines are also useful in

validating meshes that have been prepared by hand. Building lists of neighbors can take a

lot of processing but they are useful in plotting and post-processing.

In MODEL the default is to use an element-based patch. However, one can

investigate other options by utilizing some of the available control keywords given in Fig.

6.5. Having selected a patch type, we should now giv e consideration to the kind of data

that will be needed for the SCP recovery. There are two main segments in the process:

1. Averaging the patch and system nodal fluxes.

2. Using the system nodal fluxes in the calculation of an error estimate.

The whole basis of the SCP recovery is that there are special locations within an

element where we can show that the derivatives are most accurate or exact for a given

polynomial degree. We refer to such locations as element super-convergent points. They

are sometimes called Barlow points. The derivation of the locations generally shows them

Chapter 6, Super-convergent patch recovery 149

SUBROUTINE COUNT_ELEMS_AT_ELEM (N_ELEMS, NOD_PER_EL, MAX_NP, & ! 1
L_FIRST, L_LAST, NODES, NEEDS, L_TO_L_SUM, N_WARN) ! 2

! * ! 3
! COUNT NUMBER OF ELEMENTS ADJACENT TO OTHER ELEMENTS ! 4
! * ! 5
IMPLICIT NONE ! 6
INTEGER, INTENT(IN) :: N_ELEMS, NOD_PER_EL, MAX_NP, NEEDS ! 7
INTEGER, INTENT(IN) :: L_FIRST (MAX_NP), L_LAST (MAX_NP) ! 8
INTEGER, INTENT(IN) :: NODES (N_ELEMS, NOD_PER_EL) ! 9
INTEGER, INTENT(OUT) :: L_TO_L_SUM (N_ELEMS) !10
INTEGER, INTENT(INOUT) :: N_WARN !11

!12
INTEGER :: ELEM_NODES (NOD_PER_EL), NEIG_NODES (NOD_PER_EL) !13
INTEGER :: FOUND, IE, IN, L_TEST, L_START, L_STOP, N_TEST !14
INTEGER :: NEED, KOUNT, NULLS !15

!16
! ELEM_NODES = INCIDENCES ARRAY FOR A SINGLE ELEMENT !17
! KOUNT = NUMBER OF COMMON NODES !18
! L_FIRST (I) = ELEMENT WHERE NODE I FIRST APPEARS !19
! L_LAST (I) = ELEMENT WHERE NODE I LAST APPEARS !20
! L_TO_L_SUM (I) = NUMBER OF ELEM NEIGHBORS OF ELEMENT I !21
! MAX_NP = TOTAL NUMBER OF NODES !22
! NEEDS = NUMBER OF COMMON NODES TO BE A NEIGHBOR !23
! N_ELEMS = TOTAL NUMBER OF ELEMENTS !24
! NOD_PER_EL = NUMBER OF NODES PER ELEMENT !25
! NODES = SYSTEM ARRAY OF INCIDENCES OF ALL ELEMENTS !26

!27
L_TO_L_SUM = 0 ; NEED = MAX (1, NEEDS) ! INITIALIZE !28

!29
MAIN : DO IE = 1, N_ELEMS ! LOOP OVER ALL ELEMENTS !30

FOUND = 0 ! INITIALIZE !31
!32

! EXTRACT INCIDENCES LIST FOR ELEMENT IE !33
CALL ELEMENT_NODES (IE, NOD_PER_EL, NODES, ELEM_NODES) !34

!35
! ESTABLISH RANGE OF POSSIBLE ELEMENT NEIGHBORS !36

L_START = N_ELEMS ; L_STOP = 0 !37
DO IN = 1, NOD_PER_EL !38

N_TEST = ELEM_NODES (IN) !39
IF (N_TEST < 1) CYCLE! to a real node !40

L_START = MIN (L_START, L_FIRST (N_TEST)) !41
L_STOP = MAX (L_STOP, L_LAST (N_TEST)) !42

END DO !43
!44

Figure 6.3a Interface and data for elements joining element

150 Finite Element Analysis with Error Estimators

! LOOP OVER POSSIBLE ELEMENT NEIGHBORS !45
IF (L_START <= L_STOP) THEN !46
RANGE : DO L_TEST = L_START, L_STOP !47

IF (L_TEST /= IE) THEN !48
KOUNT = 0 ! NO COMMON NODES !49

!50
! LOOP OVER INCIDENCES OF POSSIBLE ELEMENT NEIGHBOR !51

CALL ELEMENT_NODES (L_TEST,NOD_PER_EL,NODES,NEIG_NODES) !52
LOCAL : DO IN = 1, NOD_PER_EL !53
N_TEST = NEIG_NODES (IN) !54
IF (N_TEST < 1 .OR. N_TEST > MAX_NP) THEN !55

PRINT *, ’INVALID NODE ’, N_TEST, ’ AT ’, L_TEST !56
N_WARN = N_WARN + 1 ! INCREMENT WARNING !57
CYCLE LOCAL ! to a real node !58

END IF ! IMPOSSIBLE NODE !59
IF (L_FIRST (N_TEST) > IE) CYCLE LOCAL ! to next node !60
IF (L_LAST (N_TEST) < IE) CYCLE LOCAL ! to next node !61

!62
! COMPARE WITH INCIDENCES OF ELEMENT IE !63

IF (ANY (ELEM_NODES == N_TEST)) THEN !64
KOUNT = KOUNT + 1 !65
IF (KOUNT == NEED) THEN ! IS A NEIGHBOR !66

FOUND = FOUND + 1 !67
EXIT LOCAL ! this L_TEST element search loop !68

END IF ! NUMBER NEEDED !69
END IF !70

END DO LOCAL ! over in !71
END IF !72

END DO RANGE ! over candidate element L_TEST !73
END IF ! a possible candidate !74
L_TO_L_SUM (IE) = FOUND !75

END DO MAIN ! over all elements !76
!77

PRINT *, ’MAXIMUM NUMBER OF ELEMENT NEIGHBORS = ’, & !78
MAXVAL (L_TO_L_SUM) !79

NULLS = COUNT (L_TO_L_SUM == 0) ! CHECK DATA !80
IF (NULLS > 0) THEN !81

PRINT *, ’WARNING, ’, NULLS, ’ ELEMENTS HAVE NO NEIGHBORS’ !82
N_WARN = N_WARN + 1 ! INCREMENT WARNING !83

END IF !84
END SUBROUTINE COUNT_ELEMS_AT_ELEM !85

Figure 6.3b Fill the neighbor array and validate

Chapter 6, Super-convergent patch recovery 151

SUBROUTINE FORM_ELEMS_AT_EL (N_ELEMS, NOD_PER_EL, MAX_NP, & ! 1
L_FIRST, L_LAST, NODES, N_SPACE, & ! 2
L_TO_L_SUM, L_TO_L_NEIGH, & ! 3
NEIGH_L, NEEDS, ON_BOUNDARY) ! 4

! * ! 5
! FORM LIST OF ELEMENTS ADJACENT TO OTHER ELEMENTS ! 6
! * ! 7
IMPLICIT NONE ! 8
INTEGER, INTENT(IN) :: N_ELEMS, NOD_PER_EL, MAX_NP, NEIGH_L ! 9
INTEGER, INTENT(IN) :: L_FIRST (MAX_NP), L_LAST (MAX_NP) ! 10
INTEGER, INTENT(IN) :: NODES (N_ELEMS, NOD_PER_EL) ! 11
INTEGER, INTENT(IN) :: L_TO_L_SUM (N_ELEMS) ! 12
INTEGER, INTENT(IN) :: N_SPACE, NEEDS ! for pt, edge, face ! 13
INTEGER, INTENT(OUT) :: L_TO_L_NEIGH (NEIGH_L, N_ELEMS) ! 14
LOGICAL, INTENT(INOUT) :: ON_BOUNDARY (N_ELEMS) ! 15

! 16
INTEGER :: ELEM_NODES (NOD_PER_EL), NEIG_NODES (NOD_PER_EL) ! 17
INTEGER :: IE, IN, L_TEST, L_START, L_STOP, N_TEST ! 18
INTEGER :: FOUND, NEXT, SUM_L_TO_L ! 19
INTEGER :: IO_1, KOUNT, NEED, N_FACES, WHERE ! 20

! 21
! ON_BOUNDARY = TRUE IF ELEMENT HAS A FACE ON BOUNDARY ! 22
! ELEM_NODES = INCIDENCES ARRAY FOR A SINGLE ELEMENT ! 23
! FOUND = CURRENT NUMBER OF LOCAL NEIGHBORS ! 24
! KOUNT = CURRENT NUMBER OF COMMON NODES ! 25
! L_FIRST (I) = ELEMENT WHERE NODE I FIRST APPEARS ! 26
! L_LAST (I) = ELEMENT WHERE NODE I LAST APPEARS ! 27
! L_TO_L_NEIGH = ELEM NEIGHBOR J OF ELEMENT I ! 28
! L_TO_L_SUM = NUMBER OF ELEM NEIGHBORS OF ELEMENT I ! 29
! NEEDS = NUMBER OF COMMON NODES TO BE A NEIGHBOR ! 30
! NEIGH_L = MAXIMUM NUMBER OF NEIGHBORS AT A ELEMENT ! 31
! MAX_NP = TOTAL NUMBER OF NODES ! 32
! N_ELEMS = TOTAL NUMBER OF ELEMENTS ! 33
! NOD_PER_EL = NUMBER OF NODES PER ELEMENT ! 34
! NODES = SYSTEM ARRAY OF INCIDENCES OF ELEMENTS ! 35
! WHERE = LOCATION TO INSERT NEIGHBOR, <= MAX_FACES ! 36

! 37
NEED = MAX (1, NEEDS) ; L_TO_L_NEIGH = 0 ! INITIALIZE ! 38
MAIN : DO IE = 1, N_ELEMS ! ELEMENT LOOP ! 39

! 40
SUM_L_TO_L = L_TO_L_SUM (IE) ! MAX NEIGHBORS ! 41
FOUND = COUNT (L_TO_L_NEIGH (:, IE) > 0) ! PREVIOUSLY FOUND ! 42
IF (FOUND == SUM_L_TO_L) CYCLE MAIN ! ALL FOUND ! 43

! 44
! EXTRACT INCIDENCES LIST FOR ELEMENT IE ! 45

CALL ELEMENT_NODES (IE, NOD_PER_EL, NODES, ELEM_NODES) ! 46
! 47

! ESTABLISH RANGE OF POSSIBLE ELEMENT NEIGHBORS ! 48
L_START = N_ELEMS + 1 ; L_STOP = 0 ! 49
DO IN = 1, NOD_PER_EL ! 50

L_START = MIN (L_START, L_FIRST (ELEM_NODES (IN))) ! 51
L_STOP = MAX (L_STOP, L_LAST (ELEM_NODES (IN))) ! 52

END DO ! 53
L_START = MAX (L_START, IE+1) ! SEARCH ABOVE IE ONLY ! 54

! 55

Figure 6.4a Interface and data for element neighbors

152 Finite Element Analysis with Error Estimators

! LOOP OVER POSSIBLE ELEMENT NEIGHBORS ! 56
IF (L_START <= L_STOP) THEN ! 57

RANGE : DO L_TEST = L_START, L_STOP ! 58
KOUNT = 0 ! NO COMMON NODES ! 59

! 60
! EXTRACT NODES OF L_TEST ! 61

CALL ELEMENT_NODES (L_TEST,NOD_PER_EL,NODES,NEIG_NODES) ! 62
! 63

! LOOP OVER INCIDENCES OF POSSIBLE ELEMENT NEIGHBOR ! 64
LOCAL : DO IN = 1, NOD_PER_EL ! 65
N_TEST = NEIG_NODES (IN) ! 66
IF (N_TEST < 1) CYCLE ! to a real node ! 67
IF (L_FIRST (N_TEST) > IE) CYCLE LOCAL ! to next node ! 68
IF (L_LAST (N_TEST) < IE) CYCLE LOCAL ! to next node ! 69

! 70
! COMPARE WITH INCIDENCES OF ELEMENT IE ! 71

IF (ANY (ELEM_NODES == N_TEST)) THEN ! 72
KOUNT = KOUNT + 1 ! SHARED NODE COUNT ! 73
IF (KOUNT == NEED) THEN ! NEIGHBOR PAIR FOUND ! 74

FOUND = FOUND + 1 ! INSERT THE PAIR ! 75
! 76

! NOTE: THIS INSERT IS NOT ORDERED. ! 77
WHERE = FOUND ! OR ORDER THE CURRENT FACE ! 78
L_TO_L_NEIGH (WHERE, IE) = L_TEST ! 1 of 2 ! 79

! 80
NEXT = COUNT (L_TO_L_NEIGH(:, L_TEST) > 0) ! 81
WHERE = NEXT+1 ! OR ORDER THE NEIGHBOR FACE ! 82

! 83
IF (L_TO_L_SUM (L_TEST) > NEXT) & ! 84

L_TO_L_NEIGH (NEXT+1, L_TEST) = IE ! 2 of 2 ! 85
IF (SUM_L_TO_L == FOUND) CYCLE MAIN ! ALL ! 86
CYCLE RANGE ! this L_TEST element search loop ! 87

END IF ! NUMBER NEEDED ! 88
END IF ! SHARE AT LEAST ONE COMMON NODE ! 89

END DO LOCAL ! over N_TEST ! 90
END DO RANGE ! over candidate element L_TEST ! 91

END IF ! a possible candidate ! 92
END DO MAIN! over all elements ! 93

! 94
IF (NEED >= N_SPACE) THEN ! EDGE OR FACE NEIGHBOR DATA ! 95

! SAVE THE ELEMENT NUMBERS THAT FACE THE BOUNDARY ! 96
DO IE = 1, N_ELEMS ! 97

CALL GET_LT_FACES (IE, N_FACES) ! 98
IF (N_FACES > 0) THEN ! MIGHT BE ON THE BOUNDARY ! 99

IF (ANY (L_TO_L_NEIGH (1:N_FACES, IE) == 0)) THEN !100
ON_BOUNDARY (IE) = .TRUE. !101

END IF ! ON BOUNDARY !102
END IF ! POSSIBLE ELEMENT !103

END DO ! OVER ELEMENTS !104
END IF ! SEARCH OF FACING NEIGHBORS !105

END SUBROUTINE FORM_ELEMS_AT_EL !106

Figure 6.4b Fill the neighbor array and check boundary

Chapter 6, Super-convergent patch recovery 153

SCP_WORD TYPICAL_VALUE ! REMARKS [DEFAULT]
debug_scp ! Debug the SCP averaging process [F]
face_nodes 3 ! Number of shared nodes on an element face [d]
grad_base_error ! Base error estimates on gradients only [F]
list_el_to_el ! List elements adjacent to elements [F]
no_scp_ave ! Do NOT get superconvergent patch averages [F]
no_error_est ! Do NOT compute SCP element error estimates [F]
pt_el_list ! List all the elements at each node [F]
scp_center_only ! Use center node or element only in average [T]
scp_center_no ! Use all elements in the patch in average [F]
scp_deg_inc 1 ! Increase patch degree by this (1 or 2) [0]
scp_max_error 5. ! Allowed % error in energy norm [1]
scp_neigh_el ! Element based patch, all neighbors (default) [T]
scp_neigh_face ! Element based patch, facing neighbors [F]
scp_neigh_pt ! Nodal based patch, all element neighbors [F]
scp_only_once ! Scatter to a node only once per patch [T]
scp_2nd_deriv ! Recover 2nd derivatives data also [F]

Figure 6.5 Optional SCP control keywords

to coincide with the Gaussian quadrature points (as illustrated here in Secs. 3.8 and 6.5).

Here we will assume that the minimum number of quadratic points needed to properly

form the element matrices have locations that correspond to the element super-convergent

points, or are reasonably close to them. Thus, as we process each element to build its

square matrix, we will want to save, at each quadrature point, its physical location in

space and the differential operator matrix, B, that will allow the accurate gradients to be

computed from the local nodal solution. Looking ahead to the error estimation or other

post-processing, we know that at times we will also want to have the constitutive matrix,

E, so we will also save it. Note that we are allowing for different, but compatible,

element shapes in the mesh (and patches) and they would require different numerical

integration rules within each shape.

Now we should look ahead to how the above data are to be recovered in the SCP

section of the code. The main observation is that, for an unstructured mesh, the element

numbers for the elements adjacent to a particular node or element are totally random.

While we have a straight forward way to save the above data in a sequential fashion, we

need to recover the element data in a random fashion. Thus, we either need to build a

database that allows random access recovery of that sequential information or we must

decide to re-compute the data in each element of each patch. The author considers the

latter to be too expensive, so we select the new database option. In the examples that are

presented later the reader will note function calls to save these data, but they could be

omitted if the user was willing to pay the cost of recomputing the data.

For the database structure to save and recover the data we could select linked lists,

or a tree structure, but there is a simpler way. Fortran has always had a feature known as

a "direct access" file that allows the user to randomly recover or change data. The actual

data structure employed is left up to the group that writes the compiler, and is mainly

hidden from the user. Howev er, the user must declare the ‘record number’ of the data set

to be recovered or changed. Likewise, the record number of each data set must be given

as the data are saved to the random access file. This means that some logical way will be

154 Finite Element Analysis with Error Estimators

SUBROUTINE POST_PROCESS_GRADS (NODES, DD, ITER) ! 1
! * ! 2
! SAVE ELEMENT GRADIENTS AS SCP INPUT RECORDS ! 3
! * ! 4
Use System_Constants ! for L_S_TOT, N_D_FRE, NOD_PER_EL, ! 5

! N_L_TYPE, N_PRT, THIS_EL, U_FLUX ! 6
Use Elem_Type_Data ! for PT (LT_PARM, LT_QP), WT (LT_QP), ! 7

! G (LT_GEOM, LT_QP), DLG (LT_PARM, LT_GEOM, LT_QP), ! 8
! H (LT_N), DLH (LT_PARM, LT_N , LT_QP), C (LT_FREE), ! 9
! S (LT_FREE, LT_FREE), ELEM_NODES (LT_N), D (LT_FREE) !10

Use Interface_Header ! for GET_ELEM_* !11
IMPLICIT NONE !12
REAL(DP), INTENT(IN) :: DD (N_D_FRE) !13
INTEGER, INTENT(IN) :: NODES (L_S_TOT, NOD_PER_EL), ITER !14
INTEGER :: IE, LT ! Loops, element type !15

!16
! D = NODAL PARAMETERS ASSOCIATED WITH AN ELEMENT !17
! DD = ARRAY OF SYSTEM DEGREES OF FREEDOM !18
! INDEX = SYSTEM DOF NOS ASSOCIATED WITH ELEMENT !19
! ITER = CURRENT ITERATION NUMBER !20
! ELEM_NODES = THE NOD_PER_EL INCIDENCES OF THE ELEMENT !21
! NOD_PER_EL = NUMBER OF NODES PER ELEMENT !22
! N_D_FRE = TOTAL NUMBER OF SYSTEM DEGREES OF FREEDOM !23
! N_L_TYPE = NUMBER OF DIFFERENT ELEMENT TYPES USED !24
! N_ELEMS = NUMBER OF ELEMENTS IN SYSTEM !25
! NODES = ELEMENT INCIDENCES OF ALL ELEMENTS !26
! U_FLUX = BINARY UNIT TO STORE GRADIENTS OR FLUXES !27

!28
LT = 1 ! INITIALIZE ELEMENT TYPES !29
WRITE (N_PRT, "(/,’BEGIN SCP SAVE, ITER =’, I4)") ITER !30

!31
!--> LOOP OVER ELEMENTS !32

DO IE = 1, N_ELEMS ! for elements, boundary segments !33
CALL SET_THIS_ELEMENT_NUMBER (IE) ! Set THIS_EL !34

!35
! VALIDATE ELEMENT TYPE !36

IF (N_L_TYPE > 1) LT = L_TYPE (IE) ! GET TYPE !37
IF (LT /= LAST_LT) THEN ! this is a new type !38

CALL SET_ELEM_TYPE_INFO (LT) ! Set controls !39
END IF ! a new element type !40

!41
! RECOVER ELEMENT DEGREES OF FREEDOM !42

ELEM_NODES = GET_ELEM_NODES (IE, LT_N, NODES) !43
INDEX = GET_ELEM_INDEX (LT_N, ELEM_NODES) !44
D = GET_ELEM_DOF (DD) ! Get all nodal dof !45

!46
!--> USE DOF TO RECOVER FLUXES, LIST, SAVE FOR SCP !47

IF (USE_EXACT_FLUX) THEN !48
CALL LIST_ELEM_AND_EXACT_FLUXES (U_FLUX, IE) !49

ELSE !50
CALL LIST_ELEM_FLUXES (U_FLUX, IE) !51

END IF ! an exact solution is known !52
END DO ! over all elements !53

END SUBROUTINE POST_PROCESS_GRADS !54

Figure 6.6 Preparing data for averaging or post-processing

Chapter 6, Super-convergent patch recovery 155

needed to create a unique number for each record at any quadrature point in the mesh.

For a mesh with a single element type and a single integration rule, we could write

a simple equation for the record number. Here we are allowing a mixture of element

types and quadrature rules, so we store the record number at each quadrature point in an

integer array sized for the maximum number of elements and the maximum number of

quadrature points per element. The record numbers are created sequentially as the

element matrices are integrated. A file structure, SCP_RECORD_NUMBER, is supplied for

randomly recovering the integer record number at any integration point in any element.

Like any other file used in a program, a random access file must be opened. It is opened

as a DIRECT access file of UNFORMATTED, or binary, records to minimize storage.

We must also declare the length of the data records. It is actually hardware-dependent, so

F90 includes an intrinsic function, INQUIRE(IOLENGTH), that will compute the record

length given a list of variables and/or arrays to be included in each record. The unit

number assigned to the random access file holding the SCP records is given the variable

name U_SCPR.

As mentioned above the SCP process can be used to determine the average nodal

fluxes and to use them to compute the element error estimates. The general outline of the

process is as follows:

1. Preliminary

a. Build a list of element neighbors.

b. Open the sequential file unit U_FLUX to receive element data related to flux

calculations. Those data can also be used for optional post-processing.

c. Compute the record length necessary to store the coordinates and flux

components at a point.

d. Open the random access file unit U_SCPR that will receive the quadrature

point coordinates and flux components.

2. Element Matrices Generation Loop

a. For each element save its number of integration points to file unit U_FLUX .

b. Within the numerical integration loop of the element sequentially save the

arrays XYZ, E, and B at each point so that the gradients and/or flux

components can be found at the point.

c. When all elements have been processed rewind the file U_FLUX to its

beginning.

3. Flux Calculations and Saving Them for Averaging

After the solution has been obtained it is possible to compute the flux (and gradient)

components within each element so that they can be smoothed to nodal values. The

element flux calculation is done in subroutine POST_PROCESS_GRADS, as detailed in

Fig. 6.6. First, the SCP record number is set to zero. Next, each element is

processed in a loop:

a. Recover the element type;

b. Gather the nodal degrees of freedom of the element;

156 Finite Element Analysis with Error Estimators

SUBROUTINE LIST_ELEM_FLUXES (N_FILE, IE) ! 1
! * ! 2
! LIST ELEMENT FLUXES AT QUADRATURE POINTS, ON N_FILE ! 3
! * ! 4
Use System_Constants ! for N_ELEMS, N_R_B, N_SPACE, ! 5

! FLUX_NAME, XYZ_NAME, N_FILE5, IS_ELEMENT, U_PLT4, ! 6
! U_SCPR, GRAD_BASE_ERROR ! 7

Use Elem_Type_Data ! for LT_FREE, D (LT_FREE) ! 8
IMPLICIT NONE ! 9
INTEGER, INTENT(IN) :: N_FILE, IE !10
INTEGER, SAVE :: TEST_IE, TEST_IP, J, N_IP, EOF, IO_1 !11
REAL(DP), SAVE :: DERIV_MAX = 0.d0 !12

!13
! Automatic Arrays !14
REAL(DP) :: XYZ (N_SPACE), E (N_R_B, N_R_B), & !15

B (N_R_B, LT_FREE), STRAIN (N_R_B + 2), & !16
STRESS (N_R_B + 2) !17

!18
! B = GRADIENT VERSUS DOF MATRIX: (N_R_B, LT_FREE) !19
! D = NODAL PARAMETERS ASSOCIATED WITH AN ELEMENT !20
! E = ELEMENT CONSTITUTIVE MATRIX AT GAUSS POINT !21
! LT_N = NUMBER OF NODES PER ELEMENT !22
! LT_FREE = NUMBER OF DEGREES OF FREEDOM PER ELEMENT !23
! N_ELEMS = TOTAL NUMBER OF ELEMENTS !24
! N_R_B = NUMBER OF ROWS IN B AND E MATRICES !25
! N_SPACE = DIMENSION OF SPACE !26
! N_FILE = UNIT FOR POST SOLUTION MATRICES STORAGE !27
! STRAIN = GENERALIZED STRAIN OR FLUX VECTOR !28
! STRESS = GENERALIZED STRESS OR GRADIENT VECTOR !29
! XYZ = SPACE COORDINATES AT A POINT !30
! U_PLT4 = UNIT TO STORE PLOT DATA, IF > 0 !31
! U_SCPR = BINARY UNIT FOR SUPER_CONVERGENT PATCH RECOVERY !32

!33
!--> FIRST CALL: PRINT TITLES, INITIALIZE, OPEN FILE !34
IF (IE == 1) THEN ! FIRST ELEMENT !35

REWIND (N_FILE) ; RECORD_NUMBER = 0 ! INITIALIZE !36
WRITE (N_PRT, 5) XYZ_NAME (1:N_SPACE), FLUX_NAME (1:N_R_B) !37
5 FORMAT (/, & !38
’** FLUX COMPONENTS AT ELEMENT INTEGRATION POINTS **’, & !39
/, ’ELEMENT, PT, ’, (6A12)) !40

!41
! OPEN FLUX PLOT FILE IF ACTIVE (BINARY FASTER) !42

IF (N_FILE5 >0) OPEN (N_FILE5,FILE=’el_qp_xyz_grads.tmp’,& !43
ACTION=’WRITE’, STATUS=’REPLACE’, IOSTAT = IO_1) !44

IF (U_PLT4 > 0) OPEN (U_PLT4,FILE=’el_qp_xyz_fluxes.tmp’,& !45
ACTION=’WRITE’, STATUS=’REPLACE’, IOSTAT = IO_1) !46

END IF ! THIS IS THE FIRST ELEMENT !47
!48

Figure 6.7a Interface and data to establish SCP records

Chapter 6, Super-convergent patch recovery 157

! IS THIS AN ELEMENT, BOUNDARY, OR ROBIN SEGMENT ? !49
IF (IS_ELEMENT) THEN ! ELEMENT RESULTS !50

!51
READ (N_FILE, IOSTAT = EOF) N_IP ! # INTEGRATION POINTS !52

!53
!--> READ COORDS, CONSTITUTIVE, AND DERIVATIVE MATRIX !54

DO J = 1, N_IP ! OVER ALL INTEGRATION POINTS !55
READ (N_FILE, IOSTAT = EOF) XYZ, E, B !56

!57
! CALCULATE DERIVATIVES, STRAIN = B * D !58

STRAIN (1:N_R_B) = MATMUL (B, D) !59
!60

! FLUX FROM CONSTITUTIVE DATA !61
STRESS (1:N_R_B) = MATMUL (E, STRAIN (1:N_R_B)) !62

!63
!--> PRINT COORDINATES AND FLUX AT THE POINT !64

WRITE (N_PRT, ’(I7, I3, 10(ES12.4))’) & !65
IE, J, XYZ, STRESS (1:N_R_B) !66

!67
!--> STORE FLUX RESULTS TO BE PLOTTED LATER, IF USED !68

IF (U_PLT4 > 0) WRITE (U_PLT4, ’((10(1PE6.5)))’) & !69
XYZ, STRESS (1:N_R_B) !70

IF (N_FILE5 > 0) WRITE (N_FILE5, ’((10(1PE6.5)))’) & !71
XYZ, STRAIN (1:N_R_B) !72

!73
! SAVE COORDINATES & FLUX FOR SCP FLUX AVERAGING !74

IF (U_SCPR > 0) THEN ! SCP recovery is active !75
RECORD_NUMBER = RECORD_NUMBER + 1 !76
SCP_RECORD_NUMBER (IE, J) = RECORD_NUMBER !77

!78
IF (GRAD_BASE_ERROR) THEN ! User override !79

WRITE (U_SCPR, REC = RECORD_NUMBER) & !80
XYZ, STRAIN (1:SCP_FIT) !81

ELSE ! Usual case !82
WRITE (U_SCPR, REC = RECORD_NUMBER) & !83

XYZ, STRESS (1:SCP_FIT) !84
END IF ! GRAD VS FLUX IS DESIRED !85

END IF ! SCP RECOVERY !86
!87

END DO ! OVER INTEGRATION POINTS !88
END IF ! ELEMENT OR BOUNDARY SEGMENT OR MIXED BOUNDARY !89
CALL UPDATE_SCP_STATUS ! FLAG IF SCP DATA WERE SAVED !90

END SUBROUTINE LIST_ELEM_FLUXES !91

Figure 6.7b Saving element gradient or flux data to files

Figure 6.8 Bounding a group of elements with a constant Jacobian patch

158 Finite Element Analysis with Error Estimators

c. Read the number of quadrature points in the element from U_FLUX ;

d. Quadrature Point Loop

For each integration point, in routine LIST _ELEM_FLUXES, sequentially

recover the XYZ, E, and B arrays from U_FLUX . Multiply B by the element

dof to get the gradients or strains at the point, and then multiply those by the

constitutive array, E, to get the fluxes, or stresses at the point. The element and

quadrature point numbers are then printed along with their coordinates and

flux, or stress, components. Lastly, the SCP database is updated by

incrementing the record number by one, and then writing the coordinates and

flux component arrays to the random access file, U_SCPR, as that record is to

be later randomly recovered in the patch smoothing process. The above details

are shown in Fig. 6.7.

6.2 SCP nodal flux averaging

Having developed the above database on unit U_SCPR we can now average the flux

components at every node in each patch and then average them for each node in the mesh.

Here we assume an element based patch system for calculating the averages. In

subroutine CALC_SCP_AVE_NODE_FLUXES we loop over every element and carry

out the least squares fit in its associated patch. Looking ahead to that process we must

select a polynomial, P, to be used in the patch. We must make a choice for that function.

We might select a complete polynomial of a given degree, or a Serendipity polynomial of

a giv en edge degree, etc. In the current implementation the default is to select that

polynomial to be exactly the same as the polynomial used to interpolate the element for

which the patch is being constructed. This means that we will select a constant Jacobian

patch ‘element’ that has its local axes parallel to the global axes and completely

surrounds the standard elements that make up the patch. This is easily done by searching

for the maximum and minimum components of all of the element nodes in the patch.

Such a process is illustrated in Fig. 6.8 where the active element used to select the patch

element type is shown crosshatched. It would also be easy to allow the user to select a

patch type and degree through a keyword control input. The full details of the process are

given in the source code of Fig. 6.9 and the main points are outlined below.

The least squares flux averaging process is:

a. Zero the nodal flux array and the counter for each node.

b. Loop over each element in the mesh:

1. Extract its element neighbors to define the patch.

2. Find the spatial ‘box’ that bounds the patch.

3. Find the number of quadrature points in the patch (i.e. sum the count in each

element of the patch).

4. Determine the element type and thus the patch ‘element’ shape (line, triangle,

hexahedron, etc.) and the corresponding patch polynomial degree.

5. Allocate storage for the least squares fit arrays.

6. Set the fit matrix row number to zero.

Chapter 6, Super-convergent patch recovery 159

SUBROUTINE CALC_SCP_AVE_NODE_FLUXES (NODES, X ,L_NEIGH, & ! 0
SCP_AVERAGES) ! 1

! * ! 2
! CALCULATE THE SUPER_CONVERGENCE_PATCH AVERAGE FLUXES ! 3
! AT ALL NODES IN THE MESH VIA THE SVD METHOD ! 4
! * ! 5
Use System_Constants ! MAX_NP, NEIGH_P, N_ELEMS, N_PATCH, ! 6

! N_QP, SCP_FIT, U_SCPR, ON_BOUNDARY ! 7
Use Elem_Type_Data ! for LAST_LT, LT_* ! 8
Use SCP_Type_Data ! for SCP_H (SCP_N), SCP_DLH ! 9
IMPLICIT NONE ! 10
INTEGER, INTENT (IN) :: NODES (L_S_TOT, NOD_PER_EL) ! 11
INTEGER, INTENT (IN) :: L_NEIGH (NEIGH_P, N_PATCH) ! 12
REAL(DP), INTENT (IN) :: X (MAX_NP, N_SPACE) ! 13
REAL(DP), INTENT (OUT) :: SCP_AVERAGES (MAX_NP, SCP_FIT) ! 14

! 15
INTEGER :: MEMBERS (NEIGH_P+1) ! ELEMENTS IN PATCH ! 16
INTEGER :: SCP_COUNTS (MAX_NP) ! PATCH HITS PER NODE ! 17
INTEGER :: POINTS ! CURRENT PATCH EQ SIZE ! 18
INTEGER :: L_IN_PATCH ! NUM OF ELEMS IN PATCH ! 19
INTEGER :: FIT, IL, IP, IQ, LM ! LOOPS ! 20
INTEGER :: ROW ! IN PATCH ARRAYS ! 21
INTEGER :: LT, REC_LM_IQ, SCP_STAT ! MEMBER OF PATCH ! 22
INTEGER, PARAMETER :: ONE = 1 ! 23

! 24
REAL(DP) :: XYZ_MIN (N_SPACE), XYZ_MAX (N_SPACE) ! BOUNDS ! 25
REAL(DP) :: XYZ (N_SPACE), FLUX (N_R_B) ! PT, FLUX ! 26
REAL(DP) :: POINT (N_SPACE) ! SCP POINT ! 27

! 28
REAL(DP), ALLOCATABLE :: PATCH_SQ (:, :) ! SCRATCH ARRAY ! 29
REAL(DP), ALLOCATABLE :: PATCH_DAT (:, :) ! SCRATCH ARRAY ! 30
REAL(DP), ALLOCATABLE :: PATCH_P (:, :) ! SCRATCH ARRAY ! 31
REAL(DP), ALLOCATABLE :: PATCH_WRK (:) ! SCRATCH ARRAY ! 32
REAL(DP), ALLOCATABLE :: PATCH_FIT (:, :) ! ANSWERS ! 33

! 34
! L_S_TOT = TOTAL NUMBER OF ELEMENTS & THEIR SEGMENTS ! 35
! L_NEIGH = ELEMENTS FORMING THE PATCH ! 36
! L_TYPE = ELEMENT TYPE NUMBER ! 37
! LT = ELEMENT TYPE NUMBER (IF USED) ! 38
! LT_QP = NUMBER OF QUADRATURE PTS FOR ELEMENT TYPE ! 39
! MAX_NP = NUMBER OF SYSTEM NODES ! 40
! MEMBERS = ELEMENT NUMBERS MACKING UP A SCP ! 41
! NEIGH_P = MAXIMUM NUMBER OF ELEMENTS IN A PATCH ! 42
! NOD_PER_EL = NUMBER OF NODES PER ELEMENT ! 43
! NODES = NODAL INCIDENCES OF ALL ELEMENTS ! 44
! N_ELEMS = NUMBER OF ELEMENTS IN SYSTEM ! 45
! N_PATCH = NUMBER OF PATCHES, MAX_NP OR N_ELEMS ! 46
! N_QP = MAXIMUN NUMBER OF QUADRATURE POINTS, >= LT_QP ! 47
! N_R_B = NUMBER OF ROWS IN B AND E MATRICES ! 48
! N_SPACE = DIMENSION OF SPACE ! 49
! PATCH_FIT = LOCAL PATCH VALUES FOR FLUX AT ITS NODES ! 50
! POINT = LOCAL POINT IN PATCH INTERPOLATION SPACE ! 51
! POINTS = TOTAL NUMBER OF QUADRATURE POINTS IN PATCH ! 52
! SCP_AVERAGES = AVERAGED FLUXES AT ALL NODES IN MESH ! 53
! SCP_FIT = NUMBER IF TERMS BEING FIT, OR AVERAGED ! 54
! SCP_H = INTERPOLATION FUNCTIONS OF PATCH, USUALLY H ! 55

Figure 6.9a Interface and data for flux averages

160 Finite Element Analysis with Error Estimators

! SCP_N = NUMBER OF NODES PER PATCH ! 56
! SCP_RECORD_NUMBER = SCP DIRECT ACCESS RECORD LOCATOR ! 57
! U_SCPR = SUPER_CONVERGENT PATCH RECOVERY UNIT ! 58
! X = COORDINATES OF SYSTEM NODES ! 59
! XYZ = SPACE COORDINATES AT A POINT ! 60
! XYZ_MAX = UPPER BOUNDS FOR SCP GEOMETRY ! 61
! XYZ_MIN = LOWER BOUNDS FOR SCP GEOMETRY ! 62

! 63
LT=1 ; LAST_LT=0 ; SCP_COUNTS=0 ; SCP_AVERAGES=0 ! 64

! 65
IF (N_PATCH == 0) THEN ! No data supplied ! 66
PRINT *,’NO PATCHS GIVEN, SKIPPING AVERAGES’; RETURN ! 67
END IF ! 68

! 69
DO IP = 1, N_PATCH ! LOOP OVER EACH PATCH ! 70

MEMBERS = 0 ; POINTS = 0 ! INITIALIZE ! 71
! 72

! ELEMENT OR NODAL CENTERED PATCH TYPE ! 73
IF (.NOT. SCP_NEIGH_PT) THEN ! ELEMENT BASED ! 74

! GET ELEMENT NEIGHBORS TO DEFINE THE PATCH ! 75
MEMBERS = (/ IP, L_NEIGH (:, IP) /) ! 76

ELSE ! NODAL BASED PATCH OF ELEMENTS ! 77
! GET ELEMENT NEIGHBORS TO DEFINE THE PATCH ! 78

MEMBERS = L_NEIGH (:, IP) ! 79
END IF ! PATCH BASIS ! 80

! 81
L_IN_PATCH = COUNT (MEMBERS > 0) ! 82
IF (L_IN_PATCH <= 1) CYCLE ! TO AN ACTIVE PATCH ! 83

! 84
! FIND TYPE OF SCP NEEDED HERE, VERIFY GEOMETRY ! 85

CALL DETERMINE_SCP_BOUNDS (L_IN_PATCH, MEMBERS, & ! 86
NODES, X, XYZ_MIN, XYZ_MAX, POINTS) ! 87

! 88
IF (PATCH_ALLOC_STATUS) THEN ! DEALLOCATE ARRAYS ! 89

DEALLOCATE (PATCH_WRK) ; DEALLOCATE (PATCH_SQ) ! 90
DEALLOCATE (PATCH_FIT) ; DEALLOCATE (PATCH_DAT) ! 91
DEALLOCATE (PATCH_P) ; PATCH_ALLOC_STATUS=.FALSE. ! 92

END IF ! STATUS CHECK ! 93
! 94

! ALLOCATE NEXT SET OF LOCAL PATCH RELATED ARRAYS ! 95
ALLOCATE (PATCH_P (POINTS, SCP_N)) ! 96
ALLOCATE (PATCH_DAT (POINTS, SCP_FIT)) ! 97
ALLOCATE (PATCH_FIT (SCP_N , N_R_B)) ! 98
ALLOCATE (PATCH_SQ (SCP_N , SCP_N)) ! 99
ALLOCATE (PATCH_WRK (SCP_N)) !100
PATCH_ALLOC_STATUS = .TRUE. !101

!102
! ZERO PATCH WORKSPACE AND RESULTS ARRYS !103

PATCH_P = 0.d0 ; PATCH_DAT = 0.d0 ; PATCH_FIT = 0.d0 !104
PATCH_SQ = 0.d0 ; PATCH_WRK = 0.d0 !105

!106

Figure 6.9b Establish bounds and dynamic memory for each patch

Chapter 6, Super-convergent patch recovery 161

! PREPARE LEAST SQUARES FIT MATRICES !107
LAST_LT = 0 ; ROW = 0 ! INITIALIZE !108
DO IL = 1, L_IN_PATCH ! PATCH MEMBER LOOP !109
LM = MEMBERS (IL) ! ELEMENT IN PATCH !110

!111
! GET ELEMENT TYPE NUMBER !112
IF (N_L_TYPE > 1) LT=L_TYPE (LM) !113
IF (LT /= LAST_LT) THEN ! ELEMENT TYPE !114

CALL GET_ELEM_TYPE_DATA (LT) ! TYPE CONTROLS !115
LAST_LT = LT !116

END IF ! a new element type and scp type !117
!118

DO IQ = 1, LT_QP ! LOOP OVER GAUSS POINTS !119
ROW = ROW + 1 ! UPDATE LOCATION !120

!121
! RECOVER EACH FLUX VECTOR TO FOR LEAST SQ FIX !122

REC_LM_IQ = SCP_RECORD_NUMBER (LM, IQ) ! REC NUMBER !123
!124

! GET GAUSS PT COORD & FLUX SAVED IN LIST_ELEM_FLUXES !125
READ (U_SCPR,REC=REC_LM_IQ,IOSTAT=SCP_STAT) XYZ, FLUX !126
SELECT CASE (SCP_STAT) ! for read status !127

CASE (:-1) !128
STOP ’EOR OR EOF, CALC_SCP_AVE_NODE_FLUXES’ !129

CASE (1:) !130
PRINT *,’MEMBER ELEMENT = ’, LM, ’ AT POINT ’, IQ !131
PRINT *,’REC_LM_IQ = ’, REC_LM_IQ !132
STOP ’BAD SCP_STAT, CALC_SCP_AVE_NODE_FLUXES’ !133

CASE DEFAULT ! NO READ ERROR !134
END SELECT ! RANDOM ACCESS READ ERROR !135

!136
! CONVERT IQ XYZ TO LOCAL PATCH POINT !137

POINT = GET_SCP_PT_AT_XYZ (XYZ, XYZ_MIN, XYZ_MAX) !138
!139

! EVALUATE PATCH INTERPOLATION AT LOCAL POINT !140
IF (.NOT. SCP_SCAL_ALLOC) CALL & !141

ALLOCATE_SCP_INTERPOLATIONS !142
CALL GEN_ELEM_SHAPE (POINT,SCP_H,SCP_N,N_SPACE,ONE) !143

!144
! INSERT FLUX & INTERPOLATIONS INTO PATCH MATRICES !145

PATCH_DAT (ROW, 1:N_R_B) = FLUX (:) !146
PATCH_P (ROW, :) = SCP_H (:) !147

END DO ! FOR EACH IQ FLUX VECTOR !148
!149

END DO ! FOR EACH IL PATCH MEMBER !150
! ASSEMBLY OF PATCH COMPLETED !151

!152
! VALIDATE CURRENT PATCH !153

IF (POINTS < SCP_N) THEN !154
PRINT *,’WARNING: SKIPPING PATCH ’, & !155

IP, ’ WITH ONLY ’, POINTS, ’ EQUATIONS’ !156
CYCLE ! TO NEXT PATCH !157

END IF ! INSUFFICIENT DATA !158

Figure 6.9c Build the least squares fit in each patch

162 Finite Element Analysis with Error Estimators

! USE SINGULAR VALUE DECOMPOSITION SOLUTION METHOD !159
CALL SVDC_FACTOR (PATCH_P,POINTS,SCP_N,PATCH_WRK,PATCH_SQ) !160
WHERE (PATCH_WRK < EPSILON(1.d0)) PATCH_WRK = 0.D0 !161

!162
DO FIT = 1, N_R_B ! LOOP FOR EACH FLUX COMPONENT !163

CALL SVDC_BACK_SUBST (PATCH_P, PATCH_WRK, PATCH_SQ, & !164
POINTS, SCP_N, PATCH_DAT (:, FIT),& !165
PATCH_FIT (:, FIT)) !166

END DO ! FOR FLUXES COMPONENTS !167
!168

! INTERPOLATE AVERAGES TO ALL NODES IN THE PATCH. SCATTER !169
! PATCH NODAL AVERAGES TO SYSTEM NODES, INCREMENT COUNTS !170

!171
IF (DEBUG_SCP .AND. IP==1) PRINT *,’AVERAGING FLUXES’ !172
CALL EVAL_SCP_FIT_AT_PATCH_NODES (IP, NODES, X, & !173

L_IN_PATCH,MEMBERS, XYZ_MIN, XYZ_MAX, PATCH_FIT, & !174
SCP_AVERAGES, SCP_COUNTS) !175

!176
! NOTE: use Loubignac iteration here for new solution !177

!178
! DEALLOCATE LOCAL PATCH RELATED ARRAYS !179

IF (SCP_SCAL_ALLOC) CALL DEALLOCATE_SCP_INTERPOLATIONS !180
DEALLOCATE (PATCH_WRK) ; DEALLOCATE (PATCH_SQ) !181
DEALLOCATE (PATCH_FIT) ; DEALLOCATE (PATCH_DAT) !182
DEALLOCATE (PATCH_P) ; PATCH_ALLOC_STATUS=.FALSE. !183

!184
END DO ! FOR EACH IP PATCH IN MESH !185

!186
! FINALLY, AVERAGE FLUXES FOR EACH NODAL HIT COUNT !187

DO FIT = 1, MAX_NP ! FOR ALL NODES !188
IF (SCP_COUNTS (FIT) /= 0) THEN ! ACTIVE NODE !189

SCP_AVERAGES (FIT, :) = SCP_AVERAGES (FIT, :) & !190
/ SCP_COUNTS (FIT) !191

ELSE ! could skip since initialized !192
SCP_AVERAGES (FIT, :) = 0.D0 !193

END IF !194
END DO ! FOR (AN UNWEIGHTED) AVERAGE !195

!196
! REPORT AVERAGED MAX & MIN VALUES AND LOCATIONS !197

CALL MAX_AND_MIN_SCP_AVE_F90 (SCP_AVERAGES) !198
END SUBROUTINE CALC_SCP_AVE_NODE_FLUXES !199

Figure 6.9d Factor each patch then average at all nodes

7. For each element in the patch loop over the following steps:

A. Find its type and quadrature rule

B. Loop over each of its quadrature points

1) Increment the row number by one.

2) Use the element number and quadrature point number pair as

subscripts in the SCP_RECORD_NUMBER function to recover the

random record number for that point.

3) Read the physical coordinates and flux components from random

access file U_SCPR by using that record number.

4) Use the constant Jacobian of the patch to convert the physical

Chapter 6, Super-convergent patch recovery 163

location to the corresponding non-dimensional coordinates in the

patch. Note that this helps reduce the numerical ill-conditioning that

is common in a least squares fit process.

5) Evaluate the patch interpolation polynomial at the local point (by

utilizing the standard element interpolation library). Insert it into the

left hand side of this row of the coefficient matrix.

6) Substitute the flux components into the right hand side data matrix, in

the same row. Of course the number of columns on the right hand

side is the same as the number of flux components. This is also the

size of the patch result matrix, a, to be computed.

8. Having completed the loop over all the elements in this patch we now hav e the

rectangular arrays cited in Eq. 2.45 but we have not computed their actual

matrix products as shown in Eq. 2.46. While that equation is the standard way

to describe a least squares fit we do not actually use that process. Instead, we

try to avoid possible numerical ill-conditioning by using an equivalent but more

powerful process called the singular value decomposition algorithm [10]. That

process first factors the associated patch square matrix (in subroutine

SVDC_FACTOR) and then recovers the rectangular array of local continuous

patch nodal flux values (with subroutine SVDC_BACK_SUBST). However,

we want smooth flux values at the actual modes of the elements, not values at

the patch nodes. Thus, for the elements in question we need to interpolate the

patch results back to the system nodes contained within the current patch.

9. Loop over nodes in this patch:

a) Use the constant patch Jacobian to convert the node coordinates to non-

dimensional coordinates of the patch

b) Evaluate the patch interpolation matrix, SCP_HSCP_H , at each node point. It is

usually the same as the core element interpolation functions H.

c) Compute the flux components at the node by the matrix product of

SCP_HSCP_H and the continuous gradients at the patch nodes, a.

d) Increment the nodal counter for patch contributions by one and scatter the

node flux components to the rectangular system flux nodal array.

C. Optional Improvement of the Solution

At this stage in the SCP process one can use the least square smoothed gradients in

this patch to get a locally improved solution value estimate at all of the patch’s

interior nodes. However, one may want to just do so for the single parent element

about which the patch was constructed. The algorithm [9] is a form of the

Loubignac iterative process:

1) Read or reform element matrices, Se and Ce , here.

2) Use a higher order quadrature rule to form the equilibrating vector

Ve =
Ωe

∫ B* (σσ * − σ̂σ) d Ω.

3) Assemble the elements in the patch into a local linear system:

164 Finite Element Analysis with Error Estimators

S* φφ new = C − V.

4) Apply the previous solution as essential boundary conditions at all nodes on the

patch boundary.

5) Solve for the new interior node values (always a small system but especially

small for a patch of elements around a single node as in original ZZ patch

paper). Call them φφ *
e
.

6) Compute norm of φφ
e

− φφ *
e

to use as an additional term in the final error

estimator.

D. Final nodal flux average.

As shown in Fig. 6.10, most nodes are associated with more than one patch. Having

processed every patch for the mesh each node has now received as many nodal flux

estimates as there were patches that contained that node. We finalize the nodal flux

values by simply dividing each node’s flux component sums by that integer counter,

print the result, and re-save them in the rectangular array SCP_AVERAGES for use

by the element error estimator or other user-defined post-processing.

6.3 Computing the SCP element error estimates

For a homogeneous domain, or sub-domain, the above nodal averaging process

provides a continuous flux approximation that should be much closer to the true solution

than the element discontinuous fluxes. Thus, it is reasonable to base the element error

estimator on the average nodal fluxes from the SCP process. Basically, we will want to

integrate the difference between the spatial distributions of the two flux estimates so that

we can calculate the error norms of interest in each element. Then we will sum those

Figure 6.10 Overlapping patches give multiple node estimates

Chapter 6, Super-convergent patch recovery 165

scalar values over all elements so that we can establish the relative errors and how they

compare to the allowed value specified by the user. Of course, we will evaluate the

element norms by numerical integration. This will require a higher order quadrature rule

than the one needed to evaluate the element square matrix because the interpolation

function, P (which is usually H), is of higher polynomial degree than the B matrix (which

contains the derivatives of H) used in forming the element square matrix.

Subroutine SCP_ERROR_ESTIMATES implements the major steps outlined below.

1. Preliminary Setup

a. Initialize all of the norms to zero.

b. If the mesh has a constant constitutive matrix, E, then recover it and invert it once

for later use in calculating the energy norm.

2. Loop over all elements in the mesh:

a. Recover the element type (shape, number of nodes, quadrature rule for B, etc.)

b. Determine the quadrature rule to integrate the P array (here the H array), allocate

storage for that array to be pre-computed at each quadrature point, and then fill

those arrays.

c. Extract the element’s node numbers, coordinates, and dof.

d. At each node on the element gather the continuous nodal flux components from the

system SCP averages, ae ⊂ a.

e. Numerical integration loop over the element to form element norms and increment

system norms:

1. Recover the H array at the point and its local derivatives.

2. Obtain the physical coordinates, Jacobian and its inverse.

3. If the L2 norm of the solution is desired, interpolate for the value at the point.

Increment the L2 norm integral. If the exact solution has been provided, then

compute its norm also.

4. Compute the physical gradients of the original finite element solution. Form the B

matrix at the point for the current application, ε̂̂ε = B φφ . If the constitutive array, E,

is smoothly varying, then we could evaluate it at this point (and compute its

inverse). Otherwise, we employ the E matrix saved in the preliminary setup. Now

we recover the standard element flux estimate by matrix multiplication, σ̂σ = E ε̂̂ε .

We can also increment the L2 norm of this term if desired.

5. Now we are ready to recover the continuous flux values and approximate the stress

error. We simply carry out the matrix product of the interpolation functions, H, and

the nodal fluxes, a, at the quadrature point.

(6.1)σσ * = H a

The difference between these components and those from the previous step are

formed to define the stress error

(6.2)eσ = σσ * − σ̂σ .

If desired the square of this term (its dot product with itself) is obtained for its

increment to the L2 stress norm.

166 Finite Element Analysis with Error Estimators

6. In this implementation we almost always use the flux error to compute the error

energy norm, so at this stage we form the related triple matrix product, eT

σ E−1 eσ ,

and increment the quadrature point contribution to the element norm

(6.3)||ee ||2 =
nq

q

Σ(σσ * − σ̂σ)T

q
E−1

q
(σσ * − σ̂σ)q.

If the user has supplied an expression for the exact flux components, then they are

evaluated at the physical coordinates, and the corresponding L2 and error energy norms

are updated for later comparisons and to find the effectivity index.

Having incremented all of the element norms, they are complete at the end of this

quadrature loop for the current element. The active element norm values are then added

to the current values of the corresponding system norms. At times we also want to use

the element and system volume measures so that we can get some norm volumetric

av erages. Thus, the determinant of the Jacobian at the above points are also used to

obtain the element volumes so that they are available for these optional calculations.

Upon completing the loop over all elements we have the element norms, the element

volume, the system norms,

(6.4)||e||2 =
ne

e

Σ ||ee ||2,

and the system volume. At this point we can then carry out the element adaptivity

processes outlined at the end of the previous chapter. The coding details associated with

these steps are in the single subroutine but are broken out into major segments in

Fig. 6.11.

6.4 Hessian matrix *

There are times when one is also interested in the estimates of the second derivatives

of the solution with respect to the spatial coordinates. Examples include the application

of the Streamline Upwind Petrov Galerkin (SUPG) method for advection-diffusion

problems and the inclusion of ‘stabilization’ (or governing PDE residual) terms in the

solution of the Navier-Stokes equations. The matrix of second-order partial derivatives of

a function is called the Hessian matrix. If the function is C
2, (that is, has continuous

second derivatives) the Hessian is symmetric due to the equality of the mixed partial

derivatives. If one is employing high-order interpolation elements, one could proceed

with direct estimates of the second derivatives at the element level. Of course, we would

expect a decrease in accuracy compared to the element gradient estimates. Even with

higher order elements the first and second derivatives are not continuous at the boundaries

of surrounding elements (that is, elements that would make up a patch). Thus, a Hessian

matrix based on a patch calculation will usually not be symmetric. Assuming the use of

parametric elements, we need to employ the Jacobian. The Jacobian defines the mapping

from the parametric space to the physical space. In two dimensions:

Chapter 6, Super-convergent patch recovery 167

SUBROUTINE SCP_ERROR_ESTIMATES (NODES, X, SCP_AVERAGES, DOF_SYS,& ! 1
ELEM_ERROR_ENERGY, & ! 2
ELEM_REFINEMENT, ERR_MAX) ! 3

! * ! 4
! USE INTEGRAL OF DIFFERENCE BETWEEN THE RECOVERED AVERAGE NODAL ! 5
! FLUXES AND ORIGINAL ELEMENT FLUXES TO ESTIMATE ELEMENT ERROR ! 6
! IN THE ENERGY NORM ! 7
! * ! 8
! Note: Debug options, 2nd derivative options, saving to ! 9
! plotter files are not shown here to save space. ! 10
! See source library for full details. ! 11
Use System_Constants ! for MAX_NP, NEIGH_L, N_ELEMS, N_QP, ! 12

! SCP_FIT, U_SCPR, SKIP_ERROR ! 13
Use Select_Source ! 14
Use Elem_Type_Data ! for: ! 15

! LT_FREE, LT_GEOM, LT_N, LT_PARM, LT_QP, ELEM_NODES (LT_N),& ! 16
! COORD (LT_N, N_SPACE), GEOMETRY (LT_GEOM, N_SPACE), & ! 17
! C (LT_FREE), D (LT_FREE), S (LT_FREE, LT_FREE), & ! 18
! DLG (LT_PARM, LT_GEOM), DLG_QP (LT_PARM, LT_GEOM, LT_QP) & ! 19
! DLH (LT_PARM, LT_N), DLH_QP (LT_PARM, LT_N, LT_QP), & ! 20
! DLV (LT_PARM, LT_FREE), DLV_QP (LT_PARM, LT_FREE, LT_QP), & ! 21
! G (LT_GEOM), G_QP (LT_GEOM, LT_QP), H_QP (LT_N, LT_QP), & ! 22
! V (LT_FREE), V_QP (LT_FREE, LT_QP), H (LT_N), & ! 23
! PT (LT_PARM, LT_QP), WT (LT_QP), D2LH (N_2_DER, LT_N) ! 24

Use SCP_Type_Data ! 25
Use Interface_Header ! 26
Use Geometric_Properties ! 27
IMPLICIT NONE ! 28
INTEGER, INTENT (IN) :: NODES (L_S_TOT, NOD_PER_EL) ! 29
REAL(DP), INTENT (IN) :: X (MAX_NP, N_SPACE) ! 30
REAL(DP), INTENT (IN) :: SCP_AVERAGES (MAX_NP, SCP_FIT) ! 31
REAL(DP), INTENT (IN) :: DOF_SYS (N_D_FRE) ! 32
REAL(DP), INTENT (OUT) :: ELEM_ERROR_ENERGY (N_ELEMS) ! 33
REAL(DP), INTENT (OUT) :: ELEM_REFINEMENT (N_ELEMS) ! 34
REAL(DP), INTENT (OUT) :: ERR_MAX ! 35
REAL (DP), PARAMETER :: ZERO = 0.d0 ! 36

! 37
INTEGER :: IE, IN, IQ, LT, QP_LT, LOC_MAX (1) ! 38
INTEGER :: I_ERROR ! /= 0 IFF INVERSION OF E FAILS ! 39
REAL (DP) :: GLOBAL_ERROR_ENERGY, NEAR_ZERO ! 40
REAL (DP) :: GLOBAL_FLUX_NORM, GLOBAL_FLUX_ERROR ! 41
REAL (DP) :: GLOBAL_FLUX_RMS, GLOBAL_SOLUTION_L2 ! 42
REAL (DP) :: GLOBAL_SOLUTION_ERR, VOL ! 43
REAL (DP) :: GLOBAL_STRAIN_ENERGY, STRAIN_ENERGY_NORM ! 44
REAL (DP) :: ELEM_STRAIN_ENERGY, ALLOWED_ERROR ! 45
REAL (DP) :: ALLOWED_ERR_DENSITY, ALLOWED_ERR_PER_EL ! 46
REAL (DP) :: ELEM_FLUX_NORM, ELEM_FLUX_ERROR ! 47
REAL (DP) :: ELEM_FLUX_RMS, ELEM_SOLUTION_L2 ! 48
REAL (DP) :: ELEM_SOLUTION_ERR, EL_ERR_ENERGY ! 49
REAL (DP) :: GLOBAL_H1_NORM, GLOBAL_H2_NORM ! 50
REAL (DP) :: GLOBAL_H1_ERROR, GLOBAL_H2_ERROR ! 51
REAL (DP) :: ELEM_H1_NORM, ELEM_H2_NORM ! 52
REAL (DP) :: ELEM_H1_ERROR, ELEM_H2_ERROR ! 53
REAL (DP) :: EXACT_H1_NORM, EXACT_H2_NORM ! 54
REAL (DP) :: EXACT_H1_ERROR, EXACT_H2_ERROR ! 55

Figure 6.11a Interface and data for error estimates

168 Finite Element Analysis with Error Estimators

REAL (DP) :: EXACT_SOL_L2, EX_ERR_ENERGY ! 56
REAL (DP) :: EXACT_FLUX_ERROR, EXACT_FLUX_NORM ! 57
REAL (DP) :: EXACT_STRAIN_ENERGY, EXACT_ERR_ENERGY ! 58
REAL (DP) :: DET, DET_WT, TEMP, TEST, SCP_VOLUME ! 59
REAL (DP), ALLOCATABLE :: DOF_EL (:, :) ! D RESHAPE ! 60

! 61
! Automatic Arrays ! 62

REAL (DP) :: AJ (N_SPACE, N_SPACE) ! JACOBIAN ! 63
REAL (DP) :: AJ_INV (N_SPACE, N_SPACE) ! JACOBIAN INVERSE ! 64
REAL (DP) :: B (N_R_B, N_EL_FRE) ! DIFFERENTIAL OP ! 65
REAL (DP) :: E (N_R_B, N_R_B) ! CONSTITUTIVE ! 66
REAL (DP) :: E_INVERSE (N_R_B, N_R_B) ! INVERSE ! 67
REAL (DP) :: DGH (N_SPACE, NOD_PER_EL) ! GRADIENT OF H ! 68
REAL (DP) :: FLUX_LT (N_R_B, NOD_PER_EL) ! NODAL FLUXES ! 69
REAL (DP) :: XYZ (N_SPACE) ! POINT IN SPACE ! 70
REAL (DP) :: SIGMA_SCP (N_R_B) ! SCP FLUX ! 71
REAL (DP) :: SIGMA_HAT (N_R_B) ! FEA FLUX ! 72
REAL (DP) :: DIFF (N_R_B) ! FLUX DIFFERENCE ! 73
REAL (DP) :: MEASURE (N_ELEMS) ! ELEMENT MEASURE ! 74
REAL (DP) :: ELEM_ERROR_DENSITY (N_ELEMS) ! Per UNIT VOLUME ! 75
REAL (DP) :: EXAC_ERROR_ENERGY (N_ELEMS) ! EXACT ERR ENERGY ! 76
REAL (DP) :: SOLUTION (N_G_DOF), EXACT_SOL (N_G_DOF) ! AT PT ! 77
REAL (DP) :: SOLUTION_ERR (N_G_DOF) ! PT ERROR RESULT ! 78

! 79
! B = GRADIENT VERSUS DOF MATRIX ! 80
! DGH = GLOBAL DERIVS OF SCALAR FUNCTIONS H ! 81
! DOF_SYS = DEGREES OF FREEDOM OF THE SYSTEM ! 82
! E = CONSTITUTIVE MATRIX, INVERSE IS E_INVERSE ! 83
! ELEM_ERROR_ENERGY = ESTIMATED ELEMENT ERROR, % OF ENERGY NORM ! 84
! ELEM_ERROR_DENSITY = ESTIMATED ELEMENT ERROR / SQRT(MEASURE) ! 85
! ELEM_NODES = THE NOD_PER_EL INCIDENCES OF THE ELEMENT ! 86
! ELEM_REFINEMENT = INDICATOR, >1 REFINE, <1 DE-REFINE ! 87
! EXAC_ERROR_ENERGY = ENERGY IN ERROR FROM EXACT SOLUTION ! 88
! INDEX = SYSTEM DOF NUMBERS ASSOCIATED WITH ELEMENT ! 89
! L_HOMO = 1, IF ELEMENT PROPERTIES ARE HOMOGENEOUS ! 90
! L_S_TOT = TOTAL NUMBER OF ELEMENTS & THEIR SEGMENTS ! 91
! L_TYPE = ELEMENT TYPE NUMBER LIST ! 92
! LT = ELEMENT TYPE NUMBER (IF USED) ! 93
! LT_QP = NUMBER OF QUADRATURE PTS FOR ELEMENT TYPE ! 94
! MAX_NP = NUMBER OF SYSTEM NODES ! 95
! MEASURE = ELEMENT MEASURE (GENERALIZED VOLUME) ! 96
! NOD_PER_EL = MAXIMUM NUMBER OF NODES PER ELEMENT ! 97
! NODES = NODAL INCIDENCES OF ALL ELEMENTS ! 98
! N_QP = MAXIMUM NUMBER OF QUADRATURE POINTS, >= LT_QP ! 99
! N_R_B = NUMBER OF ROWS IN B AND E MATRICES !100
! N_SPACE = DIMENSION OF SPACE !101
! SCP_AVERAGES = AVERAGED FLUXES AT ALL NODES IN MESH !102
! SCP_FIT = NUMBER IF TERMS BEING FIT, OR AVERAGED !103
! SCP_VOLUME = SCP VOLUME USED IN GETTING RMS VALUES !104
! SIGMA_HAT = FLUX COMPONENTS AT PT FROM ORIGINAL ELEMENT !105
! SIGMA_SCP = FLUX COMPONENTS AT PT FROM SMOOTHED SCP !106
! SOLUTION_ERR = DIFFERENCE BETWEEN SOLUTION AND EXACT_SOL !107
! EXACT_SOL = VALUE FROM USER SUPPLIED ROUTINE !108
! X = COORDINATES OF SYSTEM NODES !109
! XYZ = SPACE COORDINATES AT A POINT !110

Figure 6.11b Automatic arrays and local variables

Chapter 6, Super-convergent patch recovery 169

!111
WRITE (N_PRT, "(/, ’** BEGINNING ELEMENT ERROR ESTIMATES **’)") !112
ELEM_ERROR_ENERGY = 0.d0 ; ERR_MAX = 0.d0 ! INITIAL !113
ELEM_REFINEMENT = 0.d0 ; EXAC_ERROR_ENERGY = 0.d0 ! INITIAL !114
NEAR_ZERO = TINY (1.d0) ! CONSTANT !115

!116
GLOBAL_ERROR_ENERGY = 0.d0 ! INITIALIZE !117
GLOBAL_FLUX_NORM = 0.d0 ; GLOBAL_FLUX_ERROR = 0.d0 !118
GLOBAL_FLUX_RMS = 0.d0 ; GLOBAL_SOLUTION_L2 = 0.d0 !119
SCP_VOLUME = 0.d0 ; GLOBAL_SOLUTION_ERR = 0.d0 !120
MEASURE = 0.d0 ; GLOBAL_STRAIN_ENERGY = 0.d0 !121
EXACT_FLUX_ERROR = 0.d0 ; EXACT_FLUX_NORM = 0.d0 !122
EXACT_STRAIN_ENERGY = 0.d0 ; EXACT_ERR_ENERGY = 0.d0 !123
EXACT_SOL = 0.d0 ; EXACT_SOL_L2 = 0.d0 !124
EXAC_ERROR_ENERGY = 0.d0 ; DIFF = 0.d0 !125
GLOBAL_H1_NORM = 0.d0 ; GLOBAL_H2_NORM = 0.d0 !126
GLOBAL_H1_ERROR = 0.d0 ; GLOBAL_H2_ERROR = 0.d0 !127
ELEM_H1_NORM = 0.d0 ; ELEM_H2_NORM = 0.d0 !128
ELEM_H1_ERROR = 0.d0 ; ELEM_H2_ERROR = 0.d0 !129
EXACT_H1_NORM = 0.d0 ; EXACT_H2_NORM = 0.d0 !130
EXACT_H1_ERROR = 0.d0 ; EXACT_H2_ERROR = 0.d0 !131
XYZ = 0.d0 ; IE = 1 !132

!133
! CHECK FOR POSSIBLE CONSTANT CONSTITUTIVE MATRIX !134

IF (L_HOMO == 1) THEN ! HOMOGENEOUS !135
XYZ = 0.d0 ; IE = 1 ! DUMMY ARGUMENTS !136
IF (.NOT. GRAD_BASE_ERROR) CALL & !137

SELECT_APPLICATION_E_MATRIX (IE, XYZ, E) !138
CALL INV_SMALL_MAT (N_R_B, E, E_INVERSE, I_ERROR) !139

END IF ! HOMOGENEOUS MATERIAL !140
!141

LT = 1 ; LAST_LT = 0 !142
DO IE = 1, N_ELEMS ! LOOP OVER ALL STANDARD ELEMENTS !143

!--> GET ELEMENT TYPE NUMBER !144
IF (N_L_TYPE > 1) LT = L_TYPE (IE) ! SAME AS LAST TYPE ? !145
IF (LT /= LAST_LT) THEN ! this is a new type !146

CALL GET_ELEM_TYPE_DATA (LT) ! CONTROLS FOR THIS TYPE !147
LAST_LT = LT !148

!149
!--> GET UPGRADED QUADRATURE RULE FOR PATCH "ELEMENT" TYPE !150

CALL GET_PATCH_QUADRATURE_ORDER (LT_SHAP, LT_QP, SCP_QP) !151
!152

! SINCE SCP_QP >= LT_QP MUST REALLOCATE SOME ARRAYS !153
QP_LT = LT_QP ! Copy to prevent overwrite !154
LT_QP = SCP_QP ! Return to original value below !155
IF (TYPE_APLY_ALLOC) CALL DEALLOCATE_TYPE_APPLICATION !156
CALL ALLOCATE_TYPE_APPLICATION !157
IF (TYPE_NTRP_ALLOC) CALL DEALLOCATE_TYPE_INTERPOLATIONS !158
CALL ALLOCATE_TYPE_INTERPOLATIONS !159
IF (ALLOCATED (DOF_EL)) DEALLOCATE (DOF_EL) !160
ALLOCATE (DOF_EL (N_G_DOF, LT_N)) !161

!162
IF (LT_QP > 0) THEN ! GET QUADRATURE FOR PATCH "ELEMENT" !163

CALL GET_ELEM_QUADRATURES !164
CALL FILL_TYPE_INTERPOLATIONS ; END IF !165

END IF ! a new element type !166
!167

Figure 6.11c Set patch type and quadrature data

170 Finite Element Analysis with Error Estimators

!--> GET ELEMENT NODE NUMBERS, COORD, DOF !168
ELEM_NODES = GET_ELEM_NODES (IE, LT_N, NODES) !169
CALL ELEM_COORD (LT_N, N_SPACE, X, COORD, ELEM_NODES) !170
INDEX = GET_ELEM_INDEX (LT_N, ELEM_NODES) !171
D = GET_ELEM_DOF (DOF_SYS) !172
DOF_EL = RESHAPE (D, (/ N_G_DOF, LT_N /)) !173

!174
!--> EXTRACT SCP NODAL FLUXES (NOW GATHER_LT_SCP_AVERAGES) !175

DO IN = 1, LT_N ! OVER NODES OF ELEMENT !176
IF (ELEM_NODES (IN) < 1) CYCLE ! TO VALID NODE !177

FLUX_LT (1:N_R_B, IN) = SCP_AVERAGES (& !178
ELEM_NODES (IN), 1:N_R_B) !179

END DO ! FOR NODES ON ELEMENT !180
!181

! INITIALIZE NORMS !182
ELEM_FLUX_NORM = 0.d0 ; ELEM_FLUX_ERROR = 0.d0 !183
ELEM_FLUX_RMS = 0.d0 ; ELEM_SOLUTION_L2 = 0.d0 !184
ELEM_SOLUTION_ERR = 0.d0 ; ELEM_STRAIN_ENERGY = 0.d0 !185
EL_ERR_ENERGY = 0.d0 ; EX_ERR_ENERGY = 0.d0 !186
VOL = 0.d0 ; ELEM_ERROR_ENERGY (IE) = 0.d0 !187

!188
DO IQ = 1, LT_QP ! LOOP OVER QUADRATURE POINTS !189

H = GET_H_AT_QP (IQ) ! INTERPOLATION FUNCTIONS !190
XYZ = MATMUL (H, COORD) ! COORDINATES OF PT !191
DLH = GET_DLH_AT_QP (IQ) ! LOCAL DERIVATIVES !192

!193
! FIND JACOBIAN AT THE PT, INVERSE AND DETERMINANT !194

AJ = MATMUL (DLH (1:N_SPACE, :), COORD) !195
CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) !196
IF (DET <= ZERO) STOP ’BAD DET, SCP_ERROR_ESTIMATES’ !197
DET_WT = DET * WT(IQ) !198

!199
IF (AXISYMMETRIC) DET_WT = DET_WT * XYZ (1) * TWO_PI !200
VOL = VOL + DET_WT ! UPDATE ELEMENT VOLUME !201

!202
! EVALUATE SOLUTION L2 NORM (ASSUMING C_0N_G_DOF) !203

SOLUTION = MATMUL (DOF_EL, H) !204
ELEM_SOLUTION_L2 = ELEM_SOLUTION_L2 + DET_WT & !205

* DOT_PRODUCT (SOLUTION, SOLUTION) !206
!207

! EVALUATE APPLICATION EXACT VALUE & ERROR HERE !208
IF (USE_EXACT) THEN !209

CALL SELECT_EXACT_SOLUTION (XYZ, EXACT_SOL) !210
EXACT_SOL_L2 = EXACT_SOL_L2 + DET_WT & !211

* DOT_PRODUCT (EXACT_SOL, EXACT_SOL) !212
SOLUTION_ERR = EXACT_SOL - SOLUTION !213
ELEM_SOLUTION_ERR = ELEM_SOLUTION_ERR + DET_WT & !214

* DOT_PRODUCT (SOLUTION_ERR, SOLUTION_ERR) !215
END IF ! EXACT SOLUTION GIVEN !216

!217
DGH = MATMUL (AJ_INV, DLH) ! GLOBAL DERIVATIVES !218
CALL SELECT_APPLICATION_B_MATRIX (DGH, XYZ, B (:,1:LT_FREE)) !219

!220

Figure 6.11d Gather continuous flux and integrate error

Chapter 6, Super-convergent patch recovery 171

! GET LOCAL STRAINS (STORE IN SIGMA_HAT) !221
SIGMA_HAT (1:N_R_B) = MATMUL(B(:,1:LT_FREE),D(1:LT_FREE)) !222

!223
! APPLY CONSTITUTIVE RELATION (TO STRAINS IN SIGMA_SCP) !224

SIGMA_HAT (1:N_R_B) = MATMUL (E, SIGMA_HAT (1:N_R_B)) !225
!226

! GET SCP FLUX ESTIMATES & DIFFERENCE !227
SIGMA_SCP (:) = MATMUL (H, TRANSPOSE(FLUX_LT (:,1:LT_N))) !228
DIFF = SIGMA_SCP - SIGMA_HAT ! SIGMA ERROR EST !229
ELEM_FLUX_NORM = ELEM_FLUX_NORM & !230

+ DET_WT * DOT_PRODUCT (SIGMA_SCP,SIGMA_SCP) !231
ELEM_FLUX_ERROR = ELEM_FLUX_ERROR & !232

+ DET_WT * DOT_PRODUCT (DIFF, DIFF) !233
!234

! INCREMENT STRAIN ENERGY & ENERGY IN THE ERROR !235
TEST = DOT_PRODUCT (SIGMA_SCP,MATMUL(E_INVERSE,SIGMA_SCP)) !236
ELEM_STRAIN_ENERGY = ELEM_STRAIN_ENERGY + DET_WT * TEST !237

!238
TEST = DOT_PRODUCT (DIFF, MATMUL (E_INVERSE, DIFF)) !239
EL_ERR_ENERGY = EL_ERR_ENERGY + DET_WT * TEST !240
IF (EL_ERR_ENERGY < NEAR_ZERO) EL_ERR_ENERGY = 0.d0 !241

!242
IF (USE_EXACT_FLUX) THEN ! GET EXACT VALUES !243

CALL SELECT_EXACT_FLUX (XYZ, SIGMA_SCP (1:N_R_B)) !244
DIFF = SIGMA_SCP - SIGMA_HAT ! EXACT ERROR !245
EXACT_FLUX_NORM = EXACT_FLUX_NORM & !246

+ DET_WT * DOT_PRODUCT (SIGMA_SCP, SIGMA_SCP) !247
EXACT_FLUX_ERROR = EXACT_FLUX_ERROR & !248

+ DET_WT * DOT_PRODUCT (DIFF, DIFF) !249
TEST = DOT_PRODUCT(SIGMA_SCP,MATMUL(E_INVERSE,SIGMA_SCP)) !250
EXACT_STRAIN_ENERGY = EXACT_STRAIN_ENERGY + DET_WT*TEST !251
TEST = DOT_PRODUCT (DIFF, MATMUL (E_INVERSE, DIFF)) !252
EX_ERR_ENERGY = EX_ERR_ENERGY + DET_WT * TEST !253
EXACT_ERR_ENERGY = EXACT_ERR_ENERGY + DET_WT * TEST !254

END IF ! EXACT FLUXES GIVEN !255
END DO ! OVER ERROR EST QP !256

!257
EXAC_ERROR_ENERGY (IE) = EX_ERR_ENERGY + NEAR_ZERO !258
ELEM_ERROR_ENERGY (IE) = EL_ERR_ENERGY + NEAR_ZERO !259
MEASURE (IE) = VOL !260
SCP_VOLUME = SCP_VOLUME + VOL !261

!262
! COMBINE AND NORMALIZE ERROR TERMS !263

GLOBAL_STRAIN_ENERGY=GLOBAL_STRAIN_ENERGY+ELEM_STRAIN_ENERGY !264
GLOBAL_ERROR_ENERGY = GLOBAL_ERROR_ENERGY + EL_ERR_ENERGY !265
GLOBAL_FLUX_NORM = GLOBAL_FLUX_NORM + ELEM_FLUX_NORM !266
GLOBAL_FLUX_ERROR = GLOBAL_FLUX_ERROR + ELEM_FLUX_ERROR !267
GLOBAL_SOLUTION_L2 = GLOBAL_SOLUTION_L2 + ELEM_SOLUTION_L2 !268
GLOBAL_SOLUTION_ERR = GLOBAL_SOLUTION_ERR +ELEM_SOLUTION_ERR !269

!270
GLOBAL_H2_NORM = GLOBAL_H2_NORM + ELEM_H2_NORM !271
GLOBAL_H2_ERROR = GLOBAL_H2_ERROR + ELEM_H2_ERROR !272

!273
ELEM_ERROR_ENERGY (IE) = SQRT (ELEM_ERROR_ENERGY (IE)) !274
EXAC_ERROR_ENERGY (IE) = SQRT (EXAC_ERROR_ENERGY (IE)) !275
END DO ! OVER ALL ELEMENTS !276
LT_QP = QP_LT ! RESET LT_QP TO ITS TRUE VALUE !277

!278

Figure 6.11e Update various error measure choices

172 Finite Element Analysis with Error Estimators

! FINAL GLOBAL COMBINATIONS !279
GLOBAL_STRAIN_ENERGY=GLOBAL_STRAIN_ENERGY+GLOBAL_ERROR_ENERGY !280

!281
EXACT_H2_NORM = EXACT_H2_NORM + EXACT_FLUX_ERROR & !282

+ EXACT_SOL_L2 !283
GLOBAL_H2_NORM = GLOBAL_H2_NORM + GLOBAL_FLUX_NORM & !284

+ GLOBAL_SOLUTION_L2 !285
!286

STRAIN_ENERGY_NORM = SQRT (GLOBAL_STRAIN_ENERGY) !287
ALLOWED_ERROR = STRAIN_ENERGY_NORM*(PERCENT_ERR_MAX/100) !288
ALLOWED_ERR_DENSITY= ALLOWED_ERROR / SQRT (SCP_VOLUME) !289
ALLOWED_ERR_PER_EL = ALLOWED_ERROR / SQRT (FLOAT(N_ELEMS)) !290

!291
! AVOID DIVISION BY ZERO IF THE ERROR IS ZERO !292

ALLOWED_ERROR = ALLOWED_ERROR + NEAR_ZERO !293
ALLOWED_ERR_DENSITY = ALLOWED_ERR_DENSITY + NEAR_ZERO !294
ALLOWED_ERR_PER_EL = ALLOWED_ERR_PER_EL + NEAR_ZERO !295
ERR_MAX = ALLOWED_ERROR !296
EXACT_FLUX_ERROR = EXACT_FLUX_ERROR + NEAR_ZERO !297
EXACT_H1_ERROR = EXACT_H1_ERROR + NEAR_ZERO !298
GLOBAL_ERROR_ENERGY = GLOBAL_ERROR_ENERGY + NEAR_ZERO !299
GLOBAL_FLUX_ERROR = GLOBAL_FLUX_ERROR + NEAR_ZERO !300
GLOBAL_H1_ERROR = GLOBAL_H1_ERROR + NEAR_ZERO !301
GLOBAL_SOLUTION_ERR = GLOBAL_SOLUTION_ERR + NEAR_ZERO !302

!303
GLOBAL_ERROR_ENERGY = SQRT (GLOBAL_ERROR_ENERGY) !304
GLOBAL_FLUX_NORM = SQRT (GLOBAL_FLUX_NORM) !305
GLOBAL_SOLUTION_L2 = SQRT (GLOBAL_SOLUTION_L2) !306
EXACT_SOL_L2 = SQRT (EXACT_SOL_L2) !307
GLOBAL_SOLUTION_ERR = SQRT (GLOBAL_SOLUTION_ERR) !308
IF (SCP_VOLUME > 0.d0) GLOBAL_FLUX_RMS = & !309

SQRT (GLOBAL_FLUX_ERROR / SCP_VOLUME) !310
GLOBAL_FLUX_ERROR = SQRT (GLOBAL_FLUX_ERROR) !311

!312
! GET EXACT VALUES, WHEN AVAILABLE !313

EXACT_STRAIN_ENERGY = EXACT_STRAIN_ENERGY+EXACT_ERR_ENERGY !314
EXACT_STRAIN_ENERGY = SQRT (EXACT_STRAIN_ENERGY) !315
EXACT_FLUX_NORM = SQRT (EXACT_FLUX_NORM) !316
EXACT_FLUX_ERROR = SQRT (EXACT_FLUX_ERROR) !317

!318
EXACT_H2_NORM = SQRT (EXACT_H2_NORM) !319
GLOBAL_H2_NORM = SQRT (GLOBAL_H2_NORM) !320
EXACT_H2_ERROR = SQRT (EXACT_H2_ERROR) !321
GLOBAL_H2_ERROR = SQRT (GLOBAL_H2_ERROR) !322

!323

Figure 6.11f Update global error measures

Chapter 6, Super-convergent patch recovery 173

PRINT *,"** S_C_P ENERGY NORM ERROR ESTIMATE DATA **" !324
PRINT *," " !325
PRINT *, "DOMAIN MEASURE", SCP_VOLUME !326
PRINT *, "AVERAGE ELEMENT MEASURE ...", SCP_VOLUME / N_ELEMS !327
PRINT *, "GLOBAL_SOLUTION_L2", GLOBAL_SOLUTION_L2 !328
IF (USE_EXACT) THEN !329

PRINT *, "EXACT_SOLUTION_L2", EXACT_SOL_L2 !330
PRINT *, "GLOBAL_SOLUTION_ERR........", GLOBAL_SOLUTION_ERR !331

END IF ! EXACT SOLUTION GIVEN !332
PRINT *, " " !333
PRINT *, "STRAIN_ENERGY_NORM", STRAIN_ENERGY_NORM !334
IF (USE_EXACT_FLUX) PRINT *, & !335

"EXACT_STRAIN_ENERGY_NORM ..", EXACT_STRAIN_ENERGY !336
PRINT *, "ALLOWED_PER_CENT_ERROR", PERCENT_ERR_MAX !337
PRINT *, "ALLOWED_GLOBAL_ERROR", ALLOWED_ERROR !338
PRINT *, "ALLOWED_ERROR_DENSITY", ALLOWED_ERR_DENSITY !339
PRINT *, "ALLOWED_ERROR_PER_ELEM", ALLOWED_ERR_PER_EL !340
PRINT *, " " !341
PRINT *, "GLOBAL_ERROR_ENERGY", GLOBAL_ERROR_ENERGY !342
PRINT *, "GLOBAL_ERROR_PARAMETER", & !343

GLOBAL_ERROR_ENERGY / ALLOWED_ERROR !344
PRINT *, " " !345
PRINT *, "GLOBAL_FLUX_ERROR", GLOBAL_FLUX_ERROR !346
IF (USE_EXACT_FLUX) PRINT *, & !347

"EXACT_FLUX_ERROR", EXACT_FLUX_ERROR !348
PRINT *, "GLOBAL_FLUX_NORM", GLOBAL_FLUX_NORM !349
IF (USE_EXACT_FLUX) PRINT *, & !350

"EXACT_FLUX_NORM", EXACT_FLUX_NORM !351
PRINT *, "GLOBAL_FLUX_RMS", GLOBAL_FLUX_RMS !352

!353
! CONVERT TO ELEMENT ERROR DENSITY !354

WHERE (MEASURE > 0.d0) !355
ELEM_ERROR_DENSITY = ELEM_ERROR_ENERGY / SQRT (MEASURE) !356

ELSEWHERE !357
ELEM_ERROR_DENSITY = 0.d0 !358

END WHERE !359
!360

! LIST AVERAGE TOTAL ERROR !361
TEMP = STRAIN_ENERGY_NORM / 100.d0 !362
TEST = SUM (ELEM_ERROR_ENERGY) / TEMP !363
WRITE(N_PRT,’("TOTAL % ERROR IN ENERGY NORM =",1PE8.2)’) TEST !364

!365
! LIST MAXIMUMS !366

TEST = MAXVAL (ELEM_ERROR_ENERGY) !367
LOC_MAX = MAXLOC (ELEM_ERROR_ENERGY) !368
PRINT *, " " !369
WRITE (N_PRT, ’("MAX ELEMENT ENERGY ERROR OF ",1PE8.2)’) TEST !370
WRITE (N_PRT, ’("OCCURS IN ELEMENT ", I6)’) LOC_MAX (1) !371
TEST = MAXVAL (ELEM_ERROR_DENSITY) !372
LOC_MAX = MAXLOC (ELEM_ERROR_DENSITY) !373
WRITE (N_PRT, ’("MAX ENERGY ERROR DENSITY OF ",1PE8.2)’) TEST !374
WRITE (N_PRT, ’("OCCURS IN ELEMENT ", I6)’) LOC_MAX (1) !375

!376

Figure 6.11g List global error measures

174 Finite Element Analysis with Error Estimators

! FINALLY, CONVERT REFINEMENT TO TRUE REFINEMENT PARAMETER !377
ELEM_REFINEMENT = ELEM_ERROR_DENSITY * SQRT (SCP_VOLUME) & !378

/ ALLOWED_ERROR !379
WRITE (N_PRT, ’("WITH REFINEMENT PARAMETER OF ", 1PE8.2)’) & !380

TEST / ALLOWED_ERR_DENSITY !381
PRINT *, "--" !382
PRINT *, " ERROR IN % ERROR IN REFINEMENT" !383
PRINT *, "ELEMENT, ENERGY_NORM, ENERGY_NORM, PARAMETER" !384
PRINT *, "---" !385

!386
DO IE = 1, N_ELEMS ! LOOP OVER ALL ELEMENTS !387

IF (ELEM_ERROR_ENERGY (IE) > ALLOWED_ERR_PER_EL .OR. & !388
ELEM_ERROR_DENSITY (IE) > ALLOWED_ERR_DENSITY) THEN !389

WRITE (N_PRT,"(I8, 3(1PE16.4),6X,A)") IE, & !390
ELEM_ERROR_ENERGY (IE), ELEM_ERROR_ENERGY (IE) / & !391
TEMP, ELEM_REFINEMENT (IE), "Refine" !392

ELSE !393
WRITE (N_PRT,"(I8, 3(1PE16.4),6X,A)") IE, & !394

ELEM_ERROR_ENERGY (IE), ELEM_ERROR_ENERGY (IE) / & !395
TEMP, ELEM_REFINEMENT (IE), "Refine" ; END IF !396

END DO ! FOR ALL ELEMENTS !397
!398

! CONVERT TO % ERROR IN ENERGY NORM * 100 !399
ELEM_ERROR_ENERGY = ELEM_ERROR_ENERGY / TEMP !400
IF (TYPE_APLY_ALLOC) CALL DEALLOCATE_TYPE_APPLICATION !401
IF (TYPE_NTRP_ALLOC) CALL DEALLOCATE_TYPE_INTERPOLATIONS !402

END SUBROUTINE SCP_ERROR_ESTIMATES !403

Figure 6.11h List element error and error density

(6.5)

∂
∂r

∂
∂s

=

∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

∂
∂x

∂
∂y

.

