

Process Modelling and
Simulation with

Finite Element Methods

SERIES ON STABILITY, VIBRATION AND CONTROL OF SYSTEMS

Founder and Editor: Ardeshir Guran
Co-Editors: M. Cloud 81 W. B. Zimmerman

About the Series
Rapid developments in system dynamics and control, areas related to many other
topics in applied mathematics, call for comprehensive presentations of current
topics. This series contains textbooks, monographs, treatises, conference proceed-
ings and a collection of thematically organized research or pedagogical articles
addressing dynamical systems and control.

The material is ideal for a general scientific and engineering readership, and is
also mathematically precise enough to be a useful reference for research specialists
in mechanics and control, nonlinear dynamics, and in applied mathematics and
physics.

Selected Volumes in Series A
VOl. 3

VOI. 4

VOl. 5

Vol. 6

VOl. 7

VOl. 8

VOl. 9

Vibration Analysis of Plates by the Superposition Method
Author: Daniel J. Gorman

Asymptotic Methods in Buckling Theory of Elastic Shells
Authors: P. E. Tovstik and A. L. Smirinov

Generalized Point Models in Structural Mechanics
Author: 1. V. Andronov

Mathematical Problems of Control Theory: An Introduction
Author: G. A. Leonov

Analytical and Numerical Methods for Wave Propagation in
Fluid Media
Author: K. Murawski

Wave Processes in Solids with Microstructure
Author: V. 1. Erofeyev
Amplification of Nonlinear Strain Waves in Solids
Author: A. V. Porubov

Vol. 10 Spatial Control of Vibration: Theory and Experiments
Authors: S. 0. Reza Moheimani, D. Halim, and A. J. Fleming

Vol. 11 Selected Topics in Vibrational Mechanics
Editor: 1. Blekhman

Vol. 12 The Calculus of Variations and Functional Analysis: With Optimal Control
and Applications in Mechanics
Authors: L. P. Lebedev and M. J. Cloud

Vol. 13 Multiparameter Stability Theory with Mechanical Applications
Authors: A. P. Seyranian and A. A. Mailybaev

Vol. 14 Stability of Stationary Sets in Control Systems with Discontinuous
Nonlinearities
Authors: V. A. Yakubovich, G. A. Leonov and A. Kh. Gelig

SERIES ON STABILITY, VIBRATION AND CONTROL OF SYSTEMS

Series A Volume 15
~~

Founder & Editor: Ardkshir Guran

Co-Editors: M. Cloud & W. 6. Zimmerman

Process Modelling and
Simulation with

Finite Element Methods

William B. J. Zimmerman
University of Sheffield, UK

K World Scientific
N E W J E R S E Y * LONDON S INGAPORE * BElJ lNG - S H A N G H A I * HONG KONG TAIPEI * C H E N N A I

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224
USA oflice: 27 Warren Street, Suite 401402, Hackensack, NJ 07601
U K office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

PROCESS MODELLING AND SIMULATION WITH FINITE ELEMENT METHODS

Copyright 0 2004 by World Scientific Publishing Co. Re. Ltd.
All rights reserved. This book, or parts thereoj may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-238-793-5

Printed in Singapore by World Scientific Printers (S) Pte Ltd

ABOUT THE AUTHOR

Dr William B. J. Zimmerman is a Reader in Chemical and Process Engineering.
His research interests are in fluid dynamics and reaction engineering. He has
previously created modules entitled Chemical Engineering Problem Solving with
Mathematica, Modelling and Simulation in Chemical Processes, Numerical
Analysis in Chemical Engineering, and FORTRAN programming. He has been
modelling with finite element methods since 1986. He has authored over sixty
scientific and scholarly works. He is a graduate of Princeton and Stanford
Universities in Chemical Engineering, past Director of the M Sc in
Environmental and Energy Engineering, originator of the M Sc in Process Fluid
Dynamics, and a winner in US and UK national competitions of four prestigious
fellowships:

2000-5 EPSRC Advanced Research Fellow
1994-99 Royal Academy of Engineering, Zeneca Young Academic Fellow.
1991-93 NATO postdoctoral fellow in science and engineering.
1988-9 1 National Science Foundation Research Fellow

This page intentionally left blank

FOREWORD

I would especially like to thank the Engineering and Physical Sciences Research
Council of the United Kingdom for the award of an Advanced Research
Fellowship on the topic of “models of helical mixing and reaction: a new
approach to chemical reaction engineering.” Without the flexibility of the
fellowship, I doubt I would have felt adventuresome enough to afford the time to
run so far - developing an intensive training module and writing a textbook on a
topic that is relatively new to me and was not envisaged when I wrote the
original research strategy for the fellowship in 1998. It has turned out to be
integral to my plans for turbulence modeling, although this is not reflected in
the book.

Johan Sundqvist and Ed Fontes of COMSOL have been most supportive of
my two projects, lending considerable resources to helping me to iron out
difficulties in modeling, contributing to the intensive modules, and providing
critiques of the draft chapters. I would have thought the crew at COMSOL
would have tired with the endless e-mails from my research group. With most
packages I use, I have no intention of being “cutting edge,” so the FAQs on the
web site usually already have my queries - asked and answered. It is both novel
and refreshing to have identified (and sometimes solved or worked around) new
bugs or puzzles. To Ed and Johan, a wholehearted thanks for welcoming me to
the FEMLAB developers community.

Many thanks to the team of collaborators and chapter co-authors who have
encouraged this effort. Buddhi, Alex, Kiran, Jordan, Peter, George and Julia
have always had a kind word and a willingness to brainstorm and contribute.

Finally, thanks to attendees at my intensive modules for spotting
inconsistencies, patiently wading through “experimental” teaching material
(guinea pigs who are so intelligent are a rare find!), and putting up with my
sometimes convoluted explanations. Not to mention those awkward times as we
uncovered clangers in the demonstrations. It has always been a conceit of mine
that computer demonstrations should be realistic - bugs and all - since
debugging is an integral programming skill that relies on intuition and
experience. So thanks for sharing the experience!

vii

This page intentionally left blank

CONTENTS

About the Author V

Foreword vii

Introduction to FEMLAB
W. B. J. Zimmerman

0.1 Overview of the Book
0.2 An Example from the Model Library

0.2.1 k-&Model of a Turbulent Static Mixer
0.2.2 Why the Tour of k-E Model of a Turbulent Static

Mixer?
0.3 Chapter Synopsis
References

1 FEMLAB and the Basics of Numerical Analysis
W. B. J. Zimmerman
1.1 Introduction
1.2 Method 1 : Root Finding

1.2.1 Root Finding: A Simple Application of the FEMLAB
Nonlinear Solver

1.2.2 Root Finding: Application to Flash Distillation
1.3 Method 2: Numerical Integration by Marching

1.3.1 Numerical Integration: A Simple Example
1.3.2 Numerical Integration: Tubular Reactor Design

1.4 Method 3: Numerical Integration of Ordinary Differential
Equations

1.5 Method 4: Linear Systems Analysis
1.5.1

1.6 Summary
References

Heat Transfer in a Nonuniform Medium

2 Partial Differential Equations and the Finite Element Method
W. B. J. Zimmerman and B. N. Hewakandamby
2.1 Introduction

2.1.1 Poisson’s Equation: An Elliptic PDE
2.1.2 The Diffusion Equation: A Parabolic PDE
2.1.3 The Wave Equation: A Hyperbolic PDE

1

1
11
12

14
16
22

23

23
24

25
29
33
35
38

44
49
55
59
59

63

63
66
70
75

ix

X Process Modelling and Simulation with Finite Element Methods

2.1.4 Boundary Conditions
2.1.5 Basic Elements

2.2 summary
References

3 Multiphysics
W. B. J. Zimmerman
3.1 Introduction
3.2 Buoyant Convection.
3.3 Unsteady Response of a Nonlinear Tubular Reactor
3.4 Heterogeneous Reaction in a Porous Catalyst Pellet
3.5 Discussion
References

4 Extended Multiphysics
W. B. J. Zimmerman, P. 0. Mchedlov-Petrossyan and
G. A. Khomenko
4.1 Introduction
4.2 Heterogeneous Reaction in a Fixed Bed with Premixed Feed
4.3 Primacy of the Buffer Tank
4.4 Linking the 2-D Buffer Tank to the 1-D Heterogeneous Reactor
4.5 Bioreactor Kinetics
4.6 Discussion
References

5 Simulation and Nonlinear Dynamics
W. B. J. Zimmerman
5.1 Introduction
5.2 Rayleigh-Benard Convection

5.2.1 Heating from Above
5.2.2 Heating from Below
5.2.3 Agreement with Thin Layer Theory

5.3 Viscous Fingering Instabilities
5.3.1 Streamfunction-Vorticity Model with Periodic BCs

5.4 Summary
References

6 Geometric Continuation
W. B. J. Zimmerman and A. F. Routh
6.1 Introduction
6.2 Stationary Geometric Continuation: Pressure Drop in a

Channel with an Orifice Plate

85
89

105
105

107

107
108
123
129
135
136

137

137
140
152
162
167
170
171

173

173
178
180
184
190
192
202
210
212

215

215

217

Contents xi

6.3 Transient Geometric Continuation: Film Drying
6.4 Summary
6.5 End Note: Solver Parameters for Problems with Pointwise

Weak Terms
References

7 Coupling Variables Revisited: Inverse Problems, Line
Integrals, Integral Equations, and Integro-Differential
Equations
W. B. J. Zimmerman
7.1 Introduction
7.2 Summary
References

8 Modeling of Multi-Phase Flow Using the Level Set Method
K. B. Deshpande and W. B. J. Zimmerman
8.1 Introduction
8.2 Governing Equations of the Level Set Method
8.3 Curvature Analysist: Methodology
8.4 Results and Discussion

8.4.1 Coalescence of Two Axisymetric Drops
8.4.2 Coalescence of Acoustically Suspended Drops
8.4.3 Coalescence Between Two Drops Approaching Each

Other
8.4.4 Multi-Body Coalescence

8.5 Summary
Acknowledgements
References

9 Electrokinetic Flow
W. B. J. Zimmerman and J. M. Macinnes
9.1 Introduction
9.2 Weak Boundary Constraints: Revisiting ECT
9.3 Electrokinetic Flow

9.3.1 Background
9.3.2 Problem Set Up
9.3.3 FEMLAB Implementation
9.3.4 Links to Physical Boundaries

9.4 Summary
Acknowledgements
References

227
24 1

242
243

245

245
290
290

293

293
295
297
297
298
304

307
309
310
310
310

313

313
3 14
319
319
3 20
321
321
349
349
349

xii Process Modelling and Simulation with Finite Element Methods

Appendix: A MATLABEEMLAB Primer for Vector Calculus
W. B. J. Zimmerman and J. M. Rees

A. 1 Review of Vectors
A. 1.1 Representation of Vectors
A. 1.2 Scalar Products, Matrix Multiplication, Unit Vectors,

and Vector Products
A.2 Arrays: Simple Arrays, Cell Arrays, and Structures
A.3 Scalar and Vector Fields: MATLAB Function

Representations
A.4 Differentiation in Multivariable Calculus

A.4.1 The Gradient of a Scalar Field
A.4.2 Derivatives of Vector Fields

A S End Note: Platform Dependence of Meshes

351

35 1
35 1

352
356

3 62
365
3 65
369
374

Index 377

INTRODUCTION TO FEMLAB

W.B.J. ZIMMERMAN
Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Sheffield S1 3JD United Kingdom

E-mail: w.zimmerman @she$ac.uk

FEMLAB is a relatively recent development in the MATLAB sphere. Perhaps a good
fraction of the readers of this book were attracted by the title and the dust jacket
description, so they might have little exposure to FEMLAB previously. To them, I would
heartily recommend attending a FEMLAB seminar on their recurring academic
roadshows. The experience of seeing FEMLAB in action is more illustrative than the
printed word and screen captures shown here. This Introduction provides an overview of
why I wrote the book and developed an intensive training module for FEMLAB
modeling of chemical engineering applications - the unique features of FEMLAB that
the reader will want to assess for her own modeling objectives. The FEMLAB User’s
Guide (available for download from the COMSOL web site) does a better job of
familiarizing the reader with “What is FEMLAB?’ than the brief introduction in this
chapter to the FEMLAB graphical user interface (GUI). The point of the introduction to
FEMLAB here is to describe how completely determined models are set up in FEMLAB,
after which the methodology can be used in subsequent chapters without ambiguity.
Nevertheless, I hope that this chapter whets your appetite for the cornucopia of modeling
tools, along with an intellectual framework for using FEMLAB for modeling, that is
described in this book.

0.1 Overview of the Book

Chapters 1-4 were taken as the text for the first intensive module “Chemical
Engineering Modelling with FEMLAB .” These chapters represent a personal
odyssey with FEMLAB. It was not originally my intention to write a book about
FEMLAB. For a long term project that I am still undertaking, I need a PDE
engine that is readily customizable to additional terms and heterogeneous
domains. Once I decided that FEMLAB could fill the bill, I needed to become
an expert on it. One nefarious way of doing that is to declare a course on it, rope
graduate students and other interested external parties into attending, and then
study like mad to produce a coherent set of lectures and computer laboratories. I
already had several templates for this, having taught undergraduate and
postgraduate modules on numerical analysis, modeling, and simulation. So I
adapted the storyline of those modules with FEMLAB models. Chapter One is
the product of this adaptation. Chapter Two is an obvious outgrowth of my prior
use of the PDE toolbox of MATLAB and a necessary explanation of finite
element methods. Chapters 3-7 were far more deliberate attempts to exploit the

1

2 Process Modelling and Simulation with Finite Element Methods

powerful features of FEMLAB by systematically exploring models that illustrate
the feature of the theme of each chapter. I searched through my own repertoire
of PDE modeling and sought out contributions from colleagues that would
illustrate the features. Chapters 8 and 9 are of a different type. These chapters
would legitimately fit into the FEMLAB Model Library as case studies of
modeling with FEMLAB, rather than organized along a particular programming
theme. Nonetheless, the case studies highlight non-standard aspects of
FEMLAB/MATLAB modeling, analysis, and postprocessing that are strikingly
original.

Target audience

The book is aimed at graduate Chemical Engineers who use modelling tools and
as a general introduction to FEMLAB for scientists and engineers.

Figure 0.1 The pre-built application modes are arranged in a tree structure on the Model Navigator.
Here is the Incompressible Navier-Stokes mode under the Chemical Engineering Module. The
Model Navigator specifies that this mode is 2-D, has three dependent variables, and uses a mixed
type of element Lagrange p2 for the velocities u and v, Lagrange pl for the pressure. Using mixed
order discretization schemes is quite common in finite element methods for numerical stability of
the Navier-Stokes solvers. The SIMPLE scheme [l] pioneered the approach. The Model Navigator
allows the user to specify pre-built application modes or to customize a generic PDE mode
(coefficient, general, weak) to build up their own model.

Introduction to FEMLAB 3

Attitude

The attitude of this book is to demonstrate particular features of FEMLAB that
make computational modelling easy to implement, and then emphasize those
features that are advantages to modelling with FEMLAB. This will be illustrated
with reference to Chemical Engineering Modelling, which has a special history
and well known applications, The features, however, are generally applicable in
the sciences and engineering.

Bias

The book is slanted toward applications in fluid dynamics, transport phenomena,
and heterogeneous reaction, which reflect some of the research interests of the
author that routinely involve mathematical modelling by PDEs and solution by
numerical methods.

Modeling versus simulation

This book is about modelling and programming. The first four chapters, the core
of the taught module, focus completely on modeling. The remaining chapters
are slanted towards the use of FEMLAB for simulation. The distinction is that
simulation has some stochastic and evolutionary elements. Simulations may
have a PDE compute engine as an integral component, but generally involve
much more “user defined programming.” This book organizes case studies of
modeling along the lines of a cookbook - here are some models that are
important in chemical engineering applications that are computable in
MATLABEEMLAB. What is lacking from this presentation style, however, are
the philosophical and methodological aspects of modeling. This book is “How
To”, but not sufficiently “Why” and “How good?” are the models. There are
two major classes of modeling activity - (1) rigorous physicochemical modeling,
which takes the best understanding of physics and attempt to compute by
numerical methods the exact value up to the limits of finite precision
representation of numbers; (2) approximate modeling, which intends to
approximate the true, rigorous dynamics with simpler relationships in order to
estimate sizes of effects and features of the outcome, rather than exact, detailed
accuracy. In this book, no attempt is made to systematically treat how to
propose the equations and boundary conditions of modeling - decisions about
modeling objectives and acceptable approximations are presumed to have
already been taken rationally. Yet, in most modeling conundrums and trouble
shooting, whether or not the model itself is sensible is a key question, and what
level of approximation and inaccuracy are acceptable, are part and parcel of the
modeling activity. Numerics and scientificlengineering judgement about what
should be modelled and how should not be separated.

4 Process Modelling and Simulation with Finite Element Methods

Figure 0.2 The Model Library contains already solved problems using existing application modes.
The Model Library includes models created by COMSOL staff and donated by users. The growth in
the content of the Model Library over the last twelve months has been phenomenal. Browsing the
FEMLAB models and the Model Library documentation of them is an excellent way of generating
modeling ideas. The Model Library is organized by subject matter. Here, the turbulent static mixer
model is highlighted, under the tree structure with branch Chemical Engineering Module and sub-
branch Momentum Transport. The k-e model for turbulence is the simplest model of turbulence and
the workhorse of most commercial CFD packages [2].

Why should I use FEMLAB for modelling?

1.
2 .

3.

4.

5.

6.

FEMLAB has an integrated modelling environment.
FEMLAB takes a semi-analytic approach: You specify equations, FEMLAB
symbolically assembles FEM matrices and organizes the bookkeeping.
FEMLAB is built on top of MATLAB, so user defined programming for the
modelling, organizing the computation, or the post-processing has full
functionality.
FEMLAB provides pre-built templates as Application Modes (see Figure
0.1) and in the Model Library for common modelling applications.
FEMLAB provides multiphysics modelling - linking well known
“application modes” transparently.
FEMLAB innovated extended multiphysics - coupling between logically
distinct domains and models that permits simultaneous solution. Examples:
networks with different models for links and nodes, dispersed phases,
multiple scales.

Introduction to FEMLAB 5

Figure 0.3 FEMLAB’s postprocessing screen. Here the solution for the last executed run of the
turbulent static mixer model is shown. FEMLAB’s GUI provides pull down menus and toolbars to
initiate all building blocks of model construction -- specifying analyzed geometries, meshing,
specifying PDE equations and boundary conditions, analyzing and post processing the solutions
found. Note that the status bar at the bottom shows the position of the cursor on the visualization
window. The information window just above it echoes messages to the screen from the
FEMLABMATLAB commands executed in FEMLAB’s MATLAB workspace. The “Loading data
from static-mixer.mat” message was the response to our request to load the model library entry for
the turbulent static mixer.

As we will learn in Chapters Four and Seven, extended multiphysics is very
similar to the linkages provided by process simulation tools common for
integrated flowsheets of process plant such as HYSYS and Aspen, or which can
be developed in MATLAB’s Simulink environment. FEMLAB fully couples this
functionality to a PDE engine that rivals CFD packages such as FLUENT and
CFX or other commercial PDE engines such as ANSYS, but with competitive
advantages listed above.

Modelling. strategies in FEMLAB

This book is about how I think about modelling and simulation. Perhaps my
thoughts will serve as a guide to help you with the modelling problem that drew
you to FEMLAB. After posing myself the modelling problems in this book, I
came up with a short list of guidelines for how to approach modelling with
FEMLAB:

6 Process Modelling and Simulation with Finite Element Methods

Figure 0.4 The Options Menu permits definition of many useful feature: constants, grids for drawing
and visualization, and expressions used in entering the model equations are the most common uses.

1. Don’t re-invent the wheel. Read the Model Library and User’s Guideweb
pages.

2. Formulate a mathematical model. Compare with pre-built application modes.
3. Can it all be done in the FEMLAB GUI, or is the PDE engine only a

subroutine?

FEMLAB as an integrated modelling environment

FEMLAB can be viewed two ways -

1. As an interactive, integrated GUI for setting up, solving, and post-processing
a mathematical model - a PACKAGE.

2. As a set of MATLAB subroutines for setting up, solving, and post-processing
a mathematical model - a PROGRAMMING LANGUAGE.

This book intends to show how to implement models built both ways in an
efficient way. The FEMLAB GUI is so straightforward in setting up problems
and trying “what if” scenarios that it must be the first port of call in “having a
go.” The great utility of a PACKAGE is that the barriers to entry are small, so
the pay off is worth the investment of learning all the features of the tool.

Introduction to FEMLAB

Figure 0.5 FEMLAB constants (rhof =1 and nuf=le-5) defined for the turbulent static mixer model.

J
Pre-built application modes provide templates for common calculations.
The Model Library provides Case Studies.
A model can be set up by systematically traducing the Menu bar from left to
right.
- The Model Navigator (Figure 0.1) accesses previously built application

modes or existing models are loaded from the File Menu.
- The Options menu (see Figure 0.4) provides definition space for constants

(see Figure O S) , variables, and expressions used in either setup, solution,
or post-processing phases.

- The Draw Menu (Figure 0.6) allows domain specifications in Draw
Mode (Figure 0.7).

- The Point Mode (Figure 0.8) provides entry for point constraints under
Point Settings (Figure 0.9) dialogue box.

- The Boundary Mode (Figure 0.10) provides entry for boundary
constraints through the Boundary Settings (Figure 0.11) dialogue box.

- The Subdomain Mode (Figure 0.12) permits PDE specifications (Figure
0.13) in the Subdomain Settings.

- The Mesh Mode (Figure 0.14) shows the mesh and specifies it, which is
generated by an elliptic mesh generator subject to constraints specified in
the Mesh Parameters dialogue box. The Remesh button generates the
mesh, or the triangle button on the Toolbar.

- The Solve Menu specifies the type and parameters to be used in the
solution scheme. The solution procedure is initiated by the Solve Button
on the Solver Parameters dialogue box or the = button on the Toolbar.
The solution is shown on the GUI main window with parameters defined
in Post Mode. See Figure 0.3 again.

- The Post Mode provides various graphical and computational processing.

7

8 Process Modelling and Simulation with Finite Element Methods

- The Multiphysics Menu allows switching between “active” modes for the
specifications menus and permits additions and deletions of “application
modes”

The GUI makes the stages of computational modelling accessible in a much
shorter time than traditional methods. Furthermore, the level of complexity in
modelling is greater than any other PACKAGE. This has its advantages, as well
as its own drawbacks.

FEMLAB as a programming language

I have learned a seemingly ceaseless stream of programming languages -
BASIC, Assembler (asm for 8088 & Cray Assembly Language), FORTRAN,
PASCAL, LISP, APL, C, Mathernatica, C++, MATLAB.

Programming is hard. The languages are full of commands and syntax with
intricate details that need to be mastered before complicated problems can be
tackled.

Figure 0.6 Draw Mode is selected from the Draw Menu.

Introduction to FEMLAB 9

Figure 0.7 The single composite analyzed geometry (CO1) of the static mixer model. This geometry
was drawn by geometry primitive commands (rectangles and arcs) and then merged together to form
one contiguous domain.

Engineers usually put problem solving first, and skills and techniques are
acquired as necessary to solve problems. Programming strategies should reflect
this. My FORTRAN programming strategy is simple - I find the “off-the-shelf”
subprograms that do the integral steps of what I want to achieve, and then build a
program “shell” around it to read in parameters, set up storage, call the essential
subprograms, and then “post process” (also often with canned routines) and then
write out the data to files.

I treat FEMLABMATLAB programming the same.

The key is to get the FEMLAB GUI to do the work for you.
The File Menu has the “Save Model m-file” and “Reset Mode m-file”
options for you.
Set up the “workhorse” of your model in the GUI, and then export the
model m-file, which provides most of the “program body” needed to
use FEMLAB as a programming language in MATLAB, thus providing
all the subroutines and command syntax and logical structure, without
the User needing to know the details.
MATLAB m-files/ m-file functions can then be set up to provide data
entry, storage set up, post-processing, and output. Complicated
programmes can be built up modularly without the user specifying, or
even knowing all the details. MATLAB programming expertise is
needed, but crucially NOT FEMLAB programming expertise.

10 Process Modelling and Simulation with Finite Element Methods

Figure 0.8 Point mode shows all the points (vertices and specifically identified points) distinguished
in the geometry model by circles. The red circle is selected here.

The book provides a wealth of examples of “user defined programming” with
MATLAB m-file scripts and m-file functions calling FEMLAB subprograms. In
every case, however, I adapted models developed in the FEMLAB GUI and read
out as model m-files. I have yet to write a MATLAB program around FEMLAB
commands/functions “from scratch.” The FEMLAB Reference Manual provides
a complete description of all the commands, so 1 have tried to get functionality
out of the MATLAB programming that is not achievable through the GUI alone.
Perhaps this is a good juncture to point out that each FEMLAB GUI session has
its own MATLAB workspace, separate from the one that launched it. So it is
perfectly legitimate to write your own MATLAB m-file script and read it into the
FEMLAB GUI. The MATLAB workspace will execute all the MATLAB
commands, even those that are not possible to do through the GUI alone, and the
GUI responds by showing the intermediate steps - drawing the geometry,
meshing, solving, and postprocessing. If you are writing your own user-defined
m-file script for FEMLABNATLAB, playing it back in the GUI shows you how
far it gets before the program bugs (well, maybe you don’t put them in your
codes, but mine are usually infested to start) crash it. In this respect, MATLAB
is a “macro” language for FEMLAB.

Introductiort to FEMLAB 11

Figure 0.9 Point settings dialogue box. Here point 13 which is highlighted corresponds to the red
circled vertex in Figure 0.8. The k-& model has an extra point-wise viscosity associated with
vertices as point coefficients in the FEM weak formulation. This page provides data entry.

Summary

FEMLAB has a powerful GUI that provides easy entry to try out “what if’
scenarios and explore modelling methods/types without the investment of
“programming time.”
FEMLAB has unique modelling advantages in “multiphysics” and “extended
multiphysics” which may make FEMLAB the only viable modelling tool for
certain applications.
FEMLAB provides a method of automatically creating MATLAB m-file source
code that reduces the programming effort for setting up more complicated
models. Exporting solutions to MATLAB also makes post solution analysis
more flexible.
FEMLABlMATLAB programming provides automation opportunities, including
running efficiently (least memory/processor overhead) as a background job.

0.2 An Example from the Model Library

Figures 0.1 - 0.14 run through the major data entry points for PDE models with
an example of the turbulent static mixer from the Model Library, constructed on
top of the k-E turbulence model application mode. The figure captions tell the
story, and the screen captures illustrate some of the key features of the FEMLAB
GUI. This is the only time that the book will show FEMLAB GUI screen
captures. From here on out, we will describe the information content for model
specification in terms of the data entry needed for the dialogue boxes used in
each model. This limitation to the printed word and graphical results of the
models is a consequence of a desire to discuss many models, rather than to view

12 Process Modelling and Simulation with Finite Element Methods

menus and dialogue boxes with their content, limiting the number of models that
can be effectively discussed.

0.2.1 k-E model of a turbulent static mixer

Figure 0.1 shows the Model Navigator, which permits selection among pre-
determined application modes, setting up user-specified “multiphysics”
combinations of application modes, access to the models listed here by the user,
and access to the Model Library, which houses many manyears of solved and
explored models contributed by the FEMLAB user community and by the
COMSOL development team. In this subsection, we will walk through the
“turbulent static mixer,” which is modelled as a complicated 2-D geometry with
the popular k-E model of turbulence [2]. This model can be found by selecting
the Model Library tab in Figure 0.1, which brings up the Model Library dialogue
page, whose menu tree is traversed in Figure 0.2. We arrive at the turbulent
static mixer model with illustration and short blurb description. Selecting the
OK button brings up the FEMLAB GUI with the geometry, model equations and
boundary conditions completely specified. Figure 0.3 shows the postprocessing
screen that the model was stored with in the file “static-mixer.mat.” MAT files
are the binary format for efficient disk storage of MATLAB variables. Those
created by FEMLAB have the complete state of the FEMLAB environment
saved. The postprocessing screen shows a color density plot of surface velocity
of the last solution executed. Let’s find out what situation that was, in terms of
model equations and parameters.

The model is specified in a series of dialogue boxes. Traversing the pull
down menus from left to right will show the pertinent specifications. Now pull
down the Options menu, with the Add/Edit Constants choice highlighted as
shown. The Options menu allows specification of a local database of constants,
coupling variables, expressions, and differentiation rules, as well as specifying
the display scales. Here, we only need to view the constants. Figure 0.5 shows
the Add/Edit Constants dialogue box. We can see that rhof=l and n ~ f = 1 0 - ~ are
specified. Note that these are pure numbers, i.e. no units are specified. It is up
to the user to employ a consistent set of units for his models, or to specify the
model in dimensionless form with dimensionless control parameters. This is not
necessarily a trivial task.

The next pull down menu over is the Draw menu. Here we will only switch
to Draw mode, which then takes over the display. Figure 0.7 shows the grey
composite geometry CO1 that was constructed when the model was originally
created. Note that the Draw toolbar has replaced the postprocessing toolbar on
the left. We could use these tools to enter new geometric primitives. CO1 is a
simply connected single domain, but we are not limited to either a single domain
or to simply connected domains. FEMLAB accepts these graphic primitives,
along with Boolean set theory operators (union and intersection) to construct

Introduction to FEMLAB 13

analyzed geometries. Although the geometry specification can be done
graphically in Draw mode, it can also be done through MATLAB functions, a
power that is exploited in Chapter six on geometrical continuation.

Since we do not need to alter the geometry, we can move on to Point mode,
shown in Figure 0.8. Here all the vertices required in specifying the analyzed
geometry are shown as circles. You can add additional points within Point
mode that you might need either for specifying the FEM model or for
postprocessing. The FEM permits specification of a system of equations in weak
form, which for a PDE system is equivalent to a conservation law in integral
form. Weak terms that have no PDE equivalent may be added, like point
sources and constraints. It may only be that postprocessing information is
required at a particular point, so entering the point in Point mode will permit
selection of a mesh to find the required solution more accurately.

Figure 0.9 shows the Point Settings dialogue box. The k-& model uses
pointwise contributions to the viscosity coefficient in weak form. These are all
set at the vertices. Shown in Figure 0.9 is the contribution on vertex 13 (red
circle in Draw mode). The upper left comer shows the specific expression
"hard-wired" into the k-E turbulence application mode for point viscosity
contributions to the weak form. Here there are two coefficients that can be
entered, qp and z1 and they have been preset to typical model values to the k-E
model.

Figure 0.10 moves us along to the Boundary mode, selected from the
Boundary pull down menu as shown. All boundary segments are shown in the
display, as well as the boundary sense. The boundary sense is the direction of
increasing arc length of that particular boundary segment. FEMLAB does not
try to coordinate boundary sense in adjacent boundary segments, as is clear from
several reversals seen in the display here. If the user wants to specify a boundary
condition that varies along a boundary, it can be done either with the
independent variables defined when the model was created by the Model
Navigator, say x and y for a typical 2-D geometry, or with the arc length s
defined locally along the boundary, with positive sense matching the arrow
shown here.

Figure 0.11 shows the Boundary Settings dialogue box. This application
mode permits setting conditions on the mean field and/or on the turbulence
quantities k (turbulent kinetic energy) or E (dissiplation rate). Since boundary 1
is an inflow boundary (or outflow, with opposite signs), the u,v,k, and E terms
are all specified, but not independently. Again, the upper left corner shows the
equation being satisfied on boundary 1.

Figure 0.12 shows us how to select Subdomain mode. Here there is exactly
one subdomain (highlighted in the display). Subdomain mode is where the PDE
system is usually specified. For simple PDEs, it is the equation(s) that is
specified in subdomain mode. In pre-built application modes, however, the form

14 Process Modelling and Simulation with Finite Element Methods

of the equations is “hard-wired” in, and only the coefficients are specified in
subdomain mode.

Figure 0.13 shows the Subdomain Settings dialogue box for domain 1.
The upper left comer shows the equation(s) that are hard-wired into this
application mode. The entry boxes are for the coefficients in the equations,
which can be specified as constants, expressions involving other dependent or
independent variables, or even MATLAB m-file functions. The generality of
“user defined programming” for just coefficients in pre-built application modes
is impressive.

Figure 0.14 shows the Mesh mode with the mesh set up for the saved
solution here. Mesh mode, Solve mode, and Post mode are the places where
the solution methodology are specified. But up to this point, we have specified a
complete FEM model analytically. Mesh, Solve, and Post modes are about
numerics, and to demonstrate these well takes a whole chapter, and is done
simply in Chapter one.

Just hitting the Solve button (=) on the toolbar, however, gives us the
solution with this mesh and the default numerical solution settings. Post mode
(Figure 0.3) shows the color density plot of the surface velocity U for the
conditions specified.

I doubt we are any the wiser about turbulence from this tour, but we now
know the steps necessary to specify a model analytically. In subsequent
chapters, these steps are referred to, and they are equivalent to specifying a PDE
or FEM model completely. The k-E model and geometry specified here are both
advanced models. Invariably, novice users wish to jump in at the deep end with
the greatest model complexity all at once. In this book, we do precisely the
opposite. The reductionist approach is adopted in Chapter one and two with
surgical precision, where we introduce the basics with even simpler steps than
envisaged by the creators of FEMLAB. Why? Because you do need to crawl
before you can run, even if in other circumstances you are already a sprinter.
The difficulty with complex computer packages is uncertainty on the part of the
user about what the package does. So to remove the mystery, we start simple
and build up capability with exact certainty about what we are asking FEMLAB
to do.

0.2.2 Why the tour of k-E model of a turbulent static mixer?

Clearly, since we learned rather little about turbulence from this tour of the
turbulent static mixer entry in the Model Library, there is a different reason for
the tour itself. The rationale for showing these features of FEMLAB is to give
the non-FEMLAB initiated reader some flavor of how the FEMLAB GUI is laid
out and how the data entry is organized. The actual intellectual content of
models can be explained without the reader knowing the layout, but the reading
experience would be more theoretically useful than practical. For this reason, if

Introduction to F E M U B 15

you are not already a FEMLAB user, I would recommend requesting a
demonstration license for both FEMLAB and MATLAB. Mathworks [3] and
COMSOL [4] will provide one month trial licenses for both products free of
charge, with the software downloadable or available from CD-ROM shipped to
you by request. The Users’ Guide for FEMLAB is very good, and you might
want to read it after this Introduction and before Chapter One. I read all the
documentation that comes with FEMLAB cover to cover before designing and
delivering my first intensive module on chenlical engineering modeling with
FEMLAB [5] and highly recommend it. Nevertheless, I felt there was something
missing in the FEMLAB references, even though the Model Library and
Chemical Engineering Module references have a wealth of fascinating case
studies. I think it is the perspective of an expert user that is missing, but forgive
my hubris in thinking it is my perspective!

By now, you must be thinking that this book is a thinly veiled sales pitch for
FEMLABMATLAB. I would be dishonest if I did not make my preference for
modeling with FEMLABNATLAB clear at the outset of this book. There are
many packages for modeling available on the market, but FEMLAB is the first I
have seen for general purpose modeling that is equation based in generating the
PDE engine. Equations are the language of mathematical modeling and
mathematical physics, and FEMLAB aims to speak the language of its target
user community. So this book represents my personal odyssey in learning how
to adapt FEMLAB to modeling of chemical engineering processes, especially
but not exclusively PDE based. In the next section, I give a synopsis of the
themes treated in each chapter. As an experienced programmer with nearly two
decades of computational modeling and FEM experience, I could not have
achieved these results in the six months spent writing this book by any other
package in my arsenal, nor even by adapting research codes written by myself
and other expert numerical analysts with which I am proficient. This is also the
last endorsement for FEMLAB you will read in a book which only rarely makes
use of other tools. Some readers might notice Mathematica, MATLAB and
gnuplot graphics.

On the negative side, FEMLAB users are wont to complain that many
interesting post-processing manipulations require MATLAB programming and
exporting of results to the MATLAB workspace, the FEMLAB graphics are
“quaint” and the FEMLAB error messages are obtuse and cryptic. Ferreting out
errors in syntax is more difficult than with CFORTRAN compilers, although
MATLAB m-file scripts are generally more informative when they crash about
the nature of the problem than the same m-file run in the GUI. In part this comes
from the ability to interrogate the variables in the MATLAB workspace much as
one uses a debugger to tease out post-crash information from C. Perhaps a
future advance in FEMLAB will include access to the FEMLAB workspace.
Modelling or conceptual errors, however, are notoriously difficult to identify.

16 Process Modelling and Simulation with Finite Element Methods

We can lay those at the user’s door morally, but since FEMLAB is not “idiot-
proof ’, we are free to specify “badly conditioned or inconsistent” models.
(Politely, wrong.) FEMLAB may never generate an error message at all. With
just about every novice user who has sought my advice, I have shown them
where they have specified an inconsistent boundary condition like 0=1 in
General PDE mode. Yet, in many cases, FEMLAB generates output that is not
superficially wrong, but certainly not satisfactory in the case of modeling,
conceptual, or syntactical errors. At this point, the “tough love” approach is all
that can be advised - there is no substitute for experience. This book
encapsulates many of my experiences. I haven’t tried to sugar-coat my chapters
so that all models are magically perfect. Think of this as a cookbook that shows
both good recipes and bad ones, but each labeled and the latter coming with a
health warning. For instance, in Chapter Seven, I tried four attempts at modeling
the population balance equations before the last came good. So you will learn
from my mistakes that I own up to as well as from my triumphs. For better or
worse, every modeling attempt I made during the six months of writing this book
has been included. I will pat myself on the back for persistence, because in the
end they all worked, but at many points I had my doubts and frustrations. I am
pleased not to have cherry picked the models. Of course I have not shown every
single computation nor “what if’ line that I pursued in each model.

0.3 Chapter Synopsis

Chapter One treats the basics of numerical analysis with FEMLAB. No doubt
many of the example models are artificial in that if you were handed the
modeling problems in Chapter One, FEMLAB would not be the obvious choice
of computational platform. The topics of root finding, numerical integration by
marching, numerical integration of ordinary differential equations, and linear
system analysis are universal to numerical analysis. They form the basis of my
previous lecture courses in FORTRAN programming and chemical engineering
problem solving with Mathernatica. For pedagological purposes, Chapter One
provides a firm basis for understanding what FEMLAB does. The common
applications in chemical engineering that are treated as examples, flash
distillation, tubular reactor design, diffusive-reactive systems, and heat
conduction in solids, are understandable to the non-chemical engineer as well.
Perhaps the single most important modeling feature introduced here, however, is
the use of a conceptual 0-dimensional model. Consisting of a single element, the
0-D construct introduces a variable which is a scalar for which an ODE in time
or an algebraic equation can be specified. This construct is important for
describing equations or systems of equations that are mixed (partia1)differential-
algebraic, and is utilized with the extended multiphysics feature of FEMLAB in
the more complicated models presented later.

Introduction to FEMLAB 17

r
Figure 0.10 Boundary mode clarifies the boundary identifications and permits boundary data entry
for the E M model.

Chapter Two might be thought the normal point of departure for a textbook on
finite element methods (FEM). In my opinion, FEMLAB is not so much a tool
about FEM, but a modeling tool that happens to use FEM in its automated
methodology. The key actions of FEMLAB that reduce the drudgery of
modeling are (1) the translation of systems of equations in symbolic form to an
algorithm that can be computed numerically, (2) the provision of a wide array of
numerical solver, analysis, and post-processing tools at either the “touch of a
button” or (3) through a powerful “scripting language” can be programmed in
MATLAB as subroutines (function calls) and automated. So much of modeling
of partial differential equations in the past has been devoted to the computer
implementation of algorithms that the modeler did not get the chance to properly
consider modeling alternatives. Who would consider a different modeling
scheme if it meant spending three graduate student years building the tools
before the scheme could be tested? FEMLAB is a paradigm shift for modelers -
it frees them to ask those “what i f ’ questions without the price of coding a new
computer program. Nonetheless, FEMLAB uses FEM as the powerhouse of its
PDE engine. Chapter Two gives an overview of how FEM is implemented in
FEMLAB. For experienced FEM users, the takeaway message is that FEMLAB
translates PDEs specified symbolically into the assembly of the FEM augmented

18 Process Modelling and Simulation with Finite Element Methods

Figure 0.1 1 Boundary settings permit entry of boundary data for each boundary with a range of pre-
built boundary conditions for the application mode. Here, not only is the inflow mean u,v-velocity
specified for boundary 1, but the turbulence intensity k and energy dissipation rate E as well.

stiffness matrix - the Jacobian, the load vector, and auxiliary equations for
Lagrange multipliers representing boundary conditions and auxiliary conditions.
Chapter Two illustrates these points about partial differential equations and the
finite element method thorough treatment of canonical types of linear, second
order PDEs: elliptic, parabolic, and hyperbolic and gives an overview of FEM,
with particular emphasis on the treatment of boundary and auxiliary conditions
by the method of Lagrange multipliers.

What is it? How does
FEMLAB do it so well? There are applications: thermoconvection, non-
isothermal chemical reactors, heterogeneous reaction in a porous pellet.
Furthermore, the workhorse methodology for nonlinear solving, parametric
continuation, is explained. I won’t steal the thunder of Chapter Three here by
explaining multiphysics modeling in detail. Suffice to say that multiphysics
modeling means the ability to treat many PDE equations simultaneously, and the
provision of pre- built PDE equations that can be mixed and matched in the
specification of a model so that the symbolic translation to a FEM assembly is
transparent to the user.

Chapter Four is about extended multiphysics: the central role of coupling
variables and the use of Lagrange multipliers. Example applications are: a
heterogeneous reactor; reactor-separator-recycle; buffer tank modelling; and an
immobilized cell bioreactor model.

Chapter Three is about multiphysics modeling.

Introduction to FEMLAB 19

Figure 0.12 In the turbulent static mixer model, there is only one subdomain, exactly equivalent to
the single composite geometry object specified in draw mode.

Chapter five starts the advanced concepts in modeling - nonlinear dynamics
and simulation. Chapter six deals with geometric continuation, and Chapter
seven treats integral equations and inverse problems. All three chapters are
largely drawn from my own research portfolio, but there are also newly
developed treatments or extended studies from previous works. Rather than
systematically exploring the features of FEMLAB as in chapters 1-4, chapters 5-
7 pose the question “Can FEMLAB be bent to solve the problems that interest
me in stability theory (five), complex geometries and modulating domains (six)
or inverse problems (seven), where I know the questions and desired forms of
the answers, but can FEMLAB provide the solution tools? These chapters will
have their own audiences for the direct questions they treat, but should provide
many users with fertile proving grounds and a basketful of “tricks of the trade.”
Getting information into and out of the FEMLAB GUI is one of the weaknesses
of the package. Many of my tricks are how to use the MATLAB interfaces to do
intricate I/O.

Chapters eight through ten are purely about applications and are only CO-
authored by me. To a large degree, chapters 5-7 are about my applications and
their generalizations, used to demonstrate FEMLAB functionality. Chatpers 8-
10 are the applications of colleagues for which we thought FEMLAB and the
concepts of chapters 1-4 should be exploitable. My co-authors of these chapters
have other agendas and that is evident in the narrative voice adopted in these
chapters.

20 Process Modelling and Simulation with Finite Element Methods

Figure 0.13 The subdomain settings dialogue box permits data entry for the PDE coefficients
defined in the equation line above the select tabs. Here the coefficient tab is selected for domain 1,
the same domain as shown in Figure 0.12. The constants rhof and nuf defined in the AddEdit
Constants dialogue box under the Options Menu are entered here, as are formula for the artificial
diffusion and streamline diffusion coefficients. Note that the production term P is not specifically
defined, so reference needs to be made to the documentation.

Chapter eight is about the level set method for modeling two phase flows that
are dominated by interfacial dynamics and transport. The subject matter was
mastered and modelled in record time for one of my doctoral students. The
simulations are a reflection of the need for researchers to be able to run
numerical experiments in complex systems dynamics to augment understanding
of laboratory experiments. Such “in silico” experiments are more flexible than
laboratory experiments, provide a much greater wealth of detailed knowledge,
but at the expense of modeling errors of all varieties.

Chapter nine focuses on electrokinetic flow modeling in microfluidic
applications. A substantial fraction of FEMLAB users are numbered in the
microfluidics community, especially with biotech end-uses. Rather early on, we
targeted FEMLAB as a potentially useful modeling tool for microfluidic reactor
networks for the “chemical-factory-on-a-chip” community. The extended
multiphysics capabilities of FEMLAB for designing such factories are an
explosive growth area which should benefit the community. Microfluidics 2003
[6] was sponsored by COMSOL for just this reason.

Introduction to FEMLAB 21

Figure 0.14 Mesh mode shows the existing mesh and permits specification of mesh parameters for
the elliptic mesh generator routine.

The appendix, a MATLABBEMLAB primer for vector calculus, is a
compromise between the recurrent suggestion of students taking the module for
more MATLAB instruction and my desire for the students to grasp vector
calculus more intuitively. I am actually a late convert to MATLAB, with
apologies to Cleve Moler, its creator. I was one of the graduate students gifted
with the beta test edition of MATLAB 1.0 while he was developing it. At the
time, computational power was expensive and there was a bias against
interpreted environments for scientific computing. To programmers, the same
matrix utilities were available as library subroutines, and the final product, a
compiled executable, was more efficient. MATLAB has come a long way since
version l.Obeta, and the number of man years and breadth of applications in the
toolboxes, as well as judicious use of compilation within the environment,
simply invalidates my early prejudices. I cannot access programming libraries
with anywhere near the functionality of the MATLAB toolboxes. The GUIs for
the toolboxes make manmonths of programming effort evaporate at the touch of
a button (OK, the click of a mouse). And if speed is still an issue, the MATLAB
C compiler is available. Or just my favorite trick of running MATLAB as a
background job (no GUIs to clutter the memory) is usually sufficient for big
jobs. So to get the most functionality out of FEMLAB, MATLAB programming
ability is valuable. But anything other than a primer is outside the scope of this
book. I presume a modest MATLAB familiarity of the reader which is readily

22 Process Modelling and Simulation with Finite Element Methods

achieved from over-the-counter books. So to add more MATLAB support, I
decided to write a short primer about vector calculus representations and
computations in MATLABFEMLAB for the appendix. This project could
easily get out of hand, so I apologize for abridging it for convenience.
MATLAB was never intended for vector calculus directly, but it is fundamental
to PDEs and therefore to FEMLAB.

Enjoy the journey through this book. As it is an odyssey, the destination is
not the focus. Certainly the reader, however, has a concrete objective in
modeling for wanting to use FEMLAB. Perhaps somewhere in this odyssey you
will find tools to bring to bear on your problem and will find useful in reaching
your objective.

References

[I] SV Patankar, Numerical heat transfer and fluid flow. Hemisphere Publishing
corporation, New York, 1980.

[2] SB Pope, Turbulent Flows, Cambridge University Press, 2000.
[3] MATLAB demonstration version can be found at http://www.mathworks.com
[4] FEMLAB demonstration CD-ROM can be requested at http://www.comsol.com
[5] WBJ Zimmerman, http://eyrie.shef.ac.uWfemlab
[6] WB J Zimmerman, http://eyrie.shef.ac.uWfluidics

Chapter 1

FEMLAB AND THE BASICS OF NUMERICAL ANALYSIS

W.B.J. ZIMMEFWAN
Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Shefield SI 3JD United Kingdom

E-mail: w.zimrnerman @shejkc. uk

In this chapter, several key elements of numerical analysis are profiled in FEMLAB with
0-D and 1-D models. These elements are root finding, numerical integration by
marching, numerical integration of ordinary differential equations, and linear system
analysis. These methods underly nearly all problem solving techniques by numerical
analysis for chemical engineering applications. The use of these methods in FEMLAB is
illustrated with reference to some common applications in chemical engineering: flash
distillation, tubular reactor design, diffusive-reactive systems, and heat conduction in
solids.

1.1 Introduction

This chapter is rather busy, as it must accomplish several different goals.
Primarily, it is intended to introduce key features of how FEMLAB works.
Secondarily, it is to illustrate how these key features can be used to analyse
simple enough chemical engineering problems that 0-D and I-D spatial or
spatial-temporal systems can describe them. The chapter is also intended to
whet your interest to investigate modeling and simulation with FEMLAB by
presenting at least a glimpse of the power of the FEMLAB and MATLAB tools
when applied to chemical engineering analysis.

Because FEMLAB is not intended to be a general tool for problem solving,
some of these goals are achieved in a roundabout fashion. The author has
previously taught courses in chemical engineering problem solving by numerical
analysis using FORTRAN, MuthematicaTM, and MATLABTM, and used all the
examples implemented here with those tools. Furthermore, the most extensive
compilations of chemical engineering problem solving by numerical analysis
have been done in POLYMATH [l], which only seems to be used by the
chemical engineering community through the CACHE program.

The upshot is that for the examples in this chapter, FEMLAB is probably
not the package of first choice for the analysis. From the author’s experience
either MATLAB or Mathematica is preferable, with less overhead in setting up
the calculations. Nevertheless, even though FEMLAB was not necessarily
envisaged to solve such problems, that its numerical analysis tools are general

23

24 Process Modelling and Simulation with Finite Element Methods

enough to do so is important information that will benefit the reader in later
chapters, where very clearly FEMLAB is the first choice package for the analysis
- 2-D and 3-D spatial-temporal systems with multiphysics.

1.2 Method 1: Root Finding

Typically, courses in numerical analysis go into great detail in the description of
the algorithm classes used for root finding, From experience, there are only two
algorithms that are really useful - the bisection method and Newton’s method.
Instead of presenting all the methods, here we will consider why root finding is
one of the most useful numerical analysis tools. Finding roots in linear systems
is fairly easy. Nonlinear systems are the challenge, and nearly all interesting
dynamics stem from nonlinear systems. The interest in root finding in nonlinear
systems results from its utility in describing inverse functions. Why? Because
with most nonlinear functions, the “forward direction”, y=f(u), is well described,
but the inverse function of u=f ‘ (y) may be analytically indescribable, multi-
valued (non-unique), or even non-existent. But if it exists, then the numerical
description of an inverse function is identical to a root finding problem - find u
such that F(u)=O is equivalent to F(u)=f(u)-y=O. Since the goal of most analysis
is to find a solution of a set of constraints on a system, this is equivalent to
inverting the set of constraints. FEMLAB has a core function for solving
nonlinear systems, femnlin, and in this section its use to solve 0-D root finding
problems will be illustrated.

femnlin uses Newton’s method which with only one variable u uses the first
derivative F’(u) which is used iteratively to drive toward the root. The method
takes a local estimate of the slope of the function and projects to the root. The
slope can be computed either analytically (Newton-Raphson Method) or
numerically (the secant method). If the slope can be computed either way, you
can use Taylor’s theorem to project to the root. The basic idea is to use a Taylor
expansion about the current guess UO:

f (u) = f (uo) + (. - uo) f ” uo) + * . *

which can be re-arranged to estimate the root as

This methodology is readily extendable to a multiple dimension solution space,
i.e. u is a vector of unknowns, and division byf(u0) represents multiplication by
the inverse of the Jacobian off . The next subsection illustrates root finding in
FEMLAB .

FEMLAB and the Basics ofNumerica1 Analysis 25

1.2.1 Root finding: A simple application of the FEMLAB nonlinear solver

As implied in the previous section, root finding is a “O-D” activity, at least in
ternis of the spatial-temporal dependence of the solution vector of unknowns, u,
which can be a multi-dimensional vector. FEMLAB does not have a “O-D”
application mode, so we must improvise in l-D. This has the undesirable feature
that we will unnecessarily solve the problem redundantly at several points in
space. Given the small size of the problem, the efficiency of FEMLAB coding,
and the speed of modem microprocessors, this causes no guilt whatsoever!

Start up MATLAB and type FEMLAB in the command window. After several
splash screens, you should be facing the Model Navigator window.

Select 1-D dimension

Element: Lagrange - linear
More >>
OK

Select PDE modes + Coefficient form

This application mode gives us one dependent variable u, but in a l-D space
with coordinate x. Now we are in a position to set up our domain. Pull down the
Draw menu and select Specify Geometry.

Draw Mode
Name: interval
Start: 0
stop: 1
Apply
OK

Now for the boundary conditions. Since we wish to emulate O-D (no spatial
variation) then Neumann boundary conditions (no slope at either boundary) are
appropriate. Pull down the Boundary menu and select Boundary Settings.

Boundary Mode J Boundary Settings

Select Neumann boundary conditions
Select domains 1 and 2 (hold down ctrl key)

. APPlY

Subdomain mode specifies the equation to be satisfied in each subdomain. Pull
down the Subdomain menu and select Subdomain settings. Notice the

Model Navigator

26 Process Modelling and Simulation with Finite Element Methods

equation in the upper left given in vector notation. In 1-D, this equation can be
simplified to

(1.3)

Clearly, a y and p are redundant with the simplification to 1-D. Since we want to
find roots in 0-D, however, all the coefficients on the LHS of (1.3) can be set to
zero. Let’s solve for the roots of the polynomial equation u3 + u2- 4u + 2 = 0.

Subdomain Mode I Subdomain Settings

Set c=O; a=4; f=uA3+uA2+2; d,=O

Select the init tab; set u(tO)=-2

Select domains 1

APPIY

By rearranging the polynomial, we can readily see that a=4 and f = u3 + u2 + 2 .
One last step - discretizing the domain with elements. Since we do not wish

to replicate our effort, we will mesh the interval with exactly one element, the
closest we can get to 0-D! Pull down the Mesh menu and select the Parameters
option.

Mesh Mode

Select Remesh
OK

Set Max element size, general = 1

The report window now declares “Initialized mesh consists of 2 nodes and 1
elements.”

Now to find the root nearest to the initial guess of -2. If you are wondering
why a=4 was set, rather than all of the dependence put into f, it is so that the
finite element discretization of the RHS of (1.3) does not result in a singular
stiffness matrix. Now pull down the Solve menu and select the Parameters
option. This pops up the Solver Parameters dialog window.

Solver Parameters
General tab: select stationary nonlinear
solver type.
Jacobian: select Numeric option
Solve
Cancel

FEMLAB and the Basics of Numerical Analysis 21

Note in proof I got into the habit of using the coefficient mode and numeric
Jacobian as it mirrors my style of FEM coding - the coefficient mode does not
include all the potential nonlinearity in the coefficients in assembling the
stiffness matrix, but by computing the Jacobian numerically, it is all included in
the iterative scheme. For small problems, you will see no performance
degradation. On larger problems, it is wiser to use the PDE general mode and
the exact Jacobian option, which assembles the full nonlinear contributions to the
Jacobian analytically. If I had to write this chapter again, all the coefficient
modes would disappear.

During the Solve step, the report window shows a runout of several columns
per iteration; particularly important is the error estimate ErrEst, which for
iteration 4 is about 10.’ which is smaller in magnitude than the default
tolerance set at in the Nonlinear tab of the Solver Parameters dialog
box. Click anywhere on the grid and the report window will “Value of u(u) at
0.456: -2.73205.” The analytically determined root nearest to this is -I-&,
showing the numerical solution in good agreement. According to the structure of
the quadratic formula of algebra, clearly another root is -I+&, and by
inspection, the third root is 1. Returning to the subdomain settings, set the initial
guess to u(tO)=-0.5 and FEMLAB converges to u=0.732051, again a good
approximation. u(tO)=l.2 as an initial guess converges to u=l.

This exercise clarifies two features of nonlinear solvers and problems - (i)
nonlinear problems can have multiple solutions; (ii) the initial guess is key to
convergence to a particular solution. With Newton’s method, it is usually the
case that convergence is to the nearest solution, but overshoots in highly
nonlinear problems may override this stereotype. These features persist in
higher dimensional solution spaces and with spatial-temporal dependence.

The MATLAB model m-file ro0tfinder.m contains all the MATLAB source
code with FEMLAB extensions to reproduce the current state of the FEMLAB
GUI. This file is available from the website http://eyrie.shef.ac.uk/femlab. Just
pull down the file menu, select Open model m-file, and use the Open file dialog
window to locate it. You can rapidly place your nonlinear function in the
Subdomain settings, specify an initial guess, and use the stationary nonlinear
solver to converge to a solution. But what if your function does not have a linear
component to put on the LHS of (1.3)? For instance, tanh(u) - u2 + 5 = 0
results in a singular stiffness matrix when FEMLAB assembles the LHS of (1.3).
The suggestion is to set the coefficient of the second derivative of u, c=l in the
Subdomain settings. Coupled with the Neumann boundary conditions, this
artificial diffusion cannot change the fact that the solution must be constant over
the single element, yet it prevents the stiffness matrix from becoming singular.

Root Finding in General Mode

The difficulty with a singular stiffness matrix assembly for tanh(u) - u2 + 5 = 0 can
be averted by using General Mode, which solves

28

Model Navigator
Options

Process Modelling and Simulation with Finite Element Methods

1-D geom., PDE modes, general form (nonlin stat)
Set Axes/Grid to [0,1]

au ar
a at ax d -+-=F

Draw
Boundary Model
Boundary Settings
Subdomain Model
Subdomain Settings

where T(u, ux) is in principle the same functionality as the coefficient form (1.3),
but is treated differently by the Solver routines. In Coefficient Mode, the
coefficients are treated as independent of u unless the numerical Jacobian is
used, which brings out some of the nonlinear dependency - iteration does the
rest. The exact Jacobian in General Mode differentiates both r and F with
respect to u symbolically in assembling the stiffness matrix. Typically, General
Mode requires fewer iterations for convergence than Coefficient Mode with the
numerical Jacobian. The use of the exact Jacobian below does not require any
special treatment to avoid a singular stiffness matrix in the treatment of the linear
terms as the coefficient mode did. In general, General Mode is more robust at
solving nonlinear problems than Coefficient Mode. It is my opinion that
Coefficient Mode is a ‘‘legacy’’ feature of FEMLAB - the PDE Toolbox of
MATLAB, in many ways a precursor to FEMLAB, uses coefficient
representations extensively. Further, the coefficient formulation with numerical
Jacobian is a long standing FEM methodology, so for benchmarking against
other codes, it is a useful formulation.

Here’s the recipe for General Mode - a minor modification of what we just
did.

Name: Interval; Start = 0; Stop =1
Set both endpoints (domains) to Neumann BCs

Set r = 0; da = 0; F = uA3+uA2-4*u+2

Mesh mode
Solve
Post Process

Set Max element size, general = 1; Remesh
Use default settings (nonlinear solver, exact Jacobian)
After five iterations, the solution is found. Click on the
graph to read out u=0.732051. Play with the initial
conditions to find the other two roots.

Although setting up this template (rtfindgen.m for root finiding of simple)
function of one variable was rather involved, and in face MATLAB haas a
simple procedure for root finding using the built-in function fzero and inline
declarations of functions, the FEMLAB GUI still provides many options and
flexibility to root finding that may not be available in other standard packages.
The next subsection applies our newly constructed nonlinear root finding scheme
to a common chemical engineering application, flash distillation, which clarifies
A FEW MORE FEATURES OF THE femlab gui.

FEMLAB and the Basics of Numerical Analysis 29

1.2.2 Root finding: Application to flash distillation

Chemical thermodynamics harbors many common applications of root finding,
since the constraints of chemical equilibrium and mass conservation are
frequently sufficient, along with constitutive models like equations of state, to
provide the same number of constraints as unknowns in the problem. In th s
subsection, we will take flash distillation as an example of simple root finding
for one degree of freedom of the system, which is conveniently taken as the
phase fraction $.

A liquid hydrocarbon mixture undergoes a flash to 3.4 bar and 65°C. The
composition of the liquid feed stream and the 'K' value of each component for
the flash condition are given in the table. We want to determine composition of
the vapour and liquid product streams in a flash distillation process and the
fraction of feed leaving the flash as liquid. Table 1.1 gives the initial
composition of the batch.

Table 1.1 Charge to the flash unit

Propane
&Butane Flash at 3.4 bar

and 65°C

Hexane 0.3151 0.28

A material balance for component i gives the relation

xi = (1 - $)Yi +$Xi
where Xi is the mole fraction in the feed (liquid), xi is the mole fraction in the
liquid product stream, yi is the mole fraction in the vapour product, and f is the
ratio of liquid product to feed molar flow rate. The definition of the equilibrium
coefficient is Ki=yi /xi . Using this to eliminate xi from the balance relation
results in a single equation between yi and Xi:

Since the yi must sum to 1, we have a nonlinear equation for $:

30 Process Modelling and Simulation with Finite Element Methods

where n is the number of components. This functionf($) can be solved for the
root(s) @, which allows back-substitution to find all the mole fractions in the
product stream. The Newton-Raphson method requires the derivative f(&) at
the current estimate to determine the improved estimate, and FEMLAB will
compute this analytically as an option. It is fairly straightforward to arrive at the
Newton-Raphson iterate as

Now onto the FEMLAB solution for root finding. As an exercise, we will set up
the solution using the general PDE mode. We could just load ro0tfinder.m or
rtfindgen.m and customize it, but of course becoming familiar with FEMLAB’s
features is an important goal.

Start up FEMLAB and await the Model Navigator window. If you already
have a FEMLAB session started, save your workspace as a model MAT-file or
the commands as a model m-file, and the pull down the file menu and select
New.

Model Navigator
0 Select 1-D dimension

Element: Lagrange - linear
0 More >>
0 OK

Select PDE modes + General

This application mode gives us one dependent variable u and one space
coordinate x. Next, set up the domain. Pull down the Draw menu and select
Specify Geometry.

Draw Mode
Name: interval
Start: 0

Apply/OK
stop: 1

Now for something new. We must enter our data. Pull down the options menu
and select Add/Edit constants. The AddEdit constants dialog box appears.
Now enter our fourteen pieces of data:

FEMLAB and the Basics of Numerical Analysis 31

Add/Edit Constants
Name of constant: X1
Expression: 0.0079

Name of constant: K1
Expression: 16.2

OK

Apply

Continue with the rest of Table 1.1

Now onto the Neumann boundary conditions. Pull down the Boundary menu
and select Boundary Settings.

Boundary Mode
Select domains 1 and 2 (hold down ctrl key)
Select Neumann boundary conditions

Next Subdomain mode. Pull down the Subdomain menu and select
Subdomain mode. Before setting the equations, it is useful to define some
intermediate variables to make the data entry more concise. Pull down the
options menu and select Add/Edit expressions. By experience, you should be
in Subdomain mode to add expressions for the first time.

Add/Edit Expressions

0

Variable name: t 1
Variable type: subdomain
Add
Repeat to create t2 through t7
Now select variable t l and click on the
definition tab.
Select level: subdomain 1
Enter expression: -Xl/(l-u*(l- l /Kl))

Now select the variables tab, select t2, and
then click on the definition tab, and enter the
similar expression for t l , substitute index 2
where appropriate.
Continue with indices 3 through 7
OK

APPlY

32 Process Modelling and Simulation with Finite Element Methods

Now pull down the Subdomain menu and select Subdomain settings. Default
values of d,=l, T=-ux, and F=l are specified in the data entry locations.
Because we select Neumann BCs for spatial dependency, we can take the default
setting for T=-ux without contradiction. As you will see, the solution is
“spatially flat” - pseudo-OD.

Subdomain Mode I Settings
0 Select domains 1
0 Set F=l+tl+t2+t3+t4+t5+t6+t7; d,=O

Select the init tab; set u(t0)=0.5
Apply/OK

Apply

Pull down the Mesh menu and select the Parameters option to set up our single
element.

Mesh Mode

Select Remesh
0 OK

Set Max element size, general = 1

The report window now declares “Initialized mesh consists of 2 nodes and 1
elements.”

Now pull down the Solve menu and select the Parameters option. This pops
up the Solver Parameters dialog window.

Solver Parameters
General tab: select stationary nonlinear
solver type.
Jacobian: retain default Exact option
Solve

After three iterations, we find that $=0.458509 solves for the phase fraction at
equilibrium. For your own information, resolve with the initial guesses $=O and
@=1. How many roots would you expect to this function? If you wish to avoid
all of the data entry, then you could just load the MATLAB model m-file flash.m
that came with the distribution.

FEMLAB and the Basics of Numerical Analysis

Find the root of the equation
f(u) = ueu - 1 = 0. This function is
transcendental, which means that it
has no analytic solution in the
rational numbers. If you use
Coefficient Mode, put c=l to aid

6

5~

4~

3~

2~

li

33

Exercises:

1.1

1.2

1.3

3 2 5 1
2 2

Find the roots of the equation f (u) = u -3u +-u--=o. As this

function is a cubic polynomial, there is an analytic solution in the irrational

numbers, u = l , u=l- - , u=l+- . 1 1

Jz Jz
Method 2: Numerical Integration by Marching

Numerical integration is the mainstay of numerical analysis. The first duty of
scientific computing before there were digital computers were to fill the
handbooks with tables of special functions, nearly all of which were solutions to
special classes of ordinary differential equations. And the computational
methodology? One-dimensional numerical integration.

There are two classes of I-D integration: initial value problems (IVP) and
boundary value problems (BVP). The latter will be considered in the next
section. The easiest to integrate are IVPs, as if all the initial conditions are all
specified at a point, it is straightforward to step along by small increments
according to the local first derivative. Clearly, if the ODE is first order, i.e.

dY -=f (t) ,
dt

(1.9)

The second statement in (1.9) is true exactly in the limit of At + 0. It is
termed the Euler method and is the most straight-forward way of integrating a
first order ODE. In one dimension, you simply step forward according to the
local value of the derivative off at the point (xn,yn), where n refers to the n-th
discretization step of the interval upon which you are integrating. Thus,

(1.10)
xn+l = x, + h

covergence

34 Process Modelling and Simulation with Finite Element Methods

This assumes that the derivative does not change over the step of size h, which is
only actually true for a linear function. For any function with curvature, this is a
lousy assumption. Consider, for instance, how far wrong we go with a large step
size in Figure 1.2. So clearly, one important point in improving on Euler’s
Method is to be able to use big steps, since it requires small steps for good
accuracy. Euler’s method is called “first order” accurate, as the error only
decreases as the first power of h.

I

4 1 - 2 I 2 4

Figure 1.2 Curvature effects are lost in the Euler method.

Runge-Kutta methods

So if we want to use big step sizes, we need a “higher order method”, one that
reduces the error faster as step size decreases. A k-th order method has error
which diminishes as hk. Given that it is curvature that we know we are
neglecting, we can estimate the curvature of the graph y(x) by evaluating the
slope f(x) at several intermediate points between x, and xn+1. Second order
accuracy is obtained by using the initial derivative to estimate a point halfway
across the interval, then using the midpoint derivative across the full width of the
interval.

(1.11)

Yn+l - - yn + k , +0(h3)

The upshot is that by making two function evaluations, we have saved a whole
order in accuracy. So, for instance, with a first order method, N calculations
gives us an error O(l/N), but for a second order method, 2N calculations gives
us error O(1/4N2). It would take N2 calculations to do so well with a first order
method.

Higher order Runge-Kutta methods

Can we do better? Clearly, we can use a three midpoint method to achieve third
order accuracy, a four midpoint method for fourth order accuracy, etc. When

FEMLAB und the Basics ofNumerica1 Analysis 35

should we stop? Well, there is more programming work for higher order
methods, so our time is a consideration. But intrinsically, functions may not be
very smooth in their k-th derivative that we are estimating. It is possible that in
increasing the “accuracy of the approximation”, the round-off error of higher
derivative terms so estimated becomes appreciable. If that is the case, with each
successive step, the error may grow rapidly. This implies that higher order
methods are less stable than lower order methods. The common choice for
integrating ODES is to use a fourth order Runge-Kutta method. This is fairly
compact to programme, gives good accuracy, and typically has good stability
character.

Other methods

There are two other famous problems in numerical integration that need
particular programming attention:
Numerical Instability. Suppose your integration diverges to be very far from
known test-cases, even with a high order accuracy method. Then it is likely that
your method is numerically unstable. You can cut down your step size and
eventually achieve numerical stability. However, this means a longer
calculation. If you are computing a great many such integrations and the
slowness really bothers you, try a semi-implicit method like predictor-corrector
schemes.
Stiff Systems. Stiff systems usually have two widely disparate length or time
scales on which physical mechanisms occur. Stiff systems may have “numerical
instability” of the explosive sort mentioned above, or they may have non-
physical oscillations. Try the book of Gear [2] for a recipe to treat stiff systems.

1.3.1 Numerical integration: A simple example

Higher order ODES are treatable by marching methods by reduction of order.
Suppose you have an ode:

- + q (x) - = d 2 Y dY +)
dx dx

(1.12)

Unless q(x) and r(x) are constants, then you are out of luck with most textbook
analytic methods for finding a solution. There are special cases of q(x) and r(x)
that lead to analytic solutions, but these days you are better off computing the
numerical solution in nearly all cases anyway. Why? Because you need to plot
the graph of the solution y(x) to make sense of it, so you will need to harness
some computing horse power for the graphics. How? First let’s reduce the order
of the second order system above to two first order systems:

36 Process Modelling and Simulation with Finite Element Methods

dY
- = z (x)
dx
dz
dx
- = r(x)- q (x)z (x)

Each of these ODEs can be numerically integrated by time marching methods as
in (1.10) or (1.1 l), simultaneously. A simple example is

d ' u -+u=o
dt2

Reduction of order yields two first order ODEs:

u2 1 - du
dt

du2
- u1 dt

(1.13)

(1.14)

Taking the initial condition to be u,=l and u2=0, we can now set up a O-D spatial
system to integrate this coupled set of ODEs.

Start up FEMLAB and await the Model Navigator window. If you already have
a FEMLAB session started, save your workspace as a model MAT-file or the
commands as a model m-file, and the pull down the file menu and select New.

Model Navigator
Select l-D dimension

Select 2 dependent variables
Element: Lagrange - linear

0 More>>
0 OK

Select PDE modes + Coefficient+time dependent

This application mode gives us two dependent variables uI and u2 and one space
coordinate x. Next, set up the domain.

Pull down the Draw menu and select Specify Geometry.

Draw Mode
Name: interval
start: 0

ApplylOK
stop: 1

FEMLAB and the Basics of Numerical Analysis 31

Now onto the Neumann boundary conditions. Pull down the Boundary menu
and select Boundary Settings.

Boundary Mode
Select domains 1 and 2 (hold down ctrl key)
Select Neumann boundary conditions
Apply/OK

Now pull down the Subdomain menu and select Subdomain settings. Notice
the equation in the upper left given in vector notation.

Subdomain Mode
Select domains 1

Apply /OK

Set f1=0; f2=O; a12=l; aZ1=-l; cl=l; c2=l;

Select the init tab; set u,(tO)=l.
APPlY

Pull down the Mesh menu and select the Parameters option to set up our single
element.

Mesh Mode
0

Select Remesh
OK

Set Max element size, general = 1

Now pull down the Solve menu and select the Parameters option. This pops
up the Solver Parameters dialog window.

Solver Parameters

Jacobian: numeric
0 Solve
0 Cancel

linspace (0,2*pi, 5 0) is the MATLAB command to create a vector of
length 50 which uniformly goes from 0 to 2 7 ~ Click anywhere on the graph and
you learn that ul(t=2n)=l .02475. Given that the analytic solution is u,(t=2~)=1,
this is rather inaccurate (2%). The odel5s solver is a stiff solver with low to
medium accuracy. ode45 has the best accuracy of the suite of solvers, but is for
non-stiff systems. It gives u1(t=6.29)=0.99994, which is pretty good. Greater
accuracy, however, comes from decreasing the output time interval. If the output

Time-stepping tab: set output times
linspace (0,2*pi, 5 0)

38 Process Modelling and Simulation with Finite Element Methods

times are set to linspace (0 , 2*pi , 5 0 0) , i.e. tenfold smaller time-step, than
u1(t=2n)=0.999939 with ode1 5s.

These two figures (1.3 & 1.4) clarify that FEMLAB can reproduce the
numerical integration of the cosine and sine functions with high fidelity if given
a small enough time step. Although we think of sine and cosine as “analytic
functions,” when tabulated this way, it is clear that the distinction between
analytic functions and those that require numerical integration is specious - they
are no more analytic than Bessel functions, elliptic functions, etc.

1.3.2 Numerical integration: Tubular reactor design

In this subsection, a coupled set of first order nonlinear ODES are solved
simultaneously for the design of a tubular reactor undergoing a homogeneous
chemical reaction. Typically, the key element in the design of a tubular reactor
is the estimate of the length of the reactor.

A tubular reactor is used to dehydrate gaseous ethyl alcohol at 2 bar and
150°C. The formula for this chemical reaction is

U l I U l)

Figure 1.3 u 1 (t) over one period.

FEMLAB and the Basics of Numerical Analysis 39

-1 4 I I I I I I I
1 2 3 4 5 6 7

Time

Figure 1.4 u2(t) over one period.