Continuing this process to relate second parametric derivatives to second physical

derivatives inv olves products and derivatives of the Jacobian array. For a two-

dimensional mapping: (6.6)

∂2

∂r2

∂2

∂s2

∂2

∂r ∂s

=

∂2
x

∂r2

∂2
x

∂s2

∂2
x

∂r ∂s

∂2
y

∂r2

∂2
y

∂s2

∂2
y

∂r ∂s

∂
∂x

∂
∂y

+

∂x

∂r

2

∂x

∂s

2

∂x

∂r

∂x

∂s

∂y

∂r

2

∂y

∂s

2

∂y

∂r

∂y

∂s

2
∂x

∂r

∂y

∂r

2
∂x

∂s

∂y

∂s

∂x

∂s

∂y

∂r
+

∂x

∂r

∂y

∂s

∂2

∂x2

∂2

∂y2

∂2

∂x ∂y

.

For a constant Jacobian the first rectangular matrix on the right is zero. Otherwise, the

second derivatives are clearly more sensitive to a variable Jacobian. In each case, we

Chapter 6, Super-convergent patch recovery 175

must invert the square matrices to obtain the first and second physical derivatives. If the

Jacobian is not constant, then the effect of a distorted element would be amplified by the

product terms in the square matrix of Eq. 6.6, as well as by the second derivatives in the

rectangular array that multiplies the physical gradient term. Using this analytic form for

the second derivative of an approximate finite element solution is certainly questionable.

Clearly, for an element with a constant Jacobian, the result would be identically zero.

Thus, we will actually only use this form as a tool to estimate regions of high second-

derivative error, as compared to the values obtained from a patch recovery technique.

In the present software the second derivative calculations and associated output are

activated by a global logical constant SCP_2ND_DERIV which is set to true by including an

input keyword control of scp_2nd_deriv in the data file. If the norm of the estimated

second derivative error is required, then the square matrix of Jacobian product terms is

computed in subroutine JA COBIAN_PRODUCTS and is given the name P_AJ. Its associated

inverse matrix is called P_AJ_INV. The second parametric (local) derivatives of the

interpolation functions, H, are denoted as D2LH and the corresponding second physical

(global) derivatives, from Eq. 6.6, are denoted by D2GH. Each has N_2_DER rows and a

column for each interpolation function. For one-, two- and three-dimensional problems,

N_2_DER has a value of 1, 3, or 6, respectively.

Since the analytic estimate will usually be compared to a smoothed patch estimate,

the second derivative terms are also computed in EVAL_SCP_FIT_AT_PATCH_NODES if

SCP_2ND_DERIV is true. After the element fluxes have been processed to give continuous

nodal values on a patch (as described earlier), the physical gradients of the patch

interpolations, SCP_DGH, are invoked to evaluate the gradients of the fluxes (i.e., the

second derivatives) at all of the mesh nodes in the patch. They are then also scattered to

the system array, SCP_AVERAGES, for later averaging over all patch contributions.

Sometimes one may want to bias estimates on the boundary of the domain before

scattering its contribution to the system averages.

After the flux components and their gradients (second derivatives) have been

av eraged, they are listed at the nodes, and/or saved for plotting and then passed to the

routine SCP_ERROR_ESTIMATES. There the second derivative values are only used to

calculate various measures or norms for them and their estimated error. While the

corresponding cross derivates like ∂2 / ∂x∂y and ∂2 / ∂y∂x should be equal, they

generally will differ due to various numerical approximations. All cross derivatives are

computed, but only average values are used in estimating errors in the second derivatives.

The larger full set of second derivatives at the nodes of an element are gathered and

placed in an array called DERIV2_LT. If cross derivative estimates exist, they are averaged

and placed in a smaller array called DERIV2_AVE that has the N_2_DER second derivatives

at each element node. They will be interpolated to give the average second derivatives at

the quadrature points used to evaluate the norms. By analogy to the first derivative

norms, the N_2_DER interpolated second derivatives at a point are called DERIV2_SCP.

The values computed directly from Eq. 6.6 are called DERIV2_HAT. Their values and

differences are used to define norms and error estimates at the element level

(ELEM_H2_NORM and ELEM_H2_ERROR) and at the system level (GLOBAL_H2_NORM and

GLOBAL_H2_ERROR). If an exact solution is available for comparison, called

FLUX_GRAD, it is used to compute corresponding exact values of the second spatial

176 Finite Element Analysis with Error Estimators

derivatives (EXACT_H2_NORM and EXACT_H2_ERROR). The various norm and error

measures are listed, as are the SCP averaged and exact second derivatives at the system

nodes. For plotting or other use, the last two items are saved to external files called

pt_ave_grad_flux .tmp and pt_ex_grad_flux .tmp, respectively.

Some analysts prefer to assure a unique value for each cross-derivative. If one has

solved a local patch for the continuous nodal gradients (as described above) one could

use a Taylor expansion to get the second derivatives of the intermost node, or nodes of the

intermost element. Let i be an intermost node of interest, φ i its solution value, and ∇∇ φ i

its continuous gradient estimate. Then for any other node in the patch, j ≠ i we can seek

the second derivatives at i such that

(6.7)φ j = φ i +
∂φ

∂x

 i

(x j − xi) +
∂φ

∂y

 i

(y j − yi) + 1

2

∂2φ

∂x2

 i

(x j − xi)
2

+
∂2φ

∂x∂y

 i

(x j − xi)(y j − yi) + 1

2

∂2φ

∂y2

 i

(y j − yi)
2.

This can be used to solve for the three second derivative terms (in 2-D) by the SVD

algorithm used for getting the nodal gradients.

6.5 Exercises

1. Develop a function, say GET _SCP_PT _AT _XYZ , to find where an element

quadrature point or node is located within an element.

2. Develop a routine, say EVAL_PT _FLUX_IN_SCP_PATCH , to evaluate the flux

components at any global coordinate point in a patch.

3. Employ the preceding patch routine to create a related subroutine, say

EVAL_SCP_FIT _AT _PATCH_NODES, that will interpolate patch fluxes back to

all mesh nodes inside the patch.

4. Develop a routine, say FORM_NEW_EL_SIZES, that can implement the estimated

new element sizes for an h-adaptivity based on Eqs. 5.30 and 33.

6.6 Bibliography

[1] Ainsworth, M. and Oden, J.T., A Posteriori Error Estimation in Finite Element

Analysis, New York: John Wiley (2000).

[2] Akin, J.E. and Maddox, J.R., "An RP-Adaptive Scheme for the Finite Element

Analysis of Linear Elliptic Problems," pp. 427−438 in The Mathematics of Finite

Elements and Applications, ed. J.R. Whiteman, London: Academic Press (1996).

[3] Akin, J.E. and Singh, M., "Object-Oriented Fortran 90 P-Adaptive Finite Element

System," Advances in Engineering Software, 33, pp. 461−468 (2002).

Chapter 6, Super-convergent patch recovery 177

[4] Blacker, T. and Belytschko, T., "Superconvergent Patch Recovery with Equilibrium

and Conjoint Interpolant Enhancements," Int. J. Num. Meth. Eng., 37,

pp. 517−536 (1995).

[5] Cook, R.D., Malkus, D.S., Plesha, N.E., and Witt, R.J., Concepts and Applications

of Finite Element Analysis, New York: John Wiley (2002).

[6] Huang, H.C. and Usmani, A.S., in Finite Element Analysis for Heat Transfer,

London: Springer-Verlag (1994).

[7] Krizek, M., Neittaanmaki, P., and Stenberg, R., Finite Element Methods:

Superconvergence, Post-Processing and a Posteriori Estimates, New York: Marcel

Dekker, Inc. (1998).

[8] Lakhany, A.M. and Whiteman, J.R., "Superconvergent Recovery Operators,"

pp. 195−215 in Finite Element Methods: Superconvergence, Post-Processing and

a Posteriori Estimates, New York: Marcel Dekker, Inc. (1998).

[9] Loubignac, G., Cantin, G., and Touzot, G., "Continuous Stress Fields in Finite

Element Analysis," AIAA Journal, 15(11), pp. 239−241 (1977).

[10] Press, W.H., Teukolsky, S.A., Vettering, W.T., and Flannery, B.P., Numerical

Recipes in Fortran 90, New York: Cambridge University Press (1996).

[11] Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).

[12] Wiberg, N.-E., Abdulwahab, F., and Ziukas, S., "Enhanced Superconvergent Patch

Recovery Incorporating Equilibrium and Boundary Conditions," Int. J. Num. Meth.

Eng., 37, pp. 3417−3440 (1994).

[13] Wiberg, N.-E., Abdulwahab, F., and Ziukas, S., "Improved Element Stresses for

Node and Element Patches Using Superconvergent Patch Recovery," Comm. Num.

Meth. Eng., 11, pp. 619−627 (1995).

[14] Wiberg, N.-E., "Superconvergent Patch Recovery − A Key to Quality Assessed FE

Solutions," Adv. Eng. Software, 28, pp. 85−95 (1997).

[15] Zhu, J.Z. and Zienkiewicz, O.C., "Superconvergence Recovery Techniques and

A Posteriori Error Estimators," Int. J. Num. Meth. Eng., 30, pp. 1321−1339 (1990).

[16] Zienkiewicz, O.C. and Zhu, J.Z., "A Simple Error Estimator and Adaptive

Procedure for Practical Engineering Analysis," Int. J. Num. Meth. Eng., 24,

pp. 337−357 (1987).

[17] Zienkiewicz, O.C. and Zhu, J.Z., "Superconvergent Patch Recovery Techniques and

Adaptive Finite Element Refinement," Comp. Meth. Appl. Mech. Eng., 101,

pp. 207−224 (1992).

[18] Zienkiewicz, O.C. and Zhu, J.Z., "The Superconvergent Patch Recovery and a

Posteriori Error Estimates. Part 2: Error Estimates and Adaptivity," Int. J. Num.

Meth. Eng., 33, pp. 1365−1382 (1992).

[19] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 7

Variational methods

7.1 Introduction

The Galerkin method given earlier can be shown to produce element matrix integral

definitions that would be identical to those obtained from an Euler variational form, if one

exists. Most nonlinear problems do not have a variational form, yet the Galerkin method

and other weighted residual methods can still be used. Thus, one might ask, ‘Why

consider variational methods?’ There are several reasons for using them. One is that if

the variational integral form is known, one does not have to derive the corresponding

differential equation. Also, most of the important variational statements for problems in

engineering and physics have been known for over 200 years. Another important feature

of variational methods is that often dual principles exist that allow one to establish both

an upper bound estimate and a lower bound estimate for an approximate solution. These

can be very helpful in establishing accurate error estimates for adaptive solutions. Thus,

the variational methods still deserve serious study, especially the energy methods of solid

mechanics.

We hav e seen that the weighted residual methods provide several approaches for

generating approximate (or exact) solutions based on equivalent integral formulations of

the original partial differential equations. Variational Methods, or the Calculus of

Variations have giv en us another widely used set of tools for equivalent integral

formulations. They were developed by the famous mathematician Euler in the

mid -1700s. Since that time the variational forms of most elliptic partial differential

equations have been known. It has been proved that a variational form and the Galerkin

method yield the same integral formulations when a governing variational principle

exists. Variational methods have thus been used to solve problems in elasticity, heat

transfer, electricity, magnetism, ideal fluids, etc. Thus, it is logical to expect that

numerical approximations based on these methods should be very fruitful. They hav e

been very widely employed in elasticity and structural mechanics so we begin with that

topic. Then we will introduce the finite element techniques as logical extensions of the

various classical integral formulations.

Chapter 7, Variational methods 179

7.2 Structural mechanics

Modern structural analysis relies extensively on the finite element method. Its most

popular integral formulation, based on the variational calculus of Euler, is the Principle of

Minimum Total Potential Energy. (This is also known as the principle of virtual work.)

Basically, it states that the displacement field that satisfies the essential displacement

boundary conditions and minimizes the total potential energy is the one that corresponds

to the state of static equilibrium. This implies that displacements are our primary

unknowns. They will be interpolated in space as will their derivatives, the strains. The

total potential energy, Π, is the strain energy, U , of the structure minus the mechanical

work, W , done by the applied forces. From introductory mechanics that the mechanical

work, W , done by a force is the scalar dot product of the force vector, F , and the

displacement vector, u , at its point of application.

To illustrate the concept of energy formulations we will review the equilibrium of

the well-known linear spring. Figure 7.1 shows a typical spring of stiffness k that has an

applied force, F , at the free end. That end undergoes a displacement of ∆. The work

done by the single force is

(7.1)W =
→
∆ . →

F = ∆ F .

The spring stores potential energy due to its deformation. Here we call that strain energy.

That energy is given by

(7.2)U =
1

2
k ∆2 .

Therefore, the total potential energy for the loaded spring is

(7.3)Π (∆) = U − W =
1

2
k ∆2 − ∆F .

The equation of equilibrium is obtained by minimizing Π with respect to the

displacement ; that is, ∂Π / ∂∆ = 0. This simplifies to the single scalar equation k ∆ = F ,

which is the well-known equilibrium equation for a linear spring. This example was

slightly simplified, since we started with the condition that the left end of the spring had

F
1

F
2

F

L

k
21

Work:

Energy:

W = F

U = k
2
/ 2

.

= 1 2

F
1

F
2

F =

[]

[]

{ }

{ }

W = { } F{ }
T

Figure 7.1 A simple linear spring

180 Finite Element Analysis with Error Estimators

no displacement (an essential boundary condition). Next we will consider a spring where

either end can be fixed or free to move.

The elastic bar is often modeled as a linear spring. In introductory mechanics of

materials the axial stiffness of a bar is defined as k = EA/L where it has a length of L, an

area A, and an elastic modulus of E. Our spring model of the bar (see Fig. 7.1) has two

end displacements, ∆1 and ∆2, and two associated axial forces, F1 and F2. The net

deformation of the bar is ∆∆ = ∆2 − ∆1 . We denote the total vector of displacements as

DT = [∆1 ∆2] and the associated vector of forces as FT = [F1 F2] . Then the

work done on the bar is

W = DT F = ∆1 F1 + ∆2 F2 .

The net displacement will be expressed in matrix form here to compare with the later

mathematical formulations. It is ∆ = [− 1 1] D . Then the spring’s strain energy is

U =
1

2
k ∆2 =

EA

2L
DT

−1

1

[− 1 1] D =
1

2
DT K D

where the bar stiffness is

K =
EA

L

1

−1

− 1

1

.

The total potential energy, Π, depends on all the displacements, D :

(7.4)Π(D) =
1

2
DT K D − DT F

and the equation of equilibrium comes from the minimization

(7.5)∂Π / ∂D = 0, or K D = F

represents the system of algebraic equations of equilibrium for the elastic system. These

two equations do not yet reflect the presence of an essential boundary condition, and

det(K) ≡ 0 and the system is singular. These relations were developed on physical

arguments and did not involve any finite element theory. Next we will see that a one-

dimensional FEA yields the same forms.

7.3 Finite element analysis

Up to this point we have considered equivalent integral forms in the classical sense

and not invoked their enhancement by finite element methods. We hav e seen that the

resulting algebraic equation systems based on a global approximate solution are fully

coupled. That is, the coefficient matrix is not sparse (not highly populated with zeros) so

that the solution or inversion cost would be high. The finite element method lets us

employ an integral form to obtain a set of sparse equations to be solved for the

coefficients, D, that yield the best approximation.

While we have looked so far mainly at one-dimensional problems in the general

case we should be able to see that the residual error will involve volume integrals as well

as surface integrals over part of the surface of the volume. For complicated shapes

Chapter 7, Variational methods 181

encountered in solving practical problems it is almost impossible to assume a global

solution that would satisfy the boundary conditions. Even if we could do that the

computational expense would probably prevent us from obtaining a solution. Both of

these important practical limitations can be overcome if we utilize a piecewise

approximation that has only local support in space. That is part of what finite element

analysis offers us.

The basic concept is that we split the actual solution domain into a series of sub-

domains, or finite elements, that are interconnected in such a way that we can split the

required integrals into a summation of integrals over all the element domains. If we

restrict the approximation to a function that exists only within the element domain then

the algebraic system becomes sparse because an element only directly interacts with

those elements that are connected to it. By restricting the element to a single shape, or to

a small library of shapes, we can do the required integrals over that shape and use the

results repeatedly to build up the integral contributions over the entire solution domain.

The main additional piece of work that results is the requirement that we do some

bookkeeping to keep up with the contribution of each element. We refer to this as the

equation assembly. That topic was illustrated in Fig. 1.3, and will be discussed in more

detail below. In today’s terminology the assembly procedure and the post-processing

procedures are a series of gather and scatter operations. In many finite element problems

those concepts can be expressed symbolically as a scalar quantity, I :

(7.6)I (D) =
1

2
DT K D + DT C → min

where D is a vector containing the unknown nodal parameters associated with the

problem, and K and C are matrices defined in terms of the element properties and

geometry. The above quantity is known as a quadratic form. If one uses a variational

formulation then the solution of the finite element problem is usually required to satisfy

the following system equations: ∂I / ∂D = 00 . In the finite element analysis one

assumes that the (scalar) value of I is given by the sum of the element contributions.

That is, one assumes
I (D) =

ne

e=1
Σ I

e(D)

where I
e is the contribution of element number ‘e’. One can (but does not in practice)

define I
e in terms of D such that

(7.7)I
e(D) =

1

2
DT KeD + DT Ce

where the Ke are the same size as K, but very sparse. Therefore, Eq. 7.7 is

(7.8)I (D) =
1

2
DT

ne

e=1
Σ Ke

D + DT

ne

e=1
Σ Ce

and comparing this with Eq. 7.8 one can identify the relations

(7.9)K =
ne

e=1
Σ Ke

, C =
ne

e=1
Σ Ce.

If nd represents the total number of unknowns in the system, then the size of these

matrices are nd × nd and nd × 1 , respectively.

182 Finite Element Analysis with Error Estimators

As a result of Eq. 7.9 one often sees the statement, ‘the system matrices are simply

the sum of the corresponding element matrices.’ This is true, and indeed the symbolic

operations depicted in the last equation are simple but one should ask (while preparing

for the ensuing handwaving), ‘in practice, how are the element matrices obtained and how

does one carry out the summations?’ Before attempting to answer this question, it will be

useful to backtrack a little. First, it has been assumed that an element’s behavior, and

thus its contribution to the problem, depends only on those nodal parameters that are

associated with the element. In practice, the number of parameters associated with a

single element usually lies between a minimum of 2 and a maximum of 96; with the most

common range in the past being from three to eight. (However, for hierarchical elements

in three-dimensions it is possible for it to be 27!) By way of comparison, nd can easily

reach a value of several thousand, or several hundred thousand. Consider an example of a

system where nd = 5000. Let this system consist of one-dimensional elements with two

parameters per element. A typical matrix Ce will contain 5000 terms and all but two of

these terms will be identically zero since only those two terms of D, 5000 × 1 , associated

with element ‘e’ are of any significance to element ‘e’. In a similar manner one

concludes that, for the present example, only four of the 25,000,000 terms of Ke would

not be identically zero. Therefore, it becomes obvious that the symbolic procedure

introduced here is not numerically efficient and would not be used in practice. There are

some educational uses of the symbolic procedure that justify pursuing it a little further.

Recalling that it is assumed that the element behavior depends only on those parameters,

say φφ e, that are associated with element ‘e’, it is logical to assume that

(7.10)I
e =

1

2
φφ e

T

ke φφ e + φφ e
T

ce .

If ni represents the number of degrees of freedom associated with the element then the

element vectors φφ e and ce are ni × 1 in size and the size of the square matrix ke is

ni × ni . Note that in practice ni is usually much less than nd , but they can be equal. The

matrices ke and ce are commonly known as the element matrices. For the one-

dimensional element discussed in the previous example, ke and ce would be 2 × 2 and

2 × 1 in size, respectively, and would represent the only coefficients in Ke and Ce that are

not identically zero.

All that remains is to relate ke to Ke and ce to Ce. Obviously Eqs. 7.7 and 7.10 are

equal and are the key to the desired relations. In order to utilize these equations, it is

necessary to relate the degrees of freedom of the element φφ e, to the degrees of freedom of

the total system D. This is done symbolically by introducing a ni × nd bookkeeping

matrix, ββ e, such that the following identity is satisfied:

(7.11)φφ e ≡ ββ e D .

Substituting this identity, Eq. 7.10 is expressed in terms of the system level unknowns as

I
e(D) = 1

2
DT (ββ e

T

ke ββ e) D + DT ββ e
T

ce. Comparing this relation with Eq. 7.7, one can

establish the symbolic relationships Ke = ββ e
T

ke ββ e
, Ce = ββ e

T

ce and denote the

assembly process by the symbol
e

A so

Chapter 7, Variational methods 183

(7.12)K =
ne

e=1
Σ ββ e

T

ke ββ e =
e

A Ke
, C =

ne

e=1
Σ ββ e

T

ce =
e

A Ce.

Equation 7.12 can be considered as the symbolic definitions of the assembly

operator and its procedures relating the element matrices, ke and ce, to the total system

matrices, K and C. Note that these relations involve the element connectivity (topology),

ββ e, as well as the element behavior, ke and ce. Although some programs do use this

procedure, it is very inefficient and thus very expensive.

For the sake of completeness, the ββ e matrix will be briefly considered. To simplify

the discussion, it will be assumed that each nodal point has only a single unknown scalar

nodal parameter (degree of freedom). Define a mesh consisting of four triangular

elements. Figure 7.2 shows both the system and element degree of freedom numbers.

The system degrees of freedom are defined as DT = [∆1 ∆2 ∆3 ∆4 ∆5 ∆6] and the

degrees of freedom of element ‘e’ are φφ e
T

= [φ 1 φ 2 φ 3]e . The connectivity or

topology data supplied for these elements are also shown in that figure. Thus, for element

number four (e = 4), these quantities are related by

1

1

2

4

1

1 4

3

5
3

2 5

4

2

4

2

3 6

2

2 5

5

4

3

3 6

1

2

3

1 2

3

1

2

3

3

21

Element Topology: 1, 2, 3

1 1, 2, 4
2 2, 5, 4
3 2, 3, 5
4 3, 6, 5

a) System b) Local

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

=

(1)
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

=

(2)
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

=

(3)
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

=

(4)

c) Element Boolean arrays

Figure 7.2 Relationship between system and element degrees of freedom

184 Finite Element Analysis with Error Estimators

φφ (4)T = φ 1 φ 2 φ 3
(4) = ∆3 ∆6 ∆5

which can be expressed as the gather operation φφ (4) ≡ ββ (4)∆ where

ββ (4) ≡

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

.

The matrices ββ (1)
, ββ (2), and ββ (3) can be defined in a similar manner, and are given in the

figure. Since the matrix ββ e contains only ones and zeros, it is called the element Boolean

or binary matrix. Note that there is a single unity term in each row and all other

coefficients are zero. Therefore, this ni × nd array will contain only ni non-zero (unity)

terms, and since ni < < nd , the matrix multiplications of any Boolean gather or scatter

operation are numerically very inefficient. There is a common shorthand method for

writing any Boolean matrix to save space. It is written as a vector with the column

number that contains the unity term on any row. In that form we would write ββ (4) as

ββ (4)T

←→ 3 6 5
which you should note is the same as the element topology list because there is only one

parameter per node. If we had formed the example with two parameters per node

(ng = 2) then the Boolean array would be

ββ (4)T

←→ 5 6 11 12 9 10 .

This more compact vector mode was used in the assembly figures in Chapter 1. There it

was giv en the array name INDEX . The transpose of a ββ matrix can be used to scatter the

element terms into the system vector. For element four we see that ββ (4)T

c (4) = C (4) gives

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

c1

c2

c3

(4)

=

0

0

C1

0

C2

C3

(4)

.

This helps us to see how the scatter and sum operation for C in Eq. 7.12 actually works.

The Boolean arrays, ββ , hav e other properties that are useful in understanding certain

other element level operations. For future reference note that ββ
e

ββ T

e
= I, and that if

elements i and j are not connected ββ
i

ββ T

j
= 00 = ββ

j
ββ T

i
, and if they are connected then

ββ
i

ββ T

j
= Xij where Xij indicates the dof that are common to both. That is, the Boolean

array X is zero except for those dof common to both element i and j.

Although these symbolic relations have certain educational uses their gross

inefficiency for practical computer calculations led to the development of the equivalent

programming procedure of the ‘direct method’ of assembly that was discussed earlier,

and illustrated in Figs. 1.3 and 4. It is useful at times to note that the identity Eq. 7.11

leads to the relation

Chapter 7, Variational methods 185

(7.13)
∂()e

∂D
= ββ e

T ∂()e

∂φφ e
,

where ()e is some quantity associated with element ‘e’. At this point we will begin to

illustrate finite element domains and their piecewise local polynomial approximations to

variational approximations by applying them to an elastic rod.

Before leaving the assembly relations for a while one should consider their

extension to the case where there are more than one unknown per node. This was

illustrated in Fig. 1.6 for three line elements with two nodes each and two dof per node.

There the connectivity data and corresponding equation numbers are also given and we

note that the connections between local and global equation numbers occur in pairs. Now

we are inserting groups of two by two submatrices into the larger system matrix. It is not

unusual for six dof to occur at each node. Then we assemble six by six blocks.

7.4 Continuous elastic bar

Consider an axisymmetric rod shown in Fig. 7.3. The cross-sectional area, A(x), the

perimeter, p(x), the material modulus of elasticity, E(x), and axial loading conditions

would, in general, depend on the axial coordinate, x. The loading conditions could

include surface tractions (shear) per unit area, T (x), body forces per unit volume, X(x),

and concentrated point loads, Pi at point i. The axial displacement at a point will be

denoted by u(x), and its value at point i is ui. The work done by a force is the product of

the force, the displacement at the point of application of the force, and the cosine of the

angle between the force and the displacement. Here the forces are all parallel so the

cosine is either plus or minus one. Evaluating the mechanical work

(7.14)W = ∫
L

0
u(x) X(x) A(x) dx + ∫

L

0
u(x) T (x) p(x) dx +

i

Σ ui Pi.

As mentioned earlier the total potential energy, Π, includes the strain energy, U , and

work of the externally applied forces, W . That is, Π = U − W . In a mechanics of

materials course it is shown that the strain energy per unit volume is half the product of

the stress and strain. The axial strain and stress will be denoted by ε (x) and σ (x),

X X

T T

PP

yy

X - Body force per unit volume, T - Traction force per unit area, P - Point load

Figure 7.3 A typical axially loaded bar

186 Finite Element Analysis with Error Estimators

respectively. Thus, the strain energy is

(7.15)U =
1

2 ∫
L

0
σ (x) ε (x) A(x) dx .

The latter two equations have used dV = A dx and dS = p dx where dS is an exterior

surface area. The work is clearly defined in terms of the displacement, u, since the loads

would be given quantities. For example, the body force could be gravity, X = ρ(x) g, or a

centrifugal load due to rotation about the y-axis, X = ρ(x) xω 2. Surface tractions are

less common in 1-D but it could be due to a very viscous fluid flowing over the outer

surface and in the x-direction.

Our goal is to develop a displacement formulation. Thus, we also need to relate

both the stress and strain to the displacement, u. We begin with the strain-displacement

relation ε (x) = du(x)/ dx which relates the strain to the derivative of the displacement.

The stress at a point is directly proportional to the strain at the point. Thus, it is also

dependent on the displacement gradient. The relation between stress and strain is a

constitutive relation known as Hooke’s Law σ (x) = E(x) ε (x). Therefore, we now see

that the total potential energy depends on the unknown displacements and displacement

gradients. We are searching for the displacement configuration that minimizes the total

potential energy since that configuration corresponds to the state of stable equilibrium.

As we have suggested above, a finite element model can be introduced to approximate the

displacements and their derivatives. Here, we begin by selecting the simplest model

possible. That is, the two node line element with assumed linear displacement variation

with x. As suggested, we now assume that each element has homogeneous properties

and all the integrals can be represented as the sum of the corresponding element integrals

(and the intersection of those elements with the boundary of the solution domain):

(7.16)Π =
ne

e=1
Σ Πe +

nb

b=1
Σ Πb −

i

Σ Pi ui

where Πe is the typical element domain contribution, and Πb is the contribution from a

typical boundary segment domain. This one-dimensional example is somewhat

misleading since in general a surface traction, T , acts only on a small portion of the

exterior boundary. Thus, the number of boundary domains, nb, is usually much less than

the number of elements, ne. Here, however, nb = ne and the distinction between the two

may not become clear until two-dimensional problems are considered. Substituting

Eqs. 7.14 and 7.15 into Eq. 7.3 and equating to Eq. 7.16 yields

Πe = 1

2

Le

∫ σ e ε e
A

e
dx −

Le

∫ u
e

X
e

A
e

dx, Πb = −
Lb

∫ u
b

T
b

p
b

dx

where u
e(x) and u

b(x) denote the approximated displacements in the element and on the

boundary surface, respectively. In this special example, u
b = u

e but that is not usually

true. Symbolically we interpolate such that u
e(x) = He(x) ue = ue

T

He
T

(x) and likewise if

we degenerate this interpolation to a portion (or sub-set) of the boundary of the element

u
b(x) = Hb(x) ub = ub

T

Hb
T

(x) . In the example we have the unusual case that ub = ue

and Hb = He. Generally ub is a sub-set of ue (i.e., ub
sub − setue) and Hb is a sub-set of

He. This interpolation relationship gives the strain approximation in an element:

Chapter 7, Variational methods 187

ε e(x) =
du

e

dx
=

dHe(x)

dx
ue = ue

T dHe
T

(x)

dx

or in more common notation
(7.17)εε e = Be(x)ue

where here Be is called the ‘strain-dislacement matrix’ since it determines the mechanical

strain from the element’s nodal displacements. Likewise, the one-dimensional stress, σσ ,

is defined by ‘Hooke’s Law’:
(7.18)σσ e(x) = Ee(x) εε e(x),

where E is the modulus of elasticity (a material property) as: Substituting into the

definition of the Total Potential Energy from the elements and boundary terms:

Πe =
1

2
ue

T

Le

∫ Be
T

E
e Be

A
e ue

dx − ue
T

Le

∫ He
T

X
e
A

e
dx

Πb = − ub
T

Lb

∫ Hb
T

T
b

p
b

dx.

The latter two relations can be written symbolically as

(7.19)Πe =
1

2
ue

T

Se ue − ue
T

Ce

x
, Πb = − ub

T

Cb

T

where the element stiffness matrix is

(7.20)Se =
Le

∫ Be
T

E
e Be

A
e

dx,

The vast majority of finite element problems have at least one square matrix of this form,

that involves the matrix product Be
T

EB. We will see later that calculation of the element

error estimator also requires the use of the Ee and Be arrays. Thus, ev en if the Se matrix

is simple enough to write in closed form there are other reasons why we may want to

form the Ee and Be arrays at the same time. The element body force vector is

(7.21)Ce

x
=

Le

∫ He
T

X
e

A
e

dx,

and the boundary segment traction vector is

(7.22)Cb

T
=

Lb

∫ Hb
T

T
b

p
b

dx .

The Total Potential Energy of the system is

(7.23)Π =
1

2 e

Σ ue
T

Se ue −
e

Σ ue
T

Ce

x
−

b

Σ ub
T

Cb

T
− uT P

where u is the vector of all of the unknown nodal displacements. Here we have assumed

that the external point loads are applied at node points only. The last term represents the

scalar, or dot, product of the nodal displacement and nodal forces. That is,

uT P = PT u =
i

Σ ui Pi .

Of course, in practice most of the Pi are zero. By again applying the direct assembly

188 Finite Element Analysis with Error Estimators

procedure, or from the Boolean assembly operations, the Total Potential Energy is

Π(u) = 1

2
uT Su − uT C and minimizing with respect to all the unknown displacements, u,

gives the algebraic equilibrium equations for the entire structure Su = C. Therefore, we

see that our variational principle has led to a very general and powerful formulation for

this class of structures. It automatically includes features such as variable material

properties, variable loads, etc. These were difficult to treat when relying solely on

physical intuition. Although we will utilize the simple linear element none of our

equations are restricted to that definition of H and the above symbolic formulation is

valid for any linear elastic solid of any shape. If we substitute He for the linear element

He(x) =

(x2
e − x)

Le

(x − x1
e)

Le

,

then

Be =
dHe

dx
=

−
1

Le

1

Le

.

and assume constant properties (Ee
, Ae), then the element and boundary matrices are

simple to integrate. The results are

Se =
E

e
A

E

Le

1

−1

−1

1

Ce

x
=

X
e

A
e

L
e

2

1

1

, Cb

T
=

T
e

P
e

L
e

2

1

1

.

Also in this case one obtains the strain-displacement relation

(7.24)εε e =
1

Le
 − 1 1

u
e

1

u
e

2

which means that the strain is constant in the element but the displacement approximation

is linear. It is common to refer to this element as the constant strain line element, CSL .

The above stiffness matrix is the same as that obtained in Sec. 7.1. The load vectors take

the resultant element, or boundary, force and place half at each node. That logical result

does not carry over to more complicated load conditions, or interpolation functions and it

then becomes necessary to rely on the mathematics of Eqs. 7.21 and 7.22. The

implementation of this element will be given after thermal loading is defined.

As an example of a slightly more difficult loading condition consider a case where

the body force varies linearly with x. This could include the case of centrifugal loading

mentioned earlier. For simplicity assume a constant area A and let us define the value of

the body force at each node of the element. To define the body force at any point in the

element we again utilize the interpolation function and set

(7.25)X
e(x) = He(x) Xe

where Xe are the defined nodal values of the body force. For these assumptions the body

force vector becomes

Chapter 7, Variational methods 189

Ce

x
= A

e

Le

∫ He
T

He
dx Xe .

For the linear element the integration reduces to

Ce

x
=

A
e
L

e

6

2

1

1

2

X
e

1

X
e

2

.

This agrees with our previous result for constant loads since if X
e

1 = X
e

2 = X
e, then

Ce

x
=

A
e

L
e

X
e

6

2 + 1

1 + 2

=
A

e
L

e
X

e

2

1

1

.

A more common problem is that illustrated in Fig. 7.3 where the area of the member

varies along the length. To approximate that case, with constant properties, one could

interpolate for the area at any point as A
e(x) = He(x) Ae, then the stiffness in Eq. 7.20

becomes

Se =
E

e

(Le)2

1

−1

−1

1

V
e

where

V
e =

Le

∫ A
e

dx =
Le

∫ He(x) dx Ae =
L

e

2
[1 1]

A
e

1

A
e

2

=
L

e (A
e

1 + A
e

2)

2

is the average volume of the element. Using that volume value the body force vector is

Ce

x
=

X
e

2

1

1

V
e =

X
e

L
e(A

e

1 + A
e

2)

4

1

1

,

but if we assume a constant body force per unit volume and interpolate for the local area

we get

Ce

x
= X

e

Le

∫ He
T

He
dx Ae =

X
e
L

e

6

2

1

1

2

A
e

1

A
e

2

.

The above approximations should be reasonably accurate. However, for a

cylindrical bar the area is related to the radius by A = π r
2. Thus, it would be slightly

more accurate to describe the radius at each end and interpolate r
e(x) = He(x) re so that

V
e =

Le

∫ A
e

dx = π

Le

∫ r
e(x)2

dx = re
T

π

Le

∫ He
T

He
dx re

= re
T π L

e

6

2

1

1

2

re = π L
e(r2

1 + r1 r2 + r
2
2)/3.

Of course, for a bar of constant radius (and area) all three approaches give identical

resultant body force components at the nodes.

Clearly, as one utilizes more advanced interpolation functions, the integrals involved

in Eqs. 7.20 to 7.22 become more difficult to evaluate. An example to illustrate the use of

these element matrices and to introduce the benefits of post-solution calculations follows.

Consider a prismatic bar of steel rigidly fixed to a bar of brass and subjected to a vertical

190 Finite Element Analysis with Error Estimators

load of P = 10, 000 lb, as shown in Fig. 7.4. The structure is supported at the top point

and is also subjected to a gravity (body force) load. We wish to determine the

deflections, reactions, and stresses for the properties:

Element L
e

A
e

E
e

X
e

Topology

1 420" 10 sq. in. 30 × 106 psi 0.283 lb / in3 1 2

2 240" 8 sq. in. 13 × 106 psi 0.300 lb / in3 2 3

The first element has an axial stiffness constant of EA / L = 0. 7143 × 106 lb / in and the

body force is XAL = 1, 188. 6 lb. while for the second element the corresponding terms

are 0. 4333 × 106 lb / in and 576 lb, respectively. The system nodal force vector is

P
T = [R 0 10, 000]lb. Where R is the unknown reaction at node 1. Assemblying the

equations gives

594.3 lb

288 lb

594.3 lb

288 lb

P 10,000 lb

R
11,764.6 lb

S

t

e

e

l

B

r

a

s

s

L(1)

L(2)

1

2

3

x x

10 12 14

Stress, (psi) x 10-2

1

2

FE

Exact

Figure 7.4 An axially loaded system

Chapter 7, Variational methods 191

title "Steel-Brass gravity and end load" ! begin keywords ! 1
nodes 3 ! Number of nodes in the mesh ! 2
elems 2 ! Number of elements in the system ! 3
dof 1 ! Number of unknowns per node ! 4
el_nodes 2 ! Maximum number of nodes per element ! 5
space 1 ! Solution space dimension ! 6
b_rows 1 ! Number of rows in the B (operator) matrix ! 7
example 113 ! Application source file number ! 8
remarks 2 ! Number of user remarks ! 9
el_real 5 ! Number of real properties per element !10
loads ! External source supplied !11
el_react ! Compute & list element reactions !12
post_el ! Require post-processing, create n_file1 !13
quit ! keyword input, remarks follow !14
Nodal displacements are exact, stress exact only at center !15
Properties: A, E, DT, ALPHA, GAMMA !16

1 1 0.00 ! begin node, bc_flag, x !17
2 0 420. !18
3 0 660. !19

1 1 2 ! begin element, connectivity !20
2 2 3 !21

1 1 0. ! essential bc: node, dof, value !22
1 10. 30.e6 0. 0. 0.283 ! el, A, E, DT, ALPHA, GAMMA !23
2 8. 13.e6 0. 0. 0.300 ! el, A, E, DT, ALPHA, GAMMA !24
3 1 1.e4 ! node, direction, load (stop with last) !25

Figure 7.5 The steel-brass bar example typical input

*** REACTION RECOVERY *** ! 1
NODE, PARAMETER, REACTION, EQUATION ! 2

1, DOF_1, -1.1765E+04 1 ! 3
! 4

*** OUTPUT OF RESULTS IN NODAL ORDER *** ! 5
NODE, X-Coord, DOF_1, ! 6

1 0.0000E+00 0.0000E+00 ! 7
2 4.2000E+02 1.5638E-02 ! 8
3 6.6000E+02 3.9380E-02 ! 9

!10
** ELEMENT REACTION, INTERNAL SOURCES AND SUMMATIONS ** !11

ELEMENT 1 !12
NODE DOF REACTION ELEM_SOURCE SUMS !13

1 1 -1.17646E+04 5.94300E+02 !14
2 1 1.05760E+04 5.94300E+02 !15

SUM: 1 -1.18860E+03 1.18860E+03 0.00000E+00 !16
ELEMENT 2 !17

NODE DOF REACTION ELEM_SOURCE SUMS !18
2 1 -1.05760E+04 2.88000E+02 !19
3 1 1.00000E+04 2.88000E+02 !20

SUM: 1 -5.76000E+02 5.76000E+02 0.00000E+00 !21
!22

E L E M E N T S T R E S S E S !23
ELEMENT STRESS MECH. STRAIN THERMAL STRAIN !24

1 1.11703E+03 3.72343E-05 0.00000E+00 !25
2 1.28600E+03 9.89231E-05 0.00000E+00 !26

Figure 7.6 The steel-brass bar example selected output

192 Finite Element Analysis with Error Estimators

105

7. 143

−7. 143

0

−7. 143

7. 143 + 4. 333

−4. 333

0

−4. 333

4. 333

u1

u2

u3

=

R

0

10, 000

+
1

2

1, 188. 6

1, 188. 6 + 576.

576.

=

R + 594. 3

882. 3

10, 288

.

Applying the essential condition that u1 = 0

105

11. 476

−4. 333

−4. 333

4. 333

u2

u3

=

882. 3

10, 288

so that u2 = 1. 5638 × 10−2 in, u3 = 3. 9381 × 10−2 in, and determining the reaction from

the first system equation: R = − 11, 764. 6 lb. This reaction is compared with the applied

loads in Fig. 7.4. Now that all the displacements are known we can post-process the

results to determine the other quantities of interest. Substituting into the element strain-

displacement relation, Eq. 7.24 gives

εε (1) =
1

420
 − 1 1

0. 0

0. 01564

= 3. 724 × 10−5 in / in

εε (2) =
1

240
 − 1 1

0. 01564

0. 03938

= 9. 892 × 10−5 in / in

and from Eq. 7.18 the element stresses are

σσ (1) = E(1) εε (1) = 30 × 106(7. 724 × 10−5) = 1, 117 lb / in2

σσ (2) = E(2) εε (2) = 13 × 106(9. 892 × 10−5) = 1, 286 lb / in2 .

These approximate stresses are compared with the exact stresses in Fig. 7.4. This

suggests that if accurate stresses are important then more elements are required to get

good estimates from the piecewise constant element stress approximations. Note that the

element stresses are exact if they are considered to act only at the element center. The

input data and selected results for this example are given in Figs. 7.5 and 6, respectively.

7.5 Thermal loads on a bar *

Before leaving the bar element it may be useful to note that another common

loading condition can be included, that is the loading due to an initial thermal strain, so

εε = σσ /E + εε t . The thermal strain, εε t , due to a temperature rise of ∆ t is ε t = α ∆t where

α is the coefficient of thermal expansion. The work term in Eq. 7.14 is extended to

include this effect by adding an initial strain contribution

Wt = ∫
L

0
σσ T εε t A(x) dx .

Chapter 7, Variational methods 193

This defines an element thermal force vector

(7.26)Ce

t
=

Le

∫ Be
T

(x) E
e(x) α e(x) ∆t (x) A

e(x) dx

or for constant properties and uniform temperature rise

Ce

t

T = E
e α e ∆t

e
A

e − 1 + 1 .

There is a corresponding change in the constitutive law such that σ = E (ε − ε t).

The coding requires a few new interface items listed in Fig. 7.7. The source code

for implementing the linear elastic bar element is given in Fig. 7.8. There the last action,

in line 36, is to optionally save the modulus of elasticity and the strain data for later post-

processing. The data keyword post_el activates the necessary sequential storage unit

(n_file1). After the unknowns have been computed we gather typical data back to the

element for use in post-processing secondary items in the element. This too requires a

few interface items to the MODEL program and they are listed in Fig. 7.9. The stress

recovery coding is given in Fig. 7.10 and it is invoked by the presence of the same

post_el data keyword. Since strain, initial strain, and stress are tensor quantities that

have sev eral components, stored in subscripted arrays, a unit subscript is required to

remind us that we are dealing with the one-dimensional form. Up to this point we have

dealt with scalars. The mechanical strain is found in line 25 and the generalized Hooke’s

Law is employed, at line 28, to recover the stress.

As a numerical example of this loading consider the previous model with the

statically indeterminate supports in Fig. 7.11. The left support is fixed but the right

support is displaced to the left 0.001 in. and the system is cooled by 35° F. Find the

stress in each member if α 1 = 6. 7 × 10−6 and α 2 = 12. 5 × 10−6 in / in F . The assembled

equations are

105

7. 143

−7. 143

0

−7. 143

11. 476

−4. 333

0

−4. 333

4. 333

u1

u2

u3

= 104

−7. 035

7. 035 − 4. 550

+4. 550

+

P1

0

P2

applying the boundary conditions that u1 = 0, and u3 = − 0. 001 in. and solving for u2

yields u2 = − 0. 02203 in. The reactions at points 1 and 3 are P1 = − 54, 613 lb, and

P3 = + 54, 613 lb. Substituting into the element strain-displacement matrices yields

element mechanical strains of −5. 245 × 10−5 in / in, and +8. 763 × 10−5 in / in, respectively.

But, the initial thermal strains were −2. 345 × 10−4, and −4. 375 × 10−4, respectively so

together they result in net tensile stresses in the elements of 5. 46 × 103 and 6. 83 × 103

psi, respectively. That is, the tension due to the temperature reduction exceeds the

compression due to the support movement. Sample input and selected outputs for the

above thermal loading example are given in Figs. 7.12 and 13, respectively. Note that the

outputs for the last two examples have included the element reactions, also called the

element level flux balances. These are often physically important so we will summarize

how they are obtained in the next section.

194 Finite Element Analysis with Error Estimators

Interface from MODEL to ELEM_SQ_MATRIX, 2

Type Status Name Remarks (keyword)

INTEGER (IN) IE Current element number
INTEGER (IN) LT_FREE Number of element type unknowns
INTEGER (IN) LT_N Number of element type solution nodes
INTEGER (IN) N_R_B Number of rows in B and E arrays (b_rows)
INTEGER (IN) N_FILE1 Optional user sequential unit (post_el)

REAL(DP) (OUT) B (N_R_B, LT_FREE) Gradient-dof transformation
REAL(DP) (OUT) DLH (LT_PARM, LT_N) Local parametric derivatives of H
REAL(DP) (OUT) E (N_R_B, N_R_B) Constitutive array
REAL(DP) (OUT) H_INTG (LT_N) Integral of H array

REAL(DP) automatic XYZ (N_SPACE) Coordinates of a point

GET_H_AT_QP Form H array at quadrature point
GET_REAL_LP (k) Gather real property k for current element

1 <= k <= (el_real)

Figure 7.7 User interface to ELEM_SQ_MATRIX (part 2)

! ... ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! ... ! 3
! (Stored as application source example 113) ! 4

! 5
! AN AXIAL BAR BY DIRECT ENERGY APPROACH ! 6
! ELEMENT REAL PROPERTIES: (1) = AREA, (2) = ELASTIC MODULUS ! 7
! (3) = TEMP RISE, (4) = COEFF EXPANSION, (5) = WEIGHT DENSITY ! 8

! 9
REAL(DP) :: BAR_L ! length !10
REAL(DP) :: DELTA_T, ALPHA ! temp rise, expansion !11
REAL(DP) :: AREA, GAMMA ! area, wt. density !12
REAL(DP) :: M_E, THERMAL ! modulus, thermal strain !13

!14
! Get properties for this element, IE !15

AREA = GET_REAL_LP (1); M_E = GET_REAL_LP (2) !16
DELTA_T = GET_REAL_LP (3); ALPHA = GET_REAL_LP (4) !17
GAMMA = GET_REAL_LP (5) !18

!19
! Find bar length and direction cosines !20

BAR_L = COORD (2, 1) - COORD (1, 1) ! length !21
!22

! Form global strain-displacement matrix !23
B (1, :) = (/ -1, 1 /) / BAR_L !24

!25
! Form global stiffness, S = B’ EAL B !26

S = M_E * AREA * BAR_L * MATMUL (TRANSPOSE (B), B) !27
!28

! Initial (thermal) strain loading !29
THERMAL = ALPHA * DELTA_T ! strain !30
C = B (1, :) * M_E * THERMAL * AREA * BAR_L ! force !31

!32
! Weight load, in positive X-direction (wt density * volume) !33

C = C + (/ 0.5d0, 0.5d0 /) * GAMMA * AREA * BAR_L ! weight !34
! Save for stress post-processing (set post_el in keywords) !35

IF (N_FILE1 > 0) WRITE (N_FILE1) M_E, B, THERMAL !36
! End of application dependent code !37

Figure 7.8 Implementation of an elastic linear bar

Chapter 7, Variational methods 195

Interface from MODEL to POST_PROCESS_ELEM, 1

Type Status Name Remarks (keyword)

INTEGER (IN) IE Current element number
INTEGER (IN) LT_FREE Number of element type unknowns
INTEGER (IN) LT_N Number of element type solution nodes
INTEGER (IN) N_R_B Number of rows in B and E arrays (b_rows)
INTEGER (IN) N_SPACE Physical space dimension of problem (space)
INTEGER (IN) N_FILE1 Optional user sequential unit (post_el)
INTEGER (IN) N_FILE2 Optional user sequential unit (post_2)

REAL(DP) (IN) D (LT_FREE) Gathered element dof

REAL(DP) (OUT) B (N_R_B, LT_FREE) Gradient-dof transformation
REAL(DP) (OUT) DGH (N_SPACE, LT_N) Physical derivatives of H
REAL(DP) (OUT) E (N_R_B, N_R_B) Constitutive array
REAL(DP) (OUT) H_INTG (LT_N) Integral of H array

REAL(DP) automatic XYZ (N_SPACE) Coordinates of a point
REAL(DP) automatic STRAIN_0 (N_R_B) Initial strains
REAL(DP) automatic STRAIN (N_R_B + 2) Mechanical strains
REAL(DP) automatic STRESS (N_R_B + 2) Mechanical stresses

Figure 7.9 User interface to POST_PROCESS_ELEM (part 1)

! .. ! 1
! *** POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! (Stored as application source example 113) ! 4

! 5
! AN AXIAL BAR BY DIRECT ENERGY APPROACH ! 6
! ELEMENT REAL PROPERTIES: (1) = AREA, (2) = ELASTIC MODULUS ! 7
! (3) = TEMP RISE, (4) = COEFF EXPANSION, (5) = WEIGHT DENSITY ! 8

! 9
! STRESS = M_E * (MECHANICAL STRAIN - INITIAL STRAIN) !10

!11
REAL(DP) :: THERMAL, M_E ! initial strain, modulus !12
LOGICAL, SAVE :: FIRST = .TRUE. ! printing !13

!14
IF (FIRST) THEN ! first call !15

FIRST = .FALSE. ; WRITE (6, 5) ! print headings !16
5 FORMAT (’ E L E M E N T S T R E S S E S’, /, & !17
& ’ ELEMENT STRESS MECH. STRAIN THERMAL STRAIN’) !18

END IF ! first call !19
!20

!--> Read stress strain data from N_FILE1 (set by post_el) !21
READ (N_FILE1) M_E, B, STRAIN_0 (1) ! THERMAL = STRAIN_0 !22

!23
!--> Calculate mechanical strain, STRAIN = B * D !24

STRAIN (1) = DOT_PRODUCT (B(1, :), D) !25
!26

!--> Generalized Hooke’s Law !27
STRESS (1) = M_E * (STRAIN (1) - STRAIN_0 (1)) !28

!29
WRITE (6, 1) IE, STRESS (1), STRAIN (1), STRAIN_0 (1) !30
1 FORMAT (I5, 3ES15.5) !31

! *** END POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS *** !32

Figure 7.10 Stress recovery for the elastic bar

196 Finite Element Analysis with Error Estimators

x

 T = - 35 F, u = - 0.001 "

1 2 31 2

R

Figure 7.11 A thermally loaded elastic bar

7.6 Reaction flux recovery for an element *

Regardless of whether we use variational methods or weighted residual methods we

are often interested in post-processing to get the flux recovery data for some or all of the

elements in the system. Once the assembled system has been solved for the primary

nodal unknowns φφ , we are often interested in also computing the nodal forces (or fluxes)

that act on each individual element. For linear structural equilibrium, or thermal

equilibrium, or a general Galerkin statement the algebraic equations are of the form

(7.27)S D = C + P

where the square matrix S is the assembly of the element square matrices Se and the

column matrix C is the sum of the consistent element force (or flux) matrices, Ce, due to

spatially distributed forces (or fluxes). Finally, P is the vector of externally applied

concentrated point forces (or fluxes) that are often called element reactions. The vector P

can also be thought of as an assembly of point sources on the elements, Pe. This is

always done if one is employing an element wav efront equation solving system. Most of

the Pe are identically zero. When P j is applied to the j-th node of the system we simply

find the element, e, where that node makes its first appearance in the data. Then, P j is

inserted in Pe for that element and no entries are made in any other elements. If degree of

freedom φ j is given then P j is an unknown reaction. To recover the concentrated

‘external’ nodal forces or fluxes associated with a specific element we make the

assumption that a similar expression holds for the element. That is,

(7.28)Se De = Ce + Pe

This is clearly exact if the system has only one element. Otherwise, it is a reasonable

approximation. When we use an energy method to require equilibrium of an assembled

system, we do not exactly enforce equilibrium in every element that makes up that

system. Solving the reasonable approximation gives

(7.29)Pe = SeDe − Ce

where everything on the right hand side is known, since De
sub − setD can be recovered

as a gather operation. To illustrate these calculations consider the one-dimensional

Chapter 7, Variational methods 197

title "Steel-Brass cooled and deformed" ! begin keywords ! 1
nodes 3 ! Number of nodes in the mesh ! 2
elems 2 ! Number of elements in the system ! 3
dof 1 ! Number of unknowns per node ! 4
el_nodes 2 ! Maximum number of nodes per element ! 5
space 1 ! Solution space dimension ! 6
b_rows 1 ! Number of rows in the B (operator) matrix ! 7
example 113 ! Application library source file number ! 8
remarks 2 ! Number of user remarks ! 9
el_real 5 ! Number of real properties per element !10
el_react ! Compute & list element reactions !11
post_el ! Require post-processing, create n_file1 !12
quit ! keyword input, remarks follow !13
Nodal displacements are exact, stresses too !14
Properties: A, E, DT, ALPHA, GAMMA (no gravity) !15
1 1 0.00 ! begin node, bc_flag, x !16
2 0 420. !17
3 1 660. !18

1 1 2 ! begin element, connectivity !19
2 2 3 !20

1 1 0. ! essential bc !21
3 1 -0.001 ! essential bc !22
1 10. 30.e6 -35. 6.7e-6 0. ! el, A, E, DT, ALPHA, GAMMA !23
2 8. 13.e6 -35. 12.5e-6 0. ! el, A, E, DT, ALPHA, GAMMA !24

Figure 7.12 Data for a thermally loaded deformed bar

*** INPUT SOURCE RESULTANTS *** ! 1
ITEM SUM POSITIVE NEGATIVE ! 2

1 0.0000E+00 7.0350E+04 -7.0350E+04 ! 3
! 4

*** REACTION RECOVERY *** ! 5
NODE, PARAMETER, REACTION, EQUATION ! 6

1, DOF_1, -5.4613E+04 1 ! 7
3, DOF_1, 5.4613E+04 3 ! 8

! 9
*** OUTPUT OF RESULTS IN NODAL ORDER *** !10
NODE, X-Coord, DOF_1, !11

1 0.0000E+00 0.0000E+00 !12
2 4.2000E+02 -2.2031E-02 !13
3 6.6000E+02 -1.0000E-03 !14

!15
** ELEMENT REACTION, INTERNAL SOURCES AND SUMMATIONS ** !16

ELEMENT 1 !17
NODE DOF REACTION ELEM_SOURCE SUMS !18

1 1 -5.46135E+04 7.03500E+04 !19
2 1 5.46135E+04 -7.03500E+04 !20

SUM: 1 0.00000E+00 0.00000E+00 0.00000E+00 !21
ELEMENT 2 !22

NODE DOF REACTION ELEM_SOURCE SUMS !23
2 1 -5.46135E+04 4.55000E+04 !24
3 1 5.46135E+04 -4.55000E+04 !25

SUM: 1 0.00000E+00 0.00000E+00 0.00000E+00 !26
!27

E L E M E N T S T R E S S E S !28
ELEMENT STRESS MECH. STRAIN THERMAL STRAIN !29

1 5.46135E+03 -5.24550E-05 -2.34500E-04 !30
2 6.82669E+03 8.76297E-05 -4.37500E-04 !31

Figure 7.13 Results for a thermally loaded deformed bar

198 Finite Element Analysis with Error Estimators

stepped Steel-Brass bar system given above in Fig. 7.4 where

S =
E

e
A

e

Le

1

−1

−1

1

, Ce =

Xe
A

e
L

e

2

1

1

.

Now that all of the D are known the De can be extracted and substituted into Eq. 7.29 for

each of the elements. For the first element Eq. 7.29 gives

(7.30)

Pe = 7. 143 × 105

1

−1

−1

1

0

1. 5638 × 10−2

−

594. 3

594. 3

=

−11, 170. 3

11, 170. 3

−

594. 3

594. 3

=

−11, 764. 6

10, 576. 0

lb.

Likewise for the second element

(7.31)

Pe = 4. 333 × 105

1

−1

−1

1

1. 5638 × 10−2

3. 9381 × 10−2

−

288. 0

288. 0

=

−10, 576. 0

10, 000. 0

lb.

Note that if we choose to assemble these element Pe values we obtain the system

reactions P. That is because element contributions at all unloaded nodes are equal and

opposite (Newton’s Third Law) and cancel when assembled. Figure 7.14. shows these

‘external’ element forces when viewed on each element, as well as their assembly which

matches the original system. This series of matrix operations is available in MODEL and

is turned on only when the keyword el_react is present in the control data.

If we do the same reaction recovery for the second case of a thermal load and an

enforced end displacement we get the values in Fig. 7.15. There is a subtle difference

between theses two cases. In the first case the gravity load creates a net external force

source. In the second case the thermal loading creates equal and opposite internal loads

that cancel for no net external source. That difference can be noted in the output listings

of Figs. 7.6 and 13 where the ‘SUM’ row of the ‘ELEM_SOURCE’ column is non-zero

in the first (gravity) case, but zero in the second (thermal) case.

The reader is warned to remember that these calculations in Eq. 7.29 have been

carried out in the global coordinate systems. In more advanced structural applications it

is often desirable to transform the Pe back to element local coordinate system. For

example, with a general truss member we are more interested in the force along the line

of action of the bar rather than its x and y components. Sometimes we list both results

and the user selects which is most useful. The necessary coordinate transformation is

(7.32)Pe

L
= Te Pe

g

where the square rotation matrix, T, contains the direction cosines between the global

axis, g, and the element local axis, L.

Chapter 7, Variational methods 199

288594.3 594.3 288

2
1

10,000

10,576

11,764.6 10,576

594.3 594.3

1

11,764.6 288 288

2

10,000

a) Element level reactions and loads

b) System reactions and loads

Figure 7.14 Element equilibrium reaction recovery, case 1

45,50070,350

2
1

54,613

54,613

54,613 54,613

1

54,613

2

54,613

a) Element level reactions and loads

b) System reactions and loads

70,350

70,350 70,350
45,500 45,500

45,500

Figure 7.15 Element equilibrium reaction recovery, case 2

7.7 Heat transfer in a rod

A problem closely related to the previous problem is that of steady state heat

transfer. Consider the heat transfer in a slender rod that has a specified temperature, θ 0,

at x = 0 and is insulated at the other end, x = L. The rod has cross-sectional area, A, with

a thermal conductivity of K . Thus, the rod conducts heat along its length. The rod is also

surrounded by a convecting medium with a uniform temperature of θ∞. Thus, the rod

also convects heat on its outer surface area. Let the convective transfer coefficient be h

and the outer perimeter of the rod be P. The governing differential equation for the

200 Finite Element Analysis with Error Estimators

temperature, θ (x), is given by Myers [6] as

(7.33)KA
d

2θ

dx2
− h P(θ − θ∞) = 0, 0 < x < L

with the essential condition θ (0) = θ 0 and the natural boundary condition dθ /dx (L) = 0,

which corresponds to an insulated right end. The exact solution can be shown to be

θ (x) = θ∞ + (θ 0 − θ∞) cosh [m(L − x)] / cosh(mL) where m
2 = hP / KA is a non-

dimensional measure of the relative importance of convection (hP) and conduction (KA).

This problem can be identified as the Euler equation of a variational principle. This

principle will lead to system equations that are structured differently from our previous

example with the bar. In that case, the boundary integral contributions (tractions) defined

a column matrix and thus went on the right hand side of the system equations. Here we

will see that the boundary contributions (convection) will also define a square matrix.

Thus, they will go into the system coefficients on the left hand side of the system

equations.

Generally a variational formulation of steady state head transfer involves volume

integrals containing conduction terms and surface integrals with boundary heat flux, e.g.,

convection, terms. In our one-dimensional example both the volume and surface

definitions involve an integral along the length of the rod. Thus, the distinction between

volume and surface terms is less clear and the governing functional given by Myers is

simply stated as a line integral. Specifically, one must render stationary the functional

(7.34)I (θ) = 1

2 ∫
L

0
[K A (dθ /dx)2 + h Pθ 2] dx

− ∫
L

0
h Pθ θ∞ dx + q0 θ (0) − qL θ (L)

subject to the essential boundary condition(s). Divide the rod into a number of nodes and

elements and introduce a finite element model where we assume

I =
ne

e=1
Σ I

e +
nb

b=1
Σ I

b + I
r

where we have defined a typical element volume contribution of

(7.35)I
e = 1

2

Le

∫ K
e

A
e (dθ e/dx)2

dx

and typical boundary contribution is

(7.36)I
b = 1

2

Lb

∫ h
b

P
b θ b

2

dx −
Lb

∫ h
b

P
b θ b θ∞ dx,

and I
r denotes any point flux sources or non-zero reaction contributions (here q0 and/or

qL) that may be present. Most authors move known point sources or sinks into I
b and

leave only the one or two unknown reaction terms in I
r . Using our interpolation relations

as before θ e(x) = He(x) De = De
T

He
T

, and again in this special case θ b(x) = θ e(x). Thus,

these can be written symbolically as I
e = 1

2
De

T

Se De, and I
b = 1

2
Db

T

Sb Db − Db
T

Cb.

Assuming constant properties and the linear interpolation in Eq. 7.34 the element and

boundary matrices reduce to

Chapter 7, Variational methods 201

A, k

L

x

q = 0

O = O
0

B

B

Section B-B

p, h, Ooo

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

X

F
E

A
 R

es
ul

ts
: o

 −
 T

em
pe

ra
tu

re
 (

F
),

 *
 −

 H
ea

t L
os

s
(B

T
U

/h
r)

Convection loss

Temperature

Exact

Figure 7.16 Temperatures (o) and convection losses (*) in a slender rod

Se =
K

e
A

e

Le

1

−1

−1

1

, Sb =
h

b
P

b
L

b

6

2

1

1

2

, Cb =
θ∞ h

b
P

b
L

b

2

1

1

.

Note that the conduction effect is inversely proportional to the material length while the

convection effect is directly proportional to the length. If the problem is normalized so

θ∞ = 0 then there is no column matrix defined and the equations will be homogeneous.

As before, the assembled system equations are ST = C where S is the direct assembly of

Se and Sb and C is assembled from the Cb.

Another aspect of interest here is how to post-process the results so as to determine

the convective heat loss. It should be equal and opposite to the sum of any external heat

202 Finite Element Analysis with Error Estimators

flux reactions necessary to maintain essential boundary conditions. The convection heat

loss, at any point, is dq = hP(θ − θ∞) dx where (θ − θ∞) is the surface temperature

difference. On a typical boundary segment this simplifies (for constant boundary data) to

(7.37)Q
b =

Lb

∫ dq =
Lb

∫ h
b
P

b[θ b(x) − θ∞] dx = h
b

P
b

Lb

∫ Hb(x) dx [Db − θθ∞]

where θθ∞ is a vector with the boundary nodal values of θ∞. For a linear element

interpolation, as above, it is

(7.38)Q
b = 1

2
h

b
P

b
L

b [1 1] (Db − θθ∞) = Pb (Db − θθ∞).

Thus, if the constant array Pb is computed and stored for each segment then once all the

temperatures are computed the boundary sub-set Db can be gathered along with Pb to

compute the loss Q
b. This is the first of several applications where we see that sometimes

the post-processing will require the spatial integral of the solution and not just its

gradient. Summing on the total boundary (all elements in this special case) gives the total

heat loss. That value would, of course, equal the heat entering at the end x = 0. As a

specific numerical example let L = 4 ft., A = 0. 01389 ft2, h = 2 BTU / hr − ft2 F,

K = 120 BTU/hr − ft F, P = 0. 5 ft., and t0 = 10 F. The mesh selected for this analysis are

shown in Fig. 7.16 along with the results of the finite element analysis. A general

implementation of this model via numerical integration is given in Fig. 7.17. It is valid

for any member of the element library (currently linear through cubic interpolation). The

input data for the application are given in Fig. 7.18 and selected corresponding output

sets are in Fig. 7.19. The typical post-processing for recovering the integral of the

product of the constant convection data and the interpolation function is shown in

Fig. 7.20.

7.8 Element validation *

The successful application of finite element analysis should always include a

validation of the element to be used and its implementation in a specific computer

program. Usually, the elements utilized in most problem classes are very well understood

and tested. However, some applications can be difficult to model, and the elements used

for their analysis may be more prone to numerical difficulties. Therefore, one should

subject elements to be used to a series of element validation tests. Tw o of the most

common and important tests are the patch test introduced by Irons [3 − 5] and the single-

element tests proposed by Robinson [8]. The single-element tests generally show the

effects of element geometrical parameters such as convexity, aspect ratio, skewness,

taper, and out-of-plane warping. It is most commonly utilized to test for a sensitivity to

element aspect ratio. The single-element test usually consists of taking a single element

in rectangular, triangular, or line form, considering it as a complete domain, and then

investigating its behavior for various load or boundary conditions as a geometrical

parameter is varied. An analytical solution is usually available for such a test.

The patch test has been proven to be a valid convergence test. It was developed

from physical intuition and later written in mathematical forms. The basic concept is

fairly simple. Imagine what happens as one introduces a very large, almost infinite,

Chapter 7, Variational methods 203

! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 1
! .. ! 2
! (Stored as application source example 101.) ! 3
! Combined heat conduction through, convection from a bar: ! 4
! K*A*U,XX - h*P*(U-U_ext) = 0, U(0)=U_0, dU/dx(L)=0 ! 5
! For globally constant data the analytic solution is: ! 6
! U(x) = U_ext - (U_0-U_ext) * cosh [m*(L-x)]/ cosh [mL] ! 7
! where mˆ2 = h_e*P_e/(K_e*A_e), dimensionless. ! 8
! Real element properties are: ! 9
! 1) K_e = conductivity, BTU/ hr ft F !10
! 2) A_e = area of bar, ftˆ2 !11
! 3) h_e = convection, BTU/ hr ftˆ2 F !12
! 4) P_e = perimeter of area A_e, ft !13
! Miscellaneous real FE data: !14
! 1) U_ext = external reference temperature, F !15
! Miscellaneous real data used ONLY for analytic solution: !16
! 2) L = exact length, ft !17
! 3) U_0 = essential bc at x = 0, F !18

!19
REAL(DP) :: DL, DX_DR ! Length, Jacobian !20
REAL(DP) :: K_e, A_e, h_e, P_e, U_ext ! properties !21
INTEGER :: IQ ! Loops !22

!23
DL = COORD (LT_N, 1) - COORD (1, 1) ! LENGTH !24
DX_DR = DL / 2. ! CONSTANT JACOBIAN !25

!26
U_ext = GET_REAL_MISC (1) ! external temperature !27
K_e = GET_REAL_LP (1) ! thermal conductivity !28
A_e = GET_REAL_LP (2) ! area of bar !29
h_e = GET_REAL_LP (3) ! convection coefficient on perimeter !30
P_e = GET_REAL_LP (4) ! perimeter of area A_e !31

!32
E = K_e * A_e ! constitutive array !33

!34
CALL STORE_FLUX_POINT_COUNT ! Save LT_QP, for post & error !35

! S, C, H_INTG already zeroed !36
DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES !37

!38
! GET INTERPOLATION FUNCTIONS, AND X-COORD !39

H = GET_H_AT_QP (IQ) !40
XYZ = MATMUL (H, COORD) ! ISOPARAMETRIC !41

!42
! LOCAL AND GLOBAL DERIVATIVES !43

DLH = GET_DLH_AT_QP (IQ) ! local !44
DGH = DLH / DX_DR ! global !45

!46
! CONVECTION SOURCE !47

C = C + h_e * P_e * U_ext * H * WT (IQ) * DX_DR !48
!49

! SQUARE MATRIX, CONDUCTION & CONVECTION !50
S = S + (K_e * A_e * MATMUL (TRANSPOSE(DGH), DGH) & !51

+ h_e * P_e * OUTER_PRODUCT (H, H)) * WT (IQ) * DX_DR !52
!53

! INTEGRATING FOR CONVECTION LOSS, FOR POST PROCESSING !54
H_INTG = H_INTG + h_e * P_e * H * WT (IQ) * DX_DR !55

!56
! SAVE FOR FLUX AVERAGING OR POST PROCESSING, B == DGH !57

CALL STORE_FLUX_POINT_DATA (XYZ, E, DGH) ! for error est too !58
END DO ! QUADRATURE !59
IF (N_FILE1 > 0) WRITE (N_FILE1) H_INTG, U_ext ! if "post_el" !60

Figure 7.17 A numerically integrated thermal element

204 Finite Element Analysis with Error Estimators

title "Myer’s 1-D heat transfer example, 7 L2 " ! keywords ! 1
exact_case 1 ! Analytic solution for list_exact, etc ! 2
list_exact ! List given exact answers at nodes, etc ! 3
nodes 8 ! Number of nodes in the mesh ! 4
elems 7 ! Number of elements in the system ! 5
dof 1 ! Number of unknowns per node ! 6
el_nodes 2 ! Maximum number of nodes per element ! 7
space 1 ! Solution space dimension ! 8
b_rows 1 ! Number of rows in the B (operator) matrix ! 9
example 101 ! Application source code library number !10
el_react ! Compute & list element reactions !11
remarks 21 ! Number of user remarks !12
gauss 2 ! Maximum number of quadrature point !13
el_real 4 ! Number of real properties per element !14
reals 3 ! Number of miscellaneous real properties !15
el_homo ! Element properties are homogeneous !16
post_el ! Require post-processing, create n_file1 !17
no_error_est ! Do NOT compute SCP element error estimates !18
quit ! keyword input, remarks follow !19
Combined heat conduction through, convection from a bar: !20

K*A*U,XX - h*P*(U-U_ext) = 0, U(0)=U_0, dU/dx(L)=0 !21
For globally constant data the analytic solution is: !22
U(x) = U_ext - (U_0-U_ext) * cosh [m*(L-x)] / cosh [mL] !23
where mˆ2 = h_e*P_e/(K_e*A_e), dimensionless. !24

Real element properties are: !25
1) K_e = conductivity, BTU/ hr ft F !26
2) A_e = area of bar, ftˆ2 !27
3) h_e = convection, BTU/ hr ftˆ2 F !28
4) P_e = perimeter of area A_e, ft !29
Miscellaneous real FE data: !30
1) U_ext = external reference temperature, F !31
Miscellaneous real data used ONLY for analytic solution: !32
2) L = exact length, ft !33
3) U_0 = essential bc at x = 0, F !34

Element convection loss is difference in elem reactions !35
e.g.: e=1 node 1 node 2 !36

12.92 BTU --->*______(1)_______* ---> 10.64 BTU !37
Elem convection loss: 2.28 BTU ---> (physical check) !38

Note: System reaction, 12.92 BTU (12.86 exact), offsets the !39
sum of the element convection losses, 12.92 BTU (phys chk) !40

1 1 0.00 ! begin nodes: node, bc flag, x !41
2 0 0.25 !42
3 0 0.50 !43
4 0 1.00 !44
5 0 1.50 !45
6 0 2.00 !46
7 0 3.00 !47
8 0 4.00 !48
1 1 2 ! begin elements !49
2 2 3 !50
3 3 4 !51
4 4 5 !52
5 5 6 !53
6 6 7 !54
7 7 8 !55

1 1 10. ! essential bc: node, dof, value !56
1 120. 0.01389 2.0 0.5 ! el, K_e A_e h_e P_e (homogeneous) !57
0.0 4.0 10.0 ! Miscellaneous: U_ext L U_0 !58

Figure 7.18 Example convection data

Chapter 7, Variational methods 205

*** REACTION RECOVERY *** ! 1
NODE, PARAMETER, REACTION, EQUATION ! 2

1, DOF_1, 1.2921E+01 1 ! 3
! 4

*** OUTPUT OF RESULTS AND EXACT VALUES IN NODAL ORDER *** ! 5
NODE, X-Coord, DOF_1, EXACT1, ! 6

1 0.0000E+00 1.0000E+01 1.0000E+01 ! 7
2 2.5000E-01 8.2385E+00 8.2475E+00 ! 8
3 5.0000E-01 6.7878E+00 6.8051E+00 ! 9
4 1.0000E+00 4.6138E+00 4.6438E+00 !10
5 1.5000E+00 3.1496E+00 3.1877E+00 !11
6 2.0000E+00 2.1700E+00 2.2157E+00 !12
7 3.0000E+00 1.1322E+00 1.1847E+00 !13
8 4.0000E+00 8.4916E-01 9.0072E-01 !14

!15
** ELEMENT REACTION, INTERNAL SOURCES AND SUMMATIONS ** !16

ELEMENT 1 !17
NODE DOF REACTION ELEM_SOURCE SUMS !18

1 1 1.29210E+01 0.00000E+00 !19
2 1 -1.06412E+01 0.00000E+00 !20

SUM: 1 2.27981E+00 0.00000E+00 2.27981E+00 Note !21
ELEMENT 2 !22

NODE DOF REACTION ELEM_SOURCE SUMS !23
2 1 1.06412E+01 0.00000E+00 !24
3 1 -8.76294E+00 0.00000E+00 !25

SUM: 1 1.87829E+00 0.00000E+00 1.87829E+00 !26
ELEMENT 3 !27

NODE DOF REACTION ELEM_SOURCE SUMS !28
3 1 8.76294E+00 0.00000E+00 !29
4 1 -5.91252E+00 0.00000E+00 !30

SUM: 1 2.85041E+00 0.00000E+00 2.85041E+00 !31
ELEMENT 4 !32

NODE DOF REACTION ELEM_SOURCE SUMS !33
4 1 5.91252E+00 0.00000E+00 !34
5 1 -3.97165E+00 0.00000E+00 !35

SUM: 1 1.94087E+00 0.00000E+00 1.94087E+00 !36
ELEMENT 5 !37

NODE DOF REACTION ELEM_SOURCE SUMS !38
5 1 3.97165E+00 0.00000E+00 !39
6 1 -2.64175E+00 0.00000E+00 !40

SUM: 1 1.32990E+00 0.00000E+00 1.32990E+00 !41
ELEMENT 6 !42

NODE DOF REACTION ELEM_SOURCE SUMS !43
6 1 2.64175E+00 0.00000E+00 !44
7 1 -9.90679E-01 0.00000E+00 !45

SUM: 1 1.65107E+00 0.00000E+00 1.65107E+00 !46
ELEMENT 7 !47

NODE DOF REACTION ELEM_SOURCE SUMS !48
7 1 9.90679E-01 0.00000E+00 !49
8 1 0.00000E+00 0.00000E+00 !50

SUM: 1 9.90679E-01 0.00000E+00 9.90679E-01 !51
** ELEMENT CONVECTION HEAT LOSS ** !52

1 2.27980 <- Note reaction above, etc. !53
2 1.87828 !54
3 2.85041 !55
4 1.94087 !56
5 1.32989 !57
6 1.65107 !58
7 0.99067 !59

TOTAL HEAT LOSS = 12.92103 (Exact = 12.858) !60

Figure 7.19 Selected conduction-convection output

206 Finite Element Analysis with Error Estimators

! .. ! 1
! *** POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! (Stored as application source example 101.) ! 4
! H_INTG (LT_N) Integral of interpolation functions, H, available ! 5

! 6
! Linear line element face convection heat loss recover ! 7

REAL(DP) :: U_ext ! external temperature ! 8
REAL(DP), SAVE :: Q_LOSS, TOTAL ! Face and total heat loss ! 9
LOGICAL, SAVE :: FIRST = .TRUE. ! printing !10

!11
IF (FIRST) THEN ! first call !12

FIRST = .FALSE. ; WRITE (6, 5) ! print headings !13
5 FORMAT (’*** CONVECTION HEAT LOSS ***’, /, & !14
& ’ELEMENT HEAT_LOST’) !15
TOTAL = 0.d0 ! initialize !16

END IF ! first call !17
!18

! Get previously integrated interpolation function, times !19
! the convection properties, h_e * P_e, now stored in H_INTG; !20
! and the surrounding gas temperature, U_ext, that were !21
! saved in ELEM_SQ_MATRIX. (Indicated by keyword post_el.) !22
! U_ext = GET_REAL_MISC (1) ! external temperature !23
! h_e = GET_REAL_LP (3) ! perimeter convection coefficient !24
! P_e = GET_REAL_LP (4) ! perimeter length of area !25

!26
IF (N_FILE1 > 0) READ (N_FILE1) H_INTG, U_ext ! if "post_el" !27

!28
! HEAT LOST : Integral over bar length of hp * (T - T_inf) !29

D (1:LT_N) = D(1:LT_N) - U_ext ! Temp difference at nodes !30
Q_LOSS = DOT_PRODUCT (H_INTG, D) ! Face loss integral !31
TOTAL = TOTAL + Q_LOSS ! Running total !32

!33
PRINT ’(I6, ES15.5)’, IE, Q_LOSS !34
IF (IE == N_ELEMS) PRINT *, ’TOTAL = ’, TOTAL !35

! *** END POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS *** !36

Figure 7.20 Element convection heat loss recovery

number of elements. Clearly, they would become very small in size. If we think of the

quantities being integrated to form the element matrices, we can make an observation

about how the solution would behave in this limit. The integrand, such as the strain

energy, contains derivative terms that would become constant as the element size shrinks

toward zero. Thus, to be valid in the limit, the element formulation must, at least, be able

to yield the correct results in that state. That is, to be assured of convergence one must be

able to exactly satisfy the state where the derivatives, in the governing integral statement,

take on constant or zero values. This condition can be stated as a mathematical test or as

a simple numerical test. The latter option is what we want here. The patch test provides

a simple numerical way for a user to test an element, or complete computer program, to

verify that it behaves as it should.

We define a patch of elements to be a mesh where at least one node is completely

surrounded by elements. Any node of this type is referred to as an interior node. The

other nodes are referred to as exterior or perimeter nodes. We will compute the

dependent variable at all interior nodes. The derivatives of the dependent variable will be

computed in each element. The perimeter nodes are utilized to introduce the essential

Chapter 7, Variational methods 207

boundary conditions and/or loads required by the test. Assume that the governing

integral statement has derivatives of order n. We would like to find boundary conditions

that would make those derivatives constant. This can be done by selecting an arbitrary

n-th order polynomial function of the global coordinates to describe the dependent

variable in the global space that is covered by the patch mesh. Clearly, the n-th order

derivatives of such a function would be constant as desired. The assumed polynomial is

used to define the essential boundary conditions on the perimeter nodes of the patch

mesh. This is done by substituting the input coordinates at the perimeter nodes into the

assumed function and computing the required value of the dependent variable at each

such node. Once all of the perimeter boundary conditions are known, the solution can be

numerically executed. The resulting values of the dependent variable are computed at

each interior node. To pass the patch test, these computed internal values must agree with

the value found when their internal nodal coordinates are substituted into the assumed

global polynomial. However, the real test is that when each element is checked, the

calculated n-th order derivatives must agree with the arbitrary assumed values used to

generate the global function. If an element does not satisfy this test, it should not be

used. The patch test can also be used for other purposes. For example, the analyst may

wish to distort the element shape and/or change the numerical integration rule to see

what effect that has on the numerical accuracy of the patch test.

As a simple elementary example of an analytic solution of the patch test, consider

the bar element. The smallest possible patch is one with two line elements. Such a patch

has two exterior nodes and one interior node. For simplicity, let the lengths of the two

elements be equal and have a value of L. The governing integral statement contains only

the first derivative of u. An arbitrary linear function can be selected for the patch test,

since it would have a constant first derivative. Therefore, select u(x) = a + bx for

0 ≤ x ≤ 2L, where a and b are arbitrary constants. Assembling a two-element patch:

AE

L

1

−1

0

−1

(1 + 1)

−1

0

−1

1

u1

u2

u3

=

P1

0

P3

where P1 and P3 are the unknown reactions associated with the prescribed external

displacements. These two exterior patch boundary conditions are obtained by

substituting their nodal coordinates into the assumed patch solution:

u1 = u(x1) = a + b(0) = a, u3 = u(x2) = a + b(2L) = a + 2bL.

Modifying the assembled equations to include the patch boundary conditions gives

AE

L

0

0

0

− 1

2

−1

0

0

0

a

u2

a + 2bL

=

P1

0

P3

−
aAE

L

1

−1

0

−
(a + bL) AE

L

0

−1

1

.

Retaining the independent second equation gives the displacement relation

2AE

L
u2 = 0 +

aAE

L
+

(a + 2bL) AE

L
.

208 Finite Element Analysis with Error Estimators

Thus, the internal patch displacement is u2 = (2a + 2bL)/2 = (a + bL). The value

required by the patch test is u(x2) = (a + bx2) = (a + bL). This agrees with the computed

solution, as required by a valid element. The element strains are

e = 1 : ε =
(u2 − u1)

L
=

[(a + bL) − a]

L
= b

e = 2 : ε =
(u3 − u2)

L
=

[(a + 2bL) − (a + bL)]

L
= b.

Thus, all element derivatives are constant. However, these constants must agree with the

constant assumed in the patch. That value is ε = du /dx = d(a + bx)/ dx = b. Therefore,

the patch test is completely satisfied. At times one also wishes to compute the reactions,

i.e., P1 and P3. To check for possible rank deficiency in the element formulation, one

should repeat the test with only enough displacements prescribed to prevent rigid body

motion. (That is, to render the square matrix non-singular.) Then, the other outer

perimeter nodes are loaded with the reactions found in the precious patch test. In the

above example, substituting u1 and u2 into the previously discarded first equation yields

the reaction P1 = − bAE. Likewise, the third equation gives P3 = − P1, as expected.

Thus, the above test could be repeated by prescribing u1 and P3, or P1 and u3. The same

results should be obtained in each case. A major advantage of the patch test is that it can

be carried out numerically. In the above case, the constants a and b could have been

assigned arbitrary numerical values. Inputting the required numerical values of A, E and

L would give a complete numerical description that could be tested in a standard

program. Such a procedure also verifies that the computer program satisfies certain

minimum requirements. A problem with some elements is that they can pass the patch

test for a uniform mesh, but fail when an arbitrary irregular mesh is employed. Thus, as a

general rule, one should try to avoid conducting the test with a regular mesh, such as that

given in the above example. It would have been wiser to use unequal element lengths

such as L and α L, where α is an arbitrary constant. The linear bar element should pass

the test for any scaling ratio, α . Howev er, for α near zero, numerical ill-conditioning

begins to affect the answers. Data and results for the patch test of a linear bar element are

shown in Figs. 7.21 and 22.

7.9 Euler’s equations of variational calculus *

Euler’s Theorem of Variational Calculus was given in Eqs. 1.6 - 8. When the value

of φ is given on a portion of the boundary, ΓΓ , we call that an essential boundary

condition, or a Dirichlet type condition. When q is present in the boundary condition (of

Eq. 1.8), but a is zero that case is called a Neumann type condition, or flux condition.