Some experiments on this reaction have suggested the reaction rate expression at
2 bar pressure and 15OoC, where C, is the concentration of ethyl alcohol
(mol/litre) and R is the rate of consumption of ethyl alcohol (moVs/m3):

52.7Ci R=-
0.013

l+-
c.4

The reactor is to have a 0.05m diameter and the alcohol inlet flowrate is to be
lOg/s. The objective is to determine the reactor length to achieve various
degrees of alcohol conversion. We wish to determine reactor length for the
outlet alcohol mole fractions 0.5,0.4, 0.3,0.2, and 0.1.

Chemical Engineering Design Theory

Assuming small heat of reaction, plug flow and ideal gas behaviour, it can be
shown that the reacting flow is described by four ordinary differential equations
in terms of the dependent variables C,, CW (the water concentration), V (the
velocity) and x (the distance along the reactor from the inlet):

40 Process Modelling and Simulation with Finite Element Methods

(1.15)

dV - RV
dt C
dx - = v
dt

The last equation states that the superficial velocity creates an equivalence
between distance along the reactor and the residence time t that a fluid element
has to react. These equations are subject to the initial condition of the flow at
the inlet (t=O):

c*(o)=c V(O)=V,

c, (0) = 0 x(0) = 0
(1.16)

Approach

Clearly from the initial condition and stoichiometry, CW=CE (the concentration
of ethyl alcohol, and the value of C is constant as temperature and pressure are
assumed constant. C can be found from the ideal gas law, with

(1.17) P C =

And the initial flow velocity V, can be determined from the flowrate given, the
inlet density (the molecular weight of ethyl alcohol is 46 k g h o l) , and the tube
cross-sectional area. The equations will need to be integrated numerically in
space-time t until the required alcohol mole fractions have been reached. Use
either simple Euler or Runge-Kutta numerical integration.

You may note that it is possible to solve for CA without recourse to the other
variables, but CW, V, and x depend explicitly on t. But since the requirement is
to find positions x where specific mole fractions occur, it is best to solve for all
four variables simultaneously.

FEMLAB and the Basics of Numerical Analysis 41

Partial Results

A resolved numerical solution gives

c.4 - --0.1
C

t = 5.65225
x = 18.5435

with a profile for CAIC as in Figure 1.5.

0.6

0.4

(1.18)

I

2 4 6 8 10

Figure 1.5 Profile of normalized alcohol concentration vs. space time t.

FEMLAB Implementation

We wish to create our pseudo-OD simulation environment yet again, this time
with four dependent variables. Start up FEMLAB and await the Model
Navigator window.

Model Navigator
Select 1-D dimension

0

0 Select 4 dependent variables
Element: Lagrange - linear

0 More>>
0 OK

Select PDE modes + Coefficient+time dependent

This application mode gives us four dependent variables uI u2 u3 u4 and one space
coordinate x. Next, set up the domain.

Pull down the Draw menu and select Specify Geometry.

42 Process Modelling and Simulation with Finite Element Methods

Draw Mode
Name: interval

0 Start: 0
stop: 1

Now onto the Neumann boundary conditions. Pull down the Boundary menu
and select Boundary Settings.

Boundary Mode

Select Neumann boundary conditions

OK

Select domains 1 and 2 (hold down ctrl key)

Apply

Since there are several parameters, it is useful to specify them with named
constants. Pull down the Options menu and select Add/Edit constants.

AddEdit Constants: Fill out as below
P=200000. (kPa)
T=423. (K)
R = 8314. (J/mol K, gas constant)

0 MM = 46, (atomic mass units)
Flowrate = 0.01 (m/s)
Dia=0.05 (m)
C=P/RT
area=Pi*Dia*2/4
rho=MM*C
vel=Flowrate/rho/area

Now pull down the Subdomain menu and select Subdomain mode. Next pull
down the Options menu and select Add/Edit Expressions. Create an
expression rate= 52.7*uIA2/(1+0.013/ u,). Next enter Subdomain settings.

Subdomain Mode
Select domains 1
Set c, l=l; cz2=l; C33=1; C44=1
Set f l= -rate*(l+ ul/C);
f2= rate*(1- uz/C);
f3= rate* u3/C;
f4= u3/c;
Select the init tab; set ul(tO)=C; u3(t0)=vel
Apply/OK

FEMLAB and the Basics of Numerical Analysis 43

Pull down the Mesh menu and select the Parameters option to set up our single
element.

Mesh Mode

Select Remesh
0 OK

Set Max element size, general = 1

Now pull down the Solve menu and select the Parameters option. This pops
up the Solver Parameters dialog window.

Solver Parameters
0

Jacobian: numeric
Solve
Cancel

Time-stepping tab: set output times 0:O. 1 : 10.

Try plotting point plots of ul, u2, u3 and u4 for the whole range of times. How
good is the qualitative agreement with Figure 1.5? Does it agree numerically
with the fully resolved solution?

Exercises:

1.3 Find the value of y ' (x = l) from the system of equations below. Plot y ' for x
between 0 and 3.

y"+ y'+ y 2 = 0

y (x = 0) = 1

y' (x = 0) = 0

1.4 Linear systems of ODEs result from first order reversible reaction systems
in a continuously stirred tank reactor. For instance, consider the
isomerization reactions

A + + B + + C

with forward reaction rates kl and k3, respectively, as written; reverse
reaction rates k2 and b, as written. First order kinetics leads to the
following system of ODEs:

44 Process Modelling and Simulation with Finite Element Methods

-- dCA - - k,CA + k2CB
dt

-- dCB - k,C, -
dt k2cB - k 3 C B + k 4 C C

-- dCC - k3CB - k,Cc
dt

It may surprise you, but because the above system is linear, it has a general,
analytic solution. Though general, it lends little insight into the dynamics of the
system. Plot the graph of concentrations versus time for the initial value
problem. Start with pure c A = l with parametric values kl= 1 Hz, k2 =O Hz, k3=2
Hz, b=3 Hz and plot the graph versus time of concentrations.

1.4 Method 3: Numerical Integration of Ordinary Differential Equations

In the previous section, numerical integration was treated by marching methods,
commonly referred to as “time-stepping,” although in the reactor design
application, it was clearly spatial integration. In marching methods, the
unknowns are found sequentially. The other common method for integration is to
approximate the ODE and solve simultaneously for the unknown dependent
variables at the grid points. With marching methods, all solutions must be initial
value problems (IVP). The number of initial conditions must match the order of
the ODE system. But for second order and higher systems, a second type of
boundary condition is possible - the boundary value problem (BVP), where in 1-
D, there are conditions at the initial and final points of the domain. Hence, these
are two point boundary value problems. Marching methods can laboriously treat
BVPs by shooting - artificially prescribing an IVP and guessing the initial
conditions that satisfy the actual BVP by trial and error. In higher dimensional
PDEs, a BVP specifies conditions on the boundaries of the domain.

One of the major advantages of the finite element method is that it naturally
solves two-point BVPs. As an example, the reaction and diffusion equation in
1-D is

(1.19)

where u is the concentration of the species, 3 is the diffusivity, L is the length of
the domain, R(u) is the disappearance rate by reaction, and x is the dimensionless
spatial coordinate. If the unknown function u(x) is approximated by discrete

FEMLAB und the Basics of Numerical Analysis 45

values uj = u(xj) at the grid points x=xj=j Ax, then with central differences, the
system of equations becomes

L' hx2 f p l , u j =- q, Ri (1.20)
j=1 .a

where Me is a tridiagonal matrix with the diagonal element -2, and 1 on the
super and subdiagonals:

M = (1.21)

and R,=R(uj). This system can be solved by iteration for uni by matrix inversion,
where n refers to the n-th guess:

(1.22)

and Rj=R(u '-'). For either IVP or BVP, the appropriate rows of the matrix M in
(1.21) can be altered to accommodate the boundary conditions. As written,
(1.21) supposes u=O at both x=O and x=l. This is a Dirichlet type boundary
condition, and is the natural boundary condition for finite difference methods -
natural because it occurs if no effort is made to overwrite rows of (1.21) with
specified boundary conditions.

We will now illustrate the solution of (1.19) with FEMLAB on a small 1-D
domain with first order reaction R(u)=k u and representative values for the
resulting dimensionless parameter, the Damkohler number:

-- -.-I-
3

(1.23)

and with boundary conditions u=l at x=O and no flux at u=l .

46 Process Modelling and Simulation with Finite Element Methods

First launch FEMLAB and enter the Model Navigator:

0 Select 1-D dimension
0

Element: Lagrange - linear
0 More >>

OK

Select PDE modes + Coefficient

This application mode gives us one dependent variable u, but in a 1-D space
with coordinate x. Now we are in a position to set up our domain. Pull down the
Draw menu and select Specify Geometry.

Draw Mode
Name: interval
Start: 0
stop: 1
Apply

0 OK

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode
Select domain 1
Check Dirichlet and set h=l; r=l
Select domain 2
Select Neumann boundary conditions

OK
Apply

h and r are the two handles on Dirichlet BCs in Coefficient Mode. If you want to
set u to a given value UO on a boundary, then it is accomplished with setting h=l
and r= Uo. Now pull down the Subdomain menu and select Subdomain
mode. Select Subdomain settings.

Subdomain Mode
Select domains 1
Set c=-1; f=O.S33*u

OK

Select the init tab; set u(h)=l-x
Apply

Model Navigator

FEMLAB and the Basics of Numerical Analysis 47

Click on the triangle symbol to mesh (15 elements) and the triangle with the
embedded upside-down triangle to refine the mesh (30 elements).

Now pull down the Solve menu and select the Parameters option. This pops
up the Solver Parameters dialog window.

Solver Parameters
Select stationary linear
Solve
Cancel

You should get a graph with the information as in Figure 1.6. Clearly the
desired boundary conditions are met: u=l at x=O and the slope vanishes at x=I.
But did FEMLAB solve the problem we thought we posed?

Now resolve with the stationary nonlinear solver. First note that FEMLAB
takes thirteen iterations to converge. Do you notice that the final value has
dropped from 0.86 to 0.69? One might wonder why there is a difference. The
linear solver only evaluates R(u) once at the initial condition u(tO)=l-x and thus
only needs one iteration of (1.22). The nonlinear solver evaluates R(u) for each
iteration at the old estimate for u. Thus, the nonlinear solver might “forget” the
initial guess completely after a number of iterations as it homes in on a
converged solution.

Let’s test this explanation. Changing the initial condition should change the
stationary linear solution. Return now to Subdomain settings and try the initial
condition u(tO)=l. What final value do you get for u(x= l)? Now try the
stationary nonlinear solver. Do you get the same solution as with the other initial
condition?

0 I 96 \
0 9 id 088 0 86 0 0 1

1 - Da-0 833 1

Figure 1.6 Steady state first order reaction and diffusion with Da=0.833.

48 Process Modelling and Simulation with Finite Element Methods

This example should illustrate the importance of selecting the right solver
for your equations. If there is any dependence o f f on the dependent variables,
then the stationary nonlinear solver should be used. The linear solver is faster,
but it also presumes that the coefficients of the PDE do not depend on the
dependent variable u (else the problem would be nonlinear). When in doubt, use
the nonlinear solver. After all, (1.19) with R(u)=k u, is a linear problem, but
FEMLAB only finds the correct steady state solution with the nonlinear solver!
The slow convergence rate is also the consequence of the form of the model -
general mode with the exact Jacobian solver option for the nonlinear solver
converges in two iterations to the correct profile.

We argued that (1.20) is the finite difference matrix equation for this
problem, yet later applied the argument that (1.22) should describe the FEMLAB
finite element problem. Because we used Lagrange linear elements, in this
special case the finite element and finite difference matrix operators coincide, up
to the boundary conditions. To see this, we will take a foray into the MATLAB
representation of FEMLAB problems.

Pull down the File Menu and select Export FEM structure as ‘fern’. This
puts the current solution as a MATLAB data structure in the MATLAB
workspace. We can then manipulate it using the built-in MATLAB functions
and commands, as well as the special function set of FEMLAB.

In your MATLAB workspace, try the commands

>>x=fem.xmesh.p{l};
>>u=fem.sol.u;
>>plot (x,u)

This should pop up a MATLAB Figure plotting the solution u versus the array of
mesh points. No doubt your plot looks scrambled. This is because FEMLAB
stores the mesh points and the associated solution variables so as to make the
specification of the matrix equations sparse and compact. We can make sense of
the solution by ordering the mesh points and the solution:

In your MATLAB workspace, try the commands

> > [xx, idx] =sort (x) ;
>>plot (xx, u (i d x))

This plot should resemble Figure 1.6, with the exception that it represents your
last FEMLAB solution. In fact, we can only make sense of the solution format
of the fern structure so readily because this is a single dependent variable, one-
dimensional problem. Otherwise, multiple variables and dimensions leave a
mesh and solution structure that only FEMLAB tools/functions can readily
decode.

FEMLAB and the Basics of Numerical Analysis 49

The final MATLAB manipulation we will consider here is interrogation of
the finite element matrix. The f em structure does not hold the finite element
stiffness matrix, but rather contains the information necessary for FEMLAB
functions to construct it. This activity is a vital part of the finite element method,
and the FEMLAB function that does it is called assemble. Type in the
command below:

>> [K,L,M,N] =assemble (fem) ;
> > K / 3 0

You should now see a MATLAB sparse representation of a matrix, all of the
elements of which are 1, -2, and 1, arranged on different diagonals. This is the
stiffness matrix of the finite element method, and up to the ordering of the
unknowns, is equivalent to (1.21). If you return to the Subdomain Settings,
element tab, and select Lagrange quadratic elements, and repeat the solution,
exporting FEM and assemble K as above, you will note that although sparse, the
matrix is distinctly different from the Lagrange linear elements.

Exercise

1.5 The coefficient form has a pde term a u. Repeat the implementation of the
reaction-diffusion example, but this time entering a = 0.833 andf=O for the
subdomain settings. Now compare the stationary linear and nonlinear solver
solutions. Can you explain why this formulation leads to this result? What
effect does this formulation of the problem have on the stiffness matrix K .
Can you think of a difficulty that might occur if the Da is chosen so that the
diagonal element is nearly zero in magnitude, i.e. Da Ax2 = 2?

1.5 Method 4: Linear Systems Analysis

Central to MATLAB, and hence to FEMLAB, is linear systems analysis. In this
section, we will briefly review the concepts of linear operator theory - typically
lumped as “matrix equations” in undergraduate engineering mathematics
modules. The good news is that it is not necessary to do any matrix
manipulations yourself. That was the ruison d’etre for MATLAB: to serve as a
user interface to libraries of subroutines for engineering matrix computations.
Much of the history of scientific computing is encapsulated in efficient and
sparse methods for matrix computations. An excellent guide to matrix
computations, but surely for experts, is the book of Golub and Van Loan [3].
However, at the introductory level to MATLAB, a good and readable survey can
be found in the up-to-date book by Hanselman and Littlefield [4].

50 Process Modelling and Simulation with Finite Element Methods

Briefly, the standard matrix equations look like this:

UllX1 + a,,x2 + q3x3 +. . . + u,,x, = b,
u,,x, + U,,X, + u2,x3 + . . . + u,,x, = b,

u3,x, + + u33x3 +. . . + u,,x, = b3 (1.24)

u,,x, +u,,x, +u,,x3 +...+ u,,x, =b,

Here there are N unknowns xj which are related by M equations. The
coefficients aq are known numbers, as are the constant terms on the right hand
side, bi. In engineering, models are frequently derived that satisfy such linear
systems of equations. Mass and energy balances, for instance, commonly
generate such sets of linear equations.

Solvability

When N=M, there are as many constraints as there are unknowns, so there is a
good chance of solving the system for a unique solution set of xj’s. There can fail
to be a unique solution if one or more of the equations is a linear combination of
the others (row degeneracy) or if all the equations contain only certain
combinations of the variables (column degeneracy). For square matrices, row
and column degeneracy are equivalent. A set of degenerate equations are termed
singular. Numerically, however, at least two additional things can go wrong:

While not exactly linear combinations of each other, some of the equations
may be so close to linearly dependent that within round-off errors on the
computer they are.
Accumulated round-off errors in the solution process can swamp the true
solution. This frequently occurs for large N. The procedure does not fail, but
the computed solution does not satisfy the original equations all that well.

Guidelines for Linear Systems

There is no “typical” linear system of equations, but a rough idea is that round-
off error becomes appreciable:

N as large as 20-50 can be solved by normal methods in single precision
without recourse to specialist correction of the two numerical pathologies.
N as large as several hundred can be solved by double precision.
N as large as several thousand can be solved when the coefficients are sparse
(i.e. most are zero) by methods that take advantage of sparseness. MATLAB
has a special data type for sparse matrices, and a suite of functions that exploit
the sparseness.

F E M U B and the Basics of Numerical Analysis 51

However, in engineering and physical sciences, there are problems that by their
very nature are singular or nearly singular. You might find difficulty with N=10.
Singular value decomposition is a technique which can sometimes treat singular
problems by projecting onto non-singular ones.

Common Tasks in Numerical Linear Algebra

Equation (1.24) can be succinctly written as a matrix equation (cf. equation
1.20).

A . x = b (1.25)

Solution for the unknown vector x, where A is a square matrix of coefficients,
and b is a known vector.
Solution with more than one b vector with the matrix A held constant.

Calculation of the matrix A-I, which is the inverse of a square matrix A.
Calculation of the determinant of a square matrix A.
If M<N, or if M=N but the equations are degenerate, then there are effectively
fewer equations than unknowns-an underdetermined system. In this case,
either there can be no solution, or there is more than one solution vector x.
The solution space consists of a particular solution xp plus any linear
combination of typically N-M vectors called the nullspace of A. The task of
finding this solution space is called singular value decomposition.
If M>N, there is, in general, no solution vector x to (1.24). This
overdetermined system happens frequently, and the best compromise solution
that comes closest to satisfying the equations is sought. Usually, the closeness
is “least-squares” difference between the right and left hand sides of (1.24).

Matrix Computations in MATLAB

Matrix inversion is easily entered using the inv(matrix) command. Solution of
matrix equations is represented by the matrix division \ operator as here:

>> A=[3 -1 0; -1 6 -2; 0 -2 101 ;
>> B=[l; 5 ; 2 6 1 ;

x =
>> X=A\B

1.0000
2 . 0 0 0 0
3 . 0 0 0 0

Determinants

Determinants are used in stability theory and in assessing the degree of
singularity of a matrix. Why do you need to know the determinant? Most of the

52 Process Modelling and Simulation with Finite Element Methods

time, you want to know when a determinant is zero. However, when the
determinant is zero, or numerically close to zero, it is numerically difficult to
compute due to “round-off’ swamping effects mentioned earlier. This is yet
another application for singular value decomposition.

MATLAB computes determinants by the simple function det(A). Either
enter by hand the matrix below at the MATLAB command line, or cut and paste
from the file matrix2.dat:

>> A=[0.45, -0.244111, -0.0193373, 0.323972, -0.118829;
-0.244111, 0.684036, -0.103427, 0.205569, 0.00292382;

0.323972, 0.205569, o.oia9674, 0.659479, 0.197388;
-0.0193373, -0.103427, 0.8295, 0.0189674, -0.011169;

-0.118829, 0.00292382, -0.011169, 0.197388, 0.7769851

The determinant i s found from

>> det(A)
ans =
-1.9682e-008

Principal Axis Theorem: Eigenvalues and Eigenvectors

MATLAB has built-in functions for computing the eigenvalues and eigenvectors
of a matrix:

>> eig(A)
ans =

-0.0000
0.7000
0.8000
0.9000
1.0000

The eig() function can also return the eigenvectors as the columns of the matrix
V when called as below:

>> [V,D] =eig (A)
v =

-0.6836 -0.0000
-0.4181 0.6162
-0.0837 0.4003
0.5409 0.2582
-0.2416 -0.6272

-0.0000 0
0 0.7000
0 0
0 0
0 0

D =

-0.5469
0.1831
0.6189
-0.2415
0.4755

0
0

0
0

0 . aooo

-0.4785
0.4530
-0.6232
-0.4042
-0.1190

0
0
0

0.9000
0

-0.0684
-0.4547
0.2479
-0.6474
-0.5550

0
0
0
0

1.0000

FEMLAB and the Basics of Numerical Analysis 53

The eigs (function is a variant of eig () which computes a specific number
of eigenvalues/eigenvector pairs for sparse matrices. Its use will be
demonstrated in the next subsection in conjuction with FEMLAB.

The matrix A has a determinant that is little different from zero and a single
eigenvalue that is effectively zero. The eigenvector associated with it is
effectively the null space of A - the direction that gets mapped to zero:

>> A * V (: , 1)
ans =

1 . 0 e - 0 0 7 *
0 . 2 6 6 9
0 . 1 6 3 3
0 . 0 3 2 7

- 0 . 2 1 1 2
0 .0943

All the other eigenvectors can be verified by the property that they map onto
themselves, scaled by the eigenvalue, for instance:

>> A * V (: , 2) . / V (: , 2)
ans =

0 . 7 0 0 0
0 . 7 0 0 0
0 . 7 0 0 0
0 . 7 0 0 0
0 . 7 0 0 0

In MATLAB, the ./ division operator is element-by-element division. The colon
above refers to the whole of the column.

Because the system is nearly singular, we should not be surprised that the
solutions to any matrix equation involving it are poorly conditioned. For
instance,

>> B = [O ; 1; 0; 1; 01;
>> A\B

ans =
1 . 0 e + 0 0 6 *

2 . 1 4 8 7
1 . 3 1 4 2
0 . 2 6 3 1

- 1 . 7 0 0 1
0 .7593

Since the elements of A are of order one, the forcing vector B is of order one,
one would expect the solution to (1.25) to be order one, not order one million.
For chemical engineers, this is like being told that a mass balance involves input
flow rates of about 1 k g h , constraints on mass balances with appreciable

54 Process Modelling and Simulation with Finite Element Methods

fractions in the splitters (order one), and that the solution mass flow rates are
about one million k g h for internal streams. Not likely. Yet this is the solution
proposed by a nearly singular matrix.

Singular Value Decomposition (SVD)

SVD offers a better solution in many respects. All matrices have a unique
decomposition, similar to the principal axis theorem for eigenvalues and
eigenvectors

A = U .diag .VT (1.26)

where U and V are square real and orthogonal. diag is a diagonal matrix which
contains the singular values. In terms of U , V , and diag, the system (1.25) is
readily solved

(1.27)

U and V being orthogonal means that their transposes are also their inverses. The
inverse of a diagonal matrix is just the reciprocal of the diagonal elements. So
the only time we have a problem solving the system is when one or more of the
singular values (diagj), relative to the largest, is close to zero. It follows that (1/
diagj) is a very large number, which distorts our numerical solution, sending it
off to infinity along a direction which is spurious. A good approximation is to
throw these spurious directions away completely by setting (1/ diagj) for the
offending singular values to zero! The vector,

(1.28)

with this substitution for nearly zero elements, should be the smallest in
magnitude to approximately satisfy the equations.

In the case of our example matrix A, the MATLAB command svd () gives the
singular values if called with one output, and the three matrices U, diag, V if
called with three:

>> [U , D , V] =svd(A)

u =
- 0 . 0 6 8 4 - 0 . 4 7 8 5 0 . 5 4 6 9 0 . 0 0 0 0 - 0 . 6 8 3 6
- 0 . 4 5 4 7 0 . 4 5 3 0 - 0 . 1 8 3 1 - 0 . 6 1 6 2 - 0 . 4 1 8 1

0 . 2 4 7 9 - 0 . 6 2 3 2 - 0 . 6 1 8 9 - 0 . 4 0 0 3 - 0 . 0 8 3 7
- 0 . 6 4 7 4 - 0 . 4 0 4 2 0 . 2 4 1 5 - 0 . 2 5 8 2 0 . 5 4 0 9
- 0 . 5 5 5 0 - 0 . 1 1 9 0 - 0 . 4 7 5 5 0 . 6 2 7 2 - 0 . 2 4 1 6

FEMLAB and the Basics of Numerical Analysis 55

D =
1.0000 0 0

0 0.9000 0
0 0 0.8000
0 0 0
0 0 0

-0.0684 -0.4785 0.5469
v =

-0.4547 0.4530 -0.1831
0.2479 -0.6232 -0.6189
-0.6474 -0.4042 0.2415
-0.5550 -0.1190 -0.4755

0
0
0

0.7000
0

0.0000
-0.6162
-0.4003
-0.2582 -
0.6272

0
0
0
0

0.0000

0.6836
0.4181
0.0837
0.5409
0.2416

The SVD prescription for solution with smallest magnitude is implemented as
follows:

>> S S = [~ . l./O.9 1./0.8 1./0.7 0 1 ;
>>dinv=diag (s s) ;
>> V*dinv*U'*B
ans =

0.0893
1.2820
0.1479
1.0317
-0.2130

This is a far more physically acceptable solution, for instance, for internal mass
flow rates in the hypothetical mass balance discussed above.

This excursion into linear systems theory is important for modeling with
FEMLAB because finite element methods are matrix based. When the
generalized stiffness matrix becomes nearly singular, FEMLAB may not be
providing a satisfactory solution. These matrix computations and their sparse
implementations in MATLAB can readily serve as diagnostics for the health of
the FEMLAB solution. They also provide an insight into the natural dynamics
of the system through the eigen analysis of the operator. These ideas will be
made concrete with an example computed as a FEMLAB model in the next
subsection.

1.5.1 Heat transfer in a nonuniform medium

The steady state heat transfer equation is commonly met in engineering studies
as the simplest PDE that is analytically solvable: Laplace's equation.
Nevertheless, series solutions for complicated geometries may be intractable.
The author has recently shown that some series so derived are purely asymptotic
and poorly convergent [5] . Consequently, numerical solutions are likely to be
better behaved than series expansions. Furthermore, any variation on the

56 Process Modelling and Simulation with Finite Element Methods

processes of heat transfer may destroy the analytic structure. In this section, we
will consider the typical one-dimensional heat transfer problem in a slab of non-
uniform conductivity and a distributed source that is differentially heated on the
ends:

-- k - = f (x) :[21 (1.29)

T Ixe0 = 1 T IXzl = 0
Launch FEMLAB and enter the Model Navigator:

Model Navigator
Select I-D dimension

0

Element: Lagrange - linear
More>>

0 OK

Select Physics modes - Heat transfer+Linear stationary

This application mode gives us one dependent variable u, but in a 1-D space
with coordinate x. Now we are in a position to set up our domain. Pull down the
Draw menu and select Specify Geometry.

Draw Mode
0 Name: interval
0 Start: 0

stop: 1

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode
Select domain 1
SetT=l
Select domain 2

0 SetT=O

Now pull down the Subdomain menu and select Subdomain mode. Select
Subdomain settings.

FEMLAB and the Basics of Numerical Analysis 51

Subdomain Mode
0 Select domains 1

Set k=-1; Q=x*(l-x)
Select the init tab; set T(b)=l-x

Click on the triangle symbol to mesh (15 elements) and the triange with the
embedded upside-down triange to remesh (30 elements).

Now click on the equals sign = on the toolbar to solve. The solution should
be found fairly quickly with a nearly linear profile with almost a slope of -1.
Verify that TIx=0.499 = 0.474742. This problem has an analytic solution with
TIx4,@9 = 0.474958:

(1.30)

Now try k=-(l-x/2). There is also an analytic solution in this case, but in the
complex numbers requiring logarithms in the complex plane and a branch cut.
The analytic solution gives TIx=0.499 = 0.550622. How good is your solution?

Now for the linear systems theory. Pull down the File menu and select
Export FEM structure as ‘fem.’ You can now manipulate the solution in
MATLAB. As in the last section, you can assemble the stiffness matrix:

>> [K , L , M , N] = a s s e m b l e (f e m) ;

As K is sparse, you can find the smallest six eigenvalues in magnitude with

>> dd=eigs (K, 6 , O) ;

and the eigenvectors with

>> [V, D] =eigs (K , 6 , O) ;

Note that K has one zero eigenvalue, and that all its eigenvalues are negative
otherwise. This should not worry you, as FEMLAB implements its boundary
conditions through the block matrix N and auxiliary forcing vector M. It could
replace rows of K and elements in L to approximate boundary conditions, but the
structure of boundary conditions in FEMLAB allows for more general types of
boundary conditions when augmenting the matrix equations with N and M. The
fact that K is singular as a block matrix is a consequence of the natural boundary
conditions for finite element methods being Neumann conditions (no flux).
There are an infinity of solutions to the pure Neumann boundary conditions, as
an arbitrary value can be added to any solution and it is still a solution. That K
is singular naturally tripped up the author when he first used finite element
methods as an undergraduate. Purely Neumann boundary conditions are badly
behaved in FEMLAB. For instance, if you change the boundary conditions in

58 Process Modelling and Simulation with Finite Element Methods

our example to purely Neumann conditions, you should find that the steady state
solution is 10" in size. Yet MATLAB can solve such a problem by SVD or by
the principal axis theorem. Since the matrix K is negative-semi-definite, all its
eigenvalues are real. So pseudo-inversion to eliminate the zero eigenvalue of K
follows from

>> ss=l./dd;
>> ss(l)=O.;
>> dinv=diag (ss) ;
>> uneumann=V*dinv*V'*L

Finally, interpreting this solution must be done remembering that the structure of
a FEMLAB mesh is not monotonic. These commands plot the solution:

>> [xs, idx] =sort (fem.xmesh.p {I}) ;
>>plot (xs,fem.sol.u(idx)) ;

Similarly, the approximate Neumann solution found from the projection onto the
first five eigenvectors with smallest magnitude non-zero eigenvalues is found
from

>>plot(xs,uneumann(idx));

x 1 ~ 3 Prolection of Neumann solution onto five largest non-zero eigenvalues
- 7 v - 1 "----

x position

Figure 1.7 Projection solution for the purely Neumann solution to the non-uniform conductivity and
distributed source heat transfer problem (1.29).

F E M U B and the Basics of Numerical Analysis 59

Furthermore, the eigenvectors can be interpreted the same way:

>>COl2=V(: ,2) ;
>>plot (xs, co12 (idx)) ;

>>plot (xs, co13 (idx)) ;
>>COl3=V (: ,3) ;

It should be noted that in the case of the Neumann solution, any constant
value can be added to the solution and it will remain a solution. The eigenvectors
are not normalized, so they can be multipled by any number and still be
eigenvectors. Figures 1.8 and 1.9 show the two eigenpairs with largest
eigenvalues in magnitude.

1.6 Summary

This chapter has illustrated that FEMLAB is constructed upon four standard
methods in numerical analysis: root finding, numerical integration by marching
methods, numerical integration for BVPs, and linear systems theory. These tools
are conducive to solving many common problems that arise in chemical
engineering applications in 0-D and 1-D spaces. In the next chapter, we will
begin to see applications where FEMLAB solutions have value added over the
standard solution techniques in 2-D.

References

1. Cutlip M.B. and Shacham M., 2
with Numerical Methods, Prentice-Hall, Upper Saddle River, NJ, 1999.

2. Gear W.C., Numerical Initial Value Problems in Ordinary Differential
Equations, 1971.

3. Golub G.H. and Van Loan C.F., Matrix Computations, 3rd ed. - Baltimore;
London: Johns Hopkins University Press, 1996.

4. Hanselman D. and Littlefield B.,Mastering MATLAB 6: A comprehensive
tutorial and reference, Prentice Hall, Saddle River NJ, 2001.

5. Zimmerman W.B., “On the resistance of a spherical particle settling in a tube
of viscous fluid” Submitted to SIAM J. Applied Maths, 2002.

60

I

Process Modelling and Simulation with Finite Element Methods

I

3, , Eigyector assosoaaied yith eigenwdue -0 q261 , ,

I I , I I I I I , I
0 0 1 0 2 03 0 4 0 5 0 6 07 0 8 0 9 1

x coorchate

-041

Figure 1.8 Largest non-zero eigenvalue/eigenvector pair.

FEMLAB and the Basics of Numerical Analysis

- 0 3 -

-0 4

61

I I

This page intentionally left blank

Chapter 2

PARTIAL DIFFERENTIAL EQUATIONS AND THE
FINITE ELEMENT METHOD

W.B.J. ZIMMERMAN and B.N. HEWAKANDAMBY
Department of Chemical and Process Engineering, University of Shefield,

Newcastle Street, Sheffield S l 3JD United Kingdom

E-mail: w.zimmerman @ shejac. uk

Partial differential equations (PDEs) arise naturally in science and engineering from
complex balance equations. Commonplace PDEs are derived from conservation laws for
transport of mass, momentum, species and energy. Because these conservation laws are
integral equations over the domain, the PDEs that arise from the continuum hypothesis
have a structure that is readily represented by the finite element method as an
approximation. In this chapter, the three different classes of differential equations that
arise in spatial-temporal systems - elliptic, parabolic, and hyperbolic - are defined and
representative cases are treated by FEMLAB computations. An overview of the finite
element method is given, but greater depth of detail will await later chapters where the
applications particularly exploit features of finite element methods that intrinsically
permit elegant and accurate computation.

2.1 Introduction

Partial differential equations are usually found in science and engineering
applications as the local, infinitesimal constraint imposed by conservation laws
that are typically expressed as integral equations. The whole class of transport
phenomena due to conservation of mass, momentum, species and energy lead to
PDEs in the continuum approximation. Chemical engineers are well acquainted
with shell balances in transport phenomena studies for heat, mass and
momentum transfer.

In contrast to the previous chapter, where 0-D and 1-D spatial systems were
treated by FEMLAB with example applications in chemical engineering, the
chemical engineering curriculum is not overflowing with 2-D and 3-D example
computations of the solutions to PDEs. A rare example is found in [I]. In fact,
historically, many of the common chemical engineering models and design
formula are simplifications of higher spatial dimension dynamics that are treated
phenomologically. Resistance coefficients in fluid dynamics, mass transfer and
heat transfer coefficients, Thiele moduli in heterogeneous catalysis, McCabe-
Thiele diagrams for distillation column design, and many more common
techniques are convenient semi-empiricisms that mask an underlying transport or
non-equilibrium thermodynamics higher spatial dimension system, possibly

63

64 Process Modelling and Simulation with Finite Element Methods

expressible as a PDE system, but traditionally thought too difficult to solve given
the complexity of the fundamental physical chemistry. These simpler
methodologies are still preferable for quick estimates desired for preliminary
design calculations, but may be insufficient for detailed design, retrofit, or
process analysis and optimization purposes. For fundamental science, these
methods are still migrating from chemical engineers to biotechnologist or
material scientists in the first approach to multidisciplinary work. Nevertheless,
computational fluid dynamics (CFD) has forever changed the paradigm for what
is considered the state-of-the-art in transport modeling. Phenomenological
methods may still have a niche, and a particular important one in interpreting
distributed system models, yet CFD has a unique role for visualization and
quantification of transport phenomena.

FEMLAB is not a “commercial CFD code”, but it will do some CFD. There
are several general purpose CFD packages available, with their own advantages
in supporting certain applications. By CFD, most process engineers would
envisage support for many turbulence and combustion models. FEMLAB,
however, has a different niche in the area of multiphysics. In addition to the
traditional transport phenomena that CFD treats, FEMLAB includes application
modes for electrodynamics, magnetodynamics, and structural mechanics,
permitting simultaneous treatment of these and transport phenomena. But its
greatest strengths are actually least trumpeted - first, the ease of “user defined
programming”, which is the ability to implement the user’s own model or
parametric variation of coefficients, boundary conditions, initial conditions and
to link to simultaneous physics, even on other domains; second, that it is built on
MATLAB so that all the programming functionality needed to set up greater
complexity of models or simulations is available, treating FEMLAB as a
convenient suite of subroutines for high-level finite element programming and
analysis. In the last chapter, we saw some of the power of user defined
programming and analysis. In this chapter, we introduce FEMLAB’s core
strength of finite element modeling of higher dimensional PDE systems. The
greater functionality of multiphysics, extended physics, and treatment on non-
PDE constraints will be left for later chapters.

Partial Differential Equations

PDEs are classified according to their order, boundary condition type, and
degree of linearity (yes, no or quasi). Amazingly, most PDEs encountered in
science and engineering are second order, i.e. the highest derivative term is a
second partial derivative. Is this a coincidence? Lip service is usually paid at
this point to variational principles underlying most of physics. Yet, recently
Frieden [2] has demonstrated that all known laws of physics can be derived from
the principle of minimum Fisher information, which naturally introduces a
second order operator of a field quantity as the highest order term in the

Partial Differential Equations and the Finite Element Method 65

associated law of physics - from the wavefunction in Schrodinger’s equation to
classical electrodynamics. Thus, classification and solution of second order
spatial temporal systems in 2-D and 3-D are of wide applicability and
importance in the sciences and engineering. For this reason, and that finite
element methods (FEM) are intrinsically well-suited to treating second order
systems, FEM are techniques with wide applicability.

In this chapter, we focus on second order systems in 2-D and 3-D. There
are three canonical exemplar systems that are nearly uniformly treated in the
standard textbooks. We shall not disappoint. They are:

a2u
ax2 ay Laplace’s equation (elliptic): - + 7 = 0

au a2u
at ax2 Diffusion equation (parabolic): - = -

a2u aZu
at2 ax2 Wave equation (hyperbolic): - = - (2.3)

The terms elliptic, parabolic and hyperbolic are traditional guides to the features
of a PDE system from characterization of the linear terms by reference to the
general linear, second-order partial differential equations in one dependent and
two independent variables:

a2u aZu au au a2u
ax2 axay ay ax ay +c?+d-+e-+fu+g = O (2.4) ~ - + 2 b -

where the coefficients are functions of the independent variables x and y only, or
constant. The three canonical forms are determined by the following criterion:

elliptic: b2-ac<0 (2.54

parabolic: b2 -ac = 0 (2.5b)

hyperbolic: b2 - uc > 0 (2.5c)

These classifications serve as a rough guide to the information flow in the
domain. For instance, in elliptic equations, information from the boundaries is
propagated instantaneously to all interior points. Thus, elliptic equations are
termed “non-local”, meaning that information from far away influences the given
position, versus “local”, where only information from nearby influences the field
variable. In parabolic systems, information “diffuses”, i.e. it spreads out in all
directions. In hyperbolic systems, information “propagates”, i.e. there is a

66 Process Modelling and Simulation with Finite Element Methods

demarcation between regions that have already received the information, regions
that will receive the information, and possibly regions that will never receive the
information. If the system is linear or quasi-linear (i.e. some coefficient depends
on the dependent variable or a lower order partial derivative than that it
multiplies), this classification system and the intuition about how information is
transported serves as a robust guide to second order systems. For nonlinear
systems, however, nonlinearity can destroy the information transport structure.
In nonlinear systems, information may be “bound”, i.e. never transferred, beyond
given attractors, or it may be created from noise (one view) or lost (a different
view) by forgetting initial conditions in a given window in time.

2.1.1 Poisson’s equation: An elliptic PDE

A modest variant on Laplace’s equation is the Poisson equation:

V2u = f (x)

We saw this equation in 1 -D form in (1.19) which described heat transfer in a
nonuniform medium with a distributed source. Here, the thermal conductivity is
uniform. In order to give a different spin on (2.6), one should note that it is the
equation satisfied by the streamfunction with an imposed vorticity profile:

V2y/ = --u) (x)
There are two common types of vortices that are easy to characterize - the
Rankine vortex, where vorticity is constant within a region, and the point-source
vortex, where vorticity falls off rapidly and thus is idealized as point vortex.
One might be curious about the streamlines generated by these two vortex types.

Start up FEMLAB and enter the Model Navigator:

Model Navigator
Select 2-D dimension

Element: Lagrange - quadratic
More>>

Select Classical PDEs + Poisson’s Equation

This application mode gives us one dependent variable u, but in a 1-D space
with coordinate x. Now we are in a position to set up our domain. Pull down the
Draw menu and select Circle/Ellipse.

Partial Differential Equations and the Finite Element Method 61

Draw Mode

Select AxesfSettings

0 OK

Draw circle and edit it to achieve a unit
radius centered at the origin

Set y in the range -1.2 to 1.2
Apply

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings. Note that there are four segments of the boundary, even
though we thought we drew a contiguous circular domain.

Boundary Mode
0 Select domain 1-4

OK

Check Dirichlet and set h=l, r=O (u=O)
APPlY

Now pull down the Subdomain menu and select Subdomain mode. Select
Subdomain settings.

Subdomain Mode
Select domains 1
Se tc= l ; f= l

0 OK
Apply

Click on the triangle symbol to mesh (620 elements).

Now click on the equals sign = on the toolbar to solve.

68 Process Modelling and Simulation with Finite Element Methods

a

x

-0

I

.

.

....................

Streamfunctiwn
, I

.

.

.

I I I

-2 -1 5 .I -0 5 0 05 1 1 5
X

Figure 2.1 Streamlines for constant vorticity in a circular cavity with slip.

The streamlines are viewed by a contour plot. Figure 2.1 was generated by the
“Copy to Figure” option on the Edit Menu.

As the boundary is a
streamline (ty=O) and the maximum occurs in the center (t+e0.25), the
volumetric flow rate induced by the constant vorticity is 0.25. Refining the mesh
yields 2480 elements, but no apparent change in the solution (still concentric
circles).

Now, for the other case: point source at the origin. We could conceivably
approximate a point source by drawing a small circle centered at the origin as a
second domain, and in that domain, have f=lhR2, where R is the smaller circle’s
radius, and f=O outside. Then f integrates to unity, and in the limit R + 0, f
approaches the Dirac delta function. However, the limit can be approached more
elegantly with the power of finite elements and weak terms.

Clearly, the streamlines are concentric circles.

Pull down the Draw menu and select Point.

Draw Mode
Click on the origin

Apply/OK
Edit the points coordinates to be (0,O)

Partial Differential Equations and the Finite Element Method 69

Pull down the Point menu and select View as Coefficients.

Point ModeICoefficient View
Click on the origin
Select point 3
Select the weak tab
Enter u-test
Apply/OK

Click on the triangle on the toolbar to re-mesh (592 elements).

Now pull down the Solve menu and select the Parameters option.

Solver Parameters
Select stationary linear
Solution form: weak
Solve

0 Cancel
OK

You should get a graph with the information as in Figure 2.2. In particular, one
should note that the streamlines are not so uniformly spaced in Figure 2.1, and
that the higher contours at the origin are clearly not circular. Refining the mesh
to 2368 elements does not visually improve the smoothness of the circular
contours, however, the maximum streamfunction increases from 0.807 to 0.91 8.
Improvement comes from adapting the mesh. Now pull down the Menu menu
and select the Parameters option.

Mesh Parameters
Select more>>

Remesh
OK

Max element size near vertices: 3 0.001

The 1428 elements are now packed in much more closely about the origin. Max
element size near vertex 3 is set to 0.001 by this specification. The data entry is
a MATLAB vector, where a space delimits vector elements 3 and 0.001. We can
add more vertedsize pairs as desired to constrain the mesh generation.

Remeshing to 5712
elements achieves maximum streamfunction of 1.67. Remeshing again to 22848
elements results in 1.78. Although it is not clear that grid convergence is ever
achieved, the qualitative arrangement of streamlines has converged as the
swirling falls off with distance from the source rapidly.

Figure 2.2 has a maximum streamfunction of 1.56.

70

0 7687
0 7303
0 6916
0 6534
0 615
0 5755

0 4997
0 4612
0 4228
0 3843
0 3455
0 3075
0 2G9
0 2306
0 1922
0 1637
0 4153
0 0769

o 5381

Process Modelling and Simulation with Finite Element Methods

-1.5 .; -05 0 0 5 1
X

1 5

Figure 2.2 Streamlines for a point vortex at the center of a circular cavity.

Mex 1 55

1488
1414
1339
1265
I191
1116
1042
0 9574
0 693
08185
0 7441
0 6697
0 5953
0 5209
0 4465
0 3721
0 2977
0 2232
0 1488
0 0744

Mn 0

Figure 2.3 Streamlines for a point vortex at the center of a circular cavity, adapted mesh.

Exercise 2.1

Solve for the streamlines when the vorticity falls off exponentially with
radius. i.e.

2.1.2 The diffusion equation: A parabolic PDE

The 1-D unsteady diffusion equation (2.2) can refer equally well to any of three
common transport phenomena:

Partial Differential Equations and the Finite Element Method 71

ac a2c
at ax2 Mass diffusion: - = D -

dT k a2T
Thermal conduction: - = --

at pc, ax2
d o d"o

2-D Vorticity transport: - = V -
at ax2

(2.9)

(2.10)

where c,T, and ~ i) are concentration, temperature, and the z-component of
vorticity in a 2-D flow, respectively, and their corresponding diffusivities are D,
a, and V. This equation is thoroughly studied in the undergraduate curriculum.
It has solutions by Fourier and Laplace transforms, and similarity solutions for

X
initial and boundary conditions that collapse on the variable 77 = -

doesn't leave much room for finite element methods - just another technique for
a tired old problem, right? Wrong. FEMLAB can still give this problem a boost
which is not commonly considered. FEMLAB solutions are well suited to non-
constant coefficients, i.e. transport properties that depend on the field variable.
For instance, for suitably low pressures and high temperatures, a gas must satisfy
the ideal gas law:

nM PM p=-=-
V RT

(2.11)

where R is the gas constant and M is the relative molecular mass of the species.
Under these conditions, it is rare to find a gas that has a constant heat capacity.
For instance, over a range of temperatures, the heat capacity of COz gas is well
approximated by a quadratic in temperature, (in MJkg-mol"C), with T in "C:

c, = 36.11 + 0.04233 T - 2.887~10-~T*

It follows that

f (T)
kR - k --

pc, 36.11PM

(2.12)

(2.13)
(T + 273)

(T) = l.+ 1.172~10" T - 7.995~10-~T'

72 Process Modelling and Simulation with Finite Element Methods

Suitable scalings for time and position,

x =yL kR
36.11 PML2

Z = t

substituted into (2.9) yields this simple form of the equation:

(2.14)

(2.15)

Now, let’s consider conduction across a stagnant C02 gas layer of length L
where horizontal boundaries are held constant at 400°C and 500°C.

Start up FEMLAB and enter the Model Navigator:

Model Navigator
Select 1-D dimension

Element: Lagrange - quadratic
0 More >>
0 OK

Select Classical PDEs + Heat Equation

This application mode gives us one dependent variable u, but in a 1-D space
with coordinate x. Now we are in a position to set up our domain. Pull down the
Draw menu and select Specify Geometry.

Draw Mode
Name: interval
start: 0
stop: 1
Apply

0 OK

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode
Select domain 1

Select domain 2

Apply/OK

Check Dirichlet and h=l; r=500 (T=500)

Select Dirichlet and h=l; r=400 (T=400)

Partial Differential Equations and the Finite Element Method 13

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

Add/Edit Constants
Name of constant: a1
Expression: 1.172E-3
Name of constant: a2
Expression: 7.995E-7
Name of constant: F400
Expression: 421.5

OK
Apply

Pull down the Subdomain menu and select Subdomain mode. Before setting
the equations, it is useful to define some intermediate variables to make the data
entry more concise. Pull down the options menu and select Add/Edit
expressions.

AddEdit Expressions
Variable name: FofT
Variable type: subdomain

0 OK

Ada
Now click on the definition tab.
Enter expression: (u+273)/(l+al *u+a2*uA2)/F400
Apply

Now pull down the Subdomain menu, select Coefficient View, and select
Subdomain settings.

Subdomain Mode
Select domain 1
Set f=O; c=l; d,=l/Foff

OK

Apply

Apply
Select the init tab; set u(t0)=500-100*x

Click on the mesh triangle on the toolbar, and then refine the mesh twice to 60
elements. Click on the = button on the toolbar to solve (stationary linear solver).
The steady state solution is unchanged from the initial condition, since for long
enough times, the accumulation term is immaterial. It certainly is for the

14 Process Modelling and Simulation with Finite Element Methods

stationary solver. So we can only influence the transient solution with a
temperature dependent diffusivity. So change the initial condition to u(t0)=400,
i.e., the left boundary jumps to u=500 to define time z=O.
elements.”

Now pull down the Solve menu and select the Parameters option. This pops
up the Solver Parameters dialog window.

Solver Parameters

Jacobian: numeric

Solve
Cancel/OK

General tab: select time dependent

Time-stepping tab. Take output times 0:0.01:0.2

Figures 2.4 and 2.5 show the rate of advance of the diffusive front.
In particular, since diffusivity increases with temperature, we find that the

profile reaches steady state more rapidly than with constant diffusivity. The self-
v n

similarity with q=- is not apparent in Figure 2.4, as the higher JE
temperatures home in on the steady-state linear profile faster than the lower
temperatures. Figure 2.5 shows the rise in temperature to the steady state value
at the midpoint of the domain, which has the expected s-shape, but again rises
faster than expected at short times.

x poslllon

Figure 2.4 Temperature profiles from T=O to 2=0.2.

Partial Differential Equations and the Finite Element Method 15

4000 002 004 006 008 0 1 012 014 016 018 02
Time

Figure 2.5 Temperature at position x=OS

Exercise 2.2

Solve for the same plots as Figure 2.4 and 2.5 with constant diffusivity f(T)=l.
How do the profiles differ?

2.1.3 The wave equation: A hyperbolic PDE

The 1-D wave equation (2.3) has also been studied to death. Nor does it
particularly turn up in chemical engineering applications. The obvious place is
the study of sound waves, which receives little attention in the chemical
engineering curriculum. So the major reason for including it here is
completeness. Does this mean that the wave equation is unimportant in the
chemical and process industries? Probably not. For instance, reactors are
known to exhibit chemical waves, waves on interfaces in condensers, swirl
atomizers, and distillation columns effect mass transfer, and acoustics, power
ultrasound, and sonochemistry are receiving much attention on the research
front. It just so happens that chemical engineers are taught little about waves,
and thus it is difficult to find classical textbook analyses of chemical engineering
unit operations in which waves play any role.

In this subsection, we will attempt to make the demonstration of wave
dynamics slightly more interesting by the use of periodic boundary conditions
and animation. Start up FEMLAB and enter the Model Navigator:

16 Process Modelling and Simulation with Finite Element Methods

Model Navigator
Select l-D dimension

0

Element: Lagrange - quadratic
More>>
OK

Select Classical PDEs + Wave Equation

This application mode gives us one dependent variable u, but in a l-D space
with coordinate x. Now we are in a position to set up our domain. This
application mode gives us one dependent variable u, but in a l-D space with
coordinate x. Now we are in a position to set up our domain. Pull down the
Draw menu and select Specify Geometry.

Draw Mode
Name: interval
start: 0
stop: 1
Apply/OK

Pull down the Mesh menu and select Parameters. By creating symmetry
boundaries, the endpoints become equivalent.

Mesh Mode
0 Symmetry boundaries: 1 2

Remesh

0 OK

APPlY

Apply

Now refine the mesh three times (120 elements). Now for the boundary
conditions. Pull down the Boundary menu and select Boundary Settings.

Boundary Mode

0 Check Dirichlet

OK

Select domain 1 and 2 (hold down CTRL key)

APPlY

Pull down the Subdomain menu and select Subdomain settings.

Partial Differential Equations and the Finite Element Method I1

Subdomain Mode
0 Select domain 1
0 Set f=O; c=l; d,=l

Set u-t(tO)= x*(l-x)/lO.

OK

APPlY
Select the init tab; set u(tO)= ~ech((x-0.5)*10)~2

APPlY

Now pull down the Solve menu and select the Parameters option. This pops
up the Solver Parameters dialog window.

Solver Parameters

Jacobian: numeric

0 Solve
Cancel
OK

General tab: select time dependent

Time-stepping tab. Take output times 0:0.05:2

Now generate an animation from the Post Menu, Plot Parameters: Animate
Tab. The final state at t=2 should look like Figure 2.6.

Waveform at time t=2

O 9 r

I I

0 0 1 0 2 03 0 4 0 5 0 6 0 7 0 8 0 9 1
x position

Figure 2.6 Waveform at t=2.

78 Process Modelling and Simulation with Finite Element Methods

Note that at all times, these interesting wave dynamics remain “fixed” at the
boundaries, since the Dirichlet boundary condition ensures zero boundary
amplitude. So how do we combat this? Let’s establish periodic boundary
conditions, which are effected by a little knowledge of how FEMLAB keeps its
books. When two boundaries are equivalent, FEMLAB adds the Dirichlet
conditions on both boundaries to the constraint:

l2.p (0)+h2u (0) = 5 + r2 (2.16)

So the modest change to implement periodic boundaries is to set hz=-l.

Pull down the Boundary menu and select Boundary Settings.

0 Select domain 2
Check Dirichlet h=- 1 ; r=O
APPlY

Repeat the solution procedure. How does the final state (t=2) compare with the
state without periodic boundary conditions (Dirichlet)? Did you notice any
difference in the wave dynamics during the animation sequence?

Exercise 2.3

Try the initial conditions u(tO)=sin(lO*pi*x) and u-t(tO)= - lO*pi*cos(1 O*pi*x).
What do you expect to see in the animation for u(t)? u-t(t)? Did anything
unexpected occur?

Note that MATLAB has a built-in constant pi.

The Finite Element Method

By now, you must be wondering how FEMLAB actually accomplishes this
magic of solving PDE systems. Finite element analysis has been around for
several decades, and has had commercial packages available since the 1980s. A
good introduction can be found in the book of Reddy [3]. It is not the intention
here to describe FEM in any great detail, nor to describe the full FEMLAB
implementation, but rather to give an impression of the type of calculations that
occur in FEM, and an understanding of why FEMLAB is a particularly
convenient tool for implementing FEM.

The essence of the finite element method is to state any constraints on the
field variables in weak form. To understand what a weak form is (and why
mathematicians termed it weak), it should be understood that the strong form of
a system of constraints is the partial differential equation system and appropriate

Partial Differential Equations and the Finite Element Method 79

boundary conditions. Why is it strong? Because the field variables are required
to be continuous and have continuous partial derivatives up through the order of
the equation. That is a strong requirement. The weak form places a weaker
restriction on the functions that could satisfy the constraints - discontinuities
must be integrable.

To see the equivalence between a PDE and its weak form, consider a
stationary PDE for a single dependent variable u in three spatial dimensions in a
domain Q, e.g. the general form:

v - r (u)= F (U) (2.17)

Let's suppose that v, called a test function, is any arbitrary function defined on
the domain S2 and restricted to a class of functions v E v . Multiplying (2.17)
by v and integrating over the domain results in

jvv-r(+ = j V ~ (u) d u (2.18)

where dx is the volume element. Upon applying the divergence theorem, we
achieve

n R

j c a d s -jvV.r(+ = j V ~ (u) h

When the PDE is constrained by Neumann boundary conditions, the boundary
term on (2.19) vanishes. This is one of the reasons that FEM have Neumann
natural boundary conditions. Recall in Chapter 1 we observed that finite
difference methods have natural Dirichlet conditions. This results in the
condition on the volume integral:

(2.19)
an Q Q

J " v ~ (u) - v v . r (U)] d u = o (2.20)
n

This must hold for every v E v . Now for the magic: finite elements and basis
functions. Let's suppose that u is decomposed onto a series of basis functions:

i

For instance, if the q$ are sines and cosines with the fundamental and progressive
harmonics, then (2.21) is a Fourier series. Instead, in FEM, the basis functions
are chosen to be functions that only have support within a single element, i.e.
they are zero in every element but one.

80 Process Modelling and Simulation with Finite Element Methods

2r

1.75 1

1.25 1
0.75 li
0.25 1
i-, I , , ,

2 4 6 8 10
Figure 2.7 Two piecewise linear basis functions in 1-D on adjacent elements.

Figure 2.7 gives an example of two Lagrange linear basis functions in 1-D.
Clearly, any function u(x) can be approximated to arbitrary accuracy with
piecewise linear basis functions and sufficiently small elements. The basis
functions can be taken to be higher order, in which case more than one unknown
ui is needed per element. So the number of unknowns rises with the order of the
basis functions. The number of basis function rises with order as well. For
Lagrange linear basis functions, the representation of the function in any element
is through two basis functions:

@=(@=1-((2.22)

where 5 is the local coordinate in the element. So for N elements, there are 2N
basis functions q$. Lagrange quadratic elements have three basis functions:

@=(1-<)(1-2<) @=4((1-() $=<(2(-1) (2.23)

Thus, for Lagrange quadratic elements there are 3N basis functions for N
elements.

Recall that (2.20) must be satisfied for all v E V, which we now take to be
the function space of all functions that are linear combinations of the basis
functions q$, i.e.

But because v enters (2.20) linearly, it suffices to show that if (2.20) is satisfied
for each of the basis functions @i playing the role of v, then it is satisfied for all
linear combinations of the basis functions (2.24), and thus for all v E V .

Partial Differential Equations and the Finite Element Method 81

Thus, the condition (2.24) is equivalent to a system of (k+l)N equations [(2.20)
for each 4,] in (k+l)N unknowns (the u,), where k is the order of the element
(k=l linear, k=2 quadratic, etc.).

Then there is the reason why FEM with FEMLAB has such utility.
FEMLAB automates the assembly of the (k+l)N equations (2.20). First, we note
that T(u) and F(u) are general, potentially nonlinear, functions of u. So, in
general, the solution is not achievable in closed form. In Chapter One, we
showed that FEMLAB has a built-in nonlinear solver for 0-D problems, i.e.
f(u)=O, where u was a single unknown value. The nonlinear solver was based on
Newton’s Method. The N-dimensional analogue of Newton’s Method for the
vector equation

L(U)=O (2.25)

where U is the vector of unknowns u, and L(U) is the system of equations found
by substituting the basis functions 4, for v in (2.20), is

(2.26)

where K(Uo) is called the stiffness matrix and L(U0) is called the load vector.
The stiffness matrix is the negative Jacobian of L:

(2.27)

So (2.26) is now a linear equation for U given the previous approximate solution
Uo. Thus, if Uo were close enough to a solution, the linear equation (2.26)
should find an improved approximate solution U, and this procedure can be
iterated until a solution is found to acceptable accuracy. Clearly, the nonlinear
solver by Newton’s Method is central to FEMLAB’s PDE solver. Yet FEMLAB
automates all of the steps involved in generating the finite element analysis of a
PDE. It symbolically forms the Jacobian of the nonlinear operator L(U) if it can.
If it cannot, it numerically assembles the Jacobian. If the PDE were itself linear,
this is not too cumbersome. Yet assembling the stiffness matrix is a Herculean
task - it was common that the finite element analysis, both meshing the elements
and assembling the stiffness matrix was the central feature of many doctoral
studies in the sciences and engineering not too long ago. For new combinations
of PDEs, or even variations on the coefficients (quasi-linear rather than constant,
for instance, as in 42.1.2), the bookkeeping to organize the assembly of the
stiffness matrix is a daunting task. Furthermore, the sparse solver methods for
(2.26) and time-integration required substantial programming effort to
coordinate for a single problem. Yet FEMLAB has done it as a set of
subroutines (MATLAB functions) that coordinate multiple PDE systems
(application modes) seamlessly.

82 Process Modelling and Simulation with Finite Element Methods

Before moving in to explain the implementation of boundary conditions we
shall work through a simple ODE to highlight the concepts we discussed so far.
Following the worked example should guide you through the weak formulation
and finding approximate numerical solutions to a given second order ODE.

Exercise 2.4: A worked example offinite element calculations in detail

To elaborate the concepts described above a simple ODE is solved using the
variational principles that forms the core to FEM. The problem is simple. Solve
the second order ODE

d ' u 2 y + 4 u =8x
dx

(2.28)

subjected to boundary conditions

u(0) = U(X /4) = 0

using the weak formulation.
This simple second order ODE has an analytic solution (Prove it!)

(2.29)

Since we know the analytic solution, a comparison would give the error of the
approximate solution we find.

The first step for the weak formulation is to assume a weight function and a
trial function. Take U(x) as the trial function and q5 (x) as the weight function.
We discuss the exact forms of these functions later. The trial function U(x) forms
a solution to the ODE. Therefore, if we substitute U(x) in (2.28), the resulting
equation gives the residual:

(2.30)

Subsequent steps really amount to the minimization of this residual. The
minimization process starts by evaluating the weighted residual. To evaluate the
weighted residual, multiply (2.30) by q5 (x) and integrate over the domain (i.e.
05 x 5 n/4).

(2.31)

Partial Differential Equations and the Finite Element Method 83

Using integration by parts, one can simplify above equation to obtain

z l4

(2.32)
dx dx

To advance further we need to make some crucial assumptions. Since we are free
to assign any function to U(x) and $(x) as far as they agree with the boundary
conditions, we assume U(x) = Nx). This is known as Galerkin’s method. If
U(x) # fix), then it gives the Rayleigh-Ritz formulation. We have to select an
algebraic function of x to satisfy the boundary conditions u(0) = u(7d4) = 0.

N

q (X) = u(x) = @ (X) = C l q l + c2q2 +. . . . +cN(pN = cjqi (2.33)
i=O

We assume N functions as follows.

Therefore

?T N

q (x) = c C i X i (- - x)
i=l 4

N n q N = X (--x)
4

(2.34)

This selection satisfies the boundary conditions regardless the number of terms
included in the series. Since U(x) = Nx), the weighted residual becomes

z14 z14

R(x) = L[4q2 -[z I l d x - 8 j@x’dx (2.35)
0 2 0

By substituting (2.34) in to (2.35) and evaluating the integral we obtain an
expression for R independent of x. However, that expression contains N
unknowns, ci . We have to evaluate values of the ci so that the weighted residual
is minimum.

From (2.34)

(2.36)

84 Process Modelling and Simulation with Finite Element Methods

Therefore we have

+ 2 -
i + j + l i + j + 2 i + j + 3

i j 2 i j + i + j (i+l)(j+l) + -
i + j - 1 i+j i + j + l

Then we minimize the

(2.37)

residual by tahng derivatives of R w.r.t ci. For
predetermined number N , this results in N algebraic equations that have to be
solved simultaneously.

(2.38)

For N = 2 there are only two unknowns; cl and c2. It produces two linear
equations.

0 .122~~ +0.048~, = -0.120
0 .048~~ + 0 . 0 3 3 ~ ~ = -0.063

In matrix form

0.122 0.048 c 0.048 0.033

It resembles the general form

-0.120 [:} = { - 0.0631

(2.39a,b)

(2.40)

where K is the Jacobian (stiffness matrix), and x is the vector of unknowns. L is
the forcing vector (load vector).

Solution to (2.40) gives us

c1 = -0.554579
C , = -1.112560

Partial Differential Equations and the Finite Element Method 85

Therefore the solution to (2.28) is

7c 7c u(x) = -0.554579x(- - x) - 1.1 1256x2(- - x) (2.42)
4 4

If we go one step further by assuming N = 3, then we get 3 algebraic equations
with three unknowns; cl,cz and c3. The resulting matrix equation is

0.1216 0.0477 0.0228 c1 -0.120
0.0477 0.0328 0.0200 c2 = -0.630
0.0228 0.0200 0.0139 11 c, I 1 - 0.35 1

C , = -0.588 C , = -0.838 c3 = -0.349

The solution for (2.43) is

Therefore the new solution for (2.28) becomes

(2.43)

7c 7c 7c
u (x) = -0.588x(- - x) - 0.838x2(- - x) - 0.349x3(- - x) (2.44)

4 4 4
Figure 2.8 shows the plots of (2.42) and (2.44) together with the analytic
solution (2.29). As we can clearly see, the approximate algebraic solutions can
achieve good agreement with the exact solution if more terms of the series are
included.

If you worked the example, by now you have a clear idea of the weak
formulation of a solution. In next section we discuss the implementation of the
boundary conditions in FEMLAB.

2.1.4 Boundary conditions

As described for the canonical case above, one should note that the stiffness
matrix K is equivalent to Neumann boundary conditions. As we saw in Chapter
One, pure Neumann conditions lead to a singular stiffness matrix, which
FEMLAB could not directly treat, since it resulted in the addition of an arbitrary
and large constant to the solution found by projection methods on to the
eigensystem of the stiffness matrix. One of the vagaries of FEM is the treatment
of boundary conditions.

We could propose to treat boundary conditions much as is done with finite
difference methods. The appropriate lines of the matrix equation are replaced by
direct constraints on the unknowns uI so that the order of the matrix is
preserved. This has the unpleasant effect of breaking the sparsity of the stiffness

86 Process Modelling and Simulation with Finite Element Methods

D * x x 8 ~ ~ ~ ~ ~ ~ ~ % ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0

-0.02

-0.04

-0.06

-0.08
h

v X
a

-0.1

-0.12

4.14

-0.16

-0.18

X

Figure 2.8 Plot of solutions to (2.4.1). Algebraic function with 3 components of the series is in good
agreement with the analytic solution.

matrix with regard to some boundary conditions, and thus artificially requiring
full matrix solvers that are much less accurate and inefficient by comparison to
sparse solvers for the same matrix equation. FEM has an elegant solution using
Lagrange multipliers - a well known method for dealing with equality
constraints in optimization problems. Suppose in addition to the PDE
constraints, we have a series of boundary conditions that are to be satisfied in
weak form for all v E v . By applying the basis function expansion and writing
the boundary integrals for each basis function, by analogy to the PDE constraints
(2.25), we arrive at a vector equation for the boundary constraints:

M (U) = O (2.45)

This constraint residual equation, as it is known, need not be N equations.
Usually it is just a handful of equations in N unknowns, as not all basis vectors
taken as test functions v contribute a boundary constraint. The linearized version
of (2.45) reads similarly to (2.26):

where N is the negative Jacobian of M:

Partial Differential Equations and the Finite Element Method 87

(2.47)

Now for the clever trick. The stiffness matrix equation is augmented by a vector
of unknowns A, called the Lagrange multipliers, which multiply NT, where the
superscript T means transpose:

K (uo) (u - u,) + N (u, >’ A = L (uo) (2.48)

Why is this clever? Well, if the constraint (2.45) is satisfied, then there is a
unique set of Lagrange multipliers satisfying (2.48). (2.46) and (2.48) permit the
simultaneous solution of more than just boundary conditions, however. Any
constraint - internal pointwise, subdomain integral, edge or boundary that can be
expressed in weak form can be treated by the Lagrange multiplier method.

Lagrange Multipliers

So how do Lagrange multipliers ensure that M(U)=O is satisfied? By a variational
principle. With A=0 (2.48) is equivalent to the minimum principle for

(2.49)

If we wish to ensure the constraint (2.45) is satisfied simultaneously, then we add
a weighted penalty to (2.49) for the extent to which M(U)=O is not satisfied. The
weights are called Lagrange multiplers A.

- U ~ L + A . M (2.50)

Now we use the linearization of M(U)=M(Uo)+N(U,)(U-Uo) to simplify (2.50).
Note that constant terms do not contribute to the minimization.

(2.51)

The minimization (2.51) is then equivalent to (2.48) , i.e. the solution to (2.48)
minimizes (2.51). In the parlance of FEM, (2.51) is the “minimization in the
energy”, i.e. weighted by the stiffness matrix K. It should not be confused with
the least squares minimization, which by analogy with (2.50) is

(2.52)

88 Process Modelling and Simulation with Finite Element Methods

Linearization of L and M leads, after much re-arrangement and neglect of
constant terms, to the condition

(2.53)

Thus, the solution U to (2.53) by a theorem in linear algebra, is the solution to
the normal equations [4]:

K ~ K (U -u, >+ K~ (K') ' ivT . A = K T L (2.54)

which is the least squares solution to

K (U -u , ,>+(K~ r1 N~ . A = L (2.55)

So the solution to (2.55) ensures that the constraint (2.45) M(U)=O is satisfied in
the least squared error sense (2.52), whereas the constraint (2.48) satisfies (2.45)
in the sense of lowest energy. FEMLAB uses (2.48) rather than (2.55) for
simplicity, rather than (2.55) for greatest accuracy. The distinction is important
as the least squared error minimization (2.52) is defined for any general
nonlinear operator L(U), but the stiffness energy (2.50) is only sensible for K
that is symmetric and positive definite. If this is not the case, then the Lagrange
multipliers in (2.48) are merely a convenience, not a guarantee that the constraint
(2.45) is satisfied in any approximate sense. (2.55) is a stronger condition, yet at
the price of extra matrix manipulations. (2.52) is open to the criticism that M(U)
is not constrained to be a penalty, so a stronger condition is to explicitly consider
each constraint as a penalty individually [5]

!- (2.56)

This technique does not render its solution so succinctly as a matrix equation, as
the constraint term involves N,M, K and A.

Weak terms
So if you were wondering how we treated the point source of vorticity in (2.1. l),
it was by a weak term, which merely evaluated the integral

jd (X) h = v Ixzo (2.57)

and made the appropriate contributions to the stiffness matrix and load vector in
(2.49).

n

Partial Differential Equations and the Finite Element Method 89

2.1.5 Basic elements

Fundamental to the FEM is the concept that any domain can be implemented as a
collection of smaller subdomains of preferred shape. These subdomains are
called finite elements. Corners of an element are called nodes at which the
solutions to field variables are computed. There can be nodes in between corner
points that are commonly called edge nodes. In FEMLAB, when you generate
the mesh, it subdivides the computational domain in to a selected form of
elements and form of nodes accordingly. One can find more than a hundred
types of elements in use. If you are a beginner, it is natural to be puzzled over the
type of elements that should be used and the number of elements to be used.

The discretization process proscribes the type and the number of elements.
The number of elements is directly connected with the accuracy of the solution.
The higher the number of elements used, the lesser will be the error. However,
having a large number of elements would be computationally expensive,
demanding a large chunk of RAM and an extended runtime.

Defining an unnecessary number of elements is a very common practice.
There is no formula that allows you to choose optimally exact number of
elements. It is only by experience that you would be able to decide the right
amount of elements to pack in a domain. Though the accuracy increases with the
number of elements N, there will be a certain number N, beyond which the
sensitivity of accuracy becomes negligible.

Figure 2.9 shows the normalized error against the number of elements N.
The number of elements doubles in each iteration. One can see that the last three
points do not make any considerable improvement on the accuracy. However
one can perform a few short runs to find out the appropriate number of elements
to be used. There are instances where one is interested in a certain region of the
domain rather than the whole domain. For instance, take the case of the flow past
a cylinder. The boundary layer behavior around the cylinder is to be
investigated. In such cases one can and should pack more elements around the
cylinder having a lower density of elements in the far field. This way one can
attain the accuracy required without increasing the number of elements.
FEMLAB allows such grid stretching. Another point worth mentioning at this
juncture is the skewness of the elements in stretched grids. Skewed elements
make the formation of the Jacobian impossible. Therefore great care should be
taken in using stretched meshes.

The type of the elements to be used depends on the problem that has to be
solved. The dimensionality of the domain defines the dimensionality of the
elements. The most simple is the 1-D element that represents a line segment
between two nodes at each end. The most fundamental element in 2-D is a
triangle where as in 3-D it is a tetrahedron. Table 2.1 shows some of the basic
elements in use with respect to the dimensionality. Though we used straight

90 Process Modelling and Simulation with Finite Element Methods

40 60 80 100 120 140
-0.2

Number of elements N

Figure 2.9 Normalized error vs Number of elements. The increase of N results in improving the
accuracy but beyond certain number Nc, the effect become negligible.

lines, curvilinear segments between nodes would provide a more general form of
the elements.

Though the geometry of the element is an important factor, the element
types are categorized according to the interpolation polynomials used with them.
According to this categorization there are three types of elements: Simplex,
Complex and Multiplex. If the polynomials used have linear terms and constants
with nodes at the corners, then the elements are called simplex. Complex
elements use higher order polynomials (quadratic, cubic, quintic, etc.) with edge
and internal nodes together with corner nodes. Multiplex elements have their
sides in parallel with the coordinate axes and use higher order polynomials.

As mentioned above, complex elements use higher order polynomials. The
combinations of polynomials and nodal configurations can be determined using
the Pascal triangle, Pascal tetrahedron or Pascal hypercubes. Table 2.2 shows
the Pascal triangle with polynomials up to fifth order. The polynomials that are
selected should be complete: i.e. it should contain all terms up to the highest
order. For example cI+c2x+c3x2 is complete while c1+c2x2 is not since it does not
contain the first order term. For any 2-D element, by taking all the terms above a
selected horizontal line, one can easily obtain the complete polynomial up to the
required order. In general there should be a node for each term of the
polynomial. For example a cubic element should have four nodes along each
side. But there can be more complex combinations. Table 2.3 shows the linear,
quadratic and cubic elements for a 2-D triangular element.

Partial Differential Equations and the Finite Element Method 91

Linear

Dimensionality

Quadratic Cubic

1 -D

2-D

3-D

1

Shape

Regular Irregular
Hexahedral Hexahedral Tetrahedral

Table 2.1 Basic elements.

Constant
Linear
Quadratic
Cubic
Quartic
Quintic

Table 2.2 Pascal Triangle for 2-D elements.

FEMLAB provides you with two major types of elements irrespective to the
geometry, namely Lagrange and Hermite elements. These elements are so named
because of the type of the interpolation polynomials used in them. As the name
suggests, the Lagrange polynomials are used as the basis functions in Lagrange
elements. Suppose a field variable u(x) is expressed using Lagrange polynomials
L, over a 1-D element. Then,

u(x) =L&)ul +L,(x)u, +*.-+L,(x)u, (2.58)

92 Process Modelling and Simulation with Finite Element Methods

where u, are the unknown coefficients. The L,(x) is given by

n x - x M

M=1,M#N x N - x M

(2.59a)

The expansion generates the polynomials of desired order. Lagrange elements
are the most commonly used type in CFD. They provide the value of the
variable at nodes.

Hennite elements use the Hennite polynomials to interpolate the values of
the field variables. The main difference between Lagrange and Hermite elements
is the degrees of freedom (DOF) available. In the case of Lagrange elements
DOF are the values of the function at nodes (This consists values of all variables
at the node). However in Hermite elements other than the function values at
nodes, the first derivatives of the variables at corner points are available. Again,
suppose a variable u(x) to be determine over 1-D elements. Since the values at n
th and n+lth nodes, u(xn) and U(X,+~) and the derivatives du dx , and

du/dxli+l are known a polynomial of four unknowns should be used to

approximate u(x).

I l i

(2.60)

Since xi and xi+! are known positions, one can easily write four equations: two
with function values at nodes and two with first derivatives at nodes.

3 u (x) = a, + a 2 x + a 3 x 2 + a , x

where du denotes the derivative of u w.r.t. x at the nodes. By matrix inversion
a n c a n be expressed in terms of nodal values and values of derivatives. The
resulting equation is

where qi (x) are the Hermite interpolation functions (cubic functions in this

case, also known as cubic splines).

Partial Differential Equations and the Finite Element Method 93

If YOU observed closely, you could see that the cubic interpolation function
in Lagrange elements needs four nodes whereas in Hermite elements only two
nodes are required. Hermite elements are commonly used in solving load and
stress distributions of trusses.

Further to these two types, FEMLAB offers curved mesh elements and
Argyris elements. The curved mesh elements are provided to facilitate the
approximation of true boundaries with higher accuracy. The Argyris elements
are fifth order Hermite elements using nodal values as well as derivatives up to
second order. It also uses the normal components of v u at the midpoints of the
sides. Argyris elements require determination of 21 constants of a quintic
polynomial. In addition to predefined elements, FEMLAB allows user defined
elements. We advise interested readers to consult FEMLAB manuals for detailed
description on how to define a new class of elements.

Here we provided a sufficient description of basic elements to make a
beginner comfortable with the jargon and using the elements with some
understanding. With FEMLAB, one does not need to become an expert in
meshing techniques and development of elements. As you have already seen,
once you generate the domain over which the differential equations are to be
solved, meshing is just a click of a button away. However, if a reader is
interested in understanding the basic concepts, development of elements and
meshing techniques, refer to [6] and references there in.

Exercise:

To explain the formulation and solution methods involved in FEM, a worked
example is considered. In 1.5.1, heat transfer in a nonuniform medium was treated.
Here we consider similar problem with more simplifications. Instead of a variable
heat transfer coefficient, we consider a constant coefficient and considerxx) to be
uniform over the length of the domain. The length of the domain L=l. Figure 2.10
shows the physical system. We assume the heat flow across any cross section
(shown as A in Fig. 2.10) normal to the centre axis to be uniform. Therefore the
temperature varies only along the axis: hence reduced dimensionality.

The heat transfer in this problem is fully described by the equation (1.29).
With the uniform cross section A=l, and constant source Q =f(x) in (1.29). The
equation becomes:

(2.63)

The data for the problem are:
k = 3.3J/"Cm s
Q = 1OJ/s m

qIG1 =1.25J/m2 s
n,, =I

94 Process Modelling and Simulation with Finite Element Methods

I
L

I

Figure 2.10 Axial heat transfer along an insulated rod. Each end has temperatures Ts and Te. The
length of the rod is L and cross sectional area A=l. Heat is generated within the rod at a constant
rate of Q.

Step 1: Variational Formulation

This PDE is the strong form of the equation for heat conduction within a
cylinder. The first step in FEM is to derive the weak form of the equations. To
derive the weak form, equation (2.63) is multiplied by a weight function and
integrated over the domain.

Integrating by parts (using the divergence theorem in 1-D) we obtain

1 1 I(* k c dk dx)..= [wk $1, + [wQdx
0

(2.64)

(2.65)

From heat transfer theory, Fourier’s law gives the heat flux across a unit cross
dT
dx

section is given by Fourier’s law q = -k - . Therefore,

(2.66)

From earlier sections, we know that the polynomial basis functions have to be
used to approximate the unknowns w and T. Selection of these polynomials is
the second step of the FEM procedure.

Step 2: Discretization and Choice of Polynomials

It is obvious that we are going to use 1-D elements. We can have simplex
elements for simplicity i.e. linear polynomials to approximate the unknowns.

Partial Differential Equations and the Finite Element Method 95

Figure 2.1 1 shows the descretization of the cylinder. It uses nodes to divide the
length into equal segments. The higher the number of segments, the higher will
be the accuracy. However in this example, to demonstrate the FEM formulation
we use fewer segments with nodes at each end. The polynomial defined
piecewise varies linearly between any two nodes. In general, suppose the
temperature T(x) is approximated as

T = a + b x (2.67)

Now, suppose we have divided the length of the cylinder to N-1 elements with N
nodes as shown in Figure 2.11 (d). A random element extending from .q to xj is
considered. The temperatures at nodes are assumed to be Ti and TJ. From (2.67)
we can write the temperatures at nodes i and j .

T, =a+bxi (2.68a)

Tj = a + b x . J (2.68b)

Solving for a and b gives

a = - :(Tx. J - T . x .) 1 1

1
1

b =-(T, -T,)

0 L 0

D X . X .
I ' (4

1

(2.69a)

(2.69b)

Figure 2.1 1 Discretization of the cylinder. (a) is the schematic representation of the cylinder. (b)
and (c) shows two and three element discretization. In calculation we use (c). (d) shows the general
case where the cylinder is divided to N elements. (c) is used to derive the general form of shape
functions.

96 Process Modelling and Simulation with Finite Element Methods

where 1 = x j - x i = length of the element. Since we know a and b (2.67) can be

rewritten as

T" =-(xj 1 - x)q + i (x - x j) q
1

(2.70)

The equation (2.70) is the linear approximation function for the element. It
describes the temperature variation at any point within the element (hence the
notation T). Instead of a and b, we now have temperature values at the nodes Ti
and as unknowns.

1 1
1 1

Let N j = - (x j -x)and N j = - (x - x ~) . Then (2.70) can be rewritten as

T" = NiT, + N j T j (2.71)

Ni and Nj are known as the shape functions.

N j = I at x = x i and Ni = O at X = X .

N j = l at X = X . and N . = O at x = x j

The temperature distribution along the element is determined by these two
functions and end values. Figure 2.12 shows the profiles of Ni, Nj and the
resulting temperature 7". One can generate 7"'s for all elements. These element
shape functions can be used to formulate the global shape functions. Figure 2.13
shows the definition of the global shape functions.

If we consider the first element there are two local shape functions: N:
which is associated with node 1 and N i associated with node 2. For the second
element again we have a local shape function associated with node 2 defined as
N ; . Each global shape function is zero elsewhere except in the elements
associated with the corresponding nodes. This enables us to define the global
temperature variation.

J

J J

- - - _ - _

"d " i
Figure 2.12 Profiles of shape functions N, and Nj and temperature profile T along the element
constructed using shape functions.

Partial Differential Equations and the Finite Element Method 97

Figure 2.13 Global shape functions.

N

T = ~ T ' = N ~ ~ + . - + N , ~ + . - N , T ~ = ~ N ~ T ~ (2.72)
j=l

This completes the specification of the basis functions. Now we can return to the
variational formulation again.

Step3: Assembling the Element Equations to Form the Global Problem

In step 2 we derived the approximation function for T. Galerkin's formulation
assumes the weight function to be same as the approximation for the unknown
variables. Therefore we have w = T. With this, we can substitute T and w in
(2.66).

Ik I b Is

For clarity we consider terms of (2.73) separately. The equation (2.73) actually
gives the error of the approximate solution (refer to exercise 2.4). To minimise
the error, equation (2.73) should be differentiated w.r.t Ti which are the
coefficients of the polynomials. The minimization process converts Ik into the
stiffness matrix K. For four nodes (i.e. three elements as in figure 2.1 lc) we can
expand Ik as below. In what follows we indicate the limits as xi and xj. This is to
reduce the complications that arising in evaluating the terms. The intervals in the
integrals depend on global shape functions.

98 Process Modelling and Simulation with Finite Element Methods

11

I1
j[; N4T4 [$ N,T, + N2T2 + - N3T3 + - N4T4

d d d

dx dx dx dx

d d d

dx dx

X I

Ik(T)= / [i N , T , [' N , q +-N,T, +-N,T, +-N,T, dx+
4

(2.74)

N2T2 + - N3T3 t - N4T4

d d d

dx dx

d d d

dx dx

N2T2 + - N3T3 i- - N4T4 dw +
X I

x,

In the minimization process we differentiate Ik(T) w.r.t. each Ti and set each
derivative to zero. This procedure generates a number of equations equal to
number of nodes. For instance the differentiation of (2.74) gives

Likewise, there will be three more equations. In matrix form it gives the stiffness
matrix.

K =

(2 .75)

Partial Differential Equations and the Finite Element Method

K is a synmetric matrix and Galerkin's method forces this symmetry. Ib and I, in
(2.73) give rise to two 1 X 4 matrices:

99

(2.76)

The compact equation is [K] { x} = { L} where F= fb+f,. The column matrix fb
contains the boundary terms and f, contain the source terms. x is the vector of
unknowns (nodal temperatures in our case). Components in L, fb and f, have to
be evaluated elementwise.

Step 4: Numerical Manipulation

As we formulated the global problem in step 3, the rest is down to matrix
manipulation to evaluate the unknowns. As the first step we have to evaluate the
components K,, of stiffness matrix K. K,, corresponds to node 1. Therefore

N: and N i are the only non-zero global shape functions.

dN: dN: dx 0.33

K,, = k--
0 dx dx

dx 0.33 dN: dNk K12 = 5 k- -
0 dx dx

0.33

= [3.3[-&)[-&&=10

K,, = K,, = 0

In evaluating terms in the second row we immediately make use of the symmetry
of the matrix.

100 Process Modelling and Simulation with Finite Element Methods

Upon evaluating the Kzz we run into a problem -- which shape function to
use N i or N ; ? The solution is simple. Since those two functions are defined
over two elements, we have to integrate relevant function over the appropriate
element considering the limits from 0 to 0.66 (or more generally 21).

dx + '7 dNl dNl dNi dNi dN, dN2 k - - dx= I k- -
dx dx 0 dx dx 0.33 dx dx

dx --
0.33 0.66

K,, =

= 0.33 [3.3 [L][L] d x + l E . 3 [-&)[-&)dx=20

0.33 0.33

K2, involves functions defined only over the second element. Hence N t
and N: are to be considered.

dN; dN; dx 0.66

K23= k - -
0.33 dx dx

= 073 ,3 (-L] (+= 0.33 0.33 -10
0.33

K24 =O since N4 does not share node 2. Kjl =O according to the same line of
reasoning. Kj2 =KZ3 =-lo and Kj4 is to be evaluated in the same manner we
evaluated KZ3. Again &1=K42=0 as the shape functions do not share the node in
question. K43 = K34 by symmetry. K33 and K44 are to be evaluated in the same way
we evaluated the Kz2, considering the relevant shape function over the relevant
domain. The completed stiffness matrix is given below.

10 -10 0 0
-10 20 -10 0

(2.77)

This is the famous tridiagonal matrix in FEM. In this case it is only 4x4 since we
have only four nodes. With full modeling, one would get a huge, sparse matrix of
few thousands of components, yet still banded.

Next step is to evaluate the components in fb and f,. In evaluating the terms
in fb it is important to identify only N , and N4 remain nonzero at x=O and x=l . In
fact Nl = N4 =1 at x=O and x=l.All other shape functions are zero as far as start
and end points are concerned. Therefore

Partial Differential Equations and the Finite Element Method 101

(2.78)

In computing the terms in fs, the integrals are to be evaluated taking into
consideration where the global shape functions are defined,

f, =

n
0.33 0.66

jQN:dx+ [QN2dx
0 0.31

0.66 1 .o
jQNidx+ JQN2dx

0.33 0.66

L 0.66

1.65
3.3
3.3
1.65

-

(2.79)

By putting together (2.77), (2.78) and (2.79), the complete matrix equation is
obtained.

(2.80)

From here onward, matrix manipulation become the main focus. qF0 is to be
evaluated once temperatures are estimated. This is possible since TI is known a
priori. We leave solving (2.80) to the reader. However, after few manipulations
we found i]=[l:71 2.01

2.11

There is an analytic solution for (2.63). The temperatures at nodes calculated
using the analytic solution are T,=l, T2=1.96, T3=2.59 and T4=2.89.

102 Process Modelling and Simulation with Finite Element Methods

Clearly, four element approximate solutions are not particularly accurate.
The reader can readily implement this example in FEMLAB for arbitrary
accuracy. The purpose of this four element worked example is to make concrete
all the steps that are automatically done by FEMLAB upon specifying the
problem (2.63) and using the default settings and options.

This example discussed the basics of FEM. However we left untouched
many important issues. For an in depth study of FEM the reader is referred to [3]
and [6]. The example is targeted to give an insight to what happens inside
FEMLAB when you set the problem and ask it to solve. The availability of
software packages like FEMLAB greatly reduces the need for understanding the
fundamentals of the FEM. Instead of spending a considerable time on learning
the method, one can concentrate on solving the problems and physics involved.
However, it should be mentioned that an understanding of the core issues in
FEM might help in describing the errors and interpreting solutions in some
cases.

Exercise: Steady state heat transfer in 3-0

In section 2.1.1 we considered the steady state heat transfer equation with a
distributed source, the Poisson equation. Here, we demonstrate the 3-D solution
without the source - Laplace’s equation. There is nothing particularly new in
this example except the demonstration of 3-D modeling. Since all of the models
in this book are run on a relatively low performance PC, complicated 3-D
modeling would tax its resources. Consequently, this is the only 3-D example in
the book. In 3-D modeling it is especially important to conserve memory by
taking full advantage of symmetries in your geometry. In this problem, we will
model the steady heat transfer within a hexagonal prism with differentially
heated (or cooled) basal and side planes. The basal planes are held at the hot
temperature (T=l) and the side faces are held at the cold temperature (T=O).
Since the steady state solution is sought, the thermal diffusivity is immaterial -
as long as the medium is conductive, it achieves the same steady state. Figure
2.14 shows the 3-D geometry and mesh for our model.

But since the
differential equation (2.6) (with f(x)=O) and the geometry admit six-fold periodic
symmetry, solutions to (2.6) on Figure 2.14 are periodically extendible to the
full hexagonal prism. And all solutions to (2.6) on a hexagonal prism are
periodically reducible to a solution on Figure 2.14. It is important when
attempting to exploit geometrical symmetry to make sure that the equation and
boundary conditions, in general the entire model, shares the symmetry property.
Furthermore, one should be careful about solutions that break symmetries
inherent in the model description and domain. Nonlinear problems can admit
solutions that break the symmetry of the equations and the boundary and initial
conditions - by bifurcations typically. All the different solutions to a nonlinear

Figure 2.14 does not resemble the hexagonal prism.

Partial Differential Equations and the Finite Element Method 103

Figure 2.14 One-sixth segment of a hexagonal prism and standard mesh.

system must satisfy the symmetry conditions collectively, but may violate them
individually. Here we are safe - Laplace’s equation is linear and it is not an
eigenvalue problem.

Start up FEMLAB and enter the Model Navigator:
__

Model Navigator
Select 3-D dimension

0 OK
Select Classical PDEs - Laplace’s Equation

This application mode gives us one dependent variable u, in a 3-D space with
coordinates x,y,z. Now we are in a position to set up our domain. Pull down the
Draw menu and select Add/Edit/Delete work plane. Accept the x-y plane and
defaults. Enter a triangle with vertices (O,O), (l ,O), (0.5,0.8) by adding line
segments. Edit the last vertex (double clicking) to amend the point to (0.5,
0.866025). This should give a fair representation of an equilateral triangle for
the basal plane of our hexagonal prism. Use the palette to “coerce to solid”
CO1. Now for the fun part. Select from the Draw menu: extrude. Accept the
defaults, in particular the distance 1 in the z-direction. The product of this
drawing activity should give the equilateral triangular prism of Figure 2.14.
This is the second easiest drawing technique (extrusion) among those available;
the easiest is to select primitive 3-D objects.

All of the interest in Laplace’s equation lies in the boundary conditions. First,
let’s set up a mixed set of Neumann boundary conditions for the symmetry edges
and Dirichlet conditions for the fixed temperature faces. Pull down the
Boundary menu and select Boundary Settings.

104 Process Modelling and Simulation with Finite Element Methods

Boundary Mode
Select domain 1,2 (sides) and choose Neumann
Select domain 3,4 (top, bottom) and choose Dirichlet
and set h=l, r=l
Select domain 5 (back) and choose Dirichlet and set
h= 1, r=O
OK

Click on the Solve button (=) to arrive at a solution resembling Figure 2.1.5.
This solution is not, however, the most general periodic solution possible. To
make the solution periodic, we need to alter our boundary conditions. The
conditions on domains 1,2 (sides) must become Dirichlet, with one set to h=l
r=O and the other set to h=-1, r=O. Next, under Mesh Parameters, symmetry
boundaries 1 2 must be set. This is the standard recipe for periodic boundary
conditions, but 3-D adds a new twist. If you try the above, FEMLAB should
issue an error “NaNs or Infs encountered during mesh generation.” I am grateful
to Shu-Ren of COMSOL who realized that the geometry of each periodic face
must be identical to machine precision so that each face meshes exactly the same

for the faces to coincide. Although - =: 0 . 8 6 6 0 2 5 , this is not exact to

machine precision. The solution is to edit the model m-file and insert the
MATLAB command for the above number, so that internal precision is used.
The model m-file should be edited near the top under the geometry specification
making the obvious replacement. A similar solution to Figure 2.15 is found.
Note that the periodic solution requires only 6723 elements, by comparison to
the no flux BC model which used 73.52 elements. This is a modest saving, but
worthwhile nonetheless.

2

temperature u
Max 107

1,

08.

06.

04,

02,

0,

1

Figure 2.15 Temperature profile within a segment of the hexagonal prism (tetrahedron plot)

Partial Differential Equations and the Finite Element Method 105

% Geometry
p=[o 0.5 l;O sqrt(0.75) 0 1 ;
rb={1:3, [l 1 2;2 3 31 ,zeros(3,0) ,zeros(4,0)};
wt={ zeros (I, 0) ,ones (2,3) ,zeros (3,0) ,zeros (4 , 0) } ;
lr={ [NaN NaN NaN], [O 1 0;l 0 11 ,zeros(2,0) ,zeros(2,0));
trnp=solid2 (p,rb,wt, lr) ;
gl=extrude(trnp, 'Distance',l, 'Scale', [1;1], 'Displ', [O;O], 'Wrkpln', [O
1 o ; o 0 . . .
l;o 0 0 1) ;

An exercise for the reader. Compute the flux across all boundaries. What would
you expect the sum to be theoretically? Why is the discrepancy appreciable?

2.2 Summary

The flexibility of FEMLAB and FEM analysis in treating higher dimensional
problems and canonical PDEs was explored. The ease with which point sources,
quasi-linear terms, and periodic boundary conditions are treated was
demonstrated. An overview of how the stiffness matrix, load vector, and general
(boundary) constraints are dealt with by the FEM approach was presented.
Worked examples of the FEM approach illustrated the principles.

References

1. Constantinides A. and Mostoufi N., Numerical Methods for Chemical
Engineers with MATLAB Applications, Pretice Hall, Upper Saddle River
NJ, 1999.

2. Freiden R.B., Physics from Fisher Information: A Unification, Cambridge
University Press, 1998.

3. Reddy J.N., An Introduction to the Finite Element Method, McGraw-Hill
Inc, New York, 1993.

4. Strang, G. Introduction to Applied Mathematics, Wellesley-College Press,
Massachusetts, 1986, p. 37.

5. Mitchell, A.R. and Wait, R., The Finite Element Method in Partial
Differential Equations, Wiley-Interscience, New York, 1977.

6. Chung T.J., Computational Fluid Dynamics, Cambridge University Press,
Cambridge, 2002.

This page intentionally left blank

Chapter 3

MULTIPHYSICS

W.B.J. ZIMMERMAN
Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Sheffield S l 3JD United Kingdom

E-mail: w.zimmerman@shefiac.uk

Multiphysics is a recent conceptualization to categorize modeling where different
physicochemical mechanisms are prevalent in a given application, where these
mechanisms are modelled by wholly different field equations. But to be multiphysics,
the field equations must couple. In this chapter, we treat models of multiphysics for
thermoconvection and non-isothermal chemical reactors as examples of the genre of
multiphysics. Applications in later chapters show largely multiphysics modeling since
“single physics” models are likely to be well studied in their core disciplines. We also
take the opportunity to introduce the concept of parametric continuation, which is an
essential mechanism for arriving at the solution to highly nonlinear problems by inching
there by starting from nearby solutions in function space or even linear systems. The
model is then altered to treat the differential side wall heating of water between walls
held at the freezing and boiling points (without boiling) and the full dependency of
buoyant force on temperature. Simulations in large cavities show the beginnings of
stratification in temperature. Next we treat a non-isothermal tubular reactor that couples
mass and energy transport. Finally, we treat chemical reaction in the pores of a solid
pellet with diffusion from a bulk flow.

3.1 Introduction

FEMLAB makes a big selling point of multiphysics modelling as a key
advantage of its software package. Not long ago I described one of the
important features of the burgeoning research area of microfluidics as requiring
skills in multiphysics modelling. A respected colleague asked pointedly,
“What’s that? Physics that happens on multiple scales?” So multiphysics is
jargon that may not be uniformly recognized in the sciences and engineering.
Not wanting to use the term wildly, we shall define multiphysics modelling here
to mean any complete, coupled system of differential equations that has more
than one independent variable of different physical dimensions (vector equations
count as one equation). The FEMLAB definition is actually an operational
definition - “Does FEMLAB have a single application mode for it or can you
only describe it by coupling more than one application mode?” In FEMLAB’s
Model Navigator, you can create a multiphysics model by coupling two or more
application modes (under the multiphysics tab).

107

108 Process Modelling and Simulation with Finite Element Methods

Of course either definition is a Byzantine notion, so let’s make it concrete by
examples. Are fluid dynamics multiphysics? Yes, but only on the technicality that
pressure is an independent variable which has different units to velocity. Is it
multiphysics in FEMLAB? No, because there is a single Navier-Stokes application
mode. Is heat transfer multiphysics? No, there is only one independent variable -
temperature, and only one FEMLAB application mode. What about thermofluids?
Yes, as velocity, temperature, and combustion conversion are three independent
variables with different units, and there are three transport equations coupled.
Many typical research areas in chemical engineering are multiphysics:
physicochemical hydrodynamics, magneto-hydrodynamics, electrokinetic flow,
multiphase flow, double diffusion, and separations.

FEMLAB deals with specific common multiphysics applications by creating
application modes that are a full description of single field models, but can be
readily coupled to other application modes. The user provides the coupling by
specifying PDE terms and boundary and initial conditions symbolically.
FEMLAB does the “bookkeeping” to make sure that application modes have
different specifications for the field variables and derived quantities that are
commonly computed for a typical application. For two coupled application modes,
FEMLAB assembles the FEM description (through the sparse matrices K,N,L,M)
for each mode, including the user specified coupling terms. If the pre-made
application modes do not cover the user’s coupled system, then the user can adapt
as many coefficient form, general form, or weak form systems as necessary to
describe their dynamics.

A few examples will illustrate multiphysics modelling to much better effect.
Chapter 8 of the book of Ramirez [l] has a wealth of multiphysics PDE models
with chemical engineering applications. They are computed on simple domains
with finite difference methods coded with full detail in MATLAB. We shall adapt
several such examples to FEMLAB models here. But first we will attempt some
simple buoyant convection problems.

3.2 Buoyant Convection

Coupling momentum transport and heat transport is a well studied area of
transport phenomena. The governing equations are

-+ au u . VU = - -Vp 1 + V V ~ U + -T w
at P P
v * u = o
JT _ + U . V T = K V ~ T
dt

(3.1)

Multiphysics 109

Here, the dependent variables are described as follows: u is the velocity vector, p
is the pressure, and T is the temperature. The independent variables are spatial
coordinates (implied in the differential operators) and time t. Everything else is
a parameter (V, p, a, K, g) with fixed value once the fluid and venue are selected.
If there is no imposed moving boundary or pressure gradient, then the whole of
the motion is created by temperature gradients and is termed buoyant (or free)
convection. If there are imposed velocities or pressure gradients, then the
application is termed forced convection. Either case can be studied by the same
multiphysics mode created in FEMLAB, but are historically considered different
physical modes.

In buoyant convection, there are two dimensionless parameters that govern the
dynamical similarity of the problem, the Prandtl number that is a function of the
fluid, and the Rayleigh number that gives the relative importance of temperature
driving forces to dissipative mechanisms:

V

K
Pr = -

ag (V’ Ra =
PVK

where h is the depth of the fluid, 6T is the applied temperature difference, a is
the coefficient of thermal expansion, g is the gravitational acceleration vector (g
is its magnitude), p is the density, v the kinematic viscosity, and K is the thermal
diffusivity .

Batchelor [2] showed that differentially heating any sidewall automatically
induces buoyant motion, so the canonical buoyant convection problem is the hot
walllcold wall cavity flow. This problem is always taken as a test case for the
development of new numerical methods for transport phenomena. We will develop
a FEMLAB model for it in this section. This problem is treated in [3], but the
variations on the theme treated here are original.

Launch FEMLAB and in the Model Navigator, select the Multiphysics tab.

Model Navigator
Select 2-D dimension

OK

Select Physics modes-Incompressible Navier-Stokes >>
Select ChE =Convection and conduction >>
Select PDE modes 3 Coefficient form >>

(3.2)

110 Process Modelling and Simulation with Finite Element Methods

The last mode, the coefficient form, will be used to solve directly for the
streamfunction from the streamfunction vorticity Poisson equation:

V21y = --LL) (3.3)

You may have noticed that the Incompressible Navier-Stokes application mode
will print “flowlines.” But to my eye, they are streaklines of randomly
positioned particles, rather than the streamlines (contours of streamfunction) that
are traditionally interpreted in two-dimensional flow. Adding equation (3.3) is
straightforward, and not particularly expensive to compute.

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

Name of constant: TO
Expression: 0
Name of constant: T1
Expression: I

At this stage we will leave out the constants Ra and Pr. For simplicity
throughout, we will keep P r = l , which is a good approximation for many gases.
By enforcing the range of the temperature to lie between 0 and I, i.e. a
dimensionless temperature, all of the dynamics are controlled through the
Rayleigh number.

Pull down the Options menu and set the grid to (0,l) x (0,l) and the grid
spacing to 0.1,O.l. Pull down the Draw menu and select Rectangle/Square and
place it with unit vertices [0,1] x [0,1].

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Select domain 1

0

0

Apply/OK

Use the multiphysics pull down menu to select the IC NS mode
Set boundaries 1-4 with No-Slip
Use the multiphysics pull down menu to select the CC mode
Set bnd 1 with T=TO; bnd 4 with T=T1; keep 2 and 4 no flux
Use the multiphysics pull down menu to select the coeff mode
Keep Dirichlet conditions on bnd 1-4: h=l ; r=O

Add/Edit Constants

Boundary Mode

Multiphysics 111

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
Select domain 1

0

0

0

0 Set c=l; da=O; f=vx-uy

0 OK

Use the multiphysics pull down menu to select the IC NS mode
Set p=l; q=1; F,=O; F,=-l
Use the multiphysics pull down menu to select the CC mode
Set p=1; ~ = l ; c=l; u=u; v=v
Select the init tab; set T(tO)=TO+(Tl-TO)*x
Use the multiphysics pull down menu to select the coeff mode

Apply

Now pull down the Mesh menu and select the Parameters option. We will
need to pack elements into the corners for best resolution.

Mesh Parameters
Select more>>

0 Remesh
0 OK

There should be 792 elements. Click on the = button on the toolbar to Solve.
Now plot the temperature profile. Is it what you expected? How does it compare
with the initial condition.

Now plot the streamfunction. Surprised by the complexity? Now look at the
scale. Why so small? Recall that we set F,=-1 (gravity is in the negative y
direction). This has the effect of adding hydrostatic pressure only. So there is no
back action on the momentum equation from the imposed differential sidewall
temperatures. So what we have here is a plot of velocity noise generated by round-
off error. It is always important to look at the scale of contoudsurface plots to
assess whether we are interpreting noise!

You may have had some difficulty getting FEMLAB to converge to a solution.
When I originally wrote this example in FEMLAB 2.2, it converged fairly rapidly.
Yet when done with FEMLAB 2.3, it took a long time. There are two
contributions to the slow convergence - (1) the new scaling feature for the error
estimate under the Solver Parameters, and (2) the lack of a pressure datum point.
The first (scaling factor) was unexpected. Basically, FEMLAB hopes to aid
convergence by scaling each contribution to the error automatically. But since our
velocity field has the true solution of a zero velocity field, numerically we find the
approximate solution as noise around zero. The automatic scaling feature is trying

Max element size near vertices: 1 0.05 2 0.05 3 0.05 4 0.05

112 Process Modelling and Simulation with Finite Element Methods

to “resolve” the noise, which is not particularly sensible. Solution - turn the feature
off! Select under Solver Parameters the Scaling box, and in the pop-up
dialogue box, select “none” rather than the default automatic.

The second point about the pressure datum is discussed in detail in Chapter 5.
The solutions here are convergent, but greater accuracy and faster convergence
result by specifying a pressure datum.

To implement a buoyant force that varies with temperature, edit the
appropriate subdomain setting for the IC NS mode to be:

Fy = RaT (3.4)

Actually, the proper dimensionless term is as below, but given our scaling for
temperature set in the constants, they are equivalent. If you wish to use
temperatures with units, then edit TO and TI appropriately, and use this
substitute for (3.4). Later, we will use temperatures with units, so I recommend
its use:

Add Ra to the constants list and set it to Ra=l. Now use the Restart toolbar
button, which uses the noise velocity field as an initial condition. This is
actually a useful technique for introducing noise as an initial condition. Figures
2.1 and 2.2 show the streamlines and isotherms at steady state.

A quantity of central interest in thermal convection studies is the heat flux.
The natural dimensionless measure of heat flux is the ratio of the total time
averaged rate of heat transport to the conductive rate of heat transport, termed the
Nusselt number:

(3.5)

The overbar represents spatial average and the brackets time average. FEMLAB
permits the computation of the separate terms in the numerator as subdomain
integrations under the Post menu. Compute the dfluxT-cc (conductive heat
flux) and cvfluxT-cc (convective heat flux) integrated over the whole domain.
What is the corresponding Nusselt number? Does this surprise you given the
scale of the streamfunction in Figure 2.1? Now try simulating Ra=50. Do you
get a converged solution?

Multiphysics 113

0 9

o a
0 7

0 6

0 5

0 4

0 3

0 2

0 1

0

Contour u2 (u2)
I I I I I I I I I I

0 3 - 0 2 - 0 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 a 0 9 I 1 1 1 2 1 3

Max 8 09e-OC
1 0 ’ ~

I a06

0 6016
1 204

2 409
3 01 1
3 613
4 216

5 421
6 023
6 625

4 a i a

7 228
7 a3 a 432

10 a4

9 035
9 637
10 24

11 44
12 05

Min -0 00126

Figure 3.1 Steady state streamlines of hot walUcold wall buoyancy driven convection for Ra=l.

Buoyancy Driven Cavity Flow: Parametric Continuation

Our solution strategy for the hot wallkold wall problem to reach Ra=50 was to
build up elements of the solution piecemeal. Were we to try to start at Ra=50
directly, we would find that FEMLAB cannot find a solution. Why not? For a
nonlinear problem, the initial condition may not be in the “basin of attraction”
for the desired solution, so Newton’s Method could career far off. For it to work
well, Newton’s Method must start near a solution. For instance, the initial
solution for hydrostatic pressure and velocity noise for Ra=O was an essential
step. As a fully linear problem, it was readily solvable. It serves the important
purpose of introducing an asymmetric velocity profile (due to the numerical
noise of truncation error). This permits the solution for Ra=l, which is
qualitatively similar to the Ra=O in that it has a circulation, though a massive
change in scale. Even then, though qualitatively similar to the Ra=l solution,
Ra=50 was too far a leap from Ra=l to converge. The notion of traversing the
solution space to introduce various topological features consistent with the target
solution so as to be in its basin of attraction is similar to the established concept
of parametric continuation. In parametric continuation, one restarts the
simulation with a parametric value close to that of the saved, converged solution.
Because the solution at the new parameter values is not expected to be much
different than at the old parameter values, the Newton solver should converge
rapidly. This methodology only fails if the new parameter is close to a
bifurcation point - in which case multiple solutions are possible. The Jacobian
used by Newton’s Method is then very close to singular, so convergence may not
be achieved. Or if it is, which of the multiple solutions that is selected may not
be a priori predictable.

114

F

. .

..

...

..

&

Process Modelling and Simulation with Finite Element Methods

.

.

.

Contour: temperature 0

~, . .

. .

....

. % i. . ..

.~ . .

. . . .

.. .

. . .

. . .

. . .
I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 3.2 Isotherms between 0 (left) and 1 (right) at steady state for Ra=I.

Parametric continuation is typically used for one of two purposes. One is to
map the response of some feature of the solution over a range of parameters. The
second is to reach a target solution for which jumping to the solution from any
arbitrary initial condition is non-convergent. So parametric continuation is
metaphorically crawling along the limb of a tree, rather than expecting to jump and
arrive safely. Parametric continuation can fail to converge as one ramps up a
complexity parameter (like a Rayleigh or Reynolds number), and the complexity of
the solution at smaller scales becomes unresolved. Thus, parametric continuation
identifies at which parameter values refining the mesh is important. In this section,
we will use parametric continuation to map the Nusselt versus Rayleigh numbers,
using the power of MATLAB programming of FEMLAB subroutines.

FEMLAB 2.2 did not have a built in parametric continuation feature, but
FEMLAB 2.3 introduced it. Yet building your own MATLAB m-file for
parametric continuation is not especially difficult. We start by saving the model
M-file for the current state of the FEMLAB simulation. We have solved for Ra=O,
Ra=l, and attempted to solve for Ra=50. We have computed the subdomain
integrations for conductive and convective fluxes. All the FEMLAB commands to
do this are in the model M-file, and many more besides. SaveAs “convection.m”
and then open this file with your favorite editor of MATLAB’s m-file editor. You
will want to delete all the PostPlot commands, and the entire Ra=50 attempt. Then
you will need to add a looping structure, storage, and output.

Multiphysics 115

Nusselt

1.35 [
1.3

1.25 1
1.2

[

Figure 3.3 Nusselt number versus Rayleigh number found by parametric continuation.

Lines for storage (added at the beginning as the first executable statements):

% W B J Z parameters and storage%%%%%%%%%%%%%
Rayleigh= [l : 1 : 501 ; %sets up a 50 long list
output=zeros(length(Rayleigh),4); %storage for output of Nusselt

.
Lines for looping (altering the Ra=l computation):

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~oopingstructure%%%%%%%%%
for j=1: length(Ray1eigh) %loops until end statement
% Define variables
fem.variables={ . . .

'TO', 273,. . .
'Tl' , 373,. . .
'Ra' , Rayleigh(j) } ; %replaces 1 with j-th Rayleigh

Lines for output (added at the end of the programme):
% Integrate on subdomains %was generated automatically
Il=postint(fem,'cvfluxT-cc' , . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim' , 2,. . .
'solnum', 1, . . .
'phase', 0, . . .
'geomnum' ,1, . . .
'dl' , 1, . . .
'intorder',4, . . .
' context , ' local 1) ;

% Integrate on subdomains
12=postint(fem,'dfluxT-cc8, . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim' , 2, . . .
'sohum', 1,. . .
'phase', 0, . . .
'geomnum',l, . . .
'dl', 1, . . .
lintorder',4, . . .
1 context , local I) ;

output(j,l)=Rayleigh(j) ; %First column is the Rayleigh
output (j , 2) =I1 ;

116 Process Modelling and Simulation with Finite Element Methods

output (j ,3) =I2;
output(j,4)=1.+11/12; %Last column is the Nusselt

end %closes the for-loop
dlmwrite('convect.dat',output,','); %writes comma-delimited ASCII
quit %stops MATLAB

The m-file freec0nv.m (see http:Neyrie.shef.ac.uWfemlab) has all these
alterations present. This m-file was executed under linux as a background job
using the following command:

matlab -nojvm <freeconv.m >err 2>err &

The -nojvm (no Java machine) flag stops the MATLAB GUI from loading,
although if you are in X-Windows, you will get a brief splash screen for
MATLAB. The command above generated the data in the file convect.dat used
in Figure 3.3 to plot the Nusselt vs. Rayleigh number dependence. The file err
contains the re-direction of the standard output (usually the screen) and the
standard err (usually the screen) units. When called with input re-direction from
an m-file, MATLAB does not launch the GUI, but evaluates the m-file
programme directly. This is the most efficient way to conduct MATLAB
computations, as the processor and memory are not tied up multitasking the GUI,
so can pay better attention to your computation. The parametric continuation in
Rayleigh number m-file generates a series of entries in the err file of the form:
Iter ErrEst Damping Stepsize nfun njac nfac nbsu
0 1 0 0 0
1 7.644421253e-07 1.0000000 0.1057807343 2 1 1 2

These entries all show error estimates of 0(10-7), which implies that the first
iteration on each new Rayleigh parameter value converges in one Newton
iteration step. Since the convergence is so good, we could probably take bigger
steps if the goal were only to reach the endpoint Rayleigh value. However,
adapting the stepsize in the continuation parameter would need to be automated
on the convergence performance, with substantial logic encoded for trapping
non-convergent continuation steps. The simple linear continuation conducted
here is easiest to code.

When using parametric continuation to arrive at the final parameter value,
running the MATLAB m-file as a background job does not help. The FEMLAB
GUI is not entered and will not be accessible with the solution results. FEMLAB
has its own MATLAB workspace, however, so if you wish, you can run your edited
m-files in the FEMLAB GUI. Just open the File Menu, Select Open (m-file) and
FEMLAl3 will evaluate all your commands sequentially. Even those commands
that execute non-FEMLAB functions in MATLAB. For instance, if you run
freec0nv.m in this way, you will eventually arrive at Ra=50, even though the for
command for looping is not a FEMLAB command.

Multiphysics 117

Although parametric continuation is therefore possible in the FEMLAB GUI,
it is probably too time consuming to wait for the GUI to process 50 or 100
solutions at a time. So the user will probably want to invest some time in learning
MATLAB programming tools and gaining a handle on the FEMLAB function
library. Fortunately, FEMLAB’s logging feature which records the FEMLAB
commands issued by the GUI provides an excellent starting point for constructing
your own FEMLAB programme. We have already given several applications of
MATLAB programming with FEMLAB functions, but a full description of either
MATLAB programming or FEMLAB functions is beyond the scope of this book.

Chapter one (matrix operations) and the Appendix (vector calculus) provide
only a rudimentary working capacity in MATLAB programming. We will continue
to use this user defined programming style in the book, with sufficient explanation
to guide the informed reader, and at least to inform the MATLAB novice of what
power they are missing out on!

Variations on a Theme: Non-Monotonic Density
The governing equations for buoyant convection (3.1) assume the conventional
Boussinesq approximation [4], i.e. that the velocity field is divergence free, that
kinematic viscosity is constant, and that the only effects of density variation are
felt by the body force in the Navier-Stokes equations, which was taken to depend
proportionally to the coefficient of thermal expansion and temperature. The
latter constraint, is too severe. The Boussinesq approximation only requires that
density is a slowly varying function of position so that locally the velocity is
divergence free. So a less restrictive set of governing equations is

-+u.vu au =--Vv13+vV2u+- 1 P m
at Po Po
v . u = o (3.6)

- + U . V T = KV’T
at
dT

where - is a general function of temperature, and po=p(To). The Rayleigh
Po

number is no longer a constant, but depends on this function:

where the gravity group Gr’ now appears as a dimensionless parameter. The
density function plays the role of a nonlinear expansivity (and possibly non-
monotonic).

11

-0.01

-0.02

-0.03

-0.04

Table 3.1 Specific gravity of liquid water.

-.-,ILL ~~ .
-'3% 320 340 360

'

vs. Temperature (K) for water. Figure 3.4 Expansivity ___
P(T)-Po

Po

Next, how do we organize this data so as to use it in the FEMLAB GUI? You
should find the m-file watrdemm, which is a MATLAB function m-file that
interpolates using cubic splines within Table 3.1 to find the dimensionless
expansivity factor. This m-file is reproduced here:

function a=watrdens(ttemp)
%WATRDENS Interpolates the expansivity of water in 273 and 373
deg K
temp=[O 3.98 5 10 15 18 20 25 30 35 38 40 45 50 55 60 65 70 75 80

dens=[0.99987 1. 0.99993 0.99973 0.39913 0.99862 0.99823 0,99707
0.99567 0.99406 0.99299 0.99224 0.99025 . . .
0.98807 0.98573 0.98324 0.98059 0.97781 0.97489 0.97183 0.96865
0.96534 0.96192 0.958381 ;
temp=temp+273;
dens= (dens-dens (1))/dens (1) ;
a=interpl (temp,dens,ttemp, 'spline') ;

85 90 95 1001;

So what does one of these expansivity functions look like? See Figure 3.4 below.4 below.

PProcess Modelling and Simulation with Finite Element Methods

Multiphysics 119

Now for the FEMLAB implementation. Before you launch FEMLAB from
MATLAB, make sure that you change the current directory to the one with your
watrdens.m m-file. To make sure that it is available, try out some value between
273K and 373K:

>> watrdens (330)
ans =

-0,0151

Now when you launch FEMLAB, it will inherit this current directory and have
the waterdens m-file function at its disposal. Load the saved version of
freeconv.mat from your distribution, and then Pull down the options menu and
select Add/Edit constants. Replace the Rayleigh number entry with the gravity
group Cr, and set it initially to Cr=O. Now edit the NS subdomain settings
and set

Fx=-Gr*watrdens (T)

Now onto solving. Click on the solver button (=) on the toolbar. If FEMLAB
hasn’t already popped up the message “No differentiation rule for function
watrdens”, it will now. By default, FEMLAB computes symbolic derivatives of
just about everything in sight in assembling the stiffness matrices, constraint
matrices, and load vectors. So it naturally is annoyed at us for not telling it how
to differentiate watrdens(T). FEMLAB has a place in its FEM structure for
differentiation rules if you provide a function that can be differentiated
analytically (femmles) which is used by the femdiff FEMLAB function. There
is a handle on fem.rules (Options menu, Differentiation Rules) in the
FEMLAB GUI, but we will use the MATLAB programming language.

I tried the following: Pull down the Solver menu, select Parameters, and
uncheck the tick box F in the automatic differentiation section. Now click on the
solve button. The solution progress window should now manifest as the nonlinear
solver whirls away. Eventually it reports many NaNs and Infs in the solution,
which should be interpreted as utter failure. So Plan B was necessary. I created a
second MATLAB m-file function for the numerical derivative of watrdens(T):

function a=dwatrden!ttemp)
%DWATRDENS Interpolates the expansivity of water between 273 and
373 deg K
temp=[O 3.98 5 10 15 18 20 25 30 35 38 40 45 50 55 60 65 70 75 80

dens=[0.99987 1. 0.99999 0.99973 0.99913 0.99862 0.99823 0,99707
85 90 95 1001;

0.99567 0.99406 0,99299 0.99224 0.99025 . . .
0.98807 0.98573 0.98324 0.98059 0.97781 0.97489 0.97183 0.96865
0.96534 0.96192 0.958381;
temp=temp+273;
dens= (dens-dens (1))/dens (1) ;
pp=spline(temp,dens); % Piecewise polynomial form of a cubic spline
[br,co,npy,ncol=unmkpp(pp); % Breaks apart the pp form

120 Process Modelling and Simulation with Finite Element Methods

sf=nco-1:-1:l; % Scale factors for differentiation
dco=sf(ones(npy,l),:).*co(:,l:nco-1); % Derivative coefficients
ppd=mkpp (br, dco) ;
a=ppval (ppd, tternp) ;

% Build up pp form for derivative

This m-file (dwatrden.m) should also be loaded into your MATLAB current
directory. It uses a MATLAB programming technique to compute the
approximate first derivative of a cubic spline interpolation. Very clever. I wish
I could take credit for it, but that goes to others [5]. It has been pointed out to me
that I re-invented the wheel in that FEMLAB developers recognized the need for
derivatives of interpolated functions, so they introduced their own interpolation
function flinterpl, which works like the built-in interpl but provides the
derivative as well as the function. The help on flinterpl shows how, abbreviated
below.

>> help flinterpl

FLINTERPl 1D interpolation for use in FEMLAB.
YI = FLINTERPl(X,Y,XI) interpolates to find YI, the Values of
the underlying function Y at the points in the vector XI.
The vector X specifies the points at which the data Y is
given. If Y is a matrix, then the interpolation is performed
for each column of Y and YI will be length(XI)-by-size(Y,2).

YI = FLINTERPl(X,Y,XI,METHOD) specifies alternate methods.
The default is linear interpolation. Available methods are:

1) ‘linear’ - linear interpolation
2) ‘nearest’ - nearest neighbor interpolation
3) ‘spline’ - piecewise cubic spline interpolation
4) ’ pchip ’ - piecewise cubic Hermite interpolation

METHOD is either a string or a scalar value

YI = FLINTERPl(X,Y,XI,METHOD,DER) differentiates the piecewise
polynomial DER times.

Next I created a MATLAB m-file by hacking the model M-file generated by
FEMLAB (waterdensity.m). They salient feature is that it specifies the
“analytic” differentiation rules at the appropriate place in the FEMLAB
subroutine:

% Differentiation rules
fem.rules={ ‘watrdens (T) I , ‘dwatrden(T) ’ } ;

%With flinterpl, would use to specify tdata and densdata in the model
%m-file functions watrdens/dwatrden to be read in so that
%flinterpl(tdata,densdata,T) and linterpl(tdata,densdata,T,’spline’,i)
%compute the function and first derivative.

Multiphysics 121

This model m-file can now be read directly into the FEMLAB GUI from the file
menu, the Open model m-file option. waterdensity.m computes the Gr=O and
Gr=l solutions. You can now migrate to higher Gr by hand with parametric
contiunuation. I wrote a second variation of the model m-file highgrav.m which
migrates to higher Gr using automated parametric continuation and a doubly
refined mesh. It arrives to Gr=105 after about a day on my fastest linux PC
workstation as a background job. Expert criticism suggests that we should use a
pressure datum introduced in point mode to improve the convergence rate.
Chapter five discusses how to do this in detail, in the vicinity of equation (5.9).

The only new trick in this MATLAB program is saving the fem structure as a
mat-file for later interrogation in MATLAB. See the line just before the end:

save highgrav.mat fem

The temperature isotherms tell an interesting story in Figure 3.5 that the fluid is
starting to stratify, with cold fluid under hot:

1

0.9

0.8

0 7

0.6

0.5

0.4

0.3

0 2

0.1

isotherms (T)
368 2
363 5
358 7
354
349 2
344 4
339 7
334 9
330 1
325 4
320 6
315 9
311 1
306 3
301 6
296 8
292

282 5
287 3

277 a
0 2 0.4 0.6 0.8 1

Figure 3.5 Isotherms for water density model with Gr=100000.

0
0

Similarly, the core recirculation warps as the flow in the cold region slows.
Figure 3.6 gives the streamlines, which with the given scale, show a substantial
strengthening.

122

1 -

0 9

o a -

0 7

0.6

05-

0 4

0 3

0 2 -

0 1

Process Modelling and Simulation with Finite Element Methods

-

-

-

-

-

-

0 ’
0 0.2 0.4 0.6 0.8

3 281
3 117
2 953

2 625
2 461
2 297
2 133
1 969

1641
1 477
1312
1 148

0 8203
0 6562
0 4921
0 3281
0 164

2 789

I a05

o 9843

Figure 3.6 Sreamlines for water density model with Gr=lOOOOO.

Figure 3.7 Nusselt number vs. Gravity group Gr”3 for the differential heating of water.

Figure 3.7 shows the high insensitivity of the Nusselt number to gravity group,
i.e. large cavities are required before convective effects dominate. Note that the
scaling of Gr”3 at high Gr was guessed on the grounds of heat flux scaling with
the linear separation of the walls, L, which appears cubed in Gr. At large Gr, the
near linear dependency suggests this asymptotic scaling, until the convective
shearing becomes strong enough that the laminar flow breaks down.

Multiphysics 123

3.3 Unsteady Response of a Nonlinear Tubular Reactor

Ramirez [l] [6] reports a simulation of the adiabatic tubular reactor where heat
generation effects are appreciable. Generally, tubular reactor design estimates
follow from steady-state 1-D ODE simulations. In the model of Ramirez, the
reactor starts up cold or is subjected to perturbations of its steady operation
which convect through the system before returning to steady operation. In this
regard, such transient effects are important considerations for the safe, stable and
controlled operation of tubular reactors.

Ramirez treats first order chemical reaction with heat generation. Thus only
the mass transport equation for one species and energy transport equation, coupled
through the temperature dependence of the reaction flux and the heat generation by
reactive flux, need be considered. Interestingly, Ramirez solved the highly
coupled, nonlinear equations by a technique of quasilinearization with finite
difference techniques. The solution at the current time and the linearization of the
equations about that solution are used to predict the profiles of concentration and
temperature at the next time step. The procedure is iterated until convergence at
the new time step is achieved. The prediction and correction steps involve solution
of sparse linear systems. This is, of course, the same procedure as used by
FEMLAB, except it is the finite element approximation and the associated sparse
linear system that is solved iteratively by Newton’s method.

Governing equations are given here in dimensionless form:

a 0 a a 2 0 ao
at 3 ax2 ax
ar a2r ar
at ax2 ax

- r2 - + B,l-exp (-QQ / 0)

- r2 - - B2rexp (-QQ / 0)

subject to boundary conditions on the reactor inlet and outlet:

(3.7)

(3.8)

The former are called Danckwerts boundary conditions [7] . The initial
conditions for temperature are uniform everywhere at @=I. Ramirez [l]
considers two different liquid phase reactions. The first is a reactor with an
intermediate conversion at a single steady state. The second is a triple steady
state. The Peclet numbers for heat and mass transfer are taken as identical for

124 Process Modelling and Simulation with Finite Element Methods

VL 30 (- M) ~ c , , L ~ 8 . 4 7 ~ 1 0 ~
Bl =

1 .2X1O1O

y =-
I

a PCJO 3
V L 30 kL2

B, =- y = - = P e
2 3 3

- 3 RTO

a 1 E 23
- QQ=-

convenience, but this is not a realistic assumption which can be relaxed in
FEMLAB without any difficulty. This problem has a long history in the
chemical engineering literature, and the equal Peclet numbers are a legacy of an
analytic approximation by Amundson [81 which provides validation for the
solution.

Table 3.2 Parameters for Case 1.

I - - VL I 30 (-AH) kC,, L2

I r 2 = 5 = P e V L

IE

1 1.2X1O8

Table 3.3 Parameters for Case 2.

Amundson’s technique combines the mass and energy equations by linear
transforms:

n = O

This, in turn, leads to equations (3.7) and (3.8), along with the BCs, being

described identically, if and only if, the ratio of diffusivities is unity, 5 = 1 :
3

an
P e - + B 2 (n , , -n)exp(-QQln)=O

a2n --
ax2 ax (3.9)

Multiphysics 125

subject to

(3.10)

Here, nlim is the limiting dimensionless temperature that can be achieved upon
exhaustion of the reactant, r=O. The Peclet number, Pe, is either the thermal or
mass Peclet number (rl or r2).

Amundson proposed a one dimensional search to the above boundary value
problem, starting from a guess of n(x=l) and shooting back to x=O. In both of the
above cases, n,,=1.656.

Let’s first solve the single convection-diffusion-reaction equation (3.9) using
FEMLAB. Because it is a boundary value problem, FEM has a natural advantage
here.

Start up FEMLAB and enter the Model Navigator:

Model Navigator
Select I-D dimension
Select Chemical Engineering Module + convection and
diffusion
Element: Lagrange - quadratic
More>>
OK

Pull down the Draw menu and select Specify Geometry.

Draw Mode
0 Name: interval

Start: 0
stop: 1

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode
Select domain 1

0

0 Select domain 2
e Select -N.n = 0

Apply1 OK

Check -N.n = Pe*(1 -c)

126 Process Modelling and Simulation with Finite Element Methods

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

Add/Edit Constants
Assign Pe, Bz, nlim, and q with the values
from Table 3.2

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
0 Select domain 1

Set u=Pe; R= B2*(nlim-c)*exp(-QQ/c)

Select the init tab; set c(t0)=1.656
Apply

Now Pull down the Subdomain menu and select View as PDE Coefficients,
then reselect Subdomain settings. We will tackle the steady state solution
first. We could put d,=O as the mass coefficient now, but in fact the selection of
the Solver (Stationary nonlinear or Time Dependent) will make the
appropriate choice for us.

The mesh is extremely important here, as rapid variations near the boundary
conditions are expected. Pull down the Mesh menu and select Parameters. By
creating symmetry boundaries, the endpoints become equivalent.

Mesh Mode
>>More

0

0

0 OK

Max size near vertices: 1 0.0001 2 0.0001
Number of Elements in Subdomain: 1 1000
APPlY

This results in a 1312 element meshing. Note that “Max size near vertices” takes
a vector entry with each pair of elements of the form: vertex number followed
by maximum size. This constrains the elliptic mesh generator to give
appropriately large or small elements as directed. Similarly, “Number of
elements in subdomain” can be set by a MATLAB vector entry. Since there is
only one subdomain here, only one pair (subdomain number, number of
elements) can be specified.

Multiphysics 127

Now for the Solver. Pull down the Solver Menu and select Parameters.
Check the Stationary Nonlinear solver box, apply, and click on the Solve button.
It takes FEMLAB 25 iterations to get there (this is a highly nonlinear problem),
but it converges to 10.' accuracy eventually. 1 played around with several
meshes and parametric approaches before hitting on this one. Figure 3.8 holds
the steady state solution for this case.

Dimensionless reactor temperature

x position
Figure 3.8 Steady state solution for parameters in Table 3.1

At this point, we need to prepare for our stability study by creating an
appropriate initial condition function m-file. The recipe is as follows:

From the File menu, export FEM structure to workspace as fem.

In MATLAB, save the data needed to build the steady solution:

>>[x~,idxl=sort(fem.xmesh.p{l}) ;
>> u=fern.sol.u(idx) ;
>> u=u';
>> save arnundson.mat xs u

Build a function m-file initc0nd.m

function a=initcond (x)
load amundson.mat
a=interpl(xs, u, x, 'spline')+O.OS*sin(31.4159265*~);

128 Process Modelling and Simulation with Finite Element Methods

Figure 3.9 shows the result of plot(xs,initcond(xs)):

Oscillatory initial condition
2 4

x position
Figure 3.9 Steady solution with superimposed period one-fifth sine

Now Pull down the Subdomain menu, then reselect Subdomain settings.
Then un-check View as PDE Coefficients. Now enter initcond(x) as c(t0) and
check the time-dependent solver in FEMLAB. Enter output times as
0:0.0001:0.003. Then under the Post menu, select Plot Parameters and
Animate. Enjoy the experience of watching the perturbation dissipate and
propagate out of the system.

Now for Table 3.3. Change the AddEdit Constants under the Options menu
to reflect the higher B2 and QQ coefficients. nlim stays the same. Use the stationary
nonlinear solver from the oscillatory initial condition. What does the converged
solution look like?

Converging from a solution that is not so similar to the steady-state is not so
straightforward. Try the initial condition c(tO)=l. Does it converge with the
stationary nonlinear solver? Now try the time dependent solver and set output
times to 0:0.0001:0.01, then animate the solution. As you can see, the time
dependent solver is attracted to the steady solution, but the stationary nonlinear
solver wasn’t “close enough” in solution space to fall onto the solution. Now
perhaps it is. Check the stationary nonlinear solver, apply and cancel. Then click
on the re-start button on the toolbar, which takes the initial solution as the last of
the time dependent solutions. This should converge in about five iterations to the
same solution found earlier.

Multiphysics 129

Now try the initial condition c(t0)=nli,. With the time dependent solver, set
output times to 0:0.001:0.1, then animate the solution. You should be able to
watch the initial condition pass completely out of the reactor and converge to the
steady state solution found by the two previous methods. This should be a clear
signal that the time dependent solver may be an essential tool in attacking non-
convergence. Even in problems that have no inherent unsteady time scale, pseudo-
time dependent solution may be essential to finding a converged stationary
solution. If so, then we can be fairly certain that the steady state so found is stable,
since it is attractive.

Exercise 3.1

This chapter is entitled “Multiphysics.” The problem statement is definitely for
two physics modes (heat and mass transport with reaction), yet due to
Amundson’s technique, the problem could be simplified to “single physics” for

-- - 1. Try implementing the calculation with the ChemEng Module modes
3

convection and conduction (cc) and convection and diffusion (cd) with the same
parameters, but as written in equations (3.7), (3.8). Take the initial condition to
be uniform temperature n=l. Solve for the steady state after a long time, or use
the steady solver. Compare you results with the Amundson technique solution
given here.

a

3.4 Heterogeneous Reaction in a Porous Catalyst Pellet

It would be an injustice not to draw on the FEMLAB Model Library for an
example of multiphysics. Although the chemical engineering curriculum does
not contain many examples of multiphysics partial differential equations, the
same cannot be said for the chemical engineering model library of FEMLAB. In
keeping with the complementary of this text with the FEMLAB manual set,
however, we must treat any problem that we extract differently. This section is
inspired by the heterogeneous reaction modeling in a porous catalyst pellet,
treated in [9]. The model uses the incompressible Navier-Stokes application
mode and couples the results to the convection and diffusion mode through the
multiphysics facility of FEMLAB in two-dimensions (c.f eqn (3.7)), adding the
additional reaction term in the pellet subdomain, but without convection
(reaction-diffusion model). This clearly counts as multiphysics by either
definition, since there are two different PDEs with independent variables u,v,p,
and c having different units. The twist that we add to the model is to decouple
the multiphysics.

Because the reaction is taken to be isothermal and constant density, there is no
back action coupling the concentration field into the Navier-Stokes equations. The
mass transport requires knowledge of the velocity field to compute convection, but

130 Process Modelling and Simulation with Finite Element Methods

Axis
Xmin
Xmax
Ymin

this does not change the momentum transport. So rather than computing both
momentum transport and mass transport simultaneously, we can compute them
sequentially. Why? Primarily because of the computing efficiency. If one requires
several solutions over a range of mass transportheaction parameters, but with the
same flow field, then computing the flow field only once and importing the velocity
field is the most computationally efficient method (or should be, if coded
efficiently). Secondly, whatever platform you use to compute on is probably
memory limited if you want to refine the mesh. For instance, because we computed
the streamfunction explicitly in the buoyant convection example earlier, it was not
possible to refine the mesh further without running out of system memory on a 1Gb
RAM linux PC workstation. The final reason is that it illustrates further handles
into the FEMLAB GUI through MATLAB programming, which is one of the
reasons to read this text.

We visited the Incompressible Navier-Stokes (2-D) mode in $3.1, and in fact
if we add a reaction source term to (3.1) and call concentration T rather than c, then
those equations describe the model perfectly.

Launch FEMLAB and in the Model Navigator, select the Multiphysics tab.

Grid
-0.001 X spacing 0 . 0 0 1

0.003 Extra X 0.0009
-0.001 Y suacinu 0.001

Model Navigator
Select 2-D dimension

OK
Select Physics modes+Incompressible Navier-Stokes >>

We will now follow the recipe on [9], p. 2-78ff to construct the configuration
and Navier-Stokes solution around the pellet. Set up the axis and grid as follows
Pull down the options menu and select Axis/Grid Settings.

AxisIGrid Settings

I I I I
I 0.0021 0 . 0 0 3 9 I I Ymax I 0 . 0 0 7 I Extra Y

Next select the AddEdit constants options and enter as below.

Add/Edit Constants

Expression

2. be-5
vo

Multiphysics 131

We will now follow the recipe on [9], p. 2-79 to construct the geometry.

Draw Mode
Deselect solid by double clicking on SOLID on the Status Bar
Draw an arc Cl by clicking at the comers (0,0.0039), (0.0009,0.0039),
(0.0009,0.003), (0.0009,0.0021) and (0,0.0021)
Select solid by double clicking on SOLID on the Status Bar

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
0 Select subdomain 1

Enter PDE coefficients
Setp=ro; q=mu
Select subdomain 2
Uncheck the “Active in this subdomain” tick box

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode
Select domain 2

A m l v / O K

Select inflow BCs with u=0 and v=vo.
Set boundaries 1,4,6 with Slip/Symmetry
Set boundary 5 with outflow BC p=0.
Set boundary 7,8 with No-Slip

No pull down the Mesh menu and select the Parameters option. We will need
to pack elements near the pellet for best resolution.

Mesh Parameters
Select more>>

OK

Max element size near vertices: 6 le-4 7 5e-5 8 5e-5
Remesh and then Refine the mesh once more

There should be 6908 triangles. Click on the = button on the toolbar to Solve.

The flow field should look like Figure 3.10. It is convenient to save the
geometry model using the “Export to file” feature on the File menu, since we
will need it later for the reaction-diffusion model.

132 Process Modelling and Simulation with Finite Element Methods

Contour: velocity field (U-ns)

-4 -3 -2 -1 0 0.9 2 3 4 5 6 7

1 0 ' ~

Figure 3.10 Streamlines surrounding the pellet.

Max 0252

0 2399
0 2279
0 2159
0 2039
0 1919
0 1799
0 1679
0 1559
0 1439
0 1319
0 1199
0 1079
0 096

0 072
0 06
0 048
0 036
0 024
0 012

o 084

Min 0

In the subsequent steps of this chapter, I will encourage you to store this solution
and then write a MATLAB interpolation file to read it in as a fixed velocity
profile for the convection-diffusion equation. There is a better, GUI-based way
to do this using the Multiphysics: Solve for Variables feature (see Solver
Parameters, Multiphysics tab). Basically, you turn off the mass transport mode
and solver for the velocity field. Then you turn off the Navier-Stokes mode, and
solve for the mass transport using the restart button on the toolbar, which uses
the velocity profile just computed as fixed throughout. This solves for the
modes sequentially, rather than coupled. In some models, we have found that
the sequential method converges to a solution, where the joint solution does not.
Here, the exercise is worth doing to learn something about m-file "hooks" into
FEMLAB .
Now we will export our solution to the MATLAB workspace (file menu, export
to workspace, fem structure). Next we arrange the solution in a convenient
format using postinterp:
[xx,yyl =meshgrid(O: 0.00002: 0 . 0 0 2 , O : 0.00002: 0.006) ;
xxx= [xx(:) ' ; yy(:) 'I ;
u=postinterp(fem,'u',xxx);
v=postinterp(fem,'v',xxx);
uu=reshape (u, size (xx)) ;
w=reshape (v, size (xx)) ;
isn=f ind (isnan (uu)) ;
uu(isn) =zeros (size (isn) ; %NaN. This changes them to zero.
isn=find(isnan(w))
w(isn) =zeros (size (isn)) ;
save pellet-flow.mat xx yy uu w;

%calls to postinterp in the pellet give

Multiphysics 133

On to the MATLAB m-file function for the u-velocity

function u=pelletu(x,y)
%PELLETU Interpolates u from the FEM solution for the pellet

% is interpolated on the rectangle [0,0.0021 x [0 . 0 0 6 1
load pellet-flow.mat xx y y uu w
% Interpolate from rectangular grid to unstructured point.
u=interp2 (xx, y y , uu, x, y) ;

Similarly for the v-velocity

% U = PELLETU(X,Y)

function v=pelletv (x,y)
%PELLETV Interpolates u from the FEM solution for the pellet

% is interpolated on the rectangle [0,0.0021 x [0 . 0 0 6 1
load pellet-flow.mat xx y y uu w;
% Interpolate from rectangular grid to unstructured point.
v=interp2 (xx,yy,w,x,y) ;

% V = PELLETV(X,Y)

These functions were used to produce the following pair of contour plots. Note
that in this case, v, the vertical velocity, is the "flowwise" component, and u is
the transverse velocity.

'0 0 2 0 4 0 6 08 1 1 2 1 4 1 6 1 0 2

10'

Figure 3.1 1 u-velocity around the pellet.

v velocity contours 4,' v velocitv contours

I I
O d 0'2 0'4 06 0'8 1'2 1'4 1 6 1'8 i

x 10'

Figure 3.12 v-velocity around the pellet.

The function m-files are now ready for use in the reaction-diffusion mode.

Reactiodconvectioddifision model

If FEMLAB is already launched, select New from the File Menu, which will
bring up the Model Navigator.

134 Process Modelling and Simulation with Finite Element Methods

D

Model Navigator

le-5

Select 2-D dimension
Select ChemEng Modesacartesian CoordinatesaMass

OK
B alanceaConvection-Diffusion+Time-Dependent>>

Now use the File menu to “Insert from File” and select your Geometry mat-file
(pellet-geom.mat).

Next select the AddIEdit constants options and enter as below.

Admdi t Constants

I Name I Expression I

I k I 100 I < 1.3

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
Select subdomain 1
Enter PDE coefficients

Select subdomain 2
Set Di=D; Ri=O; u=pelletu(x,y); v=pelletv(x,y)

Set Di=Deff; Ri= -k*cA2; u=O; v=O

Note that there is a typographical error in [9] which uses -k*clA2 above.
Supposedly this will automatically give proper boundaries for the mass transport
equations. Now for the boundary conditions. Pull down the Boundary menu
and select Boundary Settings.

Boundarv Mode
Select domain 2
Select ci=clo.

0

Set boundaries 1,3,4,6 with InsulatiodSymmetry
Set boundary 5 with convective flux BC

Select the standard coarse mesh (triangle button) from the Toolbar. Select the
stationary nonlinear solver and click Solve.

Multiphysics 135

Now pull down the Mesh menu and select the Parameters option. We will
need to pack elements near the pellet for best resolution.

Mesh Parameters
Select more>>

Remesh
0 OK

Max element size near vertices: 6 le-4 7 5e-5 8 5e-5

There should be 1727 triangles yet again. Click the Re-Solve toolbar button.
Then refine the mesh to 6908 triangles. Again Re-Solve. The final solution
should look like Figure 3.13 below (cf. [9], p. 2-83):

l o 3 Concentrat ion contours

Figure 3.13 Contours of concentration (reduced by disappearance in pellet phase)

3.5 Discussion

This chapter introduced the concept of multiphysics and then ran away from it.
One of the key messages from 53.3 and $3.4 should be to simplify the analysis of
your PDE system. For instance, in $3.3, multiphysics was not necessary due to a
change of variable to eliminate one PDE equation. Similarly, in $3.4,
multiphysics could be dealt with by sequential treatment of single physics. This
has the virtue of separating the work. It should be clear that the major difficulty
in solving the pellet reactioddiffusiodconvection problem was resolving the

136 Process Modelling and Simulation with Finite Element Methods

fluid dynamics of the hemispherical obstruction. The concentration profile was
resolved on the most coarse mesh chosen.

Without too much aggrandizement, this chapter also shows the ease of
solution of highly nonlinear problems by parametric continuation (typically
automated by MATLAB programming). The chapter also shows how to include
variable physical properties and complicated field behaviors by interpolation
functions programmed in MATLAB m-file functions.

Multiphysics is a recurrent theme in this text, largely because “single
physics” is well studied. Thus, inherently, multiphysics descriptions are required
for state-of-the-art research models. So several more examples will follow.

References

1. Ramirez, W.F., Computational Methods for Process Simulation, 2nd ed.,
Butterworth Heinemann, Oxford, 1997.

2. Batchelor, G.K., “Heat transfer by free convection across a closed cavity
between vertical boundaries at different termperatures.“ Quart. J. Appl.
Maths. 12(3):209-233, 1954.

3. Velarde M.G. and Normand C. “Convection” Scientific American, 243(1):

4. Zienkiewicz, 0. C. and Taylor, R.L., The Finite Element Method. Volume 3:
Fluid Dynamics, Heinemann-Butterworth, 2000.

5. Hanselman D. and Littlefield B.,Mastering MATLAB 6: A comprehensive
tutorial and reference, Prentice Hall, Saddle River NJ, 2001, p. 294.

6. Clough, D.E. and Ramirez, W.F. “Stability of tubular reactors,” Simulation
16, 1971.

7. Danckwerts, P.V. “Continuous flow systems. Distribution of residence
times.” Chem. Eng. Sci. 2:l-18, 1953.

8. Amundson, N.R. Can. J. Ch. E. 43:99, 1965.
9. FEMLAB Chemical Engineering Module, User’s Guide, Version 2.2,

92-108, 1980.

p. 2-74.

Chapter 4

EXTENDED MULTIPHYSICS

W .B . J. ZIMMERMAN' , P.O.MCHEDLOV-PETROSSY AN2*
G.A. KHOMENK02

'Department of Chemical and Process Engineering, University of Sheffield, Newcastle
Street, Shefield SI 3JD United Kingdom; 'Labratoire d'Oceanografi,Cotiere du Littoral,

ELICO, Universite du Littoral Coted'Opale, MREN, 32, Avenue Foch, 62930,
Wimereux, France. *Permanent address: NSS Kharkov Institute of Physics and

Technology, Ukraine

E-mail: w.zimrnerman@she&ac.uk

Extended multiphysics is a feature that is conceptually complicated and original with
FEMLAB. The concept is the linkage of two or more logical computational domains
through coupling variables that can be used in either specifying the boundary conditions
or subdomain PDE coefficients. The coupling variables can be found by subdomain or
boundary integrations, internal or boundary values. These naturally arise in the multiple
scale modeling of physical phenomena - the large scale model is coupled to subgrid
cellular models, perhaps of a simpler parametric or lower spatial dimension. Extended
multiphysics is ubiquitous in process engineering, however, because unit operations are
conceptually separate domains, yet linked through at least inlet and exit conditions
sequentially, but frequently linked more subtly through process integration. So the whole
field of process simulation for optimization, design, retrofit, and control falls within the
remit of extended multiphysics. Integration with Simulink gives the possibility of some
unit operations being treated with distributed PDE models while others are treated with
lumped parameters, yet with non-trivial levels of coupling requiring extended
multiphysics modeling.

4.1 Introduction

If multiphysics, the subject of the last chapter, were a new concept to you,
extended multiphysics must be a more alien concept indeed. So far, I have seen
only one application of extended multiphysics - the Packed Bed Reactor model
in the Chemical Engineering ModuleModel library [11. Initially I thought
extended multiphysics was about coupling multiple scale models, as that is how
it was done in [I]. This is a cutting edge area of research in multiphase
flowsheterogeneous systems, because the dispersed phase can be treated as a
point constraint in the domain of the bulk medium, but with information flowing
in both directions. Usually the attempt is to treat such constraints parametrically,
i.e. modeling the dependence of the small scale phenomena on bulk phase
unknowns, and vice versa to complete the coupling of the scales. Usually, the
small scale phenomena is too complex in its own right, for instance in the

137

138 Process Modelling and Simulation with Finite Element Methods

microhydrodynamics simulations of Grammatika and Zimmerman [2], to
consider solving simultaneously with the bulk dynamics. So the coupling is
through simple functional forms learned from simulations of the small scale
dynamics, slaved to the large scale phenomena imposed on it. There are several
drawbacks to the parametric slaving approach, but they are all summed up
by “oversimplification”. Fortunately, such models can be verified by
experimentation that the physical systems can be well treated by the two scale
approach. Traditional turbulence models are all heavily reliant on multiple scale
modeling by parametrization. Since the multiple scale modeling techniques are
specialized, perhaps extended multiphysics is not such a useful feature after all.
To take advantage of it for complex modeling may require high performance
computing.

Only belatedly did it occur to me that chemical engineering is awash with
applications for extended multiphysics. First, let’s give an operational definition
for extended multiphysics in the FEMLAB sense: a model is categorized as
extended multiphysics if it requires description of field variables in two or more
logically disjoint domains. They are not likely to be physically disjoint domains
since the physics must be coupled in some respect to warrant solving the
problems in each domain jointly. FEMLAB allows the user to use several
different geometries/application mode pairs in building up an extended
multiphysics model.