The most common Neumann type is the ‘natural condition’, q = 0, since then the

boundary integral in Eq. 1.6 does not have to be evaluated (it is satisfied naturally). The

most general form of Eq. 1.8 is called a ‘mixed boundary condition’, which is also known

as a ‘Robin type’ condition. Note that a Robin condition involves a non-zero a value in

Eq. 1.6 and thus it will contribute a new term to the square matrix (since u
2 leads to a

quadratic form in H). Likewise, one could reduce this to a one-dimensional form

Chapter 7, Variational methods 209

title "Elastic linear bar patch test" ! begin keywords ! 1
nodes 3 ! Number of nodes in the mesh ! 2
elems 2 ! Number of elements in the system ! 3
dof 1 ! Number of unknowns per node ! 4
el_nodes 2 ! Maximum number of nodes per element ! 5
space 1 ! Solution space dimension ! 6
b_rows 1 ! Number of rows in the B (operator) matrix ! 7
example 113 ! Source library example number ! 8
remarks 3 ! Number of user remarks ! 9
el_real 5 ! Number of real properties per element !10
el_homo ! Element properties are homogeneous !11
el_list ! List results at each node of each element !12
el_react ! Compute & list element reactions !13
post_el ! Require post-processing, create n_file1 !14
quit ! keyword input, remarks follow !15
Assume u = a + bx. Let a = 5, b= -4 so that u(0) = u_1 = 5 !16
and u(2) = u_3 = -3 then all mechanical strains = -4 !17
Properties: A, E, DT, ALPHA, GAMMA (any homogeneous) !18
1 1 0.0 ! node, bc flag, x !19
2 0 1.0 ! answer here must match ’a + bx’ !20
3 1 2.0 ! node, bc flag, x !21

1 1 2 ! begin elements !22
2 2 3 !23

1 1 5. ! node, dof, essential bc: u(0) = u_1 = 5 !24
3 1 -3. ! node, dof, essential bc: u(2) = u_3 = -3 !25
1 1. 10. 0. 0. 0. ! el, A, E, DT, ALPHA, GAMMA (any A,E) !26

Figure 7.21 Example patch test data for a bar

*** REACTION RECOVERY *** ! 1
NODE, PARAMETER, REACTION, EQUATION ! 2

1, DOF_1, 4.0000E+01 1 ! 3
3, DOF_1, -4.0000E+01 3 ! 4

! 5
*** EXTREME VALUES OF THE NODAL PARAMETERS *** ! 6
PARAMETER MAXIMUM, NODE MINIMUM, NODE ! 7
DOF_1, 5.0000E+00, 1 -3.0000E+00, 3 ! 8

! 9
*** OUTPUT OF RESULTS IN NODAL ORDER *** !10
NODE, X-Coord, DOF_1, !11

1 0.0000E+00 5.0000E+00 !12
2 1.0000E+00 1.0000E+00 ! passes patch test !13
3 2.0000E+00 -3.0000E+00 !14

!15
** ELEMENT REACTION, AND INTERNAL SOURCES ** !16

ELEMENT 1 !17
NODE DOF REACTION ELEM_SOURCE !18

1 1 4.00000E+01 0.00000E+00 !19
2 1 -4.00000E+01 0.00000E+00 !20

ELEMENT 2 !21
NODE DOF REACTION ELEM_SOURCE !22

2 1 4.00000E+01 0.00000E+00 !23
3 1 -4.00000E+01 0.00000E+00 !24

!25
E L E M E N T S T R E S S E S ! pass !26

ELEMENT STRESS MECH. STRAIN THERMAL STRAIN !27
1 -4.00000E+01 -4.00000E+00 0.00000E+00 !28
2 -4.00000E+01 -4.00000E+00 0.00000E+00 !29

Figure 7.22 Patch test results for a bar

210 Finite Element Analysis with Error Estimators

(7.45)I = ∫
b

a

f (x, φ ,
dφ

dx
) dx + (q + aφ)

x = b

− (q + aφ)

x = a

so the ordinary differential equation (ODE) is

(7.46)
∂ f

∂φ
−

d

dx

∂ f

∂ (dφ /dx)
= 0

and the natural boundary condition if φ is not prescribed is

(7.47)nx

∂ f

∂ (dφ /dx)
+ q + a φ = 0.

Fourth order equations are formulated in the same way. For example,

(7.48)I (φ) =
b

a

∫ f

x, φ ,
dφ

dx,

d
2φ

dx2

dx,

a functional involving the second derivative of φ , has the Euler equation

(7.49)
∂ f

∂φ
−

d

dx

∂ f

∂ (dφ /dx)
+

d
2

dx2

∂ f

∂ (d2φ / dx2)
= 0,

and the natural boundary condition of

(7.50)
∂ f

∂ (dφ /dx)
−

d

dx

∂ f

∂ (d2φ / dx2)
= 0

if dφ /dx is specified (and φ unknown), and the natural condition of

(7.51)
∂ f

∂ (d2φ / dx2)
= 0

if φ is specified (and dφ /dx is unknown).

7.10 Exercises

1. Consider heat transfer through a planar wall with a given temperature on one side

and convection on the other. Employ a single linear element model where φ 1 is the

inside temperature at left node 1, and where right node φ 2 is the other surface

temperature adjacent to the convection fluid. Heat is convected away there at the

rate of qh = ha Aa (φ 2 − θ a), where ha is the convection coefficient over the

convection area of Aa which is adjacent to the convecting fluid at temperature φ a.

The constant conduction matrix was given earlier and, in general, the convection

matrices on boundary segment b are SS
b

h
= ∫

b

Γ
HH

b
T

HH
b
h

b
dΓ, and

CC
b

h
= ∫

b

Γ
HH

b
T

h
bφ b

a
dΓ. At a point surface approximation (Γb) the HH

b is constant

(unity) and the convection data (hb

a
, θ b

a
) are also constant. Create the (scalar)

boundary terms, assemble, and solve for φ 2. Verify the result is

φ 2 =
Aahaθ a + (k/L)φ 1 A

e

(k Ae/L + h Aa)
. Simplify for the present case where the conducting and

Chapter 7, Variational methods 211

convecting areas are the same, A
e = Aa = A

b. Consider the two special cases of

h = 0 and h = ∞ and discuss what they then represent as boundary conditions

(Dirichlet, or Neumann).

e b h
air

T
air

Abke, Ae
1 2

Le

air

L

T
wall

A

k

A = Ae = Ab

L = Le

Problem P7.1 Wall conduction-convection

2. Consider a two-dimensional functional

I = 1

2

Ω
∫

K x

∂u

∂x

2

+ K y

∂u

∂y

2

− 2 Q u

d Ω +
Γ
∫

qu + au

2/2

d Γ.

Show that the partial differential equation from Euler’s theorem is

− Q −
∂

∂x

K x

∂u

∂x

−
∂
∂y

K y

∂u

∂y

= 0 ε Ω,

and that the corresponding natural boundary condition is

nx K x

∂u

∂x
+ ny K y

∂u

∂y
+ q + a u = 0 ε Γ

or simply
Kn

∂u

∂n
+ q + a u = 0 ε Γ,

where Kn is the coefficient in the direction of the unit normal, n. If K x = K y = K , a

constant, show this reduces to the Poisson equation, and Laplaces equation if

Q = 0.

3. Consider the functional

I (u) = ∫
L

0
[E I

d
2
u

dx2

2

− 2 u Q] dx.

Show that it yields the ordinary differential equation

d
2

dx2

E I
d

2
u

dx2

= Q,

and the natural boundary condition is that

−
d

dx

E I
d

2
u

dx2

= 0.

This is the fourth order equation for the deflection, u, of a beam subject to a

transverse load per unit length of Q. Here E I denotes the bending stiffness of the

212 Finite Element Analysis with Error Estimators

member. Explain why this equation requires four boundary conditions. Note that at

any boundary condition point, one may prescribe u and / or du/dx. If u is not

specified, the natural condition is that d
2
u / dx

2 = 0. They correspond to

conditions on the shear and moment, respectively.

4. A one-dimensional Poisson equation is

∂2
u

∂x2
= − Q =

105

2
x

2 −
15

2
, − 1 < x < 1.

The exact solution is u = (35x
4 − 30x

2 + 3)/8 when the boundary conditions are

u(−1) = 1, ∂ u / ∂ x(1) = 10.

Obtain a finite element solution and sketch it along with the exact solution.

5. A one-dimensional Poisson equation is

∂2
u

∂x2
= Q = − 6x −

2

α 2

1 − 2

x − β

α

2

exp

−

x − β

α

2

, 0 ≤ x ≤ 1

where β is the interior center position of a local high gradient region, 0 < β < 1, and

α is a parameter that governs the amplitude of u in the region, say α = 0. 05 and

β = 0. 5. Obtain a finite element solution and sketch it along with the exact solution

for boundary conditions

u(0) = exp

−
β 2

α 2

,
∂u

∂x
(1) = − 3 − 2

1 − β

α 2

exp

−

1 − β

α

2

,

so the exact solution is given by u = − x
3 + exp

−

x − β

α

2

. Note that the

source term, Q, may require more integration points than does the evaluation of the

square matrix.

6. Buchanan shows that an elastic cable with constant tension, T , resting on an elastic

foundation of stiffness k and subjected to a vertical load per unit length of f has a

vertical displacement given by the differential equation

T
d

2
v

dx2
− k v(x) = − f .

a) Develop the element matrices for a linear line element, assuming constant T , k

and f . b) Obtain a finite element solution where T = 600 lb, k = 0. 5 lb/in2,

f = 2 lb/in and where L = 120 in is the length of the string where v = 0 at each end.

[answer: vmax = 2. 54 in] c) Replace the model in b) with a half symmetry model

where dv / dx = 0 at the center (x = L/2).

7. Consider a variable coefficient problem given by

− [(1 + x)u′(x)]′ = − 1, 0 ≤ x ≤ 1

with the boundary conditions u(0) = 0 = u(1). Obtain a finite element solution and

compare it to the exact result u(x) = x − ln(1 + x) / ln(2).

Chapter 7, Variational methods 213

8. For the differential equation in Problem 2.17 if we have one essential boundary

condition of y(0) = 1 and one Robin or mixed boundary condition of

y′(1) + y(1) = 0 the exact solution is y(x) = (x
4 − 3x

2 − x + 6)/6 (which is

exact_case 17 in the source library). Obtain a Galerkin finite element solution and

compare it to the exact result. Note that this requires mixed element matrices for the

point ‘element’ at x = 1. (Hint: think about what the ’normal’ direction is for each

end of a one-dimensional domain.)

9. For the differential equation in Problem 2.17 if we have two Robin or mixed

boundary conditions of y′(0) + y(0) = 0 and y′(1) − y(1) = 3 the exact solution is

y(x) = x
4/6 + 3x

2/2 + x − 1 (which is exact_case 18 in the source library).

Obtain a Galerkin finite element solution and compare it to the exact result. (Hint:

think about what the ‘normal’ direction is for each end of a one-dimensional

domain.)

10. Resolve the heat transfer problem in Fig. 7.16 with the external reference

temperature increased from 0 to 20 F (θ∞ = 20). Employ 3 equal length L2 linear

elements, and 5 (not 4) nodes with nodes 2 and 3 both at x = 4/3. Connect element

1 to nodes 1 and 2 and (incorrectly) connect element 2 to nodes 3 and 4. (a) Solve

the incorrect model, sketch the FEA and true solutions, and discuss why the left and

right (x ≤ 4/3 and x ≥ 4/3) domain FEA solutions behave as they do. (Hint: Think

about essential and natural boundary conditions.) (b) Enforce the correct solution

by imposing a ‘multiple point constraint’ (MPC) that requires 1 × t2 − 1 × t3 = 0.

That is, the MPC requires the solution to be continuous at nodes 2 and 3.

11. Implement the exact integral matrices for the linear line element version of Eq. 7.34

and the matrix for recovering the convection heat loss, Eq. 7.38, in the post

processing. Apply a small model to the problem in Fig. 7.16, but replace the

Dirichlet boundary condition at x = 0 with the corresponding exact flux

q(0) = 12. 86. Compare the temperature solution with that in Fig. 7.16. Why do

we still get a solution when we no longer have a Dirichlet boundary condition?

(Review Problem 7.1.) [7 − 11]

7.11 Bibliography

[1] Bathe, K.J., Finite Element Procedures, Englewood Cliffs: Prentice Hall (1996).

[2] Buchanan, G.R., Finite Element Analysis, New York: McGraw-Hill (1995).

[3] Irons, B.M. and Razzaque, A., "Engineering Applications of Numerical Integration

in the Stiffness Method," AIAA Journal, 4, pp. 2035−2057 (1966).

[4] Irons, B.M. and Razzaque, A., "Experience with the Patch Test for Convergence of

the Finite Element Method," pp. 557−587 in Mathematical Foundation of the Finite

Element Method, ed. A.R. Aziz, New York: Academic Press (1972).

[5] Irons, B.M. and Ahmad, S., Techniques of Finite Elements, New York: John

Wiley (1980).

214 Finite Element Analysis with Error Estimators

[6] Myers, G.E., Analytical Methods in Conduction Heat Transfer, New York:

McGraw-Hill (1971).

[7] Reddy, J.N. and Gartling, D.K., The Finite Element Method in Heat Transfer and

Fluid Dynamics, Boca Raton: CRC Press (2001).

[8] Robinson, J., "A Single Element Test," Comp. Meth. Appl. Mech. Engng., 7,

pp. 191−200 (1976).

[9] Shames, I.H. and Dym, C.L., Energy and Finite Element Methods in Structural

Mechanics, Pittsburg: Taylor and Francis (1995).

[10] Wait, R. and Mitchell, A.R., Finite Element Analysis and Applications, New York:

John Wiley (1985).

[11] Weaver, W.F., Jr. and Johnston, P.R., Finite Elements for Structural Analysis,

Englewood Cliffs: Prentice Hall (1984).

[12] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 8

Cylindrical analysis

problems

8.1 Introduction

We will slightly increase the prior one-dimensional examples by extending them to

problems formulated in cylindrical coordinates. There are many problems that can

accurately be modeled as being revolved about an axis. Many of these can be analyzed

by employing a radial coordinate, r, and an axial coordinate, z. Solids of revolution can

be formulated in terms of the two-dimensional area that is revolved about the axis.

Numerous objects of that type are also very long in the axial direction and can be treated

as segments of an infinite cylinder. This reduces the analysis to a one-dimensional study

in the radial direction. We will begin with that common special case. We will find that

changing to these cylindrical coordinates will make small changes in the governing

differential equations and the corresponding integral theorems that govern the finite

element formulation. Also the volume and surface integrals take on special forms. These

use the Theorems of Pappus. The first states that the surface area of a revolved arc is the

product of the arc length and the distance traveled by the centroid of the arc. The second

states that the volume of revolution of the generating area is the product of the area and

the distance traveled by its centroid. In both cases the distance traveled by the centroid,

in full revolution, is 2π r where r is the centroid radial coordinate of the arc or area. If

we consider differential arcs or areas, then the corresponding differential surface or

volume of revolution are dA = 2π r dL and dV = 2π r dr dz.

8.2 Heat conduction in a cylinder

The previous one-dimensional heat transfer model becomes slightly more

complicated here. When we consider a point on a radial line we must remember that it is

a cross-section of a ring of material around the hoop of the cylinder. Thus as heat is

conducted outward in the radial direction it passes through an ever increasing amount of

material. The resulting differential equation for thermal equilibrium is well known:

216 Finite Element Analysis with Error Estimators

(8.1)
1

r

d

dr

r k
dθ

dr

+ Q = 0

where r is the radial distance from the axis of revolution, k is the thermal conductivity, θ

is the temperature, and Q is the internal heat generation per unit volume. One can have

essential boundary conditions where θ is given or as a surface flux condition

(8.2)− r k
dθ

dr
= q

where q is the flux normal to the surface (i.e., radially). If we multiply Eq. 8.1 by r, it

would look like our previous one-dimensional form:

d

dr

k *
dθ

dr

+ Q * = 0

where k * = r k and Q * = r Q could be viewed as variable coefficients. This lets us find

the required integral (variational) form by inspection. It is

(8.3)I = 2π ∆z

L

∫ 1

2

k * (dθ / dr)2 − Q * T

r dr → min

where the integration limits are the inner and outer radii of the cylindrical segment under

study. The typical length in the axial direction, ∆z, is usually defaulted to unity. The

corresponding element square conduction matrix is

(8.4)Se = 2π

Le

∫ k
e

dHe
T

dr

dHe

dr
r dr

and the source vector (if any) is

(8.5)Ce

Q
= 2π

Le

∫ He
T

Q
e

r dr.

If we consider a two node (linear) line element in the radial direction we can use our

previous results to write these matrices by inspection. Noting that L
e = (r2 − r1)e and

assuming a constant material property, k, in the element gives

Se = 2π
k

e

(Le)2

1

−1

−1

1

r2

r1

∫ r dr

(8.6)Se = 2π
k

e(r2
2 − r

2
1)e

2(Le)2

1

−1

−1

1

= π
k

e(r2 + r1)e

(r2 − r1)e

1

−1

−1

1

.

Thus, unlike the original one-dimensional case the conduction matrix depends on where

the element is located, that is, it depends on how much material it includes (per unit

length in the axial direction).

Chapter 8, Cylindrical analysis problems 217

! .. ! 1
! ** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ** ! 2
! .. ! 3
! CYLINDRICAL HEAT CONDUCTION, (see Section 8.2) ! 4
! (Stored as application source example 109) ! 5
REAL(DP), PARAMETER :: TWO_PI = 6.2831853072d0 ! 6
REAL(DP) :: CONST, DET ! 7
REAL(DP) :: K_RR, SOURCE ! 8
INTEGER :: IP ! 9

!10
! 1/R * d[R K_RR dT/dR]/dR + Q = 0, Example 109 !11

!12
! PROP_1 = CONDUCTIVITY K_RR !13
! PROP_2 = SOURCE PER UNIT VOLUME, Q !14

!15
!--> DEFINE ELEMENT PROPERTIES !16

K_RR = GET_REAL_LP (1) ; SOURCE = GET_REAL_LP (2) !17
E (1, 1) = K_RR ! CONSTITUTIVE !18

!19
! STORE NUMBER OF POINTS FOR FLUX CALCULATIONS !20

CALL STORE_FLUX_POINT_COUNT ! Save LT_QP !21
!22

!--> NUMERICAL INTEGRATION LOOP !23
DO IP = 1, LT_QP !24

H = GET_H_AT_QP (IP) ! INTERPOLATION FUNCTIONS !25
XYZ = MATMUL (H, COORD) ! FIND RADIUS (R) !26
DLH = GET_DLH_AT_QP (IP) ! FIND LOCAL DERIVATIVES !27
AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE PT !28

! FORM INVERSE AND DETERMINATE OF JACOBIAN !29
CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) !30
CONST = TWO_PI * DET * WT(IP) * XYZ (1) ! 2 PI*|J|*w*R !31

!32
! EVALUATE GLOBAL DERIVATIVES, DGH == B !33

DGH = MATMUL (AJ_INV, DLH) !34
B = COPY_DGH_INTO_B_MATRIX (DGH) ! B = DGH !35

!36
C = C + CONST * SOURCE * H ! VOLUMETRIC SOURCE OPTION !37

!38
! CONDUCTION SQUARE MATRIX !39

S = S + CONST * MATMUL ((MATMUL (TRANSPOSE (B), E)), B) !40
!41

!--> SAVE COORDS, E AND B MATRIX, FOR POST PROCESSING !42
CALL STORE_FLUX_POINT_DATA (XYZ, E, B) !43

END DO !44
! ** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS ** !45

Figure 8.1 Numerically integrated cylindrical heat transfer

Next, we assume a constant source term so the source vector becomes

Ce

Q
= 2π Q

e

Le

∫ He
T

r dr.

But the varying radial position, r, must also be accounted for in the integration. One

approach to this integration is to again use our isoparametric interpolation and let

r = HeRe
, where Re notes the radial position of each node (i.e., input data). Then

218 Finite Element Analysis with Error Estimators

Ce

Q
= 2π Q

e

Le

∫ He
T

He
dr Re.

For a general element type we would have to evaluate Eq. 8.7 by numerical

integration. Then the summation is

Ce

Q
= 2π

nq

q

ΣHe
T

q
He

q
rq Qq |Jq

e |wq

where we have interpolated for the position, rq = He

q
Re and allowed for a spatially

varying source input at the nodes with Qq = He

q
Qe. A similar expression would evaluate

the square matrix in Eq. 8.4. Returning to the linear line element, we have previously

exactly evaluated the matrix product integral (mass matrix) and can write the resultant

constant source term as

(8.7)Ce

Q
=

2π Q
e
L

e

6

2

1

1

2

r1

r2

e

=
2π Q

e
L

e

6

2r1 + r2

r1 + 2r2

e

.

Note that the result depends on the element location because the source is being created

in a larger volume of material as the radius increases.

As a simple numerical example consider a cylinder with constant properties, no

internal heat generation, an inner radius temperature of θ = 100 at r = 1, and an outer

radius temperature of θ = 10 at r = 2. Select a model with four equal length elements

and five nodes. Numbering the nodes radially we have essential boundary conditions of

θ 1 = 100 and θ 5 = 10. Considering the form in Eq. 8.6, we note that the element values

of (r2 + r1)e / L
e are 9, 11, 13, and 15, respectively. Therefore, we can write the

assembled system equations as

π k
e

9

−9

0

0

0

−9

(9 + 11)

−11

0

0

0

−11

(11 + 13)

−13

0

0

0

−13

(13 + 15)

−15

0

0

0

−15

15

θ 1

θ 2

θ 3

θ 4

θ 5

=

q1

0

0

0

−q5

.

Applying the essential boundary conditions, and dividing both sides by the leading

constant gives the reduced set

20

−11

0

−11

24

−13

0

−13

28

θ 2

θ 3

θ 4

= 100

9

0

0

+ 10

0

0

15

.

Solving yields the internal temperature distribution of θ 2 = 71. 06, θ 3 = 47. 39, and

θ 4 = 27. 34. Comparing with the exact solution of θ = [θ 1 ln(r5 / r) + θ 5 ln(r /r1)] /

ln (r5 / r1) shows that our approximation is accurate to at least three significant figures.

Also note that both the exact and approximate temperature distributions are independent

of the thermal conductivity k. This is true only because the internal heat generation Q

was zero. Of course, k does have some effect on the two external heat fluxes (thermal

Chapter 8, Cylindrical analysis problems 219

title ’Cylindrical Heat Transfer, Sec. 8.2’ ! 1
axisymmetric ! Problem is axisymmetric, x radius ! 2
example 109 ! Source library example number ! 3
data_set 01 ! Data set for example (this file) ! 4
nodes 5 ! Number of nodes in the mesh ! 5
elems 2 ! Number of elements in the system ! 6
dof 1 ! Number of unknowns per node ! 7
el_nodes 3 ! Maximum number of nodes per element ! 8
space 1 ! Solution space dimension ! 9
b_rows 1 ! Number of rows in the B matrix !10
shape 1 ! Element shape, 1=line, 2=tri, 3=quad !11
remarks 7 ! Number of user remarks !12
gauss 3 ! Maximum number of quadrature point !13
el_real 2 ! Number of real properties per element !14
el_homo ! Element properties are homogeneous !15
no_error_est ! No SCP element error estimates !16
quit ! keyword input, remarks follow !17
1 1/r * d[r K_rr dT/dr]/dr + Q = 0, Example 109 !18
2 Real FE problem properties are: !19
3 K_rr = GET_REAL_LP (1) conductivity !20
4 Q = GET_REAL_LP (2) source per unit length !21
5 Mesh T=100, r=1 *----*----*----*----* r= 2, T=10 !22
6 Nodes, (Elem) 1 2(1) 3 4(2) 5, K = 1, Q = 0 !23
7 T = [T_1*ln(r_5/r) + T_5*ln(r/r_1)]/ln(r_5/r_1) !24
1 1 1. ! begin nodes flag x !25
2 0 1.25 !26
3 0 1.50 ! note exact T_3=47.35 !27
4 0 1.75 !28
5 1 2.0 !29
1 1 2 3 ! begin elements !30
2 3 4 5 !31

1 1 100. ! essential bc !32
5 1 10. !33
1 1. 0. ! Elem K Q !34

Figure 8.2 Typical data for cylindrical conduction

T = [T_1*ln(r_5/r) + T_5*ln(r/r_1)]/ln(r_5/r_1) ! 1
! 2

*** REACTION RECOVERY *** ! 3
NODE, PARAMETER, REACTION, EQUATION ! 4

1, DOF_1, 8.1591E+02 1 ! 5
5, DOF_1, -8.1591E+02 5 ! 6

! 7
*** OUTPUT OF RESULTS IN NODAL ORDER *** ! 8

NODE, Radius r, DOF_1, ! 9
1 1.0000E+00 1.0000E+02 !10
2 1.2500E+00 7.1046E+01 !11
3 1.5000E+00 4.7356E+01 !12
4 1.7500E+00 2.7344E+01 !13
5 2.0000E+00 1.0000E+01 !14

Figure 8.3 Results from two quadratic axisymmetric elements

220 Finite Element Analysis with Error Estimators

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

20

30

40

50

60

70

80

90

100

X, Node number at 45 deg, Element number at 90 deg

FEA Solution Component_1: 8 Elements, 9 Nodes

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
00

, m
in

 =
 1

0)

(1

)

(2

)

(3

)

(4

)

(5

)

(6

)

(7

)

(8

)

1

2

3

4

5

6

7

8

9

−−−min

−−−max

Radial Heat Conduction

Figure 8.4 Temperatures for eight linear elements

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

X, Node number at 45 deg, Element number at 90 deg

Exact Error in Node Component_1: 8 Elements, 9 Nodes

E
rr

or
 1

 (
m

ax
 =

 0
.0

10
6,

 m
in

 =
 0

)

(1

)

(2

)

(3

)

(4

)

(5

)

(6

)

(7

)

(8

)

1

2

3

4

5

6

7

8

9

−−−min

−−−max

Radial Heat Conduction

Figure 8.5 Exact temperature error

Chapter 8, Cylindrical analysis problems 221

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

70

80

90

100

110

120

X, Node number at 45 deg, Element number at 90 deg

FEA SCP Flux Component_1: 8 Elements, 9 Nodes
C

om
po

ne
nt

 1
 (

m
ax

 =
 1

25
.2

38
, m

in
 =

 6
5.

75
4)

(1

)

(2

)

(3

)

(4

)

(5

)

(6

)

(7

)

(8

)

1

2

3

4

5

6

7

8

9

−−−min

−−−max

Flux per Unit Area

Figure 8.6 Flux per unit area for eight linear elements

reactions), q1 and q5, necessary to maintain the two prescribed surface temperatures.

Substituting back into the first equation to recover the thermal reaction we obtain

π [9(100) − 9(71. 06) + 0] = 818. 3 = q1 / k
e

entering at the inner radius. This compares quite well with the exact value of 8.15.8. The

fifth equation gives q5 an equal amount exiting at the outer radius. Therefore, in this

problem the heat flux is always in the positive radial direction.

It should be noted that if we had used a higher order element then the integrals

would have been much more complicated than the one-dimensional case. This is typical

of most axisymmetric problems. Of course, in practice we use numerical integration to

automate the evaluation of the element matrices, as described above. A typical

implementation is shown in Fig. 8.1. A new consideration is that during the integration

we must include the radius. This is done in line 31 using the radial position interpolated

in line 26. The data for using two quadratic (3 noded) line elements to solve the above

example is shown in Fig. 8.2, and the results are summarized in Fig. 8.3. There we see

that the center temperature, line 12, is accurate to four significant figures and that the

temperatures and reaction fluxes compare closely to the above four linear element model.

The keyword axisymmetric (line 2 of Fig. 8.2) is not really used in formulating the

element matrices as we have hard coded that knowledge in Fig. 8.1 but it is used in the

222 Finite Element Analysis with Error Estimators

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

X, Node number at 45 deg, Element number at 90 deg

FEA Estimated Nodal Energy Norm Error, % * 100: 8 Elements, 9 Nodes

E
rr

or
 E

st
im

at
e

 (
m

ax
 =

 1
.3

71
, m

in
 =

 0
.5

76
4)

(1

)

(2

)

(3

)

(4

)

(5

)

(6

)

(7

)

(8

)

1

2

3

4

5

6

7

8

9

−−−min

−−−max

Radial Heat Conduction

Figure 8.7 Estimated energy norm error

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

X, Node number at 45 deg, Element number at 90 deg

FEA Exact Nodal Energy Norm Error, % * 100: 8 Elements, 9 Nodes

E
xa

ct
 E

rr
or

 (
m

ax
 =

 1
.4

00
4,

 m
in

 =
 0

.5
68

58
)

(1

)

(2

)

(3

)

(4

)

(5

)

(6

)

(7

)

(8

)

1

2

3

4

5

6

7

8

9

−−−min

−−−max

Radial Heat Conduction

Figure 8.8 Exact energy norm error

Chapter 8, Cylindrical analysis problems 223

! T = [T_in*ln(r_out/r) + T_out*ln(r/r_in)]/ln(r_out/r_in) ! 1
! 2

*** REACTION RECOVERY *** ! 3
NODE, PARAMETER, REACTION, EQUATION ! 4

1, DOF_1, 8.1640E+02 1 ! 5
9, DOF_1, -8.1640E+02 9 ! 6

! 7
*** OUTPUT OF RESULTS AND EXACT VALUES IN NODAL ORDER *** ! 8

NODE, Radius r, DOF_1, EXACT1, ! 9
1 1.0000E+00 1.0000E+02 1.0000E+02 !10
2 1.1250E+00 8.4714E+01 8.4707E+01 !11
3 1.2500E+00 7.1036E+01 7.1026E+01 !12
4 1.3750E+00 5.8662E+01 5.8651E+01 !13
5 1.5000E+00 4.7363E+01 4.7353E+01 !14
6 1.6250E+00 3.6968E+01 3.6960E+01 !15
7 1.7500E+00 2.7344E+01 2.7338E+01 !16
8 1.8750E+00 1.8383E+01 1.8380E+01 !17
9 2.0000E+00 1.0000E+01 1.0000E+01 !18

!19
** SUPER_CONVERGENT AVERAGED NODAL FLUXES & EXACT FLUXES ** !20
NODE, Radius r, FLUX_1, EXACT1 (per unit area) !21

1 1.000E+00 1.252E+02 1.298E+02 !22
2 1.125E+00 1.144E+02 1.154E+02 !23
3 1.250E+00 1.042E+02 1.039E+02 !24
4 1.375E+00 9.426E+01 9.443E+01 !25
5 1.500E+00 8.645E+01 8.656E+01 !26
6 1.625E+00 7.982E+01 7.990E+01 !27
7 1.750E+00 7.408E+01 7.420E+01 !28
8 1.875E+00 6.964E+01 6.925E+01 !29
9 2.000E+00 6.575E+01 6.492E+01 !30

!31
--- !32

ERROR IN % ERROR IN !33
ELEMENT, ENERGY_NORM, ENERGY_NORM, !34
--- !35

1 3.7078E+00 1.3710E+00 !36
2 2.8507E+00 1.0541E+00 !37
3 2.9117E+00 1.0766E+00 !38
4 2.3987E+00 8.8695E-01 !39
5 2.1187E+00 7.8341E-01 !40
6 1.9101E+00 7.0629E-01 !41
7 1.5382E+00 5.6878E-01 !42
8 1.5794E+00 5.8401E-01 !43

Figure 8.9 Exact and computed results in conducting cylinder

R u L = Fiber length

R = Radial position
u = Radial displacement

Hoop strain =

(L - L
0
)/L

0
 = u/R

L (u)

L
0

Figure 8.10 Hoop strain due to radial displacement

224 Finite Element Analysis with Error Estimators

! B = STRAIN-DISPLACEMENT MATRIX, (N_R_B, LT_FREE) ! 1
! BODY = BODY FORCE VECTOR, (N_SPACE) ! 2
! DGH = GLOBAL DERIVS OF FUNCTIONS H, (N_SPACE, LT_N) ! 3
! LT_FREE = NUMBER OF DEGREES OF FREEDOM PER ELEMENT ! 4
! LT_N = MAXIMUM NUMBER OF NODES FOR ELEMENT TYPE ! 5
! N_R_B = NUMBER OF ROWS IN B AND E MATRICES ! 6
! .. ! 7
! ** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ** ! 8
! .. ! 9
! Cylindrical Stress Analysis, (see Section 8.3) !10
! (Stored as application source example 110) !11
REAL(DP), PARAMETER :: TWO_PI = 6.2831853072d0 !12
REAL(DP) :: CONST, DET !13
REAL(DP) :: E_mod, P_ratio, Rho, Spin !14
INTEGER :: IP !15

!16
! Elem real prop: Young’s modulus, Poisson’s ratio, Density !17
! Misc real prop: Spin about z-axis, radians per second !18

E_mod = GET_REAL_LP (1) ; P_ratio = GET_REAL_LP (2) !19
Rho = GET_REAL_LP (3) ; Spin = GET_REAL_MISC (1) !20

!21
! CONSTITUTIVE LAW !22

E(1,1) = E_mod*(1 - P_ratio)/((1 + P_ratio)*(1 - 2*P_ratio)) !23
E(2,1) = E_mod*P_ratio/((1 + P_ratio)*(1 - 2*P_ratio)) !24
E(1,2) = E(2,1) ; E(2,2) = E(1,1) !25

!26
! STORE NUMBER OF POINTS FOR FLUX CALCULATIONS !27

CALL STORE_FLUX_POINT_COUNT ! Save LT_QP !28
!29

!--> NUMERICAL INTEGRATION LOOP !30
DO IP = 1, LT_QP !31

H = GET_H_AT_QP (IP) ! INTERPOLATION FUNCTIONS !32
XYZ = MATMUL (H, COORD) ! FIND RADIUS (ISOPARAMETRIC) !33
DLH = GET_DLH_AT_QP (IP) ! FIND LOCAL DERIVATIVES !34
AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE PT !35

! FORM INVERSE AND DETERMINATE OF JACOBIAN !36
CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) !37
CONST = TWO_PI * DET * WT(IP) * XYZ (1) ! 2 PI*|J|*w*R !38

!39
! EVALUATE GLOBAL DERIVATIVES & STRAIN-DISPLACEMENT !40

DGH = MATMUL (AJ_INV, DLH) !41
B (1, :) = DGH (1, :) ! DU/DR radial strain !42
B (2, :) = H (:) / XYZ (1) ! U/R hoop strain !43

!44
! STIFFNESS MATRIX !45

S = S + CONST * MATMUL ((MATMUL (TRANSPOSE (B), E)), B) !46
!47

BODY = - Rho * XYZ (1) * Spin **2 ! -Rho R Omegaˆ2 !48
C = C + CONST * BODY (1) * H ! CENTRIFUGAL RESULT !49

!50
!--> SAVE COORDS, E AND B MATRIX, FOR POST PROCESSING !51

CALL STORE_FLUX_POINT_DATA (XYZ, E, B) !52
END DO !53

! ** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS ** !54

Figure 8.11 Cylindrical stress with centrifugal loads

geometric properties (volume and centroid) calculations that are provided for data

validation and it would have triggered necessary calculations in the error estimation stage

if keyword no_error_est had not been present. That overrides the default state of

including error estimates, which is done in the next example.

Chapter 8, Cylindrical analysis problems 225

As another comparison, now including error estimates, consider the linear element

model run with eight equal elements. The nodal results are still accurate to about four

significant figures but, of course, are less accurate than that inside the elements where the

logarithmic exact value is being approximated by a straight line. The actual temperature

values are shown in Fig.8.4 along with the exact temperature error in Fig. 8.5. Because

of the boundary conditions used here remember that the temperatures are independent of

the conductivity, but the flux is not. For a planar wall of the same thickness and same

inner and outer wall essential boundary conditions the temperature would have been

exactly linear with position and the total heat flux and the heat flux per unit area would

have been constant. Here we see in Fig. 8.6 that the smoothed heat flux per unit area is

not constant but drops off radially because it is passing through more material (a larger

area) as the radius increases. The exact flux per unit area is given by

k(θ in − θ out) / [r ln(rout / rin)].

The smoothed fluxes, per unit area, are compared to the element piecewise constant

values in order to develop an error estimate. The estimated error, in the energy norm, is

shown in Fig. 8.7. It was obtained by averaging the element values at the nodes. In this

simple problem we have the exact solution so we can compare the estimate with the

corresponding exact values in Fig. 8.8. Here we see that the SCP energy norm error

estimate agrees with the exact energy norm error reasonably well. Referring back to

Fig. 8.5 we observe that spatial distribution of the exact function error and the exact

energy norm error can be quite different. The error in the solution is always exactly zero

at nodes with essential boundary conditions. However, small distances away from such

locations the function value error can increase very rapidly. In Fig. 8.9 we see (lines 5

and 6) that the heat flux reaction, over a total 2π r section, has changed very little.

Remember that such reaction fluxes are obtained from the integral form and thus are

more accurate than element fluxes which are extrapolated to the boundary. This can be

seen again in the averaged nodal fluxes, per unit area, (lines 22-30) which when

multiplied by the section areas give inner and outer values (which should be the same) of

787 and 826 for an average of 807 which represents an error of about one percent.

8.3 Cylindrical stress analysis

Another common problem is the analysis of an axisymmetric solid with

axisymmetric loads and supports. This becomes a two-dimensional analysis that is very

similar to plane strain analysis. The radial and axial displacement components will be

denoted by u and v. These are the same unknowns used in the plane strain study. In

addition to the previous strains there is another strain known as the hoop strain, ε t , and a

corresponding hoop stress, σ t . The hoop strain results from the change in length of a

fiber of material around the circumference of the solid. The definition of a normal strain

is a change in length divided by the original length. The circumference at a typical radial

position is L = 2π r. When such a point undergoes a radial displacement of u it occupies

a new radial position of (r + u), as shown in Fig. 8.10. It has a corresponding increase in

circumference. The hoop strain becomes

(8.8)ε t =
∆L

L
=

2π (r + u) − 2π r

2π r
=

u

r.

226 Finite Element Analysis with Error Estimators

Then, our strains to be computed for the cylindrical analysis are denoted as

(8.9)ε T = [ε r ε t]

and the corresponding stress components are

(8.10)σ T = [σ r σ t].

For an isotropic material the stress-strain law is like that for the plane strain case. In the

axial, or z, direction of the assumed infinite cylinder one can either set the stress or strain

to zero, but not both. They are related by:

(8.11)ε z =
1

E
(σ z − νσ r − νσ t).

There is no shear stress or strain in the cylindrical case. In the case of an infinite cylinder

the above formulation simplifies since v = 0 and ∂ / ∂z = 0. Thus, we consider only the

radial displacement, u, and the strains and stresses in the radial and hoop directions. This

gives the two strain-displacement relations as

(8.12)εε = Be ue

where

(8.13)Be =

∂H / ∂r

H / r

.

Note that this is the first time we have computed two secondary items (strains) from a

single primary unknown. Now the stresses and the stress-strain law must have the same

number of rows. The radial and hoop stresses are

(8.14)σσ = E εε , E =

E11

E21

E12

E22

and for an isotropic material E11 = E22 = E(1 − ν) / (1 + ν)(1 − 2ν), while the off-

diagonal terms are E12 = E21 = Eν / (1 + ν)(1 − 2ν). Note that this constitutive law

encounters problems for an ‘incompressible’ material where ν = 1/2 and division by zero

occurs. That forces one to employ an alternate theory. The stiffness matrix,

Ke = 2π

Ae

∫ Be
T

EeBe
r dr dz ,

can be expanded to the form

(8.15)

Ke = 2π ∆z

Le

∫

E11

∂HT

∂r

∂H

∂r

+ E12

∂HT

∂r
H + HT

∂H

∂r

/ r + E22HT H / r

2

r dr.

The first integral we just evaluated and is given in Eqs. 8.4 and 8.6 if we let ∆z = 1 and

replace k with E11. The second term we integrate by inspection since the r terms cancel.

The result is

Chapter 8, Cylindrical analysis problems 227

(8.16)Ke

12 = 2π ∆z E
e

12

−1

0

0

1

.

The remaining contribution is more difficult since it involves division by r. Assuming

constant E22 we have

(8.17)K22 = 2π ∆z E22

Le

∫
1

r
HT H dr

which requires analytic integration involving logarithms, or numerical integration. Using

a one point (centroid) quadrature rule gives the approximation

(8.18)Ke

22 =
2π ∆z E

e

22 L
e

2(r1 + r2)e

1

1

1

1

.

For a cylinder the loading would usually be a pressure acting on an outer surface or

an internal centrifugal load due to a rotation about the z-axis. For a pressure load the

resultant force at a nodal ring is the pressure times the surface area. Thus,

F pi
= 2π ∆z ri pi. As a numerical example consider a single element solution for a

cylinder with an internal pressure of p = 1 ksi on the inner radius r1 = 10 in. Assume

E = 104 ksi and ν = 0. 3, and let the thickness of the cylinder be 1 in. Note that there is

no essential boundary condition on the radial displacement. This is because the hoop

effects prevent a rigid body radial motion. The numerical values of the above stiffness

contributions are

K11 = 2π ∆z (1. 413 × 105)

1

−1

−1

1

K12 = 2π ∆z (5. 769 × 103)

−1

0

0

1

, K22 = 2π ∆z (3. 205 × 102)

1

1

1

1

while the resultant force at the inner radius is F p = 2π ∆z 10. Assembling and canceling

the common constant gives

105

1. 35897

−1. 41026

−1. 41026

1. 47436

u1

u2

=

10

0

.

Solving gives u = [9. 9642 9. 5309] × 10−4 in. This represents a displacement error of

about 8 percent and 9 percent, respectively, at the two nodes. The maximum radial stress

equals the applied pressure. The stresses can be found from Eq. 8.14. The hoop strain at

node 1 is ε t = u1 / r1 = 9. 964 × 10−5 in / in. The finite element radial strain

approximation is ε r = ∂H1 / ∂r u1 + ∂H2 / ∂r u2. The constant radial strain

approximation is

ε r =
−u1 + u2

r2 − r1

= − 4. 333 × 10−4 in / in.

Therefore, the hoop stress at the first node is

σ t = E12ε r + E22ε t = − 2. 500 + 13. 413 = 10. 91 ksi.

This compares well with the exact value of 10.52 ksi. Note that the inner hoop stress is

228 Finite Element Analysis with Error Estimators

title ’Cylinder with pressure, no spin, Sec. 8.3’ ! 1
axisymmetric ! Problem is axisymmetric, x radius ! 2
example 110 ! Source library example number ! 3
data_set 01 ! Data set for example (this file) ! 4
nodes 3 ! Number of nodes in the mesh ! 5
elems 1 ! Number of elements in the system ! 6
dof 1 ! Number of unknowns per node ! 7
el_nodes 3 ! Maximum number of nodes per element ! 8
space 1 ! Solution space dimension ! 9
b_rows 2 ! Number of rows in the B matrix !10
shape 1 ! Element shape, 1=line, 2=tri, 3=quad !11
remarks 5 ! Number of user remarks !12
gauss 3 ! Maximum number of quadrature point !13
el_real 3 ! Number of real properties per element !14
reals 1 ! Number of miscellaneous real properties !15
loads ! An initial source vector is input !16
el_no_col ! All element column matrices are null !17
no_error_est ! No SCP element error estimates !18
quit ! keyword input, remarks follow !19
1 E = 10e4 ksi, Nu = 0.3, Internal pressure = 1 ksi !20
2 Resultant = 62.832 kips, Unit axial length !21
3 U_1_exact = 1.0824e-3 (1) !22
4 P = 1 ksi, r=10 in *----*----* r=11, P = 0 !23
5 Nodes 1 2 3 !24
1 0 10. ! begin nodes, bc flag, r !25
2 0 10.5 !26
3 0 11. !27
1 1 2 3 ! element, connectivity !28
1 1.e5 0.3 0. ! Elem, E, Nu, Rho !29

0.0 ! system spin rate !30
1 1 62.832 ! node, direction, force !31
3 1 0. ! terminate input with last force !32

Figure 8.12 Internal pressure load example

*** OUTPUT OF RESULTS IN NODAL ORDER *** ! 1
NODE, Radius r, DOF_1, ! 2

1 1.0000E+01 9.9667E-04 ! 3
2 1.0500E+01 9.7338E-04 ! 4
3 1.1000E+01 9.5333E-04 ! 5

! 6
*** STRAIN COMPONENTS AT ELEMENT INTEGRATION POINTS *** ! 7
ELEMENT, PT, Radius r, STRAIN_1, STRAIN_2, ! 8

1 1 1.0113E+01 -8.5488E-05 1.0404E-03 ! 9
1 2 1.0500E+01 -4.8508E-05 9.9792E-04 !10
1 3 1.0887E+01 -8.3185E-06 9.6295E-04 !11

Figure 8.13 Displacements and strains due to internal pressure

Chapter 8, Cylindrical analysis problems 229

more than ten times the applied internal pressure. Since we have set ε z to zero we should

use Eq. 8.11 to determine the axial stress that results from the effect of Poisson’s ratio.

All three stresses would be used in evaluating a failure criterion like the Von Mises stress.

The implementation of this analysis via numerically integrated elements is shown in

Fig. 8.11. There we have chosen to include another common loading case of a spinning

cylinder (centrifugal load) to account for a body force vector. The first six lines note that

the system is allowing for multiple rows in the arrays B and E. In solid mechanics the

internal volumetric source terms are vectors, unlike the scalar heat source term in the

previous example. Even though it has only one component we should always distinguish

between scalars and vectors (and higher order tensors), thus line 2 reminds us the system

has standard storage space for such optional vectors. The previous hand calculation is

repeated here with a single quadratic element. The input data are shown in Fig. 8.12

which remarks that the exact inner displacement is 1. 0824 × 10−3 inches. This gives less

than 8 percent error in displacements, as noted in the output summary in Fig. 8.13, and

compares closely to the simple hand estimate. The two strain components are noted to

vary significantly over the element and that suggests the mesh is much too crude (as

expected). The two average strain values of [−4. 744 1. 000] × 105 in/in are close to the

single linear element results above.

8.4 Exercises

1. In electrostatics the electrical potential, φ , is related to the charge density, ζ , and the

permittivity of the material, ε . A coaxial cable can be represented in the radial

direction by the equation

1

r

d

dr
(r ε

dφ

dr
) + ζ = 0

Compare this to Eq. 8.1. A hollow coaxial cable is made from a hollow conducting

core and an insulating outer layer with ε 1 = 0. 5, ε 2 = 2. 0 and charge densities of

ζ 1 = 100 and ζ 2 = 0, respectively. The inner, interface, and outer radii are 5, 10, and

25 mm. The corresponding inner and outer potentials (boundary conditions) are

φ = 500 and φ = 0, respectively. Compute the interface potential [analytical value is

918.29] using: a) the element formulation in Fig. 8.1 for two quadratic elements, b)

the approximate closed form integration in Eqs. 8.6 and 7.

2. For the four linear element example in Section 8.2 determine and plot the element

centroid fluxes. Obtain an ‘eyeball’ SCP fit of those values to get continuous nodal

fluxes and plot them along with the exact flux.

230 Finite Element Analysis with Error Estimators

8.5 Bibliography

[1] Buchanan, G.R., Finite Element Analysis, New York: McGraw-Hill (1995).

[2] Rockey, K.C., et al., Finite Element Method − A Basic Introduction, New York:

Halsted Press (1975).

[3] Ross, C.T.F., Finite Element Programs for Axisymmetric Problems in Engineering,

New York: Halsted Press (1984).

[4] Weaver, W.F., Jr. and Johnston, P.R., Finite Elements for Structural Analysis,

Englewood Cliffs: Prentice Hall (1984).

[5] Zienkiewicz, O.C., The Finite Element Method in Structural and Continuum

Mechanics, New York: McGraw-Hill (1967).

[6] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 9

General interpolation

9.1 Introduction

The previous sections have illustrated the heavy dependence of finite element

methods on both spatial interpolation and efficient integrations. In a one-dimensional

problem it does not make a great deal of difference if one selects a local or global

coordinate system for the interpolation equations, because the inter-element continuity

requirements are relatively easy to satisfy. That is not true in higher dimensions. To

obtain practical formulations it is almost essential to utilize local coordinate

interpolations. Doing this does require a small amount of additional work in relating the

derivatives in the two coordinate systems.

9.2 Unit coordinate interpolation

The use of unit coordinates has been previously mentioned in Chapter 4. Here some

of the procedures for deriving the interpolation functions in unit coordinates will be

presented. Consider the three-node triangular element shown in Fig. 9.1. The local

coordinates of its three nodes are (0, 0), (1, 0), and (0, 1), respectively. Once again we

wish to utilize polynomial functions for our interpolations. In two dimensions the

simplest complete polynomial has three constants. Thus, this linear function can be

related to the three nodal quantities of the element. Assume the polynomial for some

quantity, u, is defined as:

(9.1)u
e(r, s) = d

e

1 + d
e

2r + d
e

3 s = P(r, s) de.

If it is valid everywhere in the element then it is valid at its nodes. Substituting the local

coordinates of a node into Eq. 9.1 gives an identity between the de and a nodal value of u.

Establishing these identities at all three nodes gives

u
e

1

u
e

2

u
e

3

=

1

1

1

0

1

0

0

0

1

d
e

1

d
e

2

d
e

3

or

232 Finite Element Analysis with Error Estimators

x

y

u

1 2

3

s

r

u
1

u
2

u
3

(x
2
, y

2
)

(x3, y3)

(x1, y1)

*

*

*

H
1

H
2

H
3

H 1 + H 2 H 1 + H 2 + H 3 = 1

1

1

1

1 1

1

1

1

Figure 9.1 Isoparametric interpolation on a simplex triangle

(9.2)ue = g de.

If the inverse exists, and it does here, this equation can be solved to yield

(9.3)de = g−1ue

and
(9.4)u

e(r, s) = P(r, s) g−1 ue = H(r, s)ue.

Here

(9.5)g−1 =

1

−1

−1

0

1

0

0

0

1

and
(9.6)H1(r, s) = 1 − r − s, H2(r, s) = r, H3(r, s) = s.

By inspection, one can see that the sum of these functions at all points in the local domain

is unity. This is illustrated graphically at the bottom of Fig. 9.1. Typical coding for these

relations and their local derivatives are shown as subroutines SHAPE_3_T and

DERIV _3_T in Fig. 9.2. Similarly, for the unit coordinate bilinear quadrilateral mapping

Chapter 9, General interpolation 233

from 0 < (r, s) < 1 one could assume that

(9.7)u
e(r, s) = d

e

1 + d
e

2 r + d
e

3 s + d
e

4 rs

so that

(9.8)g =

1

1

1

1

0

1

1

0

0

0

1

1

0

0

1

0

and

SUBROUTINE SHAPE_3_T (S, T, H) ! 1
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 2
! SHAPE FUNCTIONS FOR A THREE NODE UNIT TRIANGLE ! 3
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 4
Use Precision_Module ! 5
IMPLICIT NONE ! 6
REAL(DP), INTENT(IN) :: S, T ! 7
REAL(DP), INTENT(OUT) :: H (3) ! 8

! 9
! S,T = LOCAL COORDINATES OF THE POINT 3 T !10
! H = SHAPE FUNCTIONS . . . !11
! NODAL COORDS 1-(0,0) 2-(1,0) 3-(0,1) 1..2 0..S !12

!13
H (1) = 1.d0 - S - T !14
H (2) = S !15
H (3) = T !16

END SUBROUTINE SHAPE_3_T !17
!18

SUBROUTINE DERIV_3_T (S, T, DH) !19
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !20
! LOCAL DERIVATIVES OF A THREE NODE UNIT TRIANGLE !21
! SEE SUBROUTINE SHAPE_3_T !22
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !23
Use Precision_Module !24
IMPLICIT NONE !25
REAL(DP), INTENT(IN) :: S, T !26
REAL(DP), INTENT(OUT) :: DH (2, 3) !27

!28
! S,T = LOCAL COORDINATES OF THE POINT !29
! DH(1,K) = DH(K)/DS !30
! DH(2,K) = DH(K)/DT !31
! NODAL COORDS ARE : 1-(0,0) 2-(1,0) 3-(0,1) !32

!33
DH (1, 1) = - 1.d0 !34
DH (1, 2) = 1.d0 !35
DH (1, 3) = 0.d0 !36
DH (2, 1) = - 1.d0 !37
DH (2, 2) = 0.d0 !38
DH (2, 3) = 1.d0 !39

END SUBROUTINE DERIV_3_T !40

Figure 9.2 Coding a linear unit coordinate triangle

234 Finite Element Analysis with Error Estimators

(9.9)

H1(r, s) = 1 − r − s + rs

H2 = r − rs

H3 = rs

H4 = s − rs.

However, for the quadrilateral it is more common to utilize the natural coordinates, as

shown in Fig. 9.3. In that coordinate system −1 ≤ a, b ≤ + 1 so that

g =

1

1

1

1

−1

1

1

−1

−1

−1

1

1

1

−1

1

−1

and the alternate interpolation functions are

(9.10)Hi (a, b) = (1 + aai) (1 + bbi)/4, 1 ≤ i ≤ 4

where (ai, bi) are the local coordinates of node i. These four functions and their local

derivatives can be coded as shown in Fig. 9.3.

Note that up to this point we have utilized the local element coordinates for

interpolation. Doing so makes the geometry matrix, g, depend only on element type

instead of element number. If we use global coordinates then the geometric matrix, ge is

always dependent on the element number, e. For example, if Eq. 9.1 is written in

physical coordinates then
(9.11)u

e(x, y) = d
e

1 + d
e

2 x + d
e

3 y

so when the identities are evaluated at each node the result is

(9.12)ge =

1

1

1

x
e

1

x
e

2

x
e

3

y
e

1

y
e

2

y
e

3

.

Inverting and simplifying the algebra gives the global coordinate equivalent of Eq. 9.6 for

a specific element:
(9.13)H

e

i
(x, y) = (ae

i
+ b

e

i
x + c

e

i
y) / 2A

e
, 1 ≤ i ≤ 3

where the geometric constants are

(9.14)

a
e

1 = x
e

2 y
e

3 − x
e

3 y
e

2 b
e

1 = y
e

2 − y
e

3 c
e

1 = x
e

3 − x
e

2

a
e

2 = x
e

3 y
e

1 − x
e

1 y
e

3 b
e

2 = y
e

3 − y
e

1 c
e

2 = x
e

1 − x
e

3

a
e

3 = x
e

1 y
e

2 − x
e

2 y
e

1 b
e

3 = y
e

1 − y
e

2 c
e

3 = x
e

2 − x
e

1

and A
e is the area of the element, that is, A

e = (ae

1 + a
e

2 + a
e

3) / 2, or

A
e =

x

e

1(y
e

2 − y
e

3) + x
e

2(y
e

3 − y
e

1) + x
e

3(y
e

1 − y
e

2)

/2.

These algebraic forms assume that the three local nodes are numbered counter-clockwise

from an arbitrarily selected corner. If the topology is defined in a clockwise order then

the area, A
e, becomes negative.

Chapter 9, General interpolation 235

SUBROUTINE SHAPE_4_Q (R, S, H) ! 1
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 2
! SHAPE FUNCTIONS OF A 4 NODE PARAMETRIC QUAD ! 3
! IN NATURAL COORDINATES ! 4
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 5
Use Precision_Module ! 6
IMPLICIT NONE ! 7
REAL(DP), INTENT(IN) :: R, S ! 8
REAL(DP), INTENT(OUT) :: H (4) ! 9
REAL(DP) :: R_P, R_M, S_P, S_M !10

!11
! (R,S) = A POINT IN THE NATURAL COORDS 4---3 !12
! H = LOCAL INTERPOLATION FUNCTIONS | | !13
! H(I) = 0.25d0*(1+R*R(I))*(1+S*S(I)) | | !14
! R(I) = LOCAL R-COORDINATE OF NODE I 1---2 !15
! LOCAL COORDS, 1=(-1,-1) 3=(+1,+1) !16

!17
R_P = 1.d0 + R ; R_M = 1.d0 - R !18
S_P = 1.d0 + S ; S_M = 1.d0 - S !19
H (1) = 0.25d0*R_M*S_M !20
H (2) = 0.25d0*R_P*S_M !21
H (3) = 0.25d0*R_P*S_P !22
H (4) = 0.25d0*R_M*S_P !23

END SUBROUTINE SHAPE_4_Q !24
!25

SUBROUTINE DERIV_4_Q (R, S, DELTA) !26
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !27
! LOCAL DERIVATIVES OF THE SHAPE FUNCTIONS FOR AN !28
! PARAMETRIC QUADRILATERAL WITH FOUR NODES !29
! SEE SHAPE_4_Q !30
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !31
Use Precision_Module !32
IMPLICIT NONE !33
REAL(DP), INTENT(IN) :: R, S !34
REAL(DP), INTENT(OUT) :: DELTA (2, 4) !35
REAL(DP) :: R_P, R_M, S_P, S_M !36

!37
! DELTA(1,I) = DH/DR !38
! DELTA(2,I) = DH/DS !39
! H = LOCAL INTERPOLATION FUNCTIONS !40
! (R,S) = A POINT IN THE LOCAL COORDINATES !41
! HERE D(H(I))/DR = 0.25d0*R(I)*(1+S*S(I)), ETC. !42

!43
R_P = 1.d0 + R ; R_M = 1.d0 - R !44
S_P = 1.d0 + S ; S_M = 1.d0 - S !45
DELTA (1, 1) = -0.25d0 * S_M !46
DELTA (1, 2) = 0.25d0 * S_M !47
DELTA (1, 3) = 0.25d0 * S_P !48
DELTA (1, 4) = -0.25d0 * S_P !49
DELTA (2, 1) = -0.25d0 * R_M !50
DELTA (2, 2) = -0.25d0 * R_P !51
DELTA (2, 3) = 0.25d0 * R_P !52
DELTA (2, 4) = 0.25d0 * R_M !53

END SUBROUTINE DERIV_4_Q !54

Figure 9.3 Coding a bilinear quadrilateral

236 Finite Element Analysis with Error Estimators

3

6

1 4 2

5

r

s

= 1 - r - s

= 1 - 2r - 2s

= r

= s

1

2

3

4

1

2

= 0

= 0

Figure 9.4 Boundary curves through element nodes

It would be natural at this point to attempt to utilize a similar procedure to define the

four node quadrilateral in the same manner. For example, if Eq. 9.7 is written as

(9.15)u
e(x, y) = d

e

1 + d
e

2 x + d
e

3 y + d
e

4 xy.

However, we now find that for a general quadrilateral the inverse of matrix ge may not

exist. This means that the global coordinate interpolation is in general very sensitive to

the orientation of the element in global space. That is very undesirable. This important

disadvantage vanishes only when the element is a rectangle. This global form of

interpolation also yields an element that fails to satisfy the required interelement

continuity requirements. These difficulties are typical of those that are encountered in

two- and three-dimensions when global coordinate interpolation is utilized. Therefore, it

is most common to employ the local coordinate mode of interpolation. Doing so also

easily allows for the treatment of curvilinear elements. That is done with isoparametric

elements that will be mentioned later.

It is useful to illustrate the lack of continuity that develops in the global coordinate

form of the quadrilateral. First, consider the three-node triangular element and examine

the interface or boundary where two elements connect. Along the interface between the

two elements one has the geometric restriction that the edge is a straight line given by

y = m
b
x + n

b. The general form of the global coordinate interpolation functions for the

triangle is u(x, y) = d
e

1 + d
e

2 x + d
e

3 y where the gi are element constants. Along the

typical interface this reduces to u = d
e

1 + d
e

2 x + d
e

3 (mb
x + n

b), or simply u = f1 + f2 x.

Clearly, this shows that the boundary displacement is a linear function of x. The two

constants, fi, could be uniquely determined by noting that u(x1) = u1 and u(x2) = u2.

Since those two quantities are common to both elements the displacement, u(x), will be

continuous between the two elements. By way of comparison when the same substitution

is made in Eq. 9.15 the resulting edge value for the quadrilateral element is

u = d
e

1 + d
e

2 x + d
e

3 (mb
x + n

b) + d
e

4 x (mb
x + n

b), or simply u = f1 + f2 x + f3 x
2. This

quadratic function cannot be uniquely defined by the two constants u1 and u2. Therefore,

it is not possible to prove that the displacements will be continuous between elements.

This is an undesirable feature of quadrilateral elements when formulated in global

coordinates. If the quadrilateral interpolation is given in local coordinates such as Eq. 9.9

or Eq. 9.10, this problem does not occur. On the edge s = 0, Eq. 9.9 reduces to

Chapter 9, General interpolation 237

u = f1 + f2 r. A similar result occurs on the edge s = 1. Likewise, for the other two

edges u = f1 + f2 s. Thus, in local coordinates the element degenerates to a linear

function on any edge, and therefore will be uniquely defined by the two shared nodal

displacements. In other words, the local coordinate four node quadrilateral will be

compatible with elements of the same type and with the three-node triangle. The above

observations suggest that global coordinates could be utilized for the four-node element

only so long as it is a rectangle parallel to the global axes.

The extension of the unit coordinates to the three-dimensional tetrahedra illustrated

in Fig. 3.2 is straightforward. In the result given below

(9.16)
H1(r, s, t) = 1 − r − s − t

H3(r, s, t) = s

H2(r, s, t) = r

H4(r, s, t) = t,

and comparing this to Eqs. 9.6, we note that the 2-D and 1-D forms are contained in the

three-dimensional form. This concept was suggested by the topology relations shown in

Fig. 3.2. The unit coordinate interpolation is easily extended to quadratic, cubic, or

higher interpolation. The procedure employed to generate Eq. 9.6 can be employed. An

alternate geometric approach can be utilized. We want to generate an interpolation

function, Hi, that vanishes at the j-th node when i ≠ j. Such a function can be obtained

by taking the products of the equations of selected curves through the nodes on the

element. For example, let H1(r, s) = C1 Γ1 Γ2 where the Γi are the equations of the lines

are shown in Fig. 9.4, and where C1 is a constant chosen so that H1(r1, s1) = 1. This

yields

H1 = (1 − 3r − 3s + 2r
2 + 4rs + 2s

2).

Similarly, letting H4 = C4 Γ1 Γ3 gives C4 = 4 and H4 = 4r(1 − r − s). This type of

procedure is usually quite straightforward. However, there are times when there is not a

unique choice of products, and then care must be employed to select the proper products.

The resulting two-dimensional interpolation functions for the quadratic triangle are

(9.17)

H1(r, s) = 1 − 3r + 2r
2 − 3s + 4rs + 2s

2

H2(r, s) = − r + 2r
2

H3(r, s) = − s + 2s
2

H4(r, s) = 4r − 4r
2 − 4rs

H5(r, s) = 4rs

H6(r, s) = 4s − 4rs − 4s
2.

Once again, it is possible to obtain the one-dimensional quadratic interpolation on a

typical edge by setting s = 0. Figure 9.5 shows the shape of the typical interpolation

functions for a linear and quadratic triangular element.

Figure 9.6 illustrates the concept of Pascal’s triangle for representing the complete

polynomial terms in three dimensions. Beginning with the constant vertex (1), it can also

be thought of as showing the polynomials that occur in the tetrahedron of linear,

quadratic, cubic, and quartic degree, respectively, and the relative location of the nodes on

the edges, faces, and interior of the tetrahedron. If one sets z = 1 then it can also show

the relative nodes and polynomials for the triangular elements of linear, quadratic, cubic,

238 Finite Element Analysis with Error Estimators

Linear Quadratic

Figure 9.5 Linear and quadratic triangle interpolation

x

x2

x3

x4

y

xy

zx
z

z2x

y2

z2

z3

z4

yz

zx2

xyz

x2y

xy2

y3 y4

yz2

y2z

z2x2

zx3

z2x3

x3y

x2y2

xy3

yz3

y2z2

y3z

zx2y

zxy2

z2xy

1

z = 1 for 2-D
simplex elements

Figure 9.6 The 2-D Pascal triangles and the 3-D simplex family

and quartic degree from the left-most to the right-most triangles, respectively.

9.3 Natural coordinates

The natural coordinate formulations for the interpolation functions can be generated

in a similar manner to that illustrated in Eq. 9.10. However, the inverse geometric matrix,

G−1, may not exist. However, the most common functions have been known for several

years and will be presented here in two groups. They are generally denoted as

Lagrangian elements and as the Serendipity elements (see Tables 9.1 and 9.2). For the

four-node quadrilateral element both forms yield Eq. 9.10. This is known as the bilinear

quadrilateral since it has linear interpolation on its edges and a bilinear (incomplete

quadratic) interpolation on its interior. This element is easily extended to the trilinear

hexahedra of Table 9.2. Its resulting interpolation functions are

(9.18)Hi (a, b, c) = (1 + aai) (1 + bbi) (1 + cci)/8,

for 1 ≤ i ≤ 8 where (ai, bi, ci) are the local coordinates of node i. On a giv en face, e.g.,

Chapter 9, General interpolation 239

c = ± 1, these degenerate to the four functions in Eq. 9.10 and four zero terms. For

quadratic (or higher) edge interpolation, the Lagrangian and Serendipity elements are

different. The Serendipity interpolation functions for the corner quadratic nodes are

(9.19)Hi (a, b) = (1 + aai) (1 + bbi) (aai + bbi − 1)/4,

where 1 ≤ i ≤ 4 and for the mid-side nodes

(9.20)Hi (a, b) = a
2
i
(1 − b

2) (1 + ai a) / 2 + b
2
i
(1 − a

2) (1 + bi b)/2, 5 ≤ i ≤ 8.

Other members of this family are listed in Tables 9.1 and 9.2. The two-dimensional

Lagrangian functions are obtained from the products of the one-dimensional equations.

The resulting quadratic functions are

H1(a, b) = (a2 − a) (b2 − b) / 4 H6(a, b) = (a2 + a) (1 − b
2) / 2

H2(a, b) = (a2 + a) (b2 − b) / 4 H7(a, b) = (1 − a
2) (b2 + b) / 2

H3(a, b) = (a2 + a) (b2 + b) / 4 H8(a, b) = (a2 − a) (1 − b
2) / 2

H4(a, b) = (a2 − a) (b2 + b) / 4 H9(a, b) = (1 − a
2) (1 − b

2)

H5(a, b) = (1 − a
2) (b2 − b)/2.

The typical shapes of these functions are shown in Fig. 9.7. The function H9(a, b) is

referred to as a bubble function because it is zero on the boundary of the element and

looks like a soap bubble blown up over the element. Similar functions are commonly

used in hierarchical elements to be considered later. It is possible to mix the order of

interpolation on the edges of an element. Figure 9.8 illustrates the Serendipity

interpolation functions for quadrilateral elements that can be either linear, quadratic, or

cubic on any of its four sides. Such an element is often referred to as a transition

element. They can also be employed as p-adaptive elements. Those types of elements

are sketched in Fig. 9.9. From the previous figures one will note that the supplied

routines in the interpolation library generally start with the names SHAPE_ and DERIV_

and have the number of nodes and shape codes (L-line, T-triangle, Q-quadrilateral, H-

hexahedron, P-pyramid or tetrahedron, and W-wedge) appended to those names. The

class of elements shown in Fig. 9.9 is appended with the name L_Q_H because they can

be determined for any of the three shapes. For elements of degree four or higher one

needs to also include interior nodes for elements in Fig. 9.9 to form complete

polynomials, or the rate of convergence will be decreased.

9.4 Isoparametric and subparametric elements

By introducing local coordinates to formulate the element interpolation functions

we were able to satisfy certain continuity requirements that could not be satisfied by

global coordinate interpolation. We will soon see that a useful by-product of this

approach is the ability to treat elements with curved edges. At this point there may be

some concern about how one relates the local coordinates to the global coordinates. This

must be done since the governing integral is presented in global (physical) coordinates

and it involves derivatives with respect to the global coordinates. This can be

accomplished with the popular isoparametric elements, and subparametric elements.

240 Finite Element Analysis with Error Estimators

Linear Quadratic

Figure 9.7 Quadratic Serendipity quadrilateral interpolation

Topology : 4 − 11 − 7 − 3

| |

8 S 10

| *R |

12 6

| |

1 − 5 − 9 − 2

If Cubic Side : i = 5, 9, or 6, 10 or 7, 11 or 8, 12

Hi (r, s) = (1 − s
2) (1 + 9ssi) (1 + rri) 9 / 32

Hi (r, s) = (1 − r
2) (1 + 9rri)(1 + ssi) 9 / 32

If Quadratic Side : i = 5, 6, 7, or 8

Hi(r, s) = (1 + rri) (1 − s
2) / 2

Hi(r, s) = (1 + ssi) (1 − r
2) / 2

H j = 0, j = i + 4

If Linear Side :
H j = Hk = 0, j = i + 4, k = i + 8, i = 1, 2, 3, or 4

If Corners : i = 1, 2, 3, 4 Hi (r, s) = (Pr + Ps) (1 + ssi) / 4

See subroutine SHAPE_4_12_Q

Order of Side Pr , si = ± 1 Ps, ri = ± 1

Linear 1/2 1/2

Quadratic rri − 1/2 ssi − 1/2

Cubic (9r
2 − 5) / 8 (9s

2 − 5) / 8

Figure 9.8 Linear to cubic transition quadrilateral

Chapter 9, General interpolation 241

Table 9.1 Serendipity quadrilaterals in natural coordinates

Node Location Interpolation Functions Name

ai bi Hi (a, b)

± 1 ± 1 (1 + aai) (1 + bbi) / 4 Q4

± 1 ± 1 (1 + aai) (1 + bbi) (aai + bbi − 1) / 4 Q8

± 1 0 (1 + aai) (1 − b
2) / 2

0 ± 1 (1 + bbi) (1 − a
2) / 2

± 1 ± 1 (1 + aai) (1 + bbi) [9 (a2 + b
2) − 10] / 32 Q12

± 1 ± 1/3 9(1 + aai) (1 − b
2) (1 + 9bbi) / 32

± 1/3 ± 1 9(1 + bbi) (1 − a
2) (1 + 9aai) / 32

± 1 ± 1 (1 + aai) (1 + bbi) [4 (a2 − 1) aai Q16

+ 4(b2 − 1) bbi + 3abai bi] / 12

± 1 0 2(1 + aai) (b2 − 1) (b2 − aai) / 4

0 ± 1 2(1 + bbi) (a2 − 1) (a2 − bbi) / 4

± 1 ± 1/2 4(1 + aai) (1 − b
2) (b2 + bbi) / 3

± 1/2 ± 1 4(1 + bbi) (1 − a
2) (a2 + aai) / 3

0 0 (a2 − 1) (b2 − 1)

Table 9.2 Serendipity hexahedra in natural coordinates

Node Location Interpolation Functions Name

ai bi ci Hi (a, b, c)

± 1 ± 1 ± 1 (1 + aai) (1 + bbi) (1 + cci) / 8 H8

± 1 ± 1 ± 1 (1 + aai) (1 + bbi) (1 + cci) (aai + bbi + cci − 2) / 8 H20

0 ± 1 ± 1 (1 − a
2) (1 + bbi) (1 + cci) / 4

± 1 0 ± 1 (1 − b
2) (1 + aai) (1 + cci) / 4

± 1 ± 1 0 (1 − c
2) (1 + aai) (1 + bbi) / 4

± 1 ± 1 ± 1 (1 + aai) (1 + bbi) (1 + cci) H32

[9 (a2 + b
2 + c

2) − 19] / 64

± 1/3 ± 1 ± 1 9(1 − a
2) (1 + 9aai) (1 + bbi) (1 + cci) / 64

± 1 ± 1/3 ± 1 9(1 − b
2) (1 + 9bbi) (1 + aai) (1 + cci) / 64

± 1 ± 1 ± 1/3 9(1 − c
2) (1 + 9cci) (1 + bbi) (1 + aai) / 64

242 Finite Element Analysis with Error Estimators

P (r, s) P
r
(r) P

s
(s) P

rs
(r, s)

r

s

r

s

r

s

r

s

Figure 9.9 Blended quadrilaterals of different edge degrees

Isoparametric elements utilize a local coordinate system to formulate the element

matrices. The local coordinates, say r, s, and t, are usually dimensionless and range from

0 to 1, or from −1 to 1. The latter range is usually preferred since it is directly compatible

with the usual definition of abscissa utilized in numerical integration by Gaussian

quadratures. The elements are called isoparametric since the same (iso) local coordinate

parametric equations (interpolation functions) used to define any quantity of interest

within the elements are also utilized to define the global coordinates of any point within

the element in terms of the global spatial coordinates of the nodal points. If a lower order

polynomial is used to describe the geometry then it is called a subparametric element.

These are quite common when used with the newer hierarchical elements. Let the global

spatial coordinates again be denoted by x, y, and z. Let the number of nodes per element

be nn. For simplicity, consider a single scalar quantity of interest, say V (r, s, t). The

value of this variable at any local point (r, s, t) within the element is assumed to be

defined by the values at the nn nodal points of the element (V
e

i
, 1 ≤ i ≤ nn), and a set of

interpolation functions (Hi (r, s, t), 1 ≤ i ≤ nn). That is,

(9.21)V (r, s, t) =
nn

i=1
Σ Hi (r, s, t) V

e

i
= H(r) Ve

,

where H is a row vector. Generalizing this concept, the global coordinates are defined

with a geometric interpolation, or blending, function, G. If it interpolates between nx

geometric data points then it is subparametric if nx < nn, isoparametric if nx = nn so

G = H, and superparametric if nx > nn. Blending functions typically use geometric data

ev erywhere on the edge of the geometric element. The geometric interpolation, or

blending, is denoted as: x(r, s, t) = G xe
, y = G ye

, and z = G ze. Programming

considerations make it desirable to write the last three relations as a position row matrix,

R, written in a partitioned form

(9.22)R(r, s, t) = G(r, s, t) Re = G [xe ye ze]

where the last matrix simply contains the spatial coordinates of the nn nodal points

incident with the element. If G = H, it is an isoparametric element. To illustrate a typical

two-dimensional isoparametric element, consider a quadrilateral element with nodes at

the four corners, as shown in Fig. 9.3. The global coordinates and local coordinates of a

typical corner, i, are (xi, yi), and (ri, si), respectively. The following local coordinate

interpolation functions have been developed earlier for this element:

Chapter 9, General interpolation 243

Hi (r, s) =
1

4
(1 + rri) (1 + ssi), 1 ≤ i ≤ 4.

We interpolate any variable, V, as

V (r, s) = H(r, s) Ve = H1 H2 H3 H4

V1

V2

V3

V4

e

.

Note that along an edge of the element (r = ± 1 or s = ± 1), these interpolation functions

become linear and thus any of these three quantities can be uniquely defined by the two

corresponding nodal values on that edge. If the adjacent element is of the same type

(linear on the boundary), then these quantities will be continuous between elements since

their values are uniquely defined by the shared nodal values on that edge. Since the

variable of interest, V , varies linearly on the edge of the element, it is called the linear

isoparametric quadrilateral although the interpolation functions are bilinear inside the

element. If the (x, y) coordinates are also varying linearly with r or s on a side it means

this element has straight sides.

For future reference, note that if one can define the interpolation functions in terms

of the local coordinates then one can also define their partial derivatives with respect to

the local coordinate system. For example, the local derivatives of the interpolation

functions of the above element are

∂Hi (r, s) / ∂r = ri (1 + ssi)/4, ∂Hi (r, s) / ∂s = si (1 + rri)/4.

In three dimensions (ns = 3), let the array containing the local derivatives of the

interpolation functions be denoted by DL_H, a 3 × nn matrix, where

(9.23)DL_H (r, s, t) =

∂
∂r

H

∂
∂s

H

∂
∂t

H

= ∂∂LH.

Although x, y, and z can be defined in an isoparametric element in terms of the

local coordinates, r, s, and t, a unique inverse transformation is not needed. Thus, one

usually does not define r, s, and t in terms of x, y, and z. What one must have, howev er,

are the relations between derivatives in the two coordinate systems. From calculus, it is

known that the derivatives are related by the Jacobian. From the chain rule of calculus

one can write, in general,
∂
∂r

=
∂

∂x

∂x

∂r
+

∂
∂y

∂y

∂r
+

∂
∂z

∂z

∂r

with similar expressions for ∂ / ∂s and ∂ / ∂t. In matrix form these identities become

244 Finite Element Analysis with Error Estimators

(9.24)

∂
∂r

∂
∂s

∂
∂t

=

∂x

∂r

∂x

∂s

∂x

∂t

∂y

∂r

∂y

∂s

∂y

∂t

∂z

∂r

∂z

∂s

∂z

∂t

∂
∂x

∂
∂y

∂
∂z

where the square matrix is called the Jacobian. Symbolically, one can write the

derivatives of a quantity, such as V (r, s, t), which for convenience is written as V (x, y, z)

in the global coordinate system, in the following manner: ∂∂LV = J(r, s, t) ∂∂gV , where J

is the Jacobian matrix, and where the subscripts L and g have been introduced to denote

local and global derivatives, respectively. Similarly, the inverse relation is

(9.25)∂∂gV = J−1 ∂∂LV .

Thus, to evaluate global and local derivatives, one must be able to establish the Jacobian,

J, of the geometric mapping and its inverse, J−1. In practical application, these two

quantities usually are evaluated numerically. Consider the first term in J that relates the

geometric mapping: ∂x / ∂r = ∂ (G xe) / ∂r = ∂G / ∂r xe. Similarly, for any component

in Eq. 9.22 ∂R / ∂r = ∂(G Re) / ∂r. Repeating for all local directions, and noting that the

Re values are constant input coordinate data for the element, we find the identity that

∂x

∂r

∂x

∂s

∂x

∂t

∂y

∂r

∂y

∂s

∂y

∂t

∂z

∂r

∂z

∂s

∂z

∂t

=

∂
∂r

G

∂
∂s

G

∂
∂t

G

Re

or, in symbolic form, the evaluation of the definition of the Jacobian within a specific

element takes the form

(9.26)Je(r, s, t) = DL_G(r, s, t) Re.

This numerically defines the Jacobian matrix, J, at a local point inside a typical

element in terms of the spatial coordinates of the element’s nodes, Re, which is

referenced by the name COORD in the subroutines, and the local derivatives, DL_G, of

the geometric interpolation functions, G. Thus, at any point (r, s, t) of interest, such as a

numerical integration point, it is possible to define the values of J, J−1, and the

determinant of the Jacobian, |J|. In practice, evaluation of the Jacobian is simply a matrix

product, such as AJ = MATMUL(DL_G, COORD). We usually will consider two-

dimensional problems. Then the Jacobian matrix is

Chapter 9, General interpolation 245

J =

∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

.

In general, the inverse Jacobian in two dimensions is

J−1 =
1

|J |

∂y

∂s

−
∂x

∂s

−
∂y

∂r

∂x

∂r

, where |J | = x,rr y, ss − y,rr x, ss.

For future reference, note that by denoting (),rr = ∂() / ∂r, etc. the determinant and

inverse of the three-dimensional Jacobian are

|J| = x,rr (y, ss z, tt − y, tt z, ss) + x, ss (y, tt z,rr − y,rr z, tt) + x, tt (y,rr z, ss − y, ss z,rr)

and

J−1 =

(y, ss z, tt − y, tt z, ss)

(x, tt z, ss − x, ss z, tt)

(x, ss y, tt − x, tt y, ss)

(y, tt z,rr − y,rr z, tt)

(x,rr z, tt − x, tt z,rr)

(x, tt y,rr − x,rr y, tt)

(y,rr z, ss − y, ss z,rr)

(x, ss z,rr − x,rr z, ss)

(x,rr y, ss − x, ss y,rr)

/ |J|.

Of course, one can in theory also establish the algebraic form of J. For simplicity

consider the three-node isoparametric triangle in two dimensions. From Eq. 9.6 we note

that the local derivatives of G are

(9.27)DL_G =

∂G / ∂r

∂G / ∂s

=

−1

−1

1

0

0

1

.

Thus, the element has constant local derivatives since no functions of the local

coordinates remain. Usually the local derivatives are also polynomial functions of the

local coordinates. Employing Eq. 9.26 for a specific T3 element:

Je = DL_G Re =

−1

−1

1

0

0

1

x1

x2

x3

y1

y2

y3

e

or simply

(9.28)Je =

(x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)

e

which is also constant. The determinant of this 2 × 2 Jacobian matrix is

| Je | = (x2 − x1)e (y3 − y1)e − (x3 − x1)e (y2 − y1)e = 2A
e
,

which is twice the physical area of the element physical domain, Ωe. For the above three-

node triangle, the inverse relation is simply

(9.29)Je
−1

=
1

2Ae

(y3 − y1)

−(x3 − x1)

−(y2 − y1)

(x2 − x1)

e

=
1

2Ae

b2 b3

c2 c3

e.

246 Finite Element Analysis with Error Estimators

For most other elements it is common to form these quantities numerically by

utilizing the numerical values of Re given in the data. The use of the local coordinates in

effect represents a change of variables. In this sense the Jacobian has another important

function. The determinant of the Jacobian, | J |, relates differential changes in the two

coordinate systems, that is,
d L = dx = | J | dr

da = dx dy = | J | dr ds

dv = dx dy dz = | J | dr ds dt

in one-, two-, and three-dimensional problems. When the local and physical spaces have

the same number of dimensions we can write this symbolically as d Ωe = | J | d
e.

The integral definitions of the element matrices usually involve the global

derivatives of the quantity of interest. From Eq. 9.21 it is seen that the local derivatives of

V are related to the nodal parameters by

∂V

∂r

∂V

∂s

∂V

∂t

=

∂
∂r

H

∂
∂s

H

∂
∂t

H

Ve
,

or symbolically,
(9.30)∂∂LV (r, s, t) = DL_H(r, s, t) Ve.

To relate the global derivatives of V to the nodal parameters, Ve, one substitutes the

above expression, and the geometry mapping Jacobian into Eq. 9.25 to obtain

∂∂gV = J−1 DL_H Ve ≡ d(r, s, t) Ve
,

where
(9.31)d(r, s, t) = J(r, s, t)−1DL_H(r, s, t).

The matrix d is very important since it relates the global derivatives of the quantity of

interest to the quantity’s nodal values. Note that it depends on both the Jacobian of the

geometric mapping and the local derivatives of the solution interpolation functions. For

the sake of completeness, note that d can be partitioned as

(9.32)d(r, s, t) =

dx

− − − − −
dy

− − − − −
dz

=

∂
∂x

H

− − − − − − −
∂
∂y

H

− − − − − − −
∂
∂z

H

= ∂gH

so that each row represents a derivative of the solution interpolation functions with

respect to a global coordinate direction. Sometimes it is desirable to compute and store

the rows of d independently. In practice the d matrix usually exists only in numerical

Chapter 9, General interpolation 247

form at selected points. Once again, it is simply a matrix product such as GLOBAL =

MATMUL (AJ_INV, DL_H), where GLOBAL represents the physical derivatives of the

parametric functions H. For the linear triangle J, DL_G, and d are all constant.

Substituting the results from Eqs. 9.27 and 9.29 into 9.31 yields

(9.33)de =
1

2Ae

(y2 − y3) (y3 − y1) (y1 − y2)

(x3 − x2) (x1 − x3) (x2 − x1)

e

=
1

2Ae

b1 b2 b3

c1 c2 c3

e

.

As expected for a linear triangle, all the terms are constant. This element is usually

referred to as the Constant Strain Triangle (CST). For Poisson problems Be = de.

Any finite element analysis ultimately leads to the evaluation of the integrals that

define the element and/or boundary segment matrices. The element matrices, Se or Ce,

are usually defined by integrals of the symbolic form

(9.34)Ie = ∫
Ωe

∫ ∫ Fe(x, y, z) dx dy dz =
1

−1

∫
1

−1

∫
1

−1

∫ F̃
e

(r, s, t) Je(r, s, t) dr ds dt,

where Fe is usually the sum of products of other matrices involving the element

interpolation functions, H, their derivatives, d, and problem properties. In practice, one

would usually use numerical integration to obtain

(9.35)Ie =
nq

i=1
Σ Wi F̃

e

(ri, si, ti) | Je(ri, si, ti) |

where F̃
e

and | J | are evaluated at each of the nq integration points, and where (ri, si, ti)

and Wi denote the tabulated abscissae and weights, respectively. It should be noted that

this type of coding makes repeated calls to the interpolation functions to evaluate them at

the quadrature points. If the element type is constant, then the quadrature locations

would not change. Thus, these computations are repetitious. Since machines have larger

memories today, it would be more efficient to evaluate the interpolation functions and

their local derivatives once at each quadrature point and store those data for later use.

This is done by adding an additional subscript to those arrays that correspond to the

quadrature point number.

9.5 Hierarchical interpolation

In Sec. 4.6 we introduced the typical hierarchical functions on line elements and let

the mid-point tangential derivatives from order m to order n be denoted by m → n. The

exact same functions can be utilized on each edge of a two-dimensional or three-

dimensional hierarchical element. We will begin by considering quadrilateral elements,

or the quadrilateral faces of a solid element. To apply the previous one-dimensional

element to each edge of the element requires an arbitrary choice of which way we

consider to the positive tangential direction. Our choice is to use the ‘right hand rule’ so

that the tangential derivatives are taken counterclockwise around the element. In other

words, if we circle the fingers of our right hand in the direction of the tangential circuit,

our thumb points in the direction of the outward normal vector perpendicular to that face.

Usually a (sub-parametric) four node element will be used to describe the geometry

of the element. The element starts with the standard isoparametric form of four nodal

248 Finite Element Analysis with Error Estimators

values to begin the hierarchical approximation of the function. As needed, tangential

derivatives of the unknown solution are added as additional degrees of freedom. It is well

known that it is desirable to have complete polynomials included in the interpolation

polynomials. Thus, at some point it becomes necessary to add internal (bubble) functions

at the centroid of the element. There is more than one way to go about doing this. The

main question is does one want to use the function value at the centroid as a dof or just

its higher derivatives? The latter is simpler to automate if we use the Q4 element.