So why is it that chemical engineering is awash with extended multiphysics?
Look no further than your nearest flowsheet, say Figure 4.1.

Figure 4.1 Flowsheet for a linear array of unit operations.

For the process in Figure 4.1,

“Cyclopropane at 5 bar and 30°C is fed at a rate of lkmolh. It is heated to a
reaction temperature of 500°C by a heat exchanger before entering as CSTR
(continuously stirred tank reactor). The reactor has a volume of 2 m3 and
maintains the reaction temperature of 500°C. The isomerization reaction:

C,H, + CH,CH = CH, (4.1)

is first order with a rate constant of k = 6 . 7 ~ 1 0 - ~ s-l at 500°C. The products of
the reaction are then cooled to the dew point by a second heat exchanger before
entering a compressor. The compressor increases the pressure to 10 bar, the

Extended Multiphysics 139

pressure at which separation of reacted propylene and unreacted cyclopropane
will occur. The compressed gas is then condensed to bubble-point liquid and
feed to a distillation column. The column has 31 ideal stages with the feed onto
the stage 16. It operates with a total condenser and a molar reflux ratio of 8.4
producing a distillate flow rate of 0.292 kg-molh.”

Sound familiar? Such scenarios populate modules on “Process Engineering
Fundamentals.” Why is it extended multiphysics? Each unit operation
constitutes its own logical domain, connected to the others by entry and exit
points. In the conceptual design stage of such a plant, the unit operations are
treated by simplified models to permit facile exploration of the configuration
space. Process integration by means of recycle and heat exchanger networks
adds greater complexity to the flowsheet, and greater scope for economies in
operating and capital costs. Eventually, however, the process engineer has to
give detailed designs for such plant. These days that includes process
simulation, typically including optimisation, parametric sensitivity studies and
transient analysis. And even if the plant were designed a generation ago, process
studies of this nature are common for retrofit and optimisation. In many cases,
plant were over designed by 30-50% (since such flexibility is a common
safeguard in design), so now that the plant is operational, efficiency savings of
30-50% should be achievable. Thus has grown the burgeoning field of process
systems optimisation. And this is a regime for extended multiphysics. If any of
the unit operations in Figure 4.1 are to be modelled in detail, that usually
involves a spatial-temporal PDE where the simplified model used in design
might have been a lumped parameter model. For instance, suppose the reactor in
Figure 4.1 is CSTR reactor which is jacketed by a bath of its product liquid (at
500°C) before entering the heat exchanger proper. Temporal fluctuations in the
reactor temperature propagate through the bath to the heat exchanger, requiring
control action, which in turn leads to transients in the compressor operation.
These feed into the distillation column. Presuming the separated unreacted
cyclopropane is recycled back to the feed to the reactor, the temperature
fluctuations into the distillation column will have translated into composition
fluctuations in the recycle stream, which will then effect the reactor conversion,
starting the whole cycle again. The plant should be designed to dampen
fluctuations back to the set point, rather than reinforce them. Extended
multiphysics is in play at every level of process coupling. In the linear flowsheet
of Figure 4.1, it is possible to isolate the modelling of each unit operation, since
the entry and exit points are the only overlaps. It is still extended multiphysics if
you want to link them up in FEMLAB, but the linkages are simple. But if
process integration enters in, then the linkages may be more thorough. For
instance, in distillation columns, differential heating and cooling of stages can be
done to influence separation efficiency (with multiple entry and exit points for
various “fractions”). These streams can be crossed for heat integration and

140 Process Modelling and Simulation with Finite Element Methods

recycled for reactor integration. Thus, “lumped variables” of unit operations
become distributed constraints for others. That FEMLAB can be called by
Simulink for greater detailed modelling of some unit operations is a feature that
allows better plant simulation. The commercial plant simulation packages, such
as AspenPlus and HYSYS, have implemented links to computational fluid
dynamics packages to improve detailed simulation of selected unit operations.
This trend will be come a flood, as it is less expensive and safer to simulate
“what if’ scenarios than to implement them on real plant. Examples of extended
multiphysics will make the concept clearer. We will start with a 1-D convection-
diffusion-heterogeneous reaction model for a fixed bed supported catalyst
system.

4.2 Heterogeneous Reaction in a Fixed Bed with Premixed Feed

Recently Mchedlov et al. [3] proposed a general lumped parameter model for
heterogeneous reaction in a dispersed phase. The model focuses on situations
where mass transfer is asymmetric, i.e. some species have greater mass
transfer coefficients with the dispersed phase than others. Any number of
physicochemical interactions could lead to this situation, but invariably it is in
only slow flows, as through porous media, where kinetic asymmetry can survive.
Turbulence usually leads to equal mass transfer coefficients for each species.
Consider the reaction

u + v + w (4.2)

which only occurs in the dispersed phase. The lumped parameter model gives
three convection-diffusion-mass transfer equations in the bulk phase, which for
steady operation read as:

(4.3)

Figure 4.2 Schematic of a fixed bed with reaction largely localized.

Extended Multiphysics 141

The fluxes j take the traditional mass transfer coefficient form

ju = ~ ~ (u - i i)
jv = IC , , (V- -V”)

j , = K,(w-w)

(4.4)

At steady state, these fluxes are all equal and thus give two constraints on the
bulk variables u,v,w and on the disperse phase concentrations u” , v“, I?. The
sixth constraint is on the surface reaction, which is presumed to be in equilibrium
(fast reaction kinetics and nearly irreversible):

iiv” - KI? = 0 (4.5)
The boundary conditions will be taken as fixed concentrations of u and v at the
inlet, no w, and outlet conditions with convection much greater than diffusion.
For simplicity, since there are so many parameters, we will test just kinetic
asymmetry of the mass transfer parameters and fix unit diffusivities D,=D,= 1,
mobile product k,=100 and D,=0.001, one of the reactants to have unit mass
transfer coefficient k,=l, and this leaves free parameters as the velocity U and
mass transfer coefficient of the most resistive reactant, k,, reactor length L, and
equilibrium constant K. Since industrial interest lies in reactions that favor the
products, we shall take K=10-5 as a nearly irreversible reaction. Initially, let’s
consider a reactor of length L=5, velocity U=0.5, and mass transfer asymmetry
with k,=0.2. The inlet conditions will be uO=1 and v0=0.4.

Now to set up the FEMLAB Model:

Start up FEMLAB and enter the Model Navigator.

Model Navigator
Select 1-D dimension

Element: Lagrange - quadratic
Specify three independent variables

0 OK

Select PDE modes + general - time-dependent

More >> mode name: bulk ; name variables: U V W; ind var: z

Now pull down the Multiphysics and Select Add/Edit Modes.

Multiphysics Add/Edit Modes
0

0 Add across >>
0 OK

Select PDE modes - general
Insert the mode name: surface
Specify three independent variables: US VS WS

142 Process Modelling and Simulation with Finite Element Methods

r

There should have been two “Geoml: PDE general form” modes listed on the
right hand column. Pull down the Draw menu and select Specify Geometry.

Draw Mode
Name: interval
Start: 0
Stop: 5
Apply
OK

U V W
-Uz*Du -Vz*Dv -w7*nw

Pull down the options menu and select Add/Edit constants.
constants dialog box appears. Assign the constants as below.

AddLEdit Constants

F l -u*Uz-ku*(U-US) I -u*Vz-kv*(V-VS)

The AddEdit

-u*Wz-kw”(W-WS)

0.001
Kw

0.5 le-5 0.2 100

da 1 1 1 1

1 1 u0 v0 0
0 Select surface mode. Enter the PDE forms as below for each tab

r 0 0

F ku*(U-US)-kv*(V-VS) ku*(U-US)+kw*(W-WS) US *VS-K“ WS

OK

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings. Setup the boundary conditions as in the table below.

Pull down the options menu and select Add/Edit constants.

Now pull
the model constants for the six equations as below:

and select

Extended Multiphysics 143

U
Rzu0-U

V W
R=vO-V R=-W

The Neumann BCs for U,V,W require the normal component of r to vanish at
au
an the outflow boundary. Since f i rU = 0, - is the diffusive flux, this BC

enforces a no diffusive flux boundary condition. So all the flux is convective,
i.e. outflow. For the surface variables, however, r =O was specified, so entering
zero Neurnann conditions is a non-constraint (O=O).

Pull down the Mesh menu and select Parameters.

>>More
0 Max size near vertices: 1 0.0001 2 0.0001

Number of Elements in Subdomain: 1 1000
Apply

This results in a 1000 element meshing. Now for the Solver. Pull down the
Solver Menu and select Parameters. Check the Stationary Nonlinear solver
box, apply, then under Settings de-select the Automatic Scaling and select None.
Now, click on the Solve button. It takes FEMLAB 9 iterations to get there (this
is a highly nonlinear problem), but it converges to 10.' accuracy eventually.

Figures 4.3 and 4.4 show the behaviour of the reactant concentrations.
Figure 4.4 in particular requires interpretation. Because of kinetic asymmetry,
u" andcvanish in different sections of the reactor. Because v has greater mass
transfer coefficient it populates the surface initially, u" reacts instantaneously as
it arrives on the surface. As u is in bulk excess, however, eventually ;reacts
away as well, until we reach the crossover point, where both surface reactants
vanish. This is actually the point of greatest molecular efficiency, since any
molecule of u or v that arrives on the surface reacts here. The theory of

144 Process Modelling and Simulation with Finife Element Methods

Decay of bulk concentration Crossover of surface concentratlons

Figure 4.3 B u k concentrations decay. Figure 4.4 Surface concentrations exhibit
crossover.

Mchedlov et al. [3] predicts the existence in parametric space of a crossover
point, and gives a good approximation of its position X based on nearly
irreversible reaction. Clearly, the actual profile requires solution of a two point
boundary value problem with three conditions at either end. The system of
equations (4.3)-(4.5) is a combined differential-algebraic system, which is
inherently “stiff’ due to the difficulty in satisfying the three nonlinear algebraic
constraints simultaneously. Mchedlov et al. achieved it by shooting methods
with stiff ODE integrators. The FEMLAB solution naturally permits the
satisfaction of two point BVPs and analytically determines the Jacobian of the
nonlinear system, automatically with its symbolic tools. Mchedlov et al.
determined the general Jacobian for their system, but due to the simple
stoichiometry, used elimination to reduce the problem to a third order reaction-
convection-diffusion system with highly nonlinear constraints. In terms of
programmer effort, the FEMLAB solution took an evening, the shooting method
took several months.

Reactor-Separator-Recycle Extended Multiphysics

You would be forgiven for asking where in the above heterogeneous reactor
model is the extended multiphysics. Although we saw rather clever use of
FEMLAB to solve a differential-algebraic system, there is not yet any extended
multiphysics coupling. So now let’s consider our reactor as part of a very simple
flowsheet with a separator and recycle.

The feed rates are taken as uf, vf. The reactor inlet rates are UO, VO. The
reactor exit rates are u,, v,, we. The separator is taken as an ideal separator, but
with a temporal response. For instance, a buffer tank where product w phase
separates. The recycle rates are u, ,vr. With steady operation, the separator outlet
rates must equal the inlet rates. However, we are interested in the temporal
response potentially, so we will model the separator as a buffer tank with an
effective capacitance.

Extended Multiphysics 145

Figure 4.5 Simple flowsheet with heterogeneous reactor, separator and recycle.

Zimmerman [4] derived a model for imperfect mixing in buffer tanks due to
stratification effects. A model flow configuration in a buffer tank with a two
layer flow stratification was considered. The lower, denser stream is presumed
to short-circuit to the outlet, driving a recirculating cavity flow in the upper
layer. As the upper layer can be argued, due to strong convective dispersion, to
be well mixed, mass transfer to the upper layer from the dense stream is the
limiting step. In analogy with a plug flow reactor, a shell balance on the material
fluxes in a slug of the lower stream leads to a lumped parameter mixing model
with two limiting conditions: (1) no mixing at infinite superficial velocity of
throughput; and (2) perfect mixing with infinite mass transfer coefficient. The
time dependence of the model is readily described as

U , Eu, +(l-E)uc

--=-(ue du F -uc)(l -E)
dt V

(4.6)

F and V are the volumetric throughput and the volume of the buffer tank,
respectively. A similar set of equations holds for v. E is the lumped parameter
that describes the capacitance of the buffer tank. The latter, equation (4.6),
is the equation for the voltage response of the capacitor u, in a driven
RC-circuit with loading (1-E) u, and RC time constant 1-E [5] . Perfect mixing,
analogous to a stirred tank model, occurs when E=O, which then has the fastest
possible response time constant. Figure 4.6 shows clearly that the concentration
u, in the upper layer is "charged" as the pulse passes and "discharges" after the
pulse in the lower stream has passed. The outlet concentration Figure 4.7,
however, for the imperfect mixing cases E>O shows jumps up and down in
concentration u, due to the combination of the inlet stream short circuiting and
the mass transfer to or from the upper reservoir, consistent with the first equation
of (4.6).

146 Process Modelling and Simulation with Finite Element Methods

Figure 4.6a Pulse fed to buffer tank (ud. Figure 4.6b Pulse response of "charge" uc in the
capacitor for perfect mixing (thick line) and imperfect
mixing E=0.5 (thin line).

Figure 4.7 Outlet response of buffer tank to pulse in inlet to the pulse for perfect mixing (thick
line) and imperfect mixing E=0.5 (thin line).

Simple mass balance can be used to compute the reactor inlet concentrations:

The non-trivial impact comes on reactor throughput. Taking the reactor to have
unit area, the superficial velocity is given by:

By the way, the fraction retained in the recycle, f, might not be unity in case the
system needs a purge. It may be the case that the product take-off has the effect

Extended Multiphysics 147

of stabilizing the system since the throughput U is greater than unity (the no
recycle throughput), but a purge may be necessary to avoid an infinite
recycle ratio due to build up of reactants or trace impurities. It is always good
chemical engineering design practice to include a purge, and then minimize it in
operation.

Implementing the Changes for Recycle

In principle, it should not be difficult to add a second weak subdomain mode for
the buffer tank. In practice, it was rather frustrating, as I unearthed an apparent
bug in the convectioddiffusion application mode that took some ingenuity to
create a workaround. Before finding the bug and workaround, however, I set up
the FEMLAB model with several variations. This exercise turned out to be a
tour de force in coupling variables.

The strategy is simply to create a O-D domain (as we have done many times
before) to implement the ODE in time (4.6) and appropriate couplings to import
the reactor outlet concentrations and merge the recycle with the feed stream into
the reactor inlet.

Pull down the Multiphysics menu and Select Add/Edit modes.

Select 1-D dimension
0

Element: Lagrange - quadratic

0 More>>

Select weak subdomain mode, time dependent weak solver

Specify two independent variables: uc vc

OK

Pull down the Draw menu and select Specify Geometry.

Draw Mode
Name: buffer
Start: -2
stop: -1
Apply

0 OK

Now for the boundary conditions. Select mode wl . Pull down the Boundary
menu and select Boundary Settings. Setup the boundary conditions as in the
table below.

148 Process Modelling and Simulation with Finite Element Methods

I weak I dweak

Boundary Mode

constr

uc
vc

uc (0 1 0 1 0
vc 1 0 1 0 1 0

weak dweak constr init
-ucx.*ucx-test+uc-test*(ue-uc)*(l-lump) uc-time.*uc-test 0 ue
-vcx.*vcx-test+vc-test*(ve-vc)*(l-lump) vc-time.*vc-test 0 ve

Apply/OK

Apply/OK

Use the Multiphysics menu to select mode cd
Set U=uinlet; V=vinlet on bnd 1

Zero-ing out the constraints returns the weak mode to natural (Neumann)
boundary conditions.

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears. Assign the constants as below.

Add/Edit Constants
0

OK

Remove u, u0 and v0
Set f=0; Ufeed=l.O; Vfeed=0.4; lump=0.5
Apply

Now pull down the Subdomain menu and select Subdomain settings. Assign
the model constants for the six equations as below:

Now for the hard part. The coupling variables. Pull down the Options menu
and select Add/Edit Coupling Variables. Enter the eight coupling variables as
below:

Extended Multiphysics 149

Name I Type

Apply
OK

Defined Expression

Clearly, there are still undefined expression above, which are conveniently
defined in the Add/Edit Expressions selection of the Options menu.

U geometry Geoml 1 0,5*(uO+vO)/(Ufeed+Vfeed)

So here is the faultline. The subdomain coefficients will only accept an
expression defined on the whole geometry for the coefficient of x-velocity,
called u, to which we assigned the expression as u above. Unfortunately, u0 and
v0 cannot be defined as coupling variables in the whole geometry Geoml in the
GUI. Attempting to solve just elicits an error “Unknown variable or function
u0.” So here is the workaround. At this point, save a model m-file. Then edit
the equivalent lines in the m-file
elemcpl{7}.src.bnd.var={’uO’,{~uinlet’));
elemcpl{7}.src.bnd.ind={3};
%elemcpl{7}.dst.g=l;
%elemcpl{7}.dst.equ.ind={[l 21);

Comment out the dst fields. Do the same for v0. So what does this do? Page 5-
73 of the Reference Manual tells us - “By default, the variables defined in src
can be used everywhere in geometry 1. The optional field dst can be used to
specify the domains of the definition for the variables in detail.” So without the
dst fields, the coupling variables u0 and v0 will be available at the geometry
level, so that they can be used in defining u. Why the ‘u’ coefficient must be
defined at the geometry level is certainly a bug, since other PDE coefficients
need only be defined at the subdomain level. Read in this edited model m-file

150 Process Modelling and Simulation with Finite Element Methods

into the FEMLAB GUI to carry on. The definitions of u0 and v0 will now have
the desired effects. Annoyingly, the AddEdit Couplings dialogue window no
longer launches with this alteration. But the computational model now solves.

Advice from COMSOL is that there is a simpler workaround for this
apparent bug in the coupling variables, which allows you to solve this problem
without playing around with m-files. You basically define a weak boundary
mode (as opposed to a weak subdomain mode). The make sure to use non-
conservative formulation for the convection-diffusion application mode. The
reason for doing this is that the coupling variable or expression you define only
needs to be accessed on a subdomain level, not on the boundary level.

Pull down the Mesh menu and select Parameters.

Mesh Mode
>>More

0 OK

Number of Elements in Subdomain: 1 1000 2 10
Apply

As is typical for FEMLAB, the pairs 1 1000 2 10 put 1000 elements in
subdomain 1 and 10 in subdomain 2.

This results in a 1013 element meshing. Now for the Solver. Pull down the
Solver Menu and select Parameters. Check the Stationary Nonlinear solver
box, apply, and click on the Solve button. With no recycle and steady state,
FEMLAB finds the same solution for the reactor as before. You can ramp up the
recycle ratio gradually using the Re-Start button on the Toolbar. By f=10%, a
modest variation in the position of the crossover point is noted. The effect of the
recycle is to load even more U into the reactor, as well as to speed up the
throughput somewhat.

The transient solution is a hard problem, but potentially more interesting as
the “capacitor” takes a long time to charge in the buffer tank. Before undertaking
the transient solution, however, we need to make some modest alterations to the
PDE coefficients:

Pull down the Multiphysics menu, select surface mode, then pull down the
Subdomain menu and select View as Coefficients. Finally, select Parameters.

Subdomain Mode (Surface Mode, View as Coefficients)
Select the dweak tab, domain 2
Replace US-time, VS-time, WS-time with zeros in the
US,VS,WS coefficient boxes
APPlY
OK

Extended Multiphysics 151

Simply, the mass transfer flux and surface reaction constraints are not time
evolution equations. FEMLAB naturally gives these equations in the weak
form a d d t accumulation term in the time dependent solver. Without the
time evolution terms, these algebraic constraints make the system rather
stiff. The additional coupling variables also subtract from the "sparsity" of
the system, thereby making the sparse matrix solvers strain harder to converge.
So don't be surprised if the solver steps in extended multiphysics problems
take longer.

Time=O.l, concentration of U and V) Time=O 1, concentration of US and VS

01 " " " " "
03A 0'5 ; 1'5 ; 7 '5 4 3'5 ; 4'5 ; 0 0 5 1 1 5 2 2 5 3 35 4 4 5 5

z coordinate z coordinate

Figure 4.8 Bulk concentrations decay SIOwlY. Figure 4.9 US is still depleted throughout the
reactor.

The results are shown in Figures 4.8 and 4.9. One would typically expect that in
a nonlinear reactive-diffusion problem at low Peclet number (about O S) , the
steady state would be well on its way at t=0.1. But the influence of the imperfect
mixing in the buffer tank is apparent. The bulk and surface concentrations are
slowly developing towards their steady state profiles, but the de-charging of the
capacitor is a slow process, which will hamper the development of the steady
state. If further system time lags were modelled, say the piping and control
systems, then it is likely that this buffering resistance to developing the steady
state from start up would be exacerbated.

Exercise 4.1

In 53.3, we added an oscillatory disturbance to the steady state solution of
a tubular reactor and observed the transient response. Store the steady
state solution to this heterogeneous reactor with buffer tank process, then create
m-file functions for the initial conditions, adding an oscillatory disturbance
to U only. How many m-file functions do you need to specify the steady
state condition with oscillation? Comment about the transient response of the
system.

152 Process Modelling and Simulation with Finite Element Methods

Exercise 4.2

The “sluggishness of the buffer” tank model depends to a large extent on the
ratio FN in (4.6), which is an inverse time scale. In the FEMLAB model,
implicitly, FN was taken as unity. Explicitly add FoverV as a parameter, and
explore the transient response when varying FoverV.

4.3 Primacy of the Buffer Tank

In the previous section, the “main” physics were in the 1-D heterogeneous
reactor, and the buffer tank, due to being modelled by a lumped parameter, was
treatable by a 0-D capacitor model. Where lumped parameter models work, it is
always a boon, since the dimensionality of the model is smaller and the equations
generally simpler in form than the distributed system model that treats the
physics more exactly. It begs the question, however, of where do you get a
lumped parameter model from, and how do you get the lumped parameter
dependencies. Generally, the lumped parameter model comes from analysis and
simplification of a higher dimensional, distributed model. For instance, mass
transfer coefficients come from solving film theories of convection and diffusion
in a boundary layer flow. The lumped parameter, the mass transfer coefficient,
can be predicted from the shape of the particle and the strength of the laminar
flow. In turbulent flows, the functional form of the mass transfer coefficient is
found from empirical correlations. The buffer tank lumped parameter model of
$4.1 was developed for a specified industrial application for assessing
concentration fluctuations, and the lumped parameter was fitted from samples of
inlet and exit conditions.

Certainly to treat a specific industrial unit operation, semi-empiricism is a
reliable approach. In the case of the buffer tank that inspired [4], fluid density
varied significantly with solute concentration (salinity), and thus the
“capacitance” effect of the buffer tank was expected to be influenced by the rate
of forced convection (throughput) FN, viscous and mass diffusivity, and by the
strength of free convection causing stratification, characterized by Reynolds,
Prandtl and solutal Rayleigh numbers, respectively. Since buffer tank lumped
parameter model of $4.1 only includes the throughput effects explicitly, the
dependence of the lumped parameter E on Reynolds, Prandtl and solutal
Rayleigh numbers is unknown. It is just taken as a constant found from
representative conditions. Whether or not a lumped parameter model is
sufficient depends on the type and accuracy of the predictions required from the
process model.

If the buffer tank is small, or shocks in solute concentration fluctuations are
prevalent upstream, the lumped parameter model may be insufficient in
predictive powers. Greater detail in the modeling would then be warranted.

Extended Multiphysics 153

water di ersion 1 ,
let

L
Figure 4.10 Schematic of a stratified buffer tank with potentially two types of inlets and one outlet.

In this subsection, we develop a two-component mass and momentum
transport model for dense solute in a 2-D buffer tank. It is set up so that it can be
augmented with a 1-D heterogeneous reactor with recycle model from the
previous section. No lumped parameters are ever used in this model, as the
detailed distributed effects of convection on mass transfer by coupling with
diffusion and back action of density variations on convection are computed
directly.

We will build up the model piecemeal, starting with the Incompressible
Navier-Stokes model, then successively adding one mass transport mode, solutal
Rayleigh effects, and then a second mass transport mode.

Component 1: Navier-Stokes flow field for cavity flow driven by free stream

Enter the Model Navigator.

Model Navigator _I_

Select 2-D dimension
Select the Incompressible Navier-Stokes, time-dependent

Pull down the Options menu and set the grid to (0,5) x (0,5) and the grid
spacing to 0.5,0.5. Pull down the Draw menu and select RectangleBquare
(R1)and place it with vertices [O,O] and [0,5]. Now draw R2 with vertices [1,5]
and [5,5].

Pull down the Boundary menu and select boundary settings

Boundary Mode

Apply/OK

Set up boundary 1 u=O; v=O, inflow
Set up bnd 2,3,5,7 no slip
Set up bnd 6 outflow p=O

154 Process Modelling and Simulation with Finite Element Methods

Now pull down the Subdomain menu and select Subdomain settings.

Select domain 1

Set p=l; q=O.Ol .
Use the multiphysics pull down menu to select the IC NS mode

Now pull down the Mesh menu and select the Parameters option.

Mesh Parameters
Select more>>
Number of elements: I000
Remesh
OK

Now to the Solver. Check that the Solver Parameters have set stationary
nonlinear mode. Click solve. Now to save the results in a fashion suitable for
restarting. Save the resulting FEMLAB workspace as tank-ns.mat.

Now let's follow our recipe for storing the solution as a MATLAB m-file
function:

1. Export the fem structure to the MATLAB Workspace as fem.
2. Use postinterp to create a dataset for the u and v velocities and store to

file.
[xx,yyl =meshgrid(O: 0 . 0 5 : 5 . 0 , 0 : 0.05 : 5 . 0) ;
xxx=[xx(:)'; yy(:)'];
u=postinterp(fem, 'u' ,xxx) ;
v=postinterp(fem,'v',xxx);
p= postinterp(fem,'p',xxx);
uu=reshape (u, size (xx)) ;
w=reshape (v, size (xx)) ;
pp=reshape (p, size (xx)) ;
save steadytank.mat xx yy uu w pp;

3. Create m-file functions that interpolate in the dataset, e.g. tanku.m
function u=tanku(x,y)
%TANKU Interpolates u from the FEM solution of the buffer tank
% U = TANKU(X,Y)
% i s interpolated on the rectangle [O,O.OOZl x [0 . 0 0 6 1

% Get the data
load steadytank.mat xx yy uu w pp
% Interpolate from rectangular grid to unstructured point
u=interp2 (xx,yy,uu,x,y) ;

,

Extended Multiphysics 155

4 5

4 -

3 5 -

3 -

2 5 -

2 -

1 5 -

1 -

0 5 -

The tanku.m, tankv.m, and tankp.m m-file functions are now callable from
FEMLAB's GUI as initial conditions for the tank. The velocity profile is a
driven cavity flow, with free stream scaled so that the inlet velocity is unity. If
you find this implementation of the initial conditions for the tank velocity field
unwieldy, there is an alternative approach which uses the "Solve for variables"
feature of the Solver Parameters to first select to solve only for the stationary
velocity profile in the tank, without the mass transfer. Then with all variables
turned back, solve with the restart button on the toolbar, taking the velocity field
only as the initial condition from the previous solution. This mechanism was not
available when this section was written with FEMLAB 2.2. To see it in action,
chapter nine illustrates this methodology for electrokinetic flow.

5 ,

. _ - . -

, . "__-_+-- - lJ

- . c - -_--
e- - - r ,-=ks
--**
A>--- + - f - * - - .>

0 '

Component 2: Passive scalar convection and diffusion equation

Purists will note that the Chemical Engineering Module comes with a convection
and diffusion mode (cd). It is very good for the implementation of convective
flux boundaries. However, if you wish to set the normal derivative of
concentration to zero along an outflow boundary, it is clumsy to implement in cd
mode. It is easier to implement in a standard coefficient mode, so we will tackle
our solutal transport effects that way.

Pull down the Multiphysics menu and select AddEdit modes.

Multiphysics Add/Edit modes (cl)

Element: Lagrange - quadratic
0 Apply/OK

Select the coefficient mode, time-dependent
Name the independent variable c l

156 Process Modelling and Simulation with Finite Element Methods

the Boundary menu and select boundary settings

Boundary Mode
0

0

Apply/OK

Set up boundary 1 Dirichlet h=l; r=l; (fixed c l = l)
Set up bnd 2,3,5,6,7 Neumann q=O; g=O

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
Select domains 1&2

Apply/OK
Select c l mode
Set coefficients c=l;a=O;f=O;da=l;a=(O,O);~=(u,v),~(O,O)

Use the multiphysics pull down menu to select the IC NS mode
Use the Init Tab to set up u(tO)=tanku(x,y); v(tO)=tankv(x,y);
p(tO)=tankp(x,y 1

Now choose the stationary nonlinear solver and click on the solve button. Do
not be surprised to find rapid convergence to a uniform concentration field and
the same flow field as in Figure 4.1 1.

Component 3: Buoyancy effects of solutal mass transport

Save the FEMLAB model as tank-nscl.mat. Now pull down the Subdomain
menu and select Subdomain settings.

Subdomain Mode (ns)
Select domains 1&2

0

Apply/OK
Set Fy=-0.25*cl (Rayleigh number Ra=25)

Now choose the stationary nonlinear solver and click on the solve button.
Again, do not be surprised that the steady state is a uniform profile, again with
the driven cavity velocity field. Next try the time dependent solver with output
times 0:O.l: 1 .O. The final concentration profile (Figure 4.13) just shows
continual spreading of the concentration front, but no hint of a stratification
forming (see Figure 4.12). The animation of the time series for the velocity
vectors is suitably unenlightening - visually it never changes from the driven
cavity vector field of Figure 4.1 1.

Extended Multiphysics 157

Time=l lsopycnals of cl

35

Max 1

0 0476

1 0 1 2 3 4 5 6 M N ~ z rre DO.

Figure 4.12 Isopycnals of c l (t=l) from the initial state of cavity flow, solute-free buffer tank, and
Ra=25.

So to achieve something more interesting, consider the no flow initial condition
(u(tO)=v(tO)=p(tO)=O) with a no flow BC. Figure 4.13 shows the time history of
with snapshots up to t=20 (diffusive time scale) of the free convection velocity
and concentration profiles. Although the density stratification is weak, it is
apparent that denser fluid stays below lighter fluid. Times 0-1, when animated,
show the evolution of the gravity current as it spreads out along the bottom of
the tank. The density front drives motion above and in front of it. Since c l = l
fluid entering is denser than the cl=O fluid next to it, it literally falls over.
Rottman and Simpson [6] have conducted laboratory experiments that
beautifully illustrate the formation of gravity currents. Although at some time
after t=l, the gravity current finds its way over to the constant pressure exit
(whereupon it falls out), the gravity current continues to be the mechanism for
driving the pseudo-steady flow. The fluid to the right is denser than the fluid to
the left, so it just keeps on falling over. The initial push of fluid up and around
that started the upper recirculation layer cycling does not maintain it. Rather,
instead, it is the viscous drag from the gravity current layer that maintains the
circulation above, much as how the free stream drives cavity flow.

The case of purely gravity current driven motion in a tank has not been
studied before, so the two clear observations resulting from this model must be
made. Firstly, the time to uniform concentration is extremely slow. The density
variation with concentration not withstanding, one would expect nearly uniform
concentration profiles after a few diffusion times, but in fact there were still
substantial gradients after t=50. This is clearly due to the buoyant force
opposing diffusive mixing, even in the presence of free convection whch should,
supposedly, enhance the mixing by dispersion. It is actually well known in the
wave tank community that the ideal solution of fresh waterhalt water can be used
to set up any stable stratification density profile desired, simply because
diffusion is such a weak mechanism that the profile is persistent. Turbulent
mixing is another matter entirely. So the self-similar profile observed in Figures

158 Process Modelling and Simulation with Finite Element Methods

Time=l Velocity Vectors
5

4 5

4

35

3

25

2

1 5

I

0 6

0

Time=5 Velocty Vectors
5

4 5

4

35

3

2 5

2

1 5

I

0 5

' 2 1 0 1 2 3 4 5 6 7

Time=lO Velocrty Vectors
5

45

4

35

3

2 6

2

15

1

0 5

' 2 1 0 1 2 3 4 5 6 7

Velocrtv vectors

Max , Time=l lsopycnals of c l
0 9524

5 n 9048
0 8571

4 5 0 8095
0 7619
0 7143
0 6661 06191

3 05714
0 1238
0 4762 0 4x6

0 3333 0 2857

0 1415 0 1429 0 0953

4

3 1

25
2 0 381

1 0 2381

n n 0476

1 5

0 5

2 I 0 1 2 3 I 5 5 I M n l m m

Time=5 lsopycnals of c l
5

4 5

1

35
3

25
2

15

1

0 6

0

2 1 0 1 2 3 4 5 6 7

MllX I

0 354s
0 ?Q91 0 8636

0 7726
0,272 OSBiT

0 6362

o 8181

n 5- n 5453 n 4998

n 3634

n 227

0 4544 0 4w9

03179 0 2725

0 1815
0 1361 0 0906

WnOMS1

Time=lO lsopycnals of c l NI.X ?

09613
5 0 9225

45 0 8451
0 BE63
07676
0 7288 0 6901

0 a838

1

35

3 06511 06126
0 5739 0 5312

2 0 4951
0 4577

I 0 3802 03415 om om
0 0 z53

2 1 n I 2 3 4 5 6 i ~ n o i s i

21

1 5 0419

05

Time=20 lsopycnals of c l Max I

0 973
5 0 945

n9im
45 n89w

n 8379 n a m

3 0 7558

4
35

0 EEd9

0 7838

0 7298
0 7027
0 6757
0 6187
06217 0 1947

2
2 5

1 5

1 0 5676 n 5403 051%

0 4m
0 0 4595

0 5

2 1 0 1 2 3 4 5 6 7 hmO431

Figure 4.13 History of free convection in the buffer tank. Animation of times 0-1 shows the
spreading out of the gravity current and the establishment of the upper recirculation region. All later
times shown have apparently self-similar profiles. The strength of the velocity profile diminishes
with time.

Extended Multiphysics 159

4.13 for both velocity vectors and concentration is indicative of the long-lived
nature of the transient intermediate approach to uniform mixing. It makes a
mockery of “steady-state’’ analysis, since it is not clear that steady state is ever
achieved in finite time nor is it clear that the uniformly mixed state will result
at all.

Fick’s law, which models the non-equilibrium transport of species, would
have us believe that the equilibrium endgame has concentration uniformly
diffused everywhere from a steady source. In fact, there are two greater
complications that preclude this. The first is that it is not concentration that is
diffusing at all, but rather chemical potential, and in an external gravitational
field. At equilibrium, these two potentials must be balanced. So a permanent
concentration gradient is maintained against a gravitational field. This fact is
responsible for the difference in composition between air at sea level and at Mile
High Stadium. In a buffer tank, it is probably meaningless, as the gradient in
concentration is minute. The second complication that is probably more
important in most chemical plants is that few solutions are exactly ideal, and
many show significant volume change on mixing. Zimmerman [7] has shown
that non-ideal solutions can have the structure of their stratification selected on
chemical equilibrium grounds, and that only ideal solutions can ever be expected
to form uniform mixtures at equilibrium.

The second observation is of the form of the velocity profile established -
recirculation layer over a current. This is exactly the form postulated by
Zimmerman [4] for which the lumped parameter model of imperfect mixing in
the buffer tank was derived, equations (4.6). Figure 4.14 shows the idealized
flow configuration for a denser current driving an upper recirculating layer. The
lumped parameter model presumes that the recirculation is strong enough
that the upper layer becomes well mixed, according to a theory of Batchelor [S],
and thus a single Concentration characterizes it. In fact, it seems that the
upper recirculation is weak, yet the concentration gradients are small in the
upper layer,

w a r ! oil-in-fresh ~u

Fi Ci
F C

- 0 0
outlet

Lx
Figure 4.14 Plug flow across the tank bottom driving an upper recirculation layer.

160 Process Modelling and Simulation with Finite Element Methods

As the assumptions are all qualitatively met by the finite element model, it would
seem likely that the lumped parameter model would be an acceptable
approximation in the case of purely free convection through the buffer tank.
Were the point of this chapter to verify the applicability of the lumped parameter
buffer tank model, then we could run a parametric study fitting E(Pr,Ra) for the
free convection regime. The easiest route to fit E would be to compute outlet
concentration by boundary integration over boundary 6 and fit the value of E
which best fits the predictions of (4.6) to the simulated outlet times series. Since
it is unlikely that a buffer tank would be operated under a purely free convection
regime, it would not necessarily be useful information.

A second series of profiles are shown in Figure 4.15, which differs only
from the model of Figure 4.1 1 in the boundary condition is taken as u= 1, v=O on
the inlet (boundary 1) and the Rayleigh number is five times larger (Ra=2S). It
is actually the case that the recirculation layer above is much stronger in this
model, since forced convection imparts more momentum to the upper layer than
free convection. It should not come as striking, however, that the flow
configuration for gravity driven and pressure driven flows are broadly similar.
Only at early times, while the transient flow field is still establishing, does the
forced convection flow differ from the gravity current driven flow qualitatively.
Before diffusion has had much time to act, fluid in the upper layer is just
dragged along by viscous forces, yet it is heavy enough to fall back into the
lower layer and fall out the constant pressure outlet. Once the upper layer
becomes significantly stratified, however, the fluid dragged by the current has
enough momentum to “turn the corner” and establish the upper recirculation
layer. Thereafter, the profiles look self similar for both concentration and
velocity vectors, and in qualitative agreement with the basis of the lumped
parameter model for imperfect mixing in buffer tanks. So one would expect
(4.6) to hold on average across the outlet, with E(Re,Pr,Ra) as best fit
“capacitance” constant found from time series analysis. Such analysis is beyond
the scope of this chapter, but would be fruitful for modeling systems response in
a complex flowsheet. In the next subsection, we link the 2-D model for the
buffer tank to a I-D model of the heterogeneous reactor, thereby justifying
the description of the buffer tank modeling here in a chapter on “extended
multiphysics.”

Exercise 4.3

Compute the average outlet concentration at a number of times for a pulsed inlet
concentration, i.e. U=l for tE [0,1] and U=O thereafter. Compare qualitatively
the collected data for outlet concentration to Figure 4.7. Is the behaviour closer
to perfect mixing or imperfect mixing with E=O.S?

Extended Multiphysics 161

Time=l Velocity Vectors
5

4 5

1

3 5

3

2 5

2

1 5

3

0 5

0
2 1 0 1 2 3 1 5 6 7

Time=5 Velocity Vectors

4 5
4

35
3

2 5

2
1 5

1

05
0

2 1 0 1 2 3 4 1 6 7

Time=20 Velocty vectors
5

4 5

4

35

3

2 5

2

15

1

05

' 2 1 0 1 2 3 4 5 6 7

Tirne=35 Velocty vectors
5

4 5

4

3 5

3

2 5

2

15

,
0 5

' 2 1 0 1 2 3 4 5 6 7

Time=l lsopycnals of c l
6

4 5

4

3 6
3

2 5

7
1 5

1

0 5

0

2 l 0 1 2 3 4 5 6 7

Time=5 lsopycnals of c l
5

4 5
4

3 5
3

2 5

2

1 5

1

0 5

0

2 1 0 1 2 3 4 5 6 7

Time=20 lsopycnals of c l
5

4 5

4
3 1

3

2 5

2

1 5

1

0 6

0

2 1 0 1 2 3 4 5 6 7

Time=35 lsopycnals of c l
5

4 5
4

3 5
3

2 5

2

1 5

1

0 5

0

2 1 0 1 2 3 4 5 6 7

Uer I

0 9822
0 3 5 4 4
0 9456
0 9288
0911
0 8ml
0 8753
0 8575
0 8 8 7 06719

0 7863

07x23
0 725
0 6972
0 6794 05616

o 814,

n 7685 o 7507

a 6438
Mn D m

Figure 4.15 Early times do not show the
establishment of an upper recirculation zone, which does not occur until about time t=5. Forced
convection drags the lighter fluid with it at early times. It is only once stratification develops that
recirculation follows. The later times are apparently self-similar in profiles.

History of forced convection in the buffer tank.

162 Process Modelling and Simulation with Finite Element Methods

4.4 Linking the 2-D Buffer Tank to the l -D Heterogeneous Reactor

The 2-D buffer tank model of $4.2 has unit flow rate inlet and unit
concentration inlet conditions. However, neither is the outflow from the
heterogeneous reactor a unit flow rate nor a unit concentration. Nominally the
flow rate was set at u=0.5 in 04.1, but the throughput varies with the recycle rate.
So tanku(x,y), tankv(x,y), tankp(x,y) will need to be scaled as initial conditions if
the steady tankheterogeneous reactor solution is to be used as an initial
condition for the linked unit operations. If u2 is the actually reactor outflow rate,
then as initial conditions u=u2*tanku, v=u2*tankv, p=p*~2~*tankp. The last is
the inertial scaling for pressure, appropriate at Re=100.

It should be noted that we have two scalars to model in the 2-D buffer tank,
since the concentration of species U and V can both vary independently. So we
need to add another scalar transport mode.

Pull down the Multiphysics menu and select AddEdit modes.

Multiphysics AddEdit modes (c2)

0 Element: Lagrange - quadratic
0 Apply/OK

Select the coefficient mode, time-dependent
Name the independent variable c2

the Boundary menu and select boundary settings

Boundary Mode
0

Auulv/OK

Set up boundary 1 Dirichlet h=l; r=l; (fixed c2=1)
Set up bnd 2,3,5,6,7 Neumann q=O; g=O

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
Select domains 1&2
Select c2 mode

Before we can move on to the linked model, we also need to follow our recipe
for building initial conditions for the reactor. Open flowsheet.mat from the
FEMLAB GUI, and export fern structure to the workspace. Then in MATLAB,
execute the following commands to store the steady solution:

Extended Multiphysics 163

x~=[O:O.05:5] ;
[is,pel =postinterp(fem,xx) ;
[u,v,w,us,vs,ws]=postinterp(fem, 'U', 'V', 'wl, 'US', ' V S ' , 'ws',is);

save sheetdata.mat xx u v w us vs ws;

Next build six m-file functions along the lines of sheetu.m below:

function U=sheetu (x)
%SHEETU Interpolates u from the FEM solution for flowsheet.mat
% U = SHEETU(X)
% is interpolated on the interval [0 , 5 1 .

% Get the data
load sheetdata.mat xx u v w us vs ws
% Interpolate from rectangular grid to unstructured point.
U=interpl (xx,u,x, 'spline') ;

Everything is in place, so now let's start building the linked model, using the
tank model as a template.

Pull down the Multiphysics menu and Select Add/Edit modes.

Model Navigator
Select add geometry name: geom2
Check 1-D dimension. Give the independent variable as z.
Select PDE modes -+ general -+ time-dependent
Element: Lagrange - quadratic
Name mode bulk. Specify 3 dependent variables: U V W
Add across >>
Select PDE modes -+ general - the-dependent
Name mode surface. Specify 3 dependent variables: US VS WS
OK

Pull down the Draw menu and select Specify Geometry.

Draw Mode
Name: reactor
Start: 0
stop: 5

Now for the boundary conditions.
select Boundary Settings.
below.

Pull down the Boundary menu and
Setup the boundary conditions as in the table

164 Process Modelling and Simulation with Finite Element Methods

Boundarv Mode

Ufeed
1
f
0.02

Use the Mulitphysics mode to switch to mode bulk. Select
domain 1 and enter Dirichlet BCs

I u l v Iw

Vfeed Du Dv Dw
0.4 1 1 0.001
K ku kv kw
1 e-5 0.2 1 100

I Rzu0-U I R=vO-V 1 R=-W I

r
F
da
init

Select domain 2
Enter Neumann BCs (G=O) for all variables.
Use the Mulitphysics mode to switch to mode surface. Select
domain 1,2 and enter Neumann BCs (G=O) for all variables.
c l : Select domain 1: r=uout
c2: Select domain 1: r=vout
Apply/OK
ns: Select domain 1 : u=u1
Adv /OK

U V W
-UZ*DU -VZ*DV -Wz*Dw

-u*Uz-ku*(U-US) -u*Vz-kv*(V-VS) -u*Wz-kw*(W-WS)
1 1 1

sheetu(x) sheetu(x) sheetw(x)

~

conv refers to the convective flux >> diffusive flux boundary condition.

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears. Assign the constants as below.

NOTE
operation

Now pull downNow pull down the Subdomain menu and select Subdomain settings. Assign
the

Extended Multiphysics 165

r
F
da
init

us vs WS
0 0 0
ku*(U-US)-kv*(V-VS) ku*(U-US)+kw*(W-WS) US*VS-K*WS
0 0 0
sheetus(x) sheetus(x) sheetws(x)

Before we move on to linking the models, we need to scale our buffer tank initial
concentrations.

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode

0

c l : Select domain 1 & 2; select the init tab; set cl(tO)=InitU
c2: Select domain 1 & 2; select the init tab; set c2(tO)=InitV
ns: Select domain 1 & 2; set Fy= -0.25*(cl+c2)
Select the init tab; set u(tO)=u3*tanku(x,y); v(t0)=~3*tankv(x,y);
p(tO)= u3"2*tankp(x,y)
Apply
OK

Now for the hard part again. Extended multiphysics means coupling variables.
Pull down the Options menu and select Add/Edit Coupling Variables. Enter
the seven coupling variables as below:

AddIEdit Coupling Variables

Apply
0 OK

Clearly, there are still undefined expressions above, which are conveniently
defined in the Add/Edit Expressions selection of the Options menu.

166 Process Modelling and Simulation with Finite Element Methods

vinlet I boundary

AddIEdit Expressions

geom2: bnd 1 I Vfeed+f*ve

Name I Type I Defined I Expression

supvel

I uinlet I boundary I geom2: bnd 1 I Ufeed+f*ue

geometry geom2: bnd 1 I 0.5*(uinlet+vinlet)/(Ufeed+Vfeed)
APPlY
OK

Pull down the Mesh menu and select Parameters.

Mesh Mode (cd2, geom2)
>>More

OK

Number of Elements in Subdomain: 1 1000
Apply

This results in a 1000 element meshing. Now change the output times on the
Solver Parameters time stepping tab to 0:0.1:1, Now doubt you are shortly
visited with the error message "Unknown variable or function u" - the same fault
line as before. We found that the convection velocity in a 1-D convection-
diffusion model must be a geometry-wide expression to pass this hurdle. The
workaround is to set u=0.5 (say), run the time integration long enough to get a
solution. Save a model m-file, flowsheet2.m, and edit the coupling variable lines
as follows:

elerncpl
elerncpl
e 1 emcpl
elemcpl
elemcpl
elemcpl
%elemcp

5).elem=elcp~sca~ar;
5).src.g=2;
5].src.bnd.gporder=(l};
5) . src. bnd.var= { 'u0 , { supvel 1 }] ;
5}.src.bnd.ind=(l};
5].dst.g=2;
(5).dst.equ.ind=(l};

Commenting out the destination makes u0 available throughout geometry 2. For
good measure, I also edited the convection velocity variable line to read

equ.u={ { {'uO'},{'uO'},{'uO'},{'O'],{'O'},{'O'}]];

which replaced the hardwired u0=0.5 with the coupling variable. Now we read
in the model m-file (File Menu, Open command), which computes the solution.
Not surprisingly, the time dependent solution is visually invariant from the initial
conditions, which were created as a solution to the no recycle problem. Two
percent recycle does not make a major impact on the solution.

Extended Multiphysics 167

Exercise 4.4

Alter the initial condition so that U(tO)= sheetu(x)+0.02*sin(31.4159265*~).
Does this oscillation grow or decay? What effect does the buffer tank have on
the oscillation?

4.5 Bioreactor Kinetics

Recall that in 33.4, we treated heterogeneous reaction in a porous catalyst pellet,
with a variation on the treatment in the Model Library [9]. In this section, we
will try a different variation. In this section, a similar approach will be used to
model reaction of a passive scalar occurring in a single cell. The reaction
lunetics will be taken as typical of bioreactors - Langmuir-Hinshelwood:

where r is the rate of disappearance by reaction, which only occurs within the
cell. d represents the finite capacity of the cell to hold the substrate
concentration, which saturates at a value controlled by this parameter. The usual
rate controlling step, however, is the transfer of the nutrient from the medium
across the cell membrane. The overall mass transfer process is usually modelled
with a first order resistance, with the flux j given by

(4.10)

At steady state, the rate of disappearance by reaction is equal to the flux of
nutrient across the cell membrance, i.e.

(4.1 1)

Thus, the boundary condition on mass transport on the cell wall involves the
concentration ci on the boundary and the concentration within the cell itself,
which is taken to be uniform. So the extended multiphysics here is to treat c, in
an additional 0-D space with reaction occurring only there, and coupling
between the two spaces through the flux into the cell and through the boundary
condition (4.10). Equation (4.11) can be seen as modeling the cell as a
continuously stirred tank reactor (CSTR) with effective influx given by the
integral, and irreversible reaction. The boundary condition (4.10) is ubiquitous
in the chemical engineering literature, nevertheless, to the authors’ knowledge,
this is the first hgher dimensional model that incorporates it as a boundary
condition in a non-trivial way. If ci is constant, (4.10) represents a simple mass

168 Process Modelling and Simulation with Finite Element Methods

transfer coefficient boundary condition of the Biot type that is easily included in
any pde engine. But with ci integrably coupled to the dynamics in the bounding
domain, the implementation here, made possible by extended multiphysics in
FEMLAJ3, is unique. Attempts by one of us to implement this boundary
condition in other finite element solvers were once abandoned due to the
complexity of the coding.

Reaction/ConvectiodDiffusion Model

If FEMLAB is already launched, select New from the File Menu, which will
bring up the Model Navigator.

Model Navigator
Select 2-D dimension
Select ChemEng Modes-Cartesian Coordinates+Mass

OK
Balance-Convection-Diffusion*Time-Dependent>>

Now use the File menu to “Insert from File” and select your Geometry mat-file
(pellet-geom.mat).

Next select the AddEdit constants options and enter as below.

AddEdit Constants

Name I Expression
D I 1

I Keff I 1 I
sigma I 4 0

C l O I 1.

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
Select subdomain 1
Enter PDE coefficients

ApplyJOK

Set Di=D; Ri=O; u=pelletu(x,y); v=pelletv(x,y)
Select subdomain 2, check inactive in this domain

Extended Multiphysics 169

Pull down the Boundary menu and select Boundary Settings.

Boundary Mode
Select domain 2
Select ci=clo.

0

Apply/OK

Set boundaries 1,3,4,6 with InsulatiodSymmetry
Set boundaries 7,8 with - - ~ 1 . N = -Kef (ci - C,)
Set boundary 5 with convective flux BC

Pull down the Multiphysics menu and Select Add/Edit modes.

Model Navigator
0

Check l-D dimension
0

Element: Lagrange - quadratic
More >>
OK

Select add geometry name: geom2

Select PDE coefficient form (cl)
Name the independent variable cs

Pull down the Draw menu and select Specify Geometry.

Draw Mode
0 Name: cell

Start:O
stop: 1
APPlY

0 OK

Pull down the Boundary menu and select Boundary Settings.

Boundary Mode
0 Select domain 1&2

OK
Specify Neumann BCs with q=g=O

Pull down the Now pull down the Subdomain menu and select Subdomain
settings.

170 Process Modelling and Simulation with Finite Element Methods

Name
cs
flux

Subdomain Mode

Type Source Integrand :Order Destination
scalar geom2: sub 1 cs : 1 geoml: bnd 7&8
scalar geoml: bnd 7&8 N-flux-c : 1 geom2: sub 1

Select subdomain 1
Enter PDE coefficients

OK

Set c=l; da=l; f= flu~-cs/(l+sigma*cs)~2
APPlY

Now for the hard part again. Pull down the Options menu and select Add/Edit
Coupling Variables. Enter the two coupling variables as below:

O Y ' ' ' ' ' ' ' ' ' 1
0 0 1 0 2 03 0 4 0 5 0 6 0 7 0 8 0 9 1

Time

Figure 4.16 Short time intracellular substrate concentration profile.

4.6 Discussion

Undoubtedly the single most valuable new modeling feature of FEMLAB is its
extended multiphysics modeling capabilities. As demonstrated in this chapter,
this capability permits the modeling of logically linked but separated domains in

Select

stationarya

Figure 4.16 shows the short time increase in intracellular substrate concentration,
computed from the 0-D domain.

Extended Multiphysics 171

different unit operations, or of different physical mechanisms within one process
unit. The possibilities for extended multiphysics modeling have been modestly
explored with regard to heterogeneous chemical reactors and bioreactors here.
Nevertheless, it is clear that in the coupling available between logical domains,
the extended multiphysics capabilities of FEMLAB can be instrumental in
carrying out even simple models, such as the proper boundary conditions for a
single cell bioreactor or others of the Biot type, which have eluded other
modeling methods.

References

1. FEMLAB Chemical Engineering Module, User’s Guide, Version 2.2,

2. M. Grammatika and W.B. Zimmerman, “Microhydrodynamics of flotation
processes in the sea surface layer,” Dynamics of Oceans and Atmospheres,

3. P.O.Mchedlov-Petrossyan, G.A. Khomenko, and W.B. Zimmerman, “Nearly
irreversible, fast heterogeneous reactions in premixed flow. ” Chemical
Engineering Science, 58: 3005-3023, 2003

4. W.B Zimmerman, “The modelling of imperfect mixing in buffer tanks.” in
Mixing VI, IChemE Symposium Series, H. Benkreira, ed, 146:127-134,
1999.

5. M.E. Valkenburg and B.K. Kinariwala, “Linear Circuits.” Prentice-Hall
Computer Applications Series, F.F. Kuo, Ed., p. 162ff, 1982.

6. J.W. Rottman and J. E. Simpson, “The formation of internal bores in the
atmosphere: A laboratory model.”, Q.J.R. Met. SOC. 115:941-963, 1989.

7. W.B. Zimmerman, “The effect of chemical equilibrium on the formation of
stable stratification.” Appl. Sci. Res., 59:298, 1998.

8. G.K. Batchelor, “On steady laminar flow with closed streamlines at large
Reynolds number” J. Fluid Mech., 3:177--190, 1956.

9. FEMLAB Chemical Engineering Module, User’s Guide, Version 2.2,

p. 2-83.

34:327-348 (2001).

p. 2-74.

This page intentionally left blank

Chapter 5

SIMULATION AND NONLINEAR DYNAMICS

W.B.J. ZIMMERMAN
Department of Chemical and Process Engineering, University of Shefield,

Newcastle Street, Sheffield SI 3JD United Kingdom

E-mail: w.zimmerman @she$ac.uk

Eigensystem analysis of the linearized operator derived by FEM analysis (the stiffness
matrix) is a powerful tool for characterizing the local stability of transient evolution of
nonlinear dynamical systems governed by pdes and for parametric stability of stationary,
nonlinear problems. Here we discuss how to perform such an analysis in the context of
two complex systems - Benard convection and viscous fingering instabilities. The later
are simulated from “white noise” initial conditions added to a base flow. The linear
stability theory in both cases assumes that the noisy initial conditions include all
frequencies, and thus whichever eigenvalue has the largest real part corresponds to the
eigenmode that grows most rapidly. FEM eigenanalysis is shown to reproduce the
predictions of linear stability theory with good agreement, but is more general in regimes
of applicability.

5.1 Introduction

Modelling versus Simulation

So far, we have been concerned with the use of FEM for computational
modeling. The model could be expressed as a well posed mathematical system,
typically PDEs with boundary and initial conditions, possibly algebraic
constraints. Such systems are theoretically deterministic, i.e. the state of the
system can be known up to any arbitrary accuracy at any given time. By
simulation, something different is usually understood - the physics of the system
includes some element of randomness in its temporal development. So we don’t
expect a simulation to be perfectly accurate in all details. Simulations are
expected to mimic the microscopic behaviour of complex systems, typically by
posing interaction rules for subsystems from which the global, coordinated
behaviour of the whole system emerges. Where the low level interaction rules of
the system are particularly poorly physically based, the simulation predictions
about global emergent properties must be validated by experiment, perhaps even
semi-empirically fitted.

173

174 Process Modelling and Simulation with Finite Element Methods

Equivalence ?

With the above classification scheme, computational modeling and simulations
would appear to be wholly distinct - models are deterministic and physically
based; simulations are stochastic and semi-empirically based. This dichotomy
blurs, however, with modem understanding of complex systems. SA Billings
and coworkers [l], for instance, have developed a data analysis technique for
patterns in spatio-temporal systems that can identify the best PDE system within
a candidate class that captures the nonlinear dynamics in experimental systems.
The technique finds a rule based description for cellular automata that is
consistent with the complex system pattern development. By limiting the types
of PDE terms available to the model, an inverse mapping from interaction rules
to PDE description can be elucidated. So, the common usage of muddling the
terms ‘modelling’ and ‘simulation’ is justified by this functional equivalence.
No doubt this is the “new kind of science” that Wolfram [2] is espousing;
dynamics can be equated to simulation schemes (new science) which are
equivalent to (nonlinear) pde systems derivable from physical laws (old science).
Where the new science wins is that the applicable physical laws may be two
complicated to describe in full a priori, but those that are being expressed in the
complex system may be easily identifiable by finding the interaction rules that
are consistent with the global emergent behaviour. Koza and coworkers at
Stanford [3] have long been proponents of the view that the trick is to find the
computer program that meets the physical requirements. Genetic programming
is an approach to letting the program consistent with the observations to
assemble itself.

Bridging the Gap: Nonlinear Dynamics

The gap between modeling deterministic systems and simulating stochastic ones
is bridged by the nature of nonlinear dynamics and complex systems. The
principle feature of a class of nonlinear dynamics - chaotic systems - is that of
extreme sensitivity to initial conditions. States that are not particularly far
initially in some sense become very far apart eventually. Before chaos theory
became better understood in the late 1970s, it was conventional wisdom that in
dissipative systems, equilibrium states or periodic oscillations would be the time
asymptotic attractors for all initial states of the system. When a dynamical
system is extremely sensitive to initial noise or uncertainty, such a system is
termed complex. The paradigm in fluid dynamics is turbulence. Shear
instability of flows “at high Reynolds number” lead to complexity of the motion
at millimeter scales all the way up to thousands of kilometers in the atmosphere,
for instance. Even though the temporal state of the system is theoretically
deterministic, our uncertainty in the initial state is such that the system is
indistinguishable from a stochastic one for practical purposes.

Simulation und Nonlinear Dynamics 175

So is there any point in using PDE based models to describe complex
systems for which the complexity is practically indescribable? Of course, we
can derive or pose PDEs for the dynamics of the statistics (traditional turbulence
modeling) or to collate the statistics of the dynamics. In meteorology, the latter
is termed ensemble forecasting, and it is an attempt to quantify likely behavior of
emergent properties, rather than to average out uncertainty.

Stability and Eigenanalysis: Time Asymptotic Behavior

Key to the evolution of nonlinear systems is the notion of stability. A state of a
system, uo(t), is said to be stable if small perturbations, 6, do not displace the
new state of the system, u(t), very far from the original state. The concepts of a
‘state’, how you measure ‘small’ and ‘how far’ two states are separated need to
be precisely defined for stability (and therefore instability) to be a useful
concept.

The operational definition of a state u(t) is simply to list all of the degrees of
freedom necessary to uniquely define a recurring pattern in the system. For a
FEM model, this means giving the time dependence of a solution which is
typically either stationary or periodic. The exception is that a chaotic attractor is
also a ‘state’ of a dynamical system, deterministically known as a solution
trajectory u(t) from an initial state, but not uniquely defined as the attractor is an
‘asymptotic state’ - many initial conditions are attracted after a long time to this
state. In fact, the states of FEM models are easier to describe than for the
underlying pde system, which is inherently infinite dimensional. Once the trial
functions and finite elements are chosen, a FEM model is finite dimensional and
the degrees of freedom necessary to define a state is just the space of all possible
solution vectors.

In terms of FEM models, it is also straightforward to describe the stability of
a solution trajectory u(t). Consider the FEM operator that maps the solution at
time t to the solution at time t+At:

N{U (t) } = u (t + ~ t)

N { u (~) + 6} = u (t + ~ t) + ~ 6

(5.1)

Conventionally, for small time steps, this operator can be linearized, so that
when applied to the perturbed system, we can compute

(5.2)

where L is the Jacobian of N

(4
‘1 auj

aNi L.. =- (5.3)

176 Process Modelling and Simulation with Finite Element Methods

If L is a Hermitian matrix (if real, then symmetric), then the principal axis
theorem says that the evolution of the perturbations can be exactly described in
terms of the eigenvalues hi and the normalized eigenvectors Qi of L as follows:

u’(0) = 6

where u’ is the change in the system trajectory due to the occurrence of the
initial disturbance 6. Due to the exponential growth rate, one would expect that
from any initial condition, the mode associated with the eigenvalue h with
largest real part would eventually dominate the long term evolution of the
disturbance to the state u. It simply grows the fastest or decays the least. If the
state u were either stationary or periodic, then if there is any eigenvalue with
positive real part, then (5.4) will grow without bound. So the system is unstable.
In fact, as we have defined the state u(t), even a chaotic attractor is unstable
according to this criteria. The difficulty with a chaotic attractor is defining
unequivocally what the asymptotic state u(t) is. Consequently, an instantaneous
point in phase space u that is part of a chaotic state u(t) is found to always have
at least one unstable direction $, but since it is difficult to distinguish between
the time evolution of the state u(t) and the perturbation, 6, the global stability of
the attractor cannot be found by local, linear analysis. The eigenvalues hi from
the local analysis of a chaotic attractor are called Lyapunov exponents. Since
negative real parts for hi imply that a trajectory u(t) is decaying, at least one
Lyapunov exponent must have a positive real part at each point of a chaotic
attractor.

As an aside, equation (5.4) helps us understand what it means for a
perturbation to remain small and the degree to which two trajectories are close.
A straightforward measure of closeness of two trajectories, ul(t) and uz(t) , is the
distance formula (or error):

where the sum is over the N degrees of freedom that defines a solution vector.
For instance, the Newton solver attempts to converge successive solution
approximations by sending E to zero. (5.4) implies that to be small E{U’,O}<E
for some tolerance E for all time t. If all Re{ hi}<O, this is achieved for E 2 6. If
any Re{hi}>O, this can never be achieved.

Simulation and Nonlinear Dynamics 177

The error norm of (5.5) is just one of many weighted errors that can be
defined, e.g.

also defines a measure for any set of weights wp0. The choice of all weights
equal in (5.5) only makes sense for a convergence criteria if all degrees of
freedom are expected to range over the same scale. One of the rationales for
dimensional analysis of physical models is to condition all degrees of freedom to
range over a unit scale. In any unconditioned model, the range of scales
expected a priori for different degrees of freedom would not be expected to be
identical. FEMLAB 2.3 introduced the “automatic scaling of variables” feature,
that estimates the appropriate weights wi automatically or permits user pre-
defined scales. The release notes point out that in a structural mechanics
application, displacements might be submillimeter, yet stresses could be
megapascals. Without scaling of variables, numerically small quantities would
have degrees of freedom contributing little to convergence criteria, and
numerically large quantities would be unduly restricted by convergence criteria
using formula (5.5).

In summary, excepting the case of chaotic states, linear theory can identify
whether a stationary or periodic state is unstable. Regardless, it also identifies
the mode(s) that are asymptotically attractive for the perturbation. For instance,
if an eigenvalue is complex, then the frequency of oscillation of the perturbation
can be predicted, along with the decay or growth rate. Furthermore, the
eigenvector associated with the eigenvalue with greatest real part should be the
pattern of degrees of freedom that a disturbance evolves into. Using FEM
models, representing these eigenmodes is straightforward. They are elements of
the space of all possible solutions, so any postprocessing that can be done on a
solution can be done to an eigenmode as well. FEMLAB, for instance, can be
“tricked” into displaying and analyzing eigenmodes as though they were
solutions.

Chapter Organization

This chapter can only be a survey of the range of models that can be used in
simulations. The theme of the chapter is to illustrate how features of the
MATLABEEMLAB computational engines can be used for simulation. A
strong undercurrent, however, is awareness of how nonlinear dynamics is
important in computational modeling. Our first case study, Rayleigh-Benard
convection, is simply a stationary nonlinear system for which convergence is
difficult to achieve because of the inseparability of parasitic time dependent

178 Process Modelling and Simulation with Finite Element Methods

solutions excited due to numerical noise. Undoubtedly, users of FEMLAB have
already found a straightforward application of nonlinear dynamics theory -
conditioning the computational model on the basis of dimensionless parameters
in the system. Our second case study illustrates the importance of resolving all
scales of the complex system which naively range from the large scale of the
geometric boundaries (dimensionlessly this is termed O(1) or order unity since
the lengths are usually scaled by a geometric length) down to some small scale
set by nonlinear processes coupled with dissipation. If the parameter that
characterizes nonlinearity is called R, and complex behaviour increases with
increasing R, then one expects creation of complexity down to lengths O(R-’).
Thus, in regions generating complexity, the mesh should be gridded with
resolution O(R-’). Novice modellers routinely fail to recognize that no
satisfactory solution may emerge if all the physics generating complexity are not
resolved. Some physical processes routinely generate large complexity
parameters. Buoyant convection usually has large Rayleigh number Ra.
Pipeline flows are almost always at large Reynolds number Re. Heat transfer
almost always has large Peclet number Pe. Simply, given the small values
naturally occurring for transport coefficients, human scale flows lead to large
complexity parameters. Convergence to a solution does not guarantee that the
dynamics of the model are resolved. Careful modeling requires mesh refinement
studies until a claim that “refining the mesh does not change the result
appreciably” is fully justified. Even experienced modelers can fall into the trap
of unresolved computational models due to the large complexity parameter
problem. For instance, if there are still unresolved motions, but little “sub-grid”
energy transfer, it is convenient to think that laminar solutions to the buoyant
convection problems in double diffusion are, for example, able to ignore small
scale dynamics. Chascheskin et al. [4] argue cogently that there is never a
stationary solution to the double diffusion problem with vertically heated walls.
Internal boundary currents are automatically excited, leading to sharp fine
structure layering the flow. This feature is not captured by high solutal/thermal
Rayleigh number convection since it is not possible even with typical high
performance computing resources. So the “large eddy” simulations with low
subgrid fluxes may still be unresolved, even if there is little change on mesh
refinement - fine structure may influence global dynamics.

5.2 Rayleigh-Benard Convection

Rayleigh-Benard convection is certainly the canonical problem for nonlinear
dynamics and flow stability. You can visualize it by heating vegetable oil in
your kitchen, sprinkling cocoa powder on the surface of a thin layer of oil heated
from below in a frying pan. The hexagonal patterns are clearly visible unless
your cocoa powder has congealed. Still an excellent reference on the history of

Simulation and Nonlinear Dynamics 179

the problem can be found in Drazin and Reid [5] . The gist of the problem is that
a vertically decreasing temperature profile and no flow is identically a solution to
the boundary value problem stated as

-+u.VU au = ---Vpi-vV2~+-T 1 ag
at P P
v . u = 0

d t

(c.f. equations 3.1) with boundary conditions of

(5.7)

where the bottom temperature is usually greater than the top. The dimensionless
groups that matter are still the Prandtl number and the Rayleigh number:

V

K
Pr = -

ag (ST) h3

PVK
Ra =

(5.8)

where h is the depth of the fluid, 6T is the applied temperature difference, a is
the coefficient of thermal expansion, g is the gravitational acceleration vector, p
is the density, v the kinematic viscosity, and K is the thermal diffusivity.

You can be forgiven for thinking that we have just turned the hot wall-cold
wall problem on its side. In the case of vertical heated walls, motion is
automatically induced even with an infinitesimal temperature difference. Fluid
along a hot vertical wall must rise. For horizontal heated walls, however, a
steady, linear temperature profile with no motion is an exact solution to the
system. If the heating is from above, that makes perfect sense as hot light fluid
will lie over colder dense fluid - gravity supplies a buoyant restoring force to
any fluid element that might be displaced vertically. For heating from below,
however, the stratification has dense fluid over light. Buoyant forces should
overturn this top heavy profile. Yet, if viscosity and thermal conductivity are
strong enough, they resist the motion. Stability theory identifies a critical
Rayleigh number above which convection cells form. Below that Ra,,
dissipation still damps out motion.

So let’s explore these two situations by finite element analysis.

180 Process Modelling and Simulation with Finite Element Methods

5.2.1 Heating from above

We could save time by just altering our buoyant convection example for
the hot wall-cold wall problem by changing the boundary conditions. However,
in order to visualize convective rolls in two dimensions (hexagonal cells are
a 3-D phenomenon), we need to have an aspect ratio of about 3:l for
width:height of the layer or greater. So we will walk through the problem set
up here.

Launch FEMLAB and in the Model Navigator, select the Multiphysics tab.

Model Navigator
Select 2-D dimension

0

OK

Select Physics modes+Incompressible Navier-Stokes >>
Select ChE +Convection and conduction >>

Since we anticipate heavy computing requirements ahead, we will forego the
streamfunction post-processing luxury.

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

AddEdit Constants
Name of constant: Pr

0 Expression: 1
Name of constant: Ra
Expression: -1

OK
APPlY

Ra=-1 makes the heating from above, coupled with the setting below for Fy.

Pull down the Options menu and set the grid to (0,l) x (0,l) and the grid
spacing to 0.1,O.l. Pull down the Draw menu and select Rectangle/Square and
place it with unit vertices [-1.5,1.5] x [0,1].

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Simulation and Nonlinear Dynamics 181

Boundary Mode
Select domain 1

0

Use the multiphysics pull down menu to select the IC NS mode
Set boundaries 1& 4 with slip/symmetry and 2&3 as no-slip
Use the multiphysics pull down menu to select the CC mode
Set bnd 2 with T= l ; bnd 3 with T=O; keep 2 and 4 no flux

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
Select domain 1

0

0

OK

Use the multiphysics pull down menu to select the IC NS mode
Set p=l; ‘fl=Pr; F,=O; F,=Ra*Pr*T
Use the multiphysics pull down menu to select the CC mode
Set p=l; K = l ; c=l ; U=U; V=V

Select the init tab; set T(tO)= 1-y
APPlY

Now pull down the Mesh menu and select the Parameters option.

Mesh Parameters
0 Select more>>

0 Remesh
OK

Max edge size general: 0.1

There should be 1028 elements. If you click on the = button on the toolbar to
Solve There are two
contributions to this poor convergence. The first is the lack of a pressure datum.
This problem has no imposed pressure on the boundary, so the solution is unique
up to an arbitrary additive pressure constant. The pressure equation

you will find that the solution is poorly convergent.

(5.9)

is therefore singular.
discovered by Jerome Long of COMSOL UK Ltd.

A pressure datum is readily set by following a recipe

182 Process Modelling and Simulation with Finite Element Methods

Pull down the Point menu and select View as Coefficients. Then select Point
Settings and the dialog box appears.

Select any vertex (say 4)
Click on the Weak Tab
Under constraint replace the first zero with -p
Apply

The point datum is now set to p=O on vertex 4. Note that any pressure value can
be entered here as the constraint by replacing a zero by PO-p. The order of the
constraints does not matter. There are as many zeros as dependent variables in
your model.

The second reason for the slow convergence is that the velocity field should
be identically zero as the solution. However, noise around zero interacts
strangely with the new feature of the solver that permits the scaling of the
estimated error using the nonlinear and time-dependent solvers. So this feature
must be disabled.

Pull down the Solver menu and select Solver Parameters. Click on the
Settings button under “Scaling of variables.” Check the None option. Now
select the Stationary Nonlinear solver, and solve.

Internal Gravity Waves

The automatic scaling setting fails for a subtle reason. With Ra<O, any
perturbation or numerical error excites a small amplitude internal gravity wave -
an inherently time dependent phenomenon. So the stationary nonlinear solver
cannot converge to the “internal waves” that are inherent in the Newton
iterations. The automatic scaling setting senses that the proper velocity scale is
that of the noise, and therefore tries to resolve and converge the internal gravity
waves. Since these are small if the numerical error is small, they can be ignored,
which is what happens if you disable the automatic scaling for the velocity field.
That there are wave like solutions can be discerned from an eigenfunction
analysis of the solution.

Export your solution to MATLAB using the export fem structure feature
under the file menu. Although eigenfunction analysis is supported in FEMLAB,
it is only for linear problems specified in the eigenfunction mode. You can,
however, use the built-in analysis tools in MATLAB. Execute the following on
the MATLAB command line:
>> sol2=femeig(fem, ‘ U ’ , fem.sol.u,’Eigpari,20);

Simulation and Nonlinear Dynamics 183

The arguments are described in the Reference Manual, however, it should be
clear that fem is a fem structure, ‘U’ specifies that the next argument is a solution
vector; fem.so1.u is that solution found for Ra=-1; ‘Eigpar’ is a flag that says the
next argument describes the requested eigenvalue solver parameters (in this case
the smallest 20 eigenvalues in magnitude).