Since the hierarchical derivative interpolation functions are all zero at both ends of

their edge they will also be zero on their two adjoining edges of the quadrilateral. Thus,

to use these functions on the interior of the Q4 element we must multiply them by a

function that is unity on the edge where the hierarchical functions are defined and zero on

the opposite parallel edge. From the discussion of isoparametric elements it should be

clear that on each of the four sides the functions (in natural coordinates a, b) are

(9.36)
N

(1)(b) = (1 − b)/2, N
(3)(b) = (1 + b)/2

N
(2)(a) = (1 + a)/2, N

(4)(a) = (1 − a)/2

respectively, where N
(i) denotes the interpolation normal to side i. If Tij denotes the

hierarchical tangential interpolations on side i and node j, then their net interior

contributions are Hij (a, b) = N
(i)

Tij . That is, the p-th degree edge interpolation

enrichments of the Q4 element are

(9.37)

Side 1 (b = − 1) H
(1)
p

(a, b) = 1

2
(1 − b) Ψp(a)

Side 2 (a = 1) H
(2)
p

(a, b) = 1

2
(1 + a) Ψp(b)

Side 3 (b = 1) H
(3)
p

(a, b) = 1

2
(1 + b) Ψp(−a)

Side 4 (a = − 1) H
(4)
p

(a, b) = 1

2
(1 − a) Ψp(−b)

where the Ψp(a) = [P p (a) − P p−2 (a)] 2p − 1, p ≥ 2. They are normalized such that

their p-th tangential derivative is unity. Note that there are 4(p − 1) such enrichments.

Likewise, there are (p − 2) (p − 3)/2 internal enrichments for p ≥ 4. They occur at the

center (0, 0) of the element. Their degrees of freedom are the cross-partial derivatives

∂ p−2 / ∂a
j ∂b

k
, for j + k = p − 2, and 1 ≤ j, k ≤ p − 3. The general form of the

internal (centroid) enrichments are a product of ‘bubble functions’ and other functions

(9.38)H
(0)
p

(a, b) = (1 − a
2) (1 − b

2) P p−4− j (a) P j (b), j = 0, 1, . . . , p − 4,

where P j (a) is the Legendre polynomial of degree j given in Eq. 3.25. The number of

internal degrees of freedom, n, are

p 4 5 6 7 8 9 10

n 1 2 3 4 5 6 7

Total 1 3 6 10 15 21 28

Chapter 9, General interpolation 249

so that we see the number of internal terms corresponds to the number of coefficients in a

complete polynomial of degree (p − 3). The n terms for degree 4 to 10 are given in

Table 9.3. It can be shown that the above combinations are equivalent to a complete

polynomial of degree p, plus the two monomial terms a
p

b, a b
p for p ≥ 2. This

boundary and interior enrichment of the Q4 element is shown in Fig. 9.10. There p

denotes the order of the edge polynomial, n is the total number of degrees of freedom

(interpolation functions), and c is the number of dof needed for a complete polynomial

form. For a quadrilateral we note that the total number of shape functions on any side is

n = p + 1 for p ≥ 1, and the number of interior nodes is ni = (p − 2) (p − 3) / 2 for

p ≥ 4, and the total for the element is nt = (p − 2)(p − 3) / 2 + 4p, or simply

nt = (p
2 + 3p + 6) / 2 for p ≥ 4. Note that the number of dof grows rapidly and by the

time p = 9 is reached the element has almost 15 times as many dof as it did originally.

At this point the reader should see that there is a very large number of alternate

forms of this same element. Consider the case where an error estimator has predicted the

need for a different polynomial order on each edge. This is called anisotropic

hierarchical p-enrichment. For maximum value of p = 8 there are a total of 32 possible

interpolation combinations, including the six uniform ones shown in Fig. 9.10. It is likely

that future codes will take advantage of anisotropic enrichment, although very few do so

today. If one is going to use a nine node quadrilateral (Q9) to describe the geometry then

the same types of enrichments can be added to it. However, the Q4 form would have

better orthogonality behavior, that is, it would produce square matrices that are more

diagonally dominant. For triangular and tetrahedral elements one could generate

different interpolation orders on each edge, and in the interior, by utilizing the

enhancement procedures for Lagrangian elements to be described later. This is probably

easier to do in baracentric coordinates.

Since these elements have so much potential power they tend to be relatively large

in size, and/or distorted in shape, and small in number. That trend might begin to conflict

with the major appeal of finite elements: the ability to match complicated shapes. Thus,

the choice of describing the geometry (and its Jacobian) by isoparametric, or sub-

parametric methods might be dropped in favor of other geometric modeling methods.

That is, the user may want to exactly match an ellipse or circle rather than approximate it

with a parametric curve. One way to do that is to employ blending functions such as

Coon’s functions to describe the geometry. To do this we use local analytical functions to

describe each physical coordinate on the edge of the element rather than 2, 3, or 4

discrete point values as we did with isoparametric elements in the previous sections. Let

(a, b) denote the quadrilateral’s natural coordinates, −1 ≤ (a, b) ≤ 1. Consider only the x

physical coordinate of any point in the element. Let the four corner values of x be

denoted by Xi. Number the sides in a CCW manner also starting from the first (LLH)

corner node. Let x j be a function of the tangential coordinate describing x on side j.

Then the Coon’s blending function for the x-component of the geometry is:

(9.39)

x(a, b) = [x1(a)(1 − b) + x2(b)(1 + a) + x3(a)(1 + b) + x4(a)(1 − a)] / 2

−
4

i = 1
Σ xi (1 + aai)(1 + bbi) / 4

250 Finite Element Analysis with Error Estimators

Table 9.3 Quadrilateral hierarchical internal functions

Ψp (a, b) = (1 − a
2)(1 − b

2) Pm (a) Pn (b), p ≥ 3

p m n j k

4 0 0 1 1

5 1 0 1 2

0 1 2 1

6 2 0 1 3

1 1 2 2

0 2 3 1

7 3 0 1 4

2 1 2 3

1 2 3 2

0 3 4 1

8 4 0 1 5

3 1 2 4

2 2 3 3

1 3 4 2

0 4 5 1

9 5 0 1 6

4 1 2 5

3 2 3 4

2 3 4 3

1 4 5 2

0 5 6 1

10 6 0 1 7

5 1 2 6

4 2 3 5

3 3 4 4

2 4 5 3

1 5 6 2

0 6 7 1

Pi = Legendre polynomial of degree i; dof = ∂ j +k / ∂a
j ∂b

k

Chapter 9, General interpolation 251

p = 3, n = 12, c = 10p = 2, n = 8, c = 6p = 1, n = 4, c = 3

2

2

2

2

22

2

2

2

2

3

3

23

3

2

2

2

4

4

24

4

2

2

2

5

5

25

5

2

2

2

6

6

26

6

2

p = 6, n = 30, c = 28p = 5, n = 23, c = 21p = 4, n = 17, c = 15

p = degree, n = degrees of freedom, c = complete polynomial

1

1

3

1

2

1

k m Tangential derivatives from order k to m

k

m

Cross derivatives to order (i + j) = p - 3, k <= i, j <= m

Function value

Figure 9.10 Hierarchical enrichments of the Q4 element

where (ai, bi) denote the local coordinates of the i-th corner. Since the term in brackets

includes each corner twice (e.g., x1(1) = x2(−1) = X2), the last summation simply

subtracts off one full set of corner contributions.

The computational aspects of implementing the use of the tangential derivatives are

not trivial. That is due to the fact that when multiple elements share an edge one must

decide which one is moving in ‘the’ positive direction for that edge. One must establish

some heuristic rule on how to handle the sign conflicts that can develop among different

elements, or faces, on a common edge. The above suggested right hand rule means that

edges share degrees of freedom, but view them as having opposite signs. These sign

conflicts must be accounted for during the element assembly process, or by invoking a

different rule when assigning equation numbers so that shared dof are always viewed as

having the same sign when viewed from any face or element on that edge. One could, for

example, take the tangential derivative to be acting from the end with the lowest node

number toward the end with the higher node number. One must plan for these difficulties

252 Finite Element Analysis with Error Estimators

before developing a hierarchical program. However, the returns on such an investment of

effort is clearly worth it many times over.

9.6 Differential geometry *

When the physical space is a higher dimension than the parametric space defining

the geometry then the geometric mapping is no longer one-to-one and it is necessary to

utilize the subject of differential geometry. This is covered in texts on vector analysis or

calculus. It is also an introductory topic in most books on the mechanics of thin shell

structures. Here we cover most of the basic topics except for the detailed calculation of

surface curvatures. Every surface in a three-dimensional Cartesian coordinate system

(x, y, z) may also be expressed by a pair of independent parametric coordinates (r, s) that

lie on the surface. In our geometric parametric form, we have defined the x-coordinate as

(9.40)x(r, s) = G(r, s) xe.

The y- and z-coordinates are defined similarly. The components of the position vector to

a point on the surface

(9.41)
→
R(r, s) = x(r, s) î + y(r, s) ĵ + z(r, s) k̂,

where î, ĵ, k̂ are the constant unit base vectors, could be written in array form as

(9.42)RT = [x y z] = G(r, s) [xe ye ze].

The local parameters (r, s) constitute a system of curvilinear coordinates for points on the

physical surface. Equation 9.41 is called the parametric equation of a surface. If we

eliminate the parameters (r, s) from Eq. 9.41, we obtain the familiar implicit form of the

equation of a surface, f (x, y, z) = 0. Likewise, any relation between r and s, say

g(r, s) = 0, represents a curve on the physical surface. In particular, if only one

parameter varies while the other is constant, then the curve on the surface is called a

parametric curve. Thus, the surface can be completely defined by a doubly infinite set of

parametric curves, as shown in Fig. 9.11. We will often need the differential lengths,

differential areas, tangent vectors, etc. We begin with differential changes in position on

the surface. Since
→
R =

→
R(r, s), we have

(9.43)d
→
R =

∂
→
R

∂r
dr +

∂
→
R

∂s
ds

where ∂
→
R / ∂r and ∂

→
R / ∂s are the tangent vectors along the parametric curves. The

physical distance, dl, associated with such a change in position on the surface is found

from
(9.44)(dl)2 = dx

2 + dy
2 + dz

2 = d
→
R . d

→
R.

This gives three contributions:

(dl)2 =

∂
→
R

∂r

. ∂
→
R

∂r

dr
2 + 2

∂
→
R

∂r

. ∂
→
R

∂s

dr ds +

∂
→
R

∂s

. ∂
→
R

∂s

ds
2.

In the common notation of differential geometry this is called the first fundamental form

of a surface, and is usually written as

Chapter 9, General interpolation 253

R,
s

R,
r

N
s

r

R

R + dR

p

q

p

q

dL
dS

x

y

z

Figure 9.11 Parametric surface coordinates

(9.45)(dl)2 = E dr
2 + 2F dr ds + G ds

2

where

(9.46)E =
∂

→
R

∂r

. ∂
→
R

∂r
, F =

∂
→
R

∂r

. ∂
→
R

∂s
, G =

∂
→
R

∂s

. ∂
→
R

∂s

are called the first fundamental magnitudes (or metric tensor) of the surface. For future

reference we will use this notation to note that the magnitudes of the surface tangent

vectors are

|
∂

→
R

∂r
| = √ E, |

∂
→
R

∂s
| = √ G.

Of course, these magnitudes can be expressed in terms of the parametric derivatives

of the surface coordinates, (x, y, z). For example, from Eq. 9.46,

(9.47)F =
∂x

∂r

∂x

∂s
+

∂y

∂r

∂y

∂s
+

∂z

∂r

∂z

∂s

can be evaluated for an isoparametric surface by utilizing Eq. 9.42. Define a parametric

surface gradient array given by

254 Finite Element Analysis with Error Estimators

(9.48)g =

∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

∂z

∂r

∂z

∂s

.

The rows contain the components of the tangent vectors along the parametric r and s

curves, respectively. In the notation of Eq. 9.26, this becomes

(9.49)g(r, s) = [∂∂l R] = DL_G Re =

∂∂l G(r, s)

xe ye ze

.

In other words, the surface gradient array at any point is the product of the parametric

function derivatives evaluated at that point and the array of nodal data for the element of

interest. The metric array, m, is the product of the surface gradient and its transpose

(9.50)m ≡ g gT =

(x
2
,rr

+ y
2
,rr

+ z
2
,rr

)

(x,rr x, ss + y,rr y, ss + z,rr z, ss)

(x,rr x, ss + y,rr y, ss + z,rr z, ss)

(x
2
, ss

+ y
2
, ss

+ z
2
, ss

)

where the subscripts denote partial derivatives with respect to the parametric coordinates.

Comparing this relation with Eq. 9.46 we note that

(9.51)m =

E

F

F

G

contains the fundamental magnitudes of the surface. This surface metric has a

determinant that is always positive. It is denoted in differential geometry as

(9.52)|m| ≡ H
2 = EG − F

2 > 0.

We can degenerate the differential length measure in Eq. 9.44 to the common special

case where we are moving along a parametric curve, that is, dr = 0 or ds = 0. In the first

case of r = constant, we hav e (dl)2 = G ds
2 where dl is a physical differential length on

the surface and ds is a differential change in the parametric surface. Then dl = √ G ds

and likewise, for the parametric curve s = constant, dl = √ E dr. The quantities √ G and

√ E are known as the Lame parameters. They convert differential changes in the

parametric coordinates to differential lengths on the surface when moving on a parametric

curve. From Fig. 9.11 we note that the vector tangent to the parametric curves r and s are

∂
→
R / ∂r and ∂

→
R / ∂s, respectively. While the isoparametric coordinates may be

orthogonal, they generally will be non-orthogonal when displayed as parametric curves

on the physical surface. The angle θ between the parametric curves on the surface can be

found by using these tangent vectors and the definition of the dot product. Thus,

F ≡ ∂
→
R / ∂r . ∂

→
R / ∂s = √ E √ G Cos θ and the angle at any point comes from

(9.53)Cos θ =
F

√ E √ G
.

Therefore, we see that the parametric curves form an orthogonal curvilinear coordinate

system on the physical surface only when F = 0. Only in that case does Eq. 9.44 reduce

to the orthogonal form (dl)2 = E dr
2 + G ds

2. The calculations of the most general

relations between local parametric derivatives and global derivatives are shown in

Chapter 9, General interpolation 255

Fig. 9.11. Later we will utilize the function PARM_GEOM_METRIC when computing

fluxes or pressures on curved surfaces or edges.

Denote the parametric curve tangent vectors as
→
t r = ∂

→
R / ∂r and

→
t s = ∂

→
R / ∂s. We

have seen that the differential lengths in these two directions on the surface are √ E dr and

√ G ds. In a vector form, those lengths are
→
t r dr and

→
t s ds, and they are separated by the

angle θ . The corresponding differential surface area of the surface parallelogram is

FUNCTION PARM_GEOM_METRIC (DL_G, GEOMETRY) RESULT (FFM_ROOT) ! 1
! * ! 2
! FUNDAMENTAL MAGNITUDE FROM PARAMETRIC TO GEOMETRIC SPACE ! 3
! * ! 4
USE Elem_Type_Data ! for LT_GEOM, LT_PARM ! 5
USE System_Constants ! for DP, N_SPACE ! 6
IMPLICIT NONE ! 7
REAL(DP), INTENT(IN) :: DL_G (LT_PARM, LT_GEOM) ! 8
REAL(DP), INTENT(IN) :: GEOMETRY (LT_GEOM, N_SPACE) ! 9
REAL(DP) :: FFM, FFM_ROOT ! first fundamental form data !10

!11
! Automatic arrays !12
REAL(DP) :: METRIC (LT_PARM, LT_PARM) !13
REAL(DP) :: P_GRAD (LT_PARM, N_SPACE) ! Tangent vectors !14

!15
! GEOMETRY = COORDINATES OF THE ELEMENT’S GEOMETRIC NODES !16
! DL_G = LOCAL DERIVATIVES OF THE GEOMETRIC SHAPE FUNCTIONS !17
! FFM = DET(A), D_PHYSICAL = FFM * D_PARAMETRIC !18
! LT_GEOM = NUMBER OF NODES DEFINING THE GEOMETRY !19
! LT_PARM = DIMENSION OF PARAMETRIC SPACE FOR ELEMENT TYPE !20
! METRIC = 1-ST FUNDAMENTAL MAGNITUDE (METRIC MATRIX) !21
! P_GRAD = PARAMETRIC DERIVATIVES OF PHYSICAL SPACE !22

!23
! ESTABLISH PARAMETRIC GRADIENTS !24

P_GRAD = MATMUL (DL_G, GEOMETRY) ! Tangent vectors !25
!26

! FORM METRIC MATRIX !27
METRIC = MATMUL (P_GRAD, TRANSPOSE (P_GRAD)) !28

!29
! COMPUTE DETERMINANT OF METRIC MATRIX !30

SELECT CASE (LT_PARM) ! size of parametric space !31
CASE (1) ; FFM = METRIC (1, 1) !32
CASE (2) ; FFM = METRIC (1, 1) * METRIC (2, 2) & !33

- METRIC (1, 2) * METRIC (2, 1) !34
CASE (3) ; FFM = METRIC(1,1)*(METRIC(2,2)*METRIC(3,3) & !35

- METRIC(3,2)*METRIC(2,3)) & !36
+ METRIC(1,2)*(-METRIC(2,1)*METRIC(3,3) & !37

+ METRIC(3,1)*METRIC(2,3)) & !38
+ METRIC(1,3)*(METRIC(2,1)*METRIC(3,2) & !39

- METRIC(3,1)*METRIC(2,2)) !40
CASE DEFAULT ; STOP ’INVALID LT_PARM, P_GRAD_METRIC’ !41

END SELECT ! LT_PARM !42
FFM_ROOT = SQRT (FFM) ! CONVERT TO METRIC MEASURE !43

END FUNCTION PARM_GEOM_METRIC !44

Figure 9.12 Computing the general metric tensor

256 Finite Element Analysis with Error Estimators

dS = (√ E dr) (√ G ds Sin θ) = √ E √ G Sin θ dr ds.

By substituting the relation between Cos θ and the surface metric, this simplifies to

dS
2 = EG Sin 2 θ dr

2
ds

2 = EG (1 − Cos 2 θ) dr
2

ds
2

dS
2 = (EG − F

2) dr
2

ds
2
,

or simply

(9.54)dS = √ H dr ds.

We also note that this calculation can be expressed as a vector cross product of the

tangent vectors:

dS
→
N = →

t r × →
t s dr ds

where
→
N is a vector normal to the surface. We also note that the normal vector has a

magnitude of

|
→
N | = |

→
t r × →

t s | = H .

Sometimes it is useful to note that the components of
→
N are

→
N = (y,r z,s − y,s z,r) î + (x,r z,s − x,s z,r) ĵ + (x,r y,s − x,s y,r) k̂.

We often want the unit vector,
→
n, normal to the surface. It is

→
n =

→
N

H
=

→
t r × →

t s

|
→
t r × →

t s |
.

9.7 Mass properties *

Mass properties and geometric properties are often needed in a design process.

These computations provide a useful check on the model, and may also lead to reducing

more complicated calculations by identifying geometrically equivalent elements. To

illustrate the concept consider the following area, centroid, and inertia terms for a two-

dimensional general curvilinear isoparametric element:

(9.55)A = ∫A

12
da, Ax = ∫A

x1 da, Ay = ∫A

y1 da

I xx = ∫A

y
2

da, − I xy = ∫A

xy da, I yy = ∫A

x
2

da, Izz = I xx + Iyy.

From the parallel axis theorem we know that

I xx = I xx − y
2

A, I xy = I xy + x y A, I yy = I yy − x
2

A, Izz = I xx + I yy.

The corresponding two general inertia tensor definitions are

(9.56)Iij = ∫V

(xk xk δ ij − xi x j) dV , Iij = Iij − (xk xk δ ij − xi x j) V

where xi are the components of the position vector of a point in volume, V and δ ij is the

Kronecker delta. Typically, elements that have the same area, and inertia tensor, relative

to the element centroid will have the same square matrix integral if the properties do not

depend on physical coordinates (x, y).

We want to illustrate these calculations in a finite element context for a two-

dimensional geometry. For the parametric form in local coordinates (r, s)

Chapter 9, General interpolation 257

x (r, s) = G (r, s) xe
, y (r, s) = G (r, s) ye

1 = G (r, s) 1 =
i

Σ Hi (r, s)

where 1 is a vector of unity terms. Then the above measures become

A
e = 1T ∫

e

A

GT G d A 1 = 1T Me 1

where Me is thought of as the element measure (or mass) matrix

(9.57)A
e

x
e = 1T Me xe

, A
e

y
e = 1T Me ye

I
e

xx
= xe

T

Me xe
, − I

e

xy
= xe

T

Me ye
, I

e

yy
= ye

T

Me ye.

The measure matrix is defined as:

(9.58)Me = ∫
e

A

GT G da = ∫ GT G |Je | d

where denotes any non-dimensional parent domain (triangular or square) and |Je | is the

Jacobian of the transformation from to A
e. For any straight sided triangular element it

has a constant value of |Je | = 2A
e. Likewise, for a straight rectangular element or

parallelogram element |Je | is again constant. For a one-to-one geometric mapping, we

always have the relation that

(9.59)Ae = ∫Ae

d a = ∫ |Je | d

so that when Je is constant A
e = |Je | m, and where here m is the measure (volume) of

the non-dimensional parent domain. For example, for the unit coordinate triangle we

have m = 1

2
so that we get A

e = (2A
e) (1

2
), as expected. The calculation of the mass

properties of each element and the total analysis domain is a data checking feature.

9.8 Interpolation error *

Here we will briefly outline some elementary error concepts in two-dimensions.

From the Taylor expansion of a function, u, at a point (x, y) in two-dimensions:

(9.60)

u(x + h, y + k) = u(x, y) +

h
∂u

∂x
(x, y) + k

∂u

∂y
(x, y)

+
1

2 !

h
2 ∂2

u

∂x2
+ 2hk

∂2
u

∂x ∂y
+ k

2 ∂2
u

∂y2

+ ...

The objective here is to show that if the third term is neglected, then the relations for a

linear interpolation triangle are obtained. That is, we will find that the third term is

proportional to the error between the true solution and the interpolated solutions.

Consider a linear triangle whose maximum length in the x − and y −directions are h and

k, respectively. Let the three node numbers, given in CCW order, be i, j, and m. Employ

Eq. 9.60 to estimate the nodal values u j and um in terms of ui:

258 Finite Element Analysis with Error Estimators

u j = ui +

x j

∂u

∂x
(xi, yi) + ym

∂u

∂y
(xi, yi)

.

The value of ∂u (xi, yi) / ∂x can be found by multiplying the first relation by ym, and

subtracting the product of yi and the second relation. The result is

∂u

∂x
(xi, yi) =

1

2A

ui (y j − ym) + um (yi − y j) + u j (ym − yi)

where A is the area of the triangle. In a similar manner, if we compute this derivative at

the other two nodes, we obtain

∂u

∂x
(x j , y j) =

∂u

∂x
(xm, ym) =

∂u

∂x
(xi, yi).

That is, ∂u / ∂x is a constant in the triangle. Likewise, ∂u / ∂y is a constant. We will see

later that a linear interpolation triangle has constant derivatives. Thus, these common

elements will represent the first two terms in Eq. 9.60. Thus, the element error is

proportional to the third term:

(9.61)E ∝

h
2 ∂2

u

∂x2
+ 2hk

∂2
u

∂x ∂y
+ k

2 ∂2
u

∂y2

where u is the exact solution, and h and k are the element size in x and y.

Once again, we would find that these second derivatives are related to the strain and

stress gradients. If the strains (e.g., ε x = ∂u / ∂x) are constant, then the error is small or

zero. Before leaving these error comments, note that Eq. 9.61 could also be expressed in

terms of the ratio (k /h). This is a measure of the relative shape of the element, and it is

often called the aspect ratio. For an equilateral element, this ratio would be near unity.

However, for a long narrow triangle, it could be quite large. Generally, it is best to keep

the aspect ratio near unity (say < 5).

9.9 Element distortion*

The effects of distorting various types of elements can be serious, and most codes do

not adequately validate data in this respect. As an example, consider a quadratic

isoparametric line element. As shown in Fig. 9.13, let the three nodes be located in

physical (x) space at points 0, ah, and h, where h is the element length, and 0 ≤ a ≤ 1 is

a location constant. The element is defined in a local unit space where 0 ≤ s ≤ 1. The

relation between x and s is easily shown to be

x(s) = h(4a − 1) s + h(2 − 4a) s
2

and the two coordinates have derivatives related by

∂x / ∂s = h(4a − 1) + 4h(1 − 2a) s.

The Jacobian of the transformation, J , is the inverse relation; that is, J = ∂s / ∂x. The

integrals required to evaluate the element matrices utilize this Jacobian. The

mathematical principles require that J be positive definite. Distortion of the elements can

cause J to go to zero or become negative. This possibility is easily seen in the present

1- D example. If one locates the interior (s = 1/2) node at the standard midpoint position,

Chapter 9, General interpolation 259

s

r

a

b

r

y

x

x

y

x

L

L

H

1

a) Constant positive Jacobian maps

a

b

r
1

a

b

y

x

y

x

x
L

a L a < 1/4; J < 0 ; a > 3/4

a > 1/4; J > 0 ; a < 3/4

b) Variable Jacobian maps

Figure 9.13 Constant and variable Jacobian elements

then a = 1/2 so that ∂x / ∂s = h and J is constant throughout the element. Such an

element is generally well formulated. However, if the interior node is distorted to any

other position, the Jacobian will not be constant and the accuracy of the element may

suffer. Generally, there will be points where ∂x / ∂s goes to zero, so that the stiffness

becomes singular due to division by zero. For slightly distorted elements, say

0. 4 < a < 0. 6, the singular points lie outside the element domain. As the distortion

increases, the singularities move to the element boundary, e.g., a = 1/4 or a = 3/4.

Eventually, the distortions cause singularities of J inside the element. Such situations can

cause poor stiffness matrices and very bad stress estimates, unless the true solution has

260 Finite Element Analysis with Error Estimators

the same singularity, as they do in linear fracture mechanics. In that special case these

distorted elements are known as the quarter point element.

The effects of distortions of two- or three-dimensional elements are similar. For

example, the edge of a quadratic element may have the non-corner node displaced in a

similar way, or it may be moved normal to the line between the corners. Similar analytic

singularities can be developed for such elements. However, the presence of singularities

due to element distortions can easily be checked by numerical experiments. Several such

analytic and numerical studies have led to useful criteria for checking the element

geometry for undesirable effects. For example, envision a typical two- or three-

dimensional quadratic element with a curved edge. Let L be the cord length of that edge,

D the normal displacement of the mid-side node on that edge, and α the angle between

the corner tangent and the cord line. Suggested ranges for linear elliptical problems are:

warning range: 1 / 7 < D / L < 1 / 3, α ≤ 30°
error range: 1 / 3 < D / L, α ≥ 53°.

These values are obtained when only one edge is considered. If more than one edge of a

single element causes a warning state, then the warnings should be considered more

serious. Other parameters influence the seriousness of element distortion. Let R be a

measure of the aspect ratio, that is, R is the ratio of the longest side to the shortest side.

Let the minimum and maximum angles between corner cord lines be denoted by θ and γ ,

respectively. Define H , the lack of flatness, to be the perpendicular distance of a fourth

node from the plane of the first three divided by the maximum side length. Then the

following guidelines in Table 9.4 should be considered when validating geometric data

for membrane or solid elements.

9.10 Space-time interpolation *

In Section 3.7 we addressed some of the aspects of space-time interpolation

methods. In solving time dependent problems in three-dimensional space the main

difficult is in visualization of the mesh and results. This is illustrated in Fig. 9.14 where

Table 9.4 Geometric criteria for two- and three-dimensional elements

Shape Warning state Error state

Triangle 5 < R < 15 R > 15

15° < θ < 30° θ ≤ 15°
150° < γ < 165° γ ≥ 165°

Quadrilateral 5 < R < 15 R ≥ 15

25° < θ < 45° θ ≤ 25°
135° < γ < 155° γ ≥ 155°
10−5 < H < 10−2

H ≥ 10−2

Solids : The above limits on R, θ and γ are checked on each face.

Chapter 9, General interpolation 261

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

1

2

3

4

r

s

t

Space simplex

Space-time simplex

Space-linear-time slab

(0, 0, 0)

1

3

4

s

t

(0, 0, 0, 0)

(0, 1, 0, 0)

(1, 0, 0, 0)

(0, 0, 1, 0)

1
2

3

4

r

s

t

(0, 1, 0, 0)

(1, 0, 0, 1)

(0, 0, 1, 0)

1

2

3

4

r

s

t

(0, 0, 0, 1)
5

u

(0, 0, 1, 1)

(0, 1, 0, 1)
7

5
6

8

u

H 1 = 1 - r - s - t - u

H
2
 = r

H
3
 = s

H
4
 = t

H
5
 = u

Figure 9.14 Space-time forms for the solid simplex element

262 Finite Element Analysis with Error Estimators

the parametric solid tetrahedral element has been expanded into 4-D by adding a fourth

parametric coordinate of u. If one wants a fully unstructured formulation in space-time

then the element becomes a 5 noded simplex. However, if we want to view it as being

structured so as to simply translate through a time slab we double its number of nodes

from 4 in 3-D to 8 in a 4-D time slab. Of course, we would only have to generate the 3-D

mesh and define the connectivity of the first four nodes.

One important advantage of space-time interpolation is that it automatically allows

for elements that must significantly change shape or spatial position with time (that is,

moving meshes). There are many published results where 2-D and 3-D space elements

have been extended to space-time formulations. See for example the applications by Aziz

and Monk [1], Behr [4], Bonnerot and Jamet [5], Dettmer and Peric [10], Gardner [12],

Hansbo [13], Idesman [16], and Tezduyar [20-22] to cite a few.

One thing different about the space-time elements is in the calculation of their

Jacobian matrix, which is now one dimension larger than in the pure space formulation.

That is, it is a square matrix of size (ns + 1). Unlike Eq. 9.24 where we would allow the

last column to compute how the physical space coordinate z varies with respect to all the

element parametric coordinates, we know time will not depend on a spatial parametric

coordinate. It will only depend on the non-dimensional time parametric coordinate

(denoted by u in Fig. 9.14) and all but the last row of the right-most column of the

Jacobian must be zero. Here, let τ denote time corresponding to the fourth parametric

coordinate u. The generalization of the 3-D spatial Jacobian to 4-D space-time is

(9.62)

∂
∂r

∂
∂s

∂
∂t

∂
∂u

=

∂x

∂r

∂x

∂s

∂x

∂t

∂x

∂u

∂y

∂r

∂y

∂s

∂y

∂t

∂y

∂u

∂z

∂r

∂z

∂s

∂z

∂t

∂z

∂u

0

0

0

∂τ

∂u

∂
∂x

∂
∂y

∂
∂z

∂
∂τ

If the spatial nodes of the domain do not change with respect to time then the non-

diagonal terms on the last row of the space-time Jacobian will also be zero. Otherwise it

automatically includes a moving domain formulation. For linear interpolation in time the

term ∂τ / ∂u in the space-time Jacobian will be ∆t/1 for the unit coordinates of Fig. 9.14,

or ∆t/2 of the natural parametric coordinate from −1 to +1 is used for u.

9.11 Exercises

1. Use the subroutines in Fig. 3.7 to form similar functions for a C
1 rectangular

element by taking a tensor product of the one-dimensional Hermite interpolation

relations. This will be a 16 degree of freedom element since each node will have

u, ∂u / ∂x, ∂u / ∂y, and ∂2
u / ∂x∂y as nodal unknowns. This element will not be C

1 if

mapped to a quadrilateral shape. (Why not?)

Chapter 9, General interpolation 263

2. Verify that for the H8 brick element in Table 9.2 that limiting its local coordinates to

any one face, say c = 1, results in the interpolation functions not on that face

becoming zero, and that the four non-zero interpolation functions on that face

degenerate to those given for the Q4 quadrilateral in Table 9.1.

3. Create the local parametric derivatives (∂ / ∂a, etc.) of the interpolation functions

for the: a) Q4 quadrilateral element of Table 9.1, b) the H8 hexahedra element of

Table 9.2, c) the T6 triangular element of Eq. 9.17.

4. For a one-to-one geometric map the Jacobian matrix (of Eq. 9.26) is

Je = [∂∂L H] [xe ye ze]. For a 2-D quadrilateral (Q4) verify that in natural

coordinates this simplifies to

Je(a, b) =

H1, aa

H1, bb

H2, aa

H2, bb

H3, aa

H3, bb

H4, aa

H4, bb

x1

x2

x3

x4

y1

y2

y3

y4

e

so that the Jacobian usually varies over the element with

[∂∂L H] =
1

4

(b − 1)

(a − 1)

(1 − b)

(−1 − a)

(1 + b)

(1 + a)

(−1 − b)

(1 − a)

.

5. Verify that if the above Q4 element maps onto a rectangle, with its sides parallel to

the global axes, of length L x and height L y then the Jacobian is constant at all points

in the element.

6. If a Q4 element is mapped to a trapezoid having the four nodal coordinates of

xe
T

= [0 2 2 0], and ye
T

= [0 0 2 1] verify that its Jacobian matrix is

Je(a, b) =
1

4

4

0

(1 + b)

(3 + a)

.

7. Sketch how you think an 8 noded parametric cube in 3-D parametric space would

appear when extended to a time slab (with 16 nodes).

9.12 Bibliography

[1] Aziz, A.K. and Monk, P., "Continuous Finite Elements in Space and Time for the

Heat Equation," Math. Comp., 52, pp. 255−274 (1989).

[2] Babuska, I., Griebel, M., and Pitkaranta, J., "The Problem of Selecting Shape

Functions for a p-Type Finite Element," Int. J. Num. Meth. Eng., 28,

pp. 1891−1908 (1989).

[3] Becker, E.B., Carey, G.F., and Oden, J.T., Finite Elements − An Introduction,

Englewood Cliffs: Prentice Hall (1981).

[4] Behr, M., "Stablized Space-Time Finite Element Formulations for Free-Surface

Flows," Comm. for Num. Meth. in Engr., 11, pp. 813−819 (2001).

264 Finite Element Analysis with Error Estimators

[5] Bonnerot, R. and Jamet, P., "Numerical Computation of the Free Boundary for the

Tw o-Dimensional Stefan Problem by Space-Time Finite Elements," J.

Computational Physics, 25, pp. 163−181 (1977).

[6] Bruch, J.C. Jr. and Zyvoloski, G., "Transient Two - Dimensional Heat Conduction

Problems Solved by the Finite Element Method," Int. J. Num. Meth. Eng., 8,

pp. 481−494 (1974).

[7] Ciarlet, P.G., The Finite Element Method for Elliptical Problems, Philadelphia, PA:

SIAM (2002).

[8] Connor, J.C. and Brebbia, C.A., Finite Element Techniques for Fluid Flow, London:

Butterworth (1976).

[9] Cook, R.D., Malkus, D.S., Plesha, N.E., and Witt, R.J., Concepts and Applications

of Finite Element Analysis, New York: John Wiley (2002).

[10] Dettmer, W. and Peric, D., "An Analysis of the Time Integration Algorithms for the

Finite Element Solutions of Incompressible Navier-Stokes Equations Based on a

Stabilised Formulation," Comp. Meth. Appl. Mech. Eng., 192, pp. 1177−

1226 (2003).

[11] El-Zafrany, A. and Cookson, R.A., "Derivation of Lagrangian and Hermite Shape

Functions for Quadrilateral Elements," Int. J. Num. Meth. Eng., 23,

pp. 1939−1958 (1986).

[12] Gardner, G.A., Gardner, L.R.T., and Cunningham, J., "Simulations of a Fox-Rabies

Epidemic on an Island Using Space-Time Finite Elements," Z. Naturforsch, 45c,

pp. 1230−1240 (1989).

[13] Hansbo, P., "A Crank-Nicolson Type Space-Time Finite Element Method for

Computing on Moving Meshes," J. Comp. Physics, 159, pp. 274−289 (2000).

[14] Hu, K-K., Swartz, S.E., and Kirmser, P.G., "One Formula Generates N−th Order

Shape Functions," J. Eng. Mech., 110(4), pp. 640−647 (1984).

[15] Hughes, T.J.R., The Finite Element Method, Englewood Cliffs: Prentice Hall (1987).

[16] Idesman, A., Niekamp, R., and Stein, E., "Finite Elements in Space and Time for

Generalized Viscoelastic Maxwell Model," Comp. Mech., (2001).

[17] Segerlind, L.J., Applied Finite Element Analysis, New York: John Wiley (1984).

[18] Silvester, P.P. and Ferrari, R.L., Finite Elements for Electrical Engineers,

Cambridge: Cambridge University Press (1983).

[19] Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).

[20] Tezduyar, T.E. and Ganjoo, D.K., "Petrov-Galerkin Formulations with Weighting

Functions Dependent Upon Spatial and Temporal Discretization," Comp. Meth.

Appl. Mech. Eng., 59, pp. 47−71 (1986).

[21] Tezduyar, T.E., "Stabilized Finite Element Formulations for Incompressible Flow

Computations," Advances in Applied Mechanics, 28, pp. 1−44 (1991).

[22] Tezduyar, T.E., "Finite Element Methods for Flow Problems with Moving

Boundaries and Interfaces," Archives of Computational Methods in Engineering, 8,

pp. 83−130 (2001).

[23] Zienkiewicz, O.C. and Morgan, K., Finite Elements and Approximation, Chichester:

John Wiley (1983).

Chapter 10

Integration methods

10.1 Introduction

The finite element analysis techniques are always based on an integral formulation.

At the very minimum it will always be necessary to integrate at least an element square

matrix. This means that every coefficient function in the matrix must be integrated. In

the following sections various methods will be considered for evaluating the typical

integrals that arise. Most simple finite element matrices for two-dimensional problems

are based on the use of linear triangular or quadrilateral elements. Since a quadrilateral

can be divided into two or more triangles, only exact integrals over arbitrary triangles will

be considered here. Integrals over triangular elements commonly involve integrands of

the form

(10.1)I =
A

∫ x
m

y
n

dx dy

where A is the area of a typical triangle. When 0 ≤ (m + n) ≤ 2, the above integral can

easily be expressed in closed form in terms of the spatial coordinates of the three corner

points. For a right-handed coordinate system, the corners must be numbered in counter-

clockwise order. In this case, the above integrals are given in Table 10.1. These integrals

should be recognized as the area, and first and second moments of the area. If one had a

volume of revolution that had a triangular cross-section in the ρ − z plane, then one has

I =
V

∫ ρ f (ρ , z) d ρ dz dφ = 2π

A

∫ ρ f (ρ , z) d ρ dz

so that similar expressions could be used to evaluate the volume integrals.

10.2 Unit coordinate integration

The utilization of global coordinate interpolation is becoming increasingly rare.

However, as we hav e seen, the use of non-dimensional local coordinates is common.

Thus we often see local coordinate polynomials integrated over the physical domain of an

element. Sec. 4.3 presented some typical unit coordinate integrals in 1-D, written in

exact closed form. These concepts can be extended to two- and three-dimensional

266 Finite Element Analysis with Error Estimators

Table 10.1 Exact integrals for a triangle

m n I =
A

∫ x
m

y
n

dx dy

0 0 ∫ dA = A = [x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)]/2

0 1 ∫ y dA = Ay = A(y1 + y2 + y3) / 3

1 0 ∫ x dA = Ax = A(x1 + x2 + x3) / 3

0 2 ∫ y
2

dA = A(y
2
1 + y

2
2 + y

2
3 + 9y

2) / 12

1 1 ∫ xy dA = A(x1 y1 + x2 y2 + x3 y3 + 9x y) / 12

2 0 ∫ x
2

dA = A(x
2
1 + x

2
2 + x

2
3 + 9x

2) / 12

elements. For example, consider an integration over a triangular element. It is known

that for an element with a constant Jacobian

(10.2)I =
A

∫ r
m

s
n

da =
2A Γ(m + 1) Γ(n + 1)

Γ(3 + m + n)

where Γ denote the Gamma function. Restricting consideration to positive integer values

of the exponents, m and n, yields

(10.3)I = 2 A
e

m! n!

(2 + m + n) !
=

A
e

Kmn

,

where ! denotes the factorial and Kmn is an integer constant given in Table 10.2 for

common values of m and n. Similarly for the tetrahedral element

(10.4)I
e =

V e

∫ r
m

s
n

t
p

dv = 6V
e

m! n! p!

(3 + m + n + p) !
.

Thus, one notes that common integrals of this type can be evaluated by simply

multiplying the element characteristic (i.e., global length, area, or volume) by known

constants which could be stored in a data statement. To illustrate the application of these

equations in evaluating element matrices, we consider the following example for the three

node triangle in unit coordinates:

I =
Ae

∫ HT
da =

Ae

∫

(1 − r − s)

r

s

da =

A
e − A

e / 3 − A
e / 3

A
e / 3

A
e / 3

=
A

e

3

1

1

1

.

Chapter 10, Integration methods 267

IV = 2π

Ae

∫ HT ρ da = 2π

 Ae

∫ HT H da

ρe =
2π Ae

12

2

1

1

1

2

1

1

1

2

ρe.

10.3 Simplex coordinate integration

A simplex region is one where the minimum number of vertices is one more than

the dimension of the space. These were illustrated in Fig. 3.2. Some analysts like to

define a set of simplex coordinates or barycentric coordinates. If there are N vertices

Table 10.2 Denominator, K, for unit triangle I =
A

∫ r
m

s
n

da = A / KI =
A

∫ r
m

s
n

da = A / K

M N : 0 1 2 3 4 5 6 7 8

0 1 3 6 10 15 21 28 36 45

1 3 12 30 60 105 168 252 360 495

2 6 30 90 210 420 756 1260 1980 2970

3 10 60 210 560 1260 2520 4620 7920 12870

4 15 105 420 1260 3150 6930 13860 25740 45045

5 21 168 756 2520 6930 16632 36036 72072 135135

6 28 252 1260 4620 13860 36036 84084 180180 360360

7 36 360 1980 7920 25740 72072 180180 411840 875160

8 45 495 2970 12870 45045 135135 360360 875160 1969110

1

2

3

A
3

A
1

A
2

y

x

L
3

L
1

L
2

A = A
1
 + A

2
 + A

3

L
k
 = A

k
 / A

Figure 10.1 Area coordinates

268 Finite Element Analysis with Error Estimators

then N non-dimensional coordinates, Li, 1 ≤ i ≤ N , are defined and constrained so that

1 =
N

i=1
Σ Li

at any point in space. Thus, they are not independent. However, they can be used to

simplify certain recursion relations. In physical spaces these coordinates are sometimes

called line coordinates, area coordinates, and volume coordinates. At a giv en point in

the region we can define the simplex coordinate for node j, L j , in a generalized manner.

It is the ratio of the generalized volume from the point to all other vertices (other than j)

and the total generalized volume of the simplex. This is illustrated in Fig. 10.1. If the

simplex has a constant Jacobian (e.g., straight sides and flat faces), then the exact form of

the integrals of the simplex coordinates are simple. They are

(10.5)

L

∫ L
a

1 L
b

2 dL =
a!b!

(a + b + 1)!
(L)

A

∫ L
a

1 L
b

2 L
c

3 da =
a!b!c!

(a + b + c + 2)!
(2A)

V

∫ L
a

1 L
b

2 L
c

3 L
d

4 dv =
a!b!c!d!

(a + b + c + d + 3)!
(6V) .

The independent coordinates are those we have generally referred to as the unit

coordinates of an element. Since a lot of references make use of barycentric coordinates

it is useful to learn how to manipulate them correctly. The barycentric coordinates, say

L j , essentially measure the percent of total volume contained in the region from the face

(lower dimensional simplex) opposite to node j to any point in the simplex. Therefore,

L j ≡ 0 when the point lies on the opposite face and L j ≡ 1 when the point is located at

node j. Clearly, the sum of all these volumes is the total volume of the simplex.

We hav e referred to the independent coordinates in the set as the unit coordinates.

For simplex elements, the use of barycentric coordinates simplifies the algebra needed to

define the interpolation functions; howev er, it complicates the calculation of their

derivatives. Barycentric coordinates are often used to tabulate numerical integration rules

for simplex domains.

For example, consider the three-dimensional case where L1 = r, L2 = s, L3 = t, and

L1 + L2 + L3 + L4 = 1. The interpolation functions for the linear tetrahedral (P4) are

simply G j = L j . The expressions for the Lagrangian quadratic tetrahedral (P10)

vertices are
G1 = L1 (2 L1 − 1)

G3 = L3 (2 L3 − 1)

G2 = L2 (2 L2 − 1)

G4 = L4 (2 L4 − 1)

and the six mid-edge values are

G5 = 4 L1 L2

G7 = 4 L1 L4

G9 = 4 L3 L4

G6 = 4 L1 L3

G8 = 4 L2 L3

G10 = 4 L2 L4 .

All the tetrahedra have the condition that

Chapter 10, Integration methods 269

L4 = 1 − L1 − L2 − L3 = 1 − r − s − t

so that we can write the unit coordinate partial derivatives as

∂L j

∂r
= 1, 0, 0, − 1 ,

∂L j

∂s
= 0, 1, 0, − 1 ,

∂L j

∂t
= 0, 0, 1, − 1

for j = 1, 2, 3, 4, respectively. The Jacobian calculation requires the derivatives of the

geometric interpolation functions, G. Here we have

∂G

∂r
=

∂G

∂L1

∂L1

∂r
+

∂G

∂L2

∂L2

∂r
+

∂G

∂L3

∂L3

∂r
+

∂G

∂L4

∂L4

∂r

=
∂G

∂L1

−
∂G

∂L4

.

Likewise,

∂G

∂s
=

∂G

∂L2

−
∂G

∂L4

,
∂G

∂t
=

∂G

∂L3

−
∂G

∂L4

.

For a general simplex, we have

∂l G = ∂L G − I
∂G

∂L
.

To illustrate these rules for derivatives, consider the linear triangle (T3) in barycentric

coordinates (nn = 3). The geometric interpolation array is

G = L3 L1 L2
and the two independent local space derivatives are

∆ = ∂l G =

∂
∂r

∂
∂s

G =

∂
∂L1

−
∂

∂L3

∂
∂L2

−
∂

∂L3

G

∆ =

(0 − 1)

(0 − 1)

(1 − 0)

(0 − 0)

(0 − 0)

(1 − 0)

=

−1

−1

1

0

0

1

,

which is the same as the previous result in Sec. 10.2.

If one is willing to restrict the elements to having a constant Jacobian (straight edges

and flat faces), then the inverse global to barycentric mapping is simple to develop. Then

the global derivatives that we desire are easy to write

∂
∂x

=
n+1

j =1
Σ ∂

∂L j

∂L j

∂x
,

where ∂L j / ∂x is a known value, say V j . For example, in 1-D we hav e

L1

L2

=
1

Le

x2

− x1

− 1

1

e

1

x

,

and in 2-D

270 Finite Element Analysis with Error Estimators

L1

L2

L3

=
1

2 Ae

2 A23

2 A13

2 A12

(y2 − y3)

(y3 − y1)

(y1 − y2)

(x3 − x2)

(x1 − x3)

(x2 − x1)

1

x

y

where Ai j is the triangular area enclosed by the origin (0, 0) and nodes i and j.

10.4 Numerical integration

In many cases it is impossible or impractical to integrate the expression in closed

form and numerical integration must therefore be utilized. If one is using sophisticated

elements, it is almost always necessary to use numerical integration. Similarly, if the

application is complicated, e.g., the solution of a nonlinear ordinary differential equation,

then even simple one-dimensional elements can require numerical integration. Many

analysts have found that the use of numerical integration simplifies the programming of

the element matrices. This results from the fact that lengthy algebraic expressions are

avoided and thus the chance of algebraic and/or programming errors is reduced. There

are many numerical integration methods available. Only those methods commonly used

in finite element applications will be considered here.

10.4.1 Unit coordinate quadrature

Numerical quadrature in one-dimension was introduced in Sec. 5.4. There we saw

that an integral is replaced with a summation of functions evaluated at tabulated points

and then multiplied by tabulated weights. The same procedure applies to all numerical

integration rules. The main difficulty is to obtain the tabulated data. For triangular unit

coordinate regions the weights, Wi, and abscissae (ri, si) are less well known. Typical

points for rules on the unit triangle are shown in Fig. 10.2. It presents rules that yield

points that are symmetric with respect to all corners of the triangle. These low order data

are placed in subroutine SYMRUL. As before, one approximates an integral of

f (x, y) = F(r, s) over a triangle by

I = ∫ f (x, y) dx dy =
n

i=1
Σ Wi F (ri , si) |Ji |.

As a simple example of integration over a triangle, let f = y and consider the integral

over a triangle with its three vertices at (0, 0), (3, 0), and (0, 6), respectively, in (x, y)

coordinates. Then the area A = 9 and the Jacobian is a constant |J | = 18. For a three

point quadrature rule the integral is thus given by

I =
3

i=1
Σ Wi yi |Ji |.

Since our interpolation defines y(r, s) = y1 + (y2 − y1)r + (y3 − y1)s = 0 + 0 + 6s, the

transformed integrand is F(r, s) = 6s. Thus, at integration point, i, F(ri , si) = 6si.

Substituting a three-point quadrature rule and factoring out the constant Jacobian gives

I = 18 [(6(1/6)) (1/6) + (6(1/6)(1/6) + (6(2/3)) (1/6)] = 18 which is the exact solution.

Chapter 10, Integration methods 271

Table 10.3 Symmetric quadrature for the unit triangle:

1

0

∫
1−r

0

∫ f (r, s) dr ds =
n

i=1
Σ f (ri , si) Wi

1

0

∫
1−r

0

∫ f (r, s) dr ds =
n

i=1
Σ f (ri , si) Wi

n p† i ri si Wi

1 1 1 1/3 1/3 1/2

3 2 1 1/6 1/6 1/6

2 2/3 1/6 1/6

3 1/6 2/3 1/6

4 3 1 1/3 1/3 −9/32

2 3/5 1/5 25/96

3 1/5 3/5 25/96

4 1/5 1/5 25/96

7 4 1 0 0 1/40

2 1/2 0 1/15

3 1 0 1/40

4 1/2 1/2 1/15

5 0 1 1/40

6 0 1/2 1/15

7 1/3 1/3 9/40

P = Degree of Polynomial for exact integration.

See subroutine DUNAVANT _UNIT _TRIANGLE_RULE

Figure 10.2 Symmetric quadrature locations for unit triangle

Table 10.3 gives a tabulation of symmetric quadrature rules over the unit triangle.

Decimal versions are given in subroutine SYMRUL of values of nq up to 13. A similar

set of rules for extension to the three-dimensional tetrahedra in unit coordinates are given

in Table 10.4 for polynomials up to degree four [7]. Quadrature rules for high degree

polynomials on triangles have been published by Dunavant [5]. They are suitable for use

272 Finite Element Analysis with Error Estimators

Table 10.4 Quadrature for unit tetrahedra

Number Degree Unit coordinates

of of Weights

points N precision ri si ti Wi

1 1 1/4 1/4 1/4 1/6

4 2 a b b 1/24

b a b 1/24

b b a 1/24

b b b 1/24

a = (5 + 3√ 5) / 20 = 0. 5854101966249685

b = (5 − √ 5) / 20 = 0. 1381966011250105

5 3 1/4 1/4 1/4 − 4/30

1/2 1/6 1/6 9/120

1/6 1/2 1/6 9/120

1/6 1/6 1/2 9/120

1/6 1/6 1/6 9/120

11 4 1/4 1/4 1/4 − 74/5625

11/14 1/14 1/14 343/45000

1/14 11/14 1/14 343/45000

1/14 1/14 11/14 343/45000

1/14 1/14 1/14 343 / 45000

a a b 56 / 2250

a b a 56 / 2250

a b b 56 / 2250

b a a 56 / 2250

b a b 56 / 2250

b b a 56 / 2250

a = (1 + √ (5/14)) / 4 = 0. 3994035761667992

b = (1 − √ (5/14)) / 4 = 0. 1005964238332008

See subroutine KEAST_UNIT_TET_RULE

Chapter 10, Integration methods 273

with hierarchical elements. Those rules are given in Table 10.5 in area coordinates, since

that form requires the smallest table size. Most of the lines are used multiple times by

cycling through the area coordinates. The number N in the table indicates if the line is

for the centroid, three symmetric points, or six symmetric locations. These data are

expanded to their full form (up to 61 points for a polynomial of degree 17) in subroutine

DUNAVANT _UNIT _TRIANGLE_RULE. The corresponding unit triangle coordinate

data are also given in subroutine D_Q_RULE.

10.4.2 Natural coordinate quadrature

Here we assume that the coordinates are in the range of −1 to +1. In this space it is

common to employ Gaussian quadratures. The one-dimensional rules were discussed in

Sec. 5.4. For a higher number of space dimensions one obtains a multiple summation

(tensor product) for evaluating the integral. For example, a typical integration in two

dimensions

I =
1

−1

∫
1

−1

∫ f (r, s) dr ds ≈
n

j =1
Σ

n

k =1
Σ f (r j , sk) W j Wk

for n integration points in each dimension. This can be written as a single summation as

I ≈
m

i=1
Σ f (ri , si) Wi

where m = n
2, i = j + (k − 1)n, and where ri = α j , si = α k , and Wi = W jWk . Here α j

and W j denote the tabulated one-dimensional abscissae and weights given in Sec. 5.4. A

similar rule can be given for a three-dimensional region. The result of the above

summation is given in Table 10.6. The extension of the 1-D data to the quadrilateral

and hexahedra are done by subroutines GAUSS_2D and GAUSS_3D (see Fig. 10.3).

10.5 Typical source distribution integrals *

Previously we introduced the contributions of distributed source terms. For the C°
continuity line elements we had

Ce

Q
=

Le

∫ He
T

Q
e

dx .

Similar forms occur in two-dimensional problems. Then typically one has

Ce

Q
=

Ae

∫ He
T

Q
e

da .

If the typical source or forcing term, Q
e
, varies with position we usually use the

interpolation functions to define it in terms of the nodal values, Q
e
, as

(10.6)Q
e = He

T

Qe .

Thus, a common element integral for the consistent nodal sources is

(10.7)Ce

Q
=

Ωe

∫ He
T

He
d Ω Qe .

274 Finite Element Analysis with Error Estimators

The previous sections present analytic and numerical methods for evaluating these

integrals. Figure 10.4 shows the typical analytic results for the two and three node line

integrals. For linear or constant source distributions the normalized nodal resultants are

summarized in Fig. 10.5. Once one goes beyond the linear (two-node) element the

consistent results usually differ from physical intuition estimates. Thus, you must rely on

the mathematics or the summaries in the above figures. Many programs will numerically

integrate the source distributions for any element shape. If the source acts on an area

shaped like the parent element (constant Jacobian) then we can again easily evaluate the

integrals analytically. For a uniform source over an area the consistent nodal

contributions for triangles and quadrilaterals are shown in Figs. 10.6 and 10.7,

respectively. Note that the Serendipity families can actually develop negative

contributions. Triangular and Lagrangian elements do not have that behavior for uniform

sources. Of course, a general loading can be treated by numerical integration.

SUBROUTINE GAUSS_3D (M_QP, N_IP, PT, WT) ! 1
! * ! 2
! USE 1-D GAUSSIAN DATA TO GENERATE ! 3
! QUADRATURE DATA FOR A CUBE ! 4
! * ! 5
Use Precision_Module ! 6
IMPLICIT NONE ! 7
INTEGER, INTENT(IN) :: M_QP, N_IP ! 8
REAL(DP), INTENT(OUT) :: PT (3, N_IP), WT (N_IP) ! 9
REAL(DP) :: GPT (M_QP), GWT (M_QP) ! Automatic Arrays !10
INTEGER :: I, J, K, L, N_GP ! Loops !11

!12
! M_QP = NUMBER OF TABULATED 1-D POINTS !13
! N_IP = M_QP**3 = NUMBER OF 3-D POINTS !14
! GPT = TABULATED 1-D QUADRATURE POINTS !15
! GWT = TABULATED 1-D QUADRATURE WEIGHTS !16
! PT = CALCULATED COORDS IN A CUBE !17
! WT = CALCULATED WEIGHTS IN A CUBE !18

!19
N_GP = M_QP !20
CALL GAUSS_COEFF (N_GP, GPT, GWT) ! GET 1-D DATA !21

!22
! LOOP OVER GENERATED POINTS !23

K = 0 !24
DO L = 1, N_GP !25

DO I = 1, N_GP !26
DO J = 1, N_GP !27

K = K + 1 !28
WT (K) = GWT (I) * GWT (J) * GWT (L) !29
PT (1, K) = GPT (J) !30
PT (2, K) = GPT (I) !31
PT (3, K) = GPT (L) !32

END DO !33
END DO !34

END DO !35
END SUBROUTINE GAUSS_3D !36

Figure 10.3 Gaussian rules for a cube

Chapter 10, Integration methods 275

Table 10.5 Dunavant quadrature for area coordinate triangle

P N Wt L1 L2 L3

1 1 1.000000000000000 0.333333333333333 0.333333333333333 0.333333333333333

2 3 0.333333333333333 0.666666666666667 0.166666666666667 0.166666666666667

3 1 −0.562500000000000 0.333333333333333 0.333333333333333 0.333333333333333

3 0.520833333333333 0.600000000000000 0.200000000000000 0.200000000000000

4 3 0.223381589678011 0.108103018168070 0.445948490915965 0.445948490915965

3 0.109951743655322 0.816847572980459 0.091576213509771 0.091576213509771

5 1 0.225000000000000 0.333333333333333 0.333333333333333 0.333333333333333

3 0.132394152788506 0.059715871789770 0.470142064105115 0.470142064105115

3 0.125939180544827 0.797426985353087 0.101286507323456 0.101286507323456

6 3 0.116786275726379 0.501426509658179 0.249286745170910 0.249286745170910

3 0.050844906370207 0.873821971016996 0.063089014491502 0.063089014491502

6 0.082851075618374 0.053145049844817 0.310352451033784 0.636502499121399

7 1 −0.149570044467682 0.333333333333333 0.333333333333333 0.333333333333333

3 0.175615257433208 0.479308067841920 0.260345966079040 0.260345966079040

3 0.053347235608838 0.869739794195568 0.065130102902216 0.065130102902216

6 0.077113760890257 0.048690315425316 0.312865496004874 0.638444188569810

8 1 0.144315607677787 0.333333333333333 0.333333333333333 0.333333333333333

3 0.095091634267285 0.081414823414554 0.459292588292723 0.459292588292723

3 0.103217370534718 0.658861384496480 0.170569307751760 0.170569307751760

3 0.032458497623198 0.898905543365938 0.050547228317031 0.050547228317031

6 0.027230314174435 0.008394777409958 0.263112829634638 0.728492392955404

9 1 0.097135796282799 0.333333333333333 0.333333333333333 0.333333333333333

3 0.031334700227139 0.020634961602525 0.489682519198738 0.489682519198738

3 0.077827541004774 0.125820817014127 0.437089591492937 0.437089591492937

3 0.079647738927210 0.623592928761935 0.188203535619033 0.188203535619033

3 0.025577675658698 0.910540973211095 0.044729513394453 0.044729513394453

6 0.043283539377289 0.036838412054736 0.221962989160766 0.741198598784498

10 1 0.090817990382754 0.333333333333333 0.333333333333333 0.333333333333333

3 0.036725957756467 0.028844733232685 0.485577633383657 0.485577633383657

3 0.045321059435528 0.781036849029926 0.109481575485037 0.109481575485037

6 0.072757916845420 0.141707219414880 0.307939838764121 0.550352941820999

6 0.028327242531057 0.025003534762686 0.246672560639903 0.728323904597411

6 0.009421666963733 0.009540815400299 0.066803251012200 0.923655933587500

P = Degree of complete polynomial exactly integrated, N = Number of cyclic uses

Wt = Weight at point, L j = Area coordinates at the point

(See subroutine D_Q_RULE for P ≤ 17)

276 Finite Element Analysis with Error Estimators

Table 10.6 Gaussian quadrature on a quadrilateral

1

−1

∫
1

−1

∫ f (r, s) dr ds =
n

i=1
Σ f (ri , si) Wi

1

−1

∫
1

−1

∫ f (r, s) dr ds =
n

i=1
Σ f (ri , si) Wi

n i ri si Wi

1 1 0 0 4

4 1 −1/√ 3 −1/√ 3 1
2 +1/√ 3 −1/√ 3 1
3 −1/√ 3 +1/√ 3 1
4 +1/√ 3 +1/√ 3 1

9 1 −√ 3/5 −√ 3/5 25 / 81
2 0 −√ 3/5 40 / 81
3 +√ 3/5 −√ 3/5 25 / 81
4 −√ 3/5 0 40/81
5 0 0 64 / 81
6 +√ 3/5 0 40/81
7 −√ 3/5 +√ 3/5 25 / 81
8 0 +√ 3/5 40 / 81
9 +√ 3/5 +√ 3/5 25 / 81

10.6 Minimal, optimal, reduced and selected integration *

Since the numerical integration of the element square matrix can represent a large

part of the total cost it is desirable to use low order integration rules. Care must be taken

when selecting the minimal order of integration. Usually the integrand will contain global

derivatives so that in the limit, as the element size h approaches zero, the integrand can be

assumed to be constant, and then only the integral I = ∫ dv = ∫ |J |dr ds dt remains to be

integrated exactly. Such a rule could be considered the minimal order. Howev er, the

order is often too low to be practical since it may lead to a rank deficient element (and

system) square matrix, if the rule does not exactly integrate the equations. Typical

integrands involve terms such as the strain energy density per unit volume: BT DB / 2.

Let nq denote the number of element integration points while m I represents the

number of independent relations at each integration point; then the rank of the element is

nq × m I . Generally, m I corresponds to the number of rows in B in the usual symbolic

integrand BT DB. For a typical element, we want nq × (mi − mc) ≥ ni, where mc

represents the number of element constraints, if any. For a non-singular system matrix a

similar expression is ne × (nq × mi − mc) ≥ nd − mr , where mr ≥ 1 denotes the number

of nodal parameter restraints. These relations can be used as guides in selecting a

minimal value of nq. Consider a problem involving a governing integral statement with

m-th order derivatives. If the interpolation (trial) functions are complete polynomials of

Chapter 10, Integration methods 277

Q
1

Q
1

Q
2

Q
2 Q

3

1 2L 1 2 3

C
1
 = L(2Q

1
 + Q

2
)/6

C
2
 = L(Q

1
+ 2Q

2
)/6

C
1
= L(4Q

1
 + 2Q

2
- Q

3
)/30

C
2
= L(2Q

1
+ 2Q

2
+ 16Q

3
)/30

C
3
= L(4Q

3
 - Q

1
+ 2Q

2
)/30

Figure 10.4 General consistent line sources

Q Q

L L

R = QL R = QL

/

2

R/2 R/2
R/3

2R/3

R/3

2R/3

R/6 R/6

4R/6

2R/60R/8 R/8
3R/8 3R/8 9R/60

36R/60

13R/60

0

Figure 10.5 Consistent resultants for a unit source

44

4

9

9 9

9 9

9

54

R = 120

0

0

0

1

1

1

1

1

1

R = 3R = 3

A Q

R = Q A

Figure 10.6 Resultants for a constant source on a triangle

278 Finite Element Analysis with Error Estimators

R = Q A

Q

A

R = 4

1 1

11

1

1 1

1 1 1

1 1

33

3 3

3 3

3 3

3

3

3 3

3

3

33

-2

-2

-2

-2

-1 -1

-1 -1

4 4

4

4

4

4

4

4
16

R = 36 R = 64

R = 16R = 12

99

99

Figure 10.7 Resultants for a constant source rectangle

order p then to maintain the theoretical convergence rate nq should be selected [14] to

give accuracy of order 0(h2(p−m)+1). That is, to integrate polynomial terms of order

(2p − m) exactly.

It has long been known that a finite element model gives a stiffness which is too

high. Using reduced integration so as to underestimate the element stiffness has been

accepted as one way to improve the results. These procedures have been investigated by

several authors including Zienkiewicz [14], Zienkiewicz and Hinton [14], Hughes, Cohen

and Haroun [8] and Malkus and Hughes [12]. Reduced integration has been especially

useful in problems with constraints, such as material incompressibility. A danger of low

order integration rules is that zero energy modes may arise in an element. That is, the

element energy is DeT Se De = 0 for De ≠ 0. Usually these zero energy modes, De, are

incompatible with the same modes in an adjacent element. Thus, the assembly of

elements may have no zero energy modes (except for the standard rigid body modes).

Cook [3] illustrates that an eigen-analysis of the element square matrix can be used as a

check since zero eigenvalues correspond to zero energy modes.

The integrand usually involves derivatives of the function of interest. Many

solutions require the post-solution calculation of these derivatives for auxiliary

calculations. Thus a related question is which points give the most accurate estimates for

those derivatives. These points are often called optimal points or Barlow points. Their

locations have been derived by Barlow [1, 2] and Moan [13]. The optimal points usually

are the common quadrature points. For low order elements the optimal points usually

correspond to the minimal integration points. This is indeed fortunate. As discussed in

Chapter 1, it is possible in some cases to obtain exact derivative estimates from the

optimal points. Barlow considered line elements, quadrilaterals and hexahedra while

Moan considered the triangular elements. The points were found by assuming that the

p-th order polynomial solution, in a small element, is approximately equal to the (p + 1)

Chapter 10, Integration methods 279

order exact polynomial solution. The derivatives of the two forms were equated and the

coordinates of points where the identity is satisfied were determined. For triangles the

optimal rules are the symmetric rules involving 1, 4, 7, and 13 points. For machines with

small word lengths the 4 and 13 point rules may require higher precision due to the

negative centroid weights. Generally, all interior point quadrature rules can be used to

give more accurate derivative estimates. The derivatives of the interpolation functions are

least accurate at the nodes. Later we will show how patch methods can be used to

generate much more accurate derivatives at the nodes.

For element formulations involving element constraints, or penalties, it is now

considered best to employ selective integration rules [14]. For penalty formulations it is

common to have equations of the form (S1 + α S2) D = C where the constant α →∞ in

the case where the penalty constraint is exactly satisfied. In the limit as α → ∞ the

system degenerates to S2 D = 0, where the solution approaches the trivial result, D = 0.

To obtain a non-trivial solution in this limit it is necessary for S2 to be singular.

Therefore, the two contributing element parts Se

1 and Se

2 are selectively integrated. That

is, Se

2 is under integrated so as to be rank deficient (singular) while Se

1 is integrated with a

rule which renders S1 non-singular. Typical applications of selective integration were

cited above and include problems such as plate bending where the bending contributions

are in Se

1 while the shear contributions are in Se

2.

10.7 Exercises

1. Explain why in Tables 10.3, 10.4, 10.5, and 10.6 and in Fig. 10.3 the sum of the

weights are exactly 1/2, 1/6, 1, 4, and 8, respectively.

2. Assume a constant Jacobian and numerically evaluate the matrices:

a) Ce =
Ωe

∫ HT
dx, b) Me =

Ωe

∫ HT H dx ,

c) Se =
Ωe

∫
dHT

dx

dH

dx
dx , d) Ue =

Ωe

∫ HT
dH

dx
dx.

for: a) a unit right angle triangle, b) a unit square, based on linear interpolation.

3. Confirm the nodal resultants of Fig. 10.4.

4. Confirm the nodal resultants of Fig. 10.5.

5. Confirm the nodal resultants of Fig. 10.6.

6. Confirm the nodal resultants of Fig. 10.7.

280 Finite Element Analysis with Error Estimators

10.8 Bibliography

[1] Barlow, J., "Optimal Stress Locations in Finite Element Models," Int. J. Num. Meth.

Eng., 10, pp. 243−251 (1976).

[2] Barlow, J., "More on Optimal Stress Points — Reduced Integration, Element

Distortions and Error Estimation," Int. J. Num. Meth. Eng., 28,

pp. 1487−1504 (1989).

[3] Cook, R.D., Concepts and Applications of Finite Element Analysis, New York: John

Wiley (1974).

[4] Cools, R., "An Encyclopedia of Cubature Formulas," J. Complexity, 19,

pp. 445−453 (2003).

[5] Dunavant, D.A., "High Degree Efficient Symmetrical Gaussian Quadrature Rules

for the Triangle," Int. J. Num. Meth. Eng., 21, pp. 1129−1148 (1985).

[6] Felippa, C.A., "A Compendium of FEM Integration Formulas for Symbolic Work,"

Engineering Computations, 21(8), pp. 867−890 (2004).

[7] Gellert, M. and Harbord, R., "Moderate Degree Cubature Formulas for 3−D

Tetrahedral Finite-Element Approximations," Comm. Appl. Num. Meth., 7,

pp. 487−495 (1991).

[8] Hughes, T.J.R., Cohen, M., and Haroun, M., "Reduced and Selective Integration

Techniques in the Finite Element Analysis of Plates," Nuclear Eng. Design, 46(1),

pp. 203−222 (1978).

[9] Hughes, T.J.R., The Finite Element Method, Englewood Cliffs: Prentice Hall (1987).

[10] Irons, B.M. and Ahmad, S., Techniques of Finite Elements, New York: John

Wiley (1980).

[11] Keast, P., "Moderate Degree Tetrahedral Quadrature Formulas," Comm. Appl. Num.

Meth., 55, pp. 339−348 (1986).

[12] Malkus, D.S. and Hughes, T.J.R., "Mixed Finite Element Methods − Reduced and

Selective Integration Techniques," Comp. Meth. Appl. Mech. Eng., 15(1),

pp. 63−81 (1978).

[13] Moan, T., "Orthogonal Polynomials and Best Numerical Integration Formulas on a

Triangle," Zamm, 54, pp. 501−508 (1974).

[14] Zienkiewicz, O.C. and Hinton, E., "Reduced Integration Smoothing and Non-

Conformity," J. Franklin Inst., 302(6), pp. 443−461 (1976).

Chapter 11

Scalar fields

11.1 Introduction

The physical behavior governing a variety of problems in engineering can be

described as scalar field problems. That is, where a scalar quantity varies over a

continuum. We usually need to compute the value of the scalar quantity, its gradient, and

sometimes its integral over the solution domain. Typical applications of scalar fields

include: electrical conduction, heat transfer, irrotational fluid flow, magnetostatics,

seepage in porous media, torsion stress analysis, etc. Often these problems are governed

by the well known Laplace and Poisson differential equations. The analytic solution of

these equations in two- and three-dimensional field problems can present a formidable

task, especially in the case where there are complex boundary conditions and irregularly

shaped regions. The finite element formulation of this class of problems by using

Galerkin or variational methods has proven to be a very effective and versatile approach

to the solution. Previous difficulties associated with irregular geometry and complex

boundary conditions are virtually eliminated. The following development will be

introduced through the details of formulating the solution to the steady-state heat

conduction problem. The approach is general, however, and by redefining the physical

quantities involved the formulation is equally applicable to other problems involving the

Poisson equation.

11.2 Variational formulation

We can obtain from any book on heat transfer the governing differential equation for

steady and un-steady (transient) state heat conduction. The most general form of the heat

conduction equation, in the material principal coordinate directions is the transient three-

dimensional equation:

(11.1)
∂

∂x
(k x

∂θ

∂x
) +

∂
∂y

(k y

∂θ

∂y
) +

∂
∂z

(kz

∂θ

∂z
) + Q =

∂
∂t

(ρc pθ)

where, k x , k y, kz = thermal conductivity coefficients, θ = temperature, Q = heat

generation per unit volume, ρ = density, and c p = specific heat at constant pressure. If we

focus our attention to the two-dimensional (∂ / ∂z = 0) steady-state (∂ / ∂t = 0) problem,

such as Fig. 11.1, the governing equation becomes

282 Finite Element Analysis with Error Estimators

(11.2)
∂

∂x
(k x

∂θ

∂x
) +

∂
∂y

(k y

∂θ

∂y
) + Q = 0

in which k x , k y, and Q are known. Equations 11.1 or 2, along with the boundary (and

initial) conditions specify the problem completely. The most commonly encountered

boundary conditions are those in which the temperature, θ , is specified on the boundary,

θ = θ (s) on ΓD,

or the normal heat flux into the boundary, qs, is specified:

k x

∂θ

∂x
nx + k y

∂θ

∂y
ny + qs = kn

∂θ

∂n
+ qs = 0 on Γq

or a normal heat flux due to convection:

(11.3)kn

∂θ

∂n
+ h(θ − θ∞) = 0, on Γh

where nx and ny are the direction cosines of the outward normal to the boundary surface,

qs represents the known heat flux per unit of surface, and h(θ − θ∞) is the convection

heat loss per unit area due to a convection coefficient h and a surrounding fluid at a

temperature of θ∞. Only one of these two last two items is non-zero on a particular

surface. Note that the last two surface integrals could be written in a more general form

if we combine them into a mixed or Robin condition written as:

(11.4)kn

∂θ

∂n
+ h θ + g = 0,

where g is either a known influx (when h = 0), or h θ∞ on a convection surface.

In Section 2.13.2 we illustrated how to apply the Galerkin method to this equation.

As stated previously, an alternative formulation to the above heat conduction problem is

possible using the calculus of variations. It has been shown that if a variational form

exists for a differential equation then both the Galerkin form and the Euler variational

form will yield exactly the same element matrix definitions. Euler’s theorem of the

calculus of variations states that if the integral

(11.5)I (u) =
Ω
∫ f (x, y, z, u,

∂u

∂x
,
∂u

∂y
,
∂u

∂z
) dΩ +

Γ
∫ (gu + hu

2/2) dΓ

is to be minimized, the necessary and sufficient condition for this minimum to be reached

is that the unknown function u(x, y, z) satisfy the following differential equation

(11.6)
∂

∂x

∂ f

∂(∂u / ∂x)
+

∂
∂y

∂ f

∂(∂u / ∂y)
+

∂
∂z

∂ f

∂(∂u / ∂z)
−

∂ f

∂u
= 0

within the region Ω, provided u satisfies the essential boundary conditions on ΓD and

nx k x

∂θ

∂x
+ ny k y

∂θ

∂y
+ nz kz

∂θ

∂z
+ g + hθ = 0 = kn

∂θ

∂n
+ g + hθ

on the remainder of Γ. We can verify that the minimization of the volume integral

Chapter 11, Scalar fields 283

Thickness, t

Volumetric

source, Q

Unit normal, n

Normal

flux, q
n

Conductivities, K
x
, K

y

Given temperature, T
0

Convection,

q
h
= h (T - T

ref
)

h, T
ref

* T (X, Y)

Figure 11.1 An anisotropic heat transfer region

(11.7)I =
Ω
∫

1

2

k x(
∂θ

∂x
)2 + k y(

∂θ

∂y
)2 + kz(

∂θ

∂z
)2

− Qθ

dΩ

+
Γ
∫

gθ + hθ 2 / 2

dΓ

leads directly to the formulation equivalent to Eq. 11.2 for the steady-state case. It should

also be noted that the surface Γ will be split into different regions for each distinct set of

surface input. One of those segments will usually be a Dirichlet region, ΓD, and that

surface integral represents the unknown resultant reaction fluxes at the nodes that get

lumped into the RHS of the algebraic system. The functional volume contribution is

f = 1

2

k x(
∂θ

∂x
)2 + k y(

∂θ

∂y
)2 + kz(

∂θ

∂z
)2

− Qθ .

Thus, if f is to be minimized it must satisfy Eq. 11.6. Here

∂ f

∂(∂θ / ∂x)
= k x

∂θ

∂x
,

∂ f

∂(∂θ / ∂y)
= k y

∂θ

∂y
,

∂ f

∂(∂θ / ∂z)
= kz

∂θ

∂z
,

∂ f

∂θ
= − Q

so Eq. 11.6 results in

284 Finite Element Analysis with Error Estimators

∂
∂x

(k x

∂θ

∂x
) +

∂
∂y

(k y

∂θ

∂y
) +

∂
∂z

(kz

∂θ

∂z
) + Q = 0

verifying that the function f does lead to correct steady state formulation, if the boundary

conditions are also satisfied. Euler also stated that the natural boundary condition

associated with Eq. 11.5 on a surface with a unit normal vector
→
n is

nx

∂ f

∂(∂u / ∂x)

+ ny

∂ f

∂(∂u / ∂y)

+ nz

∂ f

∂(∂u / ∂z)

+ g + hu = 0

on the boundary where the value of u is not prescribed. If both g and h are non-zero this

type of boundary condition is a Robin, or mixed, condition since it imposes a linear

combination on the solution and the normal gradient on part of the boundary.

x

y

z

2H

2W

L

Solid cantilever with surface convection

2

1

1

2

1

2

F1

F2

F3

F4F5

F1

L1

F2

L2L3

L1

L2
P1

3-D ¼ Symmetry
Conducting solid

Convecting faces

2-D ¼ Symmetry
Conducting plane
Convecting faces
Convecting lines

1-D Full Model
Conducting bar

Convecting lines

Convecting point

Figure 11.2 Three-dimensional thermal models and their approximations

Chapter 11, Scalar fields 285

The element and boundary matrices arising from Eq. 11.7 and the Galerkin method

will be identical. Therefore we have the tools to build non-homogeneous, anisotropic

thermal models of solids of complex geometry. As illustrated in Fig. 11.2 this will often

require combining the effects of conduction elements and convection elements at shared

nodes. Today commercial codes can quickly generate and solve fine meshes for 3-D

thermal studies. However, it is still common to approximate some 3-D solids by 2-D

models as seen in that figure. If we allow the specified thickness to vary from element to

element we sometimes call this a 2 1

2
-D model. The convection elements in a 2-D model

can occur over the face of a 2-D conduction element and/or along an edge having a

specified thickness. Likewise, 1-D approximations can have perimeter convection effects,

as line elements, combined with the 1-D conduction elements. They can also have

convection over an end area which is represented as a point convection element. Later we

will see that a single computer implementation can handle all the combinations shown in

the above figure. It is still recommended that various types of finite element models be

compared to each other as a means for validating the results to problems for which the

answer is not known. Sometimes a model that can be solved by hand gives a useful

validation of results from a commercial code. For simplicity, in the next section we look

at 2-D models that can yield matrices that can be manipulated in closed form, and then

return later to numerically integrated elements for general 3-D use.

11.3 Element and boundary matrices

From Eqs. 11.1 and 11.7 it is clearly seen that the two-dimensional functional

required for the steady-state analysis is

(11.8)I =
A

∫

1

2

k x(
∂θ

∂x
)2 + k y(

∂θ

∂y
)2

− Qθ

t dA +
Γ
∫ (gθ + hθ 2/2)t ds

where t is the thickness of the domain. We will proceed in exactly the same manner as

we did for the previous variational formulations. That is, we will assume that the area

integral is the sum of the integrals over the element areas. Likewise, the boundary

integral where the temperature is not specified is assumed to be the sum of the boundary

segment integrals. Thus, I =
e

Σ I
e +

b

Σ I
b where the element contributions are

I
e =

Ae

∫

1

2

k x(
∂θ

∂x
)2 + k y(

∂θ

∂y
)2

− Qθ

t dA

and the boundary segment contributions are

I
b =

Γb

∫ (gθ + hθ 2/2)t ds.

If we make the usual interpolation assumptions in the element and on its typical edge

then we can express these quantities as

I
e = 1

2
De

T

SeDe − De
T

Ce
, I

b = 1

2
Db

T

SbDb − Db
T

Cb.

Here the element matrices are the orthotropic conduction square matrix

286 Finite Element Analysis with Error Estimators

(11.9)Se =
Ae

∫ (ke

x
He

T

x
He

x
+ k

e

y
He

T

y
He

y
)te

da =
Ae

∫ Be
T

EeBe
t

e
da

the internal source vector

(11.10)Ce

Q
=

Ae

∫ He
T

Q
e
t

e
da

the surface square matrix and source vector from convection

(11.11)Sb

h
=

Γb

∫ h
bHb

T

Hb
t

b
ds , Cb

h
=

Γb

∫ θ b

∞h
bHb

T

t
b

ds

and/or the source vector due to a specified inward heat flow

(11.12)Cb

q
=

Γb

∫ q
bHb

T

t
b

ds

where H denotes the shape functions and Hx = ∂H / ∂x, etc., are rows of the solution

interpolation gradient, Be, and where the general constitutive matrix is E. The symmetric

array Ee reduces to its diagonal orthotropic form when k xy = 0 = k yx , and to the

common isotropic form, Ee = kI, when k xx = k yy = k. For this class of problem there

is only one unknown temperature per node. Once again, if D denotes all of these

unknowns then De ⊂ D and Db ⊂ D. Figure 11.3 illustrates where these typical

conduction, convection, and source terms are inserted in the algebraic equations of

thermal equilibrium.

Likewise, Figure 11.4 reminds us that a Dirichlet (essential) boundary condition

assigns a value to one of the degrees of freedom and introduces unknown reaction source

terms; that a Neumann (flux) condition only contributes known terms to the source

vector; while a Robin (mixed) boundary condition couples the flux linearly to the

boundary value and introduces known terms into both the system square matrix and

source vector.

Many analysis problems have features that allow the analyst to reduce greatly the

cost of FEA through the use of symmetry, anti-symmetry, or cyclic symmetry and coupled

nodes. The system equations are sparse and can often be described by the bandwidth, say

B, and the total number of equations, say M . Solving the equations is very expensive and

has an operations count that is proportional to the product B
2
M . The storage required by

the system is proportional to BM . Whenever possible we try to reduce these two

parameters. Partial models allow us to reduce them very easily and still generate all the

information we require. For example, a half-symmetry model would usually reduce both

B and M by a factor of two and thereby reduce the solution costs by a factor of eight and

reduce the storage requirement by a factor of four.

When a model has a plane of geometric, material, and support symmetry, it is not

usually necessary to analyze the whole model. Conditions of symmetry or anti-symmetry

in the source terms can be applied to the planes of symmetry in order to produce a partial

model that includes the effects of the other removed parts of the complete model. In

order to employ a partial analysis involving a symmetry plane, it is necessary for the

following quantities to be symmetric with respect to that plane: the geometry, the

material regions, the material properties, and the essential boundary conditions (on the

Chapter 11, Scalar fields 287

(A, k, Q)

(A, h,
c
)

t

L

(L, t, h,
c
)

S T = C

k t

A

terms

h L t

terms
h L t

c

terms

Q A t

terms

h A

terms
h A

c

terms

Conduction

Edge

convection

Face convection

Figure 11.3 Contributions from conducting, convecting and source regions

S T = C

Essential (Dirichlet)

boundary condition

Mixed (Robin)
boundary condition

[reaction]

Boundary flux
(Neumann)

data

(usually convection data)

Figure 11.4 Contributions of boundary conditions to algebraic system

temperature). If these conditions are not quite fulfilled, then the analyst will have to

exercise judgement before selecting a partial model. Even if a full model is selected for

ev entual use, an approximate partial model can give useful insight and aid in planning the

details of the full model to be run later.

288 Finite Element Analysis with Error Estimators

q
c
 = h (O - O

air
) q

c
 = h (O - O

air
)

K, h, O
air

K, h,

O
air

q
n
 = 0

q
n
 = 0

K

a) Quarter symmetry model

K

(O
A
 + O

B
) / 2

b) Half anti-symmetry model

O
B

O
B

O
B

O
A

O
A

O
A

O
B

Figure 11.5 Typical symmetry and anti-symmetry thermal models

In thermal models any symmetry plane has a zero heat flux and temperature gradient

normal to that plane. That is because the temperatures are mirror images of each other

and have the same sign when moving normal to the plane. The state of zero heat flux

normal to a boundary is a natural boundary condition in a finite element analysis (but not

in finite differences). We obtain that condition by default. If you desire a different type

of condition to apply on a boundary, then we must prescribe either the temperature (the

essential condition) or a different nonzero normal flux. We cannot give both. When you

prescribe one of them, the other becomes a ‘reaction’ to be determined from the final

result. Thermal anti-symmetry means the temperatures approach the plane with

temperature increments of opposite signs but equal magnitudes. Thus, the temperature

must be a known mean temperature on a plane of anti-symmetry. When that essential

boundary condition is imposed, the necessary normal heat flow through that plane can be

found as a ‘reaction’ from the final solution.

To giv e some specific examples of these concepts, some typical thermal and stress

problems will be represented. Figure 11.5 shows a planar rectangular region with

homogeneous and isotropic conduction properties, k, and internal and external specified

edge temperatures, θ A and θ B. In addition, it has free convection, qh, over its face to a

fluid with homogeneous convection properties, h and θ∞. Such a system has double

Chapter 11, Scalar fields 289

symmetry, which allows us to employ a one-quarter model with consistent boundary

conditions. Doing this cuts M by a factor of 4 and reduces B by at least a factor of 2 and

possibly much more. Thus, the cost drops by at least a factor of 16. The alternate partial

model form still requires the essential conditions on θ A and θ B and the face convection

data for qh. The change is that the heat flow is zero on the new boundary lines formed by

the symmetry planes. This is a natural condition in FEA and requires no input data (other

than the geometry of the new line). That figure also shows a simple anti-symmetric

domain where it is relatively clear to determine the value of the middle temperature to be

assigned as an essential boundary condition. The temperatures on either side of the

centerline are both either positive or neg ative increments of the relative temperature

change. Commercial visualization codes often have the ability to plot a full region from a

partial analysis region and the identification of the symmetry and anti-symmetry planes.

11.4 Linear triangular element

If we select the three node (linear) triangle then the element interpolation functions,

He, are given in unit coordinates by Eq. 9.6 and in global coordinates by Eqs. 9.13 and

9.14. From either set of equations we note that

(11.13)
He

x
= ∂He / ∂x = b1 b2 b3 e / 2A

e = dx

He

y
= ∂He / ∂y = c1 c2 c3 e / 2A

e = dy.

Since these are constant we can evaluate the integral by inspection if the conductivities

are also constant:

(11.14)Se =
k

e

x
t

e

4Ae

b1b1

b2b1

b3b1

b1b2

b2b2

b3b2

b1b3

b2b3

b3b3

e +
k

e

y
t

e

4Ae

c1c1

c2c1

c3c1

c1c2

c2c2

c3c2

c1c3

c2c3

c3c3

e .

This is known as the element conductivity matrix. Note that this allows for different

conductivities in the x- and y- directions. Equations 11.14 show that the conduction in

the x-direction depends on the size of the element in the y-direction, and vice versa. If

the internal heat generation, Q, is also constant then Eq. 11.10 yields:

(11.15)Ce

Q

T =
Q

e
A

e
t

e

3
 1 1 1 .

This internal source vector shows that a third of the internal heat generated, Q
e
A

e
t

e, is

equally lumped to each of the three nodes. On a typical boundary segment the edge

interpolation can also be given by a linear form. The exact integrals can be evaluated for

a constant Jacobian. For example, if the coefficient, h, and the surrounding temperature,

T
b

∞, are constant then the boundary segment square and column matrices are:

(11.16)Sb

h
=

h
b
L

b
t

b

6

2

1

1

2

, Cb

h
=

T
b

∞h
b
L

b
t

b

2

1

1

,

where L
b
t

b represents the surface area over which the convection occurs. Similarly if a

constant normal flux, q, is giv en over a similar surface area then the resultant boundary

flux vector is

290 Finite Element Analysis with Error Estimators

(11.17)Cb

q
=

q
b
L

b
t

b

2

1

1

.

In this case half the total normal flux is lumped at each of the two nodes on the segment.

! .. ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! (Stored as application source example 204.) ! 4

! 5
! Linear Triangle, K_xx U,xx + 2 K_xy U,xy + K_yy U,yy + Q = 0 ! 6

REAL(DP) :: X_I, X_J, X_K, Y_I, Y_J, Y_K ! Global coordinates ! 7
REAL(DP) :: A_I, A_J, A_K, B_I, B_J, B_K ! Standard geometry ! 8
REAL(DP) :: C_I, C_J, C_K, X_CG, Y_CG, TWO_A ! Standard geometry ! 9
REAL(DP) :: THICK ! Element thickness !10

!11
! DEFINE NODAL COORDINATES, CCW: I, J, K !12

X_I = COORD (1,1) ; X_J = COORD (2,1) ; X_K = COORD (3,1) !13
Y_I = COORD (1,2) ; Y_J = COORD (2,2) ; Y_K = COORD (3,2) !14

!15
! DEFINE CENTROID COORDINATES (QUADRATURE POINT) !16

X_CG = (X_I + X_J + X_K)/3.d0 ; Y_CG = (Y_I + Y_J + Y_K)/3.d0 !17
!18

! GEOMETRIC PARAMETERS: H_I (X,Y) = (A_I + B_I*X + C_I*Y)/TWO_A !19
A_I = X_J * Y_K - X_K * Y_J ; B_I = Y_J - Y_K ; C_I = X_K - X_J !20
A_J = X_K * Y_I - X_I * Y_K ; B_J = Y_K - Y_I ; C_J = X_I - X_K !21
A_K = X_I * Y_J - X_J * Y_I ; B_K = Y_I - Y_J ; C_K = X_J - X_I !22

!23
! CALCULATE TWICE ELEMENT AREA !24

TWO_A = A_I + A_J + A_K ! = B_J*C_K - B_K*C_J also !25
!26

! DEFINE 2 BY 3 GRADIENT MATRIX, B (= DGH) !27
B (1, 1:3) = (/ B_I, B_J, B_K /) / TWO_A ! DH/DX, row 1 !28
B (2, 1:3) = (/ C_I, C_J, C_K /) / TWO_A ! DH/DY, row 2 !29

!30
! DEFINE PROPERTIES: 1-K_xx, 2-K_yy, 3-K_xy, 4-Source, 5-thick !31

E (1, 1) = GET_REAL_LP (1) ; E (1, 2) = GET_REAL_LP (3) !32
E (2, 2) = GET_REAL_LP (2) ; E (2, 1) = E (1, 2) ; THICK = 1 !33
IF (EL_REAL >= 5) THICK = GET_REAL_LP (5) !34
E = E * THICK ! for proper flux recovery !35

!36
! CONDUCTION MATRIX, WITH CONSTANT JACOBIAN (t in E) !37

S = MATMUL (TRANSPOSE (B), MATMUL (E, B)) * TWO_A * 0.5d0 !38
!39

! SOURCE VECTOR: C(1:3) = SOURCE_PER_UNIT_AREA * AREA / 3 !40
C = GET_REAL_LP (4) * THICK * TWO_A / 6.d0 !41

!42
! SAVE ONE POINT RULE TO AVERAGING, OR ERROR ESTIMATOR !43

LT_QP = 1 ; CALL STORE_FLUX_POINT_COUNT ! Save LT_QP !44
CALL STORE_FLUX_POINT_DATA ((/ X_CG, Y_CG /), E, B) !45

!46
! End of application dependent code 204.my_el_sq_inc !47
! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !48

Figure 11.6 Anisotropic linear triangle conduction element

Chapter 11, Scalar fields 291

If one wished to code this simple element in closed form it is very easy to do as

shown in Fig. 11.6. There it is assumed that each element has four or five real, or floating

point, properties of K xx , K yy, plus the anisotropic value K xy not used above, and the

source per unit area of Q. There the thickness is assumed to be unity for all elements

unless it is provided as an optional fifth property. If one wanted to allow more general

element families, then numerical integration would be required and the coding is a little

longer, as we will see shortly. If we wish to allow for only a constant normal flux along

any straight line edge segment then it is quite simple to implement Eq. 11.12 in closed

form, as shown in Fig. 11.7. A common use of two-dimensional models is to predict the

temperature in thin cooling fins. Then Eq. 11.11 would be applied over the face(s) of the

element to define the convection matrices, which represent the most common kind of

mixed, or Robin, boundary conditions. Again, for the linear triangle the closed form

equations are easy to implement, if we assume constant data over each mixed boundary

segment (face). The implementation is given in Fig. 11.8. We will shortly illustrate these

matrix definitions with some simple applications. These codes are saved as example 204.

11.5 Linear triangle applications

Since the three node triangle is so widely used in finite element analysis we will

examine its more common applications in detail.

11.5.1 Internal source

Consider a uniform square of material that has its exterior perimeter maintained at a

constant temperature while its interior generates heat at a constant rate. We note that the

solution will be symmetric about the square’s centerlines as well as about its two

diagonals. This means that we only need to utilize one-eighth of the region in the

analysis. For simplicity we will assume that the material is homogeneous and isotropic

so k x = k y = k. The planes of symmetry have zero normal heat flux, q = 0. That

condition is a natural boundary condition in a finite element analysis. That is true since

Cq in Eq. 11.12 is identically zero when the normal flux, q, is zero. The remaining

essential condition is that of the known external boundary temperature as shown in

Fig. 11.9. For this model we have first selected a crude mesh suitable for a hand solution,

then we will give results for a finer mesh using the MODEL program. As shown in the

figure we will use four elements and six nodes. The last three nodes have the known

temperature and the first three are the unknown internal temperatures. For this

homogeneous region the data are:

Element k
e

Q
e

Topology t
e

1 8 6 1, 2, 3 1

2 8 6 2, 4, 5 1

3 8 6 5, 3, 2 1

4 8 6 3, 5, 6 1

From the geometry in the figure we determine that the element geometric properties

from Eq. 9.14 are:

292 Finite Element Analysis with Error Estimators

! ... ! 1
! *** SEG_COL_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! ... ! 3
! (Stored as application source example 204.) ! 4
! Given normal flux on a straight boundary segment (BS) edge: ! 5
! Standard form: -K_n * U,n = Q_NORMAL_SEG, where Q_NORMAL_SEG ! 6
! is from control keywords normal_flux, flux_thick, or via ! 7
! optional flux segment real properties: 1-flux, 2-thickness ! 8
REAL(DP) :: EDGE_L, THICK ! Edge length, thickness ! 9

!10
! Get the edge length, and thickness of edge !11
THICK = 1 ! Default in all cases !12
IF (FLUX_THICK /= 1.d0) THICK = FLUX_THICK ! line only !13
EDGE_L = SQRT ((COORD(2,1) - COORD(1,1)) **2 & !14

+ (COORD(2,2) - COORD(1,2)) **2) !15
!16

! Override keyword option via segment properties !17
IF (SEG_REAL > 0) Q_NORMAL_SEG = GET_REAL_SP (1) !18
IF (SEG_REAL > 1) THICK = GET_REAL_SP (2) !19

!20
C (1) = Q_NORMAL_SEG * THICK * EDGE_L / 2 !21
C (2) = Q_NORMAL_SEG * THICK * EDGE_L / 2 !22

! End of application dependent code 204.my_seg_col_inc !23

Figure 11.7 Straight linear edge flux source element

! .. ! 1
! *** MIXED_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! (Stored as application source example 204.) ! 4
! Global CONVECT_COEF set by keyword convect_coef is available ! 5
! Global CONVECT_TEMP set by keyword convect_temp is available ! 6
! Standard form: -K_n * U,n = CONVECT_COEF (U - CONVECT_TEMP) ! 7

! 8
! Linear Triangle Boundary Face Convection Matrices ! 9

REAL(DP) :: X_I, X_J, X_K, Y_I, Y_J, Y_K ! Global coordinates !10
REAL(DP) :: A_I, A_J, A_K, TWO_A ! Standard geometry !11

!12
! DEFINE NODAL COORDINATES, CCW: I, J, K !13

X_I = COORD (1,1) ; X_J = COORD (2,1) ; X_K = COORD (3,1) !14
Y_I = COORD (1,2) ; Y_J = COORD (2,2) ; Y_K = COORD (3,2) !15

!16
! GEOMETRIC PARAMETERS, TWICE ELEMENT AREA !17

A_I = X_J * Y_K - X_K * Y_J ; A_J = X_K * Y_I - X_I * Y_K !18
A_K = X_I * Y_J - X_J * Y_I ; TWO_A = A_I + A_J + A_K !19

!20
! Get convection data from keyword or optional properties !21

IF (MIXED_REAL > 0) THEN ! override keyword !22
CONVECT_COEF = GET_REAL_MX (1) ! convection coefficient !23
CONVECT_TEMP = GET_REAL_MX (2) ! convection temperature !24

END IF ! properties supplied !25
!26

! FACE CONVECTION SQUARE MATRIX, WITH CONSTANT JACOBIAN !27
S = CONVECT_COEF * TWO_A / 24 & !28

* RESHAPE ((/ 2, 1, 1, 1, 2, 1, 1, 1, 2 /), (/3, 3/)) !29
!30

! FACE CONVECTION SOURCE VECTOR !31
C = CONVECT_TEMP * CONVECT_COEF * TWO_A / 6 * (/ 1, 1, 1 /) !32

! *** END MIXED_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !33

Figure 11.8 Face convection for a linear triangle segment

Chapter 11, Scalar fields 293

K
x
 = K

y
 = 8

Q = 6

t = 1
L = 4

L

Y

X

O
0
 = 5

a

b

a

b

1

3

2

4

1 2 4

3
5

6

q
n
 = 0

q n
 =

 0

O
0
 = 5

Figure 11.9 A one-eighth symmetry model of a square

title "CONDUCTION EXAMPLE, T3, INTERNAL SOURCE" ! 1
example 204 ! Application source code library numbe ! 2
b_rows 2 ! Number of rows in the B (operator) matrix ! 3
dof 1 ! Number of unknowns per node ! 4
el_nodes 3 ! Maximum number of nodes per element ! 5
elems 4 ! Number of elements in the system ! 6
gauss 1 ! Maximum number of quadrature points ! 7
nodes 6 ! Number of nodes in the mesh ! 8
shape 2 ! Element shape, 1=line, 2=tri, 3=quad, 4=hex ! 9
space 2 ! Solution space dimension !10
el_homo ! Element properties are homogeneous !11
el_real 4 ! Number of real properties per element !12
remarks 9 ! Number of user remarks, e.g. property names !13
end ! Terminate the keyword control, remarks follow !14
Conduction example of Section 11.4 6 !15
K_x = K_y = 8, Q = 6, K_xy = 0 / | !16
L_1_4 = L_4_6 = 4, Thickness = 1 / | !17
with 1/8 symmetry, so natural BC on /(4)| !18
edges 1_6 and 1_4 ia q_n = 0 3-----5 !19
EBC on edge 4_6 is T = 5 / |(3)/| !20
K_x T,xx + 2K_xy T,xy + K_y T,yy + Q = 0 / | / | !21
[gauss > 0 turns on flux averaging /(1)|/(2)| !22
and possibly post-processing] 1----2----4 !23

1 0 0. 0. ! node, ebc flag, x, y !24
2 0 2. 0. ! node, ebc flag, x, y !25
3 0 2. 2. ! node, ebc flag, x, y !26
4 1 4. 0. ! node, ebc flag, x, y !27
5 1 4. 2. ! node, ebc flag, x, y !28
6 1 4. 4. ! node, ebc flag, x, y !29

1 1 2 3 ! elem, three nodes !30
2 2 4 5 ! !31
3 2 5 3 !32
4 3 5 6 !33
4 1 5. ! node, dof, value of EBC !34
5 1 5. !35
6 1 5. !36

1 8. 8. 0. 6. ! elem, K_x, K_y, K_xy, Q (homogeneous) !37

Figure 11.10 Sample data for square bar thermal analysis

294 Finite Element Analysis with Error Estimators

e = 1, 2, 4 e = 3

i 1 2 3 1 2 3

bi − 2 2 0 2 − 2 0

ci 0 − 2 2 0 2 − 2

A
e = 2 A

e = 2

From Eq. 11.14 the conduction square matrix for elements 1, 2, and 4 are

(11.18)Se =
8(1)

4(2)

4

−4

0

−4

4

0

0

0

0

+
8(1)

4(2)

0

0

0

0

4

−4

0

−4

4

=

4

−4

0

−4

8

−4

0

−4

4

.

Since element 3 results from a 180° rotation of element 1, it happens to have exactly the

same S
e. Assembling the four element matrices gives the six system equations S D = C

where

S =

+4

−4

0

0

0

0

−4

(+8 + 4 + 4)

(−4 − 4)

−4

0

0

0

(−4 − 4)

(+4 + 8 + 4)

0

(−4 − 4)

0

0

−4

0

+8

−4

0

0

0

(−4 − 4)

−4

(+4 + 4 + 8)

−4

0

0

0

0

−4

+4

and

C =
QAt

3

1

1 + 1 + 1

1 + 1 + 1

1

1 + 1 + 1

1

+

0

0

0

q4

q5

q6

=

4

12

12

4

12

4

+

0

0

0

q4

q5

q6

.

In the above vector the qs are the nodal heat flux reactions required to maintain the

specified external temperature. Since the last three equations have essential boundary

conditions applied we can reduce the first three to

(11.19)

4

−4

0

−4

16

−8

0

−8

16

θ 1

θ 2

θ 3

=

4

12

12

− θ 4

0

−4

0

− θ 5

0

0

−8

− θ 6

0

0

0

.

Substituting the data that the exterior surface temperatures are θ 4 = θ 5 = θ 6 = 5 yields the

reduced source term

C* =

4

12

12

+

0

20

0

+

0

0

40

=

4

32

52

.

Chapter 11, Scalar fields 295

Solving for the interior temperatures using the inverse

S*−1

=
1

512

192

64

32

64

64

32

32

32

48

and multiplying by C* yields:

ΘΘ* =

8. 750

7. 750

7. 125

=

θ 1

θ 2

θ 3

.

Substituting these values into the original system equations will give the exterior nodal

heat flux values (thermal reactions) required by this problem. For example, the fourth

row reaction equation yields: −4θ 2 + 8θ 4 − 4θ 5 = −4(7. 75) + 8(5) − 4(5) = 4 + q4, or

simply −15 = q4. The other two nodal fluxes are q5 = − 29, q6 = − 4. These sum to −48.

The internal heat generated was
e

ΣQ
e

A
e

t
e = + 48, which is equal and opposite.

*** INPUT SOURCE RESULTANTS *** ! 1
ITEM SUM POSITIVE NEGATIVE ! 2

1 4.8000E+01 4.8000E+01 0.0000E+00 ! 3
! 4

*** REACTION RECOVERY *** ! 5
NODE, PARAMETER, REACTION, EQUATION ! 6

4, DOF_1, -1.5000E+01 4 ! 7
5, DOF_1, -2.9000E+01 5 ! 8
6, DOF_1, -4.0000E+00 6 ! 9

!10
REACTION RESULTANTS !11
PARAMETER, SUM POSITIVE NEGATIVE !12
DOF_1, -4.8000E+01 0.0000E+00 -4.8000E+01 !13

!14
*** OUTPUT OF RESULTS IN NODAL ORDER *** !15
NODE, X-Coord, Y-Coord, DOF_1, !16

1 0.0000E+00 0.0000E+00 8.7500E+00 !17
2 2.0000E+00 0.0000E+00 7.7500E+00 !18
3 2.0000E+00 2.0000E+00 7.1250E+00 !19
4 4.0000E+00 0.0000E+00 5.0000E+00 !20
5 4.0000E+00 2.0000E+00 5.0000E+00 !21
6 4.0000E+00 4.0000E+00 5.0000E+00 !22

!23
*** SUPER_CONVERGENT AVERAGED NODAL FLUXES *** !24
NODE, X-Coord, Y-Coord, FLUX_1, FLUX_2, !25

1 0.0000E+00 0.0000E+00 -3.3333E-01 -4.5833E+00 !26
2 2.0000E+00 0.0000E+00 -7.3333E+00 -2.0833E+00 !27
3 2.0000E+00 2.0000E+00 -4.8333E+00 -2.0833E+00 !28
4 4.0000E+00 0.0000E+00 -1.4333E+01 4.1667E-01 !29
5 4.0000E+00 2.0000E+00 -1.1833E+01 4.1667E-01 !30
6 4.0000E+00 4.0000E+00 -9.3333E+00 4.1667E-01 !31

Figure 11.11 Results for square bar thermal analysis

296 Finite Element Analysis with Error Estimators

Thus, we have verified that the generated heat equals the heat outflow. Of course,

this must be true for all steady state heat conduction problems. Note that while we

started with six equations from the integral formulation only three were independent

equations for the unknown temperatures. The other equations were independent

equations for the thermal reactions necessary to maintain the essential boundary

conditions on the temperature. One does not have to assemble and solve the reaction set

but it is a recommended procedure. The input data for this example are given in

Fig. 11.10 and selected outputs are given in Fig. 11.11.

Replacing the previous mesh with one of 64 elements and applying the MODEL

code gives the temperature results shown as contours and a surface in Figs. 11.12 and 13,

respectively. In the first we get a visual check that the contours appear perpendicular to

the insulated boundaries and parallel to the Dirichlet boundary. From Fig. 11.13 we get

the impression that the temperature gradient and flux would also be smooth. However,

they are constant in each element and must be made continuous by the SCP fit as seen in

Fig. 11.14, which is a 2-D generalization of Fig. 2.21 in that the element flux values are

constant. From the symmetry boundary conditions we expect zero heat flux at the (0, 0).

The continuous flux, in Fig. 11.15, misses that so more refinement is needed. The

discontinuous element flux vectors are in Fig. 11.16 while the continuous nodal flux

vectors are shown in Fig. 11.17. The last figure should have the vectors parallel to the

insulated boundaries and they seem to do that reasonably well. The energy norm error

estimates in Fig. 11.18 exceed 2 percent and are about ten times larger than we usually

want. The projected maximum element sizes for a new mesh to reduce those errors are

shown in Fig. 11.19.

The same four element T3 mesh was used in the text by Kwon [14], a former

student of mine, to analyze a half symmetry triangular region, of Fig. 11.20, with given

normal flux on the right edge, a null essential boundary condition along the bottom, and

the inclined edge insulated. The modified input data and selected output are shown in

Figs. 11.21 and 22, respectively. In this case the heat flux in (+) normal to the right edge

was 2 per unit length, acting over the side length of 4, for a resultant input of 8. Here

there were only two such flux line segments (with a local nodal resultant at each end of

2). Therefore, the source effects were simply lumped at the three nodes by inspection.

The keyword loads, at line 12, flagged the presence of such sources and their numeric

values were read in lines 38-40. (Such values are terminated by reading the source at the

last degree of freedom, which is usually zero.)

For this class of problem we expect that the sum of the external sources will be

equal and opposite to the reactions at the essential boundary conditions. Figure 11.22

shows that the expected result is obtained, as are the expected temperatures. The lumping

of the heat flux was easy only because the flux was constant and we could get the

boundary length it acted on by inspection. Usually we would have to supply the

programming and data input necessary to formulate the boundary flux resultant arrays,

Ce

q
. For the edge of the T3 element we need only the two nodal contributions.

Implementing such a ‘boundary flux segment’ takes relatively little coding as shown in

Fig. 11.7, but it requires much more flexibility in the data input options and the ability to

recover those data. In most of the previous examples we considered only a mesh with a

Chapter 11, Scalar fields 297

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

5

5

5

5

5.5

6

6.5

7

7.5

88.5

Matlab Smoothed FEA Solution Component_1

X at 45 Nodes

Y
 o

n
64

 E
le

m
en

ts

One−eighth symmetry model of a square

Figure 11.12 Temperatures on the square segment

0

1

2

3

4 0

1

2

3

4

5

5.5

6

6.5

7

7.5

8

8.5

Y

FEA Solution Component_1: 64 Elements, 45 Nodes

−−−−−−min

X

−−−−−−max

C
om

po
ne

nt
 1

 (
m

ax
 =

 8
.5

62
9,

 m
in

 =
 5

) One−eighth symmetry model of a square

Figure 11.13 Temperature carpet plot over the square

298 Finite Element Analysis with Error Estimators

0

1

2

3

4

0

1

2

3

4

0

2

4

6

8

10

12

14

16

X
Y

R
M

S
 F

lu
x

V
al

ue

FEA T3 Flux RMS Value: 64 Elements, 45 Nodes, (3 per Element)

0

1

2

3

4

0

1

2

3

4

0

2

4

6

8

10

12

14

16

Y

FEA T3 and SCP Flux RMS Value: 64 Elements, 45 Nodes, (3 per Element)

X

R
M

S
 F

lu
x

V
al

ue

Figure 11.14 Constant T3 fluxes and their SCP fit

0

1

2

3

4

0

1

2

3

4

0

2

4

6

8

10

12

14

16

−−−−min

Y

−−−−max
Average FEA SCP Flux RMS Value at the 45 Nodes (64 Elements)

X

R
M

S
 V

al
ue

 (
m

ax
 =

 1
5.

85
74

, m
in

 =
 0

.3
63

87
)

Figure 11.15 Details of the SCP continuous nodal fluxes

Chapter 11, Scalar fields 299

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

X; for 64 Elements

Y
; f

or
 4

5
N

od
es

FEA Element 2−D Flux Vectors at 64 Gauss Points, max = 14.745

 1 5 9

 13 17

 21

 25 29

 33

 37

 41

 45

 1
 1

3

 2
5

 3
7

 4
9

 6
1

One−eighth symmetry model of a square

Figure 11.16 Constant element flux vectors

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

X Coordinate at 45 Nodes

Y
 C

oo
rd

in
at

e
on

 6
4

E
le

m
en

ts

FEA Nodal SCP Averaged 2−D Flux Vectors, max = 15.8574

 1 5 9

 13 17

 21

 25 29

 33

 37

 41

 45

 1
 1

3

 2
5

 3
7

 4
9

 6
1

One−eighth symmetry model of a square

Figure 11.17 Averaged flux vector over the square

300 Finite Element Analysis with Error Estimators

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

80

100

120

140

160
180

200
220

X: 64 Elements (with 3 nodes)

Y
: 4

5
N

od
es

Smoothed FEA SCP Energy Norm Error Estimate Averaged at Nodes, % * 100

Figure 11.18 Contours of energy norm error

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

FE New Element Sizes: 64 Elements, 45 Nodes (3 per element)

Figure 11.19 Suggested maximum element sizes for new mesh

Chapter 11, Scalar fields 301

K
x
 = K

y
 = 1

Q = 0

t = 1L = 4

Y

X
a

b

a

b

1

3

2

4

1 2 4

3 5

6

qn
 =

 0

q
n
 = 2 q

n
 = 2

O
0
 = 0 O

0
 = 0

Figure 11.20 Square with two flux sides

title "T3 Conduction with given flux. Kwon example 5.4.1" ! 1
example 204 ! Application source code library numbe ! 2
b_rows 2 ! Number of rows in the B (operator) matrix ! 3
dof 1 ! Number of unknowns per node ! 4
el_nodes 3 ! Maximum number of nodes per element ! 5
elems 4 ! Number of elements in the system ! 6
gauss 1 ! Maximum number of quadrature points ! 7
nodes 6 ! Number of nodes in the mesh ! 8
space 2 ! Solution space dimension ! 9
el_homo ! Element properties are homogeneous !10
el_real 4 ! Number of real properties per element !11
loads ! An initial source vector is input !12
remarks 9 ! Number of user remarks, e.g. property names !13
end ! Terminate the keyword control, remarks follow !14
Kwon example 5.4.1, conduction with given flux. 6 <- q_n !15
K_x = K_y = 1, 0 = 6, K_xy = 0 / | <- q_n !16
L_1_4 = L_4_6 = 4, Thickness = 1 / | <- q_n !17
Edge 1_3_6 is insulated, so q_n = 0. /(4)| <- q_n !18
Edge 4_5_6 has q_n =2, per unit length. 3-----5 <- q_n !19
EBC on edge 1_2_4 is T = 0 / |(3)/| <- q_n !20
K_x T,xx + 2K_xy T,xy + K_y T,yy + Q = 0 / | / | <- q_n !21
Solution gives T_3 = 3, T_6 = 11. /(1)|/(2)| <- q_n !22
Edge 4_5_6 lumped flux = 2, 4, 2. 1----2----4 <- q_n !23

1 1 0. 0. ! node, ebc flag, x, y !24
2 1 2. 0. !25
3 0 2. 2. !26
4 1 4. 0. !27
5 0 4. 2. !28
6 0 4. 4. !29

1 1 2 3 ! elem, three nodes !30
2 2 4 5 !31
3 2 5 3 !32
4 3 5 6 !33
1 1 0. ! node, dof, value of EBC !34
2 1 0. !35
4 1 0. !36

1 1. 1. 0. 0. ! elem, K_x, K_y, K_xy, Q (homogeneous) !37
4 1 2.0 ! node, dof, lumped heat flux !38
5 1 4.0 ! node, dof, lumped heat flux !39
6 1 2.0 ! node, dof, lumped heat flux !40

Figure 11.21 Triangular region with an edge flux

302 Finite Element Analysis with Error Estimators

single type of element. But it is common to mix elements like triangles, quadrilaterals,

and line elements, so long as they hav e compatible edge interpolations. If we are going to

allow multiple types of elements to be mixed then we must be able to define the number

of nodes, shape, integration rule, properties, etc. for each. We will also split how we

think about their purpose. Most will simply be thought of as ‘standard elements’, while

others will exist to treat ’boundary flux segments’ or to treat ‘mixed (Robin) segment

regions’. Their nodal connectivities and properties will be input in that order. The

following examples will introduce some of the new free format keyword controls that

MODEL employs to distinguish between these element types and the amount of data the

user wishes to assign to each (if any). Table 11.1 lists most of the controls that can be

selected to define combinations of element types.

To extend the previous lumped flux example to one that uses the source in Fig. 11.7

we must modify the prior data to allow the combination of some conduction elements

with two flux boundary segment elements. The new controls and corresponding data are

given in Fig. 11.23. Since a constant normal flux is quite common a control option

normal_ flux (line 15) is made available to the user for assigning a value to a global

variable, Q_NORMAL_SEG, that can be used in application dependent arrays. Should

the normal flux data not be constant everywhere one could define a different constant on

each edge by using properties defined for each boundary segment (BS). The new data, in

Fig. 11.23, yield exactly the same temperature results as before. The keyword

segments 2 (line 14) caused the boundary integral calculations of Fig. 11.7 to be invoked,

and told the system that two segments needed to be read (at lines 38-39). Expanding the

mesh size to include 64 conduction triangles and 8 edge flux boundary segments yields

the mesh (note right side) and the temperatures of Figs. 11.24 and 25, respectively.

11.5.2 Face convection

Tw o-dimensional models that combine the conduction through an area with

convection from one or both of its faces often approximate cooling fins. We refer to such

regions (points, lines, or surfaces) as ‘mixed segments’ or Robin segments. For the linear

triangle it is again practical to write the matrices, defined in Eq. 11.11, in closed form and

they were given in Fig. 11.8 for constant data as:

(11.20)Sb

h
=

h
b
A

b

12

2

1

1

1

2

1

1

1

2

, Cb

h
=

hb A
bΘb

∞
3

1

1

1

.

Again, it is not uncommon for the convection data, h
b
, θ∞, to be constant. To allow for

that condition, two user keyword control options are provided: convect_coef and

convect_temp. The second one (the surrounding fluid temperature) defaults to zero.

They can be used to set the corresponding values of two global variables (with the same

names) for possible use in application dependent matrices, as was done in Fig. 11.8.

Should the mixed segment (MX) data not be constant everywhere one could define

different constants on each face by using properties defined for each mixed segment.

Chapter 11, Scalar fields 303

*** INITIAL FORCING VECTOR DATA *** ! 1
NODE PARAMETER VALUE EQUATION ! 2

4 1 2.00000E+00 4 ! 3
5 1 4.00000E+00 5 ! 4
6 1 2.00000E+00 6 ! 5

*** RESULTANTS *** ! 6
COMPONENT SUM POSITIVE NEGATIVE ! 7
IN_1, 8.0000E+00 8.0000E+00 0.0000E+00 ! 8

! 9
*** REACTION RECOVERY *** !10
NODE, PARAMETER, REACTION, EQUATION !11

1, DOF_1, 0.0000E+00 1 !12
2, DOF_1, -3.0000E+00 2 !13
4, DOF_1, -5.0000E+00 4 !14

REACTION RESULTANTS !15
PARAMETER, SUM POSITIVE NEGATIVE !16
DOF_1, -8.0000E+00 0.0000E+00 -8.0000E+00 !17

!18
*** OUTPUT OF RESULTS IN NODAL ORDER *** !19
NODE, X-Coord, Y-Coord, DOF_1, !20

1 0.0000E+00 0.0000E+00 0.0000E+00 !21
2 2.0000E+00 0.0000E+00 0.0000E+00 !22
3 2.0000E+00 2.0000E+00 3.0000E+00 !23
4 4.0000E+00 0.0000E+00 0.0000E+00 !24
5 4.0000E+00 2.0000E+00 6.0000E+00 !25
6 4.0000E+00 4.0000E+00 1.0000E+01 !26

Figure 11.22 Selected results for triangle with an edge flux

Table 11.1 Typical keywords for multiple element types

WORD, VALUES ! REMARKS [DEFAULT]
area_thick 1.5 ! Global thickness of 2-D domain [1]
el_segment 3 ! Maximum nodes on element boundary segment [0]
el_types 1 ! Number of different types of elements [1]
type_parm 2 1 ! Parametric space for each element type [d]
type_nodes 3 2 ! Number of analysis nodes for element types [2]
type_gauss 1 2 ! Number of Gauss points in each element type [0]

segments 1 ! Number of element segments with flux input [0]
normal_flux 5. ! Constant normal flux on all flux segments [0]
flux_thick 1.2 ! Thickness of all flux load lines or points [1]
seg_int 1 ! Number of integer properties per segment [0]
seg_pt_flux 1 ! Segment flux components input at flux nodes [1]
seg_real 3 ! Number of real properties per segment [0]
seg_thick 1.2 ! Thickness of all flux and mixed segments [1]

mixed_segs 1 ! Number of mixed boundary condition segments [0]
mixed_int 0 ! Number of integer properties per mixed_bc [0]
mixed_real 3 ! Number of real properties per mixed_bc [0]
convect_coef 1. ! Convection coefficient on all mixed segments [0]
convect_temp 1. ! Convection temperature on all mixed segments [0]
convect_thick 2. ! Thickness of all convection lines or points [1]
convect_vary ! Convection, different on all mixed segments [F]

type_shape 2 2 ! Shape code of each element type [1]
type_geom 3 2 ! Number of geometric nodes for type [type_nodes]

304 Finite Element Analysis with Error Estimators

title "T3 Conduction with given flux. Via flux elements" ! 1
example 204 ! Application source code library numbe ! 2
remarks 9 ! Number of user remarks, e.g. property names ! 3
b_rows 2 ! Number of rows in the B (operator) matrix ! 4
dof 1 ! Number of unknowns per node ! 5
elems 4 ! Number of elements in the system ! 6
nodes 6 ! Number of nodes in the mesh ! 7
space 2 ! Solution space dimension ! 8
el_homo ! Element properties are homogeneous ! 9
el_real 4 ! Number of real properties per element !10
el_types 2 ! Number of different types of elements !11
type_nodes 3 2 ! Number of analysis nodes for element types !12
type_shape 2 1 ! Shape code of each element type !13
segments 2 ! Number of element segments with flux input !14
normal_flux 2. ! Constant normal flux on all flux segments !15
el_segment 2 ! Maximum nodes on element boundary segment !16
no_error_est ! Do NOT compute SCP element error estimates !17
end ! Terminate keyword control input, remarks follow !18
Kwon example 5.4.1, conduction with given flux. 6 <- q_n !19
K_x = K_y = 1, 0 = 6, K_xy = 0 / | <- q_n !20
L_1_4 = L_4_6 = 4, Thickness = 1 / | <- q_n !21
Edge 1_3_6 is insulated, so q_n = 0. /(4)| <- q_n !22
Edge 4_5_6 has q_n =2, per unit length. 3-----5 <- q_n !23
EBC on edge 1_2_4 is T = 0 / |(3)/| <- q_n !24
K_x T,xx + 2K_xy T,xy + K_y T,yy + Q = 0 / | / | <- q_n !25
Solution gives T_3 = 3, T_6 = 11. /(1)|/(2)| <- q_n !26
Edges 4_5, 5_6 normal flux 1----2----4 <- q_n !27

1 1 0. 0. ! node, ebc flag, x, y !28
2 1 2. 0. !29
3 0 2. 2. !30
4 1 4. 0. !31
5 0 4. 2. !32
6 0 4. 4. ! last node !33

1 1 1 2 3 ! standard elem, el_type, three nodes !34
2 1 2 4 5 ! standard elem, el_type, three nodes !35
3 1 2 5 3 ! standard elem, el_type, three nodes !36
4 1 3 5 6 ! standard elem, el_type, three nodes !37
1 2 4 5 ! flux segment, el_type, two edge nodes !38
2 2 5 6 ! flux segment, el_type, two edge nodes !39
1 1 0. ! node, dof, value of EBC !40
2 1 0. ! node, dof, value of EBC !41
4 1 0. ! node, dof, value of EBC !42

1 1. 1. 0. 0. ! elem, K_x, K_y, K_xy, Q (homogeneous) !43

Figure 11.23 Combining edge flux segments with conduction

Chapter 11, Scalar fields 305

−1 0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

FE Mesh Geometry: 2 Types, 72 Elements, 45 Nodes

Flux line elements on the right side

Figure 11.24 Exploded conduction triangles and flux line segments

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0 0 0 0

2

4

6

8

10

Matlab Smoothed FEA Solution Component_1

X at 45 Nodes

Y
 o

n
72

 E
le

m
en

ts

Flux line elements on the right side

Figure 11.25 Temperatures from edge flux sources

306 Finite Element Analysis with Error Estimators

Fin

t = 1.25 mm
k = 0.2 W/mm C

h = 1e-5 W/mm2 C
T

air
 = 30 C

330 C 250 CWall

120 mm

160 mm

50 mm 60 mm

Conducting elements

1 3

2 4

1 3

2 4

Convecting elements

2

1 [3]

[4]

[bottom]

2

1

Figure 11.26 A cooling fin with air convection on its faces

As a simple example of a cooling fin we will consider the trapezoidal fin [2] given

in detail by Allaire. He used a two linear triangle model that had convection on the top

and bottom faces, and a linearly varying given temperature on the wall edge. The given

problem is shown in Fig. 11.26. The corresponding data to invoke the face convection

segments, as well as the standard conduction, are given in Fig. 11.27. The keyword

mixed_segs 4 (line 14) is one way to cause the convection calculations of Fig. 11.8 to be

invoked and the four sets of connectivity data to be read (lines 40-43). Tw o convecting

face elements were on top of the fin and two were on the bottom. The model is so crude

there is little precision in the temperatures in the selected output, which is given in

Fig. 11.28. That figure also shows the numerical values of the matrices from each

conducting and convecting element should the reader wish to verify their calculation.

The system reactions, on lines 46-52, are significant. They show that to maintain the

temperatures given in the two essential boundary conditions a total of 57.73 W of heat

must flow into the fin. Shortly, when we consider the post-processing calculation for the

convection heat loss we will find that exactly the same amount of heat flow is convected

aw ay. That is a reminder that a finite element is always flux conserving, when the fluxes

are calculated properly (contrary to a common misconception).

When numerical integration is used MODEL lists the flux at each quadrature point.

Here we have used a closed form expression for Se, but it corresponds to a one-point

integration rule (as seen in Table 9.3). The necessary flux data was saved for the centroid

of each element (in lines 17, 35, and 45 of Fig. 11.6). Then the nodal temperatures were

gathered and multiplied by − Ee Be to yield the flux vector qe = − Ee Be Te at the

point. If we try to use the element gradients (since the centroid is far from the boundary)

to estimate the heat flow we get about 40.3 W for 42 percent flux error. For a more

accurate heat loss calculation we would need to evaluate Eq. 7.37 by summing over each

convection (mixed) segment. Such a post-processing implementation for the linear

triangle convecting face is given in Fig. 11.29. The above flux recovery and the

convection losses are given in Fig. 11.30. There (in line 13) we see the convection loss

matches the thermal reactions of 57.73 W (line 52 of Fig. 11.28), as expected. The heat

balances and element heat flux vectors for this crude mesh are shown in Fig. 11.31.

Chapter 11, Scalar fields 307

title "Fin face convection, Allaire, Basics FEM p. 343-353 2T3" ! 1
example 204 ! Application source code library number ! 2
elems 2 ! Number of elements in the system ! 3
nodes 4 ! Number of nodes in the mesh ! 4
space 2 ! Solution space dimension ! 5
b_rows 2 ! Number of rows in the B (operator) matrix ! 6
dof 1 ! Number of unknowns per node ! 7
el_homo ! Element properties are homogeneous ! 8
el_real 5 ! Number of real properties per element ! 9
remarks 13 ! Number of user remarks, e.g. property names !10
convect_coef 1.e-5 ! Convection coefficient on all mixed segments !11
convect_temp 30 ! Convection temperature on all mixed segments !12
el_segment 3 ! Maximum nodes on element boundary segment !13
mixed_segs 4 ! Number of mixed boundary condition segments !14
el_types 2 ! Number of different types of elements !15
type_gauss 1 1 ! Number of Gauss points in each element type !16
type_nodes 3 3 ! Number of nodes on each element type !17
type_shape 2 2 ! Shape code of each element type !18
post_mixed ! Post-process mixed segments, create n_file2 !19
end ! Terminate the keyword control, remarks follow !20
Trapezoidal fin: 160 mm and 60 mm by 120 mm high (no edge conv.) !21
Units: x,y-mm, k-W/mm C, h-W/mmˆ2 C, t-C, Q-W/mmˆ3, q-W/mmˆ2 !22
Face convection uses constant convect_coef, convect_temp !23
Conduction: K_xx U,xx + 2K_xy U,xy + K_yy U,yy + Q = 0 !24
PROP(1) = CONDUCTIVITY K_XX, PROP(2) = CONDUCTIVITY K_YY !25
PROP(3) = CONDUCTIVITY K_XY, PROP(4) = SOURCE PER UNIT AREA !26
PROP(5) = THICKNESS (DEFAULT 1.0), here 1.25mm !27
Convection: -K_n * U,n = CONVECT_COEF (U - CONVECT_TEMP) !28
Optional mixed properties: 1=CONVECT_COEF, 2=CONVECT_TEMP !29
The conduction reaction total of 57.73 W is equal and opposite !30
to the convection loss integral of 57.73 W, (actual is about !31
57.66 W) BUT using element gradients gives 40.34 W for 42 % !32
flux error. (Reverse the signs on flux listings.) !33
1 1 0.0 0.0 ! node, bc-flag,x, y !34
3 1 160.0 0.0 !35
2 0 50.0 120.0 !36
4 0 110.0 120.0 !37

1 1 1 3 4 ! elem, el_type, 3 nodes. conducting !38
2 1 2 1 4 ! elem, el_type, 3 nodes. conducting !39
1 2 1 3 4 ! face, el_type, 3 nodes. convecting, top !40
2 2 2 1 4 ! face, el_type, 3 nodes. convecting, top !41
3 2 1 3 4 ! face, el_type, 3 nodes. convecting, bottom !42
4 2 2 1 4 ! face, el_type, 3 nodes. convecting, bottom !43

1 1 330. ! node, dof, value !44
3 1 250. ! node, dof, value !45

1 0.2 0.2 0.0 0.0 1.25 ! el, k_x, k_y, K_xy, Q, thick !46

Figure 11.27 Cooling fin element types data

308 Finite Element Analysis with Error Estimators

BEGINNING STANDARD ELEMENT ASSEMBLY (debug output) ! 1
S matrix: ! conduction ! 2
ROW/COL 1 2 3 ! 3

1 1.10E-01 -5.79E-02 -5.21E-02 ! 4
2 -5.79E-02 1.73E-01 -1.15E-01 ! 5
3 -5.21E-02 -1.15E-01 1.67E-01 ! 6

S matrix: ! conduction ! 7
ROW/COL 1 2 3 ! 8

1 4.60E-01 -1.15E-01 -3.45E-01 ! 9
2 -1.15E-01 6.25E-02 5.21E-02 !10
3 -3.45E-01 5.21E-02 2.93E-01 !11

BEGINNING MIXED_BC SEGMENTS ASSEMBLY !12
S matrix: ! convect top !13
ROW/COL 1 2 3 !14

1 1.60E-02 8.00E-03 8.00E-03 !15
2 8.00E-03 1.60E-02 8.00E-03 !16
3 8.00E-03 8.00E-03 1.60E-02 !17

C matrix: ! convect top !18
ROW/COL 1 2 3 !19

1 9.60E-01 9.60E-01 9.60E-01 !20
S matrix: ! convect top !21
ROW/COL 1 2 3 !22

1 6.00E-03 3.00E-03 3.00E-03 !23
2 3.00E-03 6.00E-03 3.00E-03 !24
3 3.00E-03 3.00E-03 6.00E-03 !25

C matrix: ! convect top !26
ROW/COL 1 2 3 !27

1 3.60E-01 3.60E-01 3.60E-01 !28
S matrix: ! convect bottom !29
ROW/COL 1 2 3 !30

1 1.60E-02 8.00E-03 8.00E-03 !31
2 8.00E-03 1.60E-02 8.00E-03 !32
3 8.00E-03 8.00E-03 1.60E-02 !33

C matrix: ! convect bottom !34
ROW/COL 1 2 3 !35

1 9.60E-01 9.60E-01 9.60E-01 !36
S matrix: ! convect bottom !37
ROW/COL 1 2 3 !38

1 6.00E-03 3.00E-03 3.00E-03 !39
2 3.00E-03 6.00E-03 3.00E-03 !40
3 3.00E-03 3.00E-03 6.00E-03 !41

C matrix: ! convect bottom !42
ROW/COL 1 2 3 !43

1 3.60E-01 3.60E-01 3.60E-01 !44
!45

*** REACTION RECOVERY *** !46
NODE, PARAMETER, REACTION, EQUATION !47

1, DOF_1, 3.9927E+01 1 !48
3, DOF_1, 1.7806E+01 3 !49

REACTION RESULTANTS !50
PARAMETER, SUM POSITIVE NEGATIVE !51
DOF_1, 5.7733E+01 5.7733E+01 0.0000E+00 !52

!53
*** OUTPUT OF RESULTS IN NODAL ORDER *** !54
NODE, X-Coord, Y-Coord, DOF_1, !55

1 0.0000E+00 0.0000E+00 3.3000E+02 !56
2 5.0000E+01 1.2000E+02 2.0556E+02 !57
3 1.6000E+02 0.0000E+00 2.5000E+02 !58
4 1.1000E+02 1.2000E+02 1.7817E+02 !59

Figure 11.28 Selected convecting fin results

Chapter 11, Scalar fields 309

! .. ! 1
! *** POST_PROCESS_MIXED PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! (Stored as application source example 204.) ! 4
! Global CONVECT_COEF set by keyword convect_coef is available ! 5
! Global CONVECT_TEMP set by keyword convect_temp is available ! 6
! H_INTG (LT_N) Integral of interpolation functions, H, available ! 7

! 8
! Linear triangle face convection heat loss recover ! 9

REAL(DP) :: X_I, X_J, X_K, Y_I, Y_J, Y_K ! Global coordinates !10
REAL(DP) :: A_I, A_J, A_K, B_I, B_J, B_K ! Standard geometry !11
REAL(DP) :: C_I, C_J, C_K, X_CG, Y_CG, TWO_A ! Standard geometry !12
REAL(DP), SAVE :: Q_LOSS, TOTAL ! Face and total heat loss !13

!14
LOGICAL, SAVE :: FIRST = .TRUE. ! printing !15

!16
IF (FIRST) THEN ! first call !17

FIRST = .FALSE. ; WRITE (6, 5) ! print headings !18
5 FORMAT (’*** CONVECTION HEAT LOSS ***’, /, & !19
& ’ELEMENT HEAT_LOST’) !20
TOTAL = 0.d0 !21

END IF ! first call !22
!23

! DEFINE NODAL COORDINATES, CCW: I, J, K !24
X_I = COORD (1,1) ; X_J = COORD (2,1) ; X_K = COORD (3,1) !25
Y_I = COORD (1,2) ; Y_J = COORD (2,2) ; Y_K = COORD (3,2) !26

!27
! GEOMETRIC PARAMETERS: H_I (X,Y) = (A_I + B_I*X + C_I*Y)/TWO_A !28

A_I = X_J * Y_K - X_K * Y_J ; B_I = Y_J - Y_K ; C_I = X_K - X_J !29
A_J = X_K * Y_I - X_I * Y_K ; B_J = Y_K - Y_I ; C_J = X_I - X_K !30
A_K = X_I * Y_J - X_J * Y_I ; B_K = Y_I - Y_J ; C_K = X_J - X_I !31

!32
! CALCULATE TWICE ELEMENT AREA !33

TWO_A = A_I + A_J + A_K ! = B_J*C_K - B_K*C_J also !34
!35

! HEAT LOST FROM THIS FACE: Integral over face of h * (T - T_inf) !36
H_INTG (1:3) = TWO_A / 6 ! Integral of H array !37
D (1:3) = D(1:3) - CONVECT_TEMP ! Temp difference at nodes !38
Q_LOSS = CONVECT_COEF * DOT_PRODUCT (H_INTG, D) ! Face loss !39
TOTAL = TOTAL + Q_LOSS ! Running total !40

!41
PRINT ’(I6, ES15.5)’, IE, Q_LOSS !42
IF (IE == N_MIXED) PRINT *, ’TOTAL = ’, TOTAL !43

! *** END POST_PROCESS_MIXED PROBLEM DEPENDENT STATEMENTS *** !44

Figure 11.29 Convecting mixed segment heat loss recovery

*** FLUX COMPONENTS AT ELEMENT INTEGRATION POINTS *** ! 1
ELEMENT, PT, X-Coord, Y-Coord, FLUX_1, FLUX_2 ! 2

1 1 9.0000E+01 4.0000E+01 1.2500E-01 2.0172E-01 ! 3
2 1 5.3333E+01 8.0000E+01 1.1412E-01 2.1169E-01 ! 4

! 5
*** CONVECTION HEAT LOSS *** ! 6
ELEMENT HEAT_LOST ! 7

1 2.13815E+01 ! 9
2 7.48482E+00 !10
3 2.13815E+01 !11
4 7.48482E+00 !12

TOTAL = 57.73267 <=== note <=== !13

Figure 11.30 Additional convecting fin results

310 Finite Element Analysis with Error Estimators

Reactions
(57.73 W)

Convection heat loss
(57.73 W)

[3]

[4]

[bottom]

2

1

39.93 W 17.81 W

0.202

W/mm2

0.212

W/mm2

0.125
W/mm2

0.114

W/mm2

21.38 W

21.38 W

7.48 W

7.48 W

Gradients:

Figure 11.31 A cooling fin heat balance

With the numerically integrated formulations we have the ability to use any number

of the linear, quadratic, and cubic elements in the MODEL library. We simply must

generate more data to improve the accuracy. Mesh generators are used for that purpose.

Here we will divide each edge with 5 nodes leading to a total of 25 nodes. Then we

could use 32 T3, 16 Q4, 8 T6, 4 Q9, or 2 T15 elements in the mesh. Here we will

graphically summarize the linear triangles and cubic quadrilateral results. The meshes,

temperature contours, and the smoothed heat flux vectors, from the SCP, are shown in

Fig. 11.32. The flux vectors should be parallel to the three outer edges since we assumed

them insulated. If we revised the data to include edge convection on those three edges we

would get more correct results, but they are so thin it probably is not worth the effort.

The fin temperature distribution is given as a surface in Fig. 11.33. There the dashed

vertical lines can be used with the left (z-axis) scale to obtain local nodal values.

The most important aspect of selecting various element types is assuring that the

proper number of quadrature points are selected for each element or segment shape and

polynomial degree. Here the conduction element integrand is a lower degree polynomial

than for the convection segment. For the T3 element we specified a 1 point rule for

conduction, and a 3 point rule for the convection matrix. The most important data

changes for this Q9 element calculation are given in Fig. 11.34, while selected output

results are in Fig. 11.35. In the latter we note that the conduction reactions and the

convection heat loss results are again equal and opposite (lines 26 and 57), but slightly

lower than in the very crude two element model.

Examining the energy norm error estimates for the linear triangle mesh in Fig. 11.32

(left) it exceeds 9 percent, as shown in Fig.11.36 so the projected mesh refinement is

obtained as illustrated in Fig. 11.37. Employing those suggested element sizes to create a

new mesh, with 215 T3 elements, one gets the temperature surface shown in Fig. 11.38.

Note that the minimum temperature has changed from about 210 C to about 203 C. Since

the surrounding air temperature is low (30 C) there is a corresponding reduction of total

convection heat loss to 55. 48 W. Of course, the essential boundary condition reactions

resultant is equal and opposite to that value. One might find these relatively small

changes in temperatures and heat flows to be enough to cease refining the solution.

Chapter 11, Scalar fields 311

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

X

Y

FE Mesh Geometry: 64 Elements, 25 Nodes

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20

 21 22 23 24 25

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

X

Y

FE Mesh Geometry: 8 Elements, 25 Nodes

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20

 21 22 23 24 25

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

220

240

260

280

300

320

340

Matlab Smoothed FEA Solution Component_1

X at 25 Nodes

Y
 o

n
64

 E
le

m
en

ts

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

220

240

260280

300

320340

Matlab Smoothed FEA Solution Component_1

X at 25 Nodes

Y
 o

n
8

E
le

m
en

ts

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

X Coordinate at 25 Nodes

Y
 C

oo
rd

in
at

e
on

 6
4

E
le

m
en

ts

FEA Nodal SCP Averaged 2−D Flux Vectors, max = 0.53326

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20

 21 22 23 24 25

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

X Coordinate at 25 Nodes

Y
 C

oo
rd

in
at

e
on

 8
 E

le
m

en
ts

FEA Nodal SCP Averaged 2−D Flux Vectors, max = 0.50161

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20

 21 22 23 24 25

Figure 11.32 Mesh, temperature, and smoothed flux vectors for the T3 and Q9 fin

312 Finite Element Analysis with Error Estimators

0

50

100

150

0
20

40
60

80
100

120

220

240

260

280

300

320

340

 21
 22

 16

 23

X Coordinates

 17

 24

 11

−−−−−−min 25

 18

 6

 12

 19

 1−−−−−−max

 13

FEA Solution Component_1: 4 Elements, 25 Nodes

 7

 20

 14

 2

 8

 15

Y Coordinates

 9

 3

 10

 4

 5

C
om

po
ne

nt
 1

 (
m

ax
 =

 3
50

, m
in

 =
 2

10
.0

2)

Figure 11.33 Carpet-graph of fin temperatures, for Q9 elements

title "Fin face convection, Allaire, Four Q9 elements" ! 1
example 209 ! Application source code library number ! 2
elems 4 ! Number of elements in the system ! 3
nodes 25 ! Number of nodes in the mesh ! 4
convect_coef 2.e-5 ! Convection coefficient on mixed segments ! 5
el_segment 9 ! Maximum nodes on element boundary segment ! 6
mixed_segs 4 ! Number of mixed boundary condition segments ! 7
type_gauss 9 16 ! Number of Gauss points in each element type ! 8
type_nodes 9 9 ! Number of nodes on each element type ! 9
type_shape 3 3 ! Shape code of each element type !10
. . . !11
Here h is doubled for two face convection on 4 segment. !12

1 1 0.0000 0.0000 ! node, bc-flag,x, y !13
2 1 40.0000 0.0000 !14

. . . !15
24 0 95.0000 120.0000 !16
25 0 110.0000 120.0000 ! last node !17

1 1 1 3 13 11 2 8 12 6 7 ! elem, type, 9 nodes. conducting !18
2 1 3 5 15 13 4 10 14 8 9 ! conducting !19
3 1 11 13 23 21 12 18 22 16 17 ! conducting !20
4 1 13 15 25 23 14 20 24 18 19 ! conducting !21
1 2 1 3 13 11 2 8 12 6 7 ! convecting !22
2 2 3 5 15 13 4 10 14 8 9 ! convecting !23
3 2 11 13 23 21 12 18 22 16 17 ! convecting !24
4 2 13 15 25 23 14 20 24 18 19 ! convecting !25

1 1 3.50000E+02 ! bc along wall !26
2 1 3.25000E+02 !27
3 1 3.00000E+02 !28
4 1 2.75000E+02 !29
5 1 2.50000E+02 !30

1 0.2 0.2 0.0 0.0 1.25 ! el, kx, ky, kxy, Q, thick !31

Figure 11.34 Data changes for the Q9 model

Chapter 11, Scalar fields 313

TITLE: "Fin face convection, Allaire, Four Q9 elements" ! 1
. . . ! 2
*** MIXED BOUNDARY CONDITION SEGMENTS *** ! 3
NOTE: CONSTANT CONVECTION ON ALL MIXED SEGMENTS USING ! 4
CONVECTION COEFFICIENT = 2.0000000000000002E-05 ! 5
CONVECTION TEMPERATURE = 30.0000000000000000 ! 6

SEGMENT, TYPE, 9 NODES ON THE SEGMENT ! 7
1 2 1 3 13 11 2 8 12 6 7 ! 8
2 2 3 5 15 13 4 10 14 8 9 ! 9
3 2 11 13 23 21 12 18 22 16 17 !10
4 2 13 15 25 23 14 20 24 18 19 !11

. . . !12
*** SYSTEM GEOMETRIC PROPERTIES *** !13

VOLUME = 1.32000E+04 !14
CENTROID = 8.00000E+01 5.09091E+01 !15
. . . !16
*** REACTION RECOVERY *** !17
NODE, PARAMETER, REACTION, EQUATION !18

1, DOF_1, 6.4546E+00 1 !19
2, DOF_1, 2.5437E+01 2 !20
3, DOF_1, 1.1474E+01 3 !21
4, DOF_1, 1.4669E+01 4 !22
5, DOF_1, -4.2698E-01 5 !23

REACTION RESULTANTS !24
PARAMETER, SUM POSITIVE NEGATIVE !25
DOF_1, 5.7608E+01 5.8035E+01 -4.2698E-01 !26

!27
*** EXTREME VALUES OF THE NODAL PARAMETERS *** !28
PARAMETER MAXIMUM, NODE MINIMUM, NODE !29
DOF_1, 3.5000E+02, 1 2.1002E+02, 25 !30

. . . !31
*** SUPER_CONVERGENT AVERAGED NODAL FLUXES *** !32

NODE, X-Coord, Y-Coord, FLUX_1, FLUX_2, !33
1 0.0000E+00 0.0000E+00 1.5958E-01 4.6654E-01 !34
2 4.0000E+01 0.0000E+00 1.5970E-01 4.7551E-01 !35
3 8.0000E+01 0.0000E+00 1.5709E-01 4.0524E-01 !36
4 1.2000E+02 0.0000E+00 1.5177E-01 2.5573E-01 !37
5 1.6000E+02 0.0000E+00 1.4372E-01 2.6974E-02 !38
6 1.2500E+01 3.0000E+01 1.3393E-01 3.6177E-01 !39
7 4.8396E+01 3.0000E+01 1.2167E-01 3.3147E-01 !40
8 8.0000E+01 3.0000E+01 9.6232E-02 2.8267E-01 !41

. . . !42
19 1.0340E+02 9.0000E+01 -4.2837E-03 7.5790E-02 !43
20 1.2250E+02 9.0000E+01 -3.3886E-02 7.8877E-02 !44
21 5.0000E+01 1.2000E+02 1.2224E-02 2.4631E-02 !45
22 6.5000E+01 1.2000E+02 1.3099E-02 1.1080E-02 !46
23 8.0000E+01 1.2000E+02 1.2498E-02 5.4736E-03 !47
24 9.5000E+01 1.2000E+02 1.0419E-02 7.8118E-03 !48
25 1.1000E+02 1.2000E+02 6.8624E-03 1.8095E-02 !49

!50
*** CONVECTION HEAT LOSS *** !51
ELEMENT HEAT_LOST !52

1 2.02094E+01 !53
2 1.79895E+01 !54
3 9.83119E+00 !55
4 9.57818E+00 !56

TOTAL = 57.6082 <=== note <=== !57

Figure 11.35 Selected cubic quadrilateral (Q9) fin results

314 Finite Element Analysis with Error Estimators

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

200

300
400

500

600
600

700
700

800
800

900

X: 64 Elements (with 3 nodes)

Y
: 2

5
N

od
es

Smoothed FEA SCP Energy Norm Error Estimate Averaged at Nodes, % * 100

Figure 11.36 Error norm levels for the 32 T3 model (max 9 percent)

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

X

Y

FE New Element Sizes: 64 Elements, 25 Nodes (3 per element)

Figure 11.37 First computed size changes for 32 T3 model

Chapter 11, Scalar fields 315

0

50

100

150

0

20

40

60

80

100

120

220

240

260

280

300

320

X

FEA Solution Component_1: 215 Elements, 128 Nodes, (3 per Element)

Y

C
om

po
ne

nt
 1

 (
m

ax
 =

 3
30

, m
in

 =
 2

02
.9

85
)

Figure 11.38 Temperature surface for revised T3 model

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

X

Y

FE New Element Sizes: 215 Elements, 128 Nodes (3 per element)

Figure 11.39 Second computed size changes for T3 model

316 Finite Element Analysis with Error Estimators

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

X for 1286 Elements with 3 nodes

Y

FE Mesh; 695 Nodes, 54 with BC or MPC Noted

Figure 11.40 Final mesh for T3 element model

However, that mesh still has more than a 2.2 percent error level so another mesh size

adjustment is computed. It is shown in Fig. 11.39 where again regions of high error

project the need for elements much smaller than the current mesh and some elements near

the free edge might be enlarged. The next stage of mesh generation creates a model with

695 nodes and 1286 T3 elements as shown in Fig. 11.40. One continues in this way until

an acceptable error estimate is obtained.

11.6 Bilinear rectangles *

When quadrilateral elements have a parallelogram shape in physical space, their

Jacobian is constant. If it takes the form of a rectangle with sides parallel to the global

axes, then the Jacobian matrix is a constant diagonal matrix that allows the easy analytic

evaluation of the element matrices. Consider a Q4 element mapped into a rectangular

element that is parallel to the global axes so that the lengths parallel to the x and y axes

are L x and L y, respectively. This mapping gives a constant Jacobian:

Chapter 11, Scalar fields 317

x = x + a L x / 2 ,

y = y + b L y / 2 ,

∂x

∂a
=

L x

2
,

∂y

∂a
= 0 ,

∂x

∂b
≡ 0 ,

∂y

∂b
=

L y

2
,

J = 1

2

L x

0

0

L y

, |J | =
L x L y

4
=

A
e

4
.

By inspection of the linear geometry mappings (or from the inverse Jacobian) we see

∂ / ∂x = ∂ / ∂a ∂a / ∂x = 2 / L x ∂ / ∂a, and likewise ∂ / ∂y = 2 / L y ∂ / ∂b so that the

typical term in the condition matrix due to k x is

(11.21)Sx i, j
=

4

L2
x Ωe

∫ k
e

x
Hi, a H j, a dΩ,

but d Ω = |J | d so that if k x is constant

Sx i, j
=

k
e

x
L

e

y

Le
x

∫ Hi, a H j, a d .

The interpolation functions are H j = (1 + a j a) (1 + b j b)/4, so that a typical local

derivative is H j, a = a j (1 + b j b)/4 and the integrand becomes

(11.22)Hi, a H j, a = ai a j

1 + (bi + b j) b + bi b j b
2

/16.

Invoking numerical integration in gives

Sx i, j
=

ai a j k
e

x
L

e

y

16 Le
x

Q

q=1
Σ

1 + (bi + b j) bq + bi b j b

2
q

wq.

Since this expression is quadratic in b, we need to pick only two points in the b direction.

Likewise, for similar terms in the Sy matrix, we need two points in the a direction. Using

the Q = 4 rule, we note that wq = 1 and is constant, and that two bq = 1 / √ 3, while two

are − 1 / √ 3. Thus, the linear terms cancel so that

(11.23)Sx i, j
=

ai a j k
e

x
L

e

y

12 Le
x

3 + bi b j

.

For the chosen local numbering, we have

j a j b j

1 −1 −1

2 1 −1

3 1 1

4 −1 1

so that the conduction matrix contributions are

318 Finite Element Analysis with Error Estimators

(11.24)Sx =
k

e

x
L

e

y

6 Le
x

2

−2

−1

1

− 2

2

1

−1

− 1

1

2

−2

1

− 1

−2

2

which agrees with the exact integration. Likewise, for a constant k
e

y
:

(11.25)Sy =
k

e

y
L

e

x

6 Le
y

2

1

−1

−2

1

2

− 2

−1

− 1

−2

2

1

−2

− 1

1

2

.

Note that the sum of the terms in each row and each column is zero. This is typical for

Lagrangian interpolation and serves as a useful visual check when doing hand

calculations. The typical convention square (capacity) matrix term is

(11.26)

M i, j =
Ωe

∫ ζ e
Hi H j d Ω

=
L

e

x
L

e

y

64
e

∫ ζ e(1 + ai a)(1 + a j a)(1 + bi b)(1 + b j b) d

so for constant ζ e per unit area

M i, j =
ζ e

L
e

x
L

e

y

64 ∫ [(1 + (ai + a j) a + ai a j a
2) (1 + (bi + b j) b + bi b j b

2)] d .

Again the four point rule is valid, and since aq = ± 1 / √ 3, the linear terms cancel. Since

wq ≡ 1, we get

M i, j =
ζ e

L
e

x
L

e

y

64
[4(1 + ai a j / 3) (1 + b j bi / 3)]

or

(11.27)M =
ζ e

L
e

x
L

e

y

36

4

2

1

2

2

4

2

1

1

2

4

2

2

1

2

4

.

In this last matrix the sum of all the terms in the square brackets is 36, which assures that

the total ‘mass’, ζ e
L

e

x
L

e

y
, is properly accounted for. This is true for Lagrangian

interpolation but not for Hermite elements. The edge boundary matrices are the same as

for the linear triangle, since both are linear along their edges.

11.7 General 2-d elements

If we select a higher order element such as the isoparametric quadrilateral then some

of the above integrations are more difficult to evaluate. In the notation of Chapter 9,

Eq. 9.32 with dx = ∂H / ∂x, etc. the conduction contribution becomes

Chapter 11, Scalar fields 319

(11.28)Se =
Ae

∫

k
e

x
de

T

x
de

x
+ k

e

y
de

T

y
de

y

t
e

dA =
Ae

∫ Be
T

Ee Be
t

e
dA.

If we allow for general quadrilaterals and/or curved sides then we will need numerical

integration. Thus, we write

(11.29)Se =
nq

i=1
Σ Wi J

ei (k
e

xi
de

T

xi
de

xi
+ k

e

yi
de

T

yi
de

yi
) t

e

i
.

Typically, we would place the conductivities, k
e

x
etc., in the constitutive matrix, Ee,

especially if they are fully anisotropic. In that case the integration is more clearly cast

into a form involving matrix products:

(11.30)Se =
nq

i=1
Σ Wi J

ei (Be
T

Ee Be) t
e

i
.

Similar expressions are available for the mass (or capacity) matrix and source vectors.

11.8 Numerically integrated arrays

The processes given above can be generalized to handle any curvilinear 1-, 2-, or

3-dimensional element by using general interpolation libraries, quadrature rule libraries,

and numerical integration. First we will consider the conduction matrix and volumetric

source vector as shown in Fig. 11.41 which accepts any of the elements in the MODEL

library. Next, we will sometimes have a known flux acting across the normal to a given

segment of the boundary. This is usually called a Neumann condition. It degenerates to a

natural boundary condition when the flux is zero because the integral of zero is zero and

there is no need to invoke the calculation. Since the flux can act normal to any segment

of the mesh the general differential geometry considerations, of Sec. 8.6, may come into

play. That requires a more general numerical integration process because the geometric

mappings are not always one to one. That is, the normal flux can occur on a doubly

curved 3-dimensional surface, a flat surface in the analysis plane, a curved edge, or

simply a point. Thus, a full and more expensive use of differential geometry replaces a

simple (one to one) Jacobian calculation shown before.

In this case only a column vector (that may degenerate to a scalar) must be

computed as given in Fig. 11.42. There, in line 26, the general parametric measure is

computed via function PARM_GEOM_METRIC (in Fig. 9.12) instead of the determinant

of the usual Jacobian matrix shown in previous examples. Of course, they giv e the same

results when the space mapping is one to one (straight line to straight line, or flat area to

flat area). Finally, we will consider a pair of mixed or Robin type of matrices. Here they

will represent heat convection data. This similar coding always also forms a square

matrix and a column vector (which may degenerate to scalars) as listed in Fig. 11.43. It

includes logic to identify either a globally constant set of convection data, or a different

set of convection constants on each segment. One could also allow the convection data to

be input as nodal properties if they vary over the segments but those details are omitted

here to save space. Again PARM_GEOM_METRIC, line 42, allows for a general non-

flat convection surface, or convection along a non-straight space curve.

320 Finite Element Analysis with Error Estimators

! .. ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! ANISOTROPIC POISSON EQUATION IN 1-, 2-, or 3-DIMENSIONS ! 4
! VIA NUMERICALLY INTEGRATED ELEMENTS ! 5
! (K_ij * U,i),j + Q = 0; 1 <= (i,j) <= N_SPACE ! 6
REAL(DP) :: CONST, DET, THICK ! integration ! 7
REAL(DP) :: SOURCE ! data ! 8
INTEGER :: IP ! loop counter ! 9

! (Stored as application source example 209.) !10
! Convection added in MIXED_SQ_MATRIX, known flux in SEG_COL_MATRIX !11

!12
! Conduction properties assumed, (order in GET_REAL_LP (n)): !13
! 1-D problem, K_xx, Q, Thickness !14
! 2-D problem, K_xx, K_yy, K_xy, Q, Thickness !15
! 3-D problem, K_xx, K_yy, K_zz, K_xy, K_xz, K_yz, Q !16

CALL POISSON_ANISOTROPIC_E_MATRIX (E) ! for 1-, 2-, or 3-D !17
!18

! CHECK FOR KEYWORD GLOBAL CONSTANTS: scalar_source & area_thick !19
SOURCE = 0 ; IF (SCALAR_SOURCE /= 0.d0) SOURCE = SCALAR_SOURCE !20
THICK = 1 ; IF (AREA_THICK /= 1.d0) THICK = AREA_THICK !21
IF (EL_REAL > 0) THEN ! Get local element constant values, !22

SELECT CASE (N_SPACE) ! for source or thickness !23
CASE (1) ; IF (EL_REAL > 1) SOURCE = GET_REAL_LP (2) !24

IF (EL_REAL > 2) THICK = GET_REAL_LP (3) !25
CASE (2) ; IF (EL_REAL > 3) SOURCE = GET_REAL_LP (4) !26

IF (EL_REAL > 4) THICK = GET_REAL_LP (5) !27
CASE (3) ; IF (EL_REAL > 6) SOURCE = GET_REAL_LP (7) !28

END SELECT ! for properties options !29
END IF ! element data provided !30

!31
CALL STORE_FLUX_POINT_COUNT ! Save LT_QP, for post-processing !32

!33
DO IP = 1, LT_QP ! NUMERICAL INTEGRATION LOOP !34

H = GET_H_AT_QP (IP) ! EVALUATE INTERPOLATION FUNCTIONS !35
XYZ = MATMUL (H, COORD) ! FIND GLOBAL PT, ISOPARAMETRIC !36
DLH = GET_DLH_AT_QP (IP) ! FIND LOCAL DERIVATIVES, dH / dr !37
AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE PT !38
CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) ! inverse !39
IF (AXISYMMETRIC) THICK = TWO_PI * XYZ (1) ! via axisymmetric !40
CONST = DET * WT(IP) * THICK !41

!42
DGH = MATMUL (AJ_INV, DLH) ! Physical gradient, dH / dx !43
B = COPY_DGH_INTO_B_MATRIX (DGH) ! B = DGH !44

!45
! VARIABLE VOLUMETRIC SOURCE, via keyword use_exact_source !46
! Defaults to file my_exact_source_inc if no exact_case key !47

IF (USE_EXACT_SOURCE) CALL & ! analytic Q !48
SELECT_EXACT_SOURCE (XYZ, SOURCE) ! via exact_case key !49

C = C + CONST * SOURCE * H ! source resultant !50
!51

! CONDUCTION SQUARE MATRIX (THICKNESS IN E) !52
S = S + CONST * MATMUL ((MATMUL (TRANSPOSE (B), E)), B) !53

!54
!--> SAVE COORDS, E AND DERIVATIVE MATRIX, FOR POST PROCESSING !55

CALL STORE_FLUX_POINT_DATA (XYZ, (E * THICK), B) !56
END DO !57

! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !58

Figure 11.41 The generalized volumetric contributions

Chapter 11, Scalar fields 321

! ... ! 1
! *** SEG_COL_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! ... ! 3
! Given normal flux on an element face or edge: ! 4
! Standard form: -K_n * U,n = Q_NORMAL_SEG (in System_Constants) ! 5
! (Stored as application source example 209.) ! 6
INTEGER :: IQ ! loops ! 7
REAL(DP) :: CONST, DET, THICK ! flux area ! 8
! Get normal flux from keyword, or segment property ! 9
IF (SEG_REAL > 0) Q_NORMAL_SEG= GET_REAL_SP (1) !10

!11
THICK = 1 ! Default flux line segment real property # 2 !12
IF (SEG_REAL > 1) THICK = GET_REAL_SP (2) !13

!14
IF (LT_N > 1) THEN ! Not a point value !15

!16
DO IQ = 1, LT_QP ! NUMERICAL INTEGRATION LOOP !17

!18
H = GET_H_AT_QP (IQ) ! BOUNDARY INTERPOLATION FUNCTIONS !19

! FIND GLOBAL COORD, XYZ = H*COORD (ISOPARAMETRIC) !20
XYZ = MATMUL (H, COORD) !21

! FIND LOCAL DERIVATIVES !22
DLH = GET_DLH_AT_QP (IQ) ! dH / dr !23

!24
! FORM DETERMINATE OF GENERALIZED JACOBIAN !25

DET = PARM_GEOM_METRIC (DLH, COORD) ! dX / dr !26
IF (AXISYMMETRIC) THICK = TWO_PI * XYZ (1) ! keyword !27
CONST = DET * WT(IQ) * THICK !28

!29
! GET NORMAL FLUX COMPONENT !30

IF (USE_EXACT_FLUX) CALL SELECT_EXACT_NORMAL_FLUX & !31
(XYZ, Q_NORMAL_SEG) ! via keyword use_exact_flux !32

C = C + Q_NORMAL_SEG * CONST * H ! Source vector !33
END DO !34

!35
ELSE ! This is a point value !36

!37
IF (USE_EXACT_FLUX) CALL SELECT_EXACT_NORMAL_FLUX & !38

(COORD (1, :), Q_NORMAL_SEG) ! via use_exact_flux !39
C (1) = Q_NORMAL_SEG !40

!41
END IF ! boundary segment type !42

! End application dependent flux 202.my_seg_col_inc_2 !43

Figure 11.42 Computing a Neumann flux contribution

If one wants to later recover the convection heat loss as a physical check or to better

understand the problem then the necessary integral of Hb is saved, in line 58, for later use

with the constant segment convection properties. Ke yword post_mixed is used in the

data to activate a file unit (N_FILE2) for these purposes. After a solution has been

obtained that keyword also causes the convection heat loss calculations, in Fig. 11.44, to

be carried out, as discussed in Eq. 7.37 and Section 11.5.2.

These numerically integrated forms for evaluating the matrices were applied to the

previous linear triangle examples and gav e exactly the same results as the explicit coded

forms in Figs. 11.6-8. A one-point rule was used in most cases but the face convection

square matrix required a three-point rule since it involved the product of two linear

functions, which resulted in the integrand being a quadratic polynomial. The quadrature

322 Finite Element Analysis with Error Estimators

based formulation allows for curved element boundaries or other reasonable varying

Jacobians. They allow use of any point, 1-, 2-, or 3-dimensional element in the library.

11.9 Strong diagonal gradient SCP test case

This problem is defined in terms of the Poisson equation where the solution has

been chosen in advance to give zero values on the boundary of a unit square and to

exhibit a relatively sharp transition of gradients along a region near the diagonal of the

square domain. This test case has been used by Oden 18 and Zienkiewicz and Zhu 23 for

testing various error estimators. The exact solution is given by

u(x, y) = xy(1 − x)(1 − y) Tan
−1(α (ξ − ξ 0))

where ξ = (x + y) / √ 2 with ξ 0 = 0. 8 and α = 20. The contours of the exact solution

are plotted in Fig. 11.45, and the corresponding exact gradient contours are in Fig. 11.46.

When it is substituted into Poisson’s equation the algebraic definition of the source term

per unit area, Q, is obtained and placed in routine to be used in the numerical integration

of the element matrices. Since the source term is rather complicated this represents a

case where one may want to have different subroutines for evaluating the element square

and column matrices since the latter requires more quadrature points than the former.

The initial mesh for this problem is a rather crude one consisting of 50 identical 6 noded

(complete quadratic) elements. They are shown in Fig. 11.47 along with the flags on the

boundary which indicate the nodes where the null essential boundary conditions were

applied. A crude mesh is chosen so that the reader can see the differences in the exact

and approximate solutions and verify that they are decreased as the model is later refined.

Usually we do not know the exact result and must rely on the computed error measures

when deciding to stop an analysis.

When the solution is computed with this mesh one gets the contour levels shown in

Fig. 11.48 which are compared to corresponding exact levels in Fig. 11.49. The wiggles

appearing in the contours provide an ‘eyeball’ check that indicates that the mesh is too

crude in this region and will need refining if it is an important part of the solution domain.

In this case the the region of wiggles is where the contours are the closest together which

means the solution is rapidly changing and the mesh is indeed too coarse to be accepted.

Of course, our error estimator will lead us to the same conclusion but it is still wise to

employ a little common sense along the way.

Post-processing for the gradients at the quadrature points of the elements yields the

distribution of flux vectors shown in Fig. 11.50. While we could compare contour values

of the gradient components it makes more sense in this case to use the true shape two-

dimensional flux vectors. Here the vectors represent the item obtained from Eq. 11.8 by

using a standard post-processing technique once the ΦΦe of the element have been

gathered from the system ΦΦ and multiplied by the matrices Ee Be at each quadrature

point in the element. They are the data that are processed in the SCP method to obtain

continuous nodal flux estimates.

In this case we have selected element based patches using all adjacent element

neighbors, as shown in Fig. 11.2. The resulting SCP nodal flux vectors are shown in

Chapter 11, Scalar fields 323

! *** MIXED_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 1
! .. ! 2
! Mixed or Robin boundary condition, Standard form: ! 3
! K_n * U,n + ROBIN_1_SEG * U + ROBIN_2_SEG = 0 ! 4
! (Stored as application source example 209.) ! 5
INTEGER :: IQ ! Integration loop ! 6
REAL(DP) :: CONST, DET, THICK ! face area ! 7

! 8
IF (N_FILE2 > 0) H_INTG = 0 ! via post_mixed to post-process ! 9

! GET ROBIN TERMS, IF GLOBAL CONSTANTS !10
! Set in keywords robin_square and robin_column, or via !11
! convect_coef, convect_temp for convection special case !12
THICK = 1.d0 ! if an edge !13
IF (CONVECTION) THEN ! constant convection all segments !14

ROBIN_1_SEG = CONVECT_COEF !15
ROBIN_2_SEG = -CONVECT_COEF * CONVECT_TEMP !16
IF (LT_PARM < 2) THICK = CONVECT_THICK ! point or line !17

END IF ! Globally constant convection !18
!19

! GET ROBIN TERMS, IF LOCAL SEGMENT CONSTANTS !20
IF (MIXED_REAL > 0) THEN ! are local data !21

IF (CONVECT_VARY) THEN ! data are coeff, temperature, thick !22
ROBIN_1_SEG = GET_REAL_MX (1) ! convection coeff !23
ROBIN_2_SEG = 0.d0 ! default temperature effect !24
IF (MIXED_REAL > 1) ROBIN_2_SEG = -ROBIN_1_SEG & !25

* GET_REAL_MX (2) ! coeff*temp !26
IF (MIXED_REAL > 2 .AND. LT_PARM < 2) THICK = GET_REAL_MX (3) !27

ELSE ! a non-convection Robin condition !28
ROBIN_1_SEG = GET_REAL_MX (1) ; ROBIN_2_SEG = 0.d0 !29
IF (MIXED_REAL > 1) ROBIN_2_SEG = GET_REAL_MX (2) !30
IF (MIXED_REAL > 2 .AND. LT_PARM < 2) THICK = GET_REAL_MX (3) !31

END IF ! convection or general Robin data !32
END IF ! local data !33

!34
IF (LT_N > 1) THEN ! Not a point, must integrate line or surf !35

DO IQ = 1, LT_QP ! NUMERICAL INTEGRATION LOOP !36
H = GET_H_AT_QP (IQ) ! BOUNDARY INTERPOLATION FUNCTIONS !37
XYZ = MATMUL (H, COORD) ! FIND GLOBAL COORD, (ISOPARAMETRIC) !38
DLH = GET_DLH_AT_QP (IQ) ! FIND LOCAL DERIVATIVES, dH / dr !39

!40
! FORM DETERMINATE OF GENERALIZED JACOBIAN, Fig 9.12 !41

DET = PARM_GEOM_METRIC (DLH, COORD) ! dX / dr !42
IF (AXISYMMETRIC) THICK = TWO_PI * XYZ (1) ! axisymmetric !43
CONST = DET * WT(IQ) * THICK !44
IF (N_FILE2 > 0) H_INTG = H_INTG + H * DET * WT(IQ) !45

!46
! FORM MIXED ARRAYS !47

S = S + ROBIN_1_SEG * CONST * OUTER_PRODUCT (H, H) ! Sq !48
C = C - ROBIN_2_SEG * CONST * H ! Source !49

END DO !50
!51

ELSE ! This is a point value !52
IF (AXISYMMETRIC) THICK = TWO_PI * COORD (1, 1) !53
S (1, 1) = ROBIN_1_SEG * THICK ; C (1) = -ROBIN_2_SEG * THICK !54
IF (N_FILE2 > 0) H_INTG = THICK ! actually area at pt, input !55

!56
END IF ! boundary segment type !57
IF (N_FILE2 > 0) WRITE (N_FILE2) H_INTG ! via post_mixed !58

! End mixed condition BC my_mixed_sq_inc !59

Figure 11.43 General Robin or convection contributions

324 Finite Element Analysis with Error Estimators

! .. ! 1
! *** POST_PROCESS_MIXED PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! (Stored as application source example 209.) ! 4
! Global CONVECT_COEF set by keyword convect_coeff is available ! 5
! Global CONVECT_TEMP set by keyword convect_temp is available ! 6
! H_INTG (LT_N) Integral of interpolation functions, H, available ! 7

! 8
! convection heat loss recovery ! 9
REAL(DP) :: THICK ! line width !10
REAL(DP), SAVE :: Q_LOSS, TOTAL = 0.d0 ! Face and total heat loss !11
LOGICAL, SAVE :: FIRST = .TRUE. ! printing !12

!13
IF (FIRST) THEN ! first call !14

FIRST = .FALSE. ; WRITE (6, 5) ! print headings !15
5 FORMAT (’*** CONVECTION HEAT LOSS ***’, /, & !16
& ’ELEMENT HEAT_LOST’) !17

END IF ! first call !18
!19

IF (N_FILE2 > 0) THEN ! H already integrated in MIXED SQ. !20
READ (N_FILE2) H_INTG ! via keyword post_mixed !21

ELSE !22
PRINT *,’WARNING: NEED post_mixed IN CONTROL’ !23
N_WARN = N_WARN + 1 !24
STOP ’POST_PROCESS_MIXED 208,209, or 302 DATA NOT SAVED’ !25

END IF ! H_INTG !26
!27

! GET ROBIN TERMS, IF GLOBAL CONSTANTS !28
! Set in keywords robin_square and robin_column, or via !29
! convect_coef, convect_temp for convection special case !30

THICK = 1.d0 ! if an edge !31
IF (CONVECTION) THEN ! constant convection all segments !32

! Then CONVECT_COEF, CONVECT_TEMP, CONVECT_THICK global !33
IF (LT_PARM < 2) THICK = CONVECT_THICK ! point or line !34

END IF ! Globally constant convection !35
!36

! GET ROBIN TERMS, IF LOCAL SEGMENT CONSTANTS !37
IF (MIXED_REAL > 0) THEN ! are local data !38

IF (CONVECT_VARY) THEN ! data: coeff, temperature, thick !39
CONVECT_COEF = GET_REAL_MX (1) ! convection coeff !40
CONVECT_TEMP = 0.d0 ! default temperature !41
IF (MIXED_REAL > 1) CONVECT_TEMP = GET_REAL_MX (2) ! temp !42
IF (MIXED_REAL > 2 .AND. LT_PARM < 2) THICK = GET_REAL_MX (3) !43

ELSE ! a non-convection Robin condition !44
PRINT *,’WARNING: NEED KEY convect_coef OR convect_vary ’ !45
N_WARN = N_WARN + 1 !46
STOP ’POST_PROCESS_MIXED 208,209, or 302 KEYWORD ERROR’ !47

END IF !48
END IF ! local data !49

!50
! HEAT LOST FROM THIS FACE: Integral over face of h * (T - T_inf) !51

D (1:LT_N) = D(1:LT_N) - CONVECT_TEMP ! Temp difference at nodes !52
Q_LOSS = CONVECT_COEF * DOT_PRODUCT (H_INTG, D) ! Face loss !53
IF (LT_PARM < 2) Q_LOSS = Q_LOSS * THICK ! line or point !54
TOTAL = TOTAL + Q_LOSS ! Running total !55
PRINT ’(I6, ES15.5)’, IE, Q_LOSS ! Each segment !56
IF (IE == N_MIXED) PRINT *, ’TOTAL = ’, TOTAL ! Last segment !57

! *** END POST_PROCESS_MIXED PROBLEM DEPENDENT STATEMENTS *** !58

Figure 11.44 General convection heat loss post-processing

Chapter 11, Scalar fields 325

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.06

−0.04

−0.02
0

0.02

0.04

0.06

X

Y

Strong Diagonal Exact Analytic Solution

Figure 11.45 Contours of the analytic solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gradient ∂u/∂x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gradient ∂u/∂y

Figure 11.46 Contours of the analytic gradient components

326 Finite Element Analysis with Error Estimators

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

X

Y

FE Mesh Geometry: 50 Elements, 121 Nodes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Strong Diagonal Test Poisson Equation

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

X

Y

FE Mesh; 50 Elements, 121 Nodes with BC or MPC Flags

−− 1 (1
)

−− 2 (1
)

−− 3 (1
)

−− 4 (1
)

−− 5 (1
)

−− 6 (1
)

−− 7 (1
)

−− 8 (1
)

−− 9 (1
)

−− 10 (1
)

−− 11 (1
)

−− 12 (1
)

−− 22 (1
)

−− 23 (1
)

−− 33 (1
)

−− 34 (1
)

−− 44 (1
)

−− 45 (1
)

−− 55 (1
)

−− 56 (1
)

−− 66 (1
)

−− 67 (1
)

−− 77 (1
)

−− 78 (1
)

−− 88 (1
)

−− 89 (1
)

−− 99 (1
)

−− 100 (1
)

−− 110 (1
)

−− 111 (1
)

−− 112 (1
)

−− 113 (1
)

−− 114 (1
)

−− 115 (1
)

−− 116 (1
)

−− 117 (1
)

−− 118 (1
)

−− 119 (1
)

−− 120 (1
)

−− 121 (1
)

Strong Diagonal Test Poisson Equation

Figure 11.47 Initial quadratic element mesh and Dirichlet nodes

Chapter 11, Scalar fields 327

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.06

−0.04

−0.02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.02

0.04

0.06

Matlab Smoothed FEA Solution Component_1

X at 121 Nodes

Y
 o

n
50

 E
le

m
en

ts

Strong Diagonal Test Poisson Equation

Figure 11.48 Initial finite element solution contours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.06

−0.04

−0.02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.02

0.04

0.06

Matlab Smoothed Exact Solution Component_1: 50 Elements, 121 Nodes

X

Y

Strong Diagonal Test Poisson Equation

Figure 11.49 Exact solution evaluated at the nodes (only)

328 Finite Element Analysis with Error Estimators

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X; for 50 Elements

Y
; f

or
 1

21
 N

od
es

FEA Element 2−D Flux Vectors at 300 Gauss Points, max = 0.93726

 1

 13

 25

 37

 49

 61

 73

 85

 97

 109

 121

 1

 1
1

 2
1

 3
1

 4
1

Strong Diagonal Test Poisson Equation

Figure 11.50 Initial element quadrature point flux vectors

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Coordinate at 121 Nodes

Y
 C

oo
rd

in
at

e
on

 5
0

E
le

m
en

ts

FEA Nodal SCP Averaged 2−D Flux Vectors, max = 0.5107

 1

 13

 25

 37

 49

 61

 73

 85

 97

 109

 121

Strong Diagonal Test Poisson Equation

Figure 11.51 Initial finite element SCP nodal flux vectors

Chapter 11, Scalar fields 329

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Coordinate at 121 Nodes

Y
 C

oo
rd

in
at

e
on

 5
0

E
le

m
en

ts

Exact Nodal 2−D Flux Vectors, max = 1.0175

 1

 13

 25

 37

 49

 61

 73

 85

 97

 109

 121

Strong Diagonal Test Poisson Equation

Figure 11.52 Exact nodal flux vectors

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

X: 50 Elements

Y
: 1

21
 N

od
es

Nodal 2−D Fluxes; Exact (solid, max = 1.0175) & FEA SCP (dash, max = 0.5107)

 1 7

 13 19

 25 31

 37 43

 49 55

 61

 67 73

 79 85

 91 97

 103 109

 115 121

 1

 6

 1
1

 1
6

 2
1

 2
6

 3
1

 3
6

 4
1

 4
6

Strong Diagonal Test Poisson Equation

Figure 11.53 Nodal SCP and exact nodal flux vectors

330 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200

400

400

600

600

600

600

800

1e+03

1.2e+03

1.2e+03

X: 50 Elements

Y
: 1

21
 N

od
es

Matlab Smoothed FEA SCP Energy Norm Error Estimate Averaged at Nodes, % * 100

Strong Diagonal Test Poisson Equation

Figure 11.54 Initial finite element energy norm error estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200

200

400

400

600

800

1e+03

1e+03

X: 50 Elements

Y
: 1

21
 N

od
es

Matlab Smoothed FEA Exact Energy Norm Error Averaged at Nodes, % * 100

Strong Diagonal Test Poisson Equation

Figure 11.55 Exact energy norm error estimate

Chapter 11, Scalar fields 331

Fig. 11.51. That figure represents the continuous nodal fluxes, a computed in Eqs. 2.45

and 6.1, that will be interpolated to serve as a way to define the flux error estimate at any

point in Eqs. 2.46 and 5.20. These vectors represent the results of the averaging obtained

from the SCP. They can be used in a typical post-processing activity and/or further

processed to yield an error indicator. If the error in the energy is to be computed then we

use the last version of Eqs. 5.16 and 6.3, but with σσ replaced with σσ *. The integrals are

carried out at the element level in a process similar to that used in formulating the

element matrices.