This generates a structure so12 with substructures sol2.u and sol2.lambda.
You probably find that sol2.lambda has twenty elements, and that sol2.u is a
matrix with twenty columns and a huge number of rows. Each column is an
eigenvector associated with the same numbered eigenvalue. Femeig uses
iterative sparse methods for generating eigenvalue/eigenvector pairs. By default,
the smallest magnitude eigenvalues were selected. My list reads as
9.8695 17.0399 26.0309 -17.1321i 26.0309 +17.1321i
32.7180 29.1581 -25.5745i 29.1581 +25.5745i
39.4811 41.4966 34.8619 -30.5681i 34.8619 +30.5681i
47.8093 43.2471 -33.6591i 43.2471 +33.6591i
60.7142 54.2250 -35.6500i 54.2250 +35.6500i
74.1437

The first eigenvalue is clearly n2. Since analytically, one can determine that -n2
is actually an eigenvalue for Ra=O, we should note that this method of “tricking”
FEMLAB into producing eigenvalue/eigenvector pairs produces the negative of
the eigenvalue of the system. It follows that these eigenvalues are all causing
perturbations to decay as they all have positive real part, -Re{ A,). Growing, or
unstable eigenvectors, would have negative real part. Since the complex
eigenvalues come in conjugates, the sign of the imaginary part is not material.
However, the existence of imaginary components is equivalent to identifying
oscillatory solutions. The interpretation of the eigenvalues here should be that
the eigenvector would be expected to grow with a growth factor exp(-h t) for
small amplitudes of the eigenvector. So imaginary components are complex
exponentials, equivalent to sines and cosines - oscillations. Nonlinear effects
will dominate for large amplitude contributions of the eigenvector, c.f. (5.4). So
what are these eigenvectors, really? In fact, they are best thought of as vectors
of unknowns equivalent in some sense to solution vectors. So the vector
associated with h =n2 is the slowest decaying component of the solution. Thus,
if you wait long enough in a time dependent evolution, the only non-vanished
component in the solution will be proportional to the eigenvector associated with
this eigenvalue. Figure 5.1 shows this eigenvector (temperature and velocity
fields). The salient feature of Figure 5.1 is that there are hot and cold regions
with fluid falling in the cold region and rising in the hot region. Each region
occupies a unit width approximately, with a halfwidth of transition zone. Thus
to see the whole structure, the aspect ratio must be about 3: 1. The parametric
solver can be used to explore regions of Ra<O, but there are no situations where
growing modes are excited. The best that happens is that for large negative Ra,
the decay rate diminishes. In a perfect (inviscid) fluid, it would be identically

184 Process Modelling and Simulation with Finite Element Methods

Surface: temperature (T) Arrow: velocity [u,v] 103

0 6

0 4

0 3

0 2

0 1

-2

Figure 5.1 Temperature and velocity fields for the first mode with Ra=-l .

zero. As Ra increases in magnitude, dissipative effects become relatively weaker
than the buoyancy, so the internal gravity waves become long-lived structures.
Haarlemmer and Zimmerman [6] used wave tank studies to characterize the
mixing properties of large amplitude internal gravity waves that are initially
seeded in a concentration stratified fluid. They review the geophysical
importance of this transport mechanism.

5.2.2 Heating from below

Heating from below changes the nature of the dynamical problem. As we found
when heating from above, complex eigenvalues, equivalent to damped
propagating waves were found. This is because vertical convection is opposed
by the stable stratification of light fluid over heavy fluid, but gravity waves can
propagate horizontally. If a patch of fluid is displaced vertically, it oscillates
around its equilibrium position and can propagate right or left without loss of the
original energy in an inviscid fluid. Lord Rayleigh [7] showed that when heating
from below, the state of the fluid at rest is unconditionally stable. The same
argument works in reverse to show that when heating from below, an inviscid
fluid cannot remain at rest. But the state of rest can persist to high Rayleigh
number in a viscous fluid with heat conduction - the dissipative mechanisms
oppose the overturning motion until the heating differential is strong enough.
The theory of Reid and Harris [8] describes the critical Rayleigh number for
cells with upper and lower rigid boundaries occurs at Ra,=1708 with a
wavenumber of 3.117. The motion that is most unstable above Ra, is supposed
to be the onset of stationary cells in 3-D, and convection rolls in 2-D. Since the
linear operator, and thus its FEM approximation as in (5.3), is self-adjoint, then

Simulation and Nonlinear Dynamics 185

all the eigenvalues are real. It follows that the unstable mode is not propagating,
but stationary and growing in strength until it saturates.

To permit the possibility that waves might propagate, however, we need to
change the horizontal boundary conditions from the earlier simulation which had
no flux and slip boundary conditions on the horizontal bounding planes. Gravity
waves cannot propagate through such planes, since they are transverse and
require up-and-down motion. Furthermore, the model was stationary, so
although complex eigenvalues are possible, transient motion was prohibited. To
implement periodic boundary conditions, a minor change is necessary.

Recipe fo r Periodic Boundary Conditions

Pull down the Mesh menu and select the Parameters option.

Mesh Parameters
Set symmetry boundaries: 1 4

OK
Apply

These boundaries are now equivalent, but not necessarily periodic. To make that
constraint, we need to require that all variables are identical on the boundary
nodes. Pull down the Boundary menu and select View as Coefficients, then
select Boundary Settings. All four equations are displayed simultaneously in
Coefficient View

Click on the h-tab, and set the main diagonal to 1 and the off
diagonal elements to zero. Make sure the r-tab has u,v,p, and T
for the four equations.

Click on the h-tab, and set the main diagonal to -1 and the off
diagonal elements to zero. Make sure the r-tab has -u,-v,-p, and
-T for the four equations.

Select domain 4

Apply
OK

Since the boundaries 1 and 4 are equivalent, these two conditions are
sequentially added to the boundary constraints. So the condition on u is that u
on boundary I and -u on boundary 4 sum to zero. The same holds for v, p, and
T, ensuring horizontal periodicity of all variables.

Because the domain is about as long as the most dangerous mode
(wavenumber 3.117 implies that we have nearly a period of 2d3.117 = 2, i.e.

186 Process Modelling and Simulation with Finite Element Methods

one wave per two units length), a domain of length 3 is sufficiently long to
encompass one period of the unstable mode at supercriticality.

Our solution strategy is to compute the Ra=l solution first using the linear
solver, and then use the Parametric Solver to continue to high Rayleigh number,
finding the unstable mode visually from plots of the velocity field. At first I
thought that this does not yield a visually unstable flow, even up to Ra=10000
(see Figure 5.2). Why not? u=v=p=T=O is a perfectly acceptable numerical
solution, and the model finds solutions with small dimensionless convective
flows, with velocity magnitudes of 0(10-*), for all values of the Rayleigh
number attempted. Professor Bruce Finlayson and chemical engineering student
Michael Johnson (private communication) pointed out that since the Nusselt
number scales with the Rayleigh number, these are actually giving rise to
appreciable convective heat flux. However, there is no specific threshold of Ra
which is apparently an abrupt change in Nusselt number. To find the Rac,
something else must be tried. The obvious strategy is to use transient integration
to determine if, after a sufficiently long time, random small magnitude initial
conditions have grown expontially large as in (5.4). The problem with this is
that FEMLAB’s Parametric Solver only applies to stationary models. The other
solution is to compute the eigenanalysis for the system at each value of Ra in a
parametric continuation of Ra to high Rayleigh numbers. We will do this two
ways: one in the GUI, exporting solutions to the MATLAB workspace; the other
in a MATLAB m-file with continuation implemented in a MATLAB loop
structure. The results are edifying about the nature of the f emeig command in
the FEMLAB programming library.

GUI Methodology

Figure 5.2 was generated from solving the Benard problem using parametric
continuation in the GUI. The linear solver for the Ra=l problem was used,
which is well conditioned. Parametric Solver was used to continue to high
Rayleigh number. For eigenanalysis, we export our solution to MATLAB using
the export fem structure feature under the file menu. The data structure for a
parametric solution is different than for a single, stationary solution. For
instance, for the case of a parametric solution [1801:100:10001], fem.sol is an
array with three elements: u (the solution), plist (parameter list), and pname (the
continuation parameter). Execute the following on the MATLAB command
line:
>> fem.so1

u: [6966x83 double]
plist: [1x83 double]
pname: ’Ra’

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Simulation and Nonlinear Dynamics

Color: temperature Arrow: velocity vectors
. I

.

.

.
I I I I I I I

-1.5 -1 -0 5 0 0.5 1 1.5

187

Max 1
1

0 9

0 8

0 7

0 6

0 5

0 4

0 3

0 2

0 1

0
Min -2 19e-0:

Figure 5.2 Aspect ratio 1.3 simulation with Ra=1970 for full solution of temperature and U-ns.
Note that the maximum velocity field is still 0(10-*).

A transient solution has a similar structure, but with a tlist of output times. To
access any of the solutions, the appropriate column is requested. For instance,

yields the 20 smallest magnitude eigen pairs of the fem operator for the 17'h
solution, appropriate for the parameter Ra=10001. This feature would work
very nicely if the fem structure were robust in substituting Ra=10001 in the
stiffness matrix computed by f emeig. Unfortunately, f emeig takes the last
specified value of the parameter Ra in the fern structure as a constant, which may
have no relation to the final value in the parametric solver.

In our case, Ra=l was specified as a constant, so the eigenfunction
computed is for Ra=l about the 83'd solution vector, which is still substantially
close to zero everywhere. So, although the parametric solver is a good way to
find solutions at high complexity parameter, it is not particularly good at
interrogating them with eigenanalysis. Figures 5.2 and 5.3 were generated by
using parametric continuation to solve up to Ra=1970, and then changing solver
to the stationary nonlinear solver, exporting the single solution to MATLAB, and
then performing eigenanalysis. The eigenvector was then substituted into
fem.sol.u, and plotted with postplot. There is only one qualitative difference
between Figure 5.1 and 5.3 - twice the number of rolls.

>> sol2=femeig(fem, 'U', fem.sol.u(:,83),'Eigpar',20);

188 Process Modelling and Simulation with Finite Element Methods

o:i , , , , , , ,

Ma:

4

i 0105 Max 000356

3

- 1 5 -1 -0 5 0 0 5 1 Mln 0 Min -000355

Figure 5.3
streamlines associated with the largest eigenvalue.
periodicity 2. The scale of either temperature or velocity U-ns is arbitrary, but the ratios are fixed.

Aspect ratio 1:3 simulation with Ra=1970 for the eigenvector of temperature and
Clearly the field variables have spatial

Matlab m-File Methodology

But what do you do if you want to vary a parameter over a range of values and
compile results for each individual parameter value? You still have to write your
own looping structure in a MATLAB m-file. For instance, suppose we wish to
find the critical Rayleigh number for a neutrally stable largest eigenvalue. We
would need to compute f emeig on each successive value of Rayleigh number,
then substitute the old solution as the first guess for the new solution at higher
Rayleigh number.

Ra eigenvalue
1951 0.044447
1952 0.035951
1953 0.027477
1954 0.01 9062
1955 0.01 0725
1956 0.0040364
1957 -0.005567
1958 -0.01 491 6
1959 -0.02351 5
1960 -0.032065

Table 5.1 Decay rates -hi (largest eigenvalues) with Ra near critical for aspect ratio 1:3.

Simulation and Nonlinear Dynamics 189

For example, the m-file bifurc3.m was generated by exporting the m-file of the
benard problem, and then modifying the end to put a looping structure around
the stationary nonlinear solver and eigensolver:
p o ~ o o o o o o o o o o ~ o o o o o ~ o o o .aaaasaaaaasaaasaaaaaaaWBJZ parameters and storage%%%%%%%%%%%%%
Rayleigh= [1 0 0 : 1 0 0 : 4 0 0 0] ;
output=zeros (length(Ray1eigh) , 8) ;

for j=1: length (Rayleigh)

% Define constants
fem.const={ . . .

& P P P S S P P P P Q S ~ k P P P S P k P P P S % P P o o o o o o o o ~ o a o o o o o o o o o o o o o ..Looping Structure%%%%%%%%%%%%%%%%%%%

'Ra' , Rayleigh(j), . . .
'Pr' , 1 1 ;

if js1

end
% Solve nonlinear problem
fem.sol=femnlin(fem, . . .

init=femO.sol;

'Out', 'sol', . . .
'stop', 'on', . . .
'init', init, . . .
'report', 'on', . . .
'context','local', . . .
'sd', 'Off', . . .
'nullfun', 'flnullorth', . . .
'blocksize',5000, . . .
lsolcomp',('pl,'u','v','T'}, . . .
'linsolver', 'matlab', . . .
'bsteps', 0,. . .
'ntol', 10.0e-007, . . .
'hnlin', 'off', . . .
'jacobian','equ', . . .
'maxiter',25, . . .
'method', 'eliminate', . . .
'uscale', 'none') ;

% Save current fern structure for restart purposes
f emO=f em;

% Integrate on subdomains
Il=postint(fem,'cvfluxT-cc',..

' internal I , . 1 cont ' ,
'contorder',2, . . .
'edim' , 2,. . .
'solnum', 1,. . .
'phase', 0,. . .
'geomnum',l, . . .
'dl' , 1, . . .
'intorder',4, . . .
1 context ' , ' local ') ;

% Integrate on subdomains
IZ=postint(fem, 'dfluxT-cc', . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim', 2,. . .
'solnum', 1,. . .

190 Process Modelling and Simulation with Finife Element Methods

'phase', 0,. . .
'geomnum',l, . . .
'dl', 1, . . .
'intorder',4, . . .
' context I , ' local) ;

output (j ,1) =Rayleigh (1) ;
output (j , 2) =I1;
output (] , 3) =IZ;
solZ=femeig(fem, ' U ' , fem.sol.u, 'Eigpar', 10) ;
output (j ,4) =so12 .lambda (1) ;
output (j ,5) =so12. lambda (3) ;
output (j , 6) =solZ. lambda (5) ;
output (j , 7) =so12. lambda (7) ;
output(j,8)=solZ.lambda(9);
end
save bifurc3.mat fern so12;

dlmwrite('bifurc3.dat1,0utput,',');
quit

The m-file script computes fluxes and the first ten eigenvalues for Ra in
[100:100:4000], which shows a crossover between Ra values 1900 and 2000.
Table 5.1 shows the eigenvalues homing in on the critical value of Ra=1956 for
aspect ratio 3:l . Saving the solution and fern structure, as well as the
eigenvalues in a mat-file permits the re-loading of the final solution in the
FEMLAB GUI by importing from MATLAB into FEMLAB. bifurc3.m was
computed as a UNIX background job from the command line:

matlab -nojvm <bifurc3.m >err 2>err &

since it takes a few hours to execute. The save command permitted subsequent
perusal of the solution. The m-file script computes the total convective and
conductive fluxes for each Rayleigh number solution. The critical Rayleigh
number (circa 1956) corresponds to both the zero eigenvalue, but also an abrupt
increase in convective heat transfer.

5.2.3 Agreement with thin layer theory

Recall, the theory of Reid and Harris [S] describes the critical Rayleigh number
for cells with upper and lower rigid boundaries occurs at Rac=1708 with a
wavenumber of 3.1 17 for an infinite layer. Since our layer has aspect ratio 1 :3,
we would not particularly expect agreement. Davis [9] computes the 3-D
solution for finite aspect ratio boxes, and finds substantially higher critical
Rayleigh numbers, approaching the theoretical predictions only at high aspect
ratio. For this reason, we have reproduced our simulations here for aspect ratio
1:lO. Figure 5.5 shows a periodicity of ten in a ten unit periodic layer for the
critical mode, which is in agreement for the theoretical estimate of the
wavenumber. Table 5.2 for the eigenvalues and Figure 5.6 for the Nusselt

Simulation and Nonlinear Dynamics 191

Variation of convective flux

1.045

1.04

1.035

5 1.03
a 5 1.025
C

rn
2 1.015

a 1.01

1.005

1

0.995

c 1.02

P
.-

1925 1930 1935 1340 1945 1950 1955 1960 1965 1970 1975

Nusselt number

Figure 5.4 Convective flux variation for aspect ratio 1.3 over a range of Rayleigh numbers.

Critical mode: Surface:T; Contour: velocity field (U-ns); Ra=l709 10.~
1

0 9

0 8

0 7

0 6

0 5

0 4

0 3

0 2

0 1

0 A

-4 -2 0 2 4 6

Figure 5.5 Eigenvector (temperature and U-ns) for aspect ratio 1:lO at critical Ra=1709 for near
zero eigenvalue.

192 Process Modelling and Sinzulation with Finite Element Methods

Ra eigenvalue
1705 0.024
1706 0.01 6
1707 0.009
1708 0.002
1709 -0.006
1710 -0.014
171 1 -0.022
1712 -0.029
1713 -0.037

Table 5.2 Decay rates -hi (largest eigenvalue) with Ra near critical for aspect ratio 1:10.

number leave no doubt that the critical mode oocurs near Rayleigh number 1708.
The triumph of eigenanalysis coupled with FEM is to find numerically the
critical Rayleigh number and approximate length scale associated with the
critical mode. Although the linear stability theory for this problem is not
cumbersome, for many situations with non-trivial and three-dimensional base
states, that cannot always be claimed. FEMLAB, through eigenanalysis,
provides a consistency check on linear stability analysis of stationary states. The
numerical technique is fair more robust, however. Eigenanalysis can be
conducted on any solution, even of transient problems. Recall equation (5.4)
shows that for self-adjoint operators, the eigenanalysis predicts the time
asymptotic dynamics of the linearized system. For non-self adjoint operators, it
has been demonstrated that pseudo-modes that are not eigenmodes can grow
rapidly before the time asymptotic eigenmodes dominate. Trefethen et al. [101
identified spiral pseudo-modes as leading to transitions to turbulence in Couette
and Poiseuille flows at much lower Reynolds Numbers than anticipated by linear
theory. This was confirmed experimentally. The extent to which eigenanalysis
of transient flow problems identifies the fastest growing pseudomode in transient
models for instantaneous states is a largely unexplored area, for non-self-adjoint
operators.

Here we have shown that for self-adjoint operators, the FEM model
accurately reproduces the predictions of linear stability theory.

5.3 Viscous Fingering Instabilities

The Benard problem is a paradigm for instabilities of a stationary state, Viscous
fingering is an instability of a non-homogeneous state in motion - a less viscous
fluid displacing a more viscous fluid. Figure 5.7 shows the flow configuration
for miscible viscous fingering, where diffusion tends to spread out viscous
fingers and oppose their formation. Nevertheless, viscous fingering is a long

Simulation and Nonlinear Dynamics 193

?8 1.025 ~ n
E
3 1.02
C - -

1.015 -
v) 2 1.01

wave instability - broad channels originally form along any displacement front,
and then subsequently nonlinear interactions force fluid along these paths,
leading to narrow channels.

Variation of convective flux

1.04 - I 1.035

1.03

!
’!

0.995 c-- 7- TI-- v-, 1

1695 1700 1705 1710 1715 1720 1725 1730

Rayleigh number

Figure 5.6 Convective flux variation for aspect ratio 1: 10 over a range of Rayleigh numbers

Flow Configuration

Fluid I Mixing zone Fluid lI
-L-

Lowviscosity PI y Highviscosity FL2
Cancenlralion= 1 Concentration=O t

Figure 5.7 Fluid II (more viscous, concentration c=O) being displaced by Fluid I (less viscous,
concentration c=l) in a porous medium with superficial velocity U. The mixing zone is the region
of diffusive mixing and viscous finger formation.

194 Process Modelling and Simulation with Finite Element Methods

The phenomenon is a recurring fundamental instability in many realms.
Enhanced oil recovery, for instance the injection of dilute detergents into oil
sands or flooding with COz gas, as well as the remediation of contaminated
acquifers are common geophysical applications. Miscible displacement and the
concomitant pesky viscous fingering instability recur as well in regeneration
processes. Of special interest to chemical engineers is the flushing of catalytic
systems with solvents or oxidants that remove the impurities fouling the catalysts
or liquid chromatography columns. It was in the context of a regeneration
process, the ‘sweetening off‘ of sugar liquors displaced by water from a charcoal
packed column, that Hill [l l] recognized and first analyzed the channelling
instability. Homsy [121 gives the best review of the early work in this area. The
standard venues for miscible viscous fingering are porous media, which are well
described by Darcy’s Law, which is a simpler momentum equation than the
Navier-Stokes equations, typically semi-empirically based on measures of
pressure drop and superficial velocity in porous media:

P
k

vp = --u (5.10)

FEMLAB has a Darcy’s Law application mode built into the Chemical
Engineering Module. p is the pressure; u is the velocity vector; p is the
viscosity, and k is the permeability of the medium. Along with (5.10), it imposes
the conservation of mass for an incompressible fluid as

v . u = o (5.1 1)

The mixing as depicted in Figure 5.7 is due to convection and diffusion, also a
built-in application mode in the Chemical Engineering Module, with
concentration satisfying

ac ac ac 2

at ax ay -+u-+v-=DV c (5.12)

where D is the molecular diffusivity. Additionally, in order to couple the mixing
with the momentum transport realisitically, the fluid viscosity must depend on
the concentration. The simplist model is monotonic dependence, which is a
good model for glycerol-water, a common laboratory model system for the
blending of viscous fluids:

/l =exp(R(l-c)) (5.13)

Armed with these equations, we are now ready to simulate viscous fingering
using the built-in application modes. Launch FEMLAB and bring up the Model
Navigator. select the Multiphysics tab.

Simulation and Nonlinear Dynamics 195

Select solver time dependent

Select ChE +Cartesian Coordsqmomentum3Darcy's Law >> (dl)
Select ChE d2onvection and diffusion>> (cd)

Pull down the Options menu and set the grid to (-1,ll) x (-0. I , 1.1) and the grid
spacing to 0.5,O.l. Pull down the Draw menu and select RectangleBquare and
place it with unit vertices [0,10] x [0,1].

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode
Use the multiphysics pull down menu to select the dl mode
Set bnd 2&3 as insulatiodsymmetry (no flux)
Set bnd 1 with unit flux in and bnd 4 as unit flux out
Use the multiphysics pull down menu to select the cd mode
Set bnd 1 with c=l; bnd 4 with conv>>diff; keep 2 and 4 no
flux
APPlY

Now pull down the Subdomain menu, and select Subdomain settings.

Subdomain Mode/ Coefficient View
0 Select domain 1

dl mode, set k=l, F=O, and q= exp(3 *(1 -c))

cdmode Di=0.01
0

0

Now select View as PDE coefficients
init tab: dl entry pinit(x),
cd entry erfc(x)*(1 .+0.05*sin(10*Pi*y))
APPlY
OK

pinit.m is a m-file function placed in the MATLAB work directory which
computes the initial pressure field consistent with the viscosity function, initial
concentration profile and boundary conditions for velocity. It is a simple
integration to find p(x):

196 Process Modelling and Simulation with Finite Element Methods

function a=pinit (x)
presgrad= [
1 8 3 . 5 9
1 8 3 . 4 7 1

4 . 0 1 7 0 6
2 . 0 0 8 5 1
0.000001 ;
xlist=[O:O.l:lOl ;
a=interpl (xlist, presgrad, x, I spline I) ;

...

pinit(x - x) = jexp (R (1 - ~ g c (5)))it
0

where X is the domain length, taken here as X=10.

Figure 5.8 Initial pressure profile for concentration given by I-erfc(x)

Many intermediate points are left out.

Now pull down the Mesh menu and select the Initialize Mesh option.

Select the time dependent solver and set output times to 0:5:200. Solve. The
final concentration and pressure profile should look as Figure 5.9.

Max 1 Max 1
Time=200 Surface concentratlon of c (c) Contour veloclty field (U-dl)
1 1

1

1 09

0 9 0 8

0 7 0 8

0 7
0 6

0 6
0 5 0 5

0 4 0 4

03 0 3

0 2
0 2

0 1
0 0 1

-0 1
0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 6 6 5 7 7 5 8 8 5 9 9510 Mln 915Y0O96e-006

Figure 5.9 Concentration and pressure profiles for Darcy's Law and ConvectionDiffusion model.

Simulation and Nonlinear Dynamics 197

Apparently, the contours are all parallel, indicating stable evolution of the front.
Figure 5.10 shows that the initial condition was wavy (seeded by the sine
function initially), but animations show that this oscillation rapidly decays.

Time=O Contour: concentration of c
1 1

1
0 9
0 8
0 7
0 6
0 5
0 4
0 3
0 2
0 1

0
0 1

0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 6 6 5 7

Max 1 01

0 9581
0 9102
0 8623
0 8144
0 7665
0 7186
0 6707
0 6228
0 5749
0 527
0 4791
04311
0 3832
0 3353
0 2874
0 2395
0 1916
0 1437
0 0958
0 0479

MI" 198e-04'

Figure 5.10 Initial concentration contours seeded with sine mode.

The concentration along the centerline smooths out regularly during the
simulation. (see Figure 5.1 1).

concentration of c

Arc Length

Figure 5.1 1 Centerline concentration profile history up to t=200

From this simulation, one would conclude that R=3 and D=0.01 leads to stable
spreading of the miscible displacement front. Yet this is not the result of Tan
and Homsy [13], who found broad unstable fingers forming in the troughs of the
sinusoidal initial condition. So why didn't we? To answer that question, let's
conduct the eigensystem analysis of the FEM stiffness matrix.

198 Process Modelling and Simulation with Finife Element Methods

Eigensystem Analysis

Export your fem structure to the MATLAB workspace (shortcut: CTRL-F). We
have previously used the built-in f emeig routine, which assembles the stiffness
and constraint matrices automatically from the fern structure about the specified
solution. Where the parametric solver was used in the Benard problem,
however, getting the right value for the parameter from the p-list is problematic.
Similarly, where the solution is transient, there is a t-list ordering the solutions
recorded at successive times. Getting f emeig to use the correct value of time,
however, is not so difficult, as many pde systems that are evolved by the
transient solver are autonomous, i.e. time does not enter the system of equations
explicitly, but only through the initial conditions. Thus the solution at any time t
can be used as the current solution for assembling the stiffness and constraint
matrices, without regard to the actual value o f t . To produce the eigenvalues in
MATLAB without f emeig, we need to know something of the structure of the
FEM system and about manipulating fern structures.

The solution vectors are stored in fem.so1.u.
>>size(fern.sol .u)
ans =

11130 51

There are 5 1 different solution vectors, corresponding to 5 1 different times, with
11 130 degrees of freedom in each solution vector. The assemble command
uses the information in the fern structure to assemble the stiffness and constraint
matrices:

>> [K, L , M , N , D1 =assemble (fern, ' T ' , 0 .01, ' U ' , fern. so l .u (: , 2)) ;

This tells assemble to output the matrices K, L, M, N , and D (see chapter 2
for their standard definitions according to the FEM implementation here) from
the model definition in the fem structure exported from the GUI where it was set
up, at time T=0.01 with corresponding solution vector 2, i.e. fem.sol.u(:,2). I
experimented with reconstructing the augmented matrix of the stiffness and
constraint matrices to compute the eigenvalues directly using the MATLAB
eigs command, which uses the ARPACK sparse eigenvalue solver to find a
requested number of eigenvalues about a requested eigenvalue, frequently the
largest or smallest in magnitude. The FEMLAB reference information on
assemble tells us that an eigenvalue h satisfies:

(5.14)

Simulation and Nonlinear Dynamics 199

where D, K, and N are evaluated by linearization of the FEM equations around
the solution U=Uo. A is the vector of Lagrange multiplers assuring that the
constraints are satisfied in the eigenvector solution as well. Although FEMLAB
provides an eigensolver only for eigensystems modes in the GUI, femeig
accepts the appropriate arguments to solve the generalized eigensystem (5.14)
for any solution U at any time, or for stationary nonlinear problems and the
parametric solver, for any value of the parameter in the p-list.

For instance,
>> sol2=femeig(’In’,{’D’,D,’K’,K, ‘N’,N), ‘Eigpar’,20);

produces a list of the smallest 20 eigenvalues in magnitude and the associated
eigenvectors (the eigen pairs) for the specified D, K, and N matrices. This is
simpler than expressing a generalized eigenvalue problem as (5.14) in the
appropriate format. Help on eigs gives the syntax as
[V,D] =EIGS (A, B) solves the generalized eigenvalue problem
A*V==B*Vector*D. B must be symmetric (or Hermitian) positive
definite and the same size as A.
EIGS (A, K) and EIGS (A, B, K) return the K largest magnitude
eigenvalues.
EIGS (A, K, SIGMA) and EIGS (A, B, K, SIGMA) return K eigenvalues based on
S1GMA:‘LM‘ or ISM‘ - Largest or Smallest Magnitude
If SIGMA is a real or complex scalar including 0, EIGS finds the
eigenvalues closest to SIGMA.

Here, D is a the diagonal matrix of eigenvalues, and V are the associated
eigenvectors. Comparison with (5.14) gives the following assignments for
appropriate input to eigs in terms of the block matrices K,N,D produced from
assemble:

B = [D O J ; A = “ K Nt
0 0

(5.15)

so you can produce the above block matrices using

>>A=[K N’; N zeros(size(N, l))];

>>[V,D]=eigs(A,B,’SM’);

Either method (eigs or femeig) produces the list of smallest magnitude
eigenvalues and associated eigenvectors.

0.0000 0.0002 0.0022 0.0057 0.0062 0.0121
0.0200 0.0260 0.0299 0.0417 0.0555 0.0613
0.0713 0.0891 0.0989 0.1009 0.1049 0.1088
0.1108 0.1111

>>B= [D zeros (size (N’) ; zeros (size (N)) zeros (size (N, 1)) 1 ;

200 Process Modelling and Simulation with Finite Element Methods

Since the eigenvalues reported by this method are the decay rates if positive, we
can conclude that all the eigenmodes are decaying, although one is neutral. SO
the eigensystem stability analysis shows that the viscous fingering instability
simulated here is unconditionally stable, even at parameter values that the
analytic theory finds a long wave instability.

We can visualize the eigenmode solutions by tricking FEMLAB 's built-in
postplot facility to see them as solutions.

>>fem.sol.u=V(:,l)

corresponds to the eigenvector with the smallest magniture, h=0.0000. A
standard use of postplot to give concentration contours visualizes the
eigenfunction.

postplot(fem,. . .
'geomnum', 1 ,. . .
'context','local',. . .
'contdata', ('c','cont','internal'} ,. . .
'contlevels',20,.. .
'contstyle','color', ...
'contlabel','off ,...
'contmaxmin','off', ...
'contbar','on', ...
'contmap','cool', ...
'geom', 'on',. . .
'geomcol','bginv',. . .
'refine', 3, ...
'contorder',2,.. .
'phase', 0, ...

'renderer','zbuffer',. . .
'solnum', 15, ...
'axisvisible','on')

'title', 'Time=200 lambda=0.0000 Contour: concentration of c ', ...

Figures 5.12 and 5.13 demonstrate that the eigenvectors found this way represent
discernable patterns. That they all decay implies that there is no pattern
formation due to instability. Note that the eigenmodes shown satisfy the pde and
the appropriate homogeneous boundary conditions as well - no vertical flux
(flat) and uniform outflow.

We are left in this subsection with the apparent disagreement between linear
stability theory [131 and linearization of the full solution. Careful examination
of the theory and the simulations, however, suggests that the simulations in
FEMLAB are too restrictive in the imposition of uniform inlet and outlet
boundary conditions. Logically, if the inlet and outlet boundary conditions are

Simulation and Nonlinear Dynamics 201

Time=200 lambda=0.1088 Contour: concentration of c . ,,4
1

6 019
0 9 5 386

4 752
0 8 4 119

3 485
0 7 2 851

2 218
1 584
0 9508

0 6

03173
0 3163

0 5

0 9498
1 583 0 4

2 217
2 85 0 3

3 484
0 2 4 118

4 751
0 1 5 385

6 018
0

2 4 6 8 10

Figure 5.12 Vertical rolls in concentration (eigenvector) associated with eigenvalue h=0.1088 at
time t=200.

Time=200 lambda=0.1108 Contour: concentration of c 1 0 3

12

6 901
6 174
5 448
4 722
3 995
3 269
2 542
1816
1 089
0 362g
0 3635
1 09
1816
2 543
3 269
3 996
4 722
5 443
6 116
6 902

Figure 5.13 Cells in concentration (eigenvector) associated with eigenvalue h=O. 1108 at time.
t=200.

uniform vertically, disturbances must decay. It follows that we must use a
different modeling strategy for boundary conditions that is less restrictive to
capture unstable growth dynamics in this situation. The easiest route to achieve
this is through periodic boundary conditions along the vertical boundaries for the
inlet and outlet. Vertical variation is then permitted, relieving the instability-
killing uniformity constraint. But how can we achieve this boundary condition in
the Darcy model? Pressure, as we see from Figure 5.8 is not periodic in this
problem, which nixes directly imposing periodic boundary conditions. To make
progress, we adopt the approach of Tan and Homsy [14] in transforming to a
moving reference frame, where the streamfunction is nominally constant far
enough away in both directions from the mixing zone for Figure 5.7. Since it is

202 Process Modelling and Simulation with Finite Element Methods

the same constant, this is legitimately a periodic quantity. The streamfunction-
vorticity approach eliminates pressure, which is a non-periodic quantity, in
favour of v and O, which can be modelled as periodic in the flowwise direction.

Exercise 5.1: Computing generalized eigenvalues

Use e i g () to compute the solution to the generalized matrix problem, see after
(5.15), for

A=[l 0 0 0 0; -2 1 0 0 0; 1 -2 1 0 0; 0 1 -2 1 0; 0 0 1 -2 11;
B=[l 0 0 0 0 ; 0 1 0 0 0 ; 0 0 1 0 0 ; 0 0 0 0 0 ; 0 0 0 0 0] ;

Then compute eig (A) and compare. Why do you think you get these answers?
Now use

B = [l 0 0 0 0 ; 0 1 0 0 0 ; 0 0 1 0 0 ; 1 1 1 1 1 ; 1 2 3 4 5] ;

What changes? Why?
Finally, try

B=[l 0 0 0 0; 0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 I];

What can you conclude about the generalized eigenvalue problem (5.14) from
this exercise? Why do you think we have always asked for the smallest
magnitude eigenvalues from e igs () for FEM augmented eigensystems? What
if we asked for the largest eigenvalues?

5.3.1 Streamfunction-vorticity model with periodic BCs

We have previously seen the streamfunction-vorticity Poisson equation in (2.7)
and (3.3):

v21y = -ci)

where the streamfunction v is defined by its differential relationships:

(5.16)

Additionally, by making a tranformation to the moving frame, x’=x-Ut, and then
dropping the prime, we can write the momentum equation (5.10) and the
convective-diffusion equation (5.12) in terms of the streamfunction v:

(5.17)

Simulation and Nonlinear Dynamics 203

(5.18)

Equation (5.17) can be viewed as the vorticity generation equation by direct
comparison to (3.3). Any y-variation in concentration c or finite vertical velocity
v creates vorticity on the RHS of (5.17), which then convects concentration in
(5.18), potentially reinforcing the voriticity generation mechanisms on the RHS
of (5.17), if diffusion is not strong enough to dissipate out the disturbance or if
the nonlinear coupling parameter R is too strong for diffusion to overcome. The
linear stability theory [13] quantifies for a given wavenumber of vertical
disturbance, whether the relative opposing forces (R for instability by vorticity
generation, 1 P e for stability by diffusion) result in stabilization or
destabilization in tandem. In general, there is a longwave instability that cuts-off
at a given short length scale, smaller than which diffusion dominates and causes
disturbances to decay. This longwave unstable packet is expected to manifest
itself with the mode corresponding to fastest growth dominating.

Because of the change of variables and coordinate transform, we now expect
that far enough away horizontally from the mixing zone, c becomes uniform and
u=0, i.e. periodic boundary conditions can be used for c and y, if we apply a well
known trick for c - domain doubling. If we use the mirror image of the initial
condition for c, which was taken as a modification of the complementary error
function on the positive x-axis, erfc(x)*(1 .+0.05*sin(3 1.4159*y)), then c decays
from unity at the origin in both directions, i.e. periodic at infinity, but effectively
zero after a short distance, then both c and u can be approximated as periodic
horizontally. The upper and lower bounding surfaces can be taken as either
periodic (as in [14]) or no fludno penetration. The latter pair of boundary
conditions are adopted here. The FEMLAB model is specified as follows.

Launch FEMLAB and bring up the Model Navigator. Select the Multiphysics
tab.

Model Navigator
Select 2-D dimension

Select solver time dependent

Select PDE modes =xoefficient*mode name mom, variable si>>
Select PDE modes =xoefficient*mode name condiff, variable c>>

Pull down the Options menu and set the grid to (-1.1,l.l) x (-0.1,l.l) and the
grid spacing to 0.5,O.l. Pull down the Draw menu and select Rectangle/Square
and place it with vertices [-1,1] x [0,1].

204 Process Modelling and Simulation with Finite Element Methods

Pull down the options menu and select Add/Edit constants. The Add/Edit
constants dialog box appears.

AddEdit Constants

0

Name of constant: R; Expression: 3
Name of constant: Pe; Expression: 100

Pull down the Mesh menu and select the Parameters option.

Mesh Parameters
Set symmetry boundaries: 1 4

0 Total elements 2000
ApplyIOK

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode

0

A m l v / O K

For both modes mom and condiff, specify:
Set bnd 2&3 as Neumann (no flux, no penetration) q=g=O
Set bnd 1 h=l, r=O
Set bnd 4 h=-1, r=O

As we have seen before, symmetry boundaries with these h-values result in
periodic boundary conditions.

Now pull down the Subdomain menu, and select Subdomain settings.

Subdomain Model Coefficient View

mom mode, set c=-1, w0 0,
condiff mode, set c=l/Pe, da=l, a=O 0,
f=O
init tab: (condiff) erfcnois(x,y)

Select domain 1
0 0, P=R*cx R*cy, f=-R*cy

0 0, p=siy -six,

Apply/OK

erfcn0is.m is a m-file function
function a=erfcnois (x,y)
b=-O.5*erfc (4 0 * (x + 0.1)) * (1.+0.02*randn(l)) ;
c = O .5*erf c (4 0 * (x - 0.1)) * (1. + O .02*randn (1)) ;
a=b+c;

which creates an appropriate slug of concentration unity that rapidly smooths out
in either horizontal direction, superposed with random (normally distributed) noise.

Simulation and Nonlinear Dynamics 205

Now pull down the Solve menu and select the Parameters option. This pops
up the Solver Parameters dialog window.

Solver Parameters
8

Solve
Cancel
OK

Select time stepping tab, set output times 0:0.01:0.5
Set time stepping algorithm odel5s
Select general tab, set solution form to weak, solver type time
dependent

You should animate the solution. The final time should look similar to Figure
5.14. Compare with Figure 5.15 which shows the initial condition. The red band
is the initial slug of unit concentration. Clearly, the nonuniform streamlines are
due to the vorticity generated by the concentration noise. The effect of
channeling of the less viscous fluid in the slug eventually becomes so
pronounced that the upstream and downstream more viscous fluid connects
through the slug, isolating islands of the less viscous fluid. In an immiscible
fluid, a topological change forming droplets would have had to have occurred.
Here, the interface remains smooth due to diffusive mixing, so channeling has
occurred. The longer the slug, the less likely the complete channeling through
the slug is to occur in a fixed time. The trailing front of the slug is stable since it
has less viscous fluid displaced by more viscous fluid. As the animation shows,
it is the instability of the leading front that becomes so pronounced, it eventually
breaks through the slug. The success of this simulation in capturing unstable
frontal dynamics , in comparison with the first model in the Darcy’s Law mode,
is predicted solely on the use of periodic horizontal boundary conditions.
Otherwise, the model equations are dynamically equivalent to the built-in modes
that were used before.

Figure 5.16 shows the formation of viscous fingers just on the leading
edge with accompanying vorticity generation. Otherwise, the trailing edge
simply has diffused out somewhat with still uniformity in the cross-stream
direction.

Figure 5.17 shows the leading edge gouging out large, broad fingers into the
slug. Viscous fingering is not a symmetric process - back-fingering of the more
viscous fluid into the less viscous displacing fluid does not necessary mirror the
dynamics of forward fingering. Here, the slug is poor in less viscous fluid.
Figure 5.14 shows that we eventually use up the supply of finger-forming less
viscous fluid if the slug length is too short in comparison to its breadth. Figure
5.17 has much shorter fingers than seen in [141 with a long slug.

206 Process Modelling and Simulation with Finite Element Methods

Time=0.5 Surface: c Contour: si

1 -0 5 0 0 5 1

Figure 5.14 Concentration surfaces and streamlines at time t=0.5 for R=3 and Pe=100

Time=O.Ol Surface: c Contour: si ,, ,,4

Figure 5.15 Concentration surfaces and streamlines at time t=O for R=3 and Pe= 100.

Time=O.l Surface: c Contour: si

Figure 5.16 Concentration surfaces and streamlines at time t=0.1 for R=3 and Pe=lOO.

Simulation and Nonlinear Dynamics 207

Time=0.20 Surface: c Contour: si

1 -0 5 0 0 5 1

Figure 5.17 Concentration surfaces and streamlines at time t=0.2 for R=3 and Pe=100.

My claim that the leading front is unstable and the trailing front is stable can
be validated by eigensystem analysis. The eigenmodes individually do not have
fore-aft symmetry. For instance, Figure 5.18 shows one of the stable modes
(h=0.5099), yet the difference in fore-aft symmetry breaking is stark.

Time=OOI lambda=06099 Sudace c Contour SI
I

r 4

3 8
..,

r '

3 I - -

I,

n 1 .
3 1

LI . ' , ,

- 1

, .

-. .. .-
1 5

0 04

0 03

0 02

0 01

0

0 01

0 02

0 03

0 04

Figure 5.18 Eigenmode corresponding to the 20th eigenvalue for t=0.01. The positive x half plane
is tiled with concentration hills and valleys within squeezed vortices. The left half plane is
motionless and uniform in concentration.

Eigenvalues calculated for this case from f e m e i g in MATLAB according to the
previous recipe are, for example

sol2.lambda
0.0099 0.0395 0.0889 0.0892
0.0957 0.1579 0.1994 0.2140
0.2422 - 0.0056i
0.2422 + 0.0056i
0.2464 0.3389 0.3553 0.3715

208 Process Modelling and Simulation with Finite Element Methods

0.3854 0.4109 0.4837
0.4869 - 0.0131i
0.4869 + 0.0131i 0.5099

Here, at time t=0.01, all of the eigenvalues are positive, indicating decay, some
with a modest propagation phase velocity (complex conjugate eigenvalue pairs),
yet the smallest is near critical. By time t=0.5, however, the story has changed.
The eigenvalues are
so150.lambda
0.0205 0.2113 0.2812 - 0.0607i 0.2812 + 0.0607i
0.4300 0.3127 - 0.4465i 0.3127 + 0.4465i
0.5571 0.5453 - 0.2961i 0.5453 + 0.2961i
0.8442 0.8800 - 0.065Oi 0.8800 + 0.065Oi
- 0 . 9 2 2 4 0.6947 - 0.72511 0.6947 + 0.7251i
0.9183 - 0.5054i 0.9183 + 0.5054i 1.1160 - 0.0518i
1.1160 + 0.0518i

The presence of a negative eigenvalue represents a pure stationary growing
mode. All other modes are decaying, yet possibly propagating (upstream and
downstream with equal phase velocities).

During the evolution of the viscous fingers from the discrete slug (t=O) to
the deeply channeled pattern (t=0.5), the decay rates change from fully stable
(Re(h)>l) to strongly varying (O(-1)). If the linear stability theory of [13] using
the quasi-steady state approximation were applicable, on would expect gradual
changes from strongly unstable to mildly unstable. Yet, the observed endpoint
values show the opposite behaviour. This apparent discrepancy can be
investigated by computing the smallest amplitude eigenvalues for the FEM
operator at each time in the simulation.

Export the fem structure to MATLAB, and then save it to a file:

>>save vf-fem.mat fem

Now we will execute the m-file script vf-eigs.m as below:

load vf-fem.mat fem
times=[0:0.01:0.5];
output=zeros(length(times),2 1);
for j=l:length(times)

[K,L,M,N,D]=assemble(fem,'T',times(j),'U,fem.sol.u(:j));
sol2=femeig('In', { 'D',D,'K,K,'N,N} ,'Eigpar',20);
output(j, l)=times(j);
for k=1:19

end
output(j ,k+ l)=sol2,lambda(k);

end
dlmwrite('vf-eig.dat',output,',');
quit

Simulation and Nonlinear Dynamics 209

This piece of code deserves several comments:

There is no direct way of calculating eigenpairs using f emeig for transient
models. Instead, we use assemble to create the three sparse matrices of equation
(5.14) needed for the generalized eigenpair solution. f emeig does accept these
three matrices as inputs, and does not further reference the fem structure that
created them. This recipe also works for parametric continuation, which has a p-
list of parameters and an array of solutions for each parameter. Transient models
have a fem.sol with a t-list of times and an associated array of the same length of
solution vectors.

f erne ig creates a solution structure (see fem.sol) with subfields solhmbda (list
of eigenvalues) and so1.u (array of eigenvectors of same length as sol.lambda).
eigenvectors have the same structure as solution vectors, but only satisfy the
linearized, homogeneous boundary conditions and do not satisfy the pde itself.
In particular, there is no requirement that the load vector (L) or the constraint
load vector (M) be satisfied. Indeed, the code above does not use L or M in
computing eigenpairs.

femeig sometimes has difficulty finding large decay rates. Even though I
requested twenty ‘SM’ eigenpairs, after t=0.04, it can only find 19, and after
t=0.42, only 18. femeig uses the sparse eigenanalysis routines of ARPACK,
which is essentially iterative, to compute eigenvalues and eigenvectors. This
package has difficulty in finding and distinguishing zero eigenvalues (associated
with singular systems). Since [I31 and [15] show theoretically and numerically
that the linear stability theory has a neutral mode at zero wavenumber and at a
finite cut-off wavenumber of the longwave unstable wave packet, &, the linear
system is nearly singular and will have difficulty resolving these neutral (or
numerically near-neutral) modes.

Figure 5.19 shows the eigenvalue with least real part at each instant in time, as
computed from vf-eig.m. Due to the computational intensity of computing the
eigenvalues of these large sparse matrices, it is recommended to execute this m-
file script as a background job in MATLAB:

matlab -nojvm <vf-eig.m >err 2>err &
on the UNIX command shell.

From Figure 5.19, it can be seen that for a range of times shortly after t=O, up
until t=O. 15, the largest growth rate is roughly constant, but with substantial
scatter. Our animations showed steady growth of the fingered instability during
this interval. That there is substantial scatter is not surprising to me, as
Zimmerman and Homsy [15] computed average growth rates versus
wavenumber for 1282 Fourier modes in a similar model but with anisotropic
dispersion. They found growth of power in each mode was sporadic from time

21 0 Process Modelling and Simulation with Finite Element Methods

step to time step, but the average growth of power in all Fourier modes with the
same wavenumber was exponential and agreed well with the linear stability
theory of [13] while the disturbances were small. Figure 5.19 shows that
individual unstable modes for short times have significant variation around the
trend growth rate during the period in which macroscopically observable viscous
fingers are developing. Thereafter, there is an alternation between periods in
which diffusion dominates and those where the structure of the flow and
concentration fields is varying rapidly and thus some eigenmode(s) are growing
rapidly. That the slug of less viscous fluid is short, and therefore eventually
becomes completely channeled, is a feature not investigated by [15]. Those
authors treated miscible displacement of a single front as they stopped the
simulations before the trailing front was fingered by the backfingering of the
leading front with the more viscous material. Nevertheless, they found a wealth
of nonlinear interaction mechanisms with varying scales and growth rates once
the fingers become large enough to interact nonlinearly.

Least decay rates

time

Figure 5.19 Decay rate of the eigenvalue with least real part, Re(l.) history. Recall eigs computes
the negative of the growth rate as the eigenvalue, so nearly all the above are growing eigenmodes.

5.4 Summary

In this chapter, we explored how FEMLAB can be used to set up simulations and
study nonlinear dynamics and stability. For stationary nonlinear problems,
stability studies through eigensystem analysis give the growth rates and
eigenmodes which are equivalent to the modes found in transient analysis of the

Simulation and Nonlinear Dynamics 21 1

same problem from initially noisy conditions. The most dangerous mode is
expected to be observed asymptotically as long as it is smaller than nonlinear
interactions. If the operator is non-self-adjoint, however, this is not necessarily
the case (see [lo]). So interestingly, eigensystem analysis informs about the
results of simulations, even with stationary solutions. In the case of the Benard
problem, the stationary solution returns the no motion base state, even in the
situation that the eigensystem analysis identifies critical or growing modes. The
second example, viscous fingering, is a paradigm for simulation of evolving
instabilities - the base state is moving and changing with time, and the
instabilities formed have complex nonlinear interactions. The eigensystem
analysis in the uniform outflow Darcy’s Law model did not show instability -
neutral stability was enforced by the choice of outflow boundary conditions.
This uniformity was relaxed in a model based on the streamfunction-vorticity
generation equation and periodic boundary conditions that permitted unstable
growth. In this example, noisy initial conditions were introduced directly in the
simulation by a random number (normally distributed) modulating the
concentration base state. As we claimed in the introduction, by simulation we
normally expect some element of randomness is modelled. This case is the least
controversial use of randomness in a simulation - noisy or uncertain initial
conditions. Thereafter, the simulation is a completely deterministic model. In
general, FEMLAB can be used for simulating more complicated stochastic
processes by alternating random processes and deterministic ones. In this case,
there is exactly one such cycle.

It should be noted that noisy initial conditions may not be necessary in such
simulations simply due to the approximation error in FEM analysis and roundoff
errors in truncation of fixed precision arithmetic. Since the user has control over
error tolerances, stochasticity can be simulated by using unconverged or
unresolved analysis, but this is a dangerous practice as the statistics of the noise
so introduced may be unquantifiable, and the ‘simulation’ may just be numerical
instability. A more controlled simulation with quantifiable levels of noise is
preferable.

As averse to classical linear stability theory, the application of FEM analysis
and subsequent interrogation of the eigensystem analysis of the FEM operator is
not limited to a specific type of basis functions - typically “normal modes.” The
advantage of normal modes is that the transform space that is dual to the physical
space has useful measures as coordinates - wavenumber, for instance, specifies
the lengthscale characterizing the associated eigenmode. With FEM
eigensystem analysis, the growth rates are elucidated for whatever the natural
growing mode(s) turns out to be, but the eigenmode does not have an
unequivocal length scale, for instance. Where the normal modes are
eigenmodes, the FEM methodology usually shows this qualitatively with regard
to the patterns in the eigenmode. Figure 5.18, however, shows that normal

212 Process Modelling and Simulation with Finite Element Methods

modes do not necessarily get excited in systems that have FEM operators that are
non-self-adjoint. I would speculate that this methodology for numerical
computation of stability is far more likely to capture the pseudomodes of [101 for
a non-self-adjoint problem than the linear stability theory.

This chapter introduces several new aspects of eigensystem analysis that can
be done by using FEMLAB and MATLAB tools and a little user defined
programming. The ease by which this can be done is a major advantage of the
pde engine and programming language of FEMLAB. It is now common practice
in stability theory, for instance of viscoelastic flows [16], across many
disciplines [171, to compute via numerical methods the eigenvalues and
eigenmodes of instabilities in transient conditions. Smith et al. [16] use the
Arnoldi iterative method implemented in ARPACK [181 for their computation.
The eigs() sparse eigensolver of MATLABFEMLAB does as well. This
method, based on the Krylov subspace decomposition, becomes computationally
cost effective with larger, sparse systems; the MATLABFEMLAB
implementation of the ARPACK routines is robust and highly accurate.

References

1.

2.

3.

4.

5.

6.

D Coca and S A Billings, “A Direct Approach To Identification Of
Differential Models From Discrete Data”, J Mechanical Systems And
Signal Processing, 13:739-755, 1999; D Coca, Y Zheng, J E M Mayhew
and S A Billings, “Nonlinear system identification and analysis of complex
dynamical behaviour in reflected light measurements of vasomotion”, Znt J
Bifurcation and Chaos, 10:46 1-476, 2000.
S Wolfram, A New Kind of Science, Wolfram Media, Inc. ISBN 1-57955-
008-8,2002.
SC Roberts, D Howard, JR Koza, “Evolving modules in genetic
programming by subtree encapsulation”, Genetic Programming,
Proceedings Lecture Notes In Computer Science 2038: 160-175,2001.
C Sabbah, R Pasquetti, R Peyret, V Levitsky, YD Chashechkin, “Numerical
and laboratory experiments of sidewall heating thermohaline convection”,
International Journal Of Heat And Mass Transfer 44 (14): 2681-2697,
2001; YD Chashechkin, VV Mitkin, “High gradient interfaces in a
continuously stratified fluid in field of 2D adjoined internal waves”
Doklady Akademii Nauk 362 (5) : 625-629, 1998.
PG Drazin and WH Reid. Hydrodynamic Stabilitv. Cambridge University
Press, Cambridge, 1981.
GW Haarlemmer and WB Zimmerman, “Advection of pollutants by
internal solitary waves in oceanic and atmospheric stratifications,”
Nonlinear Processes in Geophysics, 5:209-217, 1999.

Simulation and Nonlinear Dynamics 213

7. Lord Rayleigh, “Investigation of the character of the equilibrium of an
incompressible heavy fluid of variable density” Proc. London Math. SOC.

8. WH Reid and DL Harris, “Some further results on the Benard problem”,
Phys. Fluids 1:102-110, 1958.

9. SH Davis, “Convection in a box: linear theory” J. Fluid Mech. 30:465-
478, 1967.

10. LN Trefethen, AE Trefethen, SC Reddy, TA Driscoll (1993),
“Hydrodynamic stability without eigenvalues,” Science 261 578-583.

11. S Hill, “Channelling in packed columns”, Chem. Eng. Sci. 1:247, 1952.
12. GM Homsy, “Viscous Fingering in Porous Media”, Ann. Rev. Fluid Mech.

19:271, 1987.
13. CT Tan and GM Homsy, “Stability of miscible displacements in porous

media: Rectilinear Flow”, Phys. Fluids, 29:3549,1986.
14. CT Tan and GM Homsy, “Simulation of nonlinear viscous fingering in

miscible displacement” Phys. Fluids 30: 1239, 1987.
15. WB Zimmerman and GM Homsy, “Nonlinear viscous fingering in miscible

dispIacement with anisotropic dispersion.” Physics of Fluids A 3(8) 1859
(1991).

16. MD Smith, YL Joo, RC Armstrong, RA Brown, “Linear stability analysis of
flow of an Oldroyd-B fluid through a linear array of cylinders,” J. Non-
Newtonian Fluid Mech. (to appear).

17. RT Goodwin and WR Schowalter, “Interactions of two jets in a channel:
solution multiplicity and linear stability.” J. Fluid Mech., 3 1355-82, 1996.

18. RE3 Lehoucq, DC Sorensen, C Yang, “ARPACK Users Guide: Solution of
large scale eigenvalue problems by implicitly restarted Arnoldi methods,
ftp://ftp .caam.rice.edu/pub/software/ARPACK

141170-7, 1883.

This page intentionally left blank

Chapter 6

GEOMETRIC CONTINUATION

W.B.J. ZIMMERMAN and A. F. ROUTH
Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Sheffield S l 3JD United Kingdom

E-mail: w.zimmerman @ she& ac. uk

Geometric continuation occurs if the mesh of the domain must change from one solution
to the next due to variation of the geometry model. In this chapter, we take two examples
as paradigmatic - the additional pressure loss in a channel due to various size orifice
plates is an example of steady state geometric continuation. Conceptually, this problem
is little different from the parametric continuation by Rayleigh number in the Benard
problem of Chapter 5. The second example is a drying film with latex particles
embedded in the fluid. Two variations on the theme are computed. The noncumulative
model vanes the front initial position and solves for the time evolution from a uniform
surfactant concentration profile initially, with the front frozen at several different
positions independently. The cumulative model takes the surfactant concentration
profile from the previous front position as its initial value, and alternates solving the
transport model with a point source and moving of the front position. This operator
splitting technique is shown to be asymptotically convergent as the time increment for
these two partial steps shrinks. On a minor note, the film drying model implements a
weak term for the point source in a I-D geometry model using the boundary conditions.
The example is unique in that the FEMLAB manuals give only 2-D and 3-D point
sources using point mode.

6.1 Introduction

We have already seen several examples of parametric continuation - the
traversing in small steps of a range in a parameter, using the previous solution of
a nearby parameter value as the initial guess for the solution at the new value of
the parameter. As long as the parameter does not pass through a bifurcation
point, the new solution should be smoothly connected to the old one if the step in
parameter is small enough. Even if there is a bifurcation, however, the old
branch may still be a solution, as we found with Benard convection in Chapter 5.

Geometric continuation is qualitatively different from parametric
continuation in one important respect. In geometric continuation, the
geometrical change of the domain leads to the requirement of re-meshing with
each geometric parameter value. We should be careful to class as geometric
continuation changes in a parameter that do not lead to a similar geometry. For
instance, in pipe flow, it is well known that the flow is characterized by a
Reynolds number:

215

216 Process Modelling and Simulation with Finite Element Methods

PUD
P

Re=-

This dimensionless parameter rolls the influences of the fluid density p, inlet
velocity U, the diameter D, and viscosity p into one parameter that describes the
dynamic similarity of the flow. Thus changes in the pipe diameter for fully
developed flow are not classed as geometric variation, but rather the more
common parametric variation.

Just as in the last chapter where examples of simulations were given for
stationary models and for transient models, in this chapter we will give examples
of stationary geometric continuation and transient geometric continuation. In the
former, distinct models are solved with slightly different domains and therefore
different meshes. Therefore the solutions are incompatible (different degrees of
freedom) from one geometric parameter value to the next. If the old solution is
to be taken as the initial guess for new geometry, then mapping the old solution
to the new domain in a consistent fashion must be done. In the examples given
here, the system of PDEs for the stationary models are linear, so the solution can
be determined directly in one FEM step. Thus mapping old solutions onto the
new geometry has no additional value. The transient problem, however,
involves a problem in a shrinking domain with a moving front. The domain
changes after each time step, so the mapping of the solution at the old time step
onto the new domain is essential to the model. Consequently, after each time
step, re-meshing must be done as well. One class of problem where this is a
crucial step is the free boundary problem. Film flows and jet flows, for instance,
are cases where the position of the boundary is intimately related to the solution
of the velocity field. The boundaries should be located wherever the stress
balances are satisfied.

The 2-D incompressible, laminar Navier-Stokes equations can be solved by
several standard means (finite difference, finite element, spectral element, lattice
Boltzmann, and multigrid techniques) and have been implemented in standard
simulation engines commercially with fixed boundary conditions and complex
geometries. Standard computational fluid dynamics packages have two standard
engines: (1) the grid generator to cater for complex geometry, and (2) the PDE
engine, which can solve more general systems of transport equations that include
the pressure as in the Navier-Stokes equations as a Lagrange multiplier for the
continuity equation. These two steps are typically conducted separately. The
grid is generated initially, and thereafter many simulations are conducted.
FEMLAB is no different in this respect.

This paradigm for computational fluid dynamics does not deal particularly
well with free boundary problems. An iterative scheme for coupling the flow
solution to grid generation could be envisaged, but automation with standard
packages is difficult to implement. Ruschak [l] described the now standard

Geometric Continuation 217

method of implementing boundary stress conditions with grid adaptation.
Goodwin and Schowalter [2] have successfully implemented their simultaneous
solution for the position of the mesh with the solution of the flow equations and
boundary conditions using Newton iteration in the treatment of a capillary-
viscous jet using finite element methods. In principle, FEMLAB could also do
the latter, but in practice, the equations for the FEMLAB application modes
would need to be augmented with the residuals for the movement of the grid
positions. Standardizing the methodology for including these extra terms in all
application modes whenever the grid is “active,” i.e. there is a free boundary,
would be a substantial re-write of FEMLAB. Given that the number of models
that require free boundary computations, even in surface tension dominated
flows, is rather few, such a general alteration to the package would not seem
warranted. FIDAP, which does treat free boundary flows, uses the iterative flow
solutiodelliptic mesh regeneration methodology, rather than the simultaneous
Newton iteration. In our transient model in a shrinking domain 46.3, we adopt
the iterative approach to the variation of the geometric domain over time.

6.2 Stationary Geometric Continuation: Pressure Drop in a Channel
with an Orifice Plate

In this section, we consider two related models that require geometric
continuation. They are the orifice plate and the platelet in a duct filled with
viscous fluid. They are related, as in fact there is only a slight change in the
model from one case to the other.

Figure 6.1 Mesh generated for the orifice plate in a duct filled with viscous fluid. The parameter
representing the percentage of blockage is ~ 4 0 % (aspect ratio).

Although it is possible to consider the calculation of the flow around the orifice
plate at arbitrary Reynolds number, the major effects in laminar flow are similar
to those with artificially vanishing Reynolds number - the Stokes equations. The
fundamental reason for this is that most of the dissipation occurs in the opening
of the orifice plate, where flow is accelerated yet the small gap leads to strong
viscous friction dominating the flow. So to a first approximation, we will model
the momentum transport by the Stokes equations:

218 Process Modelling and Simulation with Finite Element Methods

vp = pv2u+ pg
v - u = o

where p is the fluid viscosity and p its density, and all other symbols have their
usual fluid flow interpretation. Equations (6.2) are dimensional, pseudo-
stationary, and inertia-free. As they are also linear, they have been the subject of
exhaustive analysis. Ockendon and Ockendon [3] is a good reference for the
area. Homsy et al. [4] provides several excellent visualizations of the
“pathologies” of viscous flow with vanishingly small Reynolds number. My
attention to the problem of an orifice plate was drawn by Professor Dugdale [5],
who arrived at the solution to (6.2) in the vicinity of a sharp-edged orifice by
requiring the condition of optimum energy dissipation within the orifice itself,
ignoring the dissipation on all other boundaries of the vessel. His argument is
that since the orifice is so small, and all of the flow is forced through the orifice,
nearly all of the energy must be dissipated through it, gives a dimensional
argument that for a three-dimensional orifice with characteristic opening length
a, the energy dissipation rate E must satisfy

= W = Q A p PQ2
a3

E = c -

where Q is the volumetric flow rate and W is the rate of working. c is an
unknown constant of proportionality that Dugdale calculates theoretically on the
basis of the extremum of the energy absorption or can be found experimentally
by measuring Q and pressure loss. In a two dimensional system, the analogous
dimensional argument makes E’ the dissipation loss per unit length and Q’ the
cross-sectional area flow rate, giving rise to the scaling argument

(6.4)

Dugdale reports experiments with molasses determining c in the range of 3.17 to
3.30. Bond [6] gives an argument of the
similarity of orifice plates to Hagen-Poiseuille pipeflow in a pipe of length 2ka,
where a is the orifice radius, and his pressure drop equated to k=O.631, implying
c=3.21.

One of us has been interested for some time in the drag on close fitting
particles in tubes. For the same rationale leading to (6.3) or (6.4), close fitting
particles in tubes have drag controlled by the gap width. Zimmerman for thin
discs [7] (broadside motion) and for spheres [S] sedimenting in cylindrical tubes,
reports on the rapid growth of drag as the particle is taken as having larger radius
(smaller gap width a). By using perturbation methods in small particle radius (1-
a) and summing the series expansion, it is possible to determine the nature of the

His theoretical result was 3.0.

Geometric Continuation 219

singularity as the particle approaches scraping the duct wall. (6.4) would suggest
a second order singularity, 0(i2), on dimensional analysis alone for the thin disc
in broadside motion by analogy with pressure loss and drag for 2-D or
axisymmetric gaps. The sphere problem is not amenable to dimensional
analysis, as the gap width changes with polar angle relative to the sphere’s
center. Bungay and Brenner [9] computed that the singularity for the drag on the
sphere is O (U - ~ ~ > . Using finite element methods, Harlen [lo] found convergence
difficulties with close-fitting spheres in a cylindrical duct, indicating the extreme
difficulty in resolving large scale differences in numerical computations, even
with linear models, when small length scales dominate the dynamics of the flow.
It is my guess that much of the dynamics of close fitted particles with small gap
width can be found by extrapolation of solutions for larger gap width.

In this section, we have proposed first solving for the additional pressure
drop Ap due to the presence of the orifice plate with blockage factor E
obstructing the flow over the pressure drop for laminar flow in a channel without
the orifice plate. The gap radius is related to the blockage factor, a=l - i . The
difference between this problem and the drag on a sedimenting particle is
conceptually very small. For instance Shail and Norton [I I] calculated both for
the thin disc in broadside motion in a cylindrical duct, as well as the couple - the
induced force that opposes rotation of a stationary disc. As these quantities are
linearly related due to the linearity of (6.2), it is expected that the singular
behavior of one mirrors that of the other as the gap width is squeezed.

Model of an Ori$ce Plate Inserted in a 2-0 Channel

Launch FEMLAB and in the Model Navigator.

0 Select 2-D dimension
Select Physics modes*Incompressible Navier-Stokes >>

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

Name of constant: rho0 Expression: 0
Name of constant: mu0 Expression: 1
Name of constant: Umean Expression: 1

APPlY

The inlet boundary condition is fully developed Hagen-Poiseuille flow in a 2-D
channel, with Urn,,, as the single parameter characterizing the inlet condition.

220 Process Modelling and Simulation with Finite Element Methods

Pull down the Options menu and set the grid to @,I) x (0,l) and the grid
spacing to 0.1 ,O. 1. Pull down the Draw menu.

Draw Mode
0

0 OK

Select RectangleKquare R1 and place it with vertices [0,1] x [O,5].
Next Draw a square R2 as a notch with vertices
{(2,0.95),(2,1),(205,1.),(2.05,O.95)}.
Pull down the Draw menu. Select create composite object - channel
with a notch -- Form the composite object CO1 = R1 - R2.

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

Boundary Mode
0

0

0

0 OK

Select domain 1 Set u=6*Umean*s*(l-s); v=O
Set boundaries 2,3,4,5,6,7 as no-slip, u=v=O
Set boundary 8 as “straight-out”, i.e. no tangential velocity, p=O
APPlY

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
0 Select domain 1
0

0 OK

Set p=rhoO; q=muO; F,=O; F,=O
Select the init tab and give u(tO)=Umean, v(tO)=O; p(tO)=O
Apply

Accept the standard mesh parameters and hit the hesh button on the toolbar
(triangle). Note that the output specification gives a pressure datum, so we
would expect the pressure to be well conditioned.

Pull down the Solver menu and select Solver Parameters. Click on the
Settings button under “Scaling of variables.” Check the None option. I do this
as a matter of course in problems where the mean flow is well conditioned.
Furthermore, as our selection of density (rhoO=O) forces this to be a linear
problem, there is no point in complicating matters with scaling the variables to
improve convergence. Linear problems are well-posed in terms of convergence
- a single matrix inversion step. Now select the Stationary Nonlinear solver, and
solve.

Geometric Continuation 22 1

70

60

50

You caught that, right? The Stationary Nonlinear solver. Why? Because
not only is this the default for the incompressible Navier-Stokes equations, the
linear solver is not an option. It actually takes two iterations for FEMLAB to be
convinced it has converged, although the initial error being lo-'* might have
been a good clue! Figure 6.2 gives the arrow plot of velocity vectors for an
~=0.05 notch.

-

-

Arrow: [x velocity (u),y velocity (v)] for epsilon=O 05

1 5 1

20

10

Figure 6.2 Velocity arrow plot for an &=0.05 notch.

Figure 6.3 shows the pressure profile along the centerline of the channel
generated

Figure 6.3 Centerline pressure profile for the &=0.05 notch.

by crossplots on the Post Processing menu. The boundary integral on boundary
1 of the pressure gives the average pressure across the boundary, as it has unit
length. This prints in the message dialogue box as 60.463. A quick calculation

222 Process Modelling and Simulation with Finite Element Methods

with fully developed laminar Hagen-Poiseuille flow gives Ap=60. The fully
developed u-velocity profile is

24 = 6U,,,,Y (1- Y) (6.5)

Substitution into (6.2) yields the constant pressure gradient as -12 Urn,,,. Over
five unit lengths downstream, one would expect pinler=60Umean on the inflow
plane to achieve p=O at the outflow. So the additional pressure drop over
Hagen-Poiseuille flow is 0.463 (unitless due to scaling of viscosity and velocity).

Exercise 6.1

Refine the mesh and compute the additional pressure drop. Use the standard
refinement on the toolbar, and restart with the old solution as the initial guess.
Comment on the uniformity of the mesh and the variation in the additional
pressure drop. Is it worth refining the mesh yet again?

Now go to Draw Mode, and double click on the vertices at the bottom of the
notch. Edit them to place the orifice plate across to 40% blockage of the gap,
but with the same width (0.05). Solve. Figure 6.4 shows the arrow plot of
velocity vectors. Clearly the velocity profile must “turn the corner”, which
causes substantially more disruption and by implication more dissipation of
energy.

Arrow: [x velocity (u),y velocity (v)] epsilon=O 4
2 ’ t

ff

Figure 6.4 Velocity vector arrow plot for blockage factor &=0.4

Boundary integration gives a pressure loss of Ap=84.866 required to achieve
uniform outflow with p=O. Note that boundary integration along the outflow
boundary of the x-velocity gives 1, the value of U,,,,. Figure 6.5 shows the
isobars which clearly show rapid dissipation of pressure in the orifice. Also, just
upstream of the plate, the maximum pressure occurs, due to the need to force
flow “around the corner.”

Geometric Continuation 223

Contour. pressure (p)

1 5

Max 91 5

86 91

65 18

, , , , , I
1

0 1 2 3 4 5 Mm 0

Figure 6.5 Isobars for &=0.40 blockage factor. Note the high pressure gradients achieved in the
orifice. Furthermore, the highest pressure 91.3, is greater than the pressure at the inlet, due to the
blockage forcing fluid Out of the positions upstream of the plate.

So how do we implement geometric continuation? In this case, all models, even
without the use of nearby geometric parameters (blockage factor) converge in
one iteration, since the problem is linear. However, the grid refinement studies
are required to ensure resolution. First, export a model m-file. Then edit it to set
up geometric parameters. The first part of my MATLAB m-file script reads as
follows:
% FEMLAB Model M-file
% Generated 16-Apr-2002 20:25:17 by FEMLAB 2.2.0.181.
% WZ: Define a vector slot with a range of blockage factors
slot=[0.95:-0.05:0.25];
% WZ: Set up storage
output=zeros (length(s1ot) ,5) ;
% WZ: Now loop around the whole FEMLAB model m-file with j
for j=1 :length (slot)

flclear fem
% FEMLAB Version
clear vrsn;
vrsn.name='FEMLAB 2 . 2 ' ;
vrsn. maj or=O;
vrsn.build=lSl;
fem.version=vrsn;

% Recorded command sequence
% New aeometrv 1
fem.sdim=(nxn: Iyl};
% WZ: Key section. Note that I have edited occurrences of 0.95 for
% notch and inserted the variable slot (j)
% Geometry
clear s c p

slot(j) 1 slotij) 1 0 11;
rb={1:8,[1 1 2 3 3 5 6 7;2 7 4 4 5 6 8 81,zeros(3,0),zeros(4,0)};
wt= {zeros (I,o) , ones (2 , ~) , zeros (3 , 0) , zeros (4 ,0) } ;
% The femlab recorded command sequence continues up to ...

p=[O 0 2 2 2.05 2 . 0 5 5 5 ; O 1 . . .

224 Process Modelling and Simulation with Finite Element Methods

% Save current fem structure for restart purposes
f emO=f em;
% WZ: Now we compute our boundary integrals (11) exit x-velocity
Il=postint(fem,'u', . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim' , 1,. . .
'solnum' , I, . . .
'phase', 0, . . .
lgeomnum',l,. . .
'dl', 8, . . .
'intorder',4, . . .
'context','local');

% WZ: Boundary integral (12) viscous stress on notch
I2=postint (fem, 'Kx-ns', . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim', 1,. . .
'solnum' , 1, . . .
'phase', 0,. . .
I geomnum' ,1, . . .
'dl', 4:6,. . .
'intorder',4, . . .
'context','local');

% WZ: Boundary integral (13) pressure at inlet
13=postint (fern, 'p' , . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim', 1,. . .
'solnurn' , 1, . . .
'phase', 0,. . .
'geomnum',l, . . .
'dl', 1, . . .
'intorder',4, . . .
'context','local');

% WZ: write out output to the array output
output (j, 1) =slot (j) ;
output (j , 2) =I1;
output (j , 3) =I2;
output (j , 4) =I3;
output (j, 5) =length(fern.mesh.p) ;
% WZ: end our]-loop
end
% WZ: record results to file
dlmwrite('tubeori.dat',output,',');
quit

There is no difficulty executing this programme on the UNIX command line. It
is also computationally "light" enough that you might want to run it in the GUI.
You can do this by launching the m-file script (test.m in this case) from Open
option on the File menu and selection Model m-file. FEMLAB has its own built-
in MATLAB workspace, separate from that in the MATLAB command window
that launched FEMLAB. So any m-file script that can run under MATLAB can
run in FEMLAB as well. You get the added feature of watching the GUI
execute your commands on the domain. You get the computational overhead of
the GUI as well, which may not be a problem if your platform has sufficient

Geometric Continuation 225

RAM memory. In my m-file script for this problem, 1 perform two mesh
refinements, yielding over 4000 elements. This may be a significant inducement
to run it in the background!