An important difference at this stage is that more quadrature points are probably

needed, because of the polynomial degree of P in Eq. 2.45 is of higher degree than the B

matrix, and this will require the computation of the standard flux estimate, Ee Be

j
ue,

rather than recovering the saved values of B that were used in the SCP averaging process.

That is an additional cost that must be paid to extend the SCP averaging process to an

error indicator.

The corresponding exact nodal flux vectors are given in Figs. 11.52. They are not

shown to the same scale. The crude mesh is estimating the maximum flux value to be

0.5107 versus a maximum of 1.0175 from the exact values. This is because the crude

mesh is spanning the diagonal region where the exact flux changes from very large to

very small fluxes. As we refine the mesh we expect these flux vectors to approach each

other. In Fig. 11.53 we see the error (magnitude and direction) in the continuous SCP

nodal fluxes and the exact nodal fluxes. In this case they are seen at the same scale. The

solid line gives the magnitude and direction of the exact vector, while the dashed line

gives the approximate vector. Wherever they are in agreement one should only be able to

see the solid line. They start from the same point where they were computed and each

ends with a dot instead of an arrowhead so as to reduce the clutter as the mesh is refined.

Here we see some vectors (along the horizontal, vertical and 45 degree diagonal) agree on

direction but still have significant differences in magnitudes. Most other vectors also

have large errors in directions. It is reassuring to see these differences vanish as the error

indicator gets smaller.

The comparison of the SCP energy norm error estimate and the exact error in the

energy norm is seen by examining Figs. 11.54 and 55. Even though they hav e slightly

different shapes it is reassuring that even with this crude mesh the SCP error estimating

process is giving very similar locations for the highest error. The SCP estimate is higher

than the exact values but we expect them to approach the same values as the mesh is

refined. The same two energy norm errors are represented as surfaces in Figs. 11.56 and

57. It is informative to see how the energy norm estimate we will compute compares to

the true error in the value of the solution variable, φφ . Those values are shown as contours

and a surface plot in Figs. 11.58 and 59, respectively. While representing a different

measure of error, with different units, both forms are showing the peak error occurring in

the same general regions. Note that the exact function error is zero on the (entire)

boundary where essential boundary conditions are applied while the exact and SCP

energy norm estimates of the error are not zero in those regions. It is common for energy

based error estimates to have their largest error in such regions. This suggests that while

the function values are accurate there the gradient is not. That is another reason why one

may want to use somewhat smaller element sizes near the boundaries.

332 Finite Element Analysis with Error Estimators

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

Y: 121 Nodes

Matlab Smoothed FEA SCP Average Nodal Energy Norm Error, % * 100

X

F
E

A
 S

C
P

 A
ve

ra
ge

 N
od

al
 E

rr
or

 E
st

, %
 *

 1
00

Strong Diagonal Test Poisson Equation

Figure 11.56 Surface of SCP energy norm error estimate

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10

12

Y: 121 Nodes

Matlab Smoothed FEA Average Nodal Exact Energy Norm Error, % * 100

X

F
E

A
 S

C
P

 A
ve

ra
ge

 N
od

al
 E

rr
or

 E
st

, %
 *

 1
00 Strong Diagonal Test Poisson Equation

Figure 11.57 Surface of exact energy norm error estimate

Chapter 11, Scalar fields 333

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.005

0.01
0.015

0.02

Matlab Smoothed Exact Error in Component_1: 50 Elements, 121 Nodes

X

Y

Strong Diagonal Test Poisson Equation

Figure 11.58 Contours of exact solution error at the nodes (only)

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

−0.005

0

0.005

0.01

0.015

0.02

0.025

Y

−−−−max

Matlab Smoothed Exact Error in Solution Component_1: 121 Nodes

X

−−−−min

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.0

24
38

2,
 m

in
 =

 0
)

Strong Diagonal Test Poisson Equation

Figure 11.59 Surface of exact solution error at the nodes (only)

334 Finite Element Analysis with Error Estimators

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

X on 50 Elements

Y
 a

t 1
21

 N
od

es

Estimated FEA SCP Element Error Norm Rank: Low = 1, High = 20

Error Norm % * 100: High = 4.0152, Low = 0.28036

−−−MIN

−−−MAX

1

1

2

2

3

2

4

6

4

5

2

2

3

3

8

9

10

12

7

11

2

3

9

8

15

15

18

20

7

12

6

4

12

10

20

18

11

11

7

5

5

4

11

7

12

7

5

7

3

3

Strong Diagonal Test Poisson Equation

Figure 11.60 Relative ranking of element error estimates

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

log (N), Equations

lo
g

(e
rr

or
)

 D
er

iv
at

iv
es

Strong Diagonal Test, T6, H−Adapt, Element Patches

Uniform h

Adapt h

Figure 11.61 Reduction in the error

Chapter 11, Scalar fields 335

The relative ranking of the error levels in the uniform mesh is given in Fig. 11.60.

The SCP error estimating process yields a refinement parameter that can be used to select

new element sizes that can be passed as input data into an automatic mesh generation

program such as that given by Huang and Usmani [10]. That process can be repeated to

develop a series of solutions that approach the specified level of acceptable error in the

energy norm. The number of equations involved in this series of meshes was 121, 223,

436, 757, and 1360, respectively. The reduction in the error norm is shown in Fig. 11.61

as a function of the number of equations solved. Note that to obtain the same error

reduction with a uniform mesh refinement would have required about 4000 unknowns

compared to the 1360 in the last mesh. For this problem all three choices for the type of

patch definition gav e the same error estimates and mesh refinements. The four such

meshes that followed from the initial uniform mesh are shown in Fig. 11.62.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

X

Y

FE Mesh Geometry: 100 Elements, 223 Nodes

 1

 12

 23

 34

 45

 56

 67

 78

 89

 100

 111

 122

 133

 144

 155

 166

 177

 188

 199

 210

 221

1

11

21

31

41

51

61

71

81

91

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

X

Y

FE Mesh Geometry: 205 Elements, 436 Nodes

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

X

Y

FE Mesh Geometry: 360 Elements, 757 Nodes

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

X

Y

FE Mesh Geometry: 657 Elements, 1360 Nodes

Figure 11.62 Strong diagonal example h-adaptive mesh stages

336 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

FE Mesh; 188 Elements, 219 Nodes with BC or MPC Noted

Figure 11.63 Quarter symmetry model of orthotropic conduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10

20

30

40

50

60

70

80

Matlab Smoothed FEA Solution Component_1 at 219 Nodes

X

Y

Orthotropic

Figure 11.64 Temperature, K x = 2, K y = 1. 237, Q = 1000

Chapter 11, Scalar fields 337

11.10 Orthotropic conduction

We hav e seen that the finite element method automatically includes the ability to

have directionally dependent (anisotropic) material properties. However we hav e not

illustrated how much such properties can influence a solution. Carslaw and Jaeger [5]

have giv en an exact infinite series solution for an orthotropic rectangular region

(exact_case 19) with a constant internal heat source, Q = 1000, and with a temperature

of zero around its edge. Consider a material that has thermal conductivity values of

K x = 2. 0, K y = 1. 2337, and K xy = 0. The problem has symmetry of the geometry,

boundary conditions, source term, and conductivities with respect to both the y-axis and

the x-axis. That is, one can employ a quarter symmetry model to study this problem. The

top right segment is shown with a mesh of Q4 quadrilateral elements in Fig. 11.63. It

also has asterisks marking those nodes with the null essential boundary conditions. For a

region that has full lengths of 2.0 and 1.0, in the x- and y-directions, respectively, the

analytic solution at the center point, (0, 0), is 83.72 degrees. The above mesh yielded a

corresponding value of 83.77 degrees. That differed significantly from the 70.31 degrees

that is computed if one assumes an isotropic material with a K = 1. 617 value which is

the average of the above orthotropic conductivities. Had the orthotropic conductivities

been reversed (largest in the y-direction) then the center temperature would be 60.13

degrees so we see about a 30 percent variation in the peak temperature as various

principal material directions are considered in our study. The temperature contours for

these three cases are shown in Figs. 11.64-66.

The exact flux vectors for the isotropic material are shown in Fig. 11.67. The FEA

vectors obtained from the SCP post-averaging look almost identical so they are not

plotted. To emphasize the difference between the FEA and exact fluxes the differences in

the two sets of vectors are shown in Fig. 11.68, to a different scale. The biggest

differences occur along the edges and symmetry planes and at the top right corner where

both flux vector components are approaching zero. We can see the magnitude of the heat

flow in the exact and SCP flux contour plots in Figs. 11.69 and 70, respectively. Even

with this crude mesh the agreement in the isotropic heat flow is quite good. Considering

the two orthotropic material choices we see that the heat flow changes relatively little, as

Figs. 11.71 and 72 illustrate. The difference between the exact energy norm error and the

SCP estimate is also quite close, as will be discussed in Chapter 12. The estimated new

mesh sizes do not change much here with the small deviations from isotropic properties.

The isotropic case suggests a relatively uniform mesh refinement as seen in the suggested

new grid in Fig. 11.73.

An interesting question is how well does the energy norm error estimate compare to

the exact energy norm error, and how does the exact energy norm error compare to the

exact error in the computed primary variable. We will illustrate the answers for the

orthotropic case where K x > K y. For this crude mesh there is little correlation between

the peak error in the solution value (Fig. 11.74) and the peak error in the energy norm.

Figures 11.75 and 76 show the exact and SCP estimated error as measured in the energy

norm. The agreement in both the relative location of the peak error and the values of the

local errors are unusually good.

338 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10

20
30

40

50

60

70

Matlab Smoothed FEA Solution Component_1 at 219 Nodes

X

Y

Isotropic with average K

Figure 11.65 Temperature, K x = K y = 1. 617, Q = 1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10

20

30

40

50

60

Matlab Smoothed FEA Solution Component_1 at 219 Nodes

X

Y

Reversed orthotropic

Figure 11.66 Temperature, K x = 1. 2337, K y = 2, Q = 1000

Chapter 11, Scalar fields 339

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X Coordinate at 219 Nodes (4 per Element)

Y
 C

oo
rd

in
at

e
on

 1
88

 E
le

m
en

ts

Exact Nodal 2−D Flux Vectors, max = 465.069 (at 29)

Figure 11.67 Exact isotropic heat flux vectors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X Coordinate at 219 Nodes (4 per Element)

Y
 C

oo
rd

in
at

e
on

 1
88

 E
le

m
en

ts

Difference in Exact and SCP Nodal 2−D Flux Vectors, max = 17.8667 (at 218)

Figure 11.68 Differences in exact and SCP average flux vectors

340 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50

50

100

100

150

150

200

200

250

250

300

300

350

350

400

450

X: 188 Elements

Y
: 2

19
 N

od
es

 (
4

pe
r

E
le

m
en

t)

Smoothed Exact Flux RMS Value

Kx == Ky

Figure 11.69 Exact isotropic heat flux value contours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50

50

100

100

150

150

200

200

250

250

300

300

350

350

400

450

X: 188 Elements

Y
: 2

19
 N

od
es

 (
4

pe
r

E
le

m
en

t)

Smoothed SCP Flux RMS Value

Figure 11.70 SCP averaged isotropic heat flux value contours

Chapter 11, Scalar fields 341

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50

50

100

100

150

150

200

200

250

250

300

300

350

350

400

400

450

X: 188 Elements

Y
: 2

19
 N

od
es

 (
4

pe
r

E
le

m
en

t)

Smoothed SCP Flux RMS Value

Kx > Ky

Figure 11.71 SCP averaged Kx > Ky heat flux value contours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50

50

100

100

150

150

200

200

250

250

300
350

400450

X: 188 Elements

Y
: 2

19
 N

od
es

 (
4

pe
r

E
le

m
en

t)

Smoothed SCP Flux RMS Value

Kx < Ky

Figure 11.72 SCP averaged Kx < Ky heat flux value contours

342 Finite Element Analysis with Error Estimators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

FE New Element Sizes: 188 Elements, 219 Nodes (4 per element)

Kx == Ky

Figure 11.73 Suggested new mesh for isotropic material

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

−0.02

−0.02

−0.02−0.02

−0.02

−0.02

0 0

0

0

0

0
0

0

0

0

0

0

0 0

0

0

0

0.02

0.02

0.02

0.02

0.02
0.02

0.02

0.02

0.04

0.04

0.04
0.04

0.04

0.06 0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.08

0.08

0.08

0.1

0.1

0.1

0.1

0.12

0.12

0.12

0.14

0.14

X: 219 Nodes

Y

Smoothed Exact Error in Solution Component_1

Figure 11.74 Exact error in the solution value, Kx < Ky

Chapter 11, Scalar fields 343

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

20 20

20

30

30

30

30

30

30

40

40

40

40

50
50

50

60 70

70

X: 188 Elements (with 4 nodes)

Y
: 2

19
 N

od
es

Smoothed Exact Energy Norm Error Averaged at Nodes, % * 100

Kx > Ky

Figure 11.75 Exact error in the energy norm, Kx > Ky

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

20 20

20

20

30

30

30

30

30

40

40

40

4050

50

50

60
70

70

X: 188 Elements (with 4 nodes)

Y
: 2

19
 N

od
es

Smoothed FEA SCP Energy Norm Error Estimate Averaged at Nodes, % * 100

Kx > Ky

Figure 11.76 SCP estimated error in the energy norm, Kx > Ky

344 Finite Element Analysis with Error Estimators

11.11 Axisymmetric conductions

For a general steady state orthotropic axisymmetric material we just recast the

governing differential equation, Eq. 11.2, into cylindrical coordinates:

1

r
kr

∂θ

∂r
+ kr

∂2θ

∂r2
+ kz

∂2θ

∂z2
+ Q = 0

or re-arranging

(11.31)
∂
∂r

(krr
∂θ

∂r
) +

∂
∂z

(kzr
∂θ

∂z
) + Q r = 0

Comparing this form to Eq. 11.2 we see that one difference is that one could

consider substituting the values (krr), (kzr), and (Q r) as modified conductivities and

source term in the previous formulation. That is, material constants would now become

spatially varying, but that is no problem to include in a numerically integrated version

like those given in the previous section. However, the change in coordinates also means

that we must change the differential volume dΩ, to 2π r dr dz. Some analysts like to use

a one radian segment rather than the full 2π body. When specifying resultant point (ring)

flux data you need to know which basis is being employed. Carrying out the usual

Galerkin process the integral definitions of the element and segment arrays are almost

identical to those in Eq.s 11.10-11, except that x and y are replaced by r and z,

respectively, while the differential volume and surface areas change from t
e
da and t

b
ds to

the corresponding axisymmetric measures of 2π r da and 2π r ds. Namely,

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

FE Mesh; 123 Elements, 276 Nodes with BC or MPC Noted

Sphere

Figure 11.77 Half sphere model and boundary condition nodes

Chapter 11, Scalar fields 345

title "Kreyszig unit sphere with EBC’ ! 1
exact_case 22 ! Exact analytic solution ! 2
axisymmetric ! Problem is axisymmetric, x radius, y C/L ! 3
b_rows 2 ! Number of rows in the B (operator) matrix ! 4
dof 1 ! Number of unknowns per node ! 5
el_nodes 6 ! Maximum number of nodes per element ! 6
elems 123 ! Number of elements in the system ! 7
gauss 7 ! Maximum number of quadrature points ! 8
nodes 276 ! Number of nodes in the mesh ! 9
shape 2 ! Element shape, 1=line, 2=tri, 3=quad, 4=hex !10
space 2 ! Solution space dimension !11
el_homo ! Element properties are homogeneous !12
el_real 4 ! Number of real properties per element !13
pt_list ! List the answers at each node point !14
list_exact ! List given exact answers at nodes, etc !15
save_new_mesh ! Save new element sizes for adaptive mesher !16
example 202 ! Source library example number !17
remarks 3 ! Number of user remarks, e.g. property names !18
end ! Terminate the keyword control inputs, remarks follow !19
The surface temperature BC is T=cosine(angle_from_Z)ˆ2 !10
so it varies from 1 to zero. R_max = 1 = Z_max. !21
T_exact=(Rˆ2 + Zˆ2)*(cos(ang)ˆ2 - third) + third !22

1 1 6.02683E-02 9.96354E-01 ! node bc_flag, R, Z !23
2 1 0.00000E+00 1.00000E+00 !24
3 0 3.95504E-02 9.55542E-01 !25
4 0 0.00000E+00 9.37500E-01 !26

... !27
271 0 7.98446E-01 7.32400E-02 ! node bc_flag, R, Z !28
272 0 8.75000E-01 0.00000E+00 !29
273 0 8.36723E-01 3.66200E-02 !30
274 0 7.50000E-01 0.00000E+00 !31
275 0 7.74223E-01 3.66200E-02 !32
276 0 8.12500E-01 0.00000E+00 ! last node !33

1 272 259 262 261 260 264 ! elem, 6 nodes !34
2 274 272 271 276 273 275 !35
3 268 274 271 270 275 269 !36
4 259 246 262 248 247 260 !37
5 265 274 268 267 270 266 !38

... !39
120 45 17 21 18 16 22 ! elem, 6 nodes !40
121 37 45 21 36 22 23 !41
122 33 21 10 20 11 12 !42
123 21 6 10 7 5 11 ! last elem !43

2 1 1.00000E+00 ! node, dof, exact bc value !44
1 1 9.93937E-01 !45
6 1 9.85471E-01 !46
8 1 9.65196E-01 !47

17 1 9.42728E-01 !48
19 1 9.09384E-01 !49
29 1 8.74255E-01 !50

... !51
201 1 8.94005E-02 ! node, dof, exact bc value !52
222 1 5.72720E-02 !53
224 1 3.35888E-02 !54
246 1 1.45291E-02 !55
248 1 4.84775E-03 !56
259 1 1.00000E+00 ! last EBC !57
1 1. 1. 0. 0. ! el kr kz krz Q (homogeneous elements) !58

Figure 11.78 Partial sphere input data

346 Finite Element Analysis with Error Estimators

TITLE: "Kreyszig unit sphere with EBC" ! 1
! 2

**** OPTIONS: (DEFAULT) VALUE **** ! 3
AXISYMMETRIC DOMAIN: 0=FALSE, 1=TRUE ..(0) 1 ! 4

! 5
*** SYSTEM GEOMETRIC PROPERTIES *** ! 6
VOLUME = 2.08676E+00 ! 7
CENTROID = 5.88333E-01 3.74543E-01 ! 8

! 9
*** OUTPUT OF RESULTS AND EXACT VALUES IN NODAL ORDER *** !10
NODE, Radius r, Axial z, DOF_1, EXACT1, !11

1 6.0268E-02 9.9635E-01 9.9394E-01 9.9394E-01 !12
2 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 !13
3 3.9550E-02 9.5554E-01 9.4152E-01 9.4152E-01 !14
4 0.0000E+00 9.3750E-01 9.1927E-01 9.1927E-01 !15
... !16

274 7.5000E-01 0.0000E+00 1.4583E-01 1.4583E-01 !17
275 7.7422E-01 3.6620E-02 1.3442E-01 1.3442E-01 !18
276 8.1250E-01 0.0000E+00 1.1328E-01 1.1328E-01 !19

!20
*** FLUX COMPONENTS AT ELEMENT INTEGRATION POINTS *** !21
ELEM, PT, Radius r, Axial z, FLUX_1, FLUX_2, !22

1 1 9.2269E-01 3.0937E-02 -3.5661E+00 2.3913E-01 !23
1 2 8.9095E-01 4.3634E-02 -3.3251E+00 3.2568E-01 !24
1 3 9.3485E-01 5.5422E-03 -3.6607E+00 4.3406E-02 !25
1 4 9.4226E-01 4.3634E-02 -3.7190E+00 3.4444E-01 !26
1 5 9.7651E-01 9.4004E-03 -3.9943E+00 7.6904E-02 !27
1 6 9.0206E-01 7.4009E-02 -3.4085E+00 5.5929E-01 !28
1 7 8.8949E-01 9.4004E-03 -3.3141E+00 7.0049E-02 !29
... !30

123 1 1.2462E-01 9.2829E-01 -6.5057E-02 9.6919E-01 !31
123 2 1.2630E-01 9.0186E-01 -6.6820E-02 9.5426E-01 !32
123 3 1.4331E-01 9.3536E-01 -8.6027E-02 1.1230E+00 !33
123 4 1.0426E-01 9.4767E-01 -4.5535E-02 8.2776E-01 !34
123 5 1.2178E-01 9.7314E-01 -6.2120E-02 9.9280E-01 !35
123 6 9.2934E-02 9.1631E-01 -3.6177E-02 7.1340E-01 !36
123 7 1.5916E-01 8.9544E-01 -1.0611E-01 1.1940E+00 !37

!38
*** SUPER_CONVERGENT AVERAGED NODAL FLUXES *** !39

NODE, Radius r, Axial z, FLUX_1, FLUX_2, !40
1 6.0268E-02 9.9635E-01 -1.5215E-02 5.0306E-01 !41
2 0.0000E+00 1.0000E+00 7.9862E-07 7.1783E-08 !42
3 3.9550E-02 9.5554E-01 -6.5518E-03 3.1661E-01 !43
4 0.0000E+00 9.3750E-01 1.1258E-07 2.2950E-08 !44
5 9.9819E-02 9.5190E-01 -4.1737E-02 7.9601E-01 !45
... !46

273 8.3672E-01 3.6620E-02 -2.9326E+00 2.5670E-01 !47
274 7.5000E-01 0.0000E+00 -2.3562E+00 2.4802E-08 !48
275 7.7422E-01 3.6620E-02 -2.5109E+00 2.3752E-01 !49
276 8.1250E-01 0.0000E+00 -2.7653E+00 4.2908E-09 !50

!51
MAXIMUM ELEMENT ENERGY ERROR OF 7.01E-01 OCCURS IN ELEM 8 !52
MAXIMUM ENERGY ERROR DENSITY OF 3.69E+00 OCCURS IN ELEM 63 !53

Figure 11.79 Selected sphere output results

Chapter 11, Scalar fields 347

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Y

−−−−−−max
FEA Solution Component_1: 123 Elements, 276 Nodes

−−−−−−min

X

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
, m

in
 =

 0
)

Sphere

Figure 11.80 Carpet plot of finite element temperature

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Y

−−−max
Exact Solution Component_1 at 276 Nodes (123 Elements)

−−−min

X

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
, m

in
 =

 0
)

Sphere

Figure 11.81 Carpet plot of exact temperature

348 Finite Element Analysis with Error Estimators

(11.32)Se =
Ae

∫ (ke

r
He

T

r
He

r
+ k

e

z
He

T

z
He

z
) 2π r da

Ce

Q
=

Ae

∫ He
T

Q
e2π r da

Sb

h
=

Γb

∫ h
bHb

T

Hb2π r ds, Cb

h
=

Γb

∫ θ b

∞h
bHb

T

2π r ds

Cb

q
=

Γb

∫ q
bHb

T

2π r ds

In other words we could use the previous formulations, but now require the

thickness to be t = 2π r at any point. Then we need to activate the option in the previous

numerical integration coding in Figs. 11.41-43 in the numerical integration loop, after

forming the Jacobian, such as:

IF (AXISYMMETRIC) THICK = TWO_PI * XYZ (1) ! via key axisymmetric !27

where TWO_PI is a global program parameter, and AXISYMMETRIC is a global logical

variable that is true only if the keyword axisymmetric appears in the control data. Then

the r coordinate is the first component of the coordinates of the point, XYZ (1).

As an axisymmetric heat transfer example we will consider the temperature of a

solid homogeneous unit sphere where the temperature on the surface is specified to be

unity at the north and south poles and decreases to zero at the equator. We employ a half-

symmetry model as shown in Fig. 11.77. The mesh was created by an automatic mesh

generator as the first step in an adaptive analysis. The mesh consists of quadratic

triangles with six nodes (the T6 element). They hav e curved edges where they

approximate the surface of the sphere. The conduction matrix involves the products of the

gradients (linear polynomials) and the radius, which is varying at least in a linear fashion

(for straight-sided elements) or quadratically in general. Thus the square matrix is at

least a cubic polynomial. From Table 9.3, a cubic polynomial requires four points. Near

the surface the Jacobian is not constant so a seven-point rule is used.

Portions of the input data are shown in Fig. 11.78 where the main new control item

is the keyword axisymmetric that flags the need for an extension of the integration rules

in forming the conduction matrix, and the domain geometry properties. The exact result

is known, exact_case 22, and is used for comparison purposes in the output list and plots.

The computed temperatures agree with the exact values to several significant figures.

Selected output results are given in Fig. 11.79. Note that the volume, provided as a data

checking aid, is in error by less than one percent. It is inexact because we have

approximated a circular arc by eight parabolic (three-noded) segments. Carpet plots of

the two solutions are given in Figs. 11.80-81. The error estimator, dev eloped previously,

suggests a new size for each element. They are plotted on top of the original mesh in

Fig. 11.82.

Chapter 11, Scalar fields 349

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

FE New Element Sizes: 123 Elements, 276 Nodes

Sphere

Figure 11.82 Element sizes for next mesh adaptation

zy

zx

x

y

z

x

y

T

G

O T

Figure 11.83 Torsion of a constant cross-section bar

L = 0.5

cm

L

Y

X

o = 0

a

b

a

b

1

3

2

4

1 2 4

3
5

6

G = 8e6 N/cm2

0 = 1.745e-4 rad/cm

o = 0

7 8

9 10 11 12

13

14 15

Figure 11.84 Torsion of a square shaft

350 Finite Element Analysis with Error Estimators

11.12 Torsion

Most finite element formulations of stress analysis problems employ an energy

formulation rather than beginning with the differential equations of equilibrium and

applying the Galerkin method. It has been shown that both approaches yield identically

the same element matrices. However, there are a few cases where a different approach is

also useful. One such method is to employ a stress function, Φ(x, y), whose derivatives

define the mechanical stresses that appear in the equation of equilibrium. This lets us

recast those equations into another set of differential equations, and boundary conditions

whose solution is known, or more easily computed. The approach illustrated here is only

valid for singly connected domains (cross-sections without holes). If holes exist in the

cross-section one must either use a different formulation or employ a numerical trick

where the hole interiors are crudely meshed and assigned a material with a shear

modulus, G, that is nearly zero. The case in point here is the torsion of a straight elastic

bar of arbitrary cross-sectional area, shown in Fig. 11.83. The bar is subjected to a

twisting moment, or torque, T , that causes an angle of twist per unit length of Θ. The

twist per unit length is assumed to be small compared to its value squared. Assuming the

stress function defined the shear stress components, in the cross-sectional plane, by

τ zx = ∂Φ / ∂y and τ zy = ∂Φ / ∂x. Then the governing differential equation is:

(11.33)
1

G

∂2Φ
∂x2

+
1

G

∂2Φ
∂y2

+ 2Θ = 0

in the domain of the cross-section, Ω with the essential boundary condition that Φ = 0 on

its boundary. In the above, G denotes the elastic shear modulus of the material. For a

homogeneous material we could usually divide by G but we wish to allow for non-

homogeneous bars so we must keep it with the differential operator. Based on the

previous chapter we recognize this as the Poisson equation. We previously defined how to

implement its solution by the finite element method. Here the terms just take on new

meaning and the post-processing will change. Before, the gradient vector components

were directly proportional to the heat flux vector. But here different signs are associated

with each component of the recovered gradient. Also the x component of stress is related

to the y component of the gradient, and vice versa. Another post-processing aspect is that

once the solution Φ is known its integral over the cross-section is related to the applied

torque causing the twist by
(11.34)T = 2

Ω
∫ ΦdΩ.

It turns out that these equations are related to another problem known as the ‘soap

film’ analogy. There we visualized a thin soap film inflated over the cross-sectional shape

by a constant pressure. Then the height of the soap film is proportional to the value of Φ.

Also, the slope of the soap film is proportional to the shear stress at the same point, but

the shear stress acts in a direction perpendicular to that slope. Finally, the volume under

the membrane is proportional to the applied torque. This lets us visualize the expected

results for the two common shapes of a circular and rectangular cross-section. For a

circular bar the shear stress is zero at the center and maximum and constant along its

circumference. The distribution of shear stress is more complicated for a rectangular

shape. It is also zero at the center point, but the maximum shear stress occurs at the two

Chapter 11, Scalar fields 351

title "TORSION OF A SQUARE BAR, 1/8 SYMMETRY, (4 ELEMS)" ! 1
nodes 15 ! Number of nodes in the mesh ! 2
elems 4 ! Number of elements in the system ! 3
dof 1 ! Number of unknowns per node ! 4
el_nodes 6 ! Maximum number of nodes per element ! 5
space 2 ! Solution space dimension ! 6
b_rows 2 ! Number of rows in the B (operator) matrix ! 7
shape 2 ! Element shape, 1=line, 2=tri, 3=quad, 4=hex ! 8
remarks 12 ! Number of user remarks ! 9
gauss 7 ! Maximum number of quadrature point !10
el_types 1 ! Number of different types of elements !11
el_real 1 ! Number of real properties per element !12
reals 1 ! Number of miscellaneous real properties !13
el_homo ! Element properties are homogeneous !14
example 205 ! Application source code library number !15
post_el ! Require post-processing, create n_file1 !16
quit ! keyword input, remarks follow !17
1 SEGERLIND, 2ND ED. EXAMPLE P. 102, U1=217, U2=159, U4=125, !18
2 AND T=21.9 VIA LINEAR ELEMENTS (T THEORY = 24.5). Keyword !19
3 post_el turns on the torque recovery and stress listing. !20
4 / 6 Torque, T, twice the solution !21
5 Mesh: / : integral is reported after the !22
6 14 15 integral reported after the !23
7 C/L / (3) : Here T=24.41 N-cm, and !24
8 | 4 -- 13 -- 5 U1=205.9, U2=160.3, U4=126.7 cm !25
9 | / : (4) / : !26
0 v 9 10 11 12 Max shear stress = 853.6 N/cmˆ2 !27
1 / (1) : / (2) : x=0.47 & y=0.025 cm (theory max !28
2 1-- 7 --- 2 --- 8 --- 3 <--- C/L value = 942 N/cmˆ2, @ 3) !29

1 0 0. 0. ! node, bc_flag, x, y (cm) !30
2 0 0.25 0. !31
3 1 0.5 0. !32
4 0 0.25 0.25 !33
5 1 0.5 0.25 !34
6 1 0.5 0.5 !35
7 0 0.125 0. !36
8 0 0.375 0. !37
9 0 0.125 0.125 !38

10 0 0.25 0.125 !39
11 0 0.375 0.125 !40
12 1 0.5 0.125 !41
13 0 0.375 0.25 !42
14 0 0.375 0.375 !43
15 1 0.5 0.375 !44

1 1 2 4 7 10 9 ! elem, six nodes !45
2 2 3 5 8 12 11 !46
3 4 5 6 13 15 14 !47
4 2 5 4 11 13 10 !48

3 1 0. ! node, dof, essential bc value !49
5 1 0. !50
6 1 0. !51

12 1 0. !52
15 1 0. !53
1 8.e6 ! elem, shear_modulus (homogeneous) N/cmˆ2 !54

1.745e-4 ! angle of twist (global) radians/cm !55

Figure 11.85 Data for the torsion model

352 Finite Element Analysis with Error Estimators

0

0.1

0.2

0.3

0.4

0.5 0
0.1

0.2
0.3

0.4
0.5

0

50

100

150

200

 6

 15

 14

 5

Y Coordinates

 13

 12

 4

FEA Solution Component_1: 4 Elements, 15 Nodes

 11

−−−−−−min 3

 10

 8

X Coordinates

 9

 2

 7

 1−−−−−−max

C
om

po
ne

nt
 1

 (
m

ax
 =

 2
05

.9
04

, m
in

 =
 0

)

Torsion of a Square

Figure 11.86 Stress function amplitude

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

0.5

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

X

Matlab Smoothed FEA SCP Average Nodal Energy Norm Error, % * 100

Y: 15 Nodes

F
E

A
 S

C
P

 A
ve

ra
ge

 N
od

al
 E

rr
or

 E
st

, %
 *

 1
00

Torsion of a Square

Figure 11.87 Estimated error in the solution

Chapter 11, Scalar fields 353

0 0.1 0.2 0.3 0.4 0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X; for 4 Elements

Y
; f

or
 1

5
N

od
es

FEA Torsional Shear Stress Vectors at 28 Gauss Points, max = 853.6002

 1 2 3

 4 5

 6

 7 8

 9 10 11 12

 13

 14 15

 1 2

 3

 4

Torsion of a Square

Figure 11.88 Shear stress vectors at the quadrature points

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X Coordinate at 15 Nodes

Y
 C

oo
rd

in
at

e
on

 4
 E

le
m

en
ts

FEA Nodal SCP Averaged Torsional Shear Stress Vectors, max = 927.784

 1 2 3

 4 5

 6

 7 8

 9 10 11 12

 13

 14 15

 1 2

 3

 4

Torsion of a Square

Figure 11.89 Shear stress vectors averaged at the nodes

354 Finite Element Analysis with Error Estimators

! ... ! 1
! ** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ** ! 2
! ... ! 3
! TORSION (POISSON EQUATION) OF TWO-DIMENSIONAL SHAPE ! 4
! (Stored as application source example number 205.) ! 5
REAL(DP), PARAMETER :: ZERO = 2 * TINY (1.d0) ! 6
REAL(DP) :: CONST, DET, SOURCE ! 7
INTEGER :: IP ! 8

! 1/G *(U,xx + U,yy) + Q = 0, Example 205, Q = 2*Twist_Angle ! 9
! Shear modulus = el real property 1 = GET_REAL_LP (1) !10
! Angle of twist = misc real property 1 = GET_REAL_MISC (1) !11

!12
!--> DEFINE ELEMENT PROPERTIES !13

CALL APPLICATION_E_MATRIX (IE, XYZ, E) ! diagonal 1/G !14
SOURCE = 2.d0 * GET_REAL_MISC (1) ! twice twist !15

!16
! STORE NUMBER OF POINTS FOR STRESS OR ERROR EST !17

CALL STORE_FLUX_POINT_COUNT ! Save LT_QP !18
!19

!--> NUMERICAL INTEGRATION LOOP !20
DO IP = 1, LT_QP !21

H = GET_H_AT_QP (IP) ! INTERPOLATION FUNCTIONS !22
XYZ = MATMUL (H, COORD) ! FIND POINT, ISOPARAMETRIC !23
DLH = GET_DLH_AT_QP (IP) ! FIND LOCAL DERIVATIVES !24
AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE PT !25

! FORM INVERSE AND DETERMINATE OF JACOBIAN !26
CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) !27
CONST = DET * WT(IP) !28

!29
! EVALUATE GLOBAL DERIVATIVES, B == DGH !30

DGH = MATMUL (AJ_INV, DLH) !31
CALL APPLICATION_B_MATRIX (DGH, XYZ, B) ! for error est !32

!33
! ELEMENT MATRICES: Stiffness, Source, Result integral !34

S = S + CONST * MATMUL ((MATMUL (TRANSPOSE (B), E)),B) !35
C = C + CONST * SOURCE * H ! source !36
H_INTG = H_INTG + H * CONST ! for solution integral !37

!38
!--> SAVE PT., E AND DERIVATIVES, FOR POST PROCESSING !39

CALL STORE_FLUX_POINT_DATA (XYZ, E, B) !40
END DO !41

!42
!--> SAVE INTEGRAL OF INTERPOLATION FUNCTIONS !43

IF (N_FILE1 > 0) WRITE (N_FILE1) H_INTG ! post_el keyword !44
! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !45

Figure 11.90 Element matrices for torsion

! .. ! 1
! ** POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS FOLLOW ** ! 2
! Given: INTEGER, INTENT(IN) :: N_FILE1, IE ! 3
! REAL(DP), INTENT(IN) :: COORD (LT_N, N_SPACE), D (LT_FREE) ! 4
! .. ! 5
! 2D TORSION: SHEAR STRESS & TORQUE, if keyword post_el is true ! 6
! (Stored as application source example number 205.) ! 7
LOGICAL, SAVE :: EACH = .false. ! list each or total ? ! 8

! 9
CALL LIST_ELEM_TORSION_STRESS (IE) !10
CALL LIST_ELEM_TORQUE_INTEGRAL (N_FILE1, IE, EACH) !11

Contains ! the local methods cited above, in next two figures !12

Figure 11.91 Encapsulating the element stress and torque recovery

Chapter 11, Scalar fields 355

midpoints of the shortest sides of the rectangle. If we want to consider the torsion of a

square bar then we could use the previous study of heat transfer of a square area with a

constant internal source. As noted in Fig. 11.84 one can use a one-eighth symmetry

model. From the analogy we expect the maximum shear stress to occur at point a.

Segerlind [22] presents a detailed solution of the torsion of a square bar shown in

Fig. 11.84. He used two linear triangles combined with one bilinear square element.

Here we will employ a slightly better mesh by employing four quadratic (six node)

triangles over the one-eighth symmetry region. The MODEL data file is shown in

Fig. 11.85. There the angle of twist per unit length is given in the last line because it is a

global (miscellaneous) property that applies to all elements. The shear modulus, G, is

given for each element to allow for applications involving bars of more than one material.

The computed stress function amplitude is shown in Fig. 11.86 and the corresponding

av erage error estimate is in Fig. 11.87. While the stress function may not be directly

useful the shear stress vectors in the plane can be obtained from the physical derivatives

and are shown at the quadrature points in Fig. 11.88, while their nodal average values are

given in Fig. 11.89. Our analogy and handbook equations cite the mid-point a as the

point of maximum shear stress. The handbook stress value is τ max = T /(1. 664L
3) where

T is the applied torque. The torque value is found by integrating the stress function in a

post-processing step and this gives T = 8(24. 41 Ncm) = 195. 3 Ncm. Thus the estimated

maximum shear stress is 938. 9 N /cm
2 and the finite element prediction, at node 3, is

927. 8 N /cm
2. The error of about one percent in the maximum stress for this crude mesh

is quite reasonable (the three linear element model gav e 11 percent error). In practice

however, we generally know the applied torque, T , and not the twist. Thus we have to

scale all these linear results to match the actual torque. For example, if the actual torque

was 250 Ncm we scale stress and twist angle by the ratio of Ttrue / T fea, or

250. /195. 3 = 1. 28 to get the true maximum shear stress of τ max = 1, 187. 7 N /cm
2, and a

true twist angle value of 0. 0002234 radians/cm.

To be able to use any element in the interpolation library the solution has been

implemented by numerical integration and the square matrix form is given in Fig. 11.90.

To hav e the option to recover the physical gradients for stress calculation those data were

saved to auxiliary storage in lines 18 and 40. Likewise, it is not unusual to need the

integral of the solution so the MODEL system sets aside storage for the integral of the

element interpolation functions, H, and calls it array H_INT. Line 44 of Fig. 11.90

allows for a user option to save those data for a later recovery of the torque, T . Keyword

post_el in line 16 of Fig. 11.85 activated that storage as well as its recovery later on. The

calculation of H_INT is quite cheap since H is already evaluated (at line 22) in the

quadrature loop. In the next chapter we will see that most stress analysis problems are

based on vector fields. Since data have been saved for post-processing we have supplied

an INCLUDE file, my_post_el_inc, that is accessed when that keyword is present. Since

two different recovery processes could be used we have included two special routines for

this torsion problem. One to get only the shear stresses and one for the torque. They

could be in a single code but it is best to use a modular programming style. The two

methods are ‘encapsulated’ within the post-processing ‘class’ by placing them after the

CONTAINS statement, as required by the language and noted in Fig. 11.91. The shear

stress and resultant torque calculations are given in Figs. 11.92 and 93, respectively.

356 Finite Element Analysis with Error Estimators

SUBROUTINE LIST_ELEM_TORSION_STRESS (IE) !16
! * !17
! LIST ELEMENT SHEAR STRESS AT QUADRATURE POINTS !18
! * !19
Use System_Constants ! for DP, N_R_B, N_SPACE, E, XYZ !20
Use Elem_Type_Data ! for LT_FREE, LT_N, D, DGH !21
IMPLICIT NONE !22
INTEGER, INTENT(IN) :: IE !23

! Global Arrays !24
REAL(DP) :: DGH (N_SPACE, LT_FREE), STRESS (N_R_B + 2), & !25

XYZ (N_SPACE), E (N_R_B, N_R_B) !26
!27

INTEGER, SAVE :: TEST_E, TEST_P, J, N_IP ! for max value !28
REAL(DP), SAVE :: DERIV_MAX = -HUGE(1.d0) ! for max value !29

!30
! VARIABLES: !31
! D = NODAL PARAMETERS ASSOCIATED WITH AN ELEMENT !32
! E = CONSTITUTIVE MATRIX !33
! DGH = GLOBAL DERIVATIVES INTERPOLATION FUNCTIONS !34
! IE = CURRENT ELEMENT NUMBER !35
! LT_N = NUMBER OF NODES PER ELEMENT !36
! LT_FREE = NUMBER OF DEGREES OF FREEDOM PER ELEMENT !37
! N_ELEMS = TOTAL NUMBER OF ELEMENTS !38
! N_R_B = NUMBER OF ROWS IN B AND E MATRICES !39
! N_SPACE = DIMENSION OF SPACE !40
! STRESS = STRESS OR GRADIENT VECTOR !41
! XYZ = SPACE COORDINATES AT A POINT !42

!43
!--> PRINT TITLES ON THE FIRST CALL !44

IF (IE == 1) THEN ; WRITE (N_PRT, 5) !45
5 FORMAT (/,’*** TORSIONAL SHEAR STRESSES ***’,/, & !46
’ ELEMENT, POINT, X Y ’, /, & !47
’ ELEMENT, TAU_ZX TAU_ZY TAU’, /) !48

END IF !49
!50

CALL READ_FLUX_POINT_COUNT (N_IP) ! NUMBER OF POINTS !51
!52

DO J = 1, N_IP ! QUADRATURE LOOP !53
CALL READ_FLUX_POINT_DATA (XYZ, E, B) ! RECOVER DATA !54

!55
! CALCULATE SHEAR STRESSES, STRESS = E*DGH*D !56

STRESS (1:N_R_B) = MATMUL (DGH, D) !57
STRESS (N_R_B+1) = SQRT (SUM (STRESS(1:N_R_B)**2)) !58

!59
!--> PRINT COORDINATES AND GRADIENT AT THE POINT !60

WRITE (N_PRT, 20) IE, J, XYZ !61
20 FORMAT (I7, I6, 3(1PE13.5)) !62
WRITE (N_PRT, 30) IE, STRESS(2), -STRESS(1), STRESS(3) !63
30 FORMAT (I7, 6X, 4(1PE13.5)) !64
IF (STRESS (N_R_B+1) > DERIV_MAX) THEN !65

DERIV_MAX = STRESS (N_R_B+1) ! maximum value !66
TEST_E = IE ; TEST_P = J ! maximum point !67

END IF !68
END DO ! integration !69

!--> ARE CALCULATIONS COMPLETE FOR ALL ELEMENTS !70
IF (IE == N_ELEMS) THEN ; WRITE (N_PRT, & !71

"(’LARGEST SHEAR STRESS = ’, 1PE13.5)") DERIV_MAX !72
WRITE (N_PRT, "(’ELEM =’, I6, ’, POINT = ’, I2)") & !73

TEST_E, TEST_P ; END IF ! LAST ELEMENT !74
END SUBROUTINE LIST_ELEM_TORSION_STRESS !75

Figure 11.92 Element shear stress recovery option

Chapter 11, Scalar fields 357

SUBROUTINE LIST_ELEM_TORQUE_INTEGRAL (N_FILE, IE, EACH) ! 78
! * ! 79
! LIST INTEGRAL OF TORQUE FROM H INTEGRAL, ON N_FILE ! 80
! * ! 81
Use System_Constants ! for DP ! 82
Use Elem_Type_Data ! for LT_FREE, LT_N, D, H_INTG ! 83
IMPLICIT NONE ! 84
INTEGER, INTENT(IN) :: N_FILE, IE ! source of data ! 85
LOGICAL, INTENT(IN) :: EACH ! list each ? ! 86

! 87
REAL(DP), SAVE :: VALUE, TOTAL ! integrals ! 88
REAL(DP) :: H_INTG (LT_FREE) ! 89
INTEGER :: EOF ! End_Of_File ! 90

! 91
! VARIABLES: ! 92
! D = NODAL PARAMETERS ASSOCIATED WITH ELEMENT ! 93
! EACH = TRUE IF ALL LISTED, ELSE JUST TOTAL ! 94
! H = SOLUTION INTERPOLATION FUNCTIONS ! 95
! H_INTG = INTEGRAL OF INTERPOLATION FUNCTIONS ! 96
! IE = CURRENT ELEMENT NUMBER ! 97
! LT_FREE = NUMBER OF DEGREES OF FREEDOM PER ELEMENT ! 98
! N_FILE = UNIT FOR POST SOLUTION MATRICES STORAGE ! 99

!100
!--> PRINT TITLES ON THE FIRST CALL AND INITIALIZE !101

IF (IE == 1) THEN ; TOTAL = 0.d0 !102
IF (EACH) WRITE (N_PRT, 5) ; 5 FORMAT & !103

(/,’** TORQUE INTEGRAL CONTRIBUTIONS **’,/, & !104
’ELEMENT TORQUE’) !105

END IF !106
IF (IE <= N_ELEMS) THEN ! ELEMENT RESULTS !107

READ (N_FILE, IOSTAT = EOF) H_INTG ! GET INTEGRAL !108
IF (EOF /= 0) THEN ; PRINT *, & !109

’LIST_ELEM_TORQUE_INTEGRAL EOF AT ELEMENT ’, IE !110
STOP ’ERROR, EOF IN LIST_ELEM_TORQUE_INTEGRAL’ !111

END IF ! MISSING DATA !112
!113

!--> CALCULATE ELEMENT CONTRIBUTION, VALUE = H_INTG*D !114
VALUE = DOT_PRODUCT (H_INTG, D) * 2.d0 !115
TOTAL = TOTAL + VALUE !116
IF (EACH) WRITE (N_PRT, ’(I7, 1PE18.6)’) IE, VALUE !117
IF (IE == N_ELEMS) WRITE (N_PRT, & !118

"(’TOTAL TORQUE INTEGRAL = ’, 1PE16.6, /)") TOTAL !119
END IF !120

END SUBROUTINE LIST_ELEM_TORQUE_INTEGRAL !121

Figure 11.93 Element torque recovery option

n

q

u

v

q
n
 > 0

q
n
 < 0

q
n
 = 0

Figure 11.94 Defining potential flow terms

358 Finite Element Analysis with Error Estimators

11.13 Introduction to linear flows

There are several classes of linear flow models that can be cast as a finite element

model. Other flows are highly nonlinear and require much more advanced finite element

methods and nonlinear equation solvers. Probably the most common example is the

solution of the Navier-Stokes equations for fluid flow. There are several successful finite

element formulations of computational fluid dynamics (CFD). Since they are nonlinear

and require an iterative solution several implementations begin with a linear flow

approximation that satisfies the continuity equation (mass conservation). Thus, there

continues to be a need to have efficient linear flow models. Linear flow problems include

a wide range of applications like potential flow, flow through porous media, lubrication

flow, creeping viscous flows, all of which are elliptic in nature, and other classes like

transonic potential flow that changes from elliptic to hyperbolic in nature as the Mach

number increases. The subsonic flow of an ideal gas reduces to a nonlinear Poisson

equation but it is often reduced to a linearized theory that gives a near singular Laplace

equation usually known as the Prandl-Glauert equation. Here we will review some of the

common examples of linear flows solved by finite element methods.

11.14 Potential flow

A common class of problem which can be formulated in terms of the Poisson

equation is that of potential flow of ideal fluids. That is, we wish to model an invisid,

irrotational, incompressible, steady state flow. Potential flow can be formulated in terms

of the velocity potential, φ , or the stream function, ψ . The latter sometimes yields

simpler boundary conditions, but φ will be utilized here since it can be easily extended to

three dimensions while the stream function is quite difficult to generalize to three

dimensions. For the velocity potential formulation the diffusion coefficients, K x and K y,

become the fluid mass density, which is assumed to be constant. The source term, G,

represents a source or sink term and is usually zero. In that common case the constant

density term could be divided out so that the problem of potential flow is often presented

as a solution of Laplace’s equation rather than the Poisson equation. However, there are

practical applications that merit retaining the Poisson form. The governing equation is

(11.35)ρ (
∂2φ

∂x2
+

∂2φ

∂y2
) = Q,

where Q is a source or sink. The velocity potential, φ is usually of secondary interest and

the analyst generally requires information on the velocity components. They are defined

by the global derivatives of φ :

(11.36)u ≡
∂φ

∂x
, v ≡

∂φ

∂y

where u and v denote the x- and y-components of the velocity vector, q, in the plane of

analysis, as shown in Fig. 11.94. Thus, although the program will yield the nodal values

of φ one must also calculate the above global derivatives. This can be done economically

since these derivative quantities must be generated at each quadrature point during

construction of the element square matrix, S. Hence, one can simply store this derivative

information, i.e., matrix DGH, and retrieve it later for calculating the global derivatives

Chapter 11, Scalar fields 359

Anti-symmetry

Symmetry
U

q
n
 = - U

o = 0

Figure 11.95 Typical potential flow boundary condition considerations

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

X; for 4 Elements

Y
; f

or
 2

1
N

od
es

FEA Element 2−D Flux Vectors at 16 Gauss Points, max = 5

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 1

 2

 3

 4

Potential flow, uniform flow patch test

Figure 11.96 A uniform potential flow patch test

of φ . Another item of interest in Fig. 11.94 is the normal boundary flow into or out of the

domain, qn = ∂φ / ∂n. The natural boundary condition is zero flux which represents an

impervious wall. The use of these items to establish the boundary conditions in a simple

360 Finite Element Analysis with Error Estimators

flow domain is illustrated in Fig. 11.95. There on the vertical line of anti-symmetry we

see that the vertical component of velocity, v, will be zero so ∂φ / ∂y = 0 along the line

of x constant, so we can set φ to an arbitrary constant.

11.14.1 Patch Test

We wish to test this Poisson equation solver by running a patch test. Originally

based on engineering judgement, the patch test has been proven to be a mathematically

valid convergence test [13, 14]. Consider a patch (or sub-assembly) of finite elements

containing at least one internal node. An internal node is one completely surrounded by

elements. Let the problem be formulated by an integral statement containing derivatives

of order n. Assume an arbitrary function, P(x), whose n
th order derivatives are constant.

Use this function to prescribe the dependent variable on all external nodes of the patch

(i.e., φ e = P(xe)). Solve for the internal nodal values of the dependent variable, φ I , and

its n
th order derivatives in each element. To be a convergent formulation:

1. The internal nodal values must agree with the assumed function evaluated at the

internal points (i.e., φ I = P(x I)?); and

2. The calculated n
th order derivatives must agree with the assumed constant values. In

this application that means that all the velocity vectors are identical. Clearly that

represents some inclined uniform flow state, as seen in Fig. 11.96.

It has been found that some non-conforming elements will yield convergent

solutions for only one particular mesh pattern. The patch mesh should be completely

arbitrary for a valid numerical test. The patch test is very important from the engineering

point of view since it can be executed numerically. Thus, one obtains a numerical check

of the entire program used to formulate the patch test.

The patch of four elements shown in Fig. 11.96 was utilized. It was assumed that

the exact solution everywhere was

(11.37)φ (x, y) ≡ 1 + 3x − 4y

such that the derivatives φ ,x = 3, φ ,y = − 4 are constant everywhere. All 16 points on

the exterior boundary were assigned values by substituting their coordinates into the Eq.

11.37. That is, the boundary conditions that φ 1 ≡ φ (x1, y1), etc., were applied on the

exterior boundary. Then the problem was solved numerically to determine the value of φ

at all of the interior points (7, 10, 11, 12, 15) and the values of its global derivatives at

each integration point. The output results of this patch test are shown in Fig. 11.97. The

output shows clearly that the global derivatives at all integration points have the assumed

constant values. It is also easily verified that all the interior nodal values of φ are in exact

agreement with the assumed form. Thus, the patch test is satisfied and the subroutines

pass a necessary numerical test. It is also reassuring that the error estimator indicates that

ev en this crude mesh does not need refinement.

Chapter 11, Scalar fields 361

TITLE: "Potential flow patch test, uniform flow" ! 1
! 2

*** REACTION RESULTANTS *** ! 3
PARAMETER, SUM POSITIVE NEGATIVE ! 4
DOF_1, 3.5527E-15 2.6000E+01 -2.6000E+01 ! 5

! 6
*** OUTPUT OF RESULTS IN NODAL ORDER *** ! 7

NODE, X-Coord, Y-Coord, DOF_1, ! 8
1 0.0000E+00 0.0000E+00 1.0000E+00 ! 9

. . . !10
7 1.0000E+00 2.0000E+00 -4.0000E+00 !11
8 1.0000E+00 4.0000E+00 -1.2000E+01 !12
9 2.0000E+00 0.0000E+00 7.0000E+00 !13

10 2.0000E+00 1.0000E+00 3.0000E+00 !14
11 2.0000E+00 2.0000E+00 -1.0000E+00 !15
12 2.0000E+00 3.0000E+00 -5.0000E+00 !16
13 2.0000E+00 4.0000E+00 -9.0000E+00 !17
14 3.0000E+00 0.0000E+00 1.0000E+01 !18
15 3.0000E+00 2.0000E+00 2.0000E+00 !19

. . . !20
21 4.0000E+00 4.0000E+00 -3.0000E+00 !21

!22
*** FLUX COMPONENTS AT ELEMENT INTEGRATION POINTS *** !23
ELEMENT, PT, X-Coord, Y-Coord, FLUX_1, FLUX_2, !24

1 1 4.2265E-1 4.2265E-1 3.0000E+0 -4.0000E+0 !25
1 2 1.5774E+0 4.2265E-1 3.0000E+0 -4.0000E+0 !26
1 3 4.2265E-1 1.5774E+0 3.0000E+0 -4.0000E+0 !27
1 4 1.5774E+0 1.5774E+0 3.0000E+0 -4.0000E+0 !28

. . . !29
4 1 2.4226E+0 2.4226E+0 3.0000E+0 -4.0000E+0 !30
4 2 3.5774E+0 2.4226E+0 3.0000E+0 -4.0000E+0 !31
4 3 2.4226E+0 3.5774E+0 3.0000E+0 -4.0000E+0 !32
4 4 3.5774E+0 3.5774E+0 3.0000E+0 -4.0000E+0 !33

!34
*** SUPER_CONVERGENT AVERAGED NODAL FLUXES *** !35
NODE, X-Coord, Y-Coord, FLUX_1, FLUX_2, !36

1 0.0000E+00 0.0000E+00 3.0000E+00 -4.0000E+00 !37
7 1.0000E+00 2.0000E+00 3.0000E+00 -4.0000E+00 !38
. . . !39
8 1.0000E+00 4.0000E+00 3.0000E+00 -4.0000E+00 !40
9 2.0000E+00 0.0000E+00 3.0000E+00 -4.0000E+00 !41
10 2.0000E+00 1.0000E+00 3.0000E+00 -4.0000E+00 !42
11 2.0000E+00 2.0000E+00 3.0000E+00 -4.0000E+00 !43
12 2.0000E+00 3.0000E+00 3.0000E+00 -4.0000E+00 !44
13 2.0000E+00 4.0000E+00 3.0000E+00 -4.0000E+00 !45
14 3.0000E+00 0.0000E+00 3.0000E+00 -4.0000E+00 !46
15 3.0000E+00 2.0000E+00 3.0000E+00 -4.0000E+00 !47
. . . !48
21 4.0000E+00 4.0000E+00 3.0000E+00 -4.0000E+00 !49

!50
*** S_C_P ENERGY NORM ERROR ESTIMATE DATA *** !51

ERROR IN % ERROR IN REFINEMENT !52
ELEMENT, ENERGY_NORM, ENERGY_NORM, PARAMETER !53

1 4.5626E-15 2.2813E-14 4.5626E-14 !54
2 7.2788E-15 3.6394E-14 7.2788E-14 !55
3 6.5704E-15 3.2852E-14 6.5704E-14 !56
4 8.2159E-15 4.1080E-14 8.2159E-14 !57

Figure 11.97 Numerical results from standard patch test

362 Finite Element Analysis with Error Estimators

0 1 2 3 4 5 6 7 8

−1

0

1

2

3

4

5

X

Y

FE New Element Sizes: 156 Elements, 177 Nodes (4 per element)

Figure 11.98 Initial cylinder flow mesh with suggested refinements

0 1 2 3 4 5 6 7 8

−1

0

1

2

3

4

5

X

Y

FE New Element Sizes: 385 Elements, 423 Nodes (4 per element)

Figure 11.99 Second cylinder flow mesh with suggested refinements

Chapter 11, Scalar fields 363

0

2

4

6

8

0

1

2

3

4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−−−min

−−−max

X

FEA SCP Potential Flow Speed at 177 Nodes (156 Elements)

Y

S
pe

ed
 (

m
ax

 =
 2

.1
69

6,
 m

in
 =

 0
.2

45
91

)

0

2

4

6

8

0

1

2

3

4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−−−min

−−−max

X

FEA SCP Potential Flow Speed at 423 Nodes (385 Elements)

Y

S
pe

ed
 (

m
ax

 =
 2

.1
99

7,
 m

in
 =

 0
.0

29
41

5)

Figure 11.100 First (top) and second fluid speed estimates

364 Finite Element Analysis with Error Estimators

11.14.2 Example Flow Around a Cylinder

Martin and Carey [17] were among the first to publish a numerical example of a

finite element potential flow analysis. This same example is also discussed by

others [6, 8]. The problem considers the flow around a cylinder in a finite rectangular

channel with a uniform inlet flow. The geometry is shown in Fig. 11.95. By using

centerline symmetry and midstream antisymmetry it is possible to employ only one

fourth of the flow field. The stream function boundary conditions are discussed by

Martin and Carey [17] and Chung [6]. For the velocity potential one has four sets of

Neumann (boundary flux) conditions and one set of Dirichlet (nodal parameter)

conditions. The first involve zero normal flow, qn = φ ,n ≡ 0, along the centerline ab

and the solid surfaces bc and de, and a uniform unit inflow, qn ≡ − 1, along ad . At the

mid-section, ce, antisymmetry requires that v = 0. Thus, φ ,y = 0 so that φ = φ (x), but in

this special case x is constant along that line so we can set φ to any desired constant, say

zero, along ce. A crude initial mesh of bilinear quadrilaterals was used to start the

adaptation. That initial mesh and the suggested new element sizes are given in Fig.

11.98. The smaller element sizes were fed to a mesh generator to produce the first

adaptive mesh. It is in Fig. 11.99 where its new suggested element sizes are also shown.

Note that the first revised mesh also reduces the original geometric error by better

matching the curved boundary of the cylinder. The computed fluid speed from both

meshes is shown in Fig. 11.100. There we see the speed is reducing to zero at the

stagnation point of the cylinder. The meshes are also refining mainly in that region

because the velocity vectors are rapidly changing magnitudes and directions in that

region. The minimum speed decreased from 0.246 to 0.029 with the first refinement

while the maximum outflow speed increased from 2.17 to 2.20.

As before, the presence of a non-zero boundary flux, qn, makes it necessary to

evaluate the flux column matrix

(11.38)Cb =
Lb

∫ HbT
qn ds.

The variation of qn along the boundary segment is assumed to be defined by the nodal

(input) values and the segment interpolation equations, i.e.,

qn(s) ≡ Hb(s) qb

n
.

Therefore, the segment column matrix (for a straight quadratic segment) becomes

(11.39)Cb =
Lb

∫ HbT Hb
ds qb

n
=

L
b

30

4

2

−1

2

16

2

− 1

2

4

qb

n
.

The implementation of this segment calculation would be similar to that of Fig. 11.7 and

the input segments would be similar to those in Fig. 11.23, but would involve three nodes

for each element side subjected to the applied normal flux (fluid inflow).

Chapter 11, Scalar fields 365

11.15 Axisymmetric plasma equilibria *

Nuclear fusion is being developed as a future source of energy. The heart of the

fusion reactors will be a device for confining the reacting plasma and heating it to

thermonuclear temperatures. This confinement problem can be solved through the use of

magnetic fields of the proper geometry which generate a so-called ‘magnetic bottle’. The

tokamak containment concept employs three magnetic field components to confine the

plasma. An externally applied toroidal magnetic field, BT , is obtained from coils through

which the torus passes. A second field component is the polodial magnetic field, BP ,

which is produced by a large current flowing in the plasma itself. This current is induced

in the plasma by transformer action and assists in heating the plasma. Finally, a vertical

(axial) field, BV , is also applied. These typical fields are illustrated in Fig. 11.101. For

many purposes a very good picture of the plasma behavior can be obtained by treating it

as an ideal magnetohydrodynamic (MHD) media. The equations governing the steady

state flow of an ideal MHD plasma are

grad B = 0 , ∇P = J × B , curl B = µJ

where P is the pressure, B the magnetic flux density vector, J the current density vector,

and µ a constant that depends on the system of units being employed. Consider an

axisymmetric equilibria defined in cylindrical coordinates (r, z, θ) so that ∂ / ∂θ = 0.

This implies the existence of a vector potential, A, such that curl A = B. Assuming that

A = A(r, z) and Aθ = ψ /r, where ψ is a stream function, we obtain

Br = − ψ ,z/r, Bz = ψ , r /r, Bθ = Ar,z − Az,r = BT

Therefore the governing equation simplifies to

J

Transformer

Conducting shell

A AB

Vertical section

A-A

Top view

Plasma

Typical Dee

shell

Figure 11.101 Schematic of tokamak fields and currents

366 Finite Element Analysis with Error Estimators

(11.40)
∂2ψ

∂r2
−

1

r

∂ψ

∂r
+

∂2ψ

∂z2
= − µr

2
P′ − X X ′ = r Jθ ,

where Jθ is the plasma current, P is the pressure, X = r Bθ and where P and X are

functions of ψ alone. Both J and B are vectors that lie tangent to the surfaces of constant

ψ . The above is the governing equation for the steady equilibrium flow of a plasma. For

certain simple choices of P and Bθ , Eq. 11.40 will be linear but in general it is nonlinear.

They are usually represented as a series in ψ as

P(ψ) = α 0 + α 1ψ + ... + α nψ n / n

X
2(ψ) = β 0 + β 1ψ + ... + β nψ n / n

The essential boundary condition on the limiting surface, Γ1, is

ψ = K + 1/2 r
2

BV on Γ1

where K is a constant and BV is a superimposed direct current vertical (z) field. On

planes of symmetry one also has vanishing normal gradients of ψ , i.e.,

∂ψ

∂n
= 0 on Γ2.

The right-hand side of Eq. 11.40 can often be written as

(11.41)r Jθ = pψ + q

where, for the above special cases, p = p(r, z) and q = q(r, z), but where in general q

is a nonlinear function of ψ , i.e., q = q(r, z,ψ). Equations 11.40 and 11.38 are those for

which we wish to establish the finite element model.

A finite element formulation of this problem has been presented by Akin and

Wooten [1]. They recast Eq. 11.40 in a self-adjoint form, applied the Galerkin criterion,

and integrated by parts. This defines the governing variational statement

(11.42)I = ∫
Ω
∫

1

2
{ (ψ , r)2 + (ψ ,z)2 + pψ 2 } + qψ

1

r
dr dz

which, for the linear problem, yields Eq. 11.40 as the Euler equation when I is stationary,

i.e., δ I = 0. When p = q = 0, Eq. 11.42 also represents the case of axisymmetric

inviscid fluid flow. Flow problems of this type were considered by Chung [6] using a

similar procedure. For a typical element the element contributions for Eq. 11.41 are

Se =
Ωe

∫ [HT

, r
H, r + HT

,zH,z + p(r, z)HT H]
1

r
dr dz,

(11.43)Ce =
Ω
∫ q(r, z)HT

1

r
dr dz.

These matrices are implemented in Fig. 11.102. Other applications of this model are

given by Akin and Wooten [1]. The major advantage of the finite element formulation

over other methods such as finite differences is that it allows the plasma physicist to study

arbitrary geometries. Some feel that the fabrication of the toroidal field coils may require

Chapter 11, Scalar fields 367

! .. ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! FOR AXISYMMETRIC MHD PLASMA EQUILIBRIUM, P,Q /= 0 I.E. ! 4
! L(U) = (U,R*1/R),R + U,ZZ*1/R - P*U/R - Q/R = 0 ! 5
! U = STREAM FUNCTION ! 6
! (Stored as source application example 217.) ! 7
! P = -C_1 * ALPHA_0 * R**2 - 0.5 * BETA_0, = 0 IF IDEAL PLASMA ! 8
! Q = -C_1 * ALPHA_1 * R**2 - 0.5 * BETA_1, = 0 IF IDEAL PLASMA ! 9

!10
! MISC PROPERTIES 1-5 ARE: C_1, ALPHA_0, ALPHA_1, BETA_0, BETA_1 !11

!12
REAL(DP), PARAMETER :: FOUR_PI = TWO_PI * 2.d0 !13
REAL(DP) :: DET_WT, DET, P, Q, R !14
REAL(DP), SAVE :: ALPHA_0, ALPHA_1, BETA_0, BETA_1 !15
INTEGER :: IP, io_1 !16

!17
!--> DEFINE ELEMENT PROPERTIES (FIRST 2 TERMS IN POWERS OF U) !18

IF (IE == 1) THEN ! first call !19
ALPHA_0 = GET_REAL_MISC (1) !20
ALPHA_1 = GET_REAL_MISC (2) !21
BETA_0 = GET_REAL_MISC (3) !22
BETA_1 = GET_REAL_MISC (4) !23

END IF !24
!25

CALL REAL_IDENTITY (N_R_B, E) ! DEFAULT TO IDENTITY MATRIX !26
!27

! STORE NUMBER OF POINTS FOR FLUX CALCULATIONS !28
CALL STORE_FLUX_POINT_COUNT ! Save LT_QP !29

!30
!--> NUMERICAL INTEGRATION LOOP !31

DO IP = 1, LT_QP !32
H = GET_H_AT_QP (IP) ! EVALUATE INTERPOLATION FUNCTIONS !33
XYZ = MATMUL (H, COORD) ! FIND GLOBAL COORD, (ISOPARAMETRIC) !34
R = XYZ (1) ! CHANGE NOTATION !35
DLH = GET_DLH_AT_QP (IP) ! FIND LOCAL DERIVATIVES !36
AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE POINT !37

! FORM INVERSE AND DETERMINATE OF JACOBIAN !38
CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) !39
DET_WT = DET * WT(IP) / R !40

!41
! EVALUATE GLOBAL DERIVATIVES, DGH == B !42

DGH = MATMUL (AJ_INV, DLH) !43
B = COPY_DGH_INTO_B_MATRIX (DGH) ! B = DGH !44

!45
! EVALUATE CONTRIBUTIONS TO SQUARE AND COLUMN MATRICES !46

P = - FOUR_PI * R * R * ALPHA_1 - 0.5d0 * BETA_1 !47
Q = - FOUR_PI * R * R * ALPHA_0 - 0.5d0 * BETA_0 !48

!49
S = S + (MATMUL ((MATMUL (TRANSPOSE (B), E)), B) & !50

+ P * OUTER_PRODUCT (H, H)) * DET_WT !51
C = C - Q * H * DET_WT !52

!53
!--> SAVE COORDS, E AND DERIVATIVE MATRIX, FOR POST PROCESSING !54

CALL STORE_FLUX_POINT_DATA (XYZ, E, B) !55
END DO !56

!57
! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !58

Figure 11.102 Plasma element matrices evaluations

368 Finite Element Analysis with Error Estimators

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

X: 400 Elements

Y
: 2

31
 N

od
es

FEA SCP Error Estimate, 1.6736−239.14 % Energy_norm * 100

*−−−MIN 1.7

*−−−MAX 239.1

Dee Tokamak

Figure 11.103 Initial Dee plasma mesh and error estimates

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

X Coordinate at 231 Nodes

Y
 C

oo
rd

in
at

e
on

 4
00

 E
le

m
en

ts

FEA Axisymmetric Plasma B_rz Vectors, max = 2.463

Dee Tokamak

Figure 11.104 Initial Dee plasma planar B vectors

Chapter 11, Scalar fields 369

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

X: 349 Elements

Y
: 2

04
 N

od
es

FEA SCP Error Estimate, 2.4937−210.22 % Energy_norm * 100

*−−−MIN 2.5

*−−−MAX 210.2

Dee Tokamak, adapt 1

Figure 11.102 Plasma error estimates in first adaptation (max 2.10 percent)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

X: 625 Elements

Y
: 3

49
 N

od
es

FEA SCP Error Estimate, 3.5603−98.706 % Energy_norm * 100

*−−−MIN 3.6
*−−−MAX 98.7

Dee Tokamak, adapt 2

Figure 11.103 Plasma error estimates in second adaptation (max 0.97 percent)

370 Finite Element Analysis with Error Estimators

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.02

0.02

0.02

0.02

0.02

0.02

0.04

0.06
0.080.1

0.12

0.14

0.16

0.18

Smoothed FEA Solution Component_1 at 349 Nodes

X

Y

Dee Tokamak, adapt 2

Figure 11.107 Stream function, ψ , values in second adaptation

the use of a circular plasma, while others recommend the use of dee-shaped plasmas.

The current model has been applied to both of these geometries and the following figures

illustrate typical results for a dee-shape torus cross-section where the linear triangle

element was employed. Biquadratic or bicubic elements would be better for some

formulations which require post-solution calculations using the first and second

derivatives of ψ . Figure 11.103 shows the initial relatively uniform mesh and the element

level error estimates in the energy norm. The corresponding plasma B vectors appear in

Fig. 11.104. Note that the initial maximum error in the energy norm is about 2.4 percent

so adaptive refinements were taken to reduce the maximum error level to less than 1

percent. The two adaptive meshes and error estimates are shown in Figs. 11.105 and 106.

The stream function is of less interest but the final contours of ψ are in Fig 11.107. The

initial and final surface plots of ψ are in Figs. 11.108 and 109. The above results have

assumed no external vertical B field so ψ was assigned values of zero on Γ1.

11.16 Slider bearing lubrication

Several references are available on the application of the method to lubrication

problems. These include the early work of Reddi [21], a detailed analysis and computer

program for the three node triangle by Allan [4], and a presentation of higher order

elements by Wada and Hayashi [25]. The most extensive discussion is probably found in

the text by Huebner [11]. These formulations are based on the Reynolds equation of

lubrication. For simplicity a one-dimensional formulation will be presented here.

Chapter 11, Scalar fields 371

0.20.30.40.50.60.70.8

0

0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

−−−−−−min

FEA Solution Component_1: 400 Elements, 231 Nodes

X

−−−−−−max

Y

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.1

85
52

, m
in

 =
 0

)
Dee Tokamak

Figure 11.108 Initial ψ surface for half symmetry model

0.10.20.30.40.50.60.70.8

0

0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

FEA Solution Component_1: 625 Elements, 349 Nodes

X

−−−−−−max

Y

−−−−−−min

C
om

po
ne

nt
 1

 (
m

ax
 =

 0
.1

85
56

, m
in

 =
 0

) Dee Tokamak, adapt 2

Figure 11.109 Final ψ surface for half symmetry model

372 Finite Element Analysis with Error Estimators

L
y

x

h (x)
P

f

P
r

U

Figure 11.110 Thin film slider bearing notation

! .. ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! APPLICATION: LINEAR SLIDER BEARING, Example 102 ! 4
! N_SPACE = 1, NOD_PER_EL = 2, N_G_DOF = 1 ! 5
! N_EL_FRE = 2, MISC_FL = 2 ! 6
! FLT_MISC (1) = VISCOSITY, FLT_MISC (2) = VELOCITY ! 7
! EL_PROP (1) OR PRT_L_PT (K,1) = FILM THICKNESS ! 8

! 9
INTEGER, SAVE :: KALL = 1 !10
REAL (DP), SAVE :: VIS, VEL, DL !11
REAL (DP) :: THICK, CONST !12

!13
IF (KALL == 1) THEN ! GET GLOBAL REAL CONSTANTS !14

KALL = 0 !15
VIS = GET_REAL_MISC (1) ; VEL = GET_REAL_MISC (2) !16

END IF ! FIRST CALL !17
!18

!--> DEFINE ELEMENT LENGTH AND ELEMENT THICKNESS !19
DL = COORD (2, 1) - COORD (1, 1) !20
THICK = 0.d0 !21
IF (EL_REAL > 0) THICK = GET_REAL_LP (1) !22

!23
! CHECK FOR ALTERNATE AVERAGE NODE THICKNESS !24

IF (THICK == 0.d0) THEN ! USE NODAL PROPERTY !25
IF (N_NP_FLO > 0) THEN ! DATA EXISTS !26

THICK = 0.5d0 * (PRT_L_PT (1, 1) + PRT_L_PT (2, 1)) !27
ELSE !28

STOP ’NO SLIDER BEARING THICKNESS DATA’ !29
END IF !30

END IF ! NODAL THICKNESS DATA !31
!32

!--> GENERATE ELEMENT SQUARE MATRIX & COLUMN MATRIX !33
CONST = THICK**3 / (6.0_DP * VIS * DL) !34
S (1, 1) = CONST ; S (2, 2) = CONST !35
S (1, 2) = -CONST ; S (2, 1) = -CONST !36
C (1) = VEL * THICK ; C (2) = -VEL * THICK !37

!38
!--> GENERATE DATA FOR LOAD CALCULATIONS AND STORE !39

H_INTG (1) = 0.5_DP * DL ; H_INTG (2) = 0.5_DP * DL !40
IF (N_FILE1 > 0) WRITE (N_FILE1) H_INTG !41

!42
! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !43

Figure 11.111 Slider bearing square and load matrices

Chapter 11, Scalar fields 373

Consider the slider bearing shown in Fig. 11.110 which is assumed to extend to infinity

out of the plane of the figure. It consists of a rigid bearing and a slider moving relative to

the bearing with a velocity of U . The extremely thin gap between the bearing and the

slider is filled with an incompressible lubricant having a viscosity of v. For the one-

dimensional case the governing Reynolds equation reduces to

(11.44)
d

dx

h
3

dP

6v dx

=
d

dx
(Uh) ,

where P(x) denotes the pressure and h(x) denotes the thickness of the gap. The

boundary conditions are that P must equal the known external pressures (usually zero) at

the two ends of the bearing. It can be shown that the variational equivalent of the one-

dimensional Reynolds equation requires the minimization of the functional

(11.45)I =
L

0

∫

h
3

12v

dP

dx

2

+ hU

dP

dx

dx.

As a word of warning, it should be noted that, while the pressure P is continuous,

the film thickness h is often discontinuous at one or more points on the bearing. Another

related quantity of interest is the load capacity of the bearing. From statics one finds the

resultant normal force per unit length in the z-direction, F y, is

(11.46)F y = ∫
L

0
P dx.

This is a quantity which would be included in a typical set of post-solution calculations.

Minimizing the above functional defines the element square and column matrices as

(11.47)Se =
1

6v

x j

xi

∫ h
3HeT

, x
He

, x
dx , Ce = − U

x j

xi

∫ h HeT

, x
dx.

As a specific example of a finite element formulation, consider a linear element with

two nodes (nn = 2) and one pressure per node (ng = 1). Thus, P(x) = He(x)Pe where as

before PeT = [Pi P j] and the interpolation functions are He = [(x j − x) (x − xi)] / L,

where L = (x j − xi) is the length of the element. For the element under consideration

He is linear in x so that its first derivative will be constant. That is, He

, x
= [− 1 1] / L

so that the element matrices simplify to

(11.48)Se =
1

6vl2

1

−1

− 1

1

x j

xi

∫ h
3

dx , Ce =
U

l

1

−1

x j

xi

∫ h dx.

Thus, it is clear that the assumed thickness variation within the element has an important

effect on the complexity of the element matrices. It should also be clear that the nodal

points of the mesh must be located such that any discontinuity in h occurs at a node. The

simplest assumption is that h is constant over the length of the element. In this case the

latter two integrals reduce to h
3
l and h l, respectively. One may wish to utilize this

element to approximate a varying distribution of h by a series of constant steps. In this

case, one could use an average thickness of h = (hi + h j) / 2, where hi and h j denote the

374 Finite Element Analysis with Error Estimators

! .. ! 1
! *** POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! .. ! 3
! APPLICATION: LINEAR SLIDER BEARING, Example 102 ! 4
! N_SPACE = 1, NOD_PER_EL = 2, N_G_DOF = 1 ! 5
! N_EL_FRE = 2, MISC_FL = 2 ! 6

! 7
INTEGER, SAVE :: KALL = 1 ! 8
REAL(DP), SAVE :: FORCE, TOTAL = 0.0_DP ! 9

!10
IF (KALL == 1) THEN ! PRINT TITLES ON THE FIRST CALL !11

KALL = 0 ; WRITE (6, 5) !12
5 FORMAT (/, ’*** E L E M E N T L O A D S ***’,/, & !13

’ELEMENT LOAD TOTAL’) !14
END IF ! FIRST CALL !15

!16
!--> CALCULATE LOADS ON THE ELEMENTS, F = H_INTG*D !17

READ (N_FILE1) H_INTG ! RECOVER INTEGRAL OF H !18
FORCE = DOT_PRODUCT (H_INTG, D) ! INTEGRAL OF PRESSURE !19
TOTAL = TOTAL + FORCE ! SYSTEM UPDATE !20
WRITE (6, 10) IE, FORCE, TOTAL ! LIST RESULTS !21
10 FORMAT (I5, 1PE16.5, 3X, 1PE16.5) !22

!23
! *** END POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS *** !24

Figure 11.112 Element bearing load calculations

0.036'
0.125'0.125'0.025'

U = 20 fps

Figure 11.113 Step bearing example geometry

thickness at the nodal points of the element. Subroutine ELEM_SQ_MATRIX for this

element is shown in Figs. 11.111.

Note that it allows for two methods of defining the film thickness, h, in each

element. In the default option (keywords el_real 1, pt_real 0) the value of h is input as

a floating point element property, i.e., H = GET _REAL_LP(1). In the second option

(keywords el_real 0, pt_real 1) the thickness is specific at each node as a floating point

property. Note that for the latter option, el_real 0, causes h = 0. The program checks

for this occurrence and then skips to the second definition of h.

The post-solution calculation function, POST _PROCESS_ELEM , is shown in

Fig. 11.112. It evaluates the force, F
e

y
, carried by each element. The load on a typical

element is F
e

y
= QePe where Qe = [l/2 l/2]. Subroutine ELEM_SQ_MATRIX also

generates and stores Qe for each element. Subroutine POST _PROCESS_ELEM carries

Chapter 11, Scalar fields 375

LINEAR SLIDER BEARING ! 1
! 2

NUMBER OF NODAL POINTS IN SYSTEM =........... 3 ! 3
NUMBER OF ELEMENTS IN SYSTEM =............... 2 ! 4
NUMBER OF NODES PER ELEMENT =................ 1 ! 5
NUMBER OF PARAMETERS PER NODE =.............. 2 ! 6
DIMENSION OF SPACE =......................... 1 ! 7
NUMBER OF ITERATIONS TO BE RUN =............. 1 ! 8
NUMBER OF ROWS IN B MATRIX =................. 1 ! 9
ELEMENT SHAPE: LINE, TRI, QUAD, HEX, TET =... 1 !10
NUMBER OF DIFFERENT ELEMENT TYPES =.......... 1 !11
STIFFNESS STORAGE MODE: SKY, BAND =.......... 1 !12
NUMBER OF REAL PROPERTIES PER ELEMENT =...... 1 !13
NUMBER OF REAL MISCELLANEOUS PROPERTIES =... 2 !14
OPTIONAL UNIT NUMBERS: N_FILE1 = 8 !15
*** NODAL POINT DATA *** !16
NODE, CONSTRAINT FLAG, 1 COORDINATES !17

1 1 0.0000 !18
2 0 0.1250 !19
3 1 0.2500 !20

*** ELEMENT CONNECTIVITY DATA *** !21
ELEMENT NO., 2 NODAL INCIDENCES. !22

1 1 2 !23
2 2 3 !24

*** NODAL PARAMETER CONSTRAINT LIST *** !25
TYPE EQUATIONS !26

1 2 !27
*** CONSTRAINT EQUATION DATA *** !28
CONSTRAINT TYPE ONE !29
EQ. NO. NODE1 PAR1 A1 !30

1 1 1 0.00000E+00 !31
2 3 1 0.00000E+00 !32

*** ELEMENT PROPERTIES *** !33
ELEMENT PROPERTY VALUE !34

1 1 2.50000E-02 !35
2 1 3.60000E-02 !36

*** MISCELLANEOUS SYSTEM PROPERTIES *** !37
PROPERTY VALUE !38

1 2.00000E-03 !39
2 2.00000E+01 !40

!41
*** OUTPUT OF RESULTS *** !42
NODE, 1 COORDINATES, 1 PARAMETERS. !43

1 0.00000E+00 0.00000E+00 !44
2 1.25000E-01 5.29857E+00 !45
3 2.50000E-01 0.00000E+00 !46

!47
*** E L E M E N T L O A D S *** !48
ELEMENT LOAD TOTAL !49

1 3.31160E-01 3.31160E-01 !50
2 3.31160E-01 6.62321E-01 !51

!52
*** EXTREME VALUES OF THE NODAL PARAMETERS *** !53
PARAMETER MAXIMUM, NODE MINIMUM, NODE !54

1 5.2986E+00, 2 0.0000E+00, 3 !55

Figure 11.114 Slider bearing results

376 Finite Element Analysis with Error Estimators

! .. ! 1
! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 2
! NOW USING MASS MATRIX EL_M (LT_FREE, LT_FREE) ALSO ! 3
! .. ! 4
! TRANSIENT ANISOTROPIC POISSON EQUATION IN 1-, 2-, 3-D or ! 5
! AXISYMMETRIC VIA NUMERICALLY INTEGRATED ELEMENTS ! 6
! (K_ij * U,i),j + Q - Rho * U,t = 0; 1 <= (i,j) <= N_SPACE ! 7
REAL(DP) :: CONST, DET ! integration ! 8
REAL(DP), SAVE :: SOURCE=0.d0, RHO=1.d0, THICK=1.d0 ! data ! 9
INTEGER :: IP ! counter !10
! (Stored as source example 214.) !11
! 1-D properties, K_xx, Q, Thickness, Rho !12
! 2-D properties, K_xx, K_yy, K_xy, Q, Thickness, Rho !13
! 3-D properties, K_xx, K_yy, K_zz, K_xy, K_xz, K_yz, Q, Rho !14
CALL POISSON_ANISOTROPIC_E_MATRIX (E) ! for 1-, 2-, or 3-D !15

!16
IF (SCALAR_SOURCE /= 0.d0) SOURCE = SCALAR_SOURCE !17
IF (AREA_THICK /= 1.d0) THICK = AREA_THICK ! if 2-D !18
IF (EL_REAL > 0) THEN ! Get local element constant values !19

SELECT CASE (N_SPACE) ! for source, thickness, or rho !20
CASE (1) ; IF (EL_REAL > 1) SOURCE = GET_REAL_LP (2) !21

IF (EL_REAL > 2) THICK = GET_REAL_LP (3) !22
IF (EL_REAL > 3) RHO = GET_REAL_LP (4) !23

CASE (2) ; IF (EL_REAL > 3) SOURCE = GET_REAL_LP (4) !24
IF (EL_REAL > 4) THICK = GET_REAL_LP (5) !25
IF (EL_REAL > 5) RHO = GET_REAL_LP (6) !26

CASE (3) ; IF (EL_REAL > 6) SOURCE = GET_REAL_LP (7) !27
IF (EL_REAL > 7) RHO = GET_REAL_LP (8) !28

END SELECT ! for spatial dimension !29
END IF ! element data provided !30

!31
CALL STORE_FLUX_POINT_COUNT ! Save LT_QP, for post-process !32

!33
DO IP = 1, LT_QP ! NUMERICAL INTEGRATION LOOP !34

H = GET_H_AT_QP (IP) ! EVALUATE INTERPOLATION FUNCTIONS !35
XYZ = MATMUL (H, COORD) ! FIND GLOBAL COORD, ISOPARAMETRIC !36
DLH = GET_DLH_AT_QP (IP) ! FIND LOCAL DERIVATIVES !37
AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE PT !38
CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) ! inverse !39
IF (AXISYMMETRIC) THICK = TWO_PI * XYZ (1) ! axisymmetric !40
CONST = DET * WT(IP) * THICK !41
DGH = MATMUL (AJ_INV, DLH) ; B = DGH ! Physical gradient !42

!43
! VARIABLE VOLUMETRIC SOURCE, via keyword use_exact_source !44
! Defaults to file my_exact_source_inc if no exact_case key !45

IF (USE_EXACT_SOURCE) CALL & ! analytic Q !46
SELECT_EXACT_SOURCE (XYZ, SOURCE) ! via exact_case key !47

C = C + CONST * SOURCE * H ! source resultant !48
!49

! CONDUCTION SQUARE MATRIX, MASS (CAPACITY) MATRIX !50
S = S + CONST * MATMUL ((MATMUL (TRANSPOSE (B), E)), B) !51
EL_M = EL_M + OUTER_PRODUCT (H, H) * CONST * RHO !52

!53
!--> SAVE COORDS, E AND DERIVATIVE MATRIX, FOR POST PROCESSING !54

CALL STORE_FLUX_POINT_DATA (XYZ, (E * THICK), B) !55
END DO !56

! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !57

Figure 11.115 Including the mass matrix for transient applications

Chapter 11, Scalar fields 377

out the multiplication once the nodal pressures, Pe
, are known. In addition, it sums the

force on each element to obtain the total load capacity of the bearing. It prints the

element number and its load and the total load on the bearing. With the addition of a few

extra post-solution calculations, one could also output the location of the resultant

bearing force. Both U and v are constant along the entire length of the bearing. They are

simply defined as floating point miscellaneous system properties (keyword reals 2).

As a numerical example consider the step bearing shown in Fig. 11.113, which has

two constants gaps of different thicknesses but equal lengths. Select a mesh with three

nodes (nodes 3) and two elements (elems 2). Let L1 = L2 = 0.125 ft, U = 20 ft/s, v =

0.002 lb s/ ft
2, h1 = 0.025 ft, and h2 = 0.036 ft. The two boundary conditions are

P1 = P3 = 0 and we desire to calculate the pressure, P2, at the step. The calculated

pressure is P2 = 5.299 psf, which is the exact value, and the total force on the bearing is

F y = 0.66 ppf. The accuracy is not surprising since the exact solution for this problem

gives a linear pressure variation over each of the two segments of the bearing. The

typical output data are shown in Fig. 11.114.

11.17 Transient scalar fields

Transient (first order time dependent) studies are quite common in engineering

analysis. All of the scalar field problems considered in this chapter can be easily

extended to transient behavior. Huang and Usmani [10] have addressed error estimation

in transient problems by creating new meshes at most time steps and interpolating the

previous results to the new mesh. Wiberg [26] briefly outlines a similar approach. One

could also apply the SCP error analysis to the thermal modes (eigenvectors) in

expectation of improving the transient analysis. We will not go into transient adaptivity

here. As seen in Eq. 2.53, to treat transient problems we just have to allow for a term

involving the first partial derivative with respect to time. That also usually involves the

input of one more material property and the definition of the symmetric consistent

element mass matrix. The matrix form of the assembled transient problem is

(11.49)M φ̇̇φ (t) + K φφ (t) = F (t).

Of course, we also need to describe the initial condition of the primary unknown, and

title "Transient Square Conduction 1/8 Symmetry T3" ! 1
transient ! Problem is first order in time ! 2
save_1248 ! Save after steps 1, 2, 4, 8, 16 ... ! 3
average_mass ! Average consistent & diagonal mass matrices ! 4
history_node 1 ! Node number for time-history graph output ! 5
start_time 0. ! A time history starting time ! 6
time_method 2 ! 1-Euler, 2-Crank-Nicolson, 3-Galerkin, etc ! 7
time_step 4.0d-2 ! Time step size for time dependent solution ! 8
time_steps 64 ! Number of time steps in each group ! 9
start_value 5. ! Initial value of transient scalar everywhere !10

Figure 11.116 Modifying Fig. 11.10 for a transient study

378 Finite Element Analysis with Error Estimators

possibly allow for the Dirichlet and/or Neumann and/or Robin conditions to become

functions of time. Often the initial conditions are a global constant, which can be input

via a control keyword. Otherwise one has to provide source code (in include file

my_iter_start_inc) to define its spatial distribution. A partial list of the more common

keyword controls for semi-discrete transient integration methods was given in Table 2.1.

The classic finite element weighted residual formulation yields a full, symmetric

consistent element mass matrix. This results in the assembled system mass matrix having

the same sparsity as the system conduction square matrix. There are computational

advantages in having a diagonal element, and system, mass matrix. They are often used

to avoid physically impossible answers in the early stage of thermal shock applications.

Good modeling practices, like having small element lengths in the direction normal to a

thermal shock boundary, also avoid impossible answers but simply using diagonal mass

matrices may be quicker. Hughes [12] compares several problems solved with both

consistent and diagonal mass matrices. He also illustrates that the average of the

consistent and diagonal mass matrices often gives a higher order of accuracy, especially

for linear elements.

The storage for the element mass matrix (EL_M) is automatically dynamically

allocated and its actual definition (in ELEM_SQ_MATRIX) is usually less than ten new

lines of code. Mainly one needs to allow for a small group of new control keywords in

the data stream to activate and control the additional matrix manipulations, and additional

output for time history related plots. The additional minor programming steps, at the

element level, are shown in Fig. 11.115 for the general anisotropic Poisson equation.

Basically one only need recover the extra material time coefficient (mass density times

specific heat), simply called ρ in that listing, (as done in line 23 or 26 or 28 or defaulted

in line 9) and compute the integral of the element mass matrix by numerical integration

(in line 52).

As a typical transient example let us return to the mesh shown in Fig. 11.9 where we

considered the steady state temperature of a square having a constant internal heat source.

The only input changes (if the density and thickness are defaulted) are based on the

transient controls of Table 2.1 and are shown in Fig. 11.116. If we assume that the body

was initially at a constant temperature of 5 (that matches the previous essential boundary

condition) and pick ρ c p and a step size ∆t so it reaches steady state in about 70 steps we

compute the time history of the domain. If we display the temperature surface, over the

one-eighth symmetry model, at time steps 1 (bottom), 4, 16, and 64 (top) we get a good

feel for how the temperatures change with time. These are shown for selected times

superimposed in Fig. 11.117. The center point (node 1) time-history is shown in Fig.

11.118.

A similar problem is the study of the cooling of a cylinder formed by revolving a 1:2

rectangle about the z-axis, Assume that it is everywhere at a constant uniform

temperature of 100 when its outer cylindrical surface and two ends are suddenly changed

to zero temperature. As you would expect, the center point will remain at its initial

temperature for a while, but will eventually cool to zero. Such a time history for the

center node is shown in Fig. 11.119 as obtained from a uniform mesh of 8 by 8

axisymmetric T3 elements.

Chapter 11, Scalar fields 379

0
0.5

1
1.5

2
2.5

3
3.5

4 0

1

2

3

4

5

5.5

6

6.5

7

7.5

8

8.5

Y

Steps 1, 4, 16, 64 Component_1: 64 Elements, 45 Nodes, (3 per Element)

X

C
om

po
ne

nt
 1

 (
m

ax
 =

 8
.5

55
8,

 m
in

 =
 5

)

One−eighth symmetry square
with constant source
temperatures at steps 1, 4, 16, 64

00.511.522.533.54

0

1

2

3

4

5

5.5

6

6.5

7

7.5

8

8.5

Y

Steps 1, 4, 16, 64 Component_1: 64 Elements, 45 Nodes, (3 per Element)

X

C
om

po
ne

nt
 1

 (
m

ax
 =

 8
.5

55
8,

 m
in

 =
 5

)

One−eighth symmetry square
with constant source
temperatures at steps 1, 4, 16, 64

Figure 11.117 Constant source square, temperature surfaces over time

380 Finite Element Analysis with Error Estimators

0 0.5 1 1.5 2 2.5
5

5.5

6

6.5

7

7.5

8

8.5

Time

FEA Time−History for Component_1 at Node 1

C
om

po
ne

nt
 1

 (
m

ax
 =

 8
.5

55
8,

 m
in

 =
 5

)

One−eighth symmetry square
with constant source
maximum temperature

Figure 11.118 Center point transient, constant source square

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

20

30

40

50

60

70

80

90

100

Time

FEA Time−History for Component_1 at Node 1

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
00

, m
in

 =
 0

.0
47

95
1)

U,t − (r U,r),r + (r U,z),z = 0
On a unit square at center point
U(r,z,0) = 100, U_edge = 0
Average Mass Matrix

Figure 11.119 Cooling of the center point inside a cylinder

Chapter 11, Scalar fields 381

11.18 Exercises

1. The two-dimensional Laplace equation ∂2
u / ∂x

2 + ∂2
u / ∂y

2 = 0 is satisfied by the

cubic u(x, y) = − x
3 − y

3 + 3xy
2 + 3x

2
y. It can be used to define the exact

essential (Dirichlet) boundary conditions on the edges of any two-dimensional

shape. For a unit square with a corner at the origin the boundary conditions are

u(0, y) = − y
3

, u(1, y) = − 1 − y
3 + 3y

2 + 3y

u(x, 0) = − x
3

, u(x, 1) = − 1 − x
3 + 3x

2 + 3x.

Obtain a finite element solution and sketch it along with the exact values along lines

of constant x or y, or compare to exact_case 20 in the MODEL code. Solve using a

domain of: a) the above unit square, or b) a rectangle over 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2,

or c) a quarter circle of radius 2 centered at the origin.

2. Modify the above problem to have normal flux (Neumann) boundary conditions on

the two edges where y is constant (corresponding to the same exact solution):

u(0, y) = − y
3
, u(1, y) = − 1 − y

3 + 3y
2 + 3y,

∂u

∂y
(x, 0) = 3x

2
,

∂u

∂y
(x, 1) = − 3 + 6x + 3x

2.

3. Consider a two-dimensional Poisson equation on a unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

that contains a local high gradient peak on its interior centered at x = β , y = β . The

amplitude of the peak is set by a parameter α . Let A = (x − β) / α , B = (y − β) / α ,

C = (1 − β) / α , and D = β / α . Then for the source, Q, defined by

∂2
u

∂x2
+

∂2
u

∂y2
= Q = − 6x − 6y −

4

α 2
(1 + A

2 + B
2) exp [− A

2 − B
2]

and edge Dirichlet and Neumann boundary conditions

u(0, y) = − y
3 + exp[− D

2 − B
2] , u,y(x, 0) =

2β

α 2
exp[− D

2 − A
2]

u(1, y) = − 1 − y
3 + exp[− C

2 − B
2] , u,y(x, 1) = − 3 − 2

C

α
exp[− A

2 − C
2]

the exact solution is u = − x
3 − y

3 + exp[− A
2 − B

2]. Obtain a finite element

solution and compare it to the exact values along the center lines x = 1/2, and

y = 1/2. Assume β = 0. 5 and α = 0. 05.

4. Consider the partial differential equation ∇.(ΕΕ∇∇φ) + vv.∇∇φ + Fφ + Q = 0 in Ω. The

second term is new. In 2-D it is vv.∇∇φ =

vx

vy

∂φ

∂x

∂φ

∂y

. Apply the Galerkin

method to get the additional matrix, say Ue

v
, that appears because of this term. State

the result in matrix integral form. Is the result symmetric? The data vv are often

given at the nodes and we employ standard interpolation for those data:

1 x ns

v =
1 x ns

[vx vy] =
1 x nn

He

nn x ns

[V e

x
V

e

y
].

Outline how you would numerically integrate Ue

v
in that case. Give the linear line

element matrix for a 1-D problem with vx given constant data.

382 Finite Element Analysis with Error Estimators

5. Sketch the boundary conditions for the ideal fluid flow around a cylinder given in

Fig. 11.95 for an approach based on the use of a) the velocity potential, b) the

stream function.

6. Solve the fin example of Fig. 11.26 by hand a) with insulated edges, b) with edge

convection having the same convection coefficient.

7. For the solid conducting bar of Fig. 11.2 assume a length L = 8 cm, a width

2W = 4 cm, and a thickness of 2H = 1 cm. The material has a thermal

conductivity of k = 3 W /cm C, is surrounded by a fluid at a temperature of

Θ∞ = 20 C, and has a surface convection coefficient of h = 0. 1 W /cm
2

C. Employ

two equal length conduction elements and associated face, line, or point convection

elements to obtain a solution for the temperature distribution and the convection

heat loss. Use conduction elements that are: a) linear line elements, b) bilinear

rectangular elements, c) trilinear brick elements.

8. How would you generalize the post-processing related to Eq. 11.46 to also locate the

x position of the resultant force?

9. For the conduction mesh in Figs.11.9 and 11 prepare a combined surface plot of the

element and SCP flux for: a) x, b) y, c) RMS values.

11.19 Bibliography

[1] Akin, J.E. and Wooten, J.W., "Tokamak Plasma Equilibria by Finite Elements," in

Finite Elements in Fluids III, Chapter 21, ed. R.H. Gallagher, New York: John

Wiley (1978).

[2] Akin, J.E., Object-Oriented Programming Via Fortran 90/95, Cambridge:

Cambridge University Press (2003).

[3] Allaire, P.E., Basics of the Finite Element Method, Dubuque: Wm. C. Brown

Pub. (1985).

[4] Allan, T., "The Application of Finite Element Analysis to Hydrodynamic and

Externally Pressurized Pocket Bearings," Wear, 19, pp. 169−206 (1972).

[5] Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Oxford

Press (1959).

[6] Chung, T.J., Finite Element Analysis in Fluid Dynamics, New York:

McGraw-Hill (1978).

[7] Cook, R.D., Malkus, D.S., Plesha, N.E., and Witt, R.J., Concepts and Applications

of Finite Element Analysis, New York: John Wiley (2002).

[8] Desai, C.S. and Kundu, T., Introduction to the Finite Element Method, Boca Raton:

CRC Press (2001).

[9] Hinton, E. and Owen, D.R.J., Finite Element Programming, London: Academic

Press (1977).

Chapter 11, Scalar fields 383

[10] Huang, H.C. and Usmani, A.S., in Finite Element Analysis for Heat Transfer,

London: Springer-Verlag (1994).

[11] Huebner, K.H., Thornton, E.A., and Byrom, T.G., Finite Element Method for

Engineers, New York: John Wiley (1994).

[12] Hughes, T.J.R., The Finite Element Method, Mineola: Dover Publications (2003).

[13] Irons, B.M. and Razzaque, A., "Experience with the Patch Test for Convergence of

the Finite Element Method," pp. 557−587 in Mathematical Foundation of the Finite

Element Method, ed. A.R. Aziz, New York: Academic Press (1972).

[14] Irons, B.M. and Ahmad, S., Techniques of Finite Elements, New York: John

Wiley (1980).

[15] Kreyszig, E., Advanced Engineering Mathematics, New York: Wiley (1962).

[16] Kwon, Y.W. and Bang, H., The Finite Element Method using Matlab, Boca Raton:

CRC Press (1997).

[17] Martin, H.C. and Carey, G.F., Introduction to Finite Element Analysis, New York:

McGraw-Hill (1974).

[18] Meek, J.L., "Field Problems Solutions by Finite Element Methods," Civil Eng.

Tr ans., Inst. Eng. Aust., , pp. 173−180 (Oct. 1968).

[19] Myers, G.E., Analytical Methods in Conduction Heat Transfer, New York:

McGraw-Hill (1971).

[20] Oden, J.T., Demkowicz, L., Strouboulis, T., and Devloo, P., "Adaptive Methods for

Problems in Solid and Fluid Mechanics," pp. 249−280 in Accuracy Estimates and

Adaptive Refinements in Finite Element Computations, ed. I. Babuska, O.C.

Zienkiewicz, J. Gago, and E.R. de A. Oliveira, Chichester: John Wiley (1986).

[21] Reddi, M.M., "Finite Element Solution of the Incompressible Lubrication Problem,"

J. Lubrication Technology, 53(3), pp. 524−532 (July 1969).

[22] Segerlind, L.J., Applied Finite Element Analysis, New York: John Wiley (1984).

[23] Shephard, M.S., "Approaches to the Automatic Generation and Control of Finite

Element Meshes," Appl. Mech. Rev., 41(4), pp. 169−190 (Apr. 1988).

[24] Silvester, P.P. and Ferrari, R.L., Finite Elements for Electrical Engineers,

Cambridge: Cambridge University Press (1983).

[25] Wada, S. and Hayashi, H., "Application of Finite Element Method to Hydrodynamic

Lubrication Problems," Bulletin of Japanese Soc. Mech. Eng., 14(77),

pp. 1222−1244 (1971).

[26] Wiberg, N.-E., "Superconvergent Patch Recovery − A Key to Quality Assessed FE

Solutions," Adv. Eng. Software, 28, pp. 85−95 (1997).

[27] Zienkiewicz, O.C. and Zhu, J.Z., "Superconvergent Patch Recovery Techniques and

Adaptive Finite Element Refinement," Comp. Meth. Appl. Mech. Eng., 101,

pp. 207−224 (1992).

[28] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Chapter 12

Vector fields

12.1 Introduction
Here we will extend the concepts from the previous chapter on scalar fields to those

that involve vector unknowns. The most common (and historically the first) application is

displacement based stress analysis. Other electrical field applications will only be noted

through recent publications on those techniques which often require different ‘edge

based’ interpolation methods not covered here. The main new considerations here are to

select ordering for the vector unknowns and related vector or tensor quantities so that

they can be cast in an expanded matrix notation.

12.2 Displacement based stress analysis summary

Let uu denote a displacement vector at a point xx in a solid. The finite element

displacement formulation for stress analysis is based on the energy concept of finding

uu(xx) that both satisfies the essential boundary conditions on uu and minimizes the Total

Potential Energy:
Π(uu) = U − W

where W is the external mechanical work due to supplied loading data with body forces

per unit volume, XX , surface tractions per unit area, TT , and point loads, PP j , at point xx j so

W (u) = ∫Ω
uu

T
XX dΩ + ∫Γ

uu
T

TT d Γ +
j

Σ uu
T

j
PP j

and U(uu) consists of the strain energy due to the deformation, uu, of the material. It is

defined as

U =
1

2 ∫Ω
εε T σσ dΩ

where εε are the strain components resulting from the displacements, uu, and σσ are the

stress components that correspond to the strain components.

The strains, εε , are defined by a ‘Strain-Displacement Relation’ for each class of

stress analysis. This relation can be represented as a differential operator matrix, say LL,

acting on the displacements εε = LL uu. There are four commonly used classes that we will

consider here. They are

Chapter 12, Vector fields 385

1. Axial stress: uu = u, LL = ∂ / ∂x, εε = ε x = ∂u / ∂x, B j = ∂H j / ∂x

2. Plane Stress and Plane Strain: uu
T = u v

LL =

∂
∂x

0

∂
∂y

0

∂
∂y

∂
∂x

, B j =

∂H j

∂x

0

∂H j

∂y

0

∂H j

∂y

∂H j

∂x

εε T = [ε x ε y γ] =

∂u

∂x

∂v

∂y

∂u

∂y
+

∂v

∂x

3. Axisymmetric solid with radius r and axial position z : uu
T = u v

LL =

∂
∂r

0

∂
∂z

1/r

0

∂
∂z

∂
∂r

0

, B j =

∂H j

∂r

0

∂H j

∂z

H j/r

0

∂H j

∂z

∂H j

∂r

0

,

εε T = ε r ε z γ εθ =

∂u

∂r

∂u

∂z
(
∂u

∂z
+

∂v

∂r
) u/r

4. The full three-dimensional solid: uu
T = [u v w]

LL =

∂
∂x

0

0

∂
∂y

∂
∂z

0

0

∂
∂y

0

∂
∂x

0

∂
∂z

0

0

∂
∂z

0

∂
∂x

∂
∂y

, B j =

∂H j

∂x

0

0

∂H j

∂y

∂H j

∂z

0

0

∂H j

∂y

0

∂H j

∂x

0

∂H j

∂z

0

0

∂H j

∂z

0

∂H j

∂x

∂H j

∂y

εε T =

ε x ε y ε z γ xy γ xz γ yz

=

∂u

∂x

∂v

∂y

∂w

∂z

∂u

∂y
+

∂v

∂x

∂u

∂z
+

∂w

∂y

∂v

∂z
+

∂w

∂y

.

386 Finite Element Analysis with Error Estimators

The above notation for strain is called the engineering definition. There is a more general

definition, that we will not use, called the strain tensor which has the form

εε jk = (u j,k + uk, j) / 2. The classic elasticity definitions are expressed in a matrix form and

do not yet include any finite element assumptions. Within any element we interpolate the

displacement vector in terms of nodal displacement vector components, δδ e:

u(x) ≡ N(x)δδ e x ∈Ω e

where N denotes that spatial interpolation for vector components. Then, in all cases, we

can define a common notation for the element strains in terms of the element

displacement:
εε = L(x)Ne(x)δδ e = Be(x)δδ e

where the differential operator action on the displacement vector interpolations defines

the ‘B-matrix’:
Be(x) = L(x)Ne(x)

Usually we use the same interpolation for each of the scalar components of the

displacement vector, u. For example

u(x) = He(x)ue
, v(x) = He(x)vve

, w(x) = He(x)wwe

and we order the unknown element displacements as δδ e
T

= [u1 v1 w1 u2 v2 . . . vm wm]

for an element with m nodes. Thus the vector interpolation matrix, N, simply contains

the H scalar interpolation functions and usually some zeros;

N(x) = N(H(x)) = [N1 N2 . . . Nm],

where N j is the matrix partition associated with the j-th node. It follows that the Be

matrix can also be partitioned into a set of nodal matrices

B(x) = B(H(x)) = [B1 B2 . . . Bm],

where B j = L(x) I H j(x) = [L(x) H j(x)]. With the above choices for the order of the

unknowns in δδ e we note that for our four analysis classes the vector interpolation sub-

matrices at node j are:

1. Axial stress: N j(x) = H j(x)

2. & 3. Two-dimensional and axisymmetric cases

N j(x) =

H j(x)

0

0

H j(x)

4. Three-Dimensional Case

N j(x) =

H j(x)

0

0

0

H j(x)

0

0

0

H j(x)

In general we can use an identity matrix, II , the size of the displacement vector, to define

N j(x) = II H j(x). Returning to the elasticity notations, the corresponding stress

components for our four cases are

1. Axial Stress: σσ = σ x

Chapter 12, Vector fields 387

2. Plane Stress (σ z = 0), Plane Strain (ε z = 0, plus a post-process for σ z):

σσ T =

σ x σ y τ

3. Axisymmetric Solid: σσ T = σ r σ z τ σθ
4. Three-dimensional Solid: σσ T =

σ x σ y σ x τ xy τ xz τ yz

where the τ terms denote shear stresses and the other terms are normal stresses. For the

state of plane strain σ z is not zero, but is recovered in a post-processing operation. The

mechanical stresses are related to the mechanical strains (ignoring initial effects) by the

minimal form of a material constitutive law usually known as the basic Hooke’s Law:

σσ = ΕΕ εε , where ΕΕ = ΕΕT is a symmetric material properties matrix that relates the stress

and strain components for each case. Actually, it is defined for the three-dimensional

case and the others are special forms of it. For an isotropic material they are:

1. Axial stress: ΕΕ = Ε, Youn g′s Modulus

2. Plane Stress (σ z ≡ 0)

ΕΕ =
Ε

1 − ν 2

1

ν

0

ν

1

0

0

0

(1 − ν)/2

ν , Poisso n′s ratio, 0 ≤ v < 0. 5

3. Plane Strain (ε z ≡ 0)

ΕΕ =
Ε

(1 + ν)(1 − 2ν)

(1 − ν)

ν

0

ν

(1 − ν)

0

0

0

(1 − 2ν)/2

4. Axisymmetric Solid

ΕΕ =
Ε

(1 + ν)(1 − 2ν)

(1 − ν)

ν

0

ν

ν

(1 − ν)

0

ν

0

0

(1 − 2ν) / 2

0

ν

ν

0

(1 − ν)

5. General Solid
E11 = E22 = E33 = (1 − v)c

E12 = E13 = E23 = vc = E21 = E31 = E32

E44 = E55 = E66 = G

where c =
E

(1 + v) (1 − 2v)
and G =

E

2(1 + v)

Note that these data are independent of the element type and so their implementation for

isotropic materials just depends on the input order of the material properties. Typical

implementations for the plane stress, and axisymmetric assumptions are shown in

Figs. 12.1 and 2, respectively. Note that if one has an incompressible material, such as

rubber where ν = 1/2, then division by zero would cause difficulties for the plane strain

and general solid problems, as currently formulated.

388 Finite Element Analysis with Error Estimators

SUBROUTINE E_PLANE_STRESS (E) ! 1
! * ! 2
! PLANE_STRESS CONSTITUTIVE MATRIX DEFINITION ! 3
! STRESS & STRAIN COMPONENT ORDER: XX, YY, XY, SO N_R_B = 3 ! 4
! PROPERTY ORDER: 1-YOUNG’S MODULUS, 2-POISSON’S RATIO ! 5
! * ! 6
Use System_Constants ! for DP, N_R_B ! 7
Use Sys_Properties_Data ! for function GET_REAL_LP ! 8
IMPLICIT NONE ! 9
REAL(DP), INTENT(OUT) :: E (N_R_B, N_R_B) !10
REAL(DP) :: C_1, P_R, S_M, Y_M !11

!12
! E = CONSTITUTIVE MATRIX !13
! N_R_B = NUMBER OF ROWS IN B AND E MATRICES !14
! P_R = POISSON’S RATIO !15
! S_M = SHEAR MODULUS !16
! Y_M = YOUNG’S MODULUS OF ELASTICITY !17

!18
! RECOVER ELEMENT PROPERTIES !19

IF (EL_REAL < 2) STOP ’el_real < 2 IN E_PLANE_STRESS’ !20
Y_M = GET_REAL_LP (1) ; P_R = GET_REAL_LP (2) !21
S_M = 0.5d0 * Y_M / (1 + P_R) ; C_1 = Y_M / (1 - P_R * P_R) !22

!23
E (1, 1) = C_1 ; E (2, 1) = C_1 * P_R ; E (3, 1) = 0.d0 !24
E (1, 2) = C_1 * P_R ; E (2, 2) = C_1 ; E (3, 2) = 0.d0 !25
E (1, 3) = 0.d0 ; E (2, 3) = 0.d0 ; E (3, 3) = S_M !26

END SUBROUTINE E_PLANE_STRESS !27

Figure 12.1 Plane-stress isotropic constitutive law

SUBROUTINE E_AXISYMMETRIC_STRESS (E) ! 1
! * ! 2
! AXISYMMETRIC CONSTITUTIVE MATRIX DEFINITION, N_R_B = 4 ! 3
! STRESS & STRAIN COMPONENT ORDER: RR, ZZ, RZ, AND TT ! 4
! PROPERTY ORDER: 1-YOUNG’S MODULUS, 2-POISSON’S RATIO ! 5
! * ! 6
Use System_Constants ! for DP, N_R_B ! 7
Use Sys_Properties_Data ! for function GET_REAL_LP ! 8
IMPLICIT NONE ! 9
REAL(DP), INTENT(OUT) :: E (N_R_B, N_R_B) ! CONSTITUTIVE !10
REAL(DP) :: C_1, C_2, C_3, P_R, S_M, Y_M !11

!12
! N_R_B = NUMBER OF ROWS IN B AND E MATRICES !13
! P_R = POISSON’S RATIO !14
! S_M = SHEAR MODULUS !15
! Y_M = YOUNG’S MODULUS OF ELASTICITY !16

!17
IF (EL_REAL < 2) STOP ’el_real < 2 IN E_AXISYMMETRIC_STRESS’ !18
Y_M = GET_REAL_LP (1) ; P_R = GET_REAL_LP (2) !19
S_M = 0.5d0 * Y_M / (1 + P_R) !20
C_1 = Y_M /(1 + P_R)/(1 - P_R - P_R) !21
C_2 = C_1 * P_R ; C_3 = C_1 * (1 - P_R) !22

!23
E (:, 3) = 0.d0 ; E (3, :) = 0.d0 !24
E (1, 1) = C_3 ; E (2, 1) = C_2 ; E (4, 1) = C_2 !25
E (1, 2) = C_2 ; E (2, 2) = C_3 ; E (4, 2) = C_2 !26
E (1, 4) = C_2 ; E (2, 4) = C_2 ; E (4, 4) = C_3 !27
E (3, 3) = S_M !28

END SUBROUTINE E_AXISYMMETRIC_STRESS !29

Figure 12.2 Axisymmetric stress isotropic constitutive law

Chapter 12, Vector fields 389

The strain energy matrix definition becomes

U(uu) =
1

2 ∫Ω
εε τ ΕΕεε dΩ

which when evaluated in an element domain becomes

U
e =

1

2 ∫Ωe

(Beδδ e)T ΕΕe(Beδδ e)dΩ =
1

2
δδ e

T ∫Ωe

Be
T

(xx)ΕΕeBe(xx)dΩδδ e =
1

2
δδ e

T

SS
eδδ e

where the element stiffness matrix SS
e has the same matrix form as seen in heat transfer:

SS
e = ∫Ωe

Be
T

(x)ΕΕeBe(x)dΩ.

If additional data on ‘initial strains’, εε 0, and/or ‘initial stresses’, σσ 0, are given then the

stress-strain law must be generalized to:

σσ = ΕΕ(εε − εε 0) + σσ 0

where εε 0 and σσ 0 are initial strains and stresses, respectively. If not zero they cause

additional loading terms (source vectors) and require additional post-processing. The

additional work terms due to the initial strains and stresses are

Wε 0
= ∫Ω

σσ T εε 0dΩ = ∫Ω
εε T E εε 0dΩ, Wσσ 0

= − ∫Ω
εε T σσ 0dΩ.

There are several common causes of initial strains, such as thermal and swelling effects.

It is unusual to know an initial stress state and it is usually assumed to be zero.

Π(∆∆) = ∆∆T
SS∆∆ / 2 − ∆∆T

CC so minimizing with respect to all the displacements, ∆∆, giv es

SS∆∆ − CC = OO which are known as the algebraic Equations of Equilibrium.

12.3 Planar models

The states of plane stress and plane strain are interesting and useful examples of

stress analysis of a two-dimensional elastic solid (in the x-y plane). The assumption of

plane stress implies that the component of all stresses normal to the plane are zero

(σ z = τ zx = τ zy = 0) whereas the plane strain assumption implies that the normal

components of the strains are zero (ε z = γ zx = γ zy = 0). The state of plane stress is

commonly introduced in the first course of mechanics of materials. It was also the

subject of some of the earliest finite element studies.

The assumption of plane stress means that the solid is very thin and that it is loaded

only in the direction of its plane. At the other extreme, in the state of plane strain the

dimension of the solid is very large in the z-direction. It is loaded perpendicular to the

longitudinal (z) axis, and the loads do not vary in that direction. All cross-sections are

assumed to be identical so any arbitrary x-y section can be used in the analysis. These

two states are illustrated in Fig. 12.3. There are three common approaches to the

variational formulation of the plane stress (or plane strain) problem: 1) Displacement

formulation, 2) Stress formulation, and 3) Mixed formulation. We will select the

common displacement method and utilize the total potential energy of the system. This

can be proved to be equal to assuming a Galerkin weighted residual approach. In any

ev ent, note that it will be necessary to define all unknown quantities in terms of the

displacements of the solid. Specifically, it will be necessary to relate the strains and

390 Finite Element Analysis with Error Estimators

stresses to the displacements as was illustrated in 1-D in Sec. 7.3.

The finite element form is based on the use of strain energy density, as discussed in

Chapter 7. Since it is half the product of the stress and strain tensor components, we do

not need, at this point, to consider either stresses or strains that are zero. This means that

only three of six products will be used for a planar formulation.

Our notation will follow that commonly used in mechanics of materials. The

displacements components parallel to the x- and y-axes will be denoted by u(x, y) and

v(x, y), respectively. The normal stress acting parallel to the x- and y-axes are σ x and

σ y, respectively. The shear stress acting parallel to the y-axis on a plane normal to the

x-axis is τ xy, or simply τ . The corresponding components of strain are ε x , ε y, and γ xy, or

simply γ . Figure 12.4 summarizes the engineering (versus tensor) strain notations that

we will employ in our matrix definitions.

L

t

Traction, T

Body Force, X

Point Load, P

v

u
Displacements

Plane Stress: t / L < < 1

Plane Strain: t / L > > 1

Stresses

normal

shear

xx

yy

Figure 12.3 The states of plane stress and plane strain

u u + du

dx

du / dx

a) Normal, xx b) Shear, xy

Figure 12.4 Engineering notation for planar strains

Chapter 12, Vector fields 391

12.3.1 Minimum total potential energy

Plane stress analysis, like other elastic stress analysis problems, is governed by the

principle of minimizing the total potential energy in the system. It is possible to write the

generalized forms of the element matrices and boundary segment matrices defined in

above. The symbolic forms are:

(1) Stiffness matrix
(12.1)Se = ∫V e

Be
T

EeBe(x, y) dV

Be = element strain-displacement matrix, Ee = material constitutive matrix;

(2) Body Force Matrix
(12.2)Ce

x
= ∫V e

Ne(x, y)T Xe(x, y) dV

Ne = generalized interpolation matrix, Xe = body force vector per unit volume;

(3) Initial Strain Load Matrix

(12.3)Ce

o
= ∫V e

Be
T

(x, y) Eeεε e

o
(x, y) dV

εε e

o
= initial strain matrix;

(4) Surface Traction Load Matrix

(12.4)Cb

T
= ∫Ab

Nb(x, y)T Tb(x, y) dA

Nb = boundary interpolation matrix, Tb = traction force vector per unit area;

and where V
e is the element volume, A

b is a boundary segment surface area, dV is a

differential volume, and dA is a differential surface area. Now we will specialize these

relations for plane stress (or strain). The two displacement components will be denoted

by uT = [u v]. At each node there are two displacement components to be determined

(ng = 2). The total list of element degrees of freedom is denoted by δδ e.

12.3.2 Displacement interpolations

As before, it is necessary to define the spatial approximation for the displacement

field. Consider the x-displacement, u, at some point in an element. The simplest

approximation of how it varies in space is to assume a complete linear polynomial. In

two-dimensions a complete linear polynomial contains three constants. Thus, we select a

triangular element with three nodes (see Figs. 3.2, 9.1, and 9.2) and assume u is to be

computed at each node. Then

(12.5)u(x, y) = He ue = H
e

1 u
e

1 + H
e

2 u
e

2 + H
3
3 u

e

3.

The interpolation can either be done in global (x, y) coordinates or in a local system. If

global coordinates are utilized then, from Eq. 8.13, the form of the typical interpolation

function is
(12.6)H

e

i
(x, y) = (a

e

i
+ b

e

i
x + c

e

i
y) / 2A

e
, 1 ≤ i ≤ 3

where A
e is the area of the element and a

e

i
, b

e

i
, and c

e

i
denote constants for node i that

depend on the element geometry. Clearly, we could utilize the same interpolations for the

y-displacement: (12.7)v(x, y) = He ve.

To define the element dof vector δδ e we chose to order these six constants such that

392 Finite Element Analysis with Error Estimators

(12.8)δδ e
T

= u1 v1 u2 v2 u3 v3 e.

To refer to both displacement components at a point we employ a generalized rectangular

element interpolation matrix, N, which is made up of the scalar interpolation functions

for a node, H j , and numerous zero elements. Then

(12.9)u(x, y) =

u (x, y)

v (x, y)

=

H1

0

0

H1

H2

0

0

H2

H3

0

0

H3

eδδ e = Ne δδ e.

More advanced polynomials could be selected to define the H or N matrices. This vector

interpolation array, N, could be partitioned into typical contributions from each node.

Since it is not efficient to multiply by a lot of zero elements you will sometimes prefer to

simply use the scalar array interpolations, H, and the scatter the results into other arrays.

(Logical masks are available in f 95 and Matlab to assist with such efficiencies, but they

are omitted here to avoid confusion.)

SUBROUTINE ELASTIC_B_PLANAR (DGH, B) ! 1
! * ! 2
! 2-D ELASTICITY STRAIN-DISPLACEMENT RELATIONS (B) ! 3
! STRESS & STRAIN COMPONENT ORDER: XX, YY, XY ! 4
! * ! 5
Use System_Constants ! for DP, N_R_B, N_G_DOF, N_SPACE ! 6
Use Elem_Type_Data ! for LT_FREE, LT_N ! 7
IMPLICIT NONE ! 8
REAL(DP), INTENT(IN) :: DGH (N_SPACE, LT_N) ! Gradients ! 9
REAL(DP), INTENT(OUT) :: B (N_R_B, LT_N * N_G_DOF) ! Strains !10
INTEGER :: J, K, L ! Loops !11

!12
! B = STRAIN-DISPLACEMENT MATRIX (RETURNED) !13
! DGH = GLOBAL DERIVATIVES OF ELEM INTERPOLATION FUNCTIONS !14
! LT_N = NUMBER OF NODES PER ELEMENT TYPE !15
! N_G_DOF = NUMBER OF PARAMETERS PER NODE = 2 (U & V) !16
! N_R_B = NUMBER OF STRAINS (ROWS IN B) = 3: XX, YY, XY !17
! N_SPACE = DIMENSION OF SPACE = 2 here !18

!19
DO J = 1, LT_N ! ROW NUMBER !20

K = N_G_DOF * (J - 1) + 1 ! FIRST COLUMN, U !21
L = K + 1 ! SECOND COLUMN, V !22
B (1, K) = DGH (1, J) ! DU/DX FOR XX NORMAL !23
B (2, K) = 0.d0 !24
B (3, K) = DGH (2, J) ! DU/DY FOR XY SHEAR !25
B (1, L) = 0.d0 !26
B (2, L) = DGH (2, J) ! DV/DY FOR YY NORMAL !27
B (3, L) = DGH (1, J) ! DV/DX FOR XY SHEAR !28

END DO !29
END SUBROUTINE ELASTIC_B_PLANAR !30

Figure 12.5 Strain-displacement matrix for planar elements

Chapter 12, Vector fields 393

12.3.3 Strain-displacement relations

From mechanics of materials we can define the strains in terms of the displacement.

Order the three strain components so as to define εε T = [ε x ε y γ]. These terms are

defined as:

ε x =
∂u

∂x
, ε y =

∂v

∂y
, γ =

∂u

∂y
+

∂v

∂x

if the common engineering form is selected for the shear strain, γ . Two of these terms

are illustrated in Fig. 12.3.2. From Eqs. 12.5 and 12.7 we note

(12.10)ε x =
∂He

∂x
ue

, ε y =
∂He

∂y
ve

, γ =
∂He

∂y
ue +

∂He

∂x
ve.

These can be combined into a single matrix identity to define

(12.11)

ε x

ε y

γ

e

=

H1,x

0

H1,y

0

H1,y

H1,x

H2,x

0

H2,y

0

H2,y

H2,x

...

...

...

Hn,x

0

Hn,y

0

Hn,y

Hn,x

e

δδ e

or symbolically, εε e = Be(x, y)δδ e, where the shorthand notation H j,x = ∂H j / ∂x, etc. has

been employed, and where we have assumed the element has n nodes. Thus, the Be

matrix size depends on the type of element being utilized. This defines the element

strain-displacement operator Be that would be used in Eqs. 12.1 and 12.3. Note that B

could also be partitioned into 3 × 2 sub-partitions from each node on the element, as

shown in the implementation in Fig. 12.5.

12.3.4 Stress-strain law

The stress-strain law (constitutive relations) between the strain components, εε , and

the corresponding stress components, σσ T = [σ x σ y τ], is defined in mechanics of

materials. For the case of an isotropic, and isothermal, material in plane stress these are

listed in terms of the mechanical strains as

(12.12)σ x =
E

1 − ν 2
(ε x + ν ε y), σ y =

E

1 − ν 2
(ε y + ν ε x), τ =

E

2 (1 + ν)
γ = Gγ

where E is the elastic modulus, ν is Poisson’s ratio, and G is the shear modulus. In

theory, G is not an independent property. In practice it is sometimes treated as

independent. Some references list the inverse relations since the strains are usually

experimentally determined from the applied stresses. In the alternate inverse form the

constitutive relations for the mechanical strains, εε , are

(12.13)ε x =
1

E
(σ x − νσ y), ε y =

1

E
(σ y − νσ x), γ =

τ

G
= τ

2 (1 + ν)

E
.

We will write Eq. 12.13 in a more general matrix symbolic form

(12.14)σσ = E(εε − εε o)

by allowing for the presence of initial strains, εε o, that are not usually included in

mechanics of materials. Note that E (given above) is a symmetric matrix. This is almost

always true. This observation shows that in general the element stiffness matrix,

394 Finite Element Analysis with Error Estimators

Eq. 12.1, will also be symmetric.

The most common type of initial strain, εε o, is that due to temperature changes. For

an isotropic material these thermal strains are

(12.15)εε T

o = α ∆θ 1 1 0
where α is the coefficient of thermal expansion and ∆θ = (θ − θ o) is the temperature rise

from a stress free temperature of θ o. Usually the ∆θ is supplied as piecewise constant

element data, or θ o is given as global data along with the nodal temperatures computed

from the procedures in the previous chapter. At any point in the element the initial

thermal strain is proportional to
(12.16)∆θ = He(x)ΘΘe − θ o

In other words the gathered answers from the thermal study, ΘΘe, are loading data for a

thermal stress problem. Notice that thermal strains in isotropic materials do not include

thermal shear strains. If the above temperature changes were present then the additional

loading effects could be included via Eq. 12.3. If the material is not isotropic the the

initial thermal effects require local coordinate transformations and more input data

(described in Sections 12.5 and 12.8, respectively). So the resultant nodal load due to

thermal strains in the most general case becomes

(12.17)Ce

o
= ∫Ωe

Be
T

(x) Ee(x) t−1
(ns)(x) εε 0 (ns) (x) dΩ

where t(ns) denotes a square strain transformation matrix from the local material principal

coordinate direction, (ns), at local position x to the global coordinate axes.

At this point, we do not know the nodal displacements, δδ e, of the element. Once we

do know them, we will wish to use the above arrays to get post-processing results for the

stresses and, perhaps, for failure criteria. Therefore, for each element we usually store

the arrays Be, Ee, and εε e

o
so that we can execute the products in Eqs. 12.11 and 12.14

after the displacements are known.

Xe
1

3

2

te

Ae

e
Ce

1

Ce
2

Ce
5

Ce
6

Ce
3

Ce
4

a) Body force b) Surface traction

e
b

1

2

Tb

Cb
1

Cb
2

Cb
3

Cb
4

b

Figure 12.6 Element loads and consistent resultants

Chapter 12, Vector fields 395

12.4 Matrices for the constant strain triangle (CST)

Beginning with the simple linear triangle displacement assumption we note that for

a typical CST interpolation function ∂H
e

i
/ ∂x = b

e

i
/ 2A

e
, and ∂H

e

i
/ ∂y = c

e

i
/ 2A

e.

Therefore, from Eqs. 12.11 and 12.12, the strain components in the triangular element are

constant. Specifically,

(12.18)Be =
1

2Ae

b1

0

c1

0

c1

b1

b2

0

c2

0

c2

b2

b3

0

c3

0

c3

b3

e.

For this reason this element is commonly known as the constant strain triangle, CST.

Letting the material properties, E and ν , be constant in a typical element then the stiffness

matrix in Eq. 12.1 simplifies to

(12.19)Se = Be
T

EeBe
V

e

where the element volume is

(12.20)V
e = ∫V e

dv = ∫Ae

t
e(x, y) dx dy

where t
e is the element thickness. Usually the thickness of a typical element is constant

so that V
e = t

e
A

e. Of course, it would be possible to define the thickness at each node

and to utilize the interpolation functions to approximate t
e(x, y), and then the average

thickness is t
e = (t1 + t2 + t3) / 3. Similarly if the temperature change in the element is

also constant within the element then Eq. 12.3 defines the thermal load matrix

(12.21)Ce

o
= Be

T

Eeεε e

o
te

A
e.

It would be possible to be more detailed and input the temperature at each node and

integrate its change over the element.

It is common for plane stress problems to include body force loads due to gravity,

centrifugal acceleration, etc. For simplicity, assume that the body force vector Xe, and

the thickness, t
e, are constant. Then the body force vector in Eq. 12.2 simplifies to

(12.22)Ce

X
= te ∫Ae

Ne
T

(x, y) dx dy Xe.

From Eq. 12.9 it is noted that the non-zero terms in the integral typically involve scalar

terms such as

(12.23)I
e

i
= ∫Ae

H
e

i
(x, y) da =

1

2Ae ∫Ae

(ae

i
+ b

e

i
x + c

e

i
y) da.

These three terms can almost be integrated by inspection. The element geometric

constants can be taken outside parts of the integrals. Then from the concepts of the first

moment (centroid) of an area

(12.24)a
e

i ∫ da = a
e

i
A

e
, ∫ b

e

i
x da = b

e

i
x

e
A

e
, ∫ c

e

i
y da = c

e

i
y

e
A

e

where x and y denote the centroid coordinates of the triangle, x
e = (x1 + x2 + x3)e/3,

and y
e = (y1 + y2 + y3)e/3. In view of Eq. 12.24, the integral in Eq. 12.23 becomes

I
e

i
= A

e(ai + bi x + ci y)e/2A
e. Reducing the algebra to its simplest form, using Table 9.1,

yields
I

e

i
= A

e/3, 1 ≤ i ≤ 3.

396 Finite Element Analysis with Error Estimators

Therefore, for the CST the expanded form of the body force resultant is

Ce

X
=

t
e
A

e

3

1

0

1

0

1

0

0

1

0

1

0

1

X x

X y

e

=
t

e
A

e

3

X x

X y

X x

X y

X x

X y

e

where X x and X y denote the components of the body force vector. To assign a physical

meaning to this result note that t
e
A

e
X

e

x
is the resultant force in the x-direction.

Therefore, the above calculation has replaced the distributed load with a statically

equivalent set of three nodal loads. Each of these loads is a third of the resultant load.

These consistent loads are illustrated in Figs. 12.6.

A body force vector, X, can arise from several important sources. An example is

one due to acceleration (and gravity) loads. We hav e been treating only the case of

equilibrium. When the acceleration is unknown, we have a dynamic system. Then,

instead of using Newton’s second law, Σ F = m a where a (t) is the acceleration vector,

we invoke the D’Alembert’s principle and rewrite this as a pseudo-equilibrium problem

ΣF − m a = 0, or ΣF + FI = 0 where we have introduced an inertial body force vector

due to the acceleration, that is, we use X = − ρ a for the equilibrium integral form. Since

the acceleration is the second time derivative of the displacement vector, we can write

a (t) = Ne (x, y) δ̈̈δ
e

in a typical element. The typical element inertial contribution is, therefore,

− me ae = − ∫Ωe

Ne
T

ζ Ne
d Ω δ̈̈δ

e

where me is the element mass matrix. Since the acceleration vector is unknown, we

move it to the LHS of the (undamped) system equations of motion:

(12.25)M δ̈̈δ + K δδ = F.

Here, M is the assembled system mass matrix, and the above are the structural dynamic

equations. This class of problem will be considered later. If we had free (F = 0) simple

harmonic motion, so that δδ (t) = δδ j Sin (ω j t), then we get the alternate class known as

the eigen-problem,

(12.26)[K − ω 2
j
M] δδ j = 0,0,

where ω j is the eigenvalue, or natural frequency, and δδ j is the mode shape, or

eigenvector. The computational approaches to eigen-problems are covered in detail in the

texts by Bathe [4], and by others. As noted in Table 2.2, we employ the Jacobi iteration

technique for relatively small eigen-problems. The use of SCP error estimators is

discussed by Wiberg [25] for use in vibration problems.

Another type of body force that is usually difficult to visualize is that due to

electromagnetic effects. In the past, they were usually small enough to be ignored.

However, with the advances in superconducting materials, very high electrical current

densities are possible, and they can lead to significant mechanical loads. Similar loads

Chapter 12, Vector fields 397

develop in medical scan devices, and in fusion energy reactors which are currently

experimental. Recall from basic physics that the mechanical force, F, due to a current

density vector,
→
j , in a field with a magnetic flux density vector of

→
b is the vector cross

product F =
→
j ×

→
b. For a thin wire conductor,

→
j is easy to visualize since it is tangent to

the conductor. Howev er, the
→
b field, like the earth’s gravity field, is difficult to visualize.

This could lead to important forces on the system which might be overlooked.

The final load to be considered is that acting on a typical boundary segment. As

indicated in Fig. 12.6, such a segment is one side of an element being loaded with a

traction. In plane stress problems these pressures or distributed shears act on the edge of

the solid. In other words, they are distributed over a length L
b that has a known

thickness, t. Those two quantities define the surface area, A
b, on which the tractions in

Eq. 12.4 are applied. Similarly, the differential surface area is da = t d L. We observe

that such a segment would have two nodes. We can refer to them as local boundary

nodes 1 and 2. Of course, they are a subset of the three element nodes and also a subset

of the system nodes. Before Eq. 12.4 can be integrated to define the consistent loads on

the two boundary nodes it is necessary to form the boundary interpolation, Nb. That

function defines the displacements, u and v, at all points on the boundary segment curve.

By analogy with Eq. 12.8 we can denote the dof of the boundary segment as

ab
T

= u1 v1 u2 v2 b.

Then the requirement that u = Nbδδ b, for all points on L
b, defines the required Nb. There

are actually two ways that its algebraic form can be derived:

1) Develop a consistent (linear) interpolation on the line between the nodal dof.

2) Degenerate the element function Ne in Eq. 12.9 by restricting the x and y

coordinates to points on the boundary segment.

If the second option is selected then all the H
e

i
vanish except for the two associated

with the two boundary segment nodes. Those two H
e are simplified by the restriction

and thus define the two H
b

i
functions. While the result of this type of procedure may be

obvious, the algebra is tedious in global coordinates. (For example, let y
b = mx

b + n in

Eq. 12.6.) It is much easier to get the desired results if local coordinates are used. (For

example, set s
b = 0 in Eq. 9.6.) The net result is that one obtains a one-dimensional

linear interpolation set for Hb that is analogous to Eq. 4.11. If we assume constant

thickness, t
b, and constant tractions, Tb, then Eq. 12.4 becomes

Cb

T
= t

b ∫Lb

Nb
T

dL Tb.

Repeating the procedure used for Eq. 5.5 a typical non-zero contribution is

I
b

i
= ∫Lb

H
b

i
dL = L

b/2, 1 ≤ i ≤ 2

and the final result for the four force components is

(12.27)Cb

T

T =
t

b
L

b

2
[T x T y T x T y]b

where T x and T y are the two components of T . Physically, this states that half of the

398 Finite Element Analysis with Error Estimators

2 m
1 3

42
y

x

2 m

2

1

2 1

3
1 2

3

10,000 N

10,000 N
10,000 N 756 N

756 N

Figure 12.7 An example plane stress structure

title "Two element plane stress example" ! 1
area_thick 5e-3 ! Thickness of all planar elements ! 2
nodes 4 ! Number of nodes in the mesh ! 3
elems 2 ! Number of elements in the system ! 4
dof 2 ! Number of unknowns per node ! 5
el_nodes 3 ! Maximum number of nodes per element ! 6
space 2 ! Solution space dimension ! 7
b_rows 3 ! Number of rows in the B matrix ! 8
shape 2 ! Element shape, 1=line, 2=tri, 3=quad ! 9
gauss 1 ! number of quadrature points !10
el_real 3 ! Number of real properties per element !11
el_homo ! Element properties are homogeneous !12
pt_list ! List the answers at each node point !13
loads ! An initial source vector is input !14
post_1 ! Require post-processing !15
example 201 ! Source library example number !16
remarks 5 ! Number of user remarks !17
quit ! keyword input, remarks follow !18

2------4 ---> P = 1e4 N !19
Fixed : \ (2): width = height = 2 m, !20
edge : \ : E = 15e9 N/mˆ2, nu = 0.25, !21

: (1)\ : thickness = 5e-3 m !22
1------3 !23

1 11 0.0 0.0 ! node, U-V BC flag, x, y !24
2 11 0.0 2.0 ! node, U-V BC flag, x, y !25
3 00 2.0 0.0 ! node, U-V BC flag, x, y !26
4 00 2.0 2.0 ! node, U-V BC flag, x, y !27
1 1 3 2 ! element, 3 nodes !28
2 4 2 3 ! element, 3 nodes !29
1 1 0.0 ! node, direction, BC value (U) !30
1 2 0.0 ! node, direction, BC value (V) !31
2 1 0.0 ! node, direction, BC value (U) !32
2 2 0.0 ! node, direction, BC value (V) !33

1 15e9 0.25 10.5e6 ! elem, E, nu, yield stress !34
4 1 10000. ! node, direction, force !35
4 2 0. ! terminate with last force in the system !36

Figure 12.8 Plane stress data file

Chapter 12, Vector fields 399

resultant x-force, t
b

L
b

T
b

x
is lumped at each of the two nodes. The resultant y-force is

lumped in the same way as illustrated in Fig. 12.6.

There are times when it is desirable to rearrange the constitutive matrix, E, into two

parts. One part, En, is due to normal strain effects, and the other, Es, is related to the

shear strains. Therefore, in general it is possible to write Eq. 12.5 as

(12.28)E = En + Es.

In this case such a procedure simply makes it easier to write the CST stiffness matrix in

closed form. Noting that substituting Eq. 12.28 into Eq. 12.1 allows the stiffness to be

separated into parts Se = Se

n
+ Se

s
, where

Se

n
=

EV

4A2(1 − ν 2)

b
2
1

ν b1c1

b1b2

ν b1c2

b1b3

ν b1c3

c
2
1

ν c1b2

c1c2

ν c1b3

c1c3

b
2
2

ν b2c2

b2b3

ν b2c3

c
2
2

ν c2b3

c2c3

sym

b
2
3

ν b3c3 c
2
3

Se

s
=

EV

8A2(1 + ν)

c
2
1

c1b1

c1c2

c1b2

c1c3

c1b3

b
2
1

b1c2

b1b2

b1c3

b1b3

c
2
2

c2b2

c2c3

c2b3

b
2
2

b2c3

b2b3

sym

c
2
3

c3b3 b
2
3

and where V is the volume of the element. For constant thickness V = At.

The strain-displacement matrix Be can always be partioned into sub-matrices

associated with each node. Thus, the square stiffness matrix S can also be partitioned

into square sub-matrices, since it is the product of BT E B. For local nodes j and k, they

interact to give a contribution defined by:

S j k = ∫Ω
BT

j
E Bk d Ω.

If we choose to split E into two distinct parts, say E = En + Es, then we likewise have

two contributions to the partitions of S, namely

Sn

j k
= ∫Ω

BT

j
En Bk d Ω , Ss

j k
= ∫Ω

BT

j
Es Bk d Ω .

Sometimes we may use different numerical integration rules on these two parts. For the

constant strain triangle, CST, we hav e the nodal partitions of Be j :

Be

j
=

1

2 Ae

b j

0

c j

0

c j

b j

e =

d x j

0

d y j

0

d y j

d x j

e

which involve the geometric constants defined earlier. Once we know the gradients of the

scalar interpolation functions, H we can compute Be from Eq. 12.11 as shown earlier in

Fig. 12.5, for any planar element in our element library. For a constant isotropic E, the

400 Finite Element Analysis with Error Estimators

integral gives the partitions

Ss

j k
=

t E33

4 A

c j ck

b j ck

c j bk

b j bk

e

, Sn

j k
=

t

4 A

E11 b j bk

E12 c j bk

E12 b j ck

E22 c j ck

e

where E33 brings in the shear effects, and E11, E12 couple the normal stress effects. If we

allow j and k to range over the values 1, 2, 3, we would get the full 6 × 6 stiffness

S =

S11

S21

S31

S12

S22

S32

S13

S23

S33

.

Since E is symmetric, it should be clear that S j k = ST

k j
. A similar split can be made

utilizing the constitutive law in terms of the Lamé constants,

λ = K −
2G

3
=

Eν

(1 + ν) (1 − 2ν)
, µ = G =

E

2 (1 + ν)
,

where K and G are the bulk modulus and the shear modulus, respectively. Then the

plane strain E matrix can be split as

E = λ

1

1

0

1

1

0

0

0

0

+ µ

2

0

0

0

2

0

0

0

1

E = K

1

1

0

1

1

0

0

0

0

+
G

3

4

−2

0

− 2

4

0

0

0

3

.

Likewise, for the full three-dimensional case with six strains and six stresses, we have a

similar form

E = λ

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

+ µ

2

0

0

0

0

0

0

2

0

0

0

0

0

0

2

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

.

This means we have split the strain energy into two corresponding parts: the distortional

strain energy and the volumetric strain energy. We define an incompressible material as

one that has no change in volume as it is deformed. For such a material ν = 1

2
. For a

nearly incompressible material, we note that as ν → 1

2
, we see that λ →∞ and K →∞.

Since many rubber materials are nearly incompressible, we can expect to encounter this

difficulty in practical problems. Since incompressibility means no volume change, it also

means there is no volumetric strain. For plane strain we have the incompressibility

constraint: ∂u / ∂x + ∂v / ∂y ≡ 0. In such a case, we must either use an alternate

variational form that involves the displacements and the mean stress (pressure), or we

must undertake numerical corrections to prevent the solution from locking.

Chapter 12, Vector fields 401

TITLE: "Two element plane stress example" ! 1
! 2

*** ELEMENT PROPERTIES *** ! 3
ELEMENT, 3 PROPERTY & REAL_VALUE PAIRS ! 4

1 1 1.50000E+10 2 2.50000E-01 3 1.05000E+07 ! 5
! 6

NOTE: 2-D DOMAIN THICKNESS SET TO 5.000000000000E-03 ! 7
! 8

*** INITIAL FORCING VECTOR DATA *** ! 9
NODE PARAMETER VALUE EQUATION !10

4 1 1.00000E+04 7 !11
4 2 0.00000E+00 8 !12

!13
*** REACTION RECOVERY *** !14
NODE, PARAMETER, REACTION, EQUATION !15

1, DOF_1, 6.8212E-13 1 !16
1, DOF_2, 7.5630E+02 2 !17
2, DOF_1, -1.0000E+04 3 !18
2, DOF_2, -7.5630E+02 4 !19

!20
*** OUTPUT OF RESULTS IN NODAL ORDER *** !21
NODE, X-Coord, Y-Coord, DOF_1, DOF_2, !22

1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 !23
2 0.0000E+00 2.0000E+00 0.0000E+00 0.0000E+00 !24
3 2.0000E+00 0.0000E+00 2.5210E-05 -6.7227E-05 !25
4 2.0000E+00 2.0000E+00 2.4650E-04 -1.5406E-04 !26

!27
*** STRESSES AT INTEGRATION POINTS *** !28

COORDINATES STRESSES !29
POINT X Y XX YY !30
POINT XY EFFECTIVE !31

ELEMENT NUMBER 1 !32
1 6.667E-01 6.667E-01 2.01681E+05 5.04202E+04 !33
1 -2.01681E+05 3.93794E+05 !34

ELEMENT NUMBER 2 !35
1 1.333E+00 1.333E+00 1.79832E+06 -2.01681E+05 !36
1 2.01681E+05 1.93890E+06 !37

Figure 12.9 Selected CST results for the two element model

As an example of the use of the CST, consider the thin structure shown in Fig. 12.7.

Its elastic modulus is 15 × 109
N /m2, Poisson’s ratio is 0. 25, and the yield stress is

10. 5 × 106
N /m2. The uniform thickness of the material is 5 × 10−3

m. The

corresponding input data file is given in Fig. 12.8. From Eq. 9.14 the element geometric

constants are

e = 1 e = 2

i bi ci i bi ci

1 −2 −2 1 +2 +2

2 +2 0 2 −2 0

3 0 +2 3 0 −2

For the given data the constants multiplying the Sn and Ss matrices are 1 × 107 and

6 × 107
N /m, respectively. For the first element the two contributions to the element

402 Finite Element Analysis with Error Estimators

stiffness matrix are

Se

n
=

1 × 107

2

+8

+2

−8

0

0

−2

+8

−2

0

0

−8

+8

0

0

+2

0

0

0

0

0

Sym.

+8

Se

s
=

3 × 107

2

+1

+1

0

−1

−1

0

+1

0

−1

−1

0

0

0

0

0

+1

+1

0

+1

0

Sym.

0

Thus, the first element stiffness is:

S
e = 5 × 106

+11

+5

−8

−3

−3

−2

+11

−2

−3

−3

−8

+8

0

0

+2

+3

+3

0

+3

0

Sym.

+8

and its global and local degree of freedom numbers are the same. The second stiffness

matrix happens to be the same due to its 180° rotation in space. Of course, its global

dof numbers are different. That list is: 7, 8, 3, 4, 5, and 6. Since there are no body

forces or surface tractions these matrices can be assembled to relate the system stiffness

to the applied point load, P, and the support reactions. Applying the direct assembly

procedure gives

1 2 3 4 5 6 7 8 global

5 × 106

+11

+5

−3

−2

−8

−3

0

0

+11

−3

−8

−2

−3

0

0

+11

0

0

+5

−8

−2

+11

+5

0

−3

−3

+11

0

−3

−3

+11

−2

−8

+11

+5

Sym.

+11

∆∆ =

R1

R2

R3

R4

0

0

104

0

.

Chapter 12, Vector fields 403

Applying the conditions of zero displacement at nodes 1 and 2 reduces this set to

5 × 106

11

0

−3

−3

11

−2

−8

11

5

Sym.

11

u3

v3

u4

v4

=

0

0

104

0

.

Inverting the matrix and solving gives the required displacement vector, transposed:

105 × ur = [2. 52 − 6. 72 24. 65 − 15. 41] m. Substituting to find the reactions yields

RT

g
= [− 0. 002 − 756. 3 − 10, 000 − 756. 3] N . The deformed shape and resulting

reactions are also shown in Fig. 12.7. One should always check the equilibrium of the

! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** ! 1
! PLANE_STRESS ANALYSIS, NON-ISOPARAMETRIC. Example source 201. ! 2
! STRESS AND STRAIN COMPONENT ORDER: XX, YY, XY, SO N_R_B = 3 ! 3

! 4
INTEGER :: IP ! loops ! 5
REAL(DP) :: DET, DET_WT, THICK ! volume ! 6

! PROPERTIES: 1-YOUNG’S MODULUS, 2-POISSON’S RATIO, AND ! 7
! 3-YIELD STRESS, IF PRESENT ! 8

! 9
CALL STORE_FLUX_POINT_COUNT ! Save LT_QP !10

!11
THICK = 1 ! DEFINE CONSTANT PROPERTIES !12
IF (AREA_THICK /= 1.d0) THICK = AREA_THICK !13

!14
! FORM THE CONSTITUTIVE MATRIX (OR GET_APPLICATION_E_MATRIX) !15

CALL E_PLANE_STRESS (E) !16
!17

DO IP = 1, LT_QP ! NUMERICAL INTEGRATION LOOP !18
G = GET_G_AT_QP (IP) ! GEOMETRY INTERPOLATIONS !19
GEOMETRY = COORD (1:LT_GEOM,:) ! GEOMETRY NODES !20
XYZ = MATMUL (G, GEOMETRY) ! COORDINATES OF POINT !21

!22
DLG = GET_DLG_AT_QP (IP) ! GEOMETRIC DERIVATIVES !23
AJ = MATMUL (DLG, GEOMETRY (:, 1:LT_PARM)) ! JACOBIAN !24
CALL INVERT_2BY2 (AJ, AJ_INV, DET) ! INVERSE, DET !25
DET_WT = DET * WT (IP) * THICK !26

!27
H = GET_H_AT_QP (IP) ! SCALAR INTERPOLATIONS !28
DLH = GET_DLH_AT_QP (IP) ! SCALAR DERIVATIVES !29
DGH = MATMUL (AJ_INV, DLH) ! PHYSICAL DERIVATIVES !30

!31
!---> FORM STRAIN-DISPLACEMENT, B (OR GET_APPLICATION_B_MATRIX) !32

CALL ELASTIC_B_PLANAR (DGH, B) !33
!34

! EVALUATE ELEMENT MATRICES !35
S = S + DET_WT * MATMUL (TRANSPOSE(B), MATMUL (E, B)) !36

!37
! SAVE PT, CONSTITUTIVE & STRAIN_DISP FOR POST_PROCESS & SCP !38

CALL STORE_FLUX_POINT_DATA (XYZ, E, B) !39
END DO ! Over quadrature points !40

! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** !41

Figure 12.10 A general plane stress isotropic stiffness matrix

404 Finite Element Analysis with Error Estimators

reactions and applied loads. Checking Σ Fx = 0, Σ M = 0 does show minor errors in

about the sixth significant figure. Thus, the results are reasonable.

At this point we can recover the displacements for each element, and then compute

the strains and stress. The element dof vectors (in meters) are, respectively

! *** POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! 1
! PLANE_STRESS ANALYSIS, using STRESS (N_R_B + 2) ! 2
! STRESS AND STRAIN COMPONENT ORDER: XX, YY, XY, SO N_R_B = 3 ! 3
! (Stored as application source example 201.) ! 4
! PROPERTIES: 1-YOUNG’S MODULUS, 2-POISSON’S RATIO, AND ! 5
! 3-YIELD STRESS, IF PRESENT ! 6

INTEGER :: J, N_IP ! LOOPS ! 7
REAL(DP), SAVE :: YIELD ! FAILURE DATA ! 8

! 9
IF (IE == 1) THEN ! PRINT TITLES & INITIALIZE !10

STRAIN = 0.d0 ; STRAIN_0 = 0.d0 ! INITIALIZE ALL OF "STRAIN" !11
IF (EL_REAL > 2) THEN ! INITIALIZE YIELD STRESS !12

YIELD = GET_REAL_LP (3) !13
ELSE ; YIELD = HUGE (1.d0) ; END IF ! YIELD DATA !14

!15
WRITE (6, 50) ; 50 FORMAT (/, & !16
’*** STRESSES AT INTEGRATION POINTS ***’, /, & !17
’ COORDINATES STRESSES’, /, & !18
’POINT X Y XX YY’, /, & !19
’POINT XY EFFECTIVE’) !20

END IF ! NEW HEADINGS !21
!22

WRITE (6, *) ’ ELEMENT NUMBER ’, IE !23
CALL READ_FLUX_POINT_COUNT (N_IP) ! NUMBER OF QUADRATURE POINTS !24
DO J = 1, N_IP ! AT QUADRATURE POINTS !25

!26
CALL READ_FLUX_POINT_DATA (XYZ, E, B) ! PT, PROP, STRAIN_DISP !27

!28
! MECHANICAL STRAINS & STRESSES !29

STRAIN (1:N_R_B) = MATMUL (B, D) ! STRAINS AT THE POINT !30
STRESS = MATMUL (E, STRAIN) ! CALCULATE STRESSES !31

!32
! VON_MISES FAILURE CRITERION (EFFECTIVE STRESS, ADD TO END) !33

STRESS (4) = SQRT ((STRESS (1) - STRESS (2)) **2 & !34
+ (STRESS (2)) **2 + (STRESS (1)) **2 & !35
+ 6.d0 * STRESS (3) **2) * 0.7071068d0 !36

IF (STRESS (4) >= YIELD) PRINT *, & !37
’WARNING: FAILURE CRITERION EXCEEDED IN ELEMENT =’, IE !38

!39
! LIST STRESSES AND FAILURE CRITERION AT POINT !40

WRITE (6, 52) J, XYZ (1:2), STRESS (1:2) !41
WRITE (6, 51) J, STRESS (3:4) !42
52 FORMAT (I3, 2(1PE11.3), 5(1PE14.5)) !43
51 FORMAT (I3, 22X, 5(1PE14.5)) !44

!45
END DO ! AT QUADRATURE POINTS !46

! *** END POST_PROCESS_ELEM PROBLEM DEPENDENT STATEMENTS *** !47

Figure 12.11 Plane stress mechanical stress recovery

Chapter 12, Vector fields 405

δδ e
T

= 0 0 2. 521 − 6. 723 0 0 × 10−5

δδ e
T

= 24. 650 − 15. 406 0 0 2. 521 − 6. 723 × 10−5

and the strain-displacement matrices, from Eq. 12.18 are

Be =
1

4

−2

0

−2

0

−2

−2

2

0

0

0

0

2

0

0

2

0

2

2

for e = 1, while for e = 2

Be =
1

4

2

0

2

0

2

2

−2

0

0

0

0

−2

0

0

−2

0

−2

0

.

Recovering the element strains, εε e = Beδδ e in meters/meter gives

e = 1 , εε e
T

= 10−5 1. 261 0. 000 − 3. 361

e = 1 , εε e
T

= 10−5 12. 325 − 4. 342 3. 361 .

Utilizing the constitute law, with no initial strains, εε o = 00, giv es

Ee =
15 × 109

(15/16)

1

1/4

0

1/4

1

0

0

0

3/8

= 2 × 109

8

2

0

2

8

0

0

0

3

,

and the element stresses, in Newtons / meter2, are

e = 1 , σ e
T

= 104 20. 17 5. 04 − 20. 17

e = 2 , σ e
T

= 104 179. 83 − 20. 17 20. 17 .

A good engineer should have an estimate of the desired solution before approaching

the computer. For example, if the load had been at the center of the edge, then

σ x = P/A = 104 / (2) (5 × 10−3) = 106 N/m2
,

and σ y = 0 = τ . The values are significantly different from the computed values. A

better estimate would consider both the axial and bending effects so σ x = P/A ± Mc / I .

At the centroid of these two elements (y = 0. 667 and y = 1. 333) the revised stress

estimates are σ x = 0 and σ x = 2 × 106 N/m2, respectively. The revised difference between

the maximum centroidial stress and our estimate is only 10 percent. Of course, with the

insight gained from the mechanics of materials our mesh was not a good selection. We

know that while an axial stress would be constant across the depth of the member, the

bending effects would vary linearly with y. Thus, it was poor judgement to select a

single element through the thickness. These hand calculations are validated in the

selected output file shown in Fig. 12.9.

To select a better mesh we should imagine how the stress would vary through the

member. Then we would decide how many constant steps are required to get a good fit to

the curve. Similarly, if we employed linear stress triangles (LST) we would estimate the

required number of piece-wise linear segments needed to fit the curve. For example,

406 Finite Element Analysis with Error Estimators

title "2D STRESS PATCH TEST, T6 ESSENTIAL BC" ! 1
nodes 9 ! Number of nodes in the mesh ! 2
elems 2 ! Number of elements in the system ! 3
dof 2 ! Number of unknowns per node ! 4
el_nodes 6 ! Maximum number of nodes per element ! 5
space 2 ! Solution space dimension ! 6
b_rows 3 ! Number of rows in the B (operator) matrix ! 7
shape 2 ! Element shape, 1=line, 2=tri, 3=quad, 4=hex ! 8
gauss 4 ! number of quadrature points ! 9
el_real 2 ! Number of real properties per element !10
el_homo ! Element properties are homogeneous !11
post_el ! Require element post-processing !12
example 201 ! Source library example number !13
data_set 01 ! Data set for example (this file) !14
exact_case 12 ! Exact analytic solution !15
list_exact ! List given exact answers at nodes, etc !16
list_exact_flux ! List given exact fluxes at nodes, etc !17
remarks 8 ! Number of user remarks !18
quit ! keyword input !19
Note: Patch test yields constant gradient and strains !20
3--6---9 Mesh to left. Exact solution u = 1 + 3x - 4y !21
:(2) / : du/dx = 3, du/dy = -4 !22
2 5 8 Exact solution v = 1 + 3x - 4y !23
: / (1): dv/dx = 3, dv/dy = -4 !24
1/--4--7 Thus answer at node 5 is u = v = -1 !25
Strains: 3, -4, -1. Stresses: 3, -4, -0.5, for E=1, nu=0 !26
Stresses: 2.13333, -3.46667, -0.4, for E=1, nu=0.25 !27

1 11 0.0 0.0 ! begin: node, bc_flags, x, y !28
2 11 0.0 2.0 !29
3 11 0.0 4.0 !30
4 11 2.0 0.0 !31
5 00 2.0 2.0 ! only unknown !32
6 11 2.0 4.0 !33
7 11 4.0 0.0 !34
8 11 4.0 2.0 !35
9 11 4.0 4.0 !36

1 1 7 9 4 8 5 ! begin elements !37
2 1 9 3 5 6 2 !38

1 1 1.0 ! essential bc !39
2 1 -7.0 !40
3 1 -15.0 !41
4 1 7.0 !42
6 1 -9.0 !43
7 1 13.0 !44
8 1 5.0 !45
9 1 -3.0 !46
1 2 1.0 ! essential bc !47
2 2 -7.0 !48
3 2 -15.0 !49
4 2 7.0 !50
6 2 -9.0 !51
7 2 13.0 !52
8 2 5.0 !53
9 2 -3.0 !54

1 1.0 0.25 0.0 ! el, E, Nu, yield !55

Figure 12.12 Plane stress patch test data

consider a cantilever beam subjected to a bending load at its end. We know the exact

normal stress is linear through the thickness and the shear stress varies quadratically

through the thickness. Thus, through the depth we would need several linear (CST), or a

Chapter 12, Vector fields 407

few quadratic (LST), or a single cubic triangle (QST).

Converting to such higher order elements is relatively simple if we employ

numerical intergration. Extending the numerically integrated scalar element square

matrix of Fig. 11.41 a plane stress formulation, independent of element type, is obtained

as shown in Fig. 12.10. The corresponding element stress recovery at each quadrature

point is given in Fig. 12.11. The stiffness matrix given in Fig. 12.10 is actually basically

the form that would be needed for any 1-, 2-, 3-dimensional, or axisymmetric solid. For

example, one would mainly need to change two calls and make them more general. Line

16 recovers the constitutive matrix. It could be replaced with a call, say to routine

E_ISOTROPIC_STRESS (E), that had the necessary logic to treat the 5 cases cited

above. The choices for Ee mainly depend on the dimension of the space (N_SPACE set

by keyword) and whether the keyword axisymmetric is present.

Usually the state of plane stress is taken as the default in a 2-dimensional model (if

not axisymmetric) so one would have to provide another logical control variable (say

keyword plane_strain) to allow for activating that condition. Likewise, the strain-

displacement call for the Be matrix (at line 33) could be changed to a general form say,

ELASTIC_B_MATRIX (DGH , H , XYZ , B), that works for any of the above 4 cases by

allowing for an axisymmetric model to use the current point, XYZ, and the interpolation,

H, needed to obtain the hoop strain. The choices for Be depend only on the dimension of

the space and whether the keyword axisymmetric is present.

It is always wise to test such implementations by means of a numerical patch test.

Such a test is given in Fig. 12.12 where both the u and v displacements are prescribed, by

the same equation, at all the boundary nodes as essential conditions. Then the one interior

node displacement is computed. All displacements are then employed to obtain the

generalized flux components (here mechanical stresses) and compared to the

corresponding constant values assumed in the analytic expression picked to define the

patch test. Here we see that the results for displacements and stresses, in Fig. 12.13, are

ev erywhere exact and we pass the patch test and thus assume the programming is

reasonably correct. In the latter figure the one interior node displacement vector actually

computed is node 5 (line 13) while the other 8 node displacement vectors were prescribed

as essential boundary conditions. The element post-processing results are given in lines

43-55. The flux (stress) components at the integration points (lines 19-29), and their

smoothed values at the nodes (lines 31-41) are output when numerical integration is used

(keyword gauss > 0) unless turned off by keywords no_scp_ave, or no_error_est.

12.5 Stress and strain transformations *

Having computed the global stress components at a point in an element, we may

wish to find the stresses in another direction, that is, with respect to a different coordinate

system. This can be done by employing the transformations associated with Mohr’s

circle. Mohr’s circles of stress and strain are usually used to produce graphical solutions.

However, here we wish to rely on automated numerical solutions. Thus, we will review

the stress transformation laws. Refer to Fig. 12.14 where the quantities used in Mohr’s

transformation are defined. The alternate coordinate set (n, s) is used to describe the

surfaces on which the normal stresses, σ n and σ s, and the shear stress, τ ns, act. The

408 Finite Element Analysis with Error Estimators

TITLE: "2D STRESS PATCH TEST, T6 ESSENTIAL BC" ! 1
! 2

*** SYSTEM GEOMETRIC PROPERTIES *** ! 3
VOLUME = 1.60000E+01 ! 4
CENTROID = 2.00000E+00 2.00000E+00 ! 5

! 6
*** OUTPUT OF RESULTS AND EXACT VALUES IN NODAL ORDER *** ! 7
NODE X-Coord Y-Coord DOF_1 DOF_2 EXACT1 EXACT2 ! 8

1 0.00E+0 0.00E+0 1.0000E+0 1.0000E+0 1.0000E+0 1.0000E+0 ! 9
2 0.00E+0 2.00E+0 -7.0000E+0 -7.0000E+0 -7.0000E+0 -7.0000E+0 !10
3 0.00E+0 4.00E+0 -1.5000E+1 -1.5000E+1 -1.5000E+1 -1.5000E+1 !11
4 2.00E+0 0.00E+0 7.0000E+0 7.0000E+0 7.0000E+0 7.0000E+0 !12
5 2.00E+0 2.00E+0 -1.0000E+0 -1.0000E+0 -1.0000E+0 -1.0000E+0 !13
6 2.00E+0 4.00E+0 -9.0000E+0 -9.0000E+0 -9.0000E+0 -9.0000E+0 !14
7 4.00E+0 0.00E+0 1.3000E+1 1.3000E+1 1.3000E+1 1.3000E+1 !15
8 4.00E+0 2.00E+0 5.0000E+0 5.0000E+0 5.0000E+0 5.0000E+0 !16
9 4.00E+0 4.00E+0 -3.0000E+0 -3.0000E+0 -3.0000E+0 -3.0000E+0 !17

!18
*** FE AND EXACT FLUX COMPONENTS AT INTEGRATION POINTS *** !19
EL X-Coord Y-Coord FLUX_1 FLUX_2 FLUX_3 EXACT1 EXACT2 EXACT3 !20
1 2.67E+0 1.33E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !21
1 3.20E+0 8.00E-1 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !22
1 3.20E+0 2.40E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !23
1 1.60E+0 8.00E-1 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !24

EL X-Coord Y-Coord FLUX_1 FLUX_2 FLUX_3 EXACT1 EXACT2 EXACT3 !25
2 1.33E+0 2.67E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !26
2 2.40E+0 3.20E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !27
2 8.00E-1 3.20E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !28
2 8.00E-1 1.60E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !29

!30
** SUPER_CONVERGENT AVERAGED NODAL FLUXES & EXACT FLUXES ** !31
PT X-Coord Y-Coord FLUX_1 FLUX_2 FLUX_3 EXACT1 EXACT2 EXACT3 !32
1 0.00E+0 0.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !33
2 0.00E+0 2.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !34
3 0.00E+0 4.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !35
4 2.00E+0 0.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !36
5 2.00E+0 2.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !37
6 2.00E+0 4.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !38
7 4.00E+0 0.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !39
8 4.00E+0 2.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !40
9 4.00E+0 4.00E+0 2.13E0 -3.47E0 -4.00E-1 2.13E0 -3.47E0 -4.00E-1 !41

!42
*** STRESSES AT INTEGRATION POINTS *** !43

COORDINATES STRESSES !44
PT X Y XX YY XY EFFECTIVE !45

ELEMENT NUMBER 1 !46
1 2.667E+0 1.333E+0 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !47
2 3.200E+0 8.000E-1 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !48
3 3.200E+0 2.400E+0 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !49
4 1.600E+0 8.000E-1 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !50

ELEMENT NUMBER 2 !51
1 1.333E+0 2.667E+0 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !52
2 2.400E+0 3.200E+0 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !53
3 8.000E-1 3.200E+0 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !54
4 8.000E-1 1.600E+0 2.1333E+0 -3.4667E+0 -4.0000E-1 4.9441E+0 !55

Figure 12.13 Correct plane stress patch test results

Chapter 12, Vector fields 409

n
s

y

x

o

xx

yy
xy

nn

ns
yx

Figure 12.14 Local material or stress axes

n-axis is rotated from the x-axis by a positive (counter-clockwise) angle of β . By

considering the equilibrium of the differential element, it is shown in mechanics of

materials that
(12.29)σ n = σ xCos 2 β + σ ySin 2 β + 2τ xySin β Cos β .

Likewise the shear stress component is found to be

(12.30)τ ns = − σ x Sin β Cos β + σ y Sin β Cos β + τ xy(Cos 2 β − Sin 2 β).

For Mohr’s circle only these two stresses are usually plotted in the σ n − τ ns space.

However, for a useful analytical statement we also need to define σ s. Again from

equilibrium considerations it is easy to show that

(12.31)σ s = σ xSin 2 β + σ yCos 2 β − 2τ xySin β Cos β .

Prior to this point we have employed matrix notation to represent the stress

components. Then we were considering only the global coordinates. But now when we

refer to the stress components it will be necessary to indicate which coordinate system is

being utilized. We will employ the subscripts xy and ns to distinguish between the two

systems. Thus, our previous stress component array will be denoted by

σσ T = σσ T

(xy) = [σ x σ y τ xy]

where we have introduced the notation that subscripts enclosed in parentheses denote the

coordinate system employed. The stress components in the second coordinate system

will be ordered in a similar manner and denoted by σσ T

(ns) = [σ n σ s τ ns]. In this

notation the stress transformation laws can be written as

(12.32)

σ n

σ s

τ ns

=

+C
2

+S
2

−SC

+S
2

+C
2

+SC

+2SC

−2SC

(C2 − S
2)

σ x

σ y

τ xy

where C ≡ Cos β and S ≡ Sin β for simplicity. In symbolic matrix form this is

(12.33)σσ (ns) = T(β) σσ (xy)

410 Finite Element Analysis with Error Estimators

where T will be defined as the stress transformation matrix. Clearly, if one wants to

know the stresses on a given plane one specifies the angle β , forms T, and computes the

results from Eq. 12.32. A similar procedure can be employed to express Mohr’s circle of

strain as a strain matrix transformation law. Denoting the new strains as

εε T

(ns) = [ε n ε s γ ns] then the strain transformation law is

(12.34)

ε n

ε s

γ ns

=

+C
2

+S
2

−2SC

+S
2

+C
2

+2SC

+SC

−SC

(C2 − S
2)

ε x

ε y

γ xy

or simply
(12.35)εε (ns) = t (β) εε (xy).