Eventually, Table 6.1 is generated by the results of this geometric
continuation study.

Clearly, the additional pressure loss rises rapidly with increasing blockage
factor. The viscous stress along the orifice plate shows a similar rapid rise
(factor of 12, approximately) from &=O.05 to &=0.75.

a=l -e
0 . 9 5
0 . 9

0 . 8 5
0 . 8

0 . 7 5
0 . 7

0 . 6 5
0 . 6

0 . 5 5
0 . 5

0 . 4 5
0 .4

0 . 3 5
0 .3

0 . 2 5

exit
velocity

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

viscous
stress

- 0 . 5 4 5 2 1
- 0 . 7 3 3 3 3
-0 .88573
- 0 . 9 6 5 7 2
- 1 . 1 0 7 2
- 1 . 2 7 3 1
- 1 . 4 2 3 3
- 1 . 6 6 0 1
- 1 . 8 6 4 9
- 2 . 1 6 6 6
- 2 . 5 3 2 9

- 3 . 0 7
- 3 . 7 1 7 3
- 4 . 7 1 6 6
- 6 . 1 1 8

DP
60.4025
6 1 . 4 2 2 1
6 3 . 0 4 1

65 .3066
6 8 . 3 2 0 5
72 .2372
77 .3006
8 3 . 8 6 6 7
92 .4607

1 0 3 . 9 2 0 2
1 1 9 . 5 4 6 5
1 4 1 . 5 6 0 9
1 7 3 . 9 2 5 9
224.2228
308.6217

dof
4010
4212
4362
4640
4 7 1 0
4992
5202
5400
5594
5804
6054
6240
6522
6696
6906

Table 6.1 Average exit x-velocity, integrated viscous stress on the orifice plate, average pressure
loss, and the number of degrees of freedom used in arriving at the FEMLAB solution as a function
of the variation of blockage factor a=]-&.

Figure 6.6 Ap versus E for the orifice plate of thickness 0.05. The curve is the best cubic fit in the
range E E [0,0.5].

226 Process Modelling and Simulation with Finite Element Methods

AP
-=1.0 + 0.6155 E - 1.472 E~ + 6.955 E~
4

Although (6.6) fits the data well in the range shown, over the whole range, a
Laurent series in inverse powers of (1-E) gives a better fit to the ~=0.75 model
than the cubic of (6.6), when the fit is only done on the range E E [0,0.5].

Ap 1= 0.395652 E - 0.3832 E~ -_
APO (1-&13

(6.7)

Figure 6.7 shows the fit of equation (6.7). The prediction by (6.7) is Ap=371, by
(6.6) 214, and the model gives 309. The key feature of (6.7) is that, if you
account for the coefficients in the numerator nearly being equal, it arrives at the
predicted dependency by dimensional analysis only, equation (6.4).

Exercise 6.2: Sharpness effects

Dugdale’s orifice plate was sharp. Ours has a thickness of 5% of the channel
width. Try malung the orifice plate sharper: 4%, 3%, 2%. What effect does this
have on the additional pressure drop? According to [12], the detailed shape of
the particle has a considerable effect on the drag force as the gap width becomes
smaller. If the gap is flat, then Dugdale’s dimensional analysis is correct,
equation (6.3), but if the particle has finite curvature, then Bungay and Brenner’s
O(a-5’2) result is recovered.

0.1 0.2 0.3 0.4 0.5

Figure 6.7 Fit to Laurent series in inverse powers of I-&.

Geometric Continuation 227

Exercise 6.3: Platelet geometric continuation

(a) Change the top boundary condition of the orifice plate to be a symmetry
boundary condition. This models a two-dimensional platelet with viscous flow
past it. Try geometric continuation.
(b) Alter your m-file to use the solution to the last geometric configuration as the
initial condition for the next. Does your m-file finish executing faster?
(c) This example isn’t really multiphysics. Try adding the streamfunction-
vorticity equation as in the buoyant convection example so as to compute
streamlines.

The platelet problem was studied by Kim [I31 with an analytically determined
long perturbation series that was summed to yield the singular behavior of the
drag force as the gap width becomes small.

6.3 Transient Geometric Continuation: Film Drying

In the previous section, geometric continuation did not require using the
previous solution with a different geometry, varied slightly, as an initial
condition for the new solution. Geometric continuation was carried out for the
obvious reason of exploring the model for a range of geometric parameters that
alter the domain. In this section, the solution of a transient problem is posed in
the case that domain is changing over time, so the solution at the previous time is
essential for the prediction of the solution at the current time. The application is
to film drying. The model here is an idealization of experiments on film drying
reported by Mallegol et al. [14].

Figure 6.8 gives the definition sketch of the film drying process. A thin film
of liquid containing particles at an initial volume fraction of is subject to
evaporation from the top surface at a constant rate. If diffusion of particles
throughout the film is small an accumulation at the top surface is observed, with
particles packing at a volume fraction &. Over time the thickness of the packed
layer above the still fluid layer increases. The overall film thickness decreases
linearly with time, and scaling time with the evaporation rate and initial film
thickness allows the film surface to be described by = 1 - 7 . A simple

mass balance gives that the compaction front moves at a velocity a, given by

a =

top

@m

@m -@o
It follows that no further compaction can take place after time 7 = 1 / a , in

which case a steady film thickness is reached.

228 Process Modelling and Simulation with Finite Element Methods

@ = particle volume fraction

Evaporation front yw =I-t
A

V

Ym t h =1 Compaction front

Bottom - $ m - h ! y=o
Figure 6.8 Schematic of the two fronts in film drying: evaporation front at the top and compaction
front in the interior.

There is also surfactant present in the film. This is taken as initially uniformly
distributed at some concentration As the solvent evaporates from the film the
non-volatile surfactant is trapped. This surfactant can either be in solution or
stuck to the particles.

In the context of these packing dynamics, the surfactant concentration is also
changing due to adsorption on to the packed particles. We note the following
conditions on &, the solvent concentration:

Initial condition: @$ = initial surfactant concentration is known a priori.

Boundary condition: - = 0 , no surfactant flux across impermeable surface. % li-”
a@s G I j k - T

Boundary condition: -

non-volatile surfactant is trapped.

Figure 6.9 shows an idealization of an adsorption isotherm for Equation (6.8)
is a rough representation of the adsorption isotherm giving the typical sigmoid
shape. Langmuir isotherms are the most commonly fitted, but as long as the
isotherm is differentiable, any will do.

= 0 , no surfactant across material surface -

The dynamic adsorption of surfactants in miscible displacement is a
fundamental, recurring situation in the chemical and petrochemical industries.
Enhanced oil recovery by detergent flooding has been practiced for more than
twenty years. Liquid chromatography, where the adsorption-desorption isotherm
is key to separation processes, is another common example. The desorption of
the isotherm forced by the compaction front, however, is a unique feature of the

Geometric Continuation 229

r
I'

0 . 8

0 . 6

0.4

0 . 2

2 4 6 8 10 4%
Figure 6.9 Absorption isotherm. r = amount of surfactant loading the particle surface. m=l and
yo=3.

model presented here. Trogus et al. [15], in the context of enhanced oil
recovery, proposed a hnetic model for adsorptioddesorption rates, and Ramirez
et al. [16] developed a two-equation (concentration and surfactant loading), 1-D
spatio-temporal model for dynamic adsorption. Nevertheless, their transport
model is still for a homogeneous porous media, where in ours, given below, the
compaction front between the close packed and looser packed layers, serves as
an impetus for desorption, and thus as a propagating point source of surfactant.

Posed for the first time here is a transport model for the surfactant:

where the first term on the LHS represents accumulation of surfactant, the
second part of the factor being due to accumulation in the adsorbed phase; the
second term represents a point source of surfactant being desorbed from the
compaction front; the RHS represents a diffusion term. Since the equation is
dimensionless, the coefficient of the diffusion term represents an inverse Peclet
number:

(6.10)

where D, is the molecular diffusivity of the surfactant, H i s the initial film depth,
and E is the evaporation rate. The Peclet number is taken as unity for
the purpose of example. In the simulations that follow, it will be vaned
systematically.

Representative values of packings are: Grn = 0.64 Go = 0.4

230 Process Modelling and Simulation with Finite Element Methods

It is rather difficult to analyze a two front problem, especially with one an
effective point source that is moving. It makes sense to transform our coordinate
system to remove one, if not both, of the moving fronts. We experimented with
nonlinear coordinate transforms in time to remove both fronts to a fixed domain.
Surprisingly, this was possible, adding some greater complexity to the PDE
(6.9), but it is not physical, as the variation is not monotonic for the transform
coordinate. Better to stick to one front (the internal compaction front) and
transform away the top front to a fixed domain.

TI

j = O
Figure 6.10 Coordinate transformation: one front.

The tranformation that achieves this is simple:

and results in a new specification for the compaction front:

I - a T
h --

< - 1-7

<=1

c=+
<=O

(6.1 1)

(6.12)

Differentials are expressed in the new coordinates according to the chain rule:

(6.13)
1 a a +- a - l a . - a -

ay 1 - t a g ’ at (1- t)ag a T

which results in a transformed PDE for surfactant transport:

(6.14)

The terms are now representative of, on the LHS: accumulation, pseudo-
advection, and quasi-diffusion. On the RHS, the point source remanifests itself.

1
The solution is “sensible” for 0 5 < - . The boundary and initial conditions

a

Geometric Continuation 23 1

are now expressed as an initial condition $s = $so, BCs - $ = 0 and

Our FEMLAB modeling strategy is as follows:

Solve PDE once for “frozen” compaction front at position just less than 1.
1. Move the compaction front by an infinitesimal amount
2 . Keep the old solvent concentration profile and update by solving PDE with

3. Go back to 1; iterate until compaction front hits bottom.

FEMLAB recipe for a single pass.

Launch FEMLAB and in the Model Navigator, select the Multiphysics tab.

new front position

Model Navigator
0 Select 1-D dimension

0 OK

Select PDE modes =+ General >> time dependent, Weak solution
form

Options/Axis settings -0.1 to 1.1, grid 0.05

Draw/Specify Geometry: bottom 0 to 0.99, top 0.99 to 1, enter points
name:front, start 0.99

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

AddIEdit Constants
Name of constant: theta-m Expression: 0.64

0 Name of constant: theta-0 Expression: 0.40
0 Name of constant: alpha Expression: theta-m/(theta-m-theta-0)

Name of constant: Pe Expression: 1
0 Name of constant: tau Expression: 0.01 (time step)
0 Name of constant: slope Expression: 0.01 (isotherm parameter)

0 OK
APPlY

Pull down the options menu and select Add/Edit expressions. The AddEdit
expressions dialog box appears.

232 Process Modelling and Simulation with Finite Element Methods

Subdomain 1
r - l/(Pe*(1 -tau)"2)*ux
F -(d(1-tau))*(1-theta-O*dtherm)*ux
da l-theta-O*dtherm

Subdomain 2
- 1 /(Pe*(1 -tau)"2) *ux
-(d(1-tau))*(1 -theta-m*dtherm)*ux
1 -theta-m*dtherm

Boundary Mode
0

Apply
0 OK

Select domain 1 & 3, check Neumann.
Select domain 2, check enable borders
Select weak tab. Weak term: isobound*theta-m*u-test

As alluded to in the abstract, implementing a 1-D point source is unique in the
FEMLAB literature in our experience. The examples in the Model Library are
all in 2-D and 3-D, implemented through point mode. In 1-D, the only access to
point residuals is through the boundary conditions, specifically the weak tab for
point sources. In analogy with the Poisson model in Chapter 2, u-test evaluates
as a Dirac delta function on the front (domain 2), with coefficient chosen to
match (6.14). Although placed in the boundary condition, the residual adds the
analytic equivalent to a point source to the augmented stiffness matrix (see
Chapter 2).

Now pull down the Mesh menu and select the Parameters option.

Mesh Parameters

Remesh
0 OK

Select more>> max element size 1 0.001 2 0.0001

Now
the

Set

Now
Boundary

Geometric Continuation 233

There should be 1245 elements.

Now enter solver mode and select solver parameters. Select weak form. Set
time stepping 0:0.001:0.01. Now solve. Then save a model m-file as the single
pass solution. Figure 6.11 shows the history of the short time evolution of the
surfactant concentration with the compaction front frozen at its initial position,
5=0.99. In this single step, the compaction front has been translated in the first
stage without diffusion, in the second stage computed here, it is permitted to
diffuse without convection. This “operator splitting” technique, which divides
the time step in to translation stages and convective-diffusion stages is not novel.
Zimmerman and Homsy [17] give several references for its use. Figure 6.11
shows that during the convective-diffusive stage, the concentration grows at
its peak due to the compaction front acting as a source, and spreads out
underneath.

I
1.0141

Surfactant concentration (u) histories

oggsl ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
0 6 0 7 0 8 09 1

O 4 G O 5
n 0 1 0 2 0 3

Figure 6.11 Surfactant concentration after first time interval tE [0.0:0.001:0.01] solving diffusion
model in the transformed domain (6-coordinate) with frozen front.

Now for the complications. We will use our exported model m-file as a basis for
controlling the movement of the front with an external loop around the
subprogram for solving the diffusive transport equation with the front frozen. To
do this, we need to restart the model each time step with the solution of the
previous step with a different front position. We accomplish this below by
interpolating the previous solution on a different mesh to the new mesh, which
can be somewhat different owing to the changing position of the compaction
front.

234 Process Modelling and Simulation with Finite Element Methods

Now, the major features of the program, fi1mdry.m:

Initialization
% FEMLAB Model M-file
% Generated 08-May-2002 23:11:18 by FEMLAB 2.2.0.181.
xx=[0:0.001:1];
u=zeros (size (xx)) ;
% Define parameters
Pe=l. ;
slope=l. ;
offset=2.;
theta-rn=0.64;
theta-0=0.4;
alpha=(theta-m/(theta_m-theta-O)) ;
endtime=l/alpha;
slottimes=[0.01:0.01:endtimel ;
% set up storage for output
output=zeros(length(slottimes),length(xx));
% Roll out the frozen front position loop
for j=l:length(slottirnes)

tau=slottimes (j) ;
frontpos=(l-alpha*tau)/(l-tau);

% Now just alter some parts of the single pass model m-file

front=pointl (frontpos) ;

% Define constants
fem.const={ . . .

...

...

'thetam',thetam, . . .
'theta-O',theta_O, . . .
'alpha', alpha, . . .
'Pel, Pe, . . .
'tau', tau, . . .
'slope', slope, . . .
'offset', offset};

% Multiphysics
fern=multiphysics (fern) ;
% Extend the mesh
fem.xmesh=meshextend(fem,'context','local','cplbndeq','on','cplbndsh',
'on') ;

% Evaluate initial condition
if j==1

init=asseminit(fem, . . .
'context','local', . . .
'init', fem.xmesh.eleminit);

end
if jzl

% Map initial solution to current xmesh
fern0 . sol. u (: ,1: end-1) = [I ;
umap={ ~ U ~ , I , I , I , O } ;
init=asseminit (fern, tinit', {fernO,umap}) ;

end

% Save current fem structure for restart purposes
f ernO=f em;

Geometric Continuation 235

t Postinterp the solution
[is,pel =postinterp(fem,xxj ;
[ul =postinterp(fem, ‘u’ ,is) ;

output (j , :) =u-ones (size (u) j ;
end
% Write the f i n a l output to file
dlmwrite (’ f ilmroll . dat ’ , output ’ , ‘ , ’) ;

quit;

Note that we write the transpose of the matrix output, purely for the convenience
of the graphics package (GNUPLOT) which plots column vector data. The file
filmroll.dat contains the current solution less one, which helps in maintaining
accuracy, since by default, MATLAB writes five significant figures, but
internally stores double precision floating point numbers (about twelve
significant figures). The post interp command generates an interpolation
structure [is,pe], which can be applied to the solvent concentration ‘u’ or any
other computed quantity, say ‘ux’ or ‘ut’. This is the common way to extract
detailed information about the solution from the fem structure. A frequently
asked question in FEMLAB seminars is how to get the GUI to output a “data
file” for import into the favorite graphics package. Figures 6.12 - 6.19 were
generated using GNUPLOT on data output from MATLAB using postinterp
on a fern structure.

The role of the two if structures, (if j==1 ...) and (if j> l ...), are crucial to
the model formulation. The default setting is to initialize with the initial fields
u(tO)=l. This is done during the first time step using the (if j==1 ...) structure.
For subsequent time steps, the (if j> l . . .) structure interpolates the solution from
the last time step (femO.so1) onto the new mesh and places the interpolated
solution in the init field of the new fem structure. I wish I could take the credit
for this fancy programming effort using little understood features of
asseminit (j , but in fact, all I did was to get the GUI to generate the commands
automatically by altering a mesh and using the solve using previous solution
toolbar button. The model m-file provided the appropriate code for
asseminit (1 . Since it is easy to run fi1mdry.m with the default setting, we did
this for Figure 6.12 and term it the “non-cumulative” model. Running with the
interpolation scheme on for the cumulative effect of the point source at the
compaction front as written above is termed the “cumulative” model. The non-
cumulative model permits the understanding of the compaction front dynamics in
the abstract.

Figure 6.12 demonstrates the model predictions for equal duration front
translation “hops” and convective-diffusive relaxation steps of At=O.Ol . As we
saw in Figure 6.11, the initial profile rises along the upper compaction layer,
with the top surface having elevated surfactant concentration. The boundary
condition (no flux) requires the flat profile. At subsequent times, the peak

236 Process Modelling and Simulation with Finite Element Methods

concentration associated with the compaction front is highest exactly at the front,
and diminishes in height, as there is greater penetration downward of the
surfactant flux released upon compaction (modelled by the point source term).
As the compaction front approaches the bottom, the no flux boundary condition
forces surfactant to accumulate along the bottom. It should be noted that the
elevation in surfactant concentration does not reach 1% in this example. Perhaps
the strength of diffusion keeps the compaction front broad and dilute in this
example. The cumulative model, shown in Figure 6.13, shows a stronger
aggregate effect, with maximum concentrations of up to 4%.

vcnicel coordinate

Figure 6.12 Non-cumulative model. Combined compaction front translation and convective-
diffusive model for Pe=l, m=l , offset y0=2. Shown are times tE [0.:0.01:0.375], the last time
corresponds to the compaction front arriving at the bottom of the layer. Each time step is from a
uniform surfactant concentration profile q3s=1 but with translated front position.

0 0.2 0.4 06 08 1
vcnical coordinate E

Figure 6.13 Cumulative model. Combined compaction front translation and convective-diffusive
model for Pe=l, m=l , offset y0=2. Shown are times te [0.:0.01:0.375], the last time corresponds to
the compaction front arriving at the bottom of the layer. This model builds on the profile of for the
previous time step surfactant concentration profile q5s. Although the governing equation is
nonlinear, due to the small variation in surfactant concentration, Figure 6.13 is approximately the
linear combination of the cumulative profiles up to time T.

Geometric Continuation 237

An Irish professor once remarked to me, “Anyone can do a calculation, the trick
is figuring out if it’s right.” So how do we know that the cumulative model,
Figure 6.13 is right? A checking point is whether it is convergent upon
reduction of the time increment for moving the front, At. Clearly, computing
Figure 6.13 at say three different values, successively cutting At, is going to be
difficult to show on one figure, since Figure 6.13 is rather full already. It is
probably sufficient to show a feature of the profile. The most prominent feature
is the “ridge”, of Figure 6.13, which corresponds to the maximum concentration
of the profile at each time step, and therefore matches the front position seen in
Figure 6.12. The maximum of a function is termed the Lo norm. Because this
problem is diffusive, getting the maximum right is a challenge. The L2 norm is
the most commonly used, which has the same connotation as a “root-mean-
square” of the profile - an integral measure of size. It is the unscaled norm that
FEMLAB uses in assessing the error of a model in its Newton solvers. Figure
6.14 demonstrates that the Lo norm is time-asymptotically convergent, a
necessary consistency check on the operator splitting scheme. Early times are
divergent, since the front has had little time with small At to act as a source.

In Figures 6.15 and 6.17, we raise the Peclet number to Pe=100, to explore
weaker diffusion.

The non-cumulative model in Figure 6.15(a) shows qualitatively the same
behaviour as in Figure 6.12 - peak concentration associated with the compaction
front, eventually accumulating along the bottom of the layer. The striking
feature is that the peaks are much narrower in this example, resulting in 3-4 %
elevation of surfactant concentration. In both of these cases, since the variation
in surfactant concentration is so slight, the dynamics of the accumulation term is
dominated by the slope of the isotherm at unity, and the dynamics of the point
source are dominated by the value of the isotherm at unity.

Figure 6.14 Cumulative model. Combined compaction front translation and convective-diffusive
model for Pe=l, m=l , offset y0=2. Shown are times tc [0.:0.01:0.375]. Maximum surfactant
concentration in the profile at a time for three different operator splitting increments At=O.Ol, 0.005,
and 0.001. The time asymptotic convergence is a consistency check on the operator splitting scheme.

238 Proczss Modelling and Simulation with Finite Element Methods

I
1 O! O d 06 09 O! 0 4 06

vcamlcoodmtc E O5 vcaralcoordioatc

Figure 6.15 (a) Left: Non-cumulative model. (b) Right: Cumulative model. Combined compaction
front translation and convective-diffusive model for Pe=100, m=l, offset yo=2 for times tE
[0.:0.01:0.375 1.

The cumulative model in Figure 6.15(b) shows qualitatively the same behaviour
as in Figure 6.13 - peak concentration associated with the compaction front,
eventually accumulating along the bottom of the layer. The difference is merely
that the peak in Figure 6.15(b) is much more pronounced than in Figure 6.13.
Strikingly, the range of peak heights is largely the same, 3-4.5 %, as in the
more diffusive Pe=l case and practically exactly the same in detail as in the non-
cumulative model. This leads us to ask the question of whether the choice of At
has a greater effect on high Peclet number models than on low. Figure 6.18 tests
this for a Pe=100 case, with the conclusion that the default At=0.01 is
insufficient for asymptotic convergence of the solution at high Peclet number.
The splitting time increment At must be set tighter as diffusion becomes weaker,
suggesting that the profiles should resemble Figure 6.16(b) with smoother ridges
than Figure 6.17(b) with sharp peaks and trailing diffusive layers.

0.014 0 07

A ow - 006
I I

: 0.01 8 a05

1 0.m oa4

Y 8 E om 6 a m
i j 0.m 4 a02

B
o.m! o a i

0 a
0 0.2 0.4 Oh 03 i 0 0 2 a 4 06 08

veitica~ cmidinate F.
I

vcrticai condinate

Figure 6.16 (a) Left: non-cumulative model. (b) Right: cumulative model. Combined compaction
front translation and convective-diffusive model for Pe=l, m=0.7, offset yo=2 for times tg
[0.:0.01:0.375]. Note that the cumulative percentage variation runs from I-7% in the cumulative
model. At=0.01.

Geometric Continuation 239

Since unit concentration is actually scaled by the initial uniform surfactant
concentration in the layer prior to evaporation commencing, it is reasonable to
vary the isotherm parameters m and yo to see the effect of changing the initial
surfactant loading. Figure 6.16(b) tests this for Pe=l. This figure looks
superimposable on Figure 6.12, with the exception that the vertical scale is
stretched to accommodate the maximum surfactant concentration at 1.25%
elevation, rather than the 0.75% with steeper isotherm (Figure 6.12).

Figure 6.17 shows that a 5-7 % surfactant rise is achievable with the flatter
isotherm (than Figure 6.13). Figure 6.18 tests the asymptotic convergence as
discussed before for high Peclet number situations. Clearly, Ak0.01 is
insufficient in Figure 6.17 for asymptotic convergence, casting doubt on the
sharpness of the steepness of the peak in surfactant concentration actually
accompanying the compaction front. A smoother ridge, as in Figure 6.16(b) is
more consistent with the trace of the peak height for At=0.001 in Figure 6.18
below.

Curiously, Figure 6.19 shows that there is limited effect in flattening the
isotherm further - hardly any dynamic change from Figure 6.17 at all. The peak
heights are higher, 8-10 %, yet as the asymptotic convergence criteria of Figure
6.18 has not been met at At=0.01, it is likely that substantial smoothing will be
achieved by shrinking the operating splitting time increment, as per Figure 6.18.

Because there is little variation in the surfactant concentration from the
compaction front releasing adsorbed surfactant, the details of the isotherm, other
than slope and value, do not enter the dynamics per se. They have the greatest
effect in influencing the range of surfactant concentrations achievable, yet this is
of limited influence given the small range. The key to this insensitivity is that

I I I I I I

I I I I I I I I

0 1 04 06 08 I O! 08 0.4 06
vcltiml cominatc E I

vtrtiml coordinate

Figure 6.17 (a) Left: non-cumulative model. (b) Right: cumulative model. Combined compaction
front translation and convective-diffusive model for Pe=100, m=0.7, offset y0=2 for times t s
[0.:0.01:0.375]. Note that the cumulative percentage variationruns from 6-8% in the cumulative
model. At=O.Ol.

240 Process Modelling and Simulation with Finite Element Methods

E -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0
ti rnc

Figure 6.18 Cumulative model. Combined compaction front translation and convective-diffusive
model for Pe=100, m=0.7, offset y0=2. Shown are times tE [0.:0.01:0.375]. Maximum surfactant
concentration in the profile at a time for three different operator splitting increments At=0.01, 0.005,
and 0.001. The time asymptotic convergence is a consistency check on the operator splitting
scheme. Comparison with Figure 6.14 leads to the conclusion that only At= 0.001 is asymptotically
convergent.

I 0 1 1 , I

4 01 om

+ 0 0

B

a
6 om

= om
2 OM

'B 001 ; OM

2 0 . 0 i
8 002

OO!

i 001

0

I I
O ! 04 06 03 1 0 O! 04 06 09

4 01

vcmcai coodinatc E I
"rkk7l C d d 4 h 7 I e

Figure 6.19 (a) Left: non-cumulative model. (b) Right: cumulative model. Combined compaction
front translation and convective-diffusive model for Pe=100, m=0.5, offset y0=2 for times tE

[0.:0.01:0.375]. Note that the cumulative percentage variation runs from 8--10% in the cumulative
model. At=0.01.

the surfactant is modeled as non-volatile constituent, able to adsorb on the latices
in the layer, but not to evaporate itself. Howison et al. [18] show a substantially
greater range of concentrations of an evaporating solvent for a similar model, but
with no compaction front.

This is an industrially important problem. Hydrophobicity of coatings drops
considerably with large concentrations of surfactants. In addition channelling of
water through pores of surfactant can seriously corrode material protected by an
otherwise effective coating. For these reasons, models such as the one outlined
above are central to the current research on coating efficiency.

Geometric Continuation 24 1

Exercise 6.4: Asymptotic sugactant concentration

An interesting feature of the film drying application that is industrially relevant is
the concentration of surfactant on the bottom surface when the front arrives, as a
function of Pe. This has been commented on by many authors and they try to
control it by varying the substrate chemistry, but our model suggests it is actually
the particle/surfactant adsorption isotherm that controls this. This has many
important ramifications for how to formulate industrial coatings. Write a
MATLAB m-file script by altering fi1mdry.m to store only the final (7 = 1 / a)
surfactant concentration value at k=O with parametric variation from Pe in the
range [1:5:100]. Try the isotherm parameters m=O.7, y0=2 and m=0.7, yo=l .
Plot your data of u at c=O versus Pe for both cases. Is the bottom surfactant
concentration sensitive to the particlehurfactant adsorption isotherm?

6.4 Summary

In this chapter, we explored how FEMLAB can be used to set up simulations
where the geometry model changes smoothly over either a parametric range or
smoothly due to transient evolution of a front. The groundwork for these two
situations was laid with previous discussion of parametric continuation. In
particular, this chapter introduces an operator splitting technique to deal with
transient geometric continuation, with geometry modification occurring during
the first part of the time step, and a PDE being solved during the second part.
The technique was shown to be self-consistent with asymptotic convergence
tested for some parametric values and the simulation parameter - the increment
over which the geometry is modified.

Although not novel, the transient model required re-starting the solution at
one time step with the old solution at the last time increment. Yet, in order to do
this, the old solution must be interpolated onto the new mesh, with potentially
different numbers (and relevance) of the degrees of freedom. asseminit 0 was
found to have sufficient power to do this, with the code supplied by the
FEMLAB GUI programming interpreter, through a model m-file translation. By
now, this should be a common technique for programming MATLAB routines
calling FEMLAB functions - let the FEMLAB GUI provide the right commands.

The transient models for film drying were examples of two types of
geometric continuation. The noncumulative model merely moved the initial
position of the point source compaction front. Each front position was solved
independently for surfactant concentration. The cumulative model read in the
previous solvent concentration profile as its initial condition - the essence of
parametric continuation and of transient integration. The operator splitting
scheme developed here uses the best features of both types of continuation.

242 Process Modelling and Sirnulation with Finite Element Methods

6.5 End Note: Solver Parameters for Problems with Pointwise Weak Terms

FEMLAB errors message(s) that inspired this note
Index into matrix is negative or zero.

Weak Point Terms

One of the most impressive features of FEMLAB is its ability to specify point
source terms “semi-analytically” through the use of weak terms. Dirac delta
functions, for instance, in the PDE are easily expressed through contributions to
the FEM assembly through simple weak terms. The example in the User’s Guide
of a Poisson equation with a unit point source, or in Chapter 2 of the module
workbook of a point vortex, both show how to implement a point singularity
through weak terms. The only question posed here is what solver parameters are
consistent with the weak source terms.

Solver Parameters

It is probably common sense that the weak solution form should be used on the
Solver Parameters dialogue window if any weak terms or constraints are
implemented. In FEMLAB 2.2, our film drying example worked fine with a
numeric Jacobian and either coefficient, general, or weak solution form. In
FEMLAB 2.3, however, this cocktail produces the error message “Index into
matrix is negative or zero.” The proper solution is found with the “exact
Jacobian” option and weak solution form is recommended. A plausible
explanation for the difference due to the change of versions has not been
forthcoming, so this note should just serve as an advisory that the exact Jacobian
and weak solution form are consistent with pointwise weak terms. COMSOL
advise that the version inconsistency is probably due to the new “Automatic
Scaling of Variables” feature.

The film drying example described here serves as a paradigm for treating
pointwise weak terms. The FEMLAB model here is specified with only base
FEMLAB application modes. It should be understood that by specifying a point
source, the FEM implementation will smooth out the Dirac delta function on a
sub-element length scale. Thus grid resolution may change the influence of the
source at least locally. Thus the solution may never be “grid independent” in all
details, but rather the model of the point source is intimately linked to the
element meshing. Some other test than grid independence must then be passed
to validate the model, typically experimental validation or matching behavior in
limiting cases.

Geometric Continuation 243

References

1.

2.

3.

4.

5.

6.
7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

KJ Ruschak. ‘A method for incorporating free boundaries with surface
tension in finite element fluid-flow simulators” Znt. J. Num. Methods Eng.
15:639, 1980.
RT Goodwin and WR Schowalter ‘Arbitrarily oriented capillary-viscous
planar jets in the presence of gravity.” Phys. Fluids, 7(5): 954-963, 1995.
H. Ockendon and J.R. Ockendon Viscous flow Cambridge : Cambridge
University Press, 1995.
GM Homsy et al., Multimedia Fluid Mechanics (CD-ROM), Cambridge:
Cambridge University Press, ISBN 0-521-78748-3,2000.
DS Dugdale, “Viscous flow through a sharp-edged orifice,” Znt. J.
Engineering Science 8:725-729, 1997.
WN Bond, Proc. Roy. SOC., 34:139, 1922.
WB Zimmerman, “The drag on sedimenting discs in broadside motion in
tubes.” International Journal of Engineering Science, 40:7-22, 2002.
WB Zimmerman, “On the resistance of a spherical particle settling in a tube
of viscous fluid” in preparation.
PM Bungay and H Brenner, “The motion of a closely-fitting sphere in a
fluid-filled tube.” Int. J. Multiphase Flow, 1:25, 1973.
OG Harlen, “High-Deborah-Number flow of a dilute polymer solution past
a sphere falling along the axis of acylindrical tube” J. Non-Newtonian Fluid
Mech. 37:157-173, 1990.
R Shail and DJ Norton, “On the slow broadside motion of a thin disc along
the axis of a fluid-filled circular duct.” Proc. Camb. Phil. SOC., 65:793, 1969.
HA Stone, “On lubrication flows in geometries with zero local curvature,”
private communication.
MU Kim. “On the slow broadside motion of a flat plate along the centerline
of a fluid-filled two-dimensional channel” J. Phys. Soc. Jpn, 53(1): 139,
1984.
J Mallegol, J-P Gorce, 0 Dupont, C Jeynes, PJ McDonald and JL
Keddie,”Origins and effects of a surfactant excess near the surface of
waterborne acrylic pressure-sensitive adhesives.” Preprint. 2002.
F Trogus, T Sophany, RS Schechter, and WH Wade, “Static and dynamic
adsorption of anions and nonionic surfactants” SPE J. 17:337-344, 1977.
WF Ramirez, PJ Shuler, and F Friedman, “Convection, dispersion, and
adsorption of surfactants in porous media,” SPE J. 20(6):430-438, 1980.
WB Zimmerman and GM Homsy, “Nonlinear viscous fingering in miscible
displacement with anisotropic dispersion.” Physics of Fluids A 3(8) 1859
(1991).
SD Howison, JA Moriarty, JR Ockendon, EL Terrill, and SK Wilson,
“A mathematical model for drying paint layers.” J. Engineering Math.
32:377-394, 1997.

This page intentionally left blank

Chapter 7

COUPLING VARIABLES REVISITED: INVERSE PROBLEMS,
LINE INTEGRALS, INTEGRAL EQUATIONS, AND

INTEGRO-DIFFERENTIAL EQUATIONS

W.B.J. ZIMMERMAN
Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Sheffield S l 3JD United Kingdom

E-mail: w.zimmerman @ she5 ac. uk

In this chapter, coupling variables are explored in great depth with regard to their role in
solving inverse equations and integral equations of various types. Four important
applications are taken as example studies - using lidar to detect position and spread of
dense gas contaminant clouds, the inverse problem in electrical capacitance tomography,
the computation of non-local heat transfer in a fiber composite medium, and the
population balance equations in particle processing. En route, we encounter several
features of FEMLAB not previously explored - coupling to optimization tools through
MATLAB, extended meshes, using the time-dependent solver as an iterative tool for
stationary nonlinear models, and the ability to selectively activate/deactivate
multiphysics modes in coupled models. The latter is particularly useful if there is only
one-way coupling (as in the hydrodynamics around the catalyst supported on the pellet in
Chapter 3). In the case of the integral equations treated here, a fictitious dependent
variable on an auxiliary domain is set up. The domain is used by coupling variables for
various operations, but the dependent variable is never needed itself. So deactivating it
results in better conditioning the FEM approximation to the integral equation.

7.1 Introduction

We are already familiar with boundary and subdomain integration - options
available on FEMLAB’s post processing menu. Boundary integration is useful
for computing all manner of surface quantities: the charge on a body in
electrostatics and the drag on a body in hydrodynamics, for example.
Subdomain integration is typically used for averages and higher moments of
combinations of the degrees of freedom defined in the domain. These features
are reliable, and given the nature of the finite element method expressed through
an integral property, the Galerkin method (see Chapter 2), FEMLAB naturally
incorporates efficient and accurate integration schemes. Yet if the reader is
interested in numerical integration of arbitrary integrands or ODES, the built-in
MATLAB schemes are generally sufficient (see Chapter 1) and do not warrant
further discussion here. In this chapter, more complicated applications of
integral equations and theory are explored with an eye to computation within

245

246 Process Modelling and Simulation with Finite Element Methods

FEMLAB. Line integrals, integral equations, and integro-differential equations
are the target applications in applied mathematics. These are all treatable with
recourse to FEMLAB’s coupling variable capability. Perhaps that is reason to
have titled this chapter “Extended multiphysics 11.” The title selected, however,
is probably more descriptive. As ever, we target illustrations in chemical
engineering of the use of the FEMLAB features. The most important treated
here are using lidar to detect position and spread of dense gas contaminant
clouds, population balance equations which are exemplary of IDES, the inverse
problem in electrical capacitance tomography, and the computation of non-local
heat transfer in a fiber composite medium.

Extended Multiphysics Revisited

When I read through the new features introduced with FEMLAB 2.2, I must
admit to being skeptical of extended multiphysics as something that I was likely
to use. Eventually, the utility of scalar coupling variables dawned on me, and
provided the impetus for Chapter 4. It also spawned our interest in a new
adventure for our research team, modeling microfluidics networks. Yet
FEMLAB provides two other conceptual constructs for coupling variables -
extruded and projected coupling variables. The examples of their use in the
Model Library are nearly all about postprocessing, i.e. to express solutions in
cross domain functionals to analyze particular features.

Rarely, however, coupling variables (extruded and projection) have been
incorporated in the model and solved for simultaneously with the independent
field variables. Multi-domain, multiple scale, and multiple process models are
not common in engineering mathematics and mathematical physics. Typically,
models are local in character - conceived of as a set of (partial) differential
equations and boundary and initial conditions that are well posed. These are
termed continuum models. Historically, this development has been predicated
on the use of analysis techniques that have some scope for treating this class of
models in closed form. Computational models, even in situations that are
treatable by continuum methods, are approximated by discrete interaction rules
that need not be local. Smooth particle hydrodynamics [l] and discrete element
methods [2] are growing in popularity, but older methods like molecular
dynamics simulations 131, Monte Carlo methods [4], microhydrodynamics [5] ,
cellular automata [6] and exact numerical simulation in gadplasma dynamics [7]
bridge the continuuddiscrete system gap in modelling distributed systems.
Another set of techniques is based on optimization theory to satisfy pde
constraints - penalizing the degree to which constraints are not satisfied. Mixed
integer nonlinear programming [8], genetic algorithms [9] and genetic
programming [lo] are all suitable for treating models of mixed
discrete/continuum systems. FEMLAB was formulated with a strong bias
towards continuum systems with pde constraints. Yet, conceptually, extended

Coupling Variables Revisited 247

multiphysics is not an afterthought for dealing with awkward situations. It
permits treating discrete systems on an even footing with continuum systems
characterized not only by pde constraints, but by integral constraints as well.
Essentially, coupling variables permit nonlocal and discrete modelling.

In sections 7.3 (scalar), 7.4 (projection) and 7.5 (extrusion) we revisit
coupling variables to explore FEMLAB treatment of inverse problems, line
integrals, and integralhtegro-differential equations, respectively.

Scalar Coupling Variables

Undoubtedly, scalar coupling variables are the conceptually easiest to grasp. In
chapter 4, scalar coupling variables were used to link up a recycle stream in a
flowsheet for a heterogeneous chemical reactor - the output of the reactor,
suitably scaled, re-enters with the feed stream. An abstract 0-D element in a
second geometry was created for the purpose of modeling a buffer tank that
achieved the algebraic relationship between the recycle stream and the reactor
outlet. Very simply, a scalar coupling is a single value passed to the destination
domain, subdomain, boundary, or edge, where it is used anywhere in the
description of the domain FEM residuals. The scalar coupling variable is
created by an integration on the source domain. Since in our example, sources
were 0-D (endpoints or the single element construct), the integrations were
trivially the same as the integrand. Furthermore, that buffer tank model was
artificial since the recycle relations could have been more readily incorporated in
a weak boundary constraint without recourse to the second domain. So we have
yet to see an example of scalar coupling variables where the source integration
was non-trivial and the coupling itself essential. In the next subsection, we
tackle an inverse problem where coupling is essential and intricate. An inverse
problem has the connotation that there is an associated forward problem that is
well-posed, but that the inverse problem is ill-posed. Our selected inverse
problem is a tomographic inversion for electrical capacitance tomography.

Electrical Capacitance Tomography

Process tomography has matured as an engineering science in the past decade.
One of the most common configurations is electrical capacitance tomography,
frequently used for imaging processes with multiphase flows in cylindrical
pipelines. Sensing of multiphase pipeline flows with information about the
distributed flow of dispersed phases can be crucial to tight control of chemical
and processing unit operations. Non-invasive and non-intrusive measurements
of two-phase flow are notoriously difficult to obtain. The difficulty is often
exacerbated by the highly time-varying flows some times encountered in gas-
liquid flows in the oil and gas production industry. Accurate measurements of
transients in the flow and instantaneous phase distributions cannot be achieved.

248 Process Modelling and Simulation with Finite Element Methods

One possible way of obtaining such data is to measure the spatial electrical
permittivity distribution of a flowing gas-liquid mixture using Electrical
Capacitance Tomography (ECT). This will give information regarding the phase
distribution about the pipe cross-section.

Tomographic instrumentation can provide images, non-invasively, of the
distribution of components within a process vessel or pipeline. Electrical
Capacitance Tomography (ECT) provides 2-D images of the dielectric
distribution of the components within a process pipe. Non-invasive
measurements of capacitance by electrodes - excited by a charge-discharge
principle [l 13 - are used in a mathematical reconstruction algorithm to create
images of materials having different pennittivities. This procedure allows
different phases to be determined. To date, process engineering studies
involving ECT have been sparse, but some areas of application include fluidised
beds and pneumatic conveying. McKee et al. [12] reported the use of
capacitance tomography for imaging pneumatic conveying processes in two
industrial pilot scale rigs. This work pioneered the application of ECT to dense-
phase pneumatic conveying and demonstrated the potential of capacitance
tomography as an aid to on-line process control. A good review of this area can
be found in [1 31.

The tomographic imaging device involves three main sub-units: an array of
sensors (typically 12 electrodes; 66 independent measurements), a data
acquisition system and an image reconstruction system. Measurements of
capacitance are obtained for all possible combinations of electrodes. For each
electrode pair the following charge-discharge procedure is adopted: the active
electrode is charged to a given voltage (15 volts) while the detecting electrode is
earthed; the active electrode then discharges to earth while the detecting
electrode connects to the input of a current detector. This detector then averages
the resultant oscillating current from the detecting electrode, creating a voltage
directly proportional to the unknown capacitance value.

The basic capacitance data acquisition system is based on the charge
transfer principle. The discharging current flows out of the current detector
producing a positive voltage output. The typical chargeldischarge cycle repeats
at a frequency of 1 MHZ, and the successive charging and discharging current
pulses are averaged in the two current detectors, producing two DC output
voltages.

Calibration of the instrument is performed before use of the electrode
arrangement and involves the sensor device being filled with the material of
lower permittivity. This procedure provides a reference value of permittivity. A
change in the measurement sensitivity of the circuit then occurs when the pipe is
filled with the material having the higher permittivity. A calibration procedure is
needed for each type of material studied.

Coupling Variables Revisited 249

The image reconstruction process yields an image of the concentration
distribution within the pipe by the use of a back-projection algorithm. Existing
algorithm techniques for ECT are capable of producing images at a frame rate of
100 images per second and can, virtually, provide almost real-time information
about the process. However, a limiting feature of the existing ECT system is the
modest spatial resolution (about one tenth of the pipe radius). The major reason
for this constraint is that the surface area of each electrode is large enough that,
for all practical purposes, the electric field lines are parallel between the
electrode pairs in the chargeldischarge cycle. This convenience permits an easy
image reconstruction by the back-projection algorithm. If more and smaller
electrodes are used, there is the possibility of greater spatial resolution, but at the
cost of a more complicated reconstruction algorithm. This algorithm would need
to solve a Poisson equation with boundary data to find the internal permittivity
field.

In this subsection, we give a flavor of the image reconstruction inverse
problem with a toy model of a sparse system with large electrodes and distinct,
rod-like inclusions in a 12-gon duct (see Figure 7.1 for the mesh).

0 8

1

1 o a 0 6 0 4 0 2 o 0 2 0 4 06 o a I

Contour phi

o a
0 6

04

0 2

0

0 2

0 4

06

0 8

1
0 8 0 6 0 4 0 2 0 0 2 04 06 08

Figure 7.1 Left: mesh for four rod-like inclusions in a cylindrical duct, each with dielectric constant
&1=&~=&3=&4=0.05 in a medium with unit dielectric constant a. Right: Steady state contours of
potential (voltage) when the boundary segment with unit normal (0.707,0.707) is held at unit
voltage, and the segments with unit normal anti-parallel and perpendicular are held at ground, zero
voltage, with all other boundary segments electrically insulated.

The electric charge density within the duct is related to the potential by the
appropriate simplification to Maxwell's equations where there is no magnetic
coupling [14]:

where p(')is the total electric charge per unit volume, which is clearly zero
within the bulk fluid and the inclusions, but non-zero on the electrode surfaces
only, E is the dielectric constant or permittivity of the medium, depending on the
choice of scaling, and 0 is the electric potential (voltage). Using this (7.1) and

250 Process Modelling and Simulation with Finite Element Methods

applying over a thin control volume incorporating the interface between the
electrode and the bulk fluid leads to this electric flux boundary condition:

(7.2)

where E~ is dielectric constant of the solid constituent of the electrodes and .z0 is
the dielectric constant of the bulk fluid medium. The LHS represents the electric
flux out of the interface from the electrode side, the electric flux into the
electrode from the bulk fluid, the difference balanced by the accumulated charge
on the electrode at steady state. Rearranging (7.2) leads to the boundary
status as

(7.3)

where we shall term q’ as the charge on the electrode.

With these governing equations, we can define two related tomographic
mathematical problems.

The Forward Problem

If the firing electrode is held at unit voltage (see Figure 7.1) and the sensing
electrodes are held at ground (zero voltage), then the solution Qi to (7.1)
computing the total charge on the electrodes i

a@
(q’), = J-dQ

an an
(7.4)

with known dielectric constants for the inclusions, is termed the forward
problem. Figure 7.1 (right) shows the solution to the forward problem that we
will shortly formulate in FEMLAB.

The Inverse Problem

Now suppose the same experiment is conducted, but that the dielectric field in
the duct is not known a priori. The charges qi’ are measured on the electrodes
and the permittivity field E in the duct consistent (since 0 is a solution of (7.1))
with the measurements through (7.4) is sought. This is termed the inverse
problem.

Modelling the Forward ECT Problem in FEMLAB

Coupling Variables Revisited 25 1

Launch FEMLAB and in the Model Navigator do the following:

Select 2-D dimension
Select PDE Modes-GenerabTime-dependent >>
Set the dependent variable as phi

Wait. Isn’t the PDE system, with equations (7.1), BCs described in the caption
of Figure 7.1, and outputs measured as boundary integrals (7.4), stationary and
nonlinear? Shouldn’t we be using the stationary nonlinear solver? Later, we will
need the time-dependent solver. If we do not select it now, we will have to
rebuild the model from scratch.

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

_ _ _ _ - ~ - Add/Edit Constants
Name of constant: eO Expression: 1
Name of constant: e l Expression: 0.05
Name of constant: e2 Expression: 0.05
Name of constant: e3 Expression: 0.05

0 Name of constant: e4 Expression: 0.05

OK
Apply

Pull down the Options menu and set the grid to (-1.1,l.l) x (-1.1,l.l) and the
grid spacing to 0.1,O.l. Pull down the Draw menu.

-___l__

Draw Mode

(0,1),(0.2,1),(0.4,0.8),(0.6,0.8),(0.8,0.6),(1,0.4),(1,0),

Now swap the signs

Select Draw Arc. Now laboriously add arc points at the following
positions:

(1 ,-0.4),(0.8,-0.6),(0.6,-0. 8),(0.8,-0.6),(0.4,-0.8),(0.2,- l) ,

(0,- 1),(-0.2,-1),(-0.4,-0.8),),(-0.6,-0.8),(-0.8,-0.6),(- 1 ,-0.4),(-1 ,0),
(-1,0.4),(-0.8,0.6),(-0.6,0.8),(-0.8,0.6),(-0.4,0.8),(-0.2, l) ,

Now double click on each vertex and edit it to the appropriate
circular function value for angles 5d12 (0.258819,0.965926), 4 d 1 2
(0.5,0.866025), 3d12 (0.707107,0.707107), 2d12 (0.866025, O S) ,
7d12 (0.965926, 0.258819). The trig identities for the second, third,
and fourth quadrants are readily determined.
Draw Ellipse (centered) at the following coordinates:

252 Process Modelling and Simulation with Finite Element Methods

El, edit center to (0.6,0.2) and set both semi axes to 0.1
E2, edit center to (-0.4,0.7) and set both semi axes to 0.1
E3, edit center to (0.4,-0.5) and set both semi axes to 0.1
E4, edit center to (-0.8,-0.2) and set both semi axes to 0.1
Create a composite “Swiss cheese” object COl=COl-EI-E2-E3-E4
Re-draw ellipses El-E4 as above, to fill the “wholes” with four
domains.
Apply
OK

The rough entry of the vertices is corrected by the ability to edit the analytical
geometry features for graphical objects. Our closed curved is not quite a circle,
but then neither are ECT systems once the electrodes are installed. The 12
segments of the boundary can be assigned individual boundary conditions and
also are domains available for post processing. Now for the boundary conditions.
Pull down the Boundary menu and select Boundary Settings.

Boundary Mode

OK

Set boundary 24 as Dirichlet, R=l-phi
Set boundaries 5,6,21 as Dirichlet, R=phi
Set boundaries 1,2,9,12,15,16,27,28 as Neumann, G=O
APPlY

The caption of Figure 7.1 explains that the system above has four Dirichlet
boundary segments, one of which has fired, and the other three are held at
ground. All other boundary segments are insulated. The charge on the four
Dirichlet boundaries is computed according to (7.4).

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode r F d,
Subdomain 1 -eO*phix -eO*phiy 0 1
Subdomain 2 -e2*phix -e2*phiy 0 1
Subdomain 3 -e3*phix -e3*phiy 0 1
Subdomain 4 -e4*phix -e4*phiy 0 1
Subdomain 5 -el*phix -el*phiy 0 1

Apply
OK

Accept the standard mesh parameters and hit the mesh button on the toolbar
(triangle).

Coupling Variables Revisited 253

Pull down the Solver menu and select Solver Parameters. Click on the
Settings button under “Scaling of variables.” Check the None option. Now
select the Stationary Nonlinear solver, and solve.

Figure 7.1 Gives the Post Plot of contours of constant phi between voltages of 0
and 1. Computation of (7.4) follows as below:

Post Mode
Boundary integration: bnd 24 0.707107*(phix+phiy) q l= 0.77067
Boundary integration: bnd 21 0.707107*(phix-phiy) q2=-0.30704
Boundary integration: bnd 5 0.707 107*(-phix-phiy) q3=-0.165 18

The factor of 0.707107 and the signs are appropriate to form the normal
derivative from the gradient according to the standard formula

(7.5)
dn

where the unit outward pointing normal is used.

Modelling the Inverse ECT Problem in FEMLAB

So far this example does not use coupling variables. To treat the Inverse ECT
problem, we add a second conceptual domain.

MultiDhvsics AddEdit Modes

Select PDE ModesqGeneral3Time-dependent >>

Apply/OK

Select add geometry * g2 Select 1-D

Set the independent variables as u l , u2, u3

In Draw Mode, specify a geometry as the interval [0,1]. Then select Add/Edit
Coupling Variables from the Options Menu.

Add/Edit Coupling Variables
Scalar add q l . Source Geom 1, bnd 24, Integrand: 0.707107*(phix+phiy); int ord 2
Destination Geom 2 subdomain 1 Check “Active in this domain” box.
Scalar add q2. Source Geom 1, bnd 21, Integrand: 0.707107*(phix-phiy); int ord 2
Destination Geom 2 subdomain 1 Check “Active in this domain” box.
Scalar add q3. Source Geom 1, bnd 5, Integrand: 0.707107*(-phix-phiy); int ord 2
Destination Geom 2 subdomain 1 Check “Active in this domain” box.
Scalar add q4. Source Geom 1, bnd 6, Integrand: 0.707107*(-phix+phiy); int ord 2
Destination Geom 2 subdomain 1 Check “Active in this domain” box.

254 Process Modelling and Simulation with Finite Element Methods

Scalar add U1. Source Geom 2, subdomain I , Integrand: u l ; int ord 1
Destination Geom I subdomain 1-5 Check “Active in this domain” box.
Scalar add U2. Source Geom 2, subdomain 1, Integrand: u2; int ord 1
Destination Geom 1 subdomain 1-5 Check “Active in this domain” box.
Scalar add U3. Source Geom 2, subdomain 1, Integrand: u3; int ord 1
Destination Geom 1 subdomain 1-5 Check “Active in this domain” box.

Apply/OK

The coupling variables are of two types. The charges q l through q4 that are
explicitly to be found equal to the forward values by appropriate choice of the
dielectric constants U1, U2, U3 which are coupled to the scalar value of u l , u2,
u3 in Geom 2. The second multiphysics mode is to enforce the charge
constraints. It should be noted that at steady state, charge (total electric flux out
of the domain) must be net zero, which requires:

91 + 92 + 93 + q4 = 0 (7.6)

We It follows that there can only be three unknown dielectric constants.
arbitrary impose them as follows:

Subdomain 1 -eO*phix -eO*phiy 0 1
Subdomain 2 -U2*phix -U2*phiy 0 1
Subdomain 3 -U3*phix -U3*phiy 0 1
Subdomain 4 -e4*phix -e4*phiy 0 1
Subdomain 5 -Ul*phix -Ul*phiy 0 1

Apply

In the second multiphysics mode, we impose three constraints

Subdomain Mode g l r F da
Init e 1 -ulx ql-0,77067 1
Init e2 -u2x q2+0.30704 1
Init e3 -u3x q3+0.165 18 1

Apply
OK

The initial values are so that the search can start in the right region for the
coupling variables. To round out the model, we need to specify the mesh in 82,
which should be taken to be one element by giving the minimum element size as
1 in the mesh parameters menu. Finally, the boundary conditions for mode g2
should be Neumann (G=O) for u l , u2, and u3. This imposes that u l , u2, and u3

Coupling Variables Revisited 255

have spatially uniform, but unknown values, since the diffusive terms (r) do not
change the imposed neutral boundary conditions. All of the dynamics come
from the requirement that the charges are fixed at steady state, e.g. Fl=ql-
0.77067=0. Now to the solver parameters selection. Select Weak solution form.
Depending on the mood of your platform, you should get a variety of error
messages upon selecting the stationary nonlinear solver. The common error is
“Inf or NaN repeatedly found in solution. Returned solution has not converged.”
The exact Jacobian does this; the numeric Jacobian takes longer to arrive at the
same spot.

Error Message

A companion message to “Inf or NaN repeatedly found in solution. Returned
solution has not converged.” is the error message “Stepsize too small. Returned
solution has not converged.” The latter must be the most commonly encountered
error message, as it is the symptom of many different ills: A short list includes:

1. Inconsistent model leading to a singular system. For instance, a badly
posed boundary condition that can never be satisfied would never
converge to a solution. The damping factor (i.e. step size) will be cut
down until it reaches machine precision, but Newton’s method will
never provide a direction of decreasing error.
Unresolved physics. This pretty much means that you need more grid
somewhere. Try the adaption option for the solver.
Your problem could simply be poorly posed or ill-conditioned. This is
frequently due to large disparity in length scales or time scales at which
complexity is generated in your problem. Try cutting down
dimensionless complexity parameters like Reynolds, Rayleigh, or Peclet
numbers to a size appropriate to your grid resolution or pack elements
into supposed locations of boundary layers.

2.

3.

In the case of the ECT inversion problem, both explanation 1 and 3 fit the
problem, as we explore further below.

The iterative solver should give a variation on the error theme - the
preconditioning matrix has three rows that are all zero. If you try the linear
solver, however, the story is different. It finds the solution for phi and quite
readily determines values of the qi near the imposed values. The dielectric
constants ui, however, are all extremely large magnitude, O(1014). As we
discussed in chapter 1, this behavior is consistent with a singular linearized
operator, specifically with three zero rows.

How can this happen? Easily. The coupling variables q l , q2, and q3 are
not differentiated correctly to form the contributions necessary for the Jacobian
to be non-singular. They are treated as pseudo-constants that are not updated
during the Newton solver operation. Consequently, the three equation model in

256 Process Modelling and Simulation with Finite Element Methods

g2 is singular. The linear solver only finds a solution because the matrix is non-
singular due to numerical truncation at the double precision limit. But since it is
ill-conditioned, the solution found is extremely large in magnitude.

The only solver which can bring out the nonlinear coupling through the
coupling variables is the time-dependent solver. In this case, an extremely small
time step is taken (note that the time-dependent equations are not singular as
long as the F-constraints are not actually met).

Time Dependent Solver: Specifying Multiphysics Coupling on the Boundaries
(and in Point Mode)

First a note about the time-dependent solver. One would think that the mixing of
field variables in the boundary conditions (and point conditions) should be as
straightforward as for the subdomain mode, with just a little care taken with the
choice of Solver Parameters. Indeed, if you specify apparently linearly coupled
boundary conditions in general or coefficient mode, selection of the “weak
solution form” should permit accurate solution without difficulty for either
stationary linear, stationary nonlinear, or time-dependent solvers. Even if you
specify an apparently nonlinear coupling in the boundary conditions, the
stationary nonlinear solver with weak solution form should handle it. But try it
with the time-dependent solver and general solution form, and you should get
the error message “Nonlinear constraints are not supported for time-dependent
models.” Switching to weak solution form gets mixed results. With one such set
of boundary conditions, the time dependent solver simply ignored the condition
and solved for the homogeneous Dirichlet condition instead in our electrokinetic
flow model (see chapter 9). With a very similar condition, the time-dependent
solver hangs without ever making the first time step. In the first case, the result
was deceptive since a wrong solution is found. In the second case, the hung
solver is disconcerting. Hence this note, to clarify how to treat nonlinear
couplings in boundary conditions.

Weak constraint mode.
you like in the appropriate application mode. Then, follow this recipe:

Specify your nasty nonlinear boundary condition as

1. Go to the multiphysics tab, and add a new application mode called
weak,boundary constraint. Specify as many variables (Iml, lm2,
lm3 ...), i.e. Lagrange multipliers, as you have nonlinear boundary
constraint couplings.
Go to boundary mode and check Active in this domain, for all
boundaries on which this feature occurs.
Check Use constraint specified in coefficients and the non-ideal dim
constraint radio buttons.
Enter the variable name for which the original BC was specified in the
constraint variable edit field.

2.

3.

4.

Coupling Variables Revisited 257

5.

6.

Solve problem by simply highlighting all the variables in Solve for
variables menu.
In order to run this recipe, you need FEMLAB 2.3 (2.2 won't do).

We would recommend this treatment for all nonlinear boundary couplings, not
just those in time-dependent models. Why? Because it signals to FEMLAB that
a non-standard boundary condition with nonlinear coupling should be treated
with symbolic contributions to the assembly of the FEM system of matrices. See
the Reference Manual for the command

[K , N , L , MI =as semble (f em)

and the description in Chapter 2 (52.3.1) for the FEMLAB implementation of
boundary conditions by Lagrange multipliers for a better understanding of why
nonlinearity should be treated this way.

Even though this aside has been focused on the difficulties of nonlinear
boundary constraints, nonlinear coupling constraints suffer a related problem.
The FEMLAB symbolic engine does not contribute the full dependency (or even
any in our case) of the coupling variables on the degrees of freedom. So the
Jacobian matrix formed can be incomplete or inaccurate. The numeric Jacobian
also lacks this dependency, as we found in the last section. The time-dependent
solver lacks it as well, but the nonlinear coupling does manifest itself, with a
delay of one time step as the coupling variable is updated at each time step.
Since modern time stepping algorithms have quality control built-in, even stiff
nonlinearity can be ferreted out by the time dependent solver.

Figure 7.2 shows six frames of the potential contours for times t=O.O1
through t=l. Quantitatively, very little change occurs in the potential lines out to
t=4. Wait a moment. The ECT problem, (7.1) and BCs defined in Figure 7.1, is
time independent. So what is the time scale for t? Answer: completely fictitious.
For stationary problems, a pseudo-time is another way of iterative solving. If a
time-asymptotic, steady-state emerges, then the time-dependent solver hase done
its job.

Another way of thinking of the time-dependent form of (7.1) is as an
analogous problem in heat or mass transfer in a heterogeneous medium. The
forward problem determines the boundary flux at fixed temperature
(concentration) boundary segments interspersed among insulated segments. The
inverse problem is to determine the distribution of transport coefficients
internally in the heterogeneous medium consistent with the measured boundary
fluxes.

In this context, the time scale is that for conduction and is physically
meaningful. The potential (temperature or concentration) diffuses into the
domain from the source boundary segment. Initially, the domain has uniform
potential different from the source, Field lines are warped by the inclusions of
non-uniform diffusivity. The field lines largely lead to flux out of the domain

258 Process Modelling and Simulation with Finite Element Methods

from the nearest two “sink’ segments. The farthest sink, in the third quadrant,
gets about half the flux of the other two sinks.

The time dependent solution for the charges 91, q 2 and q3 asymptotes to
plateau values near to those computed in the forward problem (see before (7.5))
as shown in Figure 7.3. The arbitrary split between the graphs is due to the
solution in three stages, arbitrarily split among (1) t E [0, 0.11; (2) t E [0.1, 11;
and (3) t E [l, 41. As the system approaches the time asymptote, i.e. in interval
(3), it is not particularly stiff and computes rapidly. The first interval is
extremely stiff andonly minor fluctuations in the potential lines with fast
animation, and no change to the colour coding.

Time=O.Ol Contour phi

1 5 1 0 5 0 0 5 1 1 5

Max I

o 9524
0 9048
0 8571
0 8095
0 7619
07143
0 6667
0619
0 5714
0 5238
0 4762
0 4286
0 381 0 3333

0 2857 0 2181
0 1906
0 1429
0 0952 0 0476

N” 2 3 4 e a

Mex I

I a 0 9 5 2 4
Tirne=0.35 Contour: phi

U-
1 s 1 0 5 0 05 1 1 5 * n o

Time=O.E Contour: phi

1 6 1 0 5 0 0 5 1 li

MllX 3

0 9524
0 901B 0 8571

07619 0 7143
0 6667
0619
05711
0 5238
0 4m
0 dzt6
0 381
0 3333
0 2657
0 2381
0 1Sa5
014Z
0 O h 2 0 0476

o no95

M n D

Time=O.l Contour ohi

1 5 1 0 5 0 0 5 1 1 5

Tirne=O.B Contour: phi

1 5 1 0 5 0 0 5 1 1 5

Tirne=l Contour. phi

1 5 1 0 5 0 0 5 1 1 5

Max 1

0 9524
0 9048
0 8571
0 8095
07619
07143
0 6667
0 619
05714
0 523
04762
0 4285
0 381
0 3?33
0 2657
0 2381
0 1905
0 l 4 X
0 0952 0 Od76

M“ 0

Idax 1

0 9124
0 9048
08571
0 81395
07619
0 7143
0 5567
0 619
05714
0 6238
04762
0 4286 0 381

0 3333 0 2857
0 2381
01905 0 1429

0 0475
o 0952

U” 0

Mar 1

0 9524
0 3246
0 8 9 1
0 6095
0 7519 0 7143

0 6667
0619
05714
0 6238
0 4762
0 4286
0 381
0 3333
0 2857
0 2381
0 1905
0 1429
0 0952 0 0476

M“ 0

Figure 7.2 Progression of potential contours from an initially electrically neutral domain with a
pseudo-time scale imposed. The voltage from the “firing” electrode with outward unit normal
(0.707,0.707) diffuses out through the duct, being warped by the inclusions, eventually reaching an
asymptotic profile that changes imperceptibly with further time evolution. Computations from time
1 4 show requires small step sizes.

Coupling Variables Revisited

1 6 -

I 4

0 8

i o 5 - ' 0 4 -

0 2 -

259

1 -

0 6 ~

@J 0 4 -
______I_

P

u 0 2 -
r

l:'-..._ Ql

0 -

--------_-->?__- 0 2 -
92

1
0 4 " " ~ " ' ~ 0 4

0 1 0 2 0 3 n 4 0 5 0 6 0 7 08 0 9 I

Dielectric constants ul , u2, u3 Dielectric contants

- - - - - - _ - _ _ - - - _ _ _ - - - - _ -

1 5 2 2 5 3 3 5 4

0051 ' 1 ' ' L I , '
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1

Time Time

Figure 7.4 Time history of dielectric constants estimated on the inclusions within the duct.

Figure 7.4 shows the computed dielectric constants u l , u2, u3 as functions of
time. So the surprise is that even though there is little difference between the
computed boundary charges and the "measured values," the steady state has not
been found and the dielectric constants inferred are diverging. Nevertheless, the
quantitative values of the potential lines (Figure 7.2) are barely changing. The
succinct rationale for this pathological behaviour is that there are an infinite
family of dielectric constants for which the system outputs (ql, q2 and q3) are
flat - insensitive to coordinated variation of the dielectric constants. The final
frame of Figure 7.2 is imperceptibly different from the right frame of Figure 7.1
- the inverse problem is badly conditioned. Now, it could be that time
asymptotic convergence would occur if we started at close enough to the forward
solution. Given the nearly singular nature of the problem, however, a different
class of solution altogether is the prescription - optimization techniques.

260 Process Modelling and Simulation with Finite Element Methods

Optimization Method for ECT Inversion

A common way of treating inversion problems is to minimize an error norm
defined on the discrepancy between the predicted solutions of the forward
problem and the measured boundary data. How does it work? First we need to
package our forward ECT model as an m-file function. The first step is to reset
the model m-file on the ECT forward problem, insert a stationary nonlinear
(actually linear will suffice) solver step, and a boundary integration to round off
the computation. Then save the model m-file to ect.m. Copy a version to
ect2.m, and we will begin surgery to package it as an m-file function. Begin
with the function call line
function [ql,q2,q31 =ect2 (el,e2,e3)
% FEMLAB Model M-file for ECT forward problem
% Generated 07-Nov-2002 09:53:56 by FEMLAB 2.3.0.145.

flclear fern
% FEMLAB Version
clear vrsn;
vrsn.name='FEMLAB 2.3';
vrsn .ma j or=O ;
vrsn.build=145;
fem.version=vrsn;

% Recorded command sequence

%WZ: Edit the constants to pass the arguments el,e2, and e3
% Define constants
fem.const={ . . .

...

'eO', 1, . . .
'el', el,. . .
'e2', e2,. . .
'e3', e3,. . .
'e4', 0 . 0 5 } ;

...
%WZ: Manufacture the output data
% Integrate on subdomains
ql=postint(fem,'0.707107*phix+0.707107*phiy', . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim', 1, . . .
'solnum', 1, . . .
'phase', 0, . . .
'geomnum',l, . . .
'dl', 24,. . .
'intorder',4, . . .
I context , I local) ;

% Integrate on subdomains
q2=postint(fem, '0.707107*phix-0.707107*phiy', . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim', 1,. . .
'solnum', 1,. . .
'phase', 0, . . .
'geomnum' ,1, . . .

Coupling Variables Revisited 261

'dl', 21,. . .
'intorder',4, . . .
'context', 'local');

% Integrate on subdomains
q3=postint(fem,'-0.707107*phix-0.707107*phiy', . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim' , 1, . . .
'sohum', 1, . . .
'phase', 0,. . .
' geomnum ' ,1, . . .
'dl', 5, . . .
'intorder',4, . . .
'context','local');

% Integrate on subdomains
q4=postint(fem,'-0.707107*phix+0.707107*phiy', . . .

'cont', 'internal', . . .
'contorder',2, . . .
'edim', 1,. . .
'solnum' , 1, . . .
'phase', 0, . . .
'geomnum',l, . . .
'dl', 6 , . . .
'intorder',4, . . .
'context','local');

We are now ready to give our m-file function a test. Make sure it is saved in the
MATLAB current directory, and then execute the function on the MATLAB
command line as below:
>> [ql,q2,q31 =ect2 (0.05,O. 05,O. 05)
* * Several warning messages print here * *
Iter ErrEst Damping Stepsize nfun njac nfac nbsu

1 2e-014 1.0000000 3.1 2 1 1 2
2 1.2e-016 1.0000000 8.7e-015 3 2 2 4

ql = 0.7707
92 =-0.3070
93 =-0.1654

The error messages are a minor nuisance. Recall MATLAB's standard output is
rounded to four significant figures. Now we are ready to compute the error
norm, with a succinct m-file function:

x=v(l) ;
y=v(2) ;
z=v(3);
[ql, ~~2,931 =ect2 (x,y, z) ;

function b=errornm(v) ;

x=ql-0.77067;
y=q2+0.30704;
z=q3+0.16538;

The m-file function err0rnm.m should also be stored in the MATLAB current
directory. Checking on the known "solution" yields an error norm of O(10-5).
Given the sparsity of the mesh, greater accuracy would not be expected.

262 Process Modelling and Simulation with Finite Element Methods

>> errornm([0.05,0.05,0.051)
* * Several warnings print here * *
Iter ErrEst Damping Stepsize nfun njac nfac nbsu

1 2e-014 1.0000000 3.1 2 1 1 2
2 1.2e-016 1.0000000 8.7e-015 3 2 2 4

ans = 0.00001699

Finally, we are ready to create a MATLAB script file to call MATLAB’s built-in
optimization routine, fminsearch () for scalar valued functions with vectorial
arguments :
fmin.m contains three simple commands
v= LO. 01,o. 01,o. 011 ;
a=fminsearch(@errornm,v) ;
quit

The @ preceeding the function name treats it as a pure function argument. The
second argument represents the initial condition. fminsearch () provides a
simple algorithm for minimizing a scalar function of several variables. It
implements the Nelder-Mead simplex search algorithm, which modifies the input
arguments “v” to find the minimum of f(v). This is not as efficient on smooth
functions as some other algorithms, especially those that compute the
derivatives, but on the other hand, costly gradient calculations are not made
either. It tends to be robust on functions that are not smooth. If the function to
be minimized is inexpensive to compute, the Nelder-Mead algorithm usually
works very well.

This m-file script is best executed from the UNIX command line to avoid the
GUI overheads. It takes about 10 CPU minutes on a Pentium IV 1.2 GHz
processor:

matlab -nojvm <fmin.m >err 2>err &

Figure 7.5 contains the first 131 iterates. Apparently, the error norm has hit a
plateau at about 0.0006 and is finding it exceedingly difficult move to smaller
error norm. Similarly, the dielectric constants are convergent around the values

v=[0.0517, 0.0125, 0.04951.

Given that the “known” solution is

v=[0.05 , 0.05, 0.051,

the fact that it is not found must be explained. Clearly, given the small error
norm, the solution found is nearly as satisfactory as the “known” solution. In
fact, there is a wide range of iterates that show nearly identical error norm. This
suggests that there are many choices of the dielectric constants that result in
nearly identical boundary data - the outputs are weakly sensitive to input
variations in this regime. This result is part and parcel of the ill-posedness of the
inverse ECT problem in this case. If many sets of dielectric constants are

Coupling Variables Revisited 263

0 1

::I
om

capable of reproducing nearly the same boundary data as the forward problem,
the boundary data is insufficient to select among the potential interior
configurations.

E l -
E?. i d E3 -

-

O m d s I

... t... ;::.......
,?, > ; ;;;';.:<

0 01

0 O? : r v p 001 0 --,.:-. I. ,-:_,;. I. -., - -..-. -. /;:, 1

0 O n m3s

, I . , I
0 '0 40 . M 90 LW 110 14

4 0 1 I
iterate number

Figure 7.5 Optimization of distance from measured charges 91. q2, q 3 by predictions of same with
dielectric constants from & I , ~ 2 , ~3 chosen by Nelder-Mead optimization iterates. Left: error norm
(see m-file errornmm) with increasing iterate number; Right: dielectric constants versus iterate
number. Initial dielectric vector is [O.Ol,0.0l,O.Ol].

...............
120 L4 0 ' 0 do , 60 En lm 110 l d

iterate number

Figure 7.6 Optimization of distance from measured charges 41. 42, q3 by predictions of same with
dielectric constants & I , &2, &3 chosen by Nelder-Mead optimization iterates. Left: error norm (see
m-file err0rnm.m) with increasing iterate number: Right: dielectric constants versus iterate number.
Initial dielectric vector is [0.1,0.1,0.1].

c

ow

; om
3 om
u _- a oms

O M 5

1.1

O J ~ " ' 1 ' " 1
0 10 20 10 do 50 M 70 91

iterate number

Figure 7.7 Optimization of distance from measured charges 91, q2, q 3 by predictions of same with
dielectric constants &I, E ~ , &3 chosen by Nelder-Mead optimization iterates. Left: error norm (see
m-file errornmm) with increasing iterate number; Right: dielectric constants versus iterate number.
Initial dielectric vector is [0.O6,0.05,0.O4].

264 Process Modelling and Simulation with Finite Element Methods

Figures 7.6 and 7.7 are also convergent to the same dielectric constant solution
vector [0.0508, 0.0703, 0.04971 from two substantially different initial guesses.
Nevertheless, neither convergent solution is the one found from the forward
solution. For aesthetic purposes, we could have taken [0.05,0.07, 0.051 as the
choice for the forward problem, and miraculously achieved it by the inversion
problem. Yet the reader would be lured into a false sense of security of the
effectiveness of inverse problems in concretely determining a sufficient answer.
The 40% error in the convergent solution can be reduced with greater resolution
power of smaller electrodes on the boundaries. In reviewing this chapter, I noted
a minor discrepancy: the “set point” for q3=0.16538 was slightly different from
the solution to the forward problem. I had switched platforms, using the PC for
the forward problem, and the linux workstation for the optimization program.
Thus the 40% discrepancy in u2 is largcly due to extreme sensitivity to the
measurement error. But if greater resolution in the composition of the inclusions
in the domain or their positions or sizes are desired, then the better quality
boundary data is diluted across the domain, again possibly obscuring the
“image” of the included data. Image reconstruction is a complicated problem for
capacitance tomography. A good review of applications can be found by
Dyakowski et al. [151. The work of WRB Lionheart and coworkers [16],
especially the EIDORS MATLAB based software package, is the best source of
novel inversion techniques.

Exercise 7.1: Coding efficiency

The modular programming of the “calling” m-file script fmin.m and the
subprograms ect2.m which computes the forward solution, and the objective
function for error minimization errornm.m, is not particularly efficient, though
good for pedagological purposes. To improve the efficiency, the m-file script
should have the FEMLAB model set up defined in global variables, and the
optimization function fminsearch merely changes the dielectric constants. Can
you code this more integrated version?

Exercise 7.2: Unknown diameter rods

An alternative scenario is that the dielectric constant of the inclusions (rods) in
the cylindrical duct is known (say 0.05 of that of the medium) but that the radii
of the rods is unknown. Determine where in the FEMLAB model m-file
function ect2.m the radii of the rods is specified and alter ect2.m appropriately to
compute the forward solution with the radii passed to the m-file function as
arguments. Repeat the search procedure for the inversion from initial guess of
the rod radii. Is this problem any better conditioned than the unknown dielectric
constant problem? How could you improve the error in the estimated radii from
the boundary data?

Coupling Variables Revisited 265

Projection Coupling Variables and Line Integrals

The projection coupling variable performs a line integral across a 2-D domain
according to a specified coordinate dependent transformation, i.e. a path integral.
That this is a useful concept is attested to by its use in formulating quantum
electrodynamics [14]. In its simplest form, the path is taken as one of the
coordinates (a simple grid line) and thus achieves a reduction in the order of the
domain or variable dependence:

(7.7)

I(x) is the coupling variable, which must be defined on a domain D1 of
dimension one less than D2= (xl,x2)x(yl(x),y2(x)) in the case shown above. I:
D2 + D,. A more complicated projection can be achieved by local mesh
transformation using either the space coordinates (dependent variables x, y, z . . .)
or local mesh parameters, e.g. s, s l , or s2, which are then used to make a new
source mesh either for interpolation or directing the curves on which the
line/projection integrals are to be computed. For example

where the curve C is parametrized by n. So there is one such line integral for
each point x in the destination domain. Generally, a projection coupling variable
is one order of dimensionality lower than the source domain and therefore must
be defined on a new domain, perhaps created explicity to receive the coupling
variable as its destination domain. Inherently, a projection coupling requires two
distinct domains (though the destination might be a boundary of the source
domain) and thus must be planned from the start as at least a two domain (and
potentially two geometry) model.

The coupling variable I(x) contains more information than one line integral.
So if you are interested in a particular value of the line integral, then you need
only click on the point in the destination domain on the post plot of the coupling
variable, and the message window will display the interpolated value at that
point. Alternatively, you can export the FEM structure and use postinterp to
provide numerical value.

Example: Lidar positioning and sizing of a dispersing pollutant cloud

Lidar works on the same principle as several other optical devices, for instance
spectrometry and spectroscopy, where light received of a given wavelength is of

266 Process Modelling and Simulation with Finite Element Methods

lower intensity due to absorption by a chemical species. For dilute chemical
species, the signal received is proportional to the integrated concentration along
the optical path, i.e.

(7.9)

where _C is the curve (x(s) ,y(s)) and s is the coordinate along the length of arc.
c(x,y) is the concentration field of the chemical species. Suppose the domain is
quasi-2D and an array of lidar are arranged along the x-axis which is the lower
bound of the domain which is mapped to [0,1] x [0,1]. Then the lidar array
receives the discrete equivalent of the projection coupling variable proj ,:

(7.10)

The curves C in (7.9) are taken here to be vertical lines. This is the standard
action for FEMLAB projection coupling variables on a 2-D domain. The
projection coupling variable is only a function defined on a 1-D independent
variable and the default choices of “local mesh transformation” (x t x, y t y)
for the source domain and of “evaluation point” for the destination domain (x t
x), produces (7.10) on a unit square. The choices for nonrectangular domains
make more sense if one uses local coordinates: (sl, s2) in 2D for domains with
curving boundaries, s in 1D for nonlinear curves.

Now for the example. The standard model for an instantaneous release of a
dense pollutant gas in the atmosphere is a cloud with an average profile 0s a
Gaussian in 20. Zimmerman and Chatwin [171 analyze wind tunnel data of such
dense gas releases, showing the instantaneous structure of fluctuations is highly
intermittent. Yet the ensemble average or windowed time averages approach the
2-D Gaussian profile as the cloud becomes dilute.

So let’s suppose that we have an initial profile of concentration of

Suppose that this profile is subjected to a uniform velocity field u=(uo,vo). It
follows that the projections for horizontal and vertical arrays, respectively, of
lidar would initially measure:

Coupling Vuriables Revisited 261

(7.12)

Let M be the total concentration dose in the domain

(7.13)

Then these projection coupling variables can be treated as normalized
conditional probability density functions, with moments, in the case of projI:

(7.14)

For c=cO(x,y), the initial Gaussian, one can show that the first moment locates
the x-coordinate, mx,l=xo. The second moment permits the computation of the
standard deviation according to

(7.15)

Both conclusions obviously hold for x-projections onto the y-axis. So
projections can locate and size a cloud of Gaussian shape. For non-Gaussian
clouds, they provide at least a notion of centrality and degree of spread.

Now we demonstrate this example in action in FEMLAB. Launch FEMLAB and
in the Model Navigator do the following:

Select 2-D dimension

1 dependent variable c

Select ChE=K!artesian*Mass Balance, Convection and
Diffusion, time-dependent (cd mode)>>

268 Process Modelling and Simulation with Finite Element Methods

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

Add/Edit Constants
Name of constant: x0 Expression: 0.4
Name of constant: yo Expression: 0.6
Name of constant: lx Expression: 0.1
Name of constant: ly Expression: 0.12
Name of constant: u0 Expression: 1
Name of constant: v0 Expression: 0
Name of constant: Pe Expression: sqrt(uOA2+vOA2)

OK
Apply

Pull down the Options menu and set the grid to (-0.1,l.l) x (-0.1,l.l) and the
grid spacing to 0.1,O. 1. Pull down the Draw menu.

Draw Mode
Select Draw Rectangle. Set R1 = [0,1] x [0,1]

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain Mode
0 Select domain 1

Set D=l/Pe; u=uO; v=vO
Select the init tab and give c(t0) according to (7.11)

Now for the boundary conditions. We follow our standard recipe for periodic
boundary conditions in both directions. Pull down the Boundary menu and
select Boundary Settings.

Boundary Mode
Check View as Coefficients on the Boundary menu
Select domain 1 h=l r=O
Select domain 4 h=-1 r=O
Select domain 2 h=l r=O
Select domain 3 h=-1 r=O
APPlY
OK

Coupling Variables Revisited 269

In Mesh mode, we need to set the symmetry boundaries as 1 4 2 3, which is
treated pairwise so that 1 and 4 are symmetry boundaries as are 2 and 3. The
combination of symmetry boundaries and boundary condition coefficients
achieves doubly periodic boundary conditions. Upon meshing, 417 elements
with 772 nodes were created in the 2-D domain.

The major action is the computation of the projection coupling variables. Select
Add/Edit Coupling Variables from the Options Menu.

AddIEdit Coupling Variables
Projection add proj 1. Source Geom 1, subdomain 1, Integrand: c; int ord 2
Local mesh transformation (x t x, y t y)
Destination Geom 1 bnd 2 Check “Active in this domain” box.
Evaluation point (x t x)
Projection add proj2. Source Geom 1, subdomain 1, Integrand: c; int ord 2
Local mesh transformation (x t y, y t x)
Destination Geom 1 bnd 1 Check “Active in this domain” box.
Evaluation point (x t x)

Amlv/OK

Set the Solver Parameters on the Solve menu with output times [0:0.001:0.06]
on the time stepping page. Select Apply/OK and hit the Solve = button on the
toolbar. After about twenty seconds of overhead computation, the time stepping
begins. As the problem is linear, it does not take long per step.

Computation of (7.14) follows as below for t=0.06:

Post Mode
Subdomain integration: domain 1 c (at any time) 11= 0.037702
Boundary integration: bnd 2 proj 1 *x/0.037702 12= 0.49325
Boundary integration: bnd 1 proj2*y/0.037702 13= 0.51522
Boundary integration: bnd 2 proj 1 *xA2/0.037702 I4= 0.31825
Boundary integration: bnd 1 proj2*yA2/0.037702 I5= 0.34188

The latter two give s,=0.2738 and s,=0.2765, nearly identical spread, but this is
expected given the nearly diffused final state. For time t=O., the same
contributions result in:

Post Mode
Boundary integration: bnd 2 pr0.j l*x/0.037702 12= 0.39999
Boundary integration: bnd 1 pr42*y/0.037702 13= 0.60012
Boundary integration: bnd 2 proj 1 *xA2/0.037702 14= 0.165
Boundary integration: bnd I proj2*yA2/0.037702 I5= 0.36726

270 Process Modelling and Simulation with Finite Element Methods

Time=O 001 Contour concentration of c
MBX 0752

07163
0 6805
0 6447
0 6089
0 5731
0 5373
0 5014
0 4656
0 4298
0 394
0 3552 0 3224

0 28s5
0 2507
02149
0 1791
01433
0 1075 00716

0 0358

Mm 2 , 3 8 0 ,

Time.0 06 Contour concentration ofc
I ' I

I , I
05 0 0 5 1 1 5

Max 0 0513

0 0501
0 0489
0 0477 0 0466

0 0453
0 M 4 l 0 043

0 0418
0 0406
0 0394
0 0382 0 037

0 0358
0 0346
0 0334
0 0322 0 031

0 0238
0 0286 0 0274

hln 0 "252

Figure 7.8 Isopycnals for times t=0.001 (left) and t=0.06 (right) for the time evolution of the
concentration field from cg (7.1 1) according to the convective-diffusion model with Pe=l and
uniform horizontal flow under doubly periodic boundary conditions.

The latter two give s,=0.0707 and s,=0.0872, consistent with the settings of 1,
and 1, as expected.

Time=0.06, proj2 on bnd 1
0 044 r Time=0.06, projl on bnd 2

0 045

Q

0 035

0 042 1

0 034

0 032

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
003l " ' " ' ' ,

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 09 1
0031 " " ' ' 1 ' "

x-coordinate y-coordinate

Figure 7.9
boundary (nght) for the model of Figure 7.8.

Line integral projections for t=0.06 onto the horizontal boundary (left) and vertical

Figure 7.8 shows the extent to which the initial condition diffuses very rapidly.
Although the Pe=l in this simulation, the numerical diffusivity is strong on this
mesh resolution. Likely the result is less rapid diffusion on a finer mesh. Figure
7.9 gives the projection coupling variables demonstrating the near Gaussian
profiles captured by our synthetic "lidar." Clearly, even the late stage evolution
where periodic boundary conditions obscure the usual "long tails" of the
Gaussians, exhibit a central peak and spread captured by the central moments
according to (7.14) and (7.15).

Exercise 7.3: Artificial (numerical) diffusivity

Repeat the lidar example with a refined mesh. Does the Gaussian cloud disperse
slower (less spread) with a refined mesh. How could you use this computation to
quantify the numerical diffusivity that is artificially created?

Coupling Variables Revisited 27 1

Extrusion Coupling Variables

An extrusion coupling variable was named after one of its most common uses; it
maps information from a domain of dimension n to one of higher dimension
n+l. Yet extrusion is only one of its potential uses, which are generalized as
interpolation, projection, or mapping, depending on the information passed. The
other two coupling variable types - scalar and projection - perform integrations
over their source domains (or subdomains) and are thus able to be incorporated
in integral equations. Extrusion coupling variables map detailed or distributed
information from one domain to another, with the destination position selected
by the local mesh transformation. So extrusion variables are useful
intermediaries in models with multi-domain coupling. Yet they need not be
defined on domains of different geometries. In FEMLAB seminars, the common
example given of extrusion coupling variables is for aesthetic reasons.
Frequently, given the symmetry in a physical configuration, the model can be
solved over only part of the domain or even a lower dimension, yet the real
physical configuration is required to visualize the solution. So, for instance, in a
cylindrical duct, axi-symmetry may only require solution in the r-z plane, yet
visualization on the cylinder may be desirable. Extrusion over the 0-coordinate
of the r-z solution will permit the desired visualization. Suppose placement of
baffles with hexagonal symmetry in the domain permitted solution over a wedge
of 0 E [O,n/3] with r and z bounded. Yet, if visualization is required over the
whole duct, extrusion of the wedge to the other fiver wedges would permit this.
So extrusion coupling variables may merely extend information for
postprocessing into other domains.

Integral Equations

Integral equations are distinguished by containing an unknown function within
an integral. As with differential equations, linear systems are the best
characterized and therefore most commonly occurring. The classification system
is straightforward.

If the integration limits are fixed, the equation is termed of Fredholm type.
If one limit is a variable, it is termed of Volterra type.

If the unknown function appears only under the integral sign, it is labeled as
of the “first kind.” If it appears both inside and outside the integral, it is labeled
of the “second kind.”

Here are the four combinations symbolically:

Fredholm integral equations of the first kind:

(7.16)

272 Process Modelling and Simulation with Finite Element Methods

Fredholm integral equations of the second kind:
h

a

Volterra integral equations of the first kind:

a

Volterra integral equations of the second kind:

(7.17)

(7.18)

(7.19)
a

In all four cases, g is the unknown function. K(x,t), called the kernel, and f (x) are
assumed to be known. When f(x)=O, the equation is said to be homogeneous.

The
answer is the theme of this chapter - integral equations are fundamentally
nonlocal. Some physical phenomena are inherently nonlocal in character, so
their description leads to integral or integro-differential equations. For instance,
Shaqfeh [181 derived a theory for transport properties of composite materials
that naturally leads to a nonlocal description of effective properties. Many
systems are “elliptical” in nature - the boundary data diffuses everywhere, say
steady state heat transfer or mass transfer - which results in the solution at a
point depending on the solution everywhere. Such nonlocal systems can be
conveniently described in terms of a Green’s function, which then leads to an
integral equation description for inhomogeneous systems. Finally, some
processes are conveniently described in a phase space (Fourier space, Laplace
space, size, volume or mass distribution) that involve nonlinear coupling of the
variables in phase space. When described in physical space, these phase space
couplings manifest as convolution integrals which are both nonlocal and
nonlinear. Rarely, transform methods, for instance the Abel transform, through a
clever change of variables, permits the restatement of an integral equation as an
equivalent differential equation, at least for smooth functions. Howison et al.
[19] give an example that was cited with regard to film drying in Chapter 6.
Otherwise, either discretization or power series expansion are the preferred
analysis techniques.

It is not the intention of this chapter to teach integral equation theory. An
introduction worth reading is given in Arfken’s book [20] and a thorough
grounding can be found in Stakgold [211 or Lovitt [22]. Here we intend only to

One might reasonably ask why we bother with integral equations.

Coupling Variables Revisited 213

explore some aspects of FEMLAB’s ability to compute solutions to integral and
integro-differential equations.

Solving a Fredholm Integral Equation of the Second Kind

Zimmerman [23] gives the derivation of a Fredholm integral equation of the
second kind as an intermediate in the solution for the drag on a thin disk in
broadside motion in a cylindrical duct. The variation on (7.17) is slight:

1

g (n) = 1 + E j K (n, t) g (t) d t (7.20)
0

where &<I is a small parameter. The kernel K was bounded, so a theorem in
integral equation theory [21] ensures that a solution for g(x) can be found by
iteration, with each iterate improving in accuracy by at least one order of
correction in E. Zimmerman [23] demonstrated a solution by series expansion in
powers of x and E, albeit relying on numerical computation of the series
coefficients. As the kernel of that problem is not particularly tractable (it too
was expanded in powers of x and t) , a simpler kernel will be selected here for
demonstration. The FEMLAB implementation is a tour de force in projection
and extrusion coupling variables.

As alluded to in section 7.4, projection variables are the variable of choice
for a line integration that returns a function. Although we wish to achieve a line
integration of the form

(7.21)
0

it is easier to achieve

where g2(x1,x2)=gl(x), with the mapping (x2 t x) and extruded along the x2
coordinate. Figure 7.10 shows this graphically for the kernel K(x,t)=sin(2nx t).
The left figure is extruded along the horizontal coordinate after being mapped to
the vertical. Alternatively, think of the left figure as the projection of the right 2-
D domain onto its vertical axis. The computation (7.22) has the intermediate
swelling by one dimension of the domain in order to preserve the functionality of
the line integral though the projection coupling variable. If this concept is clear,
then the FEMLAB implementation is merely “turning the crank.”

274 Process Modelling and Simulation with Finite Element Methods

Launch FEMLAB and in the Model Navigator do the following:

Model Navigator
Select 1-D dimension, Geom 1
Select PDE modes*General==Stationary nonlinear model, weak
form (mode gl). Dependent variable u l , independent variable x>>
Multiphysics Tab. Add Geom 2, Select 2-D dimension
Select PDE modes+General=Stationary nonlinear form (mode 82)
Dependent variable u2, independent variables x l , x2>>

0

down the Options menu and set the grid to (-0.1,l.l) x (-0.1,l.l) on Geom 2
and the grid spacing to 0.1,O.l. Pull down the Draw menu.

Draw Mode
Geom 1: Specify geometry; interval [0,1]
Geom 2: Select Draw Rectangle. Set R1 = [0,1] x [0,1]

ApplylOK

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

Add/Edit Constants
Name of constant: eps Expression: 0.05
Apply/OK

The major action is the computation of the extrusion and projection coupling
variables. Select Add/Edit Coupling Variables from the Options Menu.

AddEdit Coupling Variables
extrusion add f2. Source Geom 1, subdomain 1, Expression: u l
Local mesh transformation (x t x)
Destination Geom 2 subdomain 1, Check “Active in this domain” box.
Evaluation point transformation (x t x2)
projection add f l . Source Geom 2, subdomain 1, Integrand: sin(2*pi*xl *x2);
integration order 2
Local mesh transformation (x t x l , y t x2)
Destination Geom 1 subdomain lCheck “Active in this domain” box.
Evaluation point transformation (x t x)

Apply/OK

Coupling Variables Revisited 275

By comparison, the Subdomain settings are pedestrian:

Subdomain Mode
0

0 Set r=O, da=O, F=ul-l-eps*fl
0 Apply/OK

0

OK

Select mode g l (geoml domain 1)

Select mode g2 (geom2 domain 1)
Set r=O 0, da=O, F=u2-f2

Now for the boundary conditions. Neutral are needed. Pull down the Boundary
menu and select Boundary Settings.

OK

Mode g l : geoml domain 1,2 Select Neumann, G=O
Mode g2: geom2 domain 1,2,3,4 Select Neumann, G=O
Apply

In Mesh mode, accept the standard mesh for mode g2 (417 nodes, 772 elements)
and in mode g l , refine to 61 nodes, 60 elements. Solve. The solution should
appear as in Figure 7.10.

Unknown function u l
1 04 extruded function u2

Figure 7.10 Solution g(x) to (7.20) with K(x,t)=sin(27~ x t). Left: l-D solution. Right: 2-D
extrusion of g(x).

Solving a Volterra Integral Equation of the Second Kind

In searching for a Fredholm integral equation of the second kind as an example
from the literature for the last section, I hit upon Shaqfeh’s [181 equation (7.23)
for the edge effect near an impermeable wall for characterization of effective
boundary conditions for thermal conduction in a fiber composite medium, where
the fibers are better conductors than the fluid matrix:

276 Process Modelling and Simulation with Finite Element Methods

2

g (z) + I + N K (z , x)g (z + x) d x = 0 (7.23)
-2

Here, g(z) is the gradient of the ensemble average temperature at a distance z
from the edge of the wall in scaled coordinates. Shaqfeh’s theory derives the
non-local contributions for average extra flux due to the presence of randomly
positioned fibers. N is the dimensionless parameter expressing number density
and slenderness of the fibers. The kernel is given here in MATLAB notation

K(Z,X)=((X>~)*(Z~~*(~-~*X-~*Z)+(~*Z-X+~)*(X+Z-~)~~*(X+Z>~))+
(~<0)*((2*~+3 *~+2)*(~-2)~2*(~>2)+(~-2*~+6)*(~+~)~2*(~+~>0)))/12;

It should be noted that this expression corrects equation (83b) of [18] for a
typographical error. The proof of this is that with the correction, Shaqfeh’s
assertion that the kernel is homogeneous for 222 is borne out. Figure 7.11 (left
frame) shows the invariant kernel profile in this regime. The contours of K(z,x)
are shown in Figure 7.12, with the regime of parallel lines at the top consistent
with this assertion. Essentially, in this regime, the heat flux sees the same
environment whether in the direction of the edge or away from it, statistically,

0.1

0 . 0 O . A - - ;

I t
-2 -1 1

Figure 7.11 Kernel K(z,x), of the integral equation (7.23) Left: z=0.5. Right: 222.

Figure 7.12 Contour plot of the kernel K(z,x), of the integral equation (7.23) Abcissa and ordinate
are in the range (X,Z)E [0,4] x[O,4]. Homogeneity of K for 222 is apparent.

Coupling Variables Revisited 211

and therefore, the driving force for non-local heat flux is lost. Furthermore, with
the correction, we find that K(z,x) is continuous at the origin, but has a
discontinuous slope, typical of Green’s functions in 1-D [21]. Finally, we shall
see that we reproduce results consistent with Shaqfeh’s finite difference solution
of (7.23).

It turns out that (7.23), however, is not a Fredholm integral equation at all.
Why? Because the g(z+x) dependency in the integrand is not the standard form
for a Fredholm equation. Change of variable leads to a Volterra integral
equation. Let x2=z+x. Then dxz=dx. Re-writing (7.23) yields

z+2

g (z) + l + N J K(z,x,-z)g(x,)cix, = o (7.24)

Since how one
variable in the

z-2

writes the kernel is not at issue, (7.24) clearly has the dependent
limits of integration, so can be identified as a Volterra integral -

equation. Nevertheless, this a second alteration to the kernel, we can re-write
(7.24) in a form that is treatable by our recipe for Fredholm integral equations in
FEMLAB, using extrusion and projection coupling variables on an abstract
intermediate domain with coordinates (z, xz):

h

g (z) + 1 + NJ K’ (z , x,)g (x2) dx, = 0 (7.25)
a

where K’=(x2>z -2)*(xz<z+2)*K(z, x2-z). With this kernel, (7.25) is of the same
form as (7.20), so the same strategy should suffice to a large extent. The one
major modification is that (7.23) is ill-posed as it stands for any finite interval in
z. Simply, for zc[O,l], (7.25) shows that g must be defined for x~[-2,1+2].
Shaqfeh posited that to regularize the problem, the homogeneous behavior of K
for z>2 leads to the asymptotic solution that g -+1/(1+2/3 N). This can be
taken as the solution in the regime x ~ [l , 1 + 2] . For x e [- 2 , 0] , there position is
within the wall, so the homogeneous conductivity there must match the flux at
the wall, g=-1. So in our abstract 2-D domain of coupling variables, we impose
these two limiting behaviors outside the solution domain ZE[O,Z].

Launch FEMLAB and in the Model Navigator do the following:

Model Navigator
Select 1-D dimension, Geom 1
Select PDE modes+General=Stationary nonlinear model, weak
form (mode gl). Dependent variable u l , independent variable x>>
Multiphysics Tab. Add Geom 2, Select 2-D dimension
Select PDE modes*General+Stationary nonlinear form (mode 82)
Dependent variable u2, independent variables x l , x2>>
Apply/OK

278 Process Modelling and Simulation with Finite Element Methods

Pull down the Options menu and set the grid to (-0.1,5.1) x (-2.1,7.1) on Geom
2 and the grid spacing to 0.5,0.5. Pull down the Draw menu.

Draw Mode
Geom 1: Specify geometry; interval [0,5]
Geom 2: Select Draw Rectangles.
Set R1 = [0,51 x[-2,0], R2=[0,5] x[O,5] , R3=[0,51 X[5,71.

OK
APPlY

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

AddEdit Constants
Name of constant: eps Expression: 1

OK
Apply

The major action is the computation of the extrusion and projection
coupling variables. Select Add/Edit Coupling Variables from the Options
Menu.

extrusion add f2. Source Geom 1, subdomain 1, Expression: u l
Local mesh transformation (x t x)
Destination Geom 2 subdomain 1, Check “Active in this domain” box
Evaluation point transformation (x t x2)
projection add f l . Source Geom 2, subdomain 1,2,3; Integrand

xl) >2) * (2*x1- (x2-xl) +2) * (xl+ (X2-Xl) -2)*2) /12+ (X2<X1) * ((2*x1+3* (x2-

Xl) > O)) /12);
integration order 2
Local mesh transformation (x t x l , y t x2)
Destination Geom 1 subdomain 1, Check “Active in this domain” box.
Evaluation point transformation (x t x)

~ 2 * (~ 2 > ~ 1 - 2) * (~ 2 < ~ 1 + 2) * ((x2>~1) * (xlA2* (6 - 3 * (~2-xl) -2*~1) + (xl+ (~ 2 -

xl) +2) * (~1-2) A 2 * (~1>2) + ((xZ-X~) -2*~1+6) * (xl+ (~2-xl)) *2* (xl+ (~ 2 -

Apply/OK

Coupling Variables Revisited 279

By comparison, the Subdomain settings are pedestrian:

Set r=O, da=O, F=ul+l+eps*fl
Apply/OK

Select mode g l (geoml domain 1)

Select mode g2 (geom2 domain 1) Set r=-u2xl 0, da=O, F=u2+1
Select mode g2 (geom2 domain 2) Set r=-u2xl 0, da=O, F=u2-f2
Select mode g2 (geom2 domain 3) Set r=-u2xl 0, da=O,
F=u2+ 1/(1 +2 *eps/3)
Apply

The horizontal diffusive flux in our second geometry (abstract 2-D domain) is
merely a numerical convenience to help insure stability. Since the model, by
construction, is horizontally homogeneous in this space, with no flux BCs (see
below), no amount of horizontal diffusion can alter the solution theoretically.
Yet stronger diffusion will damp out any horizontal numerical errors which
might creep in due to truncation. With vertical diffusion, however, this is
not true, so it is excluded. Now for the boundary conditions. Neutral are needed.
Pull down the Boundary menu and select Boundary Settings.

Mode 82: geom2 all domains Select Neumann, G=O

In Mesh mode, set max edge size general to 0.35 for geom2, which gives mesh
for mode g2 (691 nodes, 1296 elements) and in mode g l , set max edge size to
0.1, to give 251 nodes, 250 elements. Solve. The solution should appear as in
Figure 7.13.

Note that our 2-D abstract domain gives u2 horizontally as fairly
homogeneous. So vertical line integrals traducing all three subdomains
experience u l (x2) when integrating u2(xl,x2) along the x2 coordinate.

Figure 7.13 (left) shows that the physically important region over which the
temperature gradient moves from edge value (-1) to asymptotic value -
1/(1+2N/3), is not more than about a dimensionless length of 2.5. This limiting
behavior matches the theoretical predictions of Shaqfeh [18], and is a
consistency check on the kernel. An interesting feature of this profile is the
internal maximum of temperature gradient. Shaqfeh graphed the temperature
profile itself, so given the relatively smooth transition, the integration of g might
have such a modest internal maximum discernable, but here, in the gradient, it

280 Process Modelling and Simulation with Finite Element Methods

profile oftemperature gradient u l , N=l Extruded domain, contours of u2
7 r I D 6095

0 6291
0 6487
0 6582
0 6878
0 7074
0 727
0 7465
0 7661 I o 7857
0 8053
0 8248
0 8444
0 €64
0 8835
0 rnl
0 9227
0 9423
0 9 x 6
09814

I , u
z 2oordi;ate

0 05 1 1 5 2 2 5 3 3 5 4 4 5 5 i 1051 I ' ' ' ' ' ' ' ' '

z coordinate

Figure 7.13 Temperature gradient, solution g(z) to (7.23). Left: 1-D solution. Right: 2-D extrusion
ofg(x). N=l .

clearly manifests. I am curious if this feature is an intrinsic aspect of the edge
conduction near an impermeable (to the fibers) wall bounding a composite.
From the description of the calculation in [18], it is not clear which conditions
are applied for the region x 2 ~ [- 2 , 0] . The original integral equation (7.23)
clearly shows that the integral is computed over that region. The last term of the
kernel, with the factor (x+z>O), clearly has a contribution from x ~ [- 2 , 0] when
z ~ [O , 2] . So what is the consistent value of the temperature gradient? I argued
that g(x)=-I for x~(-2 ,0] . Perhaps this choice influences the prediction of an
internal maximum in temperature gradient.

Figure 7.14 gives a parametric study over N (eps in our FEMLAB model)
for the same eight values given for the profiles of temperature in Figure 6 of
[18]. The internal maximum in temperature gradient seems to be a persistent
feature for N>1, but is not apparent for N<0.5. The computation given here is
self-consistent, leading to confidence in using FEMLAB to compute the
solutions to canonical linear 1-D integral equations of either the Fredholm or
Volterra type, of either kind. Although not particularly envisaged by the
software developers themselves, this feature has its own niche among software
packages for general engineering/mathematical physics productivity. As an
experienced, Mathematica, Macsyma, and Matlab user, I can confidently claim
that solution to integral equations by other means is a tour de force in difference
equations, matrix assembly, and sparse matrix solvers for linear integral
equations. As we will see in the next subsection, our FEMLAB recipe for
integral equations extends to nonlinear integral equations, even of the
convolution type, in a straightforward manner.

As a coda to this subsection, one notes that the problem considered here is a
variant on the electrical capacitance models of §7.3.2 and 57.3.3, particularly as
there is a direct analogue to heat conductance in a fluid medium with solid
inclusions. The difference is that the ECT models were of nonhomogeneously
placed rods and thus the relative positions dominated the flux calculations. Here,
the homogeneity of the fibrous inclusions simplifies the conductance model.

Coupling Variables Revisited 28 1

N 5 0
N=?O
N=lO
N 5

N=3
-

N=l

N S . 5
-

N S . 1

I 3 a I;
LcmLdinate

Figure 7.14 Solution g(z) to (7.23) for parameters N=0.1,0.5,1,3,5,10,20,50. Shaqfeh’s Figure 6

solves for the integral (T) = 5 (zyz’ where the reference temperature is at the wall.

0

Convolution Integrals and Integral Equations

Convolution integrals are typically nonlinear and nonlocal, viz.

b

Ic,,=SK(z,x)g(z)g(z+x)~x (7.26)

They arise naturally in turbulence theory as two point correlation functions -
statistics of the turbulence [24]. There is also a well known duality with nearly
all linear transforms - convolutions in physical space transform to quadratic
products of the individual transforms in transform space, and vice versa - known
as the convolution theorem [25]. Since quadratic nonlinearity is fairly common
in transport phenomena (inertia and convective terms), convolutions in transform
space are just as common. Another important class where convolutions occur is
in phase space descriptions of combination processes. In liquid-liquid (droplets)
and gas-liquid (bubble) flows, the population changes due to coalescence [26]
are expressible as convolutions. Fragmentation mechanisms can be partially
treated by collision rules. The kinetics of some mechanisms, like vibration
breakup, bag breakup, bag-and-stamen breakup, sheet stripping, wave crest
stripping, and catastrophic breakup can only be estimated by rate and probability
laws for isolated bubbles/droplets for given local conditions. Nevertheless,
collision-based processes are inherently represented in a size phase space as a
convolution integral for the population change.

a

282 Process Modelling and Simulation with Finite Element Method5

In solid particle dynamics, the population balance equations also are
expressible in terms of some convolution integrals. Nicmanis and Hounslow
[27] used FEM to describe an integro-differential equation with convolution-type
integral terms, where the major processes of this type are aggregation and
breakage. The collision rules for bubbles and particles depend substantially on
the physicochemical properties of the liquid medium. Traces of flocculent and
coagulent effect the probability of bubble-particle agglomeration and floc
formation. However, in terms of particle dynamics, the collision rules can be
formulated to match observed kinetic rates. Thus, a semi-empirical approach to
population balance equations, fitting the coefficients of the aggregation,
breakage, and growth models, is a successful technique in characterizing particle
processes. Randolph and Larson [28] cite the change in number density n(v) of
particles with volume n in the product stream of a continuous mixed-suspension,
mixed-product removal crystallizer in which these three processes are occurring
from an inlet stream with feed population ni,(v):

(') - nin (' + d (G (v) ~1 (v)) = b (v) - d (v) (7 27)
z dv

where T is the residence time in the crystallizer, G(v) is a volume-dependent
growth function and the number density of nuclei is incorporated into the
equation as a boundary condition n(O)=no. b(v) and d(v) are suggestively
denoted as the birth and death terms for the volume fraction of size v. In
general, there are contributions to both terms from both aggregation and
breakage. Case 1 considered by [27] is a purely aggregation model, so we will
cite only the forms derived by Hulburt and Katz [29] for aggregation.

%
b (v) = p (v - w, w)n(v - w)n(w)dw

U -
d (v) = n (v) p (v ,w)n (w)dw

0

(7.28)

Succinctly, birth by aggregation is due to the probability of combining particles
with volumes which sum to v (and sticking). Death is by the probability of a
particle of volume v participating in a collision (and sticking).

Coupling Variables Revisited 283

FEMLAB Model

Case 1 of Nicmanis and Hounslow is for aggregation only, characterized by the
assignments P(v,w)=betaO, G=O, and no breakage contributions to b and d
sourcehink terms. The idealized feed is the exponential inlet condition

nin (v) = exp (--v) (7.29)

Launch FEMLAB and in the Model Navigator do the following:

Select 1-D dimension, Geom 1
Select PDE modesdGeneral=+Stationary nonlinear model, weak
form (mode gl) . Dependent variable nl , independent variable v>>
Multiphysics Tab. Add Geom 2, Select 2-D dimension
Select PDE modes=+General=Stationary nonlinear form (mode 82)
Dependent variable n2, independent variables v 1, v2>>

Nicmanis and Hounslow [27] suggest that the domain VE [0,2500] has a suitable
ceiling for convergence. Pull down the Options menu and set the grid to
(-50,2550) x (-50,2550) on Geom 2. Pull down the Draw menu.

~~ l______l____

Draw Mode
Geom 1 : Specify geometry; interval [0,2500]
Geom 2: Select Draw Rectangles
Set R1 = [0,2500] ~[0,2500]

OK
Apply

Pull down the options menu and select Add/Edit constants. The Add/Edit
constants dialog box appears.

_s__

Name of constant: tau Expression: 1
Name of constant: nO Expression: 1

0 Name of constant: beta0 Expression: 1
0 Name of constant: GO Expression: 1

Name of constant: v0max Expression: 2500

284 Process Modelling and Simulation with Finite Element Methods

The major action is the computation of the extrusion and projection coupling
variables. Select Add/Edit Coupling Variables from the Options Menu.

AddEdit Coupling Variables
extrusion add N1. Source Geom 1, subdomain 1, Expression: nl
Local mesh transformation (x t v)
Destination Geom 2 subdomain 1, Check “Active in this domain” box.
Evaluation point transformation (x t v2)
extrusion add N2. Source Geom 1, subdomain 1, Expression: n l
Local mesh transformation (x t v)
Destination Geom 2 subdomain 1, Check “Active in this domain” box.
Evaluation point transformation (x t vl-v2)
projection add ba. Source Geom 2, subdomain 1;
Integrand: (v2sO) * (v2<v1/2) *N1*N2
integration order 2
Local mesh transformation (x t vl , y t v2)
Destination Geom 1 subdomain 1, Check “Active in this domain” box.
Evaluation point transformation (x t v)
projection add da. Source Geom 2, subdomain 1;
Integrand: N1
integration order 2
Local mesh transformation (x t vl, y t v2)
Destination Geom 1 subdomain 1, Check “Active in this domain” box.
Evaluation point transformation (x t v)

Apply/OK

It should be noted that projection coupling variable ba computes the convolution
integral for the birth term in (7.28), with the awkward offset coordinate (vl-v2)
treated neatly by the evaluation point transformation in the extrusion variable
N2. The independent variable in the limits of integration are catered for by the
MATLAB binary logic factors (v2>O)*(v2<v1/2), in the same fashion as the
treatment of the Volterra integration limits in the last section. da is far more
pedestrian, only requiring the projection coupling variable for the line integral to
be computed. Although da is the same for all v (a constant), it must be computed
by a coupling variable. On reflection, its source could be Geom 1, subdomain 1,
with integrand nl to save computer labor in this case due to the assignment of
P(v,w)=betaO. The treatment here is more general to accommodate potentially
greater complexity of p.

Coupling Variables Revisited 285

By comparison, the Subdomain settings are still pedestrian:

Subdomain Mode

0 Set r = O , da=l, F=(nl-exp(-v))/tau-ba+nl*da
Apply/OK

0 OK

Select mode g l (geoml domain 1)

Select mode g2 (geom2 domain 1) Set r=O 0, da=O, F=n2-N1*N2
APPlY

Now for the boundary conditions. Neutral are needed. Pull down the Boundary
menu and select Boundary Settings.

Boundarv Mode
0

0 OK

Mode g l : geoml domain 1,2 Select Neumann, G=O
Mode g2: geom2 domain 1,2,3,4 Select Neumann, G=O
APPlY

In Mesh mode, accept the standard mesh for geom2, which gives for mode g2
(415 nodes, 768 elements) and in mode g l , set number of elements per
subdomain to 1 100, to give 251 nodes, 250 elements. Solve using the
Stationaty Nonlinear solver. The solution should appear as in Figure 7.15.

COIDl oaia “I (“I) Y Data “1 (“1)
80

70

60

m
40

30

m
10

0

10 o 5m moo 1500 moo 25m

Figure 7.15 Solution nl(v) to (7.27). Left: l-D solution. Right: 2-D solution for extrusion variable
N2=nl (v2,vl-v2).

Parametric continuation will permit us to persevere out to ~=1.175 before
convergence is lost. Yet the solution in Figure 7.15 hardly seems plausible -
nearly all the particles “gang up” in the maximum volume of the truncated
infinite domain - hardly likely to have infinitesimal truncation error. These
particles would aggregate up to the next higher “bin” if they were permitted. So
this is not likely a stationary solution to the full problem.

286 Process Modelling and Simulation with Finite Element Methods

30

25

20

15

1 0 -

5 -

5 -

10

“Time Dependent)’ Solution

The stationary nonlinear solution just doesn’t work. It apparently becomes ill-
posed at ~=1.175. A check of the eigenvalues suggests that the Jacobian matrix
is becoming singular - the condition number is large. It is possible that the
coupling variables are not contributing significantly to the assembly of the
stiffness matrix, which would then become singular. Iteration worked for
Nicmanis and Hounslow [27]. One way to iterate is to specify a pseudo time
scale and use the time-dependent solver. We anticipated this by putting da=l in
mode g l . For time integration, use the fldaspk solver, as it turns out the
computation is stiff. The time integration out to t=0.3 is shown in Figure 7.16.

I

~ 7:
- I
~

1
0 0 I y ,.-- -,- --, _ _

~

z* 1

25

20

15

10

5

0

5

11,

Time=U 3 Canfour N2
2500

2000

1500

500

0
lD00 500 0 500 1000 1500 2000 25UQ 3000 3500

Figure 7.16 Pseudo time-dependent model solution nl(v) to (7.27) at time t=0.3. Left: 1-D
solution. Right: 2-D solution for extrusion variable N2=nl (v2,vl -v2).

For my money, Figure 7.16 is not a winning solution. Negative counts in a
histogram do not seem all that physically likely. Back to the drawing board.

Exponentially Scaled Mesh

Nicmanis and Hounslow [27] also employed a non-uniform mesh, with smaller
elements for small volumes, and larger elements for larger volumes. FEMLAB
will permit this as well. Those authors specified a mesh where the upper bound
of element e is given by

(7.30)

where N is the number of elements and vb is the bin volume size for the first
element. After some arithmetic, the mesh size h can be deduced as a function of
position only

Coupling Variables Revisited 287

and it is seen to be linear. FEMLAB will not permit a zero size element at the
origin, so you need to specify an affine term. In mesh mode, specify, for
instance:

Mesh Mode: g l
Mesh size expression: 0.08+(x+0.08)*0.08

Which yields 98 nodes and 97 elements. Similarly,

Mesh Mode: 922

Which yields 2426 nodes and 4624 elements.

Mesh plot with geometric progression

Figure 7.17 Mesh in abstract 2-D extrusion domain used for computing convolution integrals.

Figure 7.17 shows the result of element spacing being a linear function of
position - mesh is packed in near the origin, and is sparse near the truncated
corner of the doubly infinite domain. So what effect does this have on the
solution?

The solution is found to be slowly convergent for %=lo.

Iter ErrEst Damping Stepsize nfun njac nfac nbsu
1 11 1 . 0 0 0 0 0 0 0 1 4 2 1 1 2
2 0.82 0 . 4 9 6 7 3 5 2 1 . 4 3 2 2 4
3 0 . 1 1 . 0 0 0 0 0 0 0 0 . 4 4 3 3 6
4 0 . 0 0 2 3 1 . 0 0 0 0 0 0 0 0 . 0 7 7 5 4 4 8
5 5.le-07 1 . 0 0 0 0 0 0 0 0.0016 6 5 5 10

288 Process Modelling and Simulation with Finite Element Methods

0 3 , -
025L

02-1

0 16

0 1 -

0 0 5 -

0 D

005 '

0 2

D 18

0 16

0 14

0 12

0 1

om
0 06

004
0 02

0
Nm B s B e 4 l

Figure 7.18 Solution nl(v) to (7.27) with graduated mesh of Figure 7.17 for tau=lO. Left: 1-D
solution. Right: 2-D solution for extrusion variable N2=nl(v2,vl-v2).

However, given that it was non-convergent after ~=1.175 the last time we tried a
stationary nonlinear solution, the graduated mesh is an improvement. The
difficulty with the standard uniform mesh that leads to ill-posedness could be
that the 2-D abstract domain was coarser than the I-D solution space. Thus, the
full contribution of the 2-D convolution integrals was lumped into too few bins
to permit the inversion. Or possibly it is that the graduated mesh resolves the
solution tremendously better. But how good is this solution strategy?

Nicmanis and Hounslow [27] compute their solution for 2=200 and compare
with the analytic solution of Hounslow 1301. Can we do the same? I coded a
MATLAB m-file script to use parametric continuation out to 2=200 by steps of
A ~ = 0 . 5 . It crashed at T = l S with the ubiquitous step-size too small error after
slowly converging for nearby T. Eigenanalysis again shows that the stiffness
matrix is nearly singular. So this promising solution strategy is still not fully
effective. How can we alter it to achieve better performance?

Last Chance Saloon: ActivatingIDeactivating Variables With
Solve for Variables

Perhaps you noticed that we are solving in the abstract domain for n2, which at
steady state should be the trivial solution of F=O, i.e. n2=Nl*N2. n2 is pretty
useless to us, but as it is a diagonal system at steady state, it should not be hard
to solve, right? And we do have to solve for something in our fictitious domain,
don't we? Wrong! Even the trivial diagonal solution for F=O uses sparse matrix
solvers with somewhere around 4600 back substitutions. Eventually, this work
will lead to an ill-conditioned numerical solution due to round-off error alone.
Furthermore, we do not need to solve for anything in our fictitious 2-D domain.
We can disable the solution for n2.

Multiphysics: Solve for Variables
Select and highlight only Geoml: 1 variable gen form (gl): nl

Coupling Variables Revisited 289

2
30
70
I40
200

This will disable the solution for n2. Since it is superfluous, computing n2
can only harm us. To test how good the solution is now, we will compare
the analytic and FEM computed moments. Moments are defined on the
distribution as

0.35748 0.99379 1 1.867
0.22653 0.99573 31.884
0.15503 0.99768 72.533
0.11237 1 143.11
0.094934 1 .ooo 1 201.72

(7.32)
0

Moments are computed on our truncated domain by subdomain integrations:

z 1 % I m1 I mz
1 I 0.73082 I 0.99701 1 2.9864

Hounslow [30] gives the analytic values for z =200 to 3 significant figures as

I200 I 0.0951 1 1 I 202

In the above computations, parameter space continuation was done with old
solutions taken as the new guess. This is a more complex version of iteration
than used in [27], since the FEMLAB standard stationary nonlinear solver
assembles the Jacobian matrix. Even with only 98 elements, the solution is
rather good for the moments at this level of 5. Greater refinement is necessary
for higher z values.

Exercise 7.4: An integro-differential equation

(7.17) is an integro-differential equation when G#O. Set up a variation of our
stationary nonlinear model for PBE with G=l and boundary condition nl=l at
v=O. Solve for the steady solution with residence time 2=200. Since the pde is
first order, only one boundary condition can be applied sensibly. The recipe
with FEMLAB is to impose a “non-condition” at v=vOmax, i.e. the Neumann BC
that the derivative of nl vanishes at the top volume. Since this is the natural BC
in FEM, no Lagrange multiplier equation is augmented to the system. Does this
natural boundary condition make physical sense in the case of PBE?

290 Process Modelling and Simulation with Finite Element Methods

Summary

This chapter has a plumbed the depths of coupling variables of all three varieties
to solve an array of inverse and integral equations. We encountered several
features of FEMLAB not previously explored - coupling to optimization tools
through MATLAB, extended meshes, using the time-dependent solver as an
iterative tool for stationary nonlinear models, and the ability to selectively
activate/deactivate multiphysics modes in coupled models. The latter is
particularly useful if there is only one-way coupling (as in the hydrodynamics
around the catalyst supported on the pellet in Chapter 3) . In the case of the
integral equations treated here, a fictitious dependent variable on an auxiliary
domain is set up. The domain is used by coupling variables for various
operations, but the dependent variable is never needed itself. So deactivating it
results in better conditioning the FEM approximation to the integral equation.
Although we implemented this procedure only with the convolution integral in
our last model of the PBE, this is a generically useful technique for all the
integral equations posed here.

My contacts at COMSOL have led me to believe that coupling variables and
extended multiphysics were an addition to FEMLAB 2.2 “because they could”
without necessarily a vision of how they might prove to be practically useful.
With the wide survey of applications shown here, and earlier in Chapter 4, my
impression is that coupling variables and extended multiphysics are the features
of FEMLAB most likely to lead to rapid growth in its usage. Complex system
modeling and simulations that are envisaged for the biological systems,
micromachines (MEMs), and generic networked systems are readily modeled by
these features of FEMLAB. Process simulation packages such as HYSYS and
Aspen have long had the capability of simulating networks of coupled units
comprising ODES and nonlinear, algebraic constraints. Computational fluid
dynamics packages such as FLUENT and FIDAP and finite element solvers like
ANSYS contain the elements of PDE solver engines. FEMLAB, through
extended multiphysics and coupling variables, have made the combination
appear seamless to the user.

References

1. RA Gingold and JJ Monaghan, “Smooth particle hydrodynamics: theory
and application to nonspherical stars,” Mon. Not. Roy. Astr. SOC. 18 1 :375-
289, 1977.

2. AV Potapov, ML Hunt, and CS Campbell, “Solid-liquid flows using
smoothed particle hydrodynamics and the discrete element method.”
Powder Technology 116:204-213,2001.

Coupling Variables Revisited 29 1

3.

4.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

DC Rapaport, The Art of Molecular Dvnamics Simutation, Cambridge
University Press, 1995.
BJ Adler and WG Hoover, in Phvsics of simple liquids, ed. HNV
Temperly, JS Rowlinson, and GS Rushbrooke. Amsterdam: Horth-Holland
Publishing Co., 1968.
S Kim and SJ Karrila, Microhydrodynamics. Principles and Selected
Applications. Stoneham, MA: Butterworth-Heinemann series in chemical
engineering, 1991.
D Coca and SA Billings, “A Direct Approach To Identification of
Differential Models from Discrete Data”, J Mechanical Systems and Signal
Processing, 13:739-755, 1999; D Coca, Y Zheng, JEM Mayhew and
SA Billings, “Nonlinear system identification and analysis of complex
dynamical behaviour in reflected light measurements of vasomotion”, Znt J
Bifircation and Chaos, 10:46 1-476,2000.
MM Mansour and F Baras, “Microscopic simulation of chemical systems”
Physica A 188:253, 1992.
IE Grossman, “Mixed integer nonlinear programming techniques for the
synthesis of engineering systems,” Res. Eng. Des. 1 :205, 1990.
M Mitchell, An Introduction to Genetic Algorithms, MIT Press,
Cambridge, Massachusetts, 1996.
SC Roberts, D Howard, JR Koza, “Evolving modules in genetic
programming by subtree encapsulation”. Genetic Programming,
Proceedings Lecture Notes In Computer Science 2038: 160-175,2001,
SM Huang, AB Plaskowski, CG Xie, and MS Beck, “Tomographic imaging
of two-component flow using capacitance sensors.” J. Phys. E, Sci. Instrum.

SL McKee, T Dyakowski, RA Williams, T Bell, T Allen, “Solids flow
imaging and attrition studies in a pneumatic conveyor.” Powd. Tech.
82:105-113, 1995.
T. Dyakowski, “Process tomography for multiphase measurement.”
Measurement Science & Technology 7:343-353, 1996.
RP Feynman, RB Leighton, and M Sands, The Feynman Lectures on
Physics, vol11. Addison-Wesley, 1964.
T Dyakowski, LFC Jeanmeure, AJ Jaworski, “Applications of electrical
tomography for gas-solids and liquid-solids flows - a review,” Powder
Technology 112 (3): 174-192,2000.
N. Kerrouche, CN McLeod, WRB Lionheart, Time series of EIT chest
images using singular value decomposition and Fourier transform, Physiol.
Meas. 22(1): 147-157, 2001; M Vauhkonen, WRB Lionheart, LM
Heikkinen, PJ Vauhkonen and JP Kaipio, A MATLAB package for the
EIDORS project to reconstruct two-dimensional EIT images, Physiol.
Meas. 22(1): 107-1 11, 2001. http://www.ma.umist.ac.uk/bl/eidors/.

22:173-177, 1989.

5.

292 Process Modelling and Simulation with Finite Element Methods

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

WB Zimmerman and PC Chatwin, “Huctuations in dense gas
concentrations measured in a wind-tunnel.” Boundary Layer Meteorology

ESG Shaqfeh, “A nonlocal theory for the heat transport in composites
containing highly conducting fibrous inclusions” Phys. Fluids 3 1 (9):2405-
2425, 1988.
SD Howison, JA Moriarty, JR Ockendon, EL Terrill, and SK Wilson,
“A mathematical model for drying paint layers.” J. Engineering Math.

G Arf’ken, Mathematical Methods for Physicists, 3‘d edition, Academic
Press, New York, 1985.
I Stakgold, Green’s Functions and Boundary Value Problems, Wiley, New
York.
WV Lovitt, Linear Integral Equations, McGraw-Hill, New York, 1924,
reprinted 1950, Dover, New York.
WB Zimmerman, “The drag on sedimenting discs in broadside motion in
tubes.” International Journal of Engineering Science, 40:7-22, 2002.
SB Pope, Turbulent Flows, Cambridge University Press, 2000.
RN Bracewell, “The fast Hartley transform”. Proc. IEEE, 72(8): 1010,
1984.
NL Kolev, “Fragmentation and coalescence dynamics in multiphase flows.”
Experimental Thennal and Fluid Science, 6:211-251, 1993.
M Nicmanis and MJ Hounslow, “Finite-element methods for steady-state
population balance equations,” AIChE J., 44(10):2258-2272, 1998.
AD Randolph and MA Larson, Theory of Particulate Processes, 2”d edition,
Academic Press, New York, 1988.
HM Hulburt and S Katz, “Some problems in particle technology. A
statistical mechanical formulation.” Chem. Eng. Sci. 19555, 1964.
MJ Hounslow, “A discretized population balance for continuous systems at
steady state.” AIChE J . 36(1):106, 1990.

75:321-352, 1995.

32:377-394, 1997.

Chapter 8

MODELING OF MULTI-PHASE FLOW USING THE
LEVEL SET METHOD

K. B. DESHPANDE and W.B.J. ZIMMERMAN
Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Sheffield S l 3JD United Kingdom

E-mail: w.zimmemzan@sheJ:ac.uk

Multiphysics, the feature of FEMLAB that allows coupling of different types of physics,
is demonstrated in this chapter for the level set method for modeling multiphase flow,
illustrating various scenarios for the coalescence of drops. In the level set method for
biphasic fluid systems, one fluid has strictly positive phase function @, the other strictly
negative @, so the interface is tracked by the zero level set of @. The transport of @ is
computed by solving an advection-diffusion equation for @ and the incompressible
Navier-Stokes equations simultaneously. The level set method is extensively applied here
to study the coalescence of drops in biphasic flows for different configurations such as
drops under influence of gravity, an acoustically suspended drop, drops approaching one
another and the interaction among three drops. The curvature analysis here shows the
power of FEMLAB’s post integration tools for statistical analysis of evolving fields,
capturing the occurrence of coalescence by a distinguished feature - cusp formation.

8.1 Introduction

Multiphase flows are often difficult to model computationally, especially
because of the difficulty in tracking the fluid-fluid interface. Furthermore, there
is a steep change in physical properties such as density, viscosity etc., which
makes the computation yet more stiff. There are various computational methods
available to solve incompressible two-phase problems such as the front tracking
method [l], the boundary integral method [2], the volume of fluid method [3],
the Lattice Boltzmann method [4], diffuse interface modeling [5] , and the level
set method [6][11]. We use the level set method in this chapter, illustrating its
use to compute the coalescence of two drops.

All the above mentioned methods have their advantages and disadvantages.
In the front tracking method, marker particles are explicitly introduced to keep
track of the front that reduces the resolution needed to maintain the accuracy.
However, re-gridding algorithms should be employed with front tracking method
to prevent marker particles from coming together, especially at the points of
larger curvature.

The volume of fluid method (VOF) is based on discretization of the volume
fraction of one of the fluids. The motion of the interface is captured by solving a

293

294 Process Modelling and Simulation with Finite Element Methods

conservation law for volume fraction and the Navier-Stokes equations
simultaneously. Since the interface is represented in terms of volume fraction,
mass is always conserved, while maintaining a sharp representation of the
interface. The VOF method needs to have accurate reconstruction algorithms to
solve for the advection of volume fraction. A disadvantage of the VOF method is
that it is difficult to compute accurate local curvature from volume fraction. This
is due to the sharp transition in volume fraction near the interface.

The Lattice Boltzman method (LBM) is a mesoscopic approach to the
numerical simulation of fluid motions based on the assumption that a fluid
consists of many particles whose repeated collision, translation, and distribution
converge to a state of local equilibrium, yet always remaining in flux. LBM has
advantages such as implementation on a complex geometry, very efficient
parallel processing, and ease of reproduction of the interface between the phases.
However, LBM is not yet a widely used computational method to track the fluid
motion in multiphase systems, due to its computational intensity.

The level set approach is another potential numerical method to solve
incompressible two-phase flow incorporating surface tension term. In the level
set method, the interface is represented as the zero level set of a smooth function.
This has the effect of replacing the advection of physical properties with steep
gradients at the interface with advection of level set function that is smooth in
nature. Although level set method does not have the same conservation
properties as of VOF method or front tracking method, the major strength of
level set method lies in its ability to compute curvature of the interface easily.
Furthermore, level set method does not require complicated front tracking
regridding algorithms or VOF reconstruction algorithms. Level set method is
based on continuum approach in order to represent surface tension and local
curvature at the interface as a body force. This facilitates the computations in
capturing any topological change due to change in surface tension.

The diffuse interface method is a kindred notion to the level set method and
VOF in that it computes the transport of another function that varies between the
phases - the chemical potential. As is well known (see [7]), the surface tension
between two fluids is also the excess partial molar Gibbs free energy per unit
surface area, so that the change of chemical potential across an interface between
immiscible fluids is treated by the notion of surface tension as infinitely steep.
The diffuse interface method permits this condition to be merely relaxed to be
steep, and then a field equation for chemical potential is tracked, rather than the
imposition of topology and stress balance equations implied by the notion of
surface tension. The latter method still requires grid adaption, which in state of
the art computational models (see [8] and references therein) employ auxiliary
equations for elliptic mesh diffusion, but are fragile in the face of topological
change, e.g. coalescence or breakage phenomena [9]. Whether greater accuracy
at the same computational intensity is available by the topological method of

Modeling of Multi-Phase Flow Using the Level Set Method 295

monitoring the free surface position with mesh re-gridding or by solving an
auxiliary transport equation for a field variable (VOF, diffuse interface, or level
set methods) is arguable. The latter auxiliary equation methods have ease of
coding in their favor, which will be illustrated in this chapter with the level set
method.

The level set method is used in this chapter to illustrate the coalescence of
two axisymmetric and non-axisymetric drops. Computations are performed using
FEMLAB. This FEM approach simplifies the level set method by eliminating all
the complexities in grid discretization required for free surfacehnterface tracking
methods. The governing equations for the level set method are described in
following section.

8.2 Governing Equations of the Level Set Method

In the level set method, a smooth function called a level set function is used to
represent the interface between two phases. The level set function is always
positive in the continuous phase and is always negative in the dispersed phase.
The free surface is implicitly represented by the set of points in which level set
function is always zero. Hence we have,

for the continuous phase @ (X , Y , t) > O (8.la)

for the interface @(x, Y, t> = 0 (8.1 b)

for the dispersed phase @(X, Y 3 t> < 0 (8.lc)

From such a representation of the free surface, the unit normal on the interface
pointing from dispersed phase to continuous phase and curvature of the interface
can be expressed in terms of level set function as,

The motion of the interface can be captured by advection of the level set
function,

-+u.V@=O 34
at

(8.4)

296 Process Modelling and Simulation with Finite Element Methods

The governing equation for the fluid velocity and pressure can be written in
terms of the Navier-Stokes equations which is the equation of motion for
incompressible flow:

aU
at

p -- V . p (Vu + (Vu)')+ p (u.V)u + Vp = F ; (8.5)

where F is body force which includes gravitational force and, due to the level set
treatment of interfacial stresses, the surface tension term. The two components of
the F term can be represented as,

The delta function treats the surface tension term at the interface which is
determined by the position of the zero level set-which can be as many fluid-
fluid interfaces as necessary to demarcate the dispersed phase. The Heaviside
function, incorporated in order to describe the steep change in physical
properties, is represented in terms of level set function such as,

i f $ = O

i f $ > O

(8.9b)

(8 . 9 ~)

The density and viscosity are constant in each fluid and are represented in terms
of Heaviside function as,

p = H($)+&(l-
P C

(8.11)

We solve the above set of equations using FEMLAB. Smoothed approximants to
the Heaviside function are used to avoid Gibbs phenomena resulting in poor
convergence.

Modeling of Multi-Phase Flow Using the Level Set Method 291

8.3 Curvature Analysis: Methodology

In the present simulations of multi-phase modeling, the coalescence phenomenon
is demonstrated for the various scenarios where the motion of the interface is
significant, particularly at the time of coalescence. The curvature analysis is an
attempt to capture the rupture of the interface during the coalescence event.

In the level set method, the curvature of the interface is represented as
shown in the equation (8.3). The mean value of the curvature can be estimated
by integrating I id over the interface as,

(8.12)

R

Similarly, standard deviation of lid can also be evaluated by first calculating
variance as,

J K % Q * (@ = O)

j dQ* ($=O)
var = ' - (K m e a ,)2 (8.13)

n

The standard deviation, 0 is,

o = G (8.14)

Thus, the first and the second moments of Id can be evaluated at different time
steps to study the behaviour of lid at the time of coalescence. The numerical
results are shown for coalescence, followed by the curvature analysis with the
associated MATLAB m-file script in the next section.

5.4 Results and Discussion

The numerical simulation presented here demonstrates the power of FEMLAB
in the modeling of multi-phase flow. We use multiphysics, the basic versatility of
FEMLAB that enables us to incorporate as many modes (physics) as we wish to
include. The level set method, which requires two application modes:
Incompressible Navier-Stokes and ChEM: Convection and Diffusion modes,
respectively, has been applied extensively here to capture the coalescence of two
drops in a two-phase system. Since the interface can be tracked by setting the
zero level set at the interface, this permits the study of the evolution of the

298 Process Modelling and Simulation with Finite Element Methods

interface after the merging of two drops. In coalescence phenomena, the contact
point between interfaces of two drops is very important and hence the approach
of two drops is treated by various means in this computational study and is
described in detail in following sections.

8.4.1 Coalescence of two axisymmetric drops

The simplest way to start the numerical simulation is to assume a symmetrical 2-
D domain, which would significantly reduce the computational time. The system
can be physically described as a rectangular domain with one boundary acting as
an axis of symmetry and all other boundaries are insulated. Two equally sized
drops are initially separated by axial distance equal to two times their diameter.
It is a tricky task to initiate two drops of the same physical properties. This is
accomplished using following initial condition which is used in the sub-domain
settings.

$(f = 0) = r n i n (, / ~ - 0 . 2 5 , m i n ((6 - y) , ~ ~ - 0 . 2 5)) (8.15)

-1 - 0 . 5 0 0 . 5 1

Figure 8.1 Contour plot (level sets) of the initial condition for 4 described in terms of the MATLAB
function min in (8.12).

Modeling of Multi-Phase Flow Using the Level Set Method 299

The above system of equations (8.2)-(8.11) with initial condition (8.12) in an
initially quiescent fluid (no motion) can be solved using level set method as
described below.

Start up FEMLAB and enter the Model Navigator:

Select 2-D dimension
Select Incompressible Navier-Stoke and

0 Element: Lagrange - quadratic
Select ChEM: Convection and diffusion. Dependent variable: phi

These application modes give us four dependent variables u, v, and p for
Incompressible Navier-Stoke mode and one dependent variable called ‘phi’ for
ChEM: convection and diffusion mode. The 2-D space coordinates are x and y.

Now we can define our domain by pulling down the Draw menu and select a
rectangle.

Draw Mode
Draw a rectangle by clicking left mouse button

Edit the dimensions of a rectangle by double clicking
0 Set x,, to 0, x,,, to 1, Y,,, to 0 and Y,, to 6
0 Apply/OK
0

Set Axis Equal
A m l v / O K

Select Axes/Grid Settings from Options menu

We need to specify the boundary conditions for both the modes separately in the
Multiphysics menu. Select the mode from Multiphysics. Pull down the
Boundary menu and select Boundary Settings.

Boundary Mode

Apply/OK

Select Incompressible Navier-Stokes (ns mode) from Multiphysics
Set domain 1 to symmetry and domain 2-4 to no-slip

Select ChEM: Convection and diffusion (cd mode) from Multiphysics
Set domain 1-4 to Insulationkymmetry

300 Process Modelling and Simulation with Finite Element Methods

Before setting up the problem, we need to define all the constants to be used in
the simulation. Pull down the Options menu and select Add/Edit constants.
The AddEdit constants dialog box appears.

Add/Edit Constants
0 Name of constant: rhod Expression: 1
0 Name of constant: rhoc Expression: 10
0 Name of constant: nu Expression: 1

Name of constant: gy Expression: -10
Name of constant: dadd Expression: 0.005

0 Name of constant: n Expression: 100
0 Name of constant: sigma Expression: 1
0 Apply / OK

It is useful to define some expressions, i.e. intermediate variables, to make the
FEM data entry more concise. Pull down the Options menu and select AddEdit
expressions. Expressions can be functions of the dependent variables (u,v,p,
and phi). Contant expressions can be defined in the AddEdit Constants
dialogue box.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Add/Edit Expressions
Variable name: smhs
Variable type: subdomain then Add
Now click on the definition tab
Enter expression: (l+tan(n*phi))/2
Variable name: smdelta
Variable type: subdomain then Add
Now click on the definition tab.
Enter expression: n/sqrt(pi)*exp(-nA2*phiA2)

Variable name: kappa
Variable type: subdomain then Add
Now click on the definition tab
Enter expression: (phiyA2*phixx-2*phix*phiy*phixy
+phiyy*phix"2)/(phixA2+phiyA2)"(3/2)
Variable name: rO
Variable type: subdomain then Add
Now click on the definition tab
Enter expression: rhod + rhoc*smhs

OK
Apply

Modeling of Multi-Phase Flow Using the Level Set Method 301

smhs (a hyperbolic tangent) is a common smooth approximant to the Heaviside
function. smdelta, similarly, is a smooth approximant to the Dirac delta
function. The prefactor on the Gaussian is for normalization - the quadrature
over the real line must be unity. It is potentially the case that weak terms could
be used to define point forces along the zero level set of phi, but the smooth
approximants are easier to code. kappa is the major component of the curvature
defined in (8.3). rO is the expression of the density as in (8.10).

For subdomain specifications, select the mode form Mulitiphysics and then pull
down the Subdomain menu. Select Subdomain settings.

Subdomain Mode
Select Incompressible N-S from Multiphysics
Select the Coefficient tab

0 Set p =rO, 77 =nu

Set F, =sigma*kappa*smdelta*phix/sqrt(phixA2+phiyA2)
Set Fy =sigma*kappa*smdelta*phiy/sqrt(phixA2+phiyA2)+r0*gy

0

Select Init tab

Select ‘phi’ tab
SetD =dadd

Click Stream line diffusion on

Set u=O, v=O and p=O
Click Apply and then OK
Select ChEM: Convection and diffusion from Multiphysics

0 SetR =O,u=uandv=v

Select Init tab
Click Stream line diffusion on

Set phi = $(l = 0) , see (8.12).
Click Apply and then OK

Now pull down the Solve menu and select the Parameters option.

Solver Parameters
Select Time dependent solver
Select Timestepping tab

Select fldaspk Timestepping algorithm

0

Enter in output times: 0:0.025:3

Define tolerance limits to 0.01
Click Apply, OK and then Solve

302 Process Modelling and Simulation with Finite Element Methods

T,mp = 0 1

MBX 1 0 9

1

0 6 4

0

3

0 5

M“ 0597 0 1

mx I52

1 4

1 2

1

06

0 4

0 2

0

0 2

0 4

0 6
0681

0 738

06

0 4

0 2

0

0 2

0 4

M,” 047s

Figure 8.2 Contour plot of with velocity field at different time steps.

The contour plots were generated by the “Copy to Figure” option on the Edit
Menu for different time steps. Figure 8.2 captures the rise of two drops in a
column that ultimately results in coalescence. The interface of the two drops is
represented by the contour plot at @ =O. The velocity field is also represented in
the above figure by activating the surface field for v velocity and the arrows
field. Two drops are initially separated by a distance equal to two times diameter
of drops and their motion under gravity is captured at different time steps. The
lower drop travels faster than the upper one, although two drops are of same
density and of uniform size. This can be explained by wake formation for the
upper drop. The lower drop becomes entrapped into the wake region of the
upper one and experiences the velocity field of the upper drop, thereby lowering
the effective velocity of the upper drop. Thus, two drops suspended freely rise in
a column, eventually coalesce and the subsequent coalesced drop rises again. In
this way, the motion of the interface of two drops can be monitored readily using
level set method in FEMLAB. Various other configurations of the approach of
the drops are discussed in the following sections.

Curvature Analysis: An Application

The results of a FEMLAB simulation that is run in the GUI can be exported to
MATLAB workspace by using “Export FEM structure as fem” from File Menu.

Modeling of Multi-Phase Flow Using the k v e l Set Method 303

The model m-file script shown below was saved as 'analysis.m', edited, and
executed from the MATLAB command line to generate the plot of standard
deviation and mean of Id as shown in Figure 8.2.

t= [l: 1211 ;

'cont', 'off', . . .
I contorder' , 2 , . . .
'edim', 2 , . . .
'solnum' , t, . . .
'phase', 0,. . .
'geomnurn' ,1, . . .
'dl' , 1, . . .
'intorder',4, . . .
' context ' , I local ') ;

'cont', 'off', . . .
'contorder',2, . . .
'edim', 2,. . .
'solnum', t, . . .
'phase', 0,. . .
'geomnurn',l,. . .
'dl', 1, . . .
'intorder',4, . . .
'context','local');

mlint=postint (fern, labs (kap) * (phi<O. 00015 & phi > - 0 . 0 0 0 1 5) I , . . .

v=postint(fem,'1*(phic0.00015 & phi >-0.00015) I , _ . .

ml=mlint./v;
plot (0.025*t,ml) ;
hold on
rn2int=postint(fern,' (abs(kap)*(phi<0.00015 & phi > - 0 . 0 0 0 1 5)) A 2 ' , . . .

'cont', 'off', . . .
'contorder',2, . . .
'edim', 2,. . .
'solnum', t,. . .
'phase', 0, . . .
'geomnurn' ,1, . . .
'dl', 1, . . .
'intorder',4, . . .

'context','local') ;
m2=m2int./v;
var=m2- (ml) . * 2 ;
sd=sqrt (var) ;
plot(O.OZS*t,sd) ;
hold off
save collisionlong.dat t ml sd -ascii;

The variables mlint , m2int and v approximate the numerators and
denominator of (8.12) and (8.13). The range of tolerances surrounding the $=o
contour were selected to weight the subdomain integration by contributions in a
narrow band surrounding the interface. It is to be noted that the variable 't' used
in above calculation is the solution number and varies from 0 to 121, since we
ran the simulation with time range 0:0.025:3.

304 Process Modelling and Simulation with Finite Element Methods

120

100

5 flo -
:
a 60
m

d 40

20

0
0 0 5 1 1 5 2 2 5

Time

Figure 8.3 Plot of standard deviation and mean value of Id with respect to time for the coalescence
of two drops under gravity. Left: E (solution tolerance)=0.0001. Right: E =0.0002.

The plots of standard deviation and mean of Id are shown in Figure 8.3 for two
different values of tolerance (commonly used in MATLAB as a variable ‘eps’)
0.0001 and 0.0002 respectively. The smaller the value of tolerance, the greater
the depth of the spike observed. Both the mean and standard deviation of the
curvature as estimated are sensitive to topological changes in the connectivity of
the domains. The greatest spike was observed at the time of coalescence that can
be attributed to the rupture of the interface or cusp formation.

8.4.2 Coalescence of acoustically suspended drops

The technique of acoustic levitation, using tuned sonic fields to oppose the drag
force on a droplet and levitate it, has been known for many years. The group of
Sadhal at USC have studied the phenomenon and its implications for droplet
dynamics for years (see [lo] and references therein). The coalescence of
acoustically suspended drops where the lower drop is rising and upper drop is
held stationary is simulated. Unlike the previous simulation where only half of
the domain was considered by assuming symmetry of the domain, the present
simulation is performed over the entire domain. Hence, the no-slip boundary
condition is applied to all the boundaries in all the modes of Multiphysics.
Change the initial condition to generate two drops as follows,

$(t = 0) = min(4- - 0.25, min((3 - y) , 4- - 0.25))
(8.16)

The only other change would be in the body force (gravity term) in the Navier-
Stokes equations which is modified in such a way that upper drop does not

Modeling of Multi-Phase Flow Using the Level Set Method 305

experience any gravitational force. This is the bare effect of the acoustic
levitation, without consideration of capillary-gravity waves induced on the free
surface by acoustic interactions. But, lower drop is rising in a column due to
buoyancy. The above mentioned changes can be incorporated by changing Fy
term in sub-domain settings Menu as follows:

Subdomain Mode

Select the Coefficient tab
Select Incompressible N-S from Multiphysics Menu

Set Fy = sigma*kappa*smdelta*phiy + ro*gy*(tanh(-(y-yc))>O)

Apply/OK

The new constant used yc is set to 2, i.e. y co-ordinate of the center of upper
bubble. The force term used in this way applies no gravity to upper drop whereas
lower drop experiences gravitational force equal to pg.