Note that the two transformation matrices, T and t, are not identical. This is true because

we have selected the engineering definition of the shear strain (instead of using the tensor

definition). Also note that both of the transformation matrices are square. Therefore, the

reverse relations can be found by inverting the transformations, that is,

(12.36)σσ (xy) = T(β)−1σσ (ns), εε (xy) = t(β)−1εε (ns).

These two transformation matrices have the special property that the inverse of one is the

transpose of the other, that is, it can be shown that

(12.37)T−1 = tT
, t−1 = TT .

This property is also true when generalized to three-dimensional properties. Another

generalization is to note that if we partition the matrices into normal and shear

components, then

T =

T11

T21

T12

T22

, t =

T11

2T21

T12 / 2

T22

.

In mechanics of materials it is shown that the principal normal stresses occur when

the angle is given by Tan(2β p) = 2τ xy / (σ x − σ y). Thus, if β p were substituted into

Eq. 12.31 one would compute the two principal normal stresses. In this case it may be

easier to use the classical form that

σ p =
σ x + σ y

2
±

(

σ x − σ y

2
)2 + τ 2

xy

1
2

.

However, to illustrate the use of Eq. 12.31 we will use the results of the previous two

element plane stress examples to find the maximum normal stress at the second element

centroid. Then Tan(2β p) = 2(20. 17) / (179. 83 − 20. 17) = 0. 2017 so β p = 5. 70°,

Cos β p = 0. 995, Sin β p = 0. 099, and the transformation is

σ n

σ s

τ ns

=

0. 9901

0. 0099

−0. 0989

0. 0099

0. 9901

0. 0989

0. 1977

−0. 1977

0. 9803

179. 83

−20. 17

20. 17

or
σσ T

(ns) = [181. 84 − 22. 18 − 0. 00] N/m2.

Chapter 12, Vector fields 411

The maximum shear stress is τ max = (σ n − σ s)
2 / 2 = 102. 01 N/m2. These shear stresses

occur on planes located at (β p ± 45°) . The classical form for τ max for two-dimensional

problems is τ 2
max = [(σ x − σ y) / 2]2 + τ 2

xy
.

The above example is not finished at this point. In practice, we probably would

want to check the failure criterion for this material, and obtain an error estimate to begin

an adaptive solution. There are many failure criteria. The three most common ones are

the Maximum Principal Stress, the Maximum Shear Stress, and the Von Mises Strain

Energy of Distortion. The latter is most common for ductile materials. It can be

expressed in terms of a scalar measure known as the Effective Stress, σ E :

σ E =
1

√ 2
√ (σ x − σ y)2 + (σ x − σ z)

2 + (σ y − σ z)
2 + 6(τ 2

xy
+ τ 2

xz
+ τ 2

yz
)

σ E =
1

√ 2
√ (σ 1 − σ 2)2 + (σ 1 − σ 3)2 + (σ 2 − σ 3)2

SUBROUTINE ELASTIC_B_AXISYMMETRIC (DGH, R, B) ! 1
! * ! 2
! AXISYMMETRIC ELASTICITY STRAIN-DISPLACEMENT RELATIONS (B) ! 3
! STRESS & STRAIN COMPONENT ORDER: RR, ZZ, RZ, AND TT ! 4
! * ! 5
Use System_Constants ! for DP, N_R_B, N_G_DOF, N_SPACE ! 6
Use Elem_Type_Data ! for LT_FREE, LT_N, H (LT_N) ! 7
IMPLICIT NONE ! 8
REAL(DP), INTENT(IN) :: DGH (N_SPACE, LT_N) ! Gradients ! 9
REAL(DP), INTENT(IN) :: R ! Radius !10
REAL(DP), INTENT(OUT) :: B (N_R_B, LT_N * N_G_DOF) ! Strains !11
INTEGER :: J, K, L !12

!13
! B = STRAIN-DISPLACEMENT MATRIX (RETURNED) !14
! DGH = GLOBAL DERIVATIVES OF H !15
! H = ELEMENT INTERPOLATION FUNCTIONS !16
! LT_N = NUMBER OF NODES PER ELEMENT TYPE !17
! N_G_DOF = NUMBER OF PARAMETERS PER NODE = 2 here (U & V) !18
! N_R_B = NUMBER OF STRAINS (ROWS IN B) = 4: XX, YY, XY, HOOP !19
! N_SPACE = DIMENSION OF SPACE = 2 here !20
! R,Z,T DENOTE RADIAL, AXIAL, CIRCUMFERENCE !21

!22
B = 0.d0 !23
DO J = 1, LT_N ! ROW NUMBER !24

K = N_G_DOF * (J - 1) + 1 ! FIRST COLUMN, U !25
L = K + 1 ! SECOND COLUMN, V !26

!27
B (1, K) = DGH (1, J) ! DU/DX FOR XX NORMAL !28
B (3, K) = DGH (2, J) ! DU/DY FOR XY SHEAR !29
IF (R <= 0.d0) STOP ’R=0, IN ELASTIC_B_AXISYMMETRIC’ !30
B (4, K) = H (J) / R ! U/R HOOP, ZZ NORMAL !31
B (2, L) = DGH (2, J) ! DV/DY FOR YY NORMAL !32
B (3, L) = DGH (1, J) ! DV/DX FOR XY SHEAR !33

END DO !34
END SUBROUTINE ELASTIC_B_AXISYMMETRIC !35

Figure 12.15 Axisymmetric strain-displacement matrix

412 Finite Element Analysis with Error Estimators

in terms of the stress tensor components and principal stresses, respectively. For yielding

in a simple tension test, σ x = σ yield , and all the other stresses are zero. Then, the effective

stress becomes σ E = σ yield which implies failure. This is the general test for ductile

materials. For brittle materials, one may use the maximum stress criteria where failure

occurs at σ 1 = σ yield . The Tresca maximum shear stress criteria is also commonly used.

With it failure occurs at τ max = σ yield /2. For the plane stress state, all the z-components

of the stress tensor are zero. However, in the state of plane strain, σ z is not zero and must

be recovered using the Poisson ratio effect. For an isotropic material (without an initial

thermal strain) the result is σ z = ν (σ x + σ y).

12.6 Axisymmetric solid stress *

There is another common elasticity problem class that can also be formulated as a

two-dimensional problem involving two unknown displacement components. It is an

axisymmetric solid subject to axisymmetric loads and axisymmetric supports. That is,

the geometry, properties, loads, and supports do not have any variation around the

circumference of the solid. The problem is usually discussed in terms of axial and radial

position, and axial and radial displacements. The solid is defined by the shape in the

radial - axial plane as it is completely revolved about the axis. Let (r , z) denote the

coordinates in the plane of revolution, and u, v denote the corresponding radial and axial

displacements at any point. This is an extension of the methods in Chapter 8 in that we

now allow changes in the axial, z, direction. The axisymmetric solid has four stress and

strain components, three of them the same as those in the state of plane stress. We simply

replace the x, y subscripts with r, z.

The fourth strain is the so-called hoop strain. It arises because the material around

the circumference changes length as it moves radially. The circumferential strain at a

radial position, r, is defined in Fig. 8.10 as

ε Θ =
∆ L

L
=

2π (r + u) − 2π r

2π r
=

u

r
.

This is a normal strain, and it is usually placed after the other two normal strains. Note

that on the axis of revolution, r = 0. It can be shown that both u = 0 and ε Θ = 0 on the

axis of revolution. However, one can encounter numerical problems if numerical

integration is employed with a rule that has quadrature points on the edge of an element.

We typically order the strains as εε T = [ε r ε z ε Θ γ rz] and the corresponding

stresses as σσ = [σ r σ z σ Θ τ rz] where σ Θ is the corresponding hoop stress. From the

above definition we now see that the contribution of a typical node j to the strain-

displacement relation for the matrix partition Be

j
= L Ne is given correctly near the

beginning of Section 12.2. Therefore, we now see that in addition to the physical

derivatives of the interpolation functions, we now must also include the actual

interpolation functions (for the u contribution) as well as the radial coordinate

(r = Ge re). Of course, the matrix is usually evaluated at a quadrature point, as in line 33

of Fig. 12.10. The implementation of the axisymmetric version is shown in Fig. 12.15,

where it is assumed that the radial position is already known.

With the above changes and the observation that d Ω = 2π r da, we note that the

analytic integrals involve terms with 1 / r. These introduce logarithmic terms where we

Chapter 12, Vector fields 413

used to have only polynomial terms from exact analytic integration. Some of these

become indeterminate at r = 0. For this and other practical considerations, one almost

always employs numerical integration to form the element matrices. Clearly, one must

interpolate from the given data to find the radial coordinate, rq, at a quadrature point.

That requires that we need to select quadrature rules that do not give points on the

element boundary which does occur for some triangular rules and the Lobatto rules.

12.7 General solid stress *

For the completely general three-dimensional solid, there are three displacement

components, uT = u v w , and the corresponding load vectors, at each node, have

three components. There are six stresses, σσ T = [σ x σ y σ z τ xy τ xz τ yz], and six

corresponding strain components, εε T = [ε x ε y ε z γ xy γ xz γ yz], and therefore the

constitutive array E is 6 by 6 in size. The enginering strain-displacement relations are

defined by a partition at node j as shown earlier in Section 12.2.

12.8 Anisotropic materials *

A material is defined to be isotropic if its material properties do not depend on

direction. Otherwise it is called anisotropic. Most engineering materials are considered

to be isotropic. However, there are many materials that are anisotropic. Examples of

anisotropic materials include plywood, and filament wound fiber-glass. Probably the

most common case is that of an orthotropic material. An orthotropic material has

structural (or thermal) properties that can be defined in terms of two principal material

axis directions. Let (n, s) be the principal material axis directions. For anisotropic

materials it is usually easier to define the generalized compliance law in the form:

(12.38)εε (ns) = E−1
(ns)σσ (ns) + εε 0 (ns),

where the inverse of the constitutive matrix, E−1
(ns), is usually called the compliance matrix.

Often the values in the compliance matrix can be determined from material experiments

and that matrix is numerically inverted to form E(ns). Note by way of comparison that

Eq. 12.38 is written relative to the global coordinate axes. In Eq. 12.14 the square matrix

contains the mechanical properties as experimentally measured relative to the principal

material directions. For a two-dimensional orthotropic material the constitutive law is

(12.39)

ε n

ε s

γ ns

=

1/En

− ν ns / En

0

− vsn / Es

1/Es

0

0

0

1/Gns

σ n

σ s

τ ns

+ εε 0 ns.

Here the moduli of elasticity in the two principal directions are denoted by En and

Es. The shear modulus, Gns, is independent of the elastic moduli. The two Poisson’s

ratios are defined by the notation:
(12.40)ν ij = − ε j / ε i

where i denotes the direction of the load, ε i is the normal strain in the load directions, and

ε j is the normal strain in the transverse (orthogonal) direction. Symmetry considerations

require that

414 Finite Element Analysis with Error Estimators

(12.41)Enν sn = Esν ns.

Thus, four independent constants must be measured to define the orthotropic material

mechanical properties. If the material is isotropic then ν = ν ns = ν sn, E = Es = En, and

G = Gns = E / [2(1 + ν)]. In that case only two constants (E and ν) are required and they

can be measured in any direction. When the material is isotropic then the inverse of

Eq. 12.39 reduces the plane stress model given at the beginning of Sec. 12.2.

The axisymmetric stress-strain law for an isotropic material was also given earlier.

For an orthotropic axisymmetric material, we utilize the material properties in the

principal material axis (n, s, Θ) direction. In that case, the compliance matrix, E−1
ns

, and

initial strain matrix, εε 0(ns) are

ε n

ε s

γ ns

ε Θ

=

1

En

− ν ns

En

− ν nΘ

En

0

− ν sn

Es

1

Es

− ν sΘ

Es

0

− ν Θn

EΘ
− ν Θs

EΘ
1

EΘ

0

0

0

0

1

Gns

σ n

σ s

τ ns

σ Θ

+ ∆θ

α n

α s

0

α Θ

.

For the general anisotropic three-dimensional solid, there are nine independent

material constants. However, due to the axisymmetry, there are only seven independent

constants. When the material is also transversely isotropic, with the n - t plane being the

plane of isotropic properties, then there are only five material constants and they are

related by En = EΘ, ν nΘ = ν Θn, and EΘ ν sΘ = Es ν ns. In practical design problems

with anisotropic materials, it is difficult to get accurate material constant measurements.

To be a physically possible material, both E and E−1 should have a positive determinant.

When that is not the case, the program should issue a warning and terminate the analysis.

The possible values of an orthotropic Poisson’s ratio can be bounded by

|ν sn | < √ Es / En, − 1 < ν nΘ < 1 − 2 En ν 2
sn

/ Es.

Orthotropic materials also have thermal properties that vary with direction. If ∆θ

denotes the temperature change from the stress free state then the local initial thermal

strain is εε T

0 (ns) = ∆θ [α n α s 0] where α n and α s are the principal coefficients of

thermal expansion. If one is given the orthotropic properties it is common to numerically

invert E−1
(ns) to give the form

(12.42)σσ (ns) = E(ns)(εε (ns) − εε 0 (ns)).

This is done since the form of E(ns) is algebraically much more complicated than its

inverse. Due to experimental error in measuring the anisotropic constants there is a

potential difficulty with this concept. For a physically possible material it can be shown

that both E and E−1 must be positive definite. This means that the determinant must be

greater than zero. Due to experimental error it is not unusual for this condition to be

violated. When this occurs the program should be designed to stop and require

acceptable data. Then the user must adjust the experimental data to satisfy the condition

that (En − Esν
2
ns

) > 0.

Chapter 12, Vector fields 415

From the previous section on stress and strain transformations we know how to

obtain εε (xy) and σσ (xy) from given εε (ns) and σσ (ns). But how do we obtain E(xy) from E(ns)?

We must have E(xy) to form the stiffness matrix since it must be integrated relative to the

x-y axes, that is,

K(xy) = ∫ BT

(xy) E(xy) B(xy) dΩ.

Thus, the use of the n − s axes, in Fig. 12.6, to define (input) the material properties

requires that we define one more transformation law. It is the transformation from E(ns) to

E(xy). There are various ways to derive the required transformation. One simple

procedure is to note that the strain energy density is a scalar. Therefore, it must be the

same in all coordinate systems. The strain energy density at a point is dU = σσ T εε / 2

= εε T σσ / 2. In the global axes it is

dU = 1

2
σσ T

(xy) εε (xy) = 1

2
(E(xy) εε (xy))

T εε T

(xy) = 1

2
εε T

(xy) E(xy) εε (xy).

In the principal material directions it is

dU = 1

2
σσ T

(ns) εε (ns) = 1

2
(E(ns) εε (ns))

T εε (ns) = 1

2
εε T

(ns) E(ns) εε (ns).

But from our Mohr’s circle transformation for strain εε (ns) = t(ns) εε (xy) so in the n − s axes

(12.43)dU = 1

2
(t(ns) εε (xy))

T E(ns)(t(ns) εε (xy)) = 1

2
εε T

(xy) (tT

(ns) E(ns) t(ns)) εε (xy).

Comparing the two forms of dU gives the constitutive transformation law that

(12.44)E(xy) = tT

(ns) E(ns) t(ns).

The same concept holds for general three-dimensional problems.

Before leaving the concept of anisotropic materials we should review the initial

thermal strains. Recall that for an isotropic material or for an anisotropic material in

principal axes a change in temperature does not induce an initial shear strain. However,

an anisotropic material does have initial thermal shear strain in other coordinate

directions. From Eqs. 12.36 and 12.37 we have

εε 0 (xy) = t−1
(ns) εε 0 (ns),

ε 0
x

ε 0
y

γ 0
xy

=

+C
2

+S
2

+2SC

+S
2

+C
2

−2SC

−SC

+SC

(C2 − S
2)

ε 0
n

ε 0
s

0

.

Thus, the thermal shear strain is γ 0
xy

= 2 Sin β Cos β (ε 0
n

− ε 0
s
). This is not zero unless the

two axes systems are the same (β = 0 or β = π /2). Therefore, one must replace the

previous null terms in Eq. 12.17.

416 Finite Element Analysis with Error Estimators

12.9 Circular hole in an infinite plate

A classical problem in elasticity is that of a two-dimensional solid having a traction

free hole of radius a at its center and symmetrically loaded by a uniform stress of

σ x = σ∞ along the lines of x = ± ∞. The analytic solution for the stresses and the

displacements are known. Let θ be the angle from the x-axis and r ≥ a the radius from

the center point. Then the displacement components are

ux =
σ∞a

8G

r

a
(κ + 1) Cos θ + 2

a

r
((1 + κ) Cos θ + Cos 3θ) − 2

a
3

r3
Cos 3θ

uy =
σ∞a

8G

r

a
(κ − 3) Sin θ + 2

a

r
((1 − κ) Sin θ + Sin 3θ) − 2

a
3

r3
Sin 3θ

where G = E / (1 − 2ν) is the shear modulus, ν is Poisson’s ratio, E is the elastic

modulus and κ = (3 − 4ν) for plain strain or κ = (3 − ν) / (1 + ν) for plane stress. Note

that the displacements depend on the material properties (E,ν), but the stresses given

below do not depend on the material but depend on the geometry only. That is a common

situation in solid mechanics and this serves as a reminder that one must always validate

both the displacements and stresses before accepting the results of a stress analysis

problem. We can use the above displacement components as essential boundary

conditions on the boundary of a finite domain to compare a finite element solution to the

exact results as one way to validate the program for stress analysis or error estimation.

As an aside remark note that the MODEL program allows the keyword

use_exact_bc to employ a supplied analytic solution to override any user supplied

essential boundary conditions. First one must identify the exact_case number assigned to

the corresponding part of the exact source code library. Here for the circular hole in an

infinite plate the value is 23. In this specific example the exact boundary conditions

depend on material properties and the geometry. Therefore one must also supply data to

the analytic solution by using the keyword exact_reals 3 and then supply those data

(E,ν , a) immediately after the user remarks and before the usual finite element nodal

data. (Most examples in this book that compare to analytic solutions do not have that

additional data requirement since they usually depend only on location.)

In other words, if so desired one can generate a mesh that will use an analytic

solution but it is only necessary to give data on where the essential boundary conditions

occur and supply dummy null values which will be overwritten by the selected analytic

solution, if the control keyword use_exact_bc is present in the data. If you want to use

an analytic solution not built-in to the existing library (exact_case 0) then you must

supply your own exact source code via the include file my_exact_inc (and re-compile).

The corresponding stress components in the infinite plate are

σ x = σ∞

1 −

a
2

r2

3

2
Cos 2θ + Cos 4θ

+
3

2

a
4

r4
Cos 4θ

Chapter 12, Vector fields 417

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

FE Mesh Geometry Shrink: 223 Elements, 488 Nodes (6 per element)

Figure 12.16 Exploded quadratic triangular mesh

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X for 223 Elements with 6 nodes

Y

FE BC Flags for Component_1 (488 Nodes, 53 flagged)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X for 223 Elements with 6 nodes

Y

FE BC Flags for Component_2 (488 Nodes, 47 flagged)

Figure 12.17 Nodes with essential boundary conditions (in x-, y-directions)

418 Finite Element Analysis with Error Estimators

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

X for 223 Elements (with 6 nodes)

Y
 fo

r
48

8
N

od
es

Deformed Mesh (solid): Components [5.6283e−09, −2.7041e−09], Scale = 100000000

Figure 12.18 Original and scaled deformed mesh

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

X Coordinate at 488 Nodes

Y
 C

oo
rd

in
at

e
on

 2
23

 E
le

m
en

ts
 (

w
ith

 6
 n

od
es

)

FEA 2−D Displacement Vectors, max = 5.6283e−09 (Scale = 1.5)

Figure 12.19 Nodal displacement vectors

Chapter 12, Vector fields 419

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X: 223 Elements (with 6 nodes)

Y
: 4

88
 N

od
es

FEA SCP Error Estimate, 0.4317−123.97 % Energy_norm * 100

*−−−MIN 0.4

*−−−MAX 124.0

Figure 12.20 Largest element error in initial mesh (max 1.2 percent)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

FE New Element Sizes: 223 Elements, 488 Nodes (6 per element)

Figure 12.21 First recommended mesh refinement

420 Finite Element Analysis with Error Estimators

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Y
 o

n
22

3
E

le
m

en
ts

 (
w

ith
 6

 n
od

es
)

Nodal FEA SCP Von Mises Criterion (max = 304.5513, min = 24.4686)

X at 488 Nodes

−−−−−−min

−−−−−−max

Figure 12.22 Shaded Von Mises failure criterion

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

50

100

150

200

250

300

X

−−−min

Nodal FEA SCP Von Mises Criterion at 488 Nodes (223 Elements)

−−−max

Y

V
on

 M
is

es
 C

rit
er

io
n

 (
m

ax
 =

 3
04

.5
51

3,
 m

in
 =

 2
4.

46
86

)

Figure 12.23 Von Mises failure criterion surface

Chapter 12, Vector fields 421

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

0

50

100

150

200

250

300

X

−−−min

Nodal FEA SCP X−Normal Stress at 488 Nodes (223 Elements)

−−−max

Y

S
ig

m
a_

X
 (

m
ax

 =
 3

04
.7

83
, m

in
 =

 −
17

.9
29

4)

Figure 12.24 Initial estimate of x-normal stress

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

0

50

100

150

200

250

300

X

−−−min

Exact X−Normal Stress at 488 Nodes (223 Elements)

−−−max

Y

S
ig

m
a_

X
 (

m
ax

 =
 3

00
, m

in
 =

 −
7.

39
68

)

Figure 12.25 Exact distribution of x-normal stress (at the nodes)

422 Finite Element Analysis with Error Estimators

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

−100

−80

−60

−40

−20

0

20

40

X

−−−min

Nodal FEA SCP Y−Normal Stress at 488 Nodes (223 Elements)

−−−max

Y

S
ig

m
a_

Y
 (

m
ax

 =
 4

7.
48

28
, m

in
 =

 −
11

8.
51

)

Figure 12.26 Initial estimate of y-normal stress

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

−120

−100

−80

−60

−40

−20

0

20

40

X

−−−min

Exact Y−Normal Stress at 488 Nodes (223 Elements)

−−−max

Y

S
ig

m
a_

Y
 (

m
ax

 =
 5

7.
25

46
, m

in
 =

 −
10

0)

Figure 12.27 Exact distribution of y-normal stress (at the nodes)

Chapter 12, Vector fields 423

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
−80

−70

−60

−50

−40

−30

−20

−10

0

10

X

−−−max

Nodal FEA SCP XY−Shear Stress at 488 Nodes (223 Elements)

−−−min

Y

S
ig

m
a_

X
Y

 (
m

ax
 =

 1
6.

74
06

, m
in

 =
 −

80
.4

29
2)

Figure 12.28 Initial estimate of xy-shear stress

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

−80

−60

−40

−20

0

20

X

−−−max

Exact XY−Shear Stress at 488 Nodes (223 Elements)

−−−min

Y

S
ig

m
a_

X
Y

 (
m

ax
 =

 1
8.

20
99

, m
in

 =
 −

88
.9

80
1)

Figure 12.29 Exact distribution of xy-shear stress (at the nodes)

424 Finite Element Analysis with Error Estimators

σ y = σ∞

−
a

2

r2

1

2
Cos 2θ − Cos 4θ

−
3

2

a
4

r4
Cos 4θ

τ xy = σ∞

−
a

2

r2

1

2
Sin 2θ + Sin 4θ

+
3

2

a
4

r4
Sin 4θ

.

In polar components the radial and shear stresses on the hole surface r = a are both zero,

σ r = 0 = τ rθ while the circumferential stress varies as σθ = σ∞(1 − 2 Cos 2θ). Thus it

(and σ x) has a maximum value of 3σ∞ at θ = 90 degrees. Likewise, it (and σ y) has a

minimum value of − σ∞ at θ = 0.

If we solve a finite rectangular plate with σ x = σ∞ along xmax > > a and σ y = 0

along ymax > a then the peak stress values should be similar to those in the above special

case. Of course, the maximum stresses will be somewhat higher since the hole takes up a

bigger percentage of the center (x = 0) section.

Here we will present the common example of the hole in an infinite plate to

illustrate finite element stress analysis and the usefulness of an error estimator. We will

zoom-in on the region around the hole and use a radius of a = 1 m and bound the upper

right quarter of the domain with a width and height of h = 3 m each. The material is

taken to be aluminum (E = 70 GPa,ν = 0. 33), and we assume a traction of

T x = 100 N /m at x = ∞. The analytic solution will specify both x − and y −
displacements on the right and top edges of the mesh. The edges along the axes will

invoke symmetry conditions (v = 0, and u = 0, respectively) which are consistent with

the analytic solution. The edge of the circular arc is traction free and has no prescribed

displacements. We expect the maximum stress concentration to occur at the top point of

the arc so the initial mesh is slightly refined in that region. Here we employ the 6 noded

quadratic triangular (T6) elements. The initial exploded view of the mesh is given in

Fig. 12.16, while Fig. 12.17 shows an asterisk at nodes where one or more displacements

are prescribed.

The scaled deformed geometry and displacements are shown in Figs. 12.18 and 19,

respectively. The first error estimate determines that the largest error occurs in the

elements shown in Fig. 12.20. They are the relatively large elements around the hole and

in the region near the x-axis where we will see secondary stress components are varying

very rapidly. The error range is cited in the top caption of that figure. As the mesh is

refined we expect that the error will become more uniformly distributed over the mesh.

The total system error was 0.118 percent in the enery norm.

The computed mesh refinement is shown in Fig.s 12.20 & 21 and will be passed to

the mesh generation code for creating the next analysis. In that figure the estimated new

local element size is plotted relative to the centroid of the current element that was used

to compute the new size. In most cases one will note a refinement giving a smaller

suggested element size. In a few cases a de-refinement gives a larger new element. In

most elements the projected change in size is not noticeable.

Before going on to the next mesh stage we can compare the finite element stress

estimates to the exact ones. Since the plate is made of a ductile material (aluminum) we

begin with the Von Mises failure criterion which gives a positive value that is compared

to the yield stress of the material (about 140 MPa). The shaded planar view and carpet

Chapter 12, Vector fields 425

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

FE Mesh Geometry Shrink: 359 Elements, 778 Nodes (6 per element)

Figure 12.30 Second mesh generation (exploded)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X: 359 Elements (with 6 nodes)

Y
: 7

78
 N

od
es

FEA SCP Error Estimate, 0.30239−7.141 % Energy_norm * 100

*−−−MIN 0.3

*−−−MAX 7.1

Figure 12.31 Second error estimate distribution (0.07 percent max)

426 Finite Element Analysis with Error Estimators

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

FE New Element Sizes: 605 Elements, 1290 Nodes (6 per element)

Figure 12.32 Third mesh generation and its suggested revision

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X: 2302 Elements (with 6 nodes)

Y
: 4

75
1

N
od

es

FEA SCP Error Estimate, 0.01182−0.81645 % Energy_norm * 100

*−−−MIN 0.0

*−−−MAX 0.8

Figure 12.33 Fourth mesh and resulting final error estimates (0.0001 percent max)

Chapter 12, Vector fields 427

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

50

100

150

200

250

300

X

−−−min

Nodal FEA SCP Von Mises Criterion at 4751 Nodes (2302 Elements)

−−−max

Y

V
on

 M
is

es
 C

rit
er

io
n

 (
m

ax
 =

 3
03

.8
43

8,
 m

in
 =

 2
.2

91
3)

Figure 12.34 Final Von Mises failure criterion

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

50

100

150

200

250

300

X

−−−min

Exact Von Mises Criterion at 4751 Nodes (2302 Elements)

−−−max

Y

V
on

 M
is

es
 C

rit
er

io
n

 (
m

ax
 =

 3
00

.0
01

2,
 m

in
 =

 1
.0

90
3)

Figure 12.35 Exact final Von Mises failure criterion (at the nodes)

428 Finite Element Analysis with Error Estimators

plot view of that criterion are shown in Figs. 12.22 and 23, respectively. The maximum

value should be about 300. 0 MPa, and it is.

The error estimates outlined in Fig. 12.18 are based on the nodal stress averages

from the super-convergent patch processing (defined in Chapters 12 and 13). The finite

element nodal averages for the horizontal normal stress σ x are shown in Fig. 12.24 as a

carpet plot and should be compared to the exact nodal distribution in Fig. 12.25. The

vertical normal stresses, σ y, finite element and exact values are shown in Figs. 12.26 and

27, respectively. Likewise, the comparisons for the shear stress component, τ xy, are in

Figs. 12.28 and 29. In general we see that the spatial distributions are similar but the

amplitudes of the finite element stresses are a little high. Hopefully the mesh refinements

directed by the error estimates will lead to an efficient and accurate solution for all the

stresses.

The first mesh revision shown in Fig. 12.21, leads to the second mesh, in Fig. 12.30,

and that in turn leads to a new distribution of error estimates as seen in Fig. 12.31. In the

latter figure we see that the error is becoming more dispersed over the mesh. The system

energy norm error has been cut almost in half to 0.0669 percent. Likewise the maximum

error in a single element has been cut by about 40 percent and its location moved from

near the hole edge to the largest interior element. Repeating this process gives the third

mesh and its recommended mesh refinement given in Fig. 12.32. The refinement in

element sizes is based on the error distribution in Fig. 12.31. There the lowest errors (in

the energy norm) occur near the edge of the hole, where we expect the maximum stresses

and failure criterion. In the second mesh the maximum single element error has been

further reduced and is localized near the plate center where the stresses are low and

slowly changing. The system wide error has been reduced to 0.051 percent. The fourth,

and final, mesh is shown in Fig. 12.33 along with the final error estimates. The

corresponding finite element and exact Von Mises values are given in Figs. 12.34 and 35.

Clearly, one could continue this process but the resulting figures are too dense to show

here. The third set of maximum single element error estimates is about a factor of 150

times smaller than the maximum element error in the first mesh.

12.10 Dynamics of solids

As noted in Eq. 12.25 we often encounter problems of the vibration of solids or their

response to time varying loads. The assembled matrix equations thus involve the second

time derivative of the displacements. If we include damping then the general form of the

matrix equation of motion is

(12.45)M δ̈̈δ + D δ̇̇δ + K δδ (t) = F (t) .

where the damping matrix, D, is often taken to be of the form D = α M + β K. Giv en the

initial conditions on δ̇̇δ (0) and δδ (0) one can determine the initial acceleration δ̈̈δ (0) and

then proceed to obtain the time-history of δδ (t) by direct integration in time. There are

many algorithms for doing that. They differ in terms of stability, accuracy, storage

requirements, etc. Several authors, such as Akin [1], Bathe [4], Hughes [14], Smith and

Griffiths [20], Newmark [16], Petyt [18], and Zienkiewicz and Taylor [26] have giv en

example algorithms for structural dynamics. Often the methods are close to each other

and can be stated in terms of a small number of scalar coefficients that are multiplied

Chapter 12, Vector fields 429

times the various square matrices and vectors in Eq. 12.45 (see for example coefficients

a1 through a6 in Fig. 12.36). Here we will illustrate one of the most popular algorithms

called the Newmark Beta method. It is assumed here that the matrices M, D, and K are

symmetric and have been assembled at the system level into a skyline sparse storage

mode. It is also assumed that the resultant force vector F has been assembled and that it

is multiplied by a know function of time. That scaling of the forces is done by subroutine

FORCE_AT _TIME which is application dependent. Of course, the initial conditions on

δδ and δ̇̇δ must be given. Figure 12.36 gives the implementation details of a Newmark

integrator. For simplicity it assumes that any essential boundary conditions on the

components of δδ are zero. In other words, it only allows for fixed supports in the form

shown there.

SUBROUTINE NEWMARK_METHOD_SYM (I_DIAG, A_SKY, B_SKY, C_SKY, P_IN, & ! 1
R, DR, DT, N_STEPS, I_PRINT, N_BC, & ! 2
NULL_BC) ! 3

! * ! 4
! NEWMARK (BETA, GAMMA) CONDITIONALLY STABLE METHOD OF ! 5
! STEP BY STEP TIME INTEGRATION OF MATRIX EQUATIONS: ! 6
! A*D2R(T)/DT2 + B*DR(T)/DT + C*R(T) = P(T) ! 7
! ALSO INCLUDES HUGHES AND TRAPEZOIDAL METHODS ! 8
! INITIAL VALUES OF R AND DR ARE PASSED THRU ARGUMENTS ! 9
! * !10
Use System_Constants ! N_COEFF, N_D_FRE, NEWMARK_METHOD, FROM_REST, !11

! HUGHES_METHOD, MASS_DAMPING, STIF_DAMPING !12
IMPLICIT NONE !13
INTEGER, INTENT (IN) :: N_STEPS, I_PRINT, N_BC !14
INTEGER, INTENT (IN) :: I_DIAG (N_D_FRE) !15
INTEGER, INTENT (IN) :: NULL_BC (N_BC) !16
REAL(DP), INTENT (IN) :: DT !17
REAL(DP), INTENT (INOUT) :: A_SKY (N_COEFF), C_SKY (N_COEFF) !18
REAL(DP), INTENT (INOUT) :: B_SKY (N_COEFF) !19
REAL(DP), INTENT (IN) :: P_IN (N_D_FRE) !20
REAL(DP), INTENT (INOUT) :: R (N_D_FRE), DR (N_D_FRE) !21
REAL(DP), PARAMETER :: ZERO = 0.d0 !22

!23
INTEGER :: I, K, I_STEP, I_COUNT !24
REAL(DP) :: a1, a2, a3, a4, a5, a6, BETA, GAMMA, T !25

!26
! Automatic Work Arrays !27
REAL(DP) :: R_PLUS (N_D_FRE), D2R (N_D_FRE), P (N_D_FRE) !28
REAL(DP) :: WORK_1 (N_D_FRE), WORK_2 (N_D_FRE) !29

!30
! DT, T = TIME STEP SIZE, CURRENT TIME !31
! N_COEFF = TOTAL NUMBER OF TERMS IN SKYLINE !32
! N_BC = NUMBER OF D.O.F. WITH SPECIFIED VALUES OF ZERO !33
! NULL_BC = ARRAY CONTAINING THE N_BC DOF NUMBERS WITH ZERO BC !34
! R,DR,D2R = 0,1,2 ORDER DERIVATIVE OF R W.R.T. T AT TIME=T !35
! R_PLUS = VALUE OF R AT TIME = T + DELT !36
! N_STEPS = NO. OF INTEGRATION STEPS !37
! I_PRINT = NO. OF INTEGRATION STEPS BETWEEN PRINTING !38

!39

Figure 12.36a Interface for the Newmark method

430 Finite Element Analysis with Error Estimators

! ** INITIAL CALCULATIONS ** !40
IF (NEWMARK_METHOD) THEN !41

WRITE (6, ’("NEWMARK STEP BY STEP INTEGRATION",/)’) !42
BETA = NEWMARK_BETA ; GAMMA = NEWMARK_GAMMA !43

ELSEIF (HUGHES_METHOD) THEN !44
WRITE (6, ’("HUGHES STEP BY STEP INTEGRATION",/)’) !45
BETA = 0.25d0 * (1.d0 - HUGHES_ALPHA) **2 !46
GAMMA = 0.5d0 * (1.d0 - 2 * HUGHES_ALPHA) !47

ELSE ! default to average acceleration method !48
WRITE (6, ’("TRAPEZOIDAL STEP BY STEP INTEGRATION",/)’) !49
BETA = 0.25d0 ; GAMMA = 0.5d0 !50

END IF !51
!52

IF (N_BC < 1) PRINT *,’NOTE: NO CONSTRAINTS IN NEWMARK_METHOD’ !53
P = 0.d0 ; WORK_1 = 0.d0 ; WORK_2 = 0.d0 ; T = 0.d0 !54

!55
IF (.NOT. ELEMENT_DAMPING) THEN !56

B_SKY = 0.d0 !57
IF (MASS_DAMPING > 0.d0) B_SKY = MASS_DAMPING * A_SKY !58
IF (STIF_DAMPING > 0.d0) B_SKY = B_SKY + STIF_DAMPING * C_SKY !59

END IF ! damping defined at element level !60
!61

IF (FROM_REST) THEN ! vel = acc = 0 !62
DR = 0.d0 ; D2R = 0.d0 !63

ELSE ! approx initial acc from diagonal scaled mass !64
WORK_1 = A_SKY (I_DIAG) ! extract diagonal of mass matrix !65
D2R = (SUM (A_SKY) / SUM (WORK_1)) * WORK_1 ! scaled M !66
CALL FORCE_AT_TIME (T, P_IN, P) ! initial force !67
CALL VECTOR_MULT_SKY_SYM (B_SKY, DR, I_DIAG, WORK_1) !68
CALL VECTOR_MULT_SKY_SYM (C_SKY, R, I_DIAG, WORK_2) !69
D2R = (P - WORK_1 - WORK_2) / D2R ! approx initial acc !70

END IF ! need initial acc !71
!72

! Print and/or save initial conditions !73
I_STEP = 0 ; WRITE (6, 5020) I_STEP, ZERO !74
5020 FORMAT (/,’ STEP NUMBER = ’,I5,5X,’TIME = ’,E14.8,/, & !75

& ’ I R(I) DR/DT ’, & !76
& ’D2R/DT2’) !77

WRITE (6, 5030) (K, R (K), DR (K), D2R (K), K = 1, N_D_FRE) !78
5030 FORMAT (I10, 2X, E14.8, 2X, E14.8, 2X, E14.8) !79

!80
! Form time integration constants !81
a1 = 1.d0 / (BETA * DT **2) ; a2 = 1.d0 / (BETA * DT) !82
a3 = 0.5d0/BETA - 1.d0 ; a4 = GAMMA * a2 !83
a5 = GAMMA / BETA - 1.d0 ; a6 = 0.5d0 * GAMMA / BETA - 1.d0 !84

!85
! Form system work array to factor for each time step group !86
C_SKY = C_SKY + a1 * A_SKY + a4 * B_SKY !87

!88
! ** APPLY BOUNDARY CONDITIONS (Zero C_SKY rows, cols) ** !89
DO I = 1, N_BC !90

CALL SKY_TYPE_1_SYM (NULL_BC (I), ZERO, C_SKY, P, I_DIAG) !91
END DO ! initial test of bc !92

!93

Figure 12.36b Initialize, combine square matrices and apply BC

Chapter 12, Vector fields 431

! *** TRIANGULARIZE C_SKY, in C_SKY * R = P *** ! 94
CALL SKY_SOLVE_SYM (C_SKY, P, R, I_DIAG, .TRUE., .FALSE.) ! 95

! *** END OF INITIAL CALCULATIONS *** ! 96
! 97

! *** CALCULATE SOLUTION AT TIME T *** ! 98
I_COUNT = I_PRINT - 1 ! 99
DO I_STEP = 1, N_STEPS !100

I_COUNT = I_COUNT + 1 !101
T = DT * I_STEP !102
IF (I_COUNT == I_PRINT) WRITE (6, 5020) I_STEP, T !103

!104
! FORM MODIFIED FORCING FUNCTION AT T + DELT !105

CALL FORCE_AT_TIME (T, P_IN, P) !106
CALL VECTOR_MULT_SKY_SYM (A_SKY, (a1*R + a2*DR + a3*D2R), & !107

I_DIAG, WORK_1) !108
CALL VECTOR_MULT_SKY_SYM (B_SKY, (a4*R + a5*DR + a6*D2R), & !109

I_DIAG, WORK_2) !110
P = P + WORK_1 + WORK_2 !111

!112
! ** APPLY NULL BOUNDARY CONDITIONS (TO P) ** !113

P (NULL_BC) = 0.d0 ! vector subscripts !114
!115

! SOLVE FOR DR_PLUS AT TIME T+DELT !116
CALL SKY_SOLVE_SYM (C_SKY, P, R_PLUS, I_DIAG, .FALSE., .TRUE.) !117

!118
! UPDATE KINEMATICS OF D2R(+), DR(+), R(+) !119

WORK_1 = a1*(R_PLUS - R - dt*DR) - a3*D2R ! D2R(+) !120
WORK_2 = a4*(R_PLUS - R) - a5*DR - dt*a6*D2R ! DR(+) !121
R = R_PLUS ! R(+) !122
DR = WORK_2 ! DR(+) !123
D2R = WORK_1 ! D2R(+) !124

!125
! OUTPUT RESULTS FOR TIME T !126

IF (I_COUNT /= I_PRINT) CYCLE ! to next time step !127
WRITE (6, 5030) (K, R (K), DR (K), D2R (K), K = 1, N_D_FRE) !128
I_COUNT = 0 !129

END DO ! over I_STEP for time history !130
END SUBROUTINE NEWMARK_METHOD_SYM !131

Figure 12.36c Factor once and march through time

The details of implementing such time integrators are usually fairly similar. Figure

12.36a shows a typical interface segment to a main program which has already

dynamically allocated the necessary storage space for the initial system arrays

(A_SKY , B_SKY , C_SKY , P_IN for M, D, K, F, respectively) and the initial conditions

(R, DR for δδ , δ̇̇δ , respectively). The damping matrix may have been filled at the element

level, or it may be filled here (lines 56-61) as a proportional damping matrix. The time

integration requires storage of additional working arrays (lines 27-29) that are

dynamically allocated for the scope of this routine only then released. One of these

(D2R, for δ̈̈δ) holds the current value of the acceleration vector. Often input data

keywords allow the user to select the specific algorithm to be employed as noted in Fig.

12.36b (lines 41-51). If the system does not start from rest then the initial acceleration

must be computed once (lines 64-71). The scalar time integration constants are also

determined once from the control data (lines 81-84) and then the effective square matrix

overwrites the damping array to save storage.

432 Finite Element Analysis with Error Estimators

The effective square matrix must be modified to include the zero value essential

boundary condition at the supports (lines 89-92). After that it can be factored once (Fig.

12.36c, line 95) for future back-substitutions at each time step. It should be noted here

that operations that are cited as done only once must actually be done again if the time

step (DT) is changed. To avoid those relatively expensive changes one tries to keep the

time step constant, or stop and do a restart from the last valid answer. The calculations

for each time step (lines 105-130) basically determine the effective forcing function at the

current time (lines 106-114) perform a forward and backward substitution to get the

solution at the next time step (R_PLUS for δδ (t + ∆t)) and use it along with the previous

time step answers to update the velocity and acceleration vectors (lines 119-124). At that

point the results are output to a sequential file for later post-processing and/or printed.

At any time step of interest we can recover the system displacement vector. That of

course allows us to recover the strain and stresses as we did above for the static examples.

Thus we can also carry out an error estimation. If that error estimation requires a new

mesh to be created then one must use the displacements and velocities from the last

acceptable time solution to interpolate the initial conditions on the new mesh that are

required to restart the full time history process, including assembly. One should also

consider the kinetic energy in such a process. Wiberg and Li [24] discuss the additional

contributions to the error and use the above Newmark integration approach as a specific

example.

To test such a time integrator it is best to begin with a simple system with a known

analytic solution. Biggs [7] presented the analytic time history for a simple structure

consisting of the linear springs and three lumped masses. One end is fixed while the

other three joints are subjected to given forces having triangular time pulses that drop to

zero. The Newmark and analytic (dashed) solutions for the displacement, and velocity at

node 3 (of 4) are given in Fig. 12.37. They basically fall on top of each other for the

chosen time step size. The popular Wilson Theta method gives similar, but less accurate,

results as shown in Fig. 12.38.

Smith and Griffiths [20] also present a few examples more closely related to the

present chapter in that they solve plane strain examples. They also present the so called

‘element by element’ approach, originally developed by Hughes [14], that saves storage

by avoiding the assembly of the system square matrices. Instead, a product

approximation of the square matrix assemblies is made so that the inversion of the

effective matrix is replaced by sequential inversions of smaller element level square

matrices. Both Bathe and Hughes give comparisons of the most popular algorithms in

terms of their stability, accuracy, overshoot, and damping. They also give the time

histories of a few test cases. One should review such comparisons before selecting an

algorithm for a dynamic time-history solution.

Chapter 12, Vector fields 433

0 0.05 0.1 0.15 0.2 0.25 0.3
−60

−40

−20

0

20

40

60

Time

FEA Time−History for Component_2 at Node 3

C
om

po
ne

nt
 2

 (
m

ax
 =

 4
7.

92
, m

in
 =

 −
58

.7
7)

Numerical
Biggs exact

Newmark Method
beta = 1/4, gamma = 1/2
dt = 0.00125

0 0.05 0.1 0.15 0.2 0.25 0.3

−1

−0.5

0

0.5

1

Time

FEA Time−History for Component_1 at Node 3

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
.3

11
, m

in
 =

 −
1.

35
5)

Numerical
Biggs exact

Newmark Method
beta = 1/4, gamma = 1/2
dt = 0.00125

Figure 12.37 Newmark method velocity (top), and displacement time history

434 Finite Element Analysis with Error Estimators

0 0.05 0.1 0.15 0.2 0.25 0.3
−60

−40

−20

0

20

40

60

Time

FEA Time−History for Component_2 at Node 3

C
om

po
ne

nt
 2

 (
m

ax
 =

 4
6.

83
, m

in
 =

 −
50

.8
2)

Numerical
Biggs exact

dt = 0.0025, theta = 1.25

0 0.05 0.1 0.15 0.2 0.25 0.3

−1

−0.5

0

0.5

1

Time

FEA Time−History for Component_1 at Node 3

C
om

po
ne

nt
 1

 (
m

ax
 =

 1
.2

93
, m

in
 =

 −
1.

24
1)

Numerical
Biggs exact

dt = 0.0025, theta = 1.25

Figure 12.38 Wilson method velocity (top), and displacement time history

Chapter 12, Vector fields 435

12.11 Exercises

1. Implement the isotropic Ee matrix for the plane strain assumption. Assume the

stress components are in the xx, yy, xy order.

2. Implement the isotropic Ee matrix for the general solid. Assume the stress

components are in the xx, yy, xy, zz, xz, yz order.

3. Give an implementation of the Be matrix for a general solid. Assume the strain

components are in the xx, yy, xy, zz, xz, yz order.

4. Review the scalar implementation for the square matrix for the T3 element, given in

Fig. 11.6, and extend it to the case of a two-dimensional vector displacement model

(that will double the matrix size).

5. Implement a general evaluation of the elasticity Ee matrix that will handle all the 1-,

2-, and 3-dimensional cases.

6. Implement a general evaluation of the elasticity Be matrix that will handle all the 1-,

2-, and 3-dimensional cases.

7. Modify the plane stress implementation shown in Figs. 12.10 and 11 to solve a plane

strain problem. Remember that an additional normal stress must be considered in

the post-processing stage. Validate the results with a patch test.

8. Use the definition of the kinetic energy of a differential mass, dm, at a point to

develop the element kinetic energy and thereby the consistent mass matrix for an

element.

9. For the three node plane stress triangle use the previous scalar integrals of Eq. 11.11

and Fig. 11.8 to write, by inspection, the 6 × 6 element mass matrix. How much of

the mass is associated with the x- and y-directions?

12.12 Bibliography

[1] Akin, J.E., Finite Elements for Analysis and Design, London: Academic

Press (1994).

[2] Akin, J.E., Object-Oriented Programming Via Fortran 90/95, Cambridge:

Cambridge University Press (2003).

[3] Babuska, I. and Strouboulis, T., The Finite Element Method and its Reliability,

Oxford: Oxford University Press (2001).

[4] Bathe, K.J., Finite Element Procedures, Englewood Cliffs: Prentice Hall (1996).

[5] Becker, E.B., Carey, G.F., and Oden, J.T., Finite Elements − An Introduction,

Englewood Cliffs: Prentice Hall (1981).

[6] Belytschko, T., Liu, W.K., and Moran, B., Nonlinear Finite Elements for Continua

and Structures, New York: John Wiley (2000).

[7] Biggs, J.M., Introduction to Structural Dynamics, New York: McGraw-Hill (1964).

436 Finite Element Analysis with Error Estimators

[8] Bonet, J. and Wood, R.D., Nonlinear Continuum Mechanics for Finite Element

Analysis, Cambridge: Cambridge University Press (1997).

[9] Cook, R.D., Malkus, D.S., Plesha, N.E., and Witt, R.J., Concepts and Applications

of Finite Element Analysis, New York: John Wiley (2002).

[10] Crisfield, M.A., Non-linear Finite Element Analysis of Solids and Structures, Vol. 1,

Chichester: John Wiley (1997).

[11] Desai, C.S. and Abel, J.F., Introduction to the Finite Element Method, New York:

Van Nostrand - Reinhold (1972).

[12] Gupta, K.K. and Meek, J.L., Finite Element Multidisciplinary Analysis, Reston:

AIAA (2000).

[13] Hinton, E. and Owen, D.R.J., Finite Element Programming, London: Academic

Press (1977).

[14] Hughes, T.J.R., The Finite Element Method, Mineola: Dover Publications (2003).

[15] Meek, J.L., Computer Methods in Structural Analysis, London: E & F.N.

Spon (1991).

[16] Newmark, N.M., "A Method of Computation for Structural Dynamics," ASCE J.

Eng. Mech. Div., 85(EM3), pp. 67−94 (July 1959).

[17] Oden, J.T., Finite Elements of Nonlinear Continua, New York:

McGraw-Hill (1972).

[18] Petyt, M., Introduction to Finite Element Vibration Analysis, Cambridge:

Cambridge University Press (1998).

[19] Segerlind, L.J., Applied Finite Element Analysis, New York: John Wiley (1987).

[20] Smith, I.M. and Griffiths, D.V., Programming the Finite Element Method, 3rd

Edition, Chichester: John Wiley (1998).

[21] Stein, E., Error Controlled Adaptive Finite Elements in Solid Mechanics,

Chichester: John Wiley (2003).

[22] Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).

[23] Weaver, W.F., Jr. and Johnston, P.R., Finite Elements for Structural Analysis,

Englewood Cliffs: Prentice Hall (1984).

[24] Wiberg, N.-E. and Li, X.D., "A Postprocessed Error Estimate and an Adaptive

Procedure for the Semidiscrete Finite Element Method in Dynamic Analysis," Int. J.

Num. Meth. Eng, 37, pp. 3585−3603 (1994).

[25] Wiberg, N.-E., "Superconvergent Patch Recovery − A Key to Quality Assessed FE

Solutions," Adv. Eng. Software, 28, pp. 85−95 (1997).

[26] Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition,

London: Butterworth-Heinemann (2000).

Index

Abel, J.F., 429

Abdulwahab, F., 144,177

Abramowitz, M., 115,126

Abscissas, 121,122,247,270

Acceleration, 396

Adams, R.A., 90

Adams, V., 24

Adaptivity, 2,29

h-method, 109,139,316,335,349,369,

418

p-method, 103,109,139,249,250

hp-method, 103,139,140

Adjacent elements, 69,149,151,153

Ahmad, S., 213,280,382

Ainsworth, M., 29,90,132,136,140,143,

145,176

Akin, J.E., 24,90,115,176,364,382,430

Algebraic equations, 34,37,40,50,51,70,

72,192,218

Allaire, P.E., 382

Allan, T., 368,382

Allowable error, 172

Angle of twist, 350,351,352,355

Anisotropic material, 1,6,283,320,377,413

Antisymmetry, 286,288,359

APPLICATION_B_MATRIX , 39,355

APPLICATION_E_MATRIX , 39,355

Area, 234,292

Area coordinates, 96,267,275

Askenazi, A., 24

Aspect ratio, 258

Assembly of equations, 3,4,12,13,15,49,

51,72,80,180,182,183,192,193,207,218,

227,293,308,402

Automatic array, 168,195

Av erage mass matrix, 77,376

Av erage nodal flux, 4,60,61,68,162,295,

298,328,329,362

Axelsson, O., 90

Axial stress, 9,185,385

Axial stiffness, 180

Axisymmetric integrals, 118,170,320,323,

364,366

Axisymmetric solid, 6,219,344,377,378

Axisymmetric stress, 225,385,406,412

Aziz, A.K., 89,263

Babuska, I., 25,90,115,143,144,145,177,

263,264,430

Back substitution, 37

Baker, V.T., 90

Bang, H., 25,383

Bank, R.E., 115

Bar, 81,114,180,352

Barlow points, 109,147,278

Barlow, J., 115,280

Barnhill, R.E., 143

Barycentric coordinates, 267

Bathe, K.J., 24,83,90213,430,435

Beam, 88,113,211

Bearing load, 371,372,373,375

Becker, E.B., 24,263,430

Behr, M., 263

Belytischko, T., 142,175,430

Bending, 404

Biggs, J.M., 430,435

Bilinear form, 28,834

Blacker, T., 143,176

Blended functions, 242

Body forces, 185,189,198,224,389,391,

395,396

Bonet, J. 435

Bonnerot, R., 90,264

Bookkeeping, 49,72,182

Boolean assembly, 8,182,183

Boundary conditions, 4,10,36,68,204,287

Boundary flux, 39,53,359,361

Boundary matrices, 4,31,129,284,286,289,

302,318,321,362

Boundary segment, 39,48,75,186,202,284,

289,296,303,307,361,396

Boundary value problem, 71

Brass, 190,197

Brebbia, C.A., 264

438 Finite Element Analysis with Error Estimators

Brauchli, H.J., 143

Bubble function, 239,248

Buchanan, G.R., 90,213,229

Bulk modulus, 398

Bruch, J.C., 90,106,115

Byrom, T.G., 24,381

C
1 function, 98,99

CALC_SCP_AVE_NODE_FLUX , 158,159

Capacity matrix, 78,201,318,376

Carey, G.F., 24,90,126,263,383

Carpet plot, 297,312,315,348,353,380

Cartesian tensor, 26,27

Carslaw, H.S., 381

Centrifugal load, 186,224

Centroid, 123,125,227,290,395,408

Charafi, A., 25

Charge density, 229

Chung, T.J., 365,382

Ciarlet, P.G., 90,143,264

Circular hole, 416

Class, 356,382

Cohen, M., 177,280

Collocation, 33

Column vector, 49

Complete polynomial, 21,131,158,239,249,

251,275,276,391

Compliance law, 413,415

Conduction, 52,204,215,219,290,293

Conduction matrix, 72,77,216,217,289,

317,344

Conductivity, 68,75

Connectivity, 3,9,12,20,183

Connor, J.C., 264

Consistent mass matrix, 77,374

Consistent loads, 395,396

Consistent source, 52,277,278

Constant Jacobian, 60

Constant strain triangle (CST), 247,394,

400

Constitutive matrix, 157,158,165,169,171,

186,193,224,226,319,387,393,394,399,

404,413

Constitutive transformation, 416

Constraint equations, 37,399

Contains, 356

Continuity: 239

C
0, 98,112

C
1, 98,99,100,104,112

C
2, 99,104

Continuous flux, 10,57,132,165

Contours, 297,300,305,311,314,325,327,

330,332,333,338,340,341,343,368

Convecting edge, 285,287

Convecting face, 285,287

Convection, 52,68,200,203,204,282,283,

292,323

Convection loss, 202,203,205,206,282,309,

313,324

Convergence rate, 21,130,139,334

Cook, R.D., 24,143,176,264,280,381,431

Cookson, R.A., 264

Cooling bar, 80-83

Cooling cylinder, 379

Cooling fin, 306,311

Cools, R., 280

Coon’s function, 251

Coordinate transformation, 117,198,394,

406

Coordinates, 3

Couette flow, 89

Couple, 6

COUNT _ELEMS_AT _ELEM , 147,149

Craig, A.W., 145

Crank - Nicolson, 77,79,90,264,376

Crisfield, M.A., 435

Cross-derivatives, 175,248,251

Cubic element, 42,45,47,97,99,101,113,

240,241,251,405

Current density, 363,395

Cunningham, J., 264

Current density, 363,395

Curve metric, 124

Cylinder, 215,219,224,225,361

Cylindrical coordinates, 215,344,363

Damping matrix, 428

Data, 53,81,92,191,197,204,209,219,228,

293,301,307,312,345,353,378,400,407

Database, 146,153,158

DeBoor, C., 91

Deflection, 417

Index 439

Degree of freedom number, 12,18,155,183

Demkowicz, L., 90,383

De-refinement, 139,140

Derivative:

global, 57

local, 56,94,165,224,243,244,245,246,

262

nodal parameters, 100

orders, 31

second, 99,153,166

DERIV _C1_L, 100

DERIV _3_L, 98

DERIV _3_T , 233

DERIV _4_Q, 235

DERIV 2_C1_L, 100

Desai, C.S., 24,79,90,115,381,431

DETERMINE_SCP_BOUNDS, 160

Dettmer, W., 106,115,264

Devloo, P., 382

DeVries, G., 24

Diagonal mass matrix, 77,376

DIAGONALIZE_SQ_MATRIX , 77

Differential geometry, 252,319

Differential operator, 7,30,39,127,383,384

Diffusivity, 79

Dirac delta distribution, 33

Dirichlet condition, 10,69,70,131,286,

326,344,361,374

Direct access, 153,155

Direct assembly, 12,400

Direction cosines, 198

Displacement vector, 179,383,384,391,396

Displacements, 3,5,180,390

Distortion, 258

Displacement vector, 179,383,384,391,

396,402,417

Distortional energy, 399

Divergence theorem, 8,27

Dual problem, 30,31

Dunavant, D.A., 271,280

Dunavant quadrature, 271,275

DUNAVANT _UNIT _TRIANGLE, 271

Dynamic memory, 160

Dynamic system, 396

Dym, C.L., 214

D_Q_RULE, 273,275

E_AXISYMMETRIC_STRESS, 388

E_ISOTROPIC_STRESS, 406

E_PLANE_STRESS, 388,404

Edge flux, 292,301

Effective stress, 403,405

Effectivity index, 60,130,136

Eigenproblem, 80,396

Eigenvalues, 83

El-Zafrany, A., 264

Elastic modulus, 393

ELASTIC_B_AXISYMMETRIC, 412

ELASTIC_B_MATRIX , 406

ELASTIC_B_PLANAR, 392,404

Elastic bar, 185,190,196

Elastic modulus, 180,185,193,387

Electrostatics, 229

ELEM_COL_MATRIX , 39

ELEM_COORD, 170

ELEM_SQ_MATRIX , 39,43,44,46,52,56,

194,203,217,290,320,355,366,371,404

Element based patch, 59,146,153

Element

connectivity, 5,17,20

coordinates, 52,194,242,255

error, 21,66,164,258,418

error energy, 171

flux, 68,298

incidences, 18,147

interface, 236,360

matrices, 284,289,293,317,345,355,

364,365,370,372,377,391,398,401

neighbors, 160

properties, 373

reactions, 191,197,199,205

size, 3,22,50,109,130,139,141,300,

314,315,342,349,362,418

strain, 192,193,208,209,383,393,402

stress, 128,192,197,226,227,383,

390,403

type, 155,169,303,307

ELEMENT _NODES, 147,148,149,150,151

Elliptic problem, 127

Encapsulated, 351,356

Energy norm, 134

440 Finite Element Analysis with Error Estimators

Energy norm error, 66,222,223,300,310,

330,332,343,362,425

Enrichment, 251

Equation numbers, 12,20,183

Equation of motion, 396

Equilibrium, 163,179,180,216,389,402

Equivalent form, 83

Error density, 138,173

Error estimates, 2,5,29,39,60,79,127,131,

164,334,367

Error energy norm, 12,14,129,166

Estimated error, 427

Essential boundary condition, 3,10,11,30,

31,32,37,51,55,69,72,79,80,127,192,218,

227,293,414,420

Euler theorem, 8,12,208,282

Euler integration, 375

EVAL_SCP_FIT _AT _PATCH_NODES,

162,175

Exact displacement, 407,408,420

Exact error, 171,342

Exact flux, 60,61,64,65,142

Exact flux error, 67

Exact integrals, 40,52,117,265,271

Exact solution, 47,53,54,61,73,82,141,154,

170,203,205,218,327,333,346,348

EXACT _SOLUTION , 39

Exact source, 376

EXACT _SOURCE, 39

Exact stress, 408,409,421,428

Exploded mesh, 305,412,424,425

Face based patch, 59,146,153

Face convection, 287,292,302,306

Face nodes, 153

Factorization, 36,37

Failure criterion, 5,228,394,405

Ferrari, R.L., 25,264,382

FILL_TYPE_INTERPOLATIONS, 169

Film thickness, 370,371

Fin, 306-316

First fundamental form, 253

Fix, G.J., 90

Flannery, B.P., 177

Flick’s law, 69

Flow around cylinder, 361

Flow chart, 4

Flux averaging, 39,52,61,158,162,221,223

Flux balance, 136

Flux components, 127

Flux error, 62,64,171

Flux norm, 171

Flux reaction, 73,223

Flux recovery, 57

Flux vector, 298,310,311,322

Force vector, 193,224,328,329,339

FORM_ELEMS_AT _EL, 151

FORM_L_ADJACENT _NODES, 148

Forces, 6,179,185,190,199,224,390,

FORCE_AT _TIME, 430

391,395,396

Forward difference, 77,375

Forward substitution, 37

Fourier law, 69,128

Fourier number, 79

Fracture mechanics, 260

Functional analysis, 29

Functional, 11,371

Fundamental magnitudes, 253,254,255

Gago, J., 145

Galerkin criterion, 8,28,35,40,41,43,45,

46,72,178,390

Galerkin in time, 77,375

Gallagher, R.H., 176,432

Gamma function, 266

Ganjoo, D.K., 90,115,264

Gardner, G.A., 264

Gardner, L.R.T., 264

Gartling, D., 90,214

Gather, 8,9,50,55,155,165,170,180,184

Gauss’ Theorem, 27

GAUSS_COEFF , 274

GAUSS_2D, 273,276

GAUSS_3D, 273,274

Gaussian quadrature, 40,56,120,121,276

Gellert, M., 280

Generalized trapezoidal integration, 375

Geometric interpolation, 242,244,246,269

Geometric matrix, 94,234

Geometric parameters, 290,292,309

Geometric properties, 256,347

Index 441

GET _DLH_AT _QP, 41,56,76,170,203,217,

224,320,321,323,355,365,376,404

GET _DOF_INDEX , 19

GET _ELEM_DOF , 154

GET _ELEM_INDEX , 14,17,154

GET _ELEM_NODES, 17,154,170

GET _ELEM_QUADRATURES, 169

GET _ELEM_SHAPE, 161

GET _ELEM_TYPE_DATA, 161,169

GET _G_AT _QP, 41,43,44,404

GET _H_AT _QP, 41,56,76,170,194,203,

217,224,320,321,323,355,365,377,404

GET _INDEX_AT _PT , 14,16

GET _LT _FACES, 152

GET _PATCH_QUADRATURE_ORDER,

169

GET _REACTIONS, 74

GET _REAL_LP, 76,194,203,206,217,224,

290,321,355,370,377,387

GET _REAL_MISC, 203,206,355,365,370,

435 GET _REAL_MX , 323,324

GET _SCP_PT _AT _XYZ , 162

Global approximation, 40,41,43,44,45,46,47

Global array, 43,56

Global coordinates, 53,81,92,191,197,204,

209,219,228,293,301,307,312,345,353,

378,402,409

Global derivatives, 33,42,44,47,49,51,56,

165,244,246

Global error, 173

Global variable, 43

Gradient, 55,127,165,246,247,325

Gradient estimates, 110

Graph, 46,54,60,62,380,433

Gravity, 186,190,198

Green’s theorem, 28,74,75

Gresho, P.M., 176

Griebel, M., 263

Griffiths, D.V., 25,126,432

Gupta, K.K., 24,432

H
1 norm , 30

H
2 error, 171

H
2 norm, 171,172,174

Half symmetry, 212,288,301,305,369

Hansbo, P., 264

Harbord, R., 280

Haroun, M., 280

Hayashi, H., 368,382

Heat balance, 310

Heat conduction, 1,127,199,215,291,337

Heat convection, 68,70,200,203,206,206

Heat generation, 127,216,218,289

Heat flux, 5,79,128,293,299,340,341

Heat loss, 206,282,309,324

Heat transfer, 6,69,283,293

Heinrich, J.C., 90

Hermite interpolation, 98,99,100,104

Hessian, 166

Hexahedra:

elements, 96,239

interpolation, 241

Hierarchical interpolation, 101,102,132,

241,246

Hilbert space, 84

Hinton, E., 126,280,381

Hole in infinite plate, 416

Hooke’s law, 69,128,186,194

Hoop strain, 223,226,411

Hoop stress, 227,411

Hu, K.-K., 264

Huang, H.C., 79,91,139,143,176,381

Huebner, K.H., 24,368,381

Hughes, T.J.R., 24,29,91,125,175,264,280,

375378,,383,432,436

Hyperbolic functions, 108

Idesman, A., 264

Ill-condition, 60

Include file, 4,13,81

Incompressibility, 226,278,386,399

Inertia tensor, 256

Influence domain, 49

Initial condition, 78

Initial strain, 191,195,389,393

Initial stress, 389

Initial value problem, 74,77,375

Inner product, 29,30,31,129

Integrate by parts, 8,28,30,31,42,43,85

Integration, 116,265

Interface, 39,41,149,151,156,159,167,194,

195

442 Finite Element Analysis with Error Estimators

Interior residual, 134,136

Interpolate solution, 73

Interpolation error, 107,257

Interpolation functions, 9,48,50,57,92,125,

165,186,226,231,241,242,317,384

Initial strain, 389,391

Initial stress, 389

Inverse Jacobian, 245

INVERT _JACOBIAN , 170,217,223,320,

356,365,376

INVERT _SMALL_MAT , 169

INVERT _2BY 2, 404

Inviscid flow, 364

Irons, B.M., 202,213,280,382

Isoparametric element, 94,95,232,236,242,

253,318,404

Iterative solution, 76

Jacobi iteration, 83

Jacobian, 60,94,116,125,162,243,257,258,

259,262,269,316

Jacobian determinant, 245,246

Jacobian inverse, 245,257

Jaeger, J.C., 382

Jamet, P., 90,264

Johnston, P.R., 214,230,432

Jump term, 136,139

Keast, B., 272,280

KEAST _UNIT _TET _RULE, 272

Kelly, D.W., 143,144

Ke yword, 41,53,153,193,198,206,208,219,

224,228,293,296,301,303,304,307,321,

346,351,372,374,375,378,400,420

Kimser, P.G., 264

Kreyszig, E., 346,383

Krishnamoorthy, C.S., 115

Krizek, M., 144,176

Kundu, T., 24,115,382

Kwon, Y.W., 25,383

L2 norm, 30,166,170,171

Ladeveze, D., 144

Lagrange interpolation, 11,13,97,239,

268,318

Lakhany, A.M., 177

Lame constants, 399

Lame parameters, 254

Laplace equation, 211

Laplacian, 128

Least squares, 34,40,41,44,45,57,158,161

Least squares in time, 77,375

Legendre polynomials, 103,105,250

Leguillon, D., 144

Li, X.D., 432,436

Linear

hexahedra, 158,239,241

line, 49,50,52,54,72,92,95,96,133,188,

201,202,216,220,370,371

quadrilateral, 237,243

spring, 179

tetrahedron, 95,107,237,268

triangle, 95,107,237,245,247,257,266,

269,289,291,301,304,314,379

Linear space, 29

LIST _ELEM_FLUXES, 154,156,158,161

LIST _ELEM_AD_EXACT _FLUXES, 154

LIST _ELEM_TORSION_STRESS, 141,

356,357

LIST _ELEM_TORSION_INTEGRAL, 356,

358

Liu, W.K., 432

Liusternik, L.A., 29,91

Lobatto rule, 122

Local coordinates, 92,231

Local derivatives, 55,94,165,224,243,

244,245,246,262

Locking, 399

Load vector, 9

Loubignac, G., 163,177

Lubrication, 368

Lumped matrices, 50

Maddox, J.R., 176

Magnetic flux density, 363,396

Malkus, D.S., 24,143,176,264,280,382

Martin, H.C., 383

Mass damping, 430

Mass matrix, 76,80,218,319,375,376,428

Mass properties, 256

Material axes, 394,409,415,416

Material property, 5,9,187,190,204,216,228,

291,293,306,312,346,352,373,398,400,

Index 443

407

Matrix inverse, 36,71,72

Matrix partition, 70

Maximum shear stress, 350,354

Measure, 30,258

Mechanical work, 179,185,384

Meek, J.L., 24,383

Meier, D.L., 91

Mesh adaptivity, 4,419,424

Method of moments, 35

Method of Weighted Residuals (MWR),

32-36,71-78,86

Metric matrix, 253,255

M.H.D. plasma, 363

Mid-edge nodes, 239,240,268

Minimal integration, 276

Minimization, 34

Mininum total potential energy, 84,179

Mitchell, A.R., 90,214

Mixed boundary condition, 10,39,70,282,

302,312

Mixed condition matrices, 292,309,323

MIXED_SQ_MATRIX , 39,292,323

Moan, T., 280

Mohr’s circle, 406,409,416

Moment, 5

Monk, P., 263

Moran, B., 436

Morgan, K., 90,133,144,264

Multiple point constraint (MPC), 10,38,

213

Myers, G.E., 200,213,383

Natural boundary conditions, 10,11,31,70,

210,284,286,359

Natural coordinates, 94,97,120,121,200,

234,238,241,273

Natural norm, 30,129

Neighbor lists, 147,152

Neittaanmaki, P., 144,176

Neumann condition, 10,70,131,321,375

Newmark, N.M., 429,436

NEWMARK_METHOD_SYM , 429

Niekamp, R., 264

Nodal

based patch, 59,146,153

boundary condition code, 53,81,191,

197,204,209,219,400

constraints, 10,38

coordinates, 53,81,92,191,197,204,209

displacements, 5,386,417

exact, 106

forces, 5

influence domain, 49

moment, 5

parameters, 9,71,98,181

pressure, 368

properties, 370

temperature, 5,3,68,79,127,201,205,

206,219,220,283,293,297,299,303,

305,315,336,337,348

thickness, 370

velocity, 362

Nodally exact solution, 71,106

Non-conforming element, 236,360

Norm, 29,30,68,165

Normal flux, 282

Normal stress, 387,390,421,422

Normal vector, 11

Norrie, D.H., 24

Nowinski, J.L., 29,90

Numerical integration, 40,57,119,162,165,

202,203,217,224,227,247,270,317,319,

320,365,376,404

Oden, J.T., 24,28,90,91,126,132,136,140,

143,144,176,263,383,436

One-eighth symmetry, 293,297,349,352,

376,380

Optimal points, 110,112,279

Orthogonal functions, 29,103,132

Orthotropic material, 286,336,337,415

Outer product, 43,46

OUTER_PRODUCT , 76

Overlapping patches, 164

Owen, D.R.J., 126,381,431

Parallel axis theorem, 256

Parametric curve, 252,254

Parametric derivative, 56,94,165,174,224,

243,244,245,246,262

Parametric equation, 123,252

444 Finite Element Analysis with Error Estimators

Parametric surface, 6,253

PARM_GEOM_METRIC, 255,319,321,323

Pascal triangle, 238

Patch

bounds, 157,158

degree, 153,158

domain, 58,59

element based, 59,146,153

face based, 59,146,153

flux, 39,52,60,61,158,162,221,223

interpolation, 57,59,63,163

Jacobian, 157

node based, 58,59,146,153

overlapping, 164

parametric space, 60

type, 169

Patch test, 202,206,209,359,407

Pepper, D.W., 90

Peric, D., 106,115,264

Petyt, M., 428,436

Piecewise approximation, 2,49,55,171

Pironneau, O., 25

Pitkaranta, J., 115,263

Planar elasticity, 128

Plane strain, 384,388,390

Plane stress, 384,388,390,393,400,404,407,

414

Plasma, 365

Plesha, N.E., 24,143,176,264,382

Plot, 42

Point load, 185,390

Point source, 303

Poisson equation, 211,212,228,320,326,

350,355,359

POISSON_ANISOTROPIC_E_MATRIX ,

320

Poisson’s ratio(s), 387,413

Polynomial degree, 140

Portela, A., 25

Position vector, 252

Positive - definiteness, 11,29

Post-process, 8,10,39,50,192,307,356,389

Post-solution calculations, 190,323,372

POST _PROCESS_ELEM , 39,195,206,

324,356,372

POST _PROCESS_GRADS, 154,155

POST _PROCESS_MIXED, 309

Potential energy, 179,185

Potential flow, 5,356,359,362,363,364

Press, W.H., 177

Pressure, 227,228,371,373

Principal stresses, 410

Quadratic

hexahedra, 241

hierarchical, 118

line, 42,47,97,98,111,117,219,228,258

quadrilateral, 12,110,241,313,405

tetrahedra, 238,268

triangle, 110,238,266,326,345,352,405,

414

Quadratic functional, 181,210

Quadratures, 40,43,44,55,76,271,272

Quadrature order, 164

Quadrature point, 58,60,113,153,157,354,

362,408

Quadrilateral element, 12,110,234,237,

241,243,313,405

Quarter point element, 260

Quarter symmetry, 22,288,336

Radial displacement, 223

Radial position, 217,223

Random access, 153,155

Rao, S.S., 26

Razzaque, A., 213,382

Reaction flux, 53,80,196,219,223,308

Reaction force, 192,193,403

Reactions, 6,10,51,53,71,73,190,191,196,

205,209,293

Record number, 153,155,157

Rectangular element, 107,316

Reddi, M.M., 368,383

Reddy, J.N., 90,214

Reduced integration, 276

Refinement, 139,335

Refinement indicator, 138,139,174,335

REAL_IDENTITY , 365

Reshape, 52

Residual error, 7,8,32,33

Reynolds equation, 368,371

Index 445

Rigid body motion, 227,278

Robin boundary condition, 10,39,70,213,

282,284,302,323,374

Robinson, J., 203,214

Rockey, K.C., 229

Rod, 199

Ross, C.T.F., 229

Rossettos, J.N., 115

Scalar field, 281

Scatter, 8,9,21,50,153,180,391

Schwartz inequality, 28,29

SCP averages, 68,347,354,362

SCP recovery, 57,132,146,322

SCP_ERROR_ESTIMATES, 165,167,175

Second derivatives, 153,166

Secrest, D., 126

Segerlind, L.J., 25,264,351,383

SEG_COL_MATRIX , 292,321

Selective integration, 276

SELECT _APPLICATION_B_MATRIX , 170

SELECT _APPLICATION_E_MATRIX , 169

SELECT _EXACT _FLUX , 171

SELECT _EXACT _SOLUTION , 170,320

SELECT _EXACT _SOURCE, 376

Self-adjoint, 30,365

Semi-discrete, 77,78

Semi-infinite element, 108

Semi-norm, 30

Sequential data, 153,155

Serendipity elements, 131,239,240

SET _ELEM_TYPE_INFO, 154

Shames, I.H., 214

SHAPE_3_L, 98

SHAPE_3_T , 232

SHAPE_4_12_Q, 240

SHAPE_4_Q, 235,241

SHAPE_6_T , 237

SHAPE_8_H , 241

SHAPE_8_Q, 241

SHAPE_16_Q, 241

SHAPE_20_H , 241

SHAPE_32_H , 241

SHAPE_C1_L, 100

Shear modulus, 350,393,399,413

Shear strain, 390

Shear stress, 350,353,387,390,423

Shephard, M.S., 383

Silvester, P.P., 25,264,382

Simple harmonic motion, 396

Simplex elements, 95,107,131,232,237,261

Single element solution, 36,43,44,45,46,

202

Singular Jacobian, 258,259

Singular value decomposition, 162

Skyline, 429

SKY _TYPE_1_SYM , 430

Slider bearing, 368,371

Slope, 98

Smith, I.M., 25,126

Soap film, 350

Sobolev norm, 30

Soblov, V.J., 90

Solution error, 32,353

Solution integral, 351,355,358

Solution techniques, 36

Solution vector, 33

Source, 9,32,42,48,75,76,283,293,376

Source integrals, 72,77,273,365

Source vector, 33,48,51,129,201,216

Source resultant, 53,72,290,376

Space-time interpolation, 78,106,260

Space-time slab, 106,107,261

Specific heat, 79

Sphere, 346,383

Spring, 179

Spring-mass system, 432

Square matrix, 9,48,50,55,72,77,129

Steady state, 80,284,375

Steel, 190,197

Stegun, I.A., 115,126

Stein, E., 436

Steinberg, R., 144,176

Step bearing, 372

Stiffness damping, 430

Stiffness matrix, 9,33,180,187,189,194,

198,201,224,391,398,401

STORE_COLUMN , 16,17

STORE_FLUX_POINT _COUNT , 52,56,217

STORE_FLUX_POINT _DATA, 52,56,217

STORE_FULL_SQUARE, 16,17

446 Finite Element Analysis with Error Estimators

Strain, 192,193,208,209,384,393

Strain energy, 171,179,185,384

Strain energy norm, 68,138,166

Strain-displacement relation, 165,171,186,

188,192,226,384,386,392,393,398,412

Strain transformation, 394,406,410,416

Stream function, 356,363,368

Stein, E., 264

Stress, 128,192,197,226,227,384,390

Stress concentration, 424

Stress error, 165

Stress error norm, 130

Stress free temperature, 394

Stress function, 350,353

Stress-strain law, 392

Stress transformation, 406,409

Strang, W.G., 90

Strong form, 83

Strong typing, 41,233

Strouboulis, T., 90,143,383

Stroud, A.H., 126

Structural mechanics, 179

Subdomain method, 36

Sub-parametric elements, 242,247

Subset, 49,186

Super convergence patch (SCP), 57,58,81

Super-parametric elements, 242

Surface gradient, 254

Surface metric, 254

Surface normal, 253

Surface tractions, 390

SVDC_BACK_SUBST , 162

SVDC_FACTOR, 162

Swartz, S.E., 264

Symmetry, 22,29,286,293,359

SYMRUL, 270

System equations, 17

System norm, 167

Szabo, B., 25,90,115,144,177,263

Tangent vectors, 252,254

Tangential derivatives, 101,248

Taylor, R.L., 25,91,115,126,177,214,383

Taylor series, 107,176,257

Temperature, 3,68,79,127,201,205,206,

219,220,283,293,297,299,303,305,315,

336,337,348

Test function, 74

Tetrahedra, 95,237,238,261

Teukolsky, S. A., 177

Tezduyar, T.E., 91,115,264

Thermal conductivity, 3,9,12,20,183,216

Thermal diffusivity, 79

Thermal expansion, 192

Thermal load, 193,197

Thermal strain, 192,194,197,394,395

Thickness, 283,290,320,390,395

Thornton, E.A., 24,382

Time derivative, 74,75,78,79,281,376

Time history, 80,82,83,375,377,377

Time slab, 78,261,263

Time step, 79,376

Tokamak, 363

Tong, P., 106,115

Torque, 350

Torsion, 349,351,352,353,354,355

Total potential energy, 11,187,384

Touzot, G., 177

Tractions, 128,129,185,187,390,391,396

Transformation matrix, 394,406,409,416

Transient applications, 74,75,76,79,106,

281,377-380

Transition element, 239

Trapezoidal rule, 119,120

Triangular elements, 22,95,107,110,237,

245,247,257,266,267,271,326,345,352,

405,407,414

Triangle inequality, 28,30

Union, 75

Unique solution, 86

Unit coordinates, 94,95,97,120,121,231,

237,265

Unit normal vector, 74,128

Unit tetrahedra, 272

Unit triangle, 267,271

Unstructured mesh, 153

Unsymmetric equations, 34,36

Upadhyay, C.S., 143

UPDATE_SCP_STATUS, 157

Usmani, A.S., 79,91,139,143,176,383

Index 447

Validation, 202

Variational form, 7,11,83,178,200,216,

281,364

Vector field, 383

Vector plot, 298,310,311,328,329,339,

354,417

Vector potential, 363

VECTOR_MULT _SKY _SYM , 430

Velocity potential, 356,359

Velocity, 358,359,363,370

Vettering, W.T., 177

Viscosity, 370

Volume, 166,170,189,408

Volume coordinates, 96,268

Von Mises stress, 228,405,411,419,428

Wada, S., 368,383

Wait, R., 90,214

Weak form, 8,53

Weav er, W.F., 214,230,432

Wedge element, 107

Weight, 194

Weighted residual, 7,32,42

Weighting function, 33

Weights, 121,122,247,270,271,272

Wiberg, N.-E., 144,177,432,436

Witt, R.J., 24,143,176,264,381

Whiteman, J.R., 25,91,143,176

Wilson method, 434

Wood, R.D., 435

Wooten, J.W., 364,383

Work, 179,185,384

Yield stress, 405

Young’s modulus, 387

Z-Z error estimator, 57,60,139

Zhu, J.Z., 60,91,144,145,177,383

Zienkiewicz, O.C., 25,60,91,115,126,133,

144,145,177,214,230,264,280,383

Ziukas, S., 144,177

Zyvoloski, G., 90,106,115,144

	Cover
	Frontmatter
	Half Title Page
	Title Page
	Copyright
	Contents
	Preface
	Features of the text and accompanying resources
	Notation

	1. Introduction
	1.1 Finite element methods
	1.2 Capabilities of FEA
	1.3 Outline of finite element procedures
	1.4 Assembly into the system equations
	1.5 Error concepts
	1.6 Exercises
	1.7 Bibliography

	2. Mathematical preliminaries
	2.1 Introduction
	2.2 Linear spaces and norms
	2.3 Sobolev norms
	2.4 Dual problem, self-adjointness
	2.5 Weighted residuals
	2.6 Boundary condition terms
	2.7 Adding more unknowns
	2.8 Numerical integration
	2.9 Integration by parts
	2.10 Finite element model problem
	2.11 Continuous nodal flux recovery
	2.12 A one-dimensional example error analysis
	2.13 General boundary condition choices
	2.14 General matrix partitions
	2.15 Elliptic boundary value problems
	2.16 Initial value problems
	2.17 Eigen-problems
	2.18 Equivalent forms
	2.19 Exercises
	2.20 Bibliography

	3. Element interpolation and local coordinates
	3.1 Introduction
	3.2 Linear interpolation
	3.3 Quadratic interpolation
	3.4 Lagrange interpolation
	3.5 Hermitian interpolation
	3.6 Hierarchical interpolation
	3.7 Space-time interpolations
	3.8 Nodally exact interpolations
	3.9 Interpolation error
	3.10 Gradient estimates
	3.11 Exercises
	3.12 Bibliography

	4. One-dimensional integration
	4.1 Introduction
	4.2 Local coordinate Jacobian
	4.3 Exact polynomial integration
	4.4 Numerical integration
	4.5 Variable Jacobians
	4.6 Exercises
	4.7 Bibliography

	5. Error estimates for elliptic problems
	5.1 Introduction
	5.2 Error estimates
	5.3 Hierarchical error indicator
	5.4 Flux balancing error estimates
	5.5 Element adaptivity
	5.6 H-adaptivity
	5.7 P-adaptivity
	5.8 HP-adaptivity
	5.9 Exercises
	5.10 Bibliography

	6. Super-convergent patch recovery
	6.1 Patch implementation database
	6.2 SCP nodal flux averaging
	6.3 Computing the SCP element error estimates
	6.4 Hessian matrix
	6.5 Exercises
	6.6 Bibliography

	7. Variational methods
	7.1 Introduction
	7.2 Structural mechanics
	7.3 Finite element analysis
	7.4 Continuous elastic bar
	7.5 Thermal loads on a bar
	7.6 Reaction flux recovery for an element
	7.7 Heat transfer in a rod
	7.8 Element validation
	7.9 Euler’s equations of variational calculus
	7.10 Exercises
	7.11 Bibliography

	8. Cylindrical analysis problems
	8.1 Introduction
	8.2 Heat conduction in a cylinder
	8.3 Cylindrical stress analysis
	8.4 Exercises
	8.5 Bibliography

	9. General interpolation
	9.1 Introduction
	9.2 Unit coordinate interpolation
	9.3 Natural coordinates
	9.4 Isoparametric and subparametric elements
	9.5 Hierarchical interpolation
	9.6 Differential geometry
	9.7 Mass properties
	9.8 Interpolation error
	9.9 Element distortion
	9.10 Space-time interpolation
	9.11 Exercises
	9.12 Bibliography

	10. Integration methods
	10.1 Introduction
	10.2 Unit coordinate integration
	10.3 Simplex coordinate integration
	10.4 Numerical integration
	10.5 Typical source distribution integrals
	10.6 Minimal, optimal, reduced and selected integration
	10.7 Exercises
	10.8 Bibliography

	11. Scalar fields
	11.1 Introduction
	11.2 Variational formulation
	11.3 Element and boundary matrices
	11.4 Linear triangular element
	11.5 Linear triangle applications
	11.6 Bilinear rectangles
	11.7 General 2-d elements
	11.8 Numerically integrated arrays
	11.9 Strong diagonal gradient SCP test case
	11.10 Orthotropic conduction
	11.11 Axisymmetric conductions
	11.12 Torsion
	11.13 Introduction to linear flows
	11.14 Potential flow
	11.15 Axisymmetric plasma equilibria
	11.16 Slider bearing lubrication
	11.17 Transient scalar fields
	11.18 Exercises
	11.19 Bibliography

	12. Vector fields
	12.1 Introduction
	12.2 Displacement based stress analysis summary
	12.3 Planar models
	12.4 Matrices for the constant strain triangle (CST)
	12.5 Stress and strain transformations
	12.6 Axisymmetric solid stress
	12.7 General solid stress
	12.8 Anisotropic materials
	12.9 Circular hole in an infinite plate
	12.10 Dynamics of solids
	12.11 Exercises
	12.12 Bibliography

	Index