Numerical results are shown in Figure 8.3 in terms of contour plot of
level set function at @ = O and surface plot of velocity field. The two drops
initially separated by a distance equal to two times their diameter approach
quite faster than the previous simulation where both the drops were rising.
Eventually, two drops coalesce quickly and evolution of the interface of two
drops after the coalescence event has been brought out through this simulation.
Cusp formation is observed at time t=2 sec. The coalesced drop regains its
original shape as it rises in a column. The different shapes of two drops before
collision can be attributed to the fact that pressure is continuously decreasing
along the length of the column and hence radii of curvature would increase
according to the Young-Laplace equation. This can be validated by changing the
configuration so that pressure change is uniform as described in the following
section.

Curvature Analysis

The procedure outlined for the curvature analysis of the coalescence of two
drops under gravity is followed for the coalescence of acoustically suspended
drops. The fem structure is exported to the MATLAB workspace after the
simulation is over and MATLAB model m-file ana1ysis.m is run to study the
standard deviation and mean of Id as shown in the Figure 8.5.

Both the first and second moments of Id show a sharp peak at the time of
the coalescence, attributed to the rupture of the interface.

306 Process Modelling and Simulation with Finite Element Methods

3 -

2 5 -

2 -

1 5 -

1 -

0 5 -

n.

Time = 2

I / I I , , , , I

-25 -2 - 1 5 .1 -05 0 0 5 1

Time I 1

I , 1 , , , I , I , , , I
- 2 5 -2 -15 .1 -05 0 0 5 1 1 5 2 2 5

Mar 0 0 6 y

OC6

0 04

0 02

0

0 02

0 04

0 06

Mn 00555

Figure 8.4 Contour plot of @ with velocity field at different time steps for the coalescence of

acoustically suspended drops.

200

1 SO

160

140
c m

5 120
m

100

5 80

60

40

20

0

Lo

2

0 0 5 1 1 5 2 2 5 3
Time

Figure 8.5 Plot of standard deviation and mean value of Id with respect to time for the coalescence
of an acoustically suspended drop.

Modeling of Multi-Phase Flow Using the Level Set Method 307

8.4.3 Coalescence between two drops approaching each other

The coalescence between two drops approaching each other in opposing
directions can be achieved by defining a driving force that attracts two drops to
each other. This can be simulated by incorporating a driving force term in sub-
domain settings for Incompressible Navier-Stoke application mode.

Subdomain Mode

Select the Coefficient tab

Apply/OK

Select Incompressible N-S from Multiphysics Menu

Set Fy = sigma*kappa*smdelta*phiy + ro*gy*tanh(-(y-yc))

The new constant used ye is a midpoint of the line of centres of two drops and
set to 1.5. The force term defined in this manner applies force equal to pg when
(y-yc) < 0 and -pg when (y-yc)>O. Thus, upper and lower drop experiences
exactly equal force but in the opposite direction.

Computational results are represented in terms of a contour plot of the level
set function where @ =0, a surface plot for pressure field and arrows for velocity
field as shown in Figure 8.3. Two drops separated by a distance equal to two
times their diameter attract to each other, ultimately resulting in coalescence at
time t=2 sec. Cusp formation has been clearly brought out at that time step. The
coalesced drop regains its original shape at later time steps. The important
feature of this simulation is that symmetry is observed at the midplane between
the two drops.

The velocity field is also found to be symmetrical for both the drops which
retains after the coalescence event as well. Another important feature is that both
the drops are identical in their shape and size. This can be explained on the basis
of a surface plot of pressure that is found to be symmetrical around the midplane
between the two drops. Since the two drops experience same pressure force,
they follow the same change in radii of curvature. Also, less droplet deformation
is observed for the present simulation as compared to the earlier two cases. This
can also be attributed to lower magnitude of the pressure force.

Curvature Analysis

The curvature analysis performed for two drops approaching one another is
shown in Figure 8.7. The peak in standard deviation and mean value of Ild is
confirmed at the time of the coalescence. No other spikes were observed for the
present simulation because the deformation of the drops was found to be smaller
than that in the earlier two cases considered. Thus, it can be concluded that peaks
observed in the mean and standard deviation value of Ild are indeed due to the
rupture of the interface.

308 Process Modelling and Simulation with Finite Element Methods

3

2 5

2

1 5

1

0 5

0
2 5 2 1 5 1 05 0 0 5 1 1 5 2 2 5

1918

3

2

1

1

2

1289

Time = 1

Time = 5

Max 0284

0 25

0 2

0 15

0 1

0 05

0

405

0 1

0 15

0 2

ox
*In 0291

3 3 0 02

0015

001

0 1

008

0 0 6 2 5 2 5

0 04
2 2 om 0 om

1 5 1 5 0

O D 2 om
1

0 01

0015

0 02

OM

OD6

OM
0 5 0 5

0 0 1 0
2 5 2 1 5 1 0 6 0 0 5 1 1 5 2 2 5 M" 0107 2 5 2 1 5 1 0 5 o 0 5 I 1 5 2 2 5 Mn O m

Figure 8.6 Contour plot of f$ with velocity field at different time steps.

70

60

50
c 0
m
- -

40
m

u
(0

30
m

2
20

10

mean I - std deviation I

O 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5
Time

Figure 8.7 Plot of standard deviation and mean value of Id with respect to time for the coalescence
between two drops approaching one another.

Modeling of Multi-Phase Flow Using the Level Set Method 309

8.4.4 Multi-body coalescence

The coalescence between three drops is simulated assuming the symmetry of the
domain. Hence, only half of the domain is simulated in the present case defining
one boundary as an axis of symmetry.

The above system brings out the effect of horizontal offset amongst
interacting drops. In the present case, centers of drops are more than one radius
apart from each other. Two drops are initiated using following initial condition,

@(t = 0) = min(4- - 0.5, min((4 - y),J(x -0.75)* + (y -l)* - 0.5)) (8.17)

Above initial condition generates two uniform sized drops of radius 0.5 whose
centers are separated by a distance equal to 0.75. The present simulation is
similar to earlier one where two drops are traveling towards each other except
the horizontal offset. Hence, there is no other change in the formulation of the
problem than the initial condition. The contour plot of level set function at @ =

0, surface plot and arrows of velocity field are represented in Figure 8.8.

Mar 033

0 3

0 2

0 1

0

01

0 2

0 3

0 4

0 5

06

4

3 5

3

2 5

2

1 5

1

0 5

0
2 1 0 1 2 3 4 M n a M 7

d

3 5

3

2 5

2

1 5

1

0 5

0
-2 -1 0 1 2 3 4

Figure 8.8 Contour plot of 4 with velocity field at different time steps for three-body coalescence.

The interaction between drops with horizontal offset is found to be very different
from that without offset. The velocity field of the lower drop is found to be
diverted due to the influence of the velocity field of upper drop that is traveling

3 10 Process Modelling and Simulation with Finite Element Methods

downwards. Hence, the shape of rising drop changes drastically. The lower drop
almost skids downward traveling drop and changes the contact point between the
interacting drops. Finally, coalescence takes place at 3.8 seconds.

Thus, it is found that the contact point of the interacting drops is very
significant in the coalescence phenomenon. Different types of contacting
schemes are observed for different approaches considered in the present set of
simulations merely by changing the initial condition.

8.5 Summary

The level set method is extensively used in the present simulations to study
computationally the coalescence of droplets in a two-phase system. FEMLAB
handles computationally intensive multi-phase modeling with ease using its
multiphysics utility that allows the coupling of different physics into one problem
as demonstrated here for the level-set method. In the present simulations, the
coalescence phenomenon has been extensively studied using various
configurations for the approach of drops. The curvature analysis performed
captures the rupture of the interface at the time of the coalescence.

Acknowledgements

We acknowledge Per-Olof Persson for use of his FEMLAB code which was
modified appropriately to treat coalescence. We thank Peter Norgaard for
helpful discussions.

References

1. S. 0. Unverdi and G. Tryggvason, A front-tracking method for viscous,
incompressible, multi-fluid flows, J. Comput. Phys. 100,25 (1992).

2. J. M. Boulton-Stone and Blake, Gas bubbles bursting at a free surface,
J. Fluid Mech. 254,437 (1993).

3. W. J. Rider and D. B. Kothe, Reconstructing volume traclung, J . Comput.
Phys. 141, 112 (1998).

4. N. Takada, M. Misawa, A. Tomiyama and S. Fujiwara, Numerical
simulation of two- and three-dimensional two-phase fluid motion by lattice
Boltzmann method, Comp. Phys. Comm., 129,233 (2000).

5. M. Verschueren, F.N. van de Vosse, and H.E.H. Meijer, “Diffuse interface
modeling of thermocapillary flow instabilities in a Hele-Shaw cell,” J. Fluid
Mech. 434:153-166,2001.

Modeling of Multi-Phase Flow Using the Level Set Method 31 1

6. M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell and M. L.
Welcome, An adaptive level set approach for incompressible two-phase
flows, J. Comput. Phys. 148,81 (1999).

7. W. Shyy, Computational modeling for fluid flow and interfacial transport,
Elsevier, (1994).

8. W.B. Zimmerman, “Excitation of surface waves due to thermocapillary
effects on a stably stratified fluid layer.” Submitted to Journal of Fluid
Mechanics .

9. NL Kolev, “Fragmentation and coalescence dynamics in multiphase flows.”
Experimental Thermal and Fluid Science, 6:211-251, 1993.

10. H Zhao, SS Sadhal, Eh Trinh, “Singular perturbation analysis of an
acoustically levitated sphere: Flow about the velocity node” J Acoust Soc
Am 106 (2): 589-595,1999.

11. Sethian, J. A., Level set methods and fast marching methods, Cambridge
University Press, 1999.

This page intentionally left blank

Chapter 9

ELECTROKINETIC FLOW

W. B. J. ZIMMERMAN and J. M. MACINNES
Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Sheffield S1 3JD United Kingdom

E-mail: j . m. macinnes @ she$ ac. uk

This chapter explores the multiphysics modeling appropriate for electrokinetic flow in
microchannel networks. In setting up our case study, we learned how FEMLAB’s weak
boundary constraints are needed for coupled boundary conditions that incorporate non-
tangential boundary conditions. To illustrate the utility of weak boundary conditions in
accurate flux computations, we revisit the electrical capacitance tomography forward
problem defined in 17.3.2. After this simple example, we move on to implementing
more complicated weak boundary constraints in the electrokinetic flow model. The latter
explores FEMLAB’s guidelines for when to use a weak boundary constraint and when
they fail.

9.1 Introduction

The purpose of this chapter is to demonstrate the facility of setting up a model
for electrokinetic flow in FEMLAB. A cutting edge application for
electrokinetic flow is microfluidics, wherein small quantities of chemicals
(nanoliters) are transported “just-in-time’’ for complicated switching and
sequencing in a network of microchannels to achieve high reproducibility of
chemical reactions and compositional changes by tight control. Moving fluids
by physicochemical phenomena is especially important since it involves fast
response times and no moving mechanical parts that can become damaged.
There is a strong overlap between microfluidics and micromechanical machines
(MEMs). For instance, moving macromolecules adjacent to walls and side
channels as soft actuators is considered microfluidics, but these are also
molecular machines, but at a scale too small to be considered conventional
moving parts.

In order to set up even our simplest electrokinetic model, however,
multiphysics is essential - coupling electric potential, chemical transport, and
momentum transport (Navier-Stokes). Furthermore, a first approach introduces
some coupling through boundary conditions to approximate the electrochemical
boundary layer motion. Although this coupling is linear, we found that to get an
acceptable model in FEMLAB, the set up requires weak boundary constraints.

313

314 Process Modelling and Simulation with Finite Element Methods

Thus, in preparation for our model, a simple example illustrating how weak
boundary constraints can be used, in this case to compute boundary fluxes more
accurately, is shown in $9.2, with the example drawn from the forward ECT
problem of 57.3.2. In section $9.3, our “building block” 2-D electrokinetic flow
model is set out.

9.2 Weak Boundary Constraints: Revisiting ECT

The FEMLAB 2.3 User’s Guide and Introduction [l] has an excellent section on
modeling approaches, including a discussion of weak boundary constraints. The
section gives three primary reasons for using weak boundary constraints:

Very accurate flux computations
Handling nonlinear constraints
Implementing constraints using derivatives.

In this section, we discuss how to use the weak boundary constraint to compute
fluxes very accurately.

Before we do this, we need to re-visit the role of Lagrange multipliers in
boundary and auxiliary constraint satisfaction through the finite element method.
This was done in its full glorious detail in $2.3.1. Now, if you have Neumann
boundary conditions, on a boundary B, then there is nothing to do - these are
naturally computed using the FEM weak formulation as described in Chapter 2.
You can think of Neumann conditions as being “neutral” in that unless you
specify a constraint, they happen by default. So we will put it here simplistically
that on a given boundary B we have a nonlinear constraint r(@)=O, where 4 is the
dependent variable. A second quantity that FEMLAB utilizes is h, which is the
derivative of the constraint, i.e. h=-r’(@). If there are more than one dependent
variable, then h is a vector valued quantity (the gradient). The simplest form that
can be taken for the constraint is a linear function: r(4)=Q0 - 4, which is the
Dirichlet condition. In this case, h=l. You might have been wondering for
some time about what h and r were in specifying Dirichlet conditions.

If you select the Dirichlet radio button in general mode (boundary setting),
for instance, specify r=l-phi (in general form, h is automatically computed by
symbolic differentiation), then FEMLAB implements ideal boundary conditions
for that boundary, which adds two more contributions to the weak formulation of
the problem. These are subsequently discretized by the Galerkin method on the
finite element basis functions as described in $2.3:

(9.1)

Electrokinetic Flow 315

where 4 is the test function (conjugate to @, ds is the increment of arc length
along the curve B, and h is the Lagrange multiplier. The Galerkin method for
finite elements chooses the optimal value of h to balance the constraint r(@)=O
so that the error in satisfying it is minimized “in the energy” sense. Physically,
the Lagrange multiplier should have a meaning - inspection of (9.1) shows that it
has the same units as r h . In optimization theory, for instance, the Lagrange
multiplier conjugate to a constraint on supply of a commodity is the “shadow
price” for that supply - the price that would identically balance the supply and
demand. Since r(@) is a generalized Dirichlet condition, the Lagrange multiplier
is a generalized boundary flux of the field (dependent) variable.

In heat and mass transfer problems, the Lagrange multiplier conjugate to
fixed temperature or concentration on the boundary is the heat flux or mass flux
across the boundary. So the Lagrange multiplier h i s that value for each
individual element. In fluid dynamics, the flux of momentum across a boundary
is a force. But which force? It depends on the quantity rexpressed by the user
in general form: k f i . r for a Dirichlet condition with G=O. For the Navier-
Stokes equations, it is the viscous momentum dissipation in the PDE, so the
boundary flux is the viscous force on the boundary. In FEMLAB 3.0, there are
plans to include the pressure term in the r-vector as the default and to leave the
current arrangement (viscous stress) as an option in the application mode. In
general form, the PDE which we compute is the divergence of r($)), so the flux
computed by h is the normal component of l-. To illustrate this, we will revisit
the ECT forward problem shown in $7.3.2.

Example: Very accurate flux computations in the ECT forward problem

If you recall, this problem computes the boundary fluxes (charges) across the
electrodes held at given voltages on the boundary of a cylinder with badly
conducting rods placed axially when the duct is full of a much better conducting
substance. The heat transfer analogue is that the electrode surfaces are held at
fixed temperatures and we compute the heat flux across these surfaces. All other
external boundaries are insulated (no flux) and internal boundaries have
continuous temperature and flux. Rather than set up the whole problem again,
we start by reading in the MAT file ect.mat with the old solution (see Figure
7. I). We will investigate the accuracy of the original computations of flux with
two different meshes (coarse and fine) and then compare with the flux
calculation by the weak boundary constraint using the Lagrange multiplier.
Figure 9.1 shows the original coarse mesh used to compute the boundary fluxes
across the electrode surfaces.

316 Process Modelling and Simulation with Finite Element Methods

Figure 9.1 Coarse (2073 elements) and fine (8292) meshes used for ECT flux computations.

In FEMLAB, load ect.mat (file menu, Open). Pull down the Multiphysics menu
from the menu bar and select Add/Edit modes. With ect.mat, we should
already have a Geoml: PDE general form in place on the right hand side list.

Add/Edit Modes
Select “Weak boundary constraint”

0 Apply/OK
0 >>

This now defines the mode wcl (default name) and dependent variable lm
(default name).

Back in the FEMLAB GUI main window, select Boundary Mode and
Boundary Settings for mode wcl.

Boundary Mode and Boundary Settings (wcl)
Select domain 5 , check active in this
subdomain, type ‘phi’ into the constraint
variable entry box, and Apply
Select domain 6, check active in this
subdomain, type ‘phi’ into the constraint
variable entry box, and Apply
Select domain 21, check active in this
subdomain, type ‘phi’ into the constraint
variable entry box, and Apply
Select domain 24, check active in this
subdomain, type ‘phi’ into the constraint
variable entry box, and Apply
OK

Boundaries 5,6, and 21 are held at ground potential (phi=O) and boundary 24 is
the source electrode, held at unit potential (phi=l). Note that you have accepted
the non-ideal dim constraint as the default for all four boundary segments.

Electrokinetic Flow 311

Equation (9.1) defined the ideal dim constraint. So what is this? The analogous
contributions to the weak formulation are:

The derivative of the constraint function (h) is now missing from the second
contribution in (9.2). It is argued that (9.2) better “balances” the constraint
r(@)=O in the case when Y is nonlinear or contains derivatives of @, which are not
as accurately estimated by FEM for their contribution to h.

Now use the triangle on the toolbar (mesh) then select solve (=). ect.mat was a
linear problem, so the linear solver is the default. Ours computed so rapidly that
we did not notice the solution time. Enter post mode and compute the following:

Post Mode
Boundary integration: bnd 24,21,5,6 nx*phix+ny*phiy
Boundary integration: bnd 24,21,5,6 lm

Since writing Chapter 7, we have learned that nx and ny are symbols available
on the boundary to compute the components of the normal vector in the
coordinate directions. Thus the first calculation is equivalent to the standard
formula

(9.3)
dn

where the unit outward pointing normal is used. We did this “by hand” since we
had defined the normal vector as a constant, even though the sector boundary
was slightly curved in defining the geometry. Now refine the mesh using the
standard toolbar - inverted triangle in the triangle. Recompute the boundary
integrations. Table 9.1 gives the summary data:

Table 9.1
methods.

Comparison of the coarse and fine mesh computations of boundary fluxes by three

318 Process Modelling and Simulation with Finite Element Methods

Boundary 24 is the “source” boundary. Since the lm computation gives it a
negative boundary integral, we should interpret it as the flux out of the domain
across that boundary. The other two methods oppose the sign of the lm method
in every instance, they have the interpretation of the flux into the domain across
that boundary. Slight numerical differences occur due to the (nx,ny) method and
“by hand” (7.3.2) having errors on the order of the grid scale. The final row is
the sum of all the boundary fluxes and is consistent only for the lm method
giving exactly zero to five decimal places. The others have cumulative errors on
the order of the grid scale. Conservation of electric charge should give flux in
equals flux out, or net flux is zero. Clearly the percentage change upon refining
the mesh by approximately four-fold the number of elements results in an order
of magnitude less change in the Im method flux estimates than in the direct
computation. As the values of the different methods are approaching upon
refining the mesh, it is clear that the Lagrange Multiplier estimate of the flux is
substantially better than the direct computation. The Lagrange multiplier is an
“integrated balance” for the constraint, and in FEM, integrated quantities are
better approximated than differentiated quantities in general. This is a feature of
the weak formulation of the PDE.

The FEMLAB 2.3 User’s Guide and Introduction [l , p. 1-4001 gives a laundry
list of caveats for the use of weak boundary constraints. We reproduce them
here for completeness, and, on advice from COMSOL, update them, now that we
have a concrete example for discussion:

Strong and weak constraints should not be mixed on adjacent
boundaries, i.e. those sharing common nodes.
You must always have a constraint on boundaries when you enable the
weak boundary constraint. N.B. only Dirichlet-type boundary
conditions count as a constraint. Neumann conditions, being natural to
FEM, even if inhomogeneous, do not count as a constraint.
Scale your equations so that all coupled quantities are the same order,
to avoid convergence difficulties. Automatic scaling of variables, a
solver parameters option, does this by default.
Discontinuous constraints are only satisfied by theoretically infinite
Lagrange multipliers. In practice, this leads to large oscillations.
Be careful not to use different element shape types between boundary
and application modes. Derivative only boundary conditions should
have lower order elements (same shape) than the “bulk.”
Iterative solvers do not like the structure of the matrices (not sparse
enough) so use incomplete LU factorization as the preconditioner for
the iterative solver.

Electrokinetic Flow 319

Now for our clarifications of this list in light of our example:

Strong and weak constraints should not be mixed on adjacent
boundaries. But Neurnann boundary conditions do not count as strong
(automatically weak), so they can be mixed on adjacent boundaries.
Our “electrodes” were surrounded by Neumann BC segments with no
apparent difficulty. This is consistent with the policy that Neumann
boundary conditions do not count as a constraint for the purposes
of a weak boundary constraint.
You must always have a constraint on boundaries when you enable the
weak boundary constraint. We used three zero boundary conditions for
boundaries bnds 5,6, 21 and still got the correct answer. So even a
homogeneous constraint still counts as a constraint.

9.3 Electrokinetic Flow

9.3.1 Background

Electrokinetic flow is produced by the interaction of an electric field and charged
(ion) species in a liquid. Two distinct interactions are present: the electric force
on the liquid in the double layer region adjacent to wall surfaces where there is a
net charge and the movement of individual ions in the bulk of the flow (outside
the double layer region) where there is generally no net charge. The double
layer may be taken as infinitesimal for channel sizes of interest (say greater than
about 1 pm) and its effect on the flow is then equivalent (MacInnes, 2002) to
application of the boundary conditions for velocity, u ; , electric field, 4, and

mass fraction of a relevant chemical species, Y :

where ni is the unit normal vector to the wall surface.
The system of equations that must be solved comprises the momentum

equation, the continuity of mass equation, the charge continuity equation and a
species equation. A simplest case may be expressed in non-dimensional form by

Momentum transport and continuity (Navier-Stokes):

320 Process Modelling and Simulation with Finite Element Methods

Species transport including electrophoresis:

(9.6)

(9.7)

The electric field satisfying Eq 9.7 must also satisfy Gauss’ law (c.f. equation
7.1), which becomes an equation determining charge density as a function of
position in the flow. In the typical conditions of electrokinetic flow, the charge
density may be taken as negligible for purposes of both charge conservation (Eq
9.7) and the momentum balance (Eq 9.5). The electrical conductivity and zeta
potential may depend on concentration of species Y and linear relations are
assumed here: 0 = 1 + Or (1 - Y) and [= -1 - c, (1 - Y) , where subscript
‘r’ indicates the ratio of the property in the two pure solutions involved in the
flows considered.

Boundary conditions at the flow inlets are that electric potential, pressure
and species concentration must be specified, and at flow outlets electric potential
and pressure must be specified. Species concentration is not known at the
boundary and an approximation regarding species diffusion, the only term that
connects the species field within the domain to the species distribution on the
outflow boundary, is required. As usual, the species diffusion is neglected at the
outflow boundary, i.e. a Neumann boundary condition just on the diffusion part
of the flux term r is used.

The electric field is taken as quasi-steady, that is the electric field adjusts
practically instantly to changes in the velocity and concentration. The above
equations represent a generic problem providing a test of the numerical
implementation which when verified may allow computation of any particular
electrokinetic flow conditions. For the test implementation, suggested
coefficient values are 1/Re = 30, 1 / Pe = 0.03, c, = 1 (no variation in wall

zeta potential), z = 0 (no charge on species Y) and 0, = 1 (no variation in
electrical conductivity).

9.3.2 Problem set up

The basic problem one can solve is the propagation of a concentration front
along a channel. Initially, a sharp front is placed at mid channel and

Charge balance:

Electrokinetic Flow 321

the evolution of the front is then computed in time. The test problem is
two-dimensional and the channel width can be taken as 1 unit, with the length
equal to 6 units.

There are a number of distinct steps in problem complexity. (1) With the
parameter values suggested above, the electric field will be uniform and in the
direction of the channel. The concentration will move with a uniform flow with
the front thickening from diffusion. (2) Setting <, # 1 gives a non-uniform
wall zeta potential with walls exposed to full concentration of the computed
species having zeta potential <, and those exposed to zero concentration

< = - 1 , giving variation of slip boundary velocity through the first of boundary
conditions 9.4. The electric field remains uniform and in the channel direction,
but the velocity field will be altered. The concentration front will be modified
from the pure diffusion case by the non-uniform velocity field. (3) Setting
z = &I and p = 1 will introduce electrophoresis. The computed species will
translate in the channel direction in addition to being moved by the liquid
velocity. (4) Finally, setting Or # 1 introduces non-uniform electrical
conductivity. This leads to changes in the electric field associated with changes
in concentration (Y) so the electric field is no longer uniform or, where
concentration gradient is not everywhere in the direction of the channel, in the
channel direction.

Wa II

Wa II
Figure 9.2 Problem definition in a nutshell.

9.3.3 FEMLAB implementation

There are application modes for conductive media, convection and diffusion, and
the Navier-Stokes equations. To have best knowledge of what the computation
entails, we start with the Navier-Stokes equations and add two general modes for
(9.6) and (9.7).

322 Process Modelling and Simulation with Finite Element Methods

Load up FEMLAB and in the Model Navigator, Multiphysics tab, set up as
follows:

Model Navigator
Select Multiphysics tab, 2D
Select Incompressible Navier-Stokes variables u v p; ns mode >>
Select PDE general form, variable Y; species mode >>
Select PDE general form, variable phi; potential mode >>
Solver Type: time dependent
OK

Accept the default element shape and order for each mode.

Pull down the options menu and select Add/Edit constants. The AddEdit
constants dialog box appears.

AddEdit Constants

Pec 30
Re 0.03
zel 1
betael 1
zetar 1
sigr 1

Define as follows:

Pull down the Options menu and set the grid to (-1,4) x (-1,l). Pull down the
Draw menu.

Draw Mode
Select Draw Rectangle from the palette on the left.
Enter points (O,O), (3,0), (3,0.5), (0,OS). Click on the points to be sure
that you snapped to the grid or to edit them.

Apply/OK

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain r F da
Modelsettings
Subdomain 1
(ns mode)
Subdomain 1 -(l/Pec)*Yx-betael*zel*Y*phix -u*Yx-v*Yy 1
(species mode) (space delimiter)

p = 1; 7 = 1Re ; Fx = 0; Fy = 0

-(l/Pec)*Yy-betael*zel*Y *phiy

Electrokinetic Flow

bnd 1
outflowtpressure
p=o

323

bnd 2 bnd 3 bnd 4
u = zeta*phix u = zeta*phix outflowtpressure
v = zeta*phiy v = zeta*phiy p=o

0

bnd 1
Dirichlet
G = 0 ; R = - Y

0

bnd 2 bnd 3 bnd 4
Neumann Neumann Neumann
G = O G = O G = betael*zel*Y*phix

Init tab Y(tO) = 1
Subdomain 1 -sig*phix -sig*phiy
(potential mode)

0 Apply I OK

bnd 1 1 bnd2 1 bnd3 I bnd4
Dirichlet I Neumann I Neumann 1 Dirichlet I G = 0 ; R = 3 - p h i I G = O I G = O 1 G=O; R = -phi

Accept the standard mesh parameters and hit the mesh button on the toolbar
(triangle). 87 nodes and 136 elements are created for us. Note that to produce
the desired Neumann boundary condition at the outlet boundary for species, G is
set to the expression that precisely eliminates the electrophoretic term from r in
the species equation.

Now for the boundary cconditions.
Boundary Settings.

Note the space delimiter is necessary to specify T as a vector in species mode
and potential mode. There are few loose ends to tie up. Two expressions above
are undefined. As we are already in the Subdomain Mode, it is convenient to
define them now. Pull down the options menu and select Add/Edit
expressions. The Add/Edit expressions dialog box appears.

324 Process Modelling and Simulation with Finite Element Methods

Pull down the Solver menu and select Solver Parameters.

Solver Parameters
0 Click on the Settings button under “Scaling of variables.” Check the

None option. OK
Select the timestepping tab. Set output times to 0:O.l: 1 (default)
Set the timestepping algorithm to fldaspk
Set absolute tolerance: u 0.01 v 0.01 p Inf Y 0.001 phi 0.001 0

Apply/OK

Now a warning. This is not going to work. Just to verify it, try solving and take
a break for five minutes. You will come back to find little solution progress has
been made. Cancel the computation.

Where does the model go off the rails? We tried the usual suspects - system is
stiff? So we tried the stiff solver (ode23s)! System is differential-algebraic, so
we tried a dae solver (fldaspk). No good. Reduce the time step. No good.
When reduced to a ridiculously small time step, we did get a converged solution
after ages of waiting. Remember, this is a small mesh (compare with ECT
problem in §9.2!).

We foreshadowed the problem in Chapter 7 and in 09.1, so no prizes for
guessing it involves weak boundary constraints. The problem is that the
standard Multiphysics couplings are not picking up the boundary couplings, even
though they are linear or pseudo-linear, in (9.4). The top and bottom velocity
boundary conditions couple to the electric field (gradient phi) and the outlet
species concentration does as well. The latter, though pseudo-linear, is
eventually a nonlinear term, feeding back both species and field strength
quadratically.

Our prescription, following the ECT example in $9.2, is to add two weak
boundary constraints; one for each velocity.

Pull down the Multiphysics menu from the menu bar and select Add/Edit
modes. We should already have ns, species, and potential in place on the right
hand side list.

Admdit Modes
Select “Weak boundary constraint”

Select “Weak boundary constraint”
0

Name the mode wcu and the variable lmu>>

Name the mode wcv and the variable lmv>>
Apply/OK

Electrokinetic Flow 325

Ths now defines the mode wcu and wcv and dependent variables Imu and lmv.
We could do this slightly tidier with one weak boundary constraint with two
variables. Back in the FEMLAB GUI main window, select Boundary Mode
and Boundary Settings for mode wcu and then mode wcv.

Boundary Mode and Boundary Settings
Mode wcu. Select domain 2 and 3, check
active in this subdomain, type ‘u’ into the
constraint variable entry box, and Apply
Mode wcv. Select domain 2 and 3 , check
active in this subdomain, type ‘v’ into the
constraint variable entry box, and Apply
OK

NOW it is safe to click on the Solve (=) toolbar button. It still takes some
substantial time to make progress in this model - the coupling does not help the
sparseness of the matrix assembled - but timestepping does proceed to solution
in 7 minutes. A Pentium I11 866Hz produced the first output time step in 4
minutes.

Figure 9.3 shows all the information rolled up into one plot for the final
time t=l. By this time, all streamlines are parallel and velocity vectors
uniform - flat profile. The spreading of concentration and speeding up of
the flow are all driven by the electric field, which is now apparently uniform
in magnitude. A few cross plots (see Figure 9.4) show that the steady state
electric field relaxes its transients within the first output time and remains
constant thereafter (phi is linear for all times after t=0.1). As expected,
electrokmetic flow is dragged along by its boundary layer coupling to the
electric field.

But why did this recipe work? Of course we tried everything we could think
of. For instance, we tried adding an additional time dependence in the
electrostatic potential equation, da=0.001, as an attempt to overcome the
stiffness of instantaneous relaxation to electrostatic equilibrium. But the final
result uses weak boundary conditions for the side wall Navier-Stokes velocities
which are linearly coupled to the electric field, but not for the outlet species
condition which is nonlinearly coupled to concentration and electric field. We
tried some variations on the species mode:

Trial 1 : No weak boundary constraint (general form) - apparently fine
Trial 2: Weak boundary constraint (general form) - does not work
Trial 3: Weak boundary constraint (weak form) - does not work

326 Process Modelling and Simulation with Finite Element Methods

Time=l Surface: Y
Contour: phi Arrow:Velocity vector
1 _I. II. I ! : 2

. 0 8 - ~ . .:. .:. :
.:. ,;

0.6 -1..

-0.6 .;.

-0 8 { .

. : :

.:I..!. : ;. . . . -

-:. : ;: -1
0 0.5 1 1.5 2 2.5 3
I I

Max 3 Max 1

n2
0 9

0 8

0 7

0 6

0 5

0 4

0 3

0 2

0 1

n
Min. 0 Min: -0.OC I1 03

Figure 9.3 Combined concentration (Y, color), electric potential (phi, contour), and velocity vector
(u. v, arrow) plot. Coupling on the boundary of species electrophoresis/diffusion with electric field
drags the fluid along.

2 5 r

I

I

1

2 0 8

r

0 6

0 4

1 5 - 1

l . \

,
0 2

0 5 - 1

0

Arc Lenglh Arc Length

Figure 9.4 Histories of electric potential (phi) and species concentration Y along boundary 2 (wall).

So the first question is why does our recipe work? 39.2 supposes three reasons
for implementing weak boundary constraints. Our application satisfies the final
two:

(1) Handling nonlinear constraints

The nonlinear solver in FEMLAB handles linear or nearly linear standard
constraints. Note well, however, that Neumann conditions are not considered a
constraint in this context. Weak constraints can include nonlinearities because

Electrokinetic Flow 327

they contribute to the stiffness matrix and residual instead of the constraint
matrices [l]. So one expects that the outlet species concentration, though
nonlinear, may be treated satisfactorily by the standard handling of constraints.
Very simply, as a Neumann condition, it does not count as a weak boundary
constraint - it is naturally in FEM (see chapter 2) so it automatically is treated
correctly.

(2) Implementing constraints using derivatives

In FEMLAB 2.2 and later, the derivatives of the dependent variables are
available also on the boundary. Constraints on only the tangential component of
the derivative work when using standard constraints, whereas here it is necessary
to use a weak constraint to be able to handle non-tangential constraints (the
velocity BCs on the walls).

Condition (3) is clearly satisfied, yet condition (2) is not violated with the caveat
that Neumann constraints do not count. We should not need to use a weak
boundary constraint on the outlet boundary (bnd 4) for the species transport
equation, we did not, and it works. When we tried a weak boundary constraint,
it failed.

From (9.6), we defined for our species general mode

as the straightforward way of dealing with the electrophoretic term.
Consequently, our boundary condition on the outlet takes the form

(9.9)

Equation (9.9) is a non-zero Neumann condition with regard to the flux I-. But
since Neumann conditions do not count as constraints, the standard BC works
fine.

Figure 9.5 shows convincingly that the expected value with uniform Y and phix
on the outlet boundary is achieved by the model at all times.

9.3.4 Links to physical boundaries

Current microchannel devices may consist of many distinct channel segments
joined at several junctions. Future ones may well comprise hundreds of
segments joined at a similar number of junctions. Detailed computation of the
flow in such a system is unlikely to be feasible for some time to come and,
indeed, is probably not desirable. Rather, an approach in which a particular
junction of interest or perhaps an evolving mixing zone such as that considered
in MacInnes et al. (2003) is probably appropriate. The approach emerges from

328 Process Modelling and Simulation with Finite Element Methods

0

-0 2

-0 4

x
L
-
P -0 6 z
N
i : -08
I

(Y II

-1

-1 2

-1 4

betael*zel*Y*p h ix

I

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1
Arc Length

Figure 9.5
(bnd 4).

Neumann boundary term for all output times (identical) along the outlet boundary

the fact that electrokinetic flows in microchannel networks virtually always are
characterized by very low Reynolds number, Re << 1. In channel segments of
uniform section and liquid and wall properties, the flow is developed along the
entire segment length except for a region within about one channel width of
junctions or other disturbances to uniformity. If the segment is many channel
widths in length, it is a good approximation to neglect the junction effects and
one can write linear relations between pressure and electric potential differences
and the liquid volume flow rate, Q , and the charge flow rate, Z :

OA
fAs As As

(9.10)
ReR2A @

- A p + - A $ = Q and - -A$=Z

These equations are coupled to the detailed flow solution through the liquid and
charge flow rates. We will consider the specific example of an electrokinetic
switching at a ‘Y’ junction in the arrangement shown in Figure 9.6. By changing
voltages at reservoirs A, B and C in an alternating pattern, ‘slugs’ of the liquid
fed in at A interspersed with the liquid fed in at B will be formed in the channel
leading to C. No property non-uniformity will be present so the zeta potential
and conductivity are uniform over each channel segment. We wish only
to compute the flow in the vicinity of the junction where slug formation
takes place.

Electrokinetic Flow 329

0

P c '

Figure 9.6. The simple network considered.

The 'Y' junction domain is computed in detail with algebraic relations
linking to the known boundary conditions at reservoirs A, B and C to provide the
boundary conditions at a, b and c. In the case of non-uniform composition in
channel segment C, a one-dimensional pie must be solved for the species
composition to provide the link to downstream conditions.

The boundary conditions at the junction flow boundaries a , b and c come
from the network flow equations linking junction boundary conditions to the
known conditions of the reservoirs connected up to the network. In the simple
case considered here (where R = A = l), the linking equations for boundary a are

and

(9.1

where Q, and I , are the flow rates at boundary a given in terms of computed

conditions on that boundary by

Precisely similar relations result at boundaries b and c.

330 Process Modelling and Simulation with Finite Element Methods

Example: Y-junction electrokinetic valve

The physics of this problem is identical to the microchannel flow in $9.3.1,
equation (9.4)-(9.7), but the geometry as shown in Figure 9.6 is different. We
recommend starting this example from the MAT-file for that section, and to edit
the geometry in Draw mode. Delete the old geometry and start with a fresh
plane. The geometry may be formed from a composite of three rectangular
solids rotated to the correct relative positions and orientations. Here, the
alternative approach is used in which the line command to draw segments
approximating the exact geometry, coercing the closed curve to a solid, and then
editing the location of the vertices to achieve the desired symmetry. The vertices
of the rectangular “spokes” taxed our recall of high school analytic geometry.
Once the vertices of the equilateral triangle are placed at {(1,-0.5),
(1,0.5),(0.133977,0)), the six vertices of the three rectangular sections are
determined from requiring that the slopes be appropriate - { + 1 ,-I ,0) , The last is
the easiest, with vertices at (3,-0.5) and (3 ,OS) for a channel of length two. All
other channels should have the same length at least initially. So, for example,
the lowest vertex is found by satisfying the distance formula and the slope
constraint simultaneously:

y1 +0.5 = I
x, -1

(9.13)

There are two solutions to this quadratic system. The one we are after is
(3, y ,) =(~.414214,1.91421). We coded this system of equations in MATLAB
since the algebra is straightforward, though tedious. Follow these steps in Draw
Mode:

Pull down the Draw menu.

Draw Mode

Enter points buy clicking on them and dragging the line to the next point in
the list:

Set axidgrid settings to the domain [-3,3]x[-2,2].
Select Draw Line from the palette on the left.

(l,-O.S), (3,-0.5), (3,0.5), (1,O.S),(-O.414214,1.91421), (-1.28024,1.41421),
(0.133977,0),(-1.28024,-1.41421),(-0.414214,-1.91421), (1 ,-0.5)
It is OK to enter points near these. After the figure is drawn, click on the
points to edit them.

Under the drawn menu, select Coerce Objects to Solid

Electrokinetic Flow 33 1

bnd 1,3
outflowlpressure
p=o

bnd 2,4,5,6,7,8 bnd 9
u = zeta*phix outflowlpressure
v = zeta*phiy p=o

potential mode
I bnd 1,3 I bnd2,4,5,6,7,8 I bnd9 1

species mode
bnd 1,3 bnd 2,4,5,6,7,8
Dirichlet Neumann
G = 0 ; R = - Y G = O

bnd 9
Neumann
G = betael*zel*Y*phix

Subdomain r F da
Modelsettings
Subdomain 1 p = l ; q = l / R e ; Fx=O; Fy=O
(ns mode)
Subdomain 1 -(l/Pec)*Yx-betael*zel*Y*phix -u*Yx-v*Yy 1
(species mode) (space delimiter)

-(l/Pec)*Yy-betael*zel*Y *phiy

Dirichlet
G = 0 ; R=5-phi

Init tab Y(t0) = 1
Subdomain 1 -sig*phix -sig*phiy 0 0
(potential mode)

0 Apply I OK

The constants and expressions were made geometry-wide through geoml , so
they are inherited. We also inherit the weak boundary modes wcu and wcv, but
need to make the new assignments.

Neumann Dirichlet
G = O G=O; R = -phi

We now need to reconfigure our boundary conditions and PDE coefficients to
reflect the new geometry. In our model, the boundary segment number
assignments are 1,3 (inlet), 2,4,5,6,7,8 (side walls), 9 (outlet),. Pull down the
Boundary menu and select Boundary Settings. In parallel with the previous
set up, make the following assignments:

The Subdomain mode/settings are identical as before, but still need to be
made, since we threw out the previous subdomain, and with it, its subdomain
settings:

332 Process Modelling and Simulation with Finite Element Methods

Boundary Mode and Boundary Settings
Mode wcu. Select domain 2,443, check
active in this subdomain, type ‘u’ into the
constraint variable entry box, and Apply
Mode wcv. Select domain 2,4-8, check
active in this subdomain, type ‘v’ into the
constraint variable entry box, and Apply
OK

Before solving the time evolution, we are going to try a new trick to improve
convergence. The biggest problem that was making the previous simulation
slow was the rapid change in the velocity and electric fields required in the first
few instances from the initial condition (no field, no flow) to practically
pseudosteady flow and field. The viscous and dielectric response times are
much faster than the diffusive and convective time scales, so this problem is
inherently stiff. In the computational modeling of the Navier-Stokes equations
for incompressible flow, this problem is encountered for the pressure. Since in
the incompressible approximation, sound speed is infinite, the pressure field
adjusts instantaneously to changes in velocity. Computationally, time stepping
over such widely different time scales leads to problems with stiffness and slow
convergence, requiring miniscule time steps. The SIMPLE algorithm (Patankar,
1980) circumvented this pitfall by staging the time stepping of the velocity with
rapid solution to the pressure field consistent with mass conservation and the
current velocity field by solving a separate elliptic equation for the pressure - the
Lighthill Poisson equation. The difference is that the corrections to the last
pressure field are not found - small changes on the order of the time step -- but
rather the pressure can be wholly different from that at the previous time step.
Instantaneous changes in the pressure that depend on the field everywhere in the
domain are thus catered for, and the Navier-Stokes simulation is no longer stiff.
The FEMLAB Navier-Stokes application mode has this fast Poisson solver for
pressure built in. But our electrostatic potential mode does not. So even though
@ should, in principle, change instantaneously to applied alterations in voltages,
which should change the slip velocity instantaneously, the ns mode will respond
on the incompressible time scale, but the electric field needs to be relaxed. So to
mimic the SIMPLE algorithm, we need to implement a fast elliptic solver for
flow and electric field while freezing the concentration profile. Once the
velocity field and electric field have been established, we can release the mass
transport. Our no electrokinetic relaxation time in the potential mode is
necessary for the model to advance steadily with only small changes to u,v,p and
phi at each time step. The fast elliptic step overcomes the rapid relaxation time
needed for abrupt changes in the electric field.

Electrokinetic Flow 333

Surface: Y Arrow: velocity vectors !?

1 5

1

0 5

0

-0 5

-1

-1 5

-2
-2 -1 0 1 2 3 4

4 762
4 524
4 286
4 048
3 81
3 571
3 333
3 035
2 857
2 619
2 381
2 143
1 905
1 667
1 429
119
0 3524
0 7143
0 4762
0 2381

Min 0

Figure 9.7 Stationary solution for flow field and potential lines from the initial conditions (Y=1
everywhere) and boundary potentials imposed, such that the pseudosteady flow and electric fields
are achieved instantaneously after imposition of the boundary potentials.

So how do we make this initial fast elliptic step? -- By selective solution of the
equations. Pull down the Solver menu and select Solver Parameters.

Solver Parameters
0

0

0

Click on the Multiphysics tab
Select all modes but species and Apply.
Click on the general tab.
Select stationary nonlinear. Apply / Solve

If you have difficulty with selecting the combination o f modes, use variations of
holding down the shift key or the control key, which have their standard
Windows effect. Note that the MATLAB window has shown that it takes three
Newton iterations to arrive at the converged profile, shown in Figure 9.7, for
contours of phi and flow along velocity vector arrows as shown. We can now
turn on the mass transport equations and let the transient solution begin. Pull
down the Solver menu and select Solver Parameters.

Solver Parameters
Click on the Multiphysics tab

0 Select all modes and Apply.
0 Click on the general tab.
0 Select time dependent solver.

Apply/OK

334 Process Modelling and Simulation with Finite Element Methods

Now select the Restart button on the toolbar. The initial condition now has the
pseudosteady velocity and electric fields set up. After the solution, which takes
about six minutes on a PI11 866MHz Intel machine, use Post mode/Plot
parameters to set up the surface color plot of species Y, the contour plot for
potential lines, and the arrow plot for velocity vectors. This should resemble
Figure 9.8. Then animate and watch the streams merge and flow out. We can see
that the final velocity and potential fields are unchanged from those set up in the
initial “fast elliptic solver” step. This would not be true if the conductive
properties of the fluid or viscosity were concentration dependent. The local
concentration profile would then globally affect the potential field, thus
modifying the velocity field, which in turn disperses the fluid differently. Such
highly coupled electrokinetic flows are well suited to numerical analysis by a
modest change to this coding - adding the concentration coupling to the
conductivity according to a mixture rule. Zirnmerman and Homsy treat the
mixture rule for concentration dependency of viscosity, for instance, in the
instability of viscous fingering in porous media [2].

Y-Junction Switcher: An Application of Linkages Through Coupling Variables

As described in Figure 9.6, by including relatively long channels to the
reservoirs of the component species where electric potentials are applied, the
flow and the electric potential can be described by algebraic relations for the
inlet and outlet dependencies. We implement these physical linkages between
nodes a and A, for instance, using the appropriately named coupling variables.
Originally, we set up a pseudo 0-D geometry (geom2 as in Chapters four and
seven), but on advice from COMSOL consultants, realized that the conceptual 0-
D domain was not needed - it can all be done in coupling variables. Using the
model MAT-file of the last section, set up the following twelve coupling
variables:

Select AddEdit Coupling Variables from the Options Menu.

scalar add Qa. Source Geom 1, subdomain 1, boundary 3.
Integrand: zetal *(PHIA-volta)/dsa-Re*(PA-bara)/f/dsa
Integration order: 2
Destination Geom 1 bnd 3 Check “Active in this domain” box.
scalar add Qb. Source Geom 1, subdomain 1, boundary 1.
Integrand: zeta 1 *(PHIB-voltb)/dsb-Re*(PB-barb)/f/dsb
Integration order: 2
Destination Geom 1 bnd 1 Check “Active in this domain” box.
scalar add Qc. Source Geom 1, subdomain 1, boundary 9.
Integrand: zetal “(voltc-PHIC)/dsc-Re*(PC-barc)/f/dsc

Electrokinetic Flow 335

Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.
scalar add Ia. Source Geom 1, subdomain 1, boundary 3.
Integrand: sigr*(PHIA-volta)/dsa
Integration order: 2
Destination Geom 1 bnd 3 Check “Active in this domain” box.
scalar add Ib. Source Geom 1, subdomain 1, boundary 1.
Integrand: sigr*(PHIB-voltb)/dsb
Integration order: 2
Destination Geom 1 bnd 1 Check “Active in this domain” box.
scalar add Ic. Source Geom 1, subdomain 1, boundary 9.
Integrand: sigr*(PHIC-voltc)/dsc
Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.
scalar add bara. Source Geom 1, subdomain 1, boundary 3.
Integrand: p
Integration order: 2
Destination Geom 1 bnd 3 Check “Active in this domain” box.
scalar add barb. Source Geom 1, subdomain 1, boundary 1.
Integrand: p
Integration order: 2
Destination Geom 1 bnd 1 Check “Active in this domain” box.
scalar add barc. Source Geom 1, subdomain 1, boundary 9.
Integrand: p
Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.
scalar add volta. Source Geom 1, subdomain 1, boundary 3.
Integrand: phi
Integration order: 2
Destination Geom 1 bnd 3 Check “Active in this domain” box.
scalar add voltb. Source Geom 1, subdomain 1, boundary 1.
Integrand: phi
Integration order: 2
Destination Geom 1 bnd 1 Check “Active in this domain” box.
scalar add voltc. Source Geom 1, subdomain 1, boundary 9.
Integrand: phi
Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.

That was pretty long-winded to evaluate (9.1 1) in a straightforward way. Now
we need to implement the appropriate boundary conditions from the “flux type
variables”: Q’s (volume flux) and 1’s (current flux): Pull down the Boundary

336 Process Modelling and Simulation with Finite Element Methods

bnd 1 bnd 3
u=0.707 107*Qb u=0.707 107*Qa
v=0.707107*Qb v=-0.707107*Qa

menu and select Boundary Settings. In parallel with the previous set up, make
the following assignments:

bnd 9 bnd 2,4,5,6,7,8
u=Qc unchanged
v=o

Boundary Mode I Boundary Settings

species mode: unchanged
potential mode

bnd 1 I bnd3 I bnd9 I bnd 2,4,5,6,7,8
Neumann I Neumann I Neumann 1 unchanged

I G=Ib/sigr I G=Ia/sigr I G=Ic/sigr
0 ADDIv/OK

There is an underlying assumption in the above formulation. Use of a uniform
velocity at each flow boundary is only possible if pressure gradient can be
neglected. In 'pure' electrokinetic flow, that is where conductivity, zeta
potential, viscosity are each uniform, the approximation of uniform velocity at
the flow boundaries is excellent. The total pressure in each reservoir must also
be the same (Cummings et al., 2000). However, when liquid properties are not
uniform or a differential of dynamics pressure between reservoirs is present,
pressure gradients arise within the network and the assumption implicit in the
above treatment that velocity is uniform at each boundary is not appropriate.
The generally correct treatment would be to determine I and Q from the flow
boundaries and use relation 9.11 for the uniform pressure and potential at the
boundary. That pressure or potential are uniform at each boundary follows
rigorously when the boundary is at a position where the flow is developed, that is
sufficiently far (say, a channel width) from a disturbance region such as a
junction.

The formulation used does avoid the need for further weak boundary
constraint modes - only wcu and wcv are needed. Although there is an analogy
between pressure and electric potential, current and velocity, these quantities are
treated fundamentally differently with regard to the need for weak boundary
constraints. The velocity boundary conditions now require weak boundary
constraints on all boundaries (not just the wall surfaces). So we will need to
alter the Boundary Settings for wcu and wcv to include all boundaries. This is
because velocities are implemented as Dirichlet boundary conditions. The
Neumann BCs for the current in potential mode, however, do not require and are
incompatible with weak boundary constraints as we learned earlier. Neumann
conditions, since they are the default for FEM, are non-constraints even when

Electrokinetic Flow 331

they are inhomogeneous as here. The inhomogeneous Dirichlet conditions for u
and v, however, are constraints and so require the weak boundary treatment to
bring out the full nonlinearity and coupling.

Time=l Sutface: Y Contour: phi
Max 5 Max 101

Arrow: velocity vectors 1

0 9

0 8

0 7

0 5 0 6

1 5

1

0 0 5

0 4

0 3

0 2

0 1

-0 5

1

-1 5

-2 0
-1 0 1 2 3 4 Min 0 Min -000186

Figure 9 8 Merging concentration profile after unit time -- each leg has a forming front that merges
in th Y-junction

Now we are prepared for implementing the microfluidic Y-junction switcher in
two stages:

A. Merging two input streams

All as before, but uniform properties (c,. = Or = 1) with an uncharged species

(z=O). Asa = A s b = l o , Asc = 6 and p A = p B = p c . Set the voltages

to $A = 2 4 , $B - 1 2 , $c = O .

B . Alternation between voltages

= 2 4 , GB -12, $, = O and $A = 1 2 , GB = 2 4 , $c = o with a
This is a square wave signal for A and a period of around 6 time units.

complementary one for B .

A. Merging two input streams

We are all set up for merging two input streams. The constant potentials are set
for nodes A, B, and C according to the values of three constants PHIA, PHIB,
PHIC. Use Add/Edit Constants to introduce these three values.

338 Process Modelling and Simulation with Finite Element Methods

As before, we need to stage our solution to set up the pseudosteady velocity and
potential fields initially, then turn on the species transport.

Time=3 Surface: Y
Contour: phi Arrow: velocity vector

1 5

1

0 5

0

0 5

1

1 5

1 0 1 2 3 4 M m 7 5 2 M m 0 0 1 3 1

Figure 9 9 Developed flow of species Y=O along upper leg with inhibited flow of species Y=l in
the lower leg for t=3. The
concentration profile I S pseudosteady.

Hardly anything changes from t=3 onwards within the domain.

The result is shown in Figure 9.9. The fully developed flow of species Y=O
along upper leg with inhibited flow of species Y=l in the lower leg for t=3.
Hardly anything changes from this time onwards within the domain. The
concentration profile is near its steady distribution. It is prudent to check the
consistency of the calculation of the velocity and potential solutions. Using
Boundary Integration under Post Menu, we find the following values:

Table 9.2 gives the summary data:

Table 9.2 Boundary fluxes across the three open boundaries.

The conservation of charge is satisfied to The conservation of mass does
not hold so well. You can verify that ~~(0.83909+0.10201)=1.33#1.25.
This discrepancy suggests that the velocity flow field is not spatially well
resolved at this level of meshing. To improve the result, it is likely that greater
mesh density is required in the “Y” vertex which clearly has discontinuity in
velocity from the upper leg to the lower leg.

Electrokinetic Flow 339

The algebraic relations hold roughly for the electric potential, pressure, current,

and velocity, for instance: u, =L=0 .790828 . Some are spot on -- Jz
-- '-" - 0-7S213 = -1.2535 . In general, the electric potential conditions hold

A% 6
exceedingly well, but the velocity field/pressure fields do not hold as well.
Again, this is a strong indicator that the solution is not mesh resolved.

The animation shows
clearly how the front evolves to set up a fully developed upper flow, bypassing
the lower leg. The intermediate voltage in the "b-leg" of the Y-junction tends to
hold back the flow of species Y=l from the merging into the main flow along the
(a)-(c) open switch - only slow diffusion out and in, along with some modest
convection, occur. With concentration dependent conductivity (and viscosity
[2]) , it is possible to counteract the diffusion to some extent which sharpens
some fronts.

Plot (see Figure 9.9) and Animate the solution.

B. Alternation between voltages

Now for this application to be a Y-junction switch, we need to be able to replace
the constant voltages $a and $b with and $b(t), respectively. The signals
could be arbitrary, however, in practice they are discontinuous level adjustments,
which can be idealized as a square wave. A suitable choice is the alternation
between values do and Qbb0 (PHIA and PHIB), with the signals 90" out of phase.
We coded the square wave in coupling variables in two different ways:

B l . Logical functions

Under AddEdit Coupling Variables, we made the following changes:
switching

Qa
zetal* (PHIA-PHIA* (sin(Z*pi*t) < O) +PHIB* (sin(Z*pi*t) c0) -volts) /
dsa-Re*(PA-bara)/f/dsa
Qb
zetal*(PHIB-PHIB*(sin(Z*pi*t)<O)+PHIA*(Sin(Z*pi*t)~O) -voltb)/
dsb-Re*(PB-barb)/f/dsb
Ia
sigr* (PHIA-PHIA* (sin(2*pi*t) < O) tPHIB* (sin(2*pi*t) < O) -volts) /dsa
Ib
sigr* (PHIB-PHIB* (sin(2*pi*t) < O) +PHIA* (sin(Z*pi*t) < O) -voltb) /dsb

The logical statement (sin(Z*pi*t) <o)takes the value of 1 when true (during
the second half period) and 0 when false (during the first half period), which is
the essence of the square wave that makes a discontinuous switch. It is easy to
code. We substituted this code into the above FEMLAB model without success.
The numerical analysis proceeds smoothly until the end of the first half period, at

340 Process Modelling and Simulation with Finite Element Methods

which time FEMLAB crashes. We tried fldaspk and odel5s time integration
schemes without success. The discontinuity makes the convergence criteria
unattainable. Perhaps with fixed time step it is possible to “ram through” the
discontinuity, accepting the large error, but even then the abrupt change is likely
to lead to oscillatory artifacts. There are some schemes, like total variance
diminishing and essentially non-oscillatory methods, which might alleviate this
difficulty, but they are not implemented in MATLAB or finite element methods
to our knowledge. So we abandoned this approach.

B2. Smoothed square waves

Perhaps the nonconvergence was due to the instantaneous switch which could be
alleviated by smoothing the signal. We coded a Fourier Cosine Series
representation of the square wave:

1 2n + 1)nt
2n+ l

This was coded as a MATLAB m-file function, square.m, and placed in the
MATLAB current directory:

function a=square (t, tau)
sum= 0 ;
for n=1:10
sum=sum+4*tau*cos (pi* (2*n-1) *t/tau) / (2*n-1) / p i ;
end
a=sum;

Figure 9.10 shows the square wave form approximating the first ten terms (n=9).
Although the jumps are no longer infinitely steep, the price paid is non-physical
oscillations and overshooting the steady levels. These are historical difficulties
for electronic circuits used as function generators for square waves, overcome by
sophisticated filters. The coding in coupling variables as below was successful
to a greater extent than the logical function coding:
switching cosine series

Qa
zetal*((PHIB-PHIA)*square(t,l)+PHIA-volta)/dsa-Re*(PA-bara)/f/dsa
Qb
zetal*((PHIA-PHIB)*square(t,l)+PHIB-voltb)/dsb-Re*(PB-barb)/f/dsb
Ia
sigr* ((PHIB-PHIA) *square (t, 1) +PHIA-volta) /dsa
Ib
sigr* ((PHIA-PHIB) *square (t, 1) +PHIB-voltb) /dsb

The success was that this method actually integrates, yet exceedingly slowly.
Why? Because the time integration must resolve all the non-physical oscillations
in the square wave, which slows down the within half-period integrations, and
then the jumps are inordinately slow, but eventually the new flow configuration

Electrokinetic Flow 341

is found, an improvement over the logical function method, but at an inordinate
price.

By the way, you might have found our choice of how to code the coupling
variables in terms of either the logical functions or square wave as long-winded.
The reason for not using the coding with greatest algebraic simplicity was to
insure that our initial step of the fast elliptic solution finds the correct initial
conditions. By trial and error, we learned that any MATLAB function with t as
an independent variable evaluates to zero when using the stationary nonlinear
solver. It does not substitute t=O into the formula, but rather chucks out the
function altogether. By coding as we did, the correct t=O conditions are found
(either PHIA or PHIB) in spite of this quirk.

Figure 9.10 Square wave approximation from ten terms of the Fourier cosine series.

B3. A MATLAB wrapper for individual halfperiods

So we have found that programming the square wave as signals in the coupling
variables did not work. The smoother the signal, the greater likelihood that
coding the time dependence succeeds in an efficient time integration. The
discontinuity in the ideal square wave is the enemy of convergence. For our
third attempt, we recognized that we have already used an excellent strategy to
overcome the effects of the discontinuity in the initial conditions - staging the
fast elliptic step without the species transport, and then turning on the transient
solution with the species now mobile. We could simply implement the square
wave by successively manually swapping the values of the constants PHIA and
PHIB, restarting the stationary nonlinear solver to find the fast elliptic switch of
the flow and potential fields, then let the species transport continue under the
new flow conditions by restarting with this initial condition and the transient
solver. The MATLAB code we wrote merely puts a loop around this operation
to continue as long as specified. Since we have put loops around a number of
FEMLAB model m-files generated from the GUI, this is not a new technique.

342 Process Modelling and Simulation with Finite Element Methods

However, the coding warrants a look for a crafty way of patching together the
array of solution vectors (fem.so1.u) and the array of solution times (fem.sol.tlist)
so that the FEMLAB GUI can be used to animate the movie. Using the manual
technique in the FEMLAB GUI described above, the user would only have the
most recent half-period available for animation. The m-file script outline below
should be run in MATLAB, and thereafter the fem.so1 structure imported into
the FEMLAB GUI from the "Insert from Workspace" option on the file menu,
specifying "Compatible solution" as fem.so1. Then the animation proceeds
smoothly. Curiously, loading the m-file script from the FEMLAB GUI as a
model m-file still only leaves the last half-period available for post-processing.
No doubt this is due to our imperfect understanding of FEMLAB's variable
assignments.
% FEMLAB Model M-file (Ysta9ed.m)
% Generated 05-Jun-2003 21:11:46 by FEMLAB 2.3.0.148.

flclear fern
% FEMLAB Version
clear vrsn;
vrsn.name='FEMLAB 2.3';
vrsn . maj or=O ;
vrsn.build=148;
fem.version=vrsn;

% W B J Z contants % % % % % % % % % % % % % % % % %
tau=3 ;
cycles=4;
phia=24;
phib=l2;

% Recorded command sequence (set up first half cycle before the
loop)
...
% Define constants
fem.const={ . . .

'Pec',
'Re',
'zel',
'betael'
'zeta1 ' ,
'zetar' ,
'sigr',
If',
' PHIA' ,
'PHIB',
'PHIC' ,
'PA',
'PB' ,
'PC' ,
'dsa' ,
'dsb',
'dsc',

35.399999999999999, . . .
0.035400000000000001,.
1, . . .
1.1200000000000001, . . .
1, . . .
1, . . .
1, . . .
1, . . .
phia, . . .
phib, . . .
0 , . . .
0 , . . .
0 , . . .
0 , . . .
10,. . .
10,. . .
6) ;

Electrokinetic Flow 343

...
% Solve dynamic problem
fem.sol=femtime(fem, . . .

'tlist', 0:0.1000000000000000l:tau, . . .
' atol ,

{'u',0.01,'v',0.01,'p',Inf,'Y',0.001,'phi',0.001,'lmu',0.001,
'lrnv',0.001}, . . .

'rtol', 0.01, . . .
'jacobian','equ', . . .
'mass', 'full', . . .
'ode', 'fldaspk', . . .
1 odeopt I ,

struct('InitialStep',{ [I },'MaxOrder',{5},'MaxStepi,{[]}, . . .
'maxiter',{6},'estrat',{O},'complex',{O}), . . .

'out', 'sol', . . .
'stop', 'on', . . .
'init', init, . . .
'report', 'on', . . .
'timeind','auto', . . .
' index2v' , [I , . . .
'indexlv' , [I , . . .
'consistent', 'bweuler', . . .
'krylov', 'direct', . . .
'context','local', . . .
'sd', 'Off', . . .
'nullfun', 'flnullorth', . . .
'blocksize',5000, . . .
'solcomp',{~p','u','v','Y','phi','lmu','lmv~}, . . .
'linsolver', 'matlab', . . .
'uscale', 'auto') ;

% Save current fern structure for restart purposes

p p p p p a p p p p p p p p p p ~ e p p p W B ~ ~ p ~ p p p p p ~ p p p ~ p p p p p p ~ ~ p ~ p p ~ ~ ~ p p p p p ~ p p p ~ ~ p p p p ~ ~ 0 0 0 0 ~ ~ 0 ~ ~ ~ D 0 0 ~ 0 0 ~ ~ ~ 0 ~ 0 ~ ~ 0 0 0 0 0 ~ ~ ~ ~ ~ 0 0 0 0 ~ o . . . b o o o o o o . . o o o o o o o ~ ~

SPP
0 0 0

f emO=f ern;
feml=fem;

for k=l:2*cycles-l
swap=phia;
phia=phib;
phib=swap;

% Solve nonlinear problem
fem.sol=femnlin(fem,. . .

...

'out', 'sol', . . .
'stop', 'on', . . .
'init', init, . . .
'report', 'on', . . .
'context', 'local', . . .
'sd', 'Off', . . .
'nullfun', 'flnullorth', . . .
'blocksize',5000, . . .
~solcomp',(~p~,'u','v','phi','lmu','lmv~),..
'linsolver','matlab', . . .
'bsteps' , 0, . . .
'ntol', 9.9999999999999995e-007, . . .
'hnlin' , 'off I , . . .

344 Process Modelling arid Simulation with Finise Element Methods

'jacobian','equ', . . .
'maxiter',25, ...
'method', 'eliminate', . . .
'uscale', 'auto') ;

% Save current €em structure for restart purposes
f emO=f em;

% Solve dynamic problem
fem.soi=femtime(fem, . . .

'tlist', (k*tau):0.1000O00000ooOOOOl:((k+l)*tau?, . . .
' atoll ,

...

{~u',0.01,'v',0.01,~p~,Inf,~Y',0.001,'phi',0.001,'lmu',0.001, . . .
'1mv',0.001}, . . .

'rtol', 0.01, . . .
'jacobian','equ', . . .
'mass', 'fuli', . . .
'ode', 'fldaspk', . . .
' odeopt ' ,

struct('InitialStep~,{[l},'MaxOrder',{S},'MaxStep',([1}, . . .
~maxiter',{6},'estratt,{0),1cornplex~,{O}~ , . . .

'out', 'sol', . . .
'stop', Ion', . . .
finit', init, . . .
'report', Ionf, . . .
'timeind','auto', . . .
' index2v' , I1 , . . .
'indexlv', [I , . + .
'consistent','bweuler', . . .
'krylov', 'direct', . . .
'context', 'local', . . .
'sd', 'Off', . . .
'nullfun', 'flnullorth', . . .
'blocksize',5000, . . .
'solcomp',{'p','u','v', 'Y','phi','lrnu', 'lmv'}, . . .
'linsolver' , 'matlab', . . .
'uscale'. 'auto') ;

% Save current fem structure for restart purposes

u=[feml.sol.u, fem.sol.ul;
tlist=[feml.sol.tlist, fem.sol.tlist1;
sol=fem.sol;
sol .u=u;
sol.tlist=tlist;
fem.sol=sol;
femO=fem;
felnl=fem:

clear sol u tlist;

end

For clarity, our alterations to the FEMLAB GUI generated model m-file arc
shown. The model m-file is found from running the first half period with the
initial fast elliptic stcp without species, then a time dependent solution with
species transport, then swapping the phia and phib values, then repeating the fast

Electrokinetic Flow 345

elliptic step and time dependent restarts. The loop is then placed around the
second set of solutions. The final part is to append the fem.so1 structure with the
current set of solution vectors and tlist. Now run the animation to appreciate the
speed and electrokinetic switching in action. Figure 9.11 shows the
configuration in the “lower” pseudosteady state (second half period). The
striking feature of the animation is how reproducible each cycle is - diffusion
does not smooth anything out cumulatively.

Time=12 Color: Y Contour: phi
Arrow: velocitv vector Max 13 MBX 101

-2 1 a 1 2 3 4 MI” r 5 2 ~ m - 5 ~ 8 ~ . 0 c

Figurr: 9 11 Lower flow pattern in the second half-period

Monitoring the Outpiit Concentration

In the case of species, the variation of concentration along the outlet channel
segment C may be of interest and one must solve at least a one-dimensional
differential equation for species distribution. The equation for this case is:

(9.14)

where b’ = Q , / A and s is distance along channel C. The boundary condition

at reservoir C is the same as that used at the junction domain outflow boundary
c, i.e. dY/& = 0 at s = sC. At the upstream boundary of the segment one

could take the simple route of setting the boundary condition Y = Y, at s = S,

where
Y, = - j Y d A 1

A ,
(9.15)

However, imposing this average value of mass fraction will not in general satisfy
conservation of species. Carc must be taken with the species boundary condition
at thc connection between the junction domain and the downstream segment.

346 Process Modelling and Simulation with Finite Element Methods

First of all, now that the downstream spatial variation of species is available
from the segment c solution, an improved boundary condition for the junction
domain at the outflow boundary is possible. One can impose the computed
segment species gradient over the entire outflow boundary:

(9.16)

This corresponds to a uniform average diffusion flux over the outflow boundary
for the junction computation and ensures balance of diffusion mass flow rate of
the species at c. It remains to enforce mass balance for the other two species
mass flux processes, convection and electrophoresis. Doing so leads to the
boundary condition for Eq. 9.14:

. If this is not strictly correct, as a@ @c -@c

as hs,
Here, it should be noted that - =

will be the case for non-uniform electrical conductivity, one must solve the one-
dimensional equation for potential along with 9.14.

Now to the next FEMLAB coding. All as before, but solving for Y in the
downstream segment.

Multiphysics Add/Edit Modes
0 Add geometry geom2 1D
0

0 Apply/OK
PDE general form, mode name outlet, variable c>>

In Draw Mode, using Specify Geometry, set the name to outlet and the range
[0,61.

Now pull down the Subdomain menu and select Subdomain settings.

Subdomain r F da
Mode/Settings
Geom 2: -(l/Pec)*cx -Qu*cx+betael*zel*cx*delphi 1
Subdomain 1 (outlet mode)
Init tab c(t0) = 1

0 Apply / OK

Electrokinetic Flow 347

bnd 1
Dirichlet
G = 0 ; R = Y c - c

Now for the boundary conditions. Pull down the Boundary menu and select
Boundary Settings.

bnd 2
Neumann
G = O

A d a d i t Coupling Variables
scalar add delphi. Source Geom 1, subdomain 1, boundary 9.
Integrand: (PHIC-voltc)/dsc
Integration order: 2
Destination Geom 2 subdomain 1 Check “Active in this domain” box.
scalar add Qu. Source Geom 1, subdomain 1, boundary 9.
Integrand: Qc
Integration order: 2
Destination Geom 2 subdomain 1 Check “Active in this domain” box.
scalar add Yc. Source Geom 1, subdomain 1, boundary 9.
Integrand: Y
Integration order: 2
Destination Geom 2 bnd 1 Check “Active in this domain” box.

Recall that the cross-section is unity for channel c, and thus for a 2-D model,
A=l for the averages Qu and Yc. For convenience, we have used (9.15) as the
boundary condition. Now you are ready to mesh. Set the max element size to
0.1 in geom2 and Remesh. Then we can solve. Twice as usual. First solve the
fast elliptic step with the stationary nonlinear solver - be careful to de-select
species and outlet modes. Then solve with all modes and the time dependent
solver. Do not forget to turn off the automatic scaling of variables (Solver
ParameterdSettings).

After some calculation time, we arrive at a final state in the outlet geometry
(geom2) of uniform concentration c=l . Upon inspection, we find that it never
changed. Since the concentration profile in the outlet does not couple back to
the Y-junction dynamics, that was unaffected. But why was there no change in
the outlet concentration from the initial condition? A bit of reflection on the
theme of this chapter leads to the suspicion that we need a weak boundary

We have implicitly used three additional scalar coupling variables: delphi, Qu
and Yc. Now we need to define them:

348 Process Modelling and Simulation with Finite Element Methods

0 1 -

constraint on the inlet (bnd 1 of geom2). There is a coupled boundary constraint
of the Dirichlet type, which requires treatment with a weak boundary constraint.

Multiphysics AddEdit Modes
Select “Weak boundary constraint”

Apply/OK
Mode WCC and variable name lmu>>

Back in the FEMLAB GUI main window, select Boundary Mode and
Boundary Settings for mode wcl.

__s Boundary Mode and Boundary Settings (wcc)
Select domain 1, check active in this
subdomain, type ‘c’ into the constraint
variable entry box

Repeating the two solver steps - fast elliptic and time dependent - yields for
instance Figure 9.12, a cross plot at position x=OS for all times, clearly showing
the passage of a c = l slug being displaced by a c=O diffusive-convective front.

Concentration at position x=0.5

0 7

A
Time

Figure 9.12 Concentration at a fixed point x=0.5 in the outlet geometry over time

There are clearly many more variations on this theme that can be made.
Coupling variables and extended multiphysics enable the connections to be made
for entire microfluidic switching networks, if patiently constructed.
Electrokinetic microchannel flows have a rich texture of physicochemical
coupling for which this chapter has only touched the surface, hinting at the
power of control available through combined pressure and voltage application.

Electrokinetic Flow 349

The design issues of nlicrofluidic switches can be profitably explored by such
2DAD networks - our Y-junction is an idealized geometry which could be
tailored to achieve greatest segregation among the switching slugs.

9.4 Summary

This chapter explored the multiphysics modeling appropriate for electrohnetic
flow in microchannel networks. In setting up our case study, we discovered how
to use FEMLAB’s weak boundary constraints for coupled boundary conditions
that incorporate non-tangential boundary conditions. We showed the utility of
weak boundary conditions in accurate flux computations by revisiting the
electrical capacitance tomography forward problem defined in $7.3.2. An order
of magnitude improvement in convergence rate was found for little extra cost.
After this simple example, we moved on to implementing more complicated
weak boundary constraints in the electrokinetic flow model. The latter
illustrated FEMLAB’s guidelines for when to use a weak boundary constraint
and when they fail. One typically has the connotation that constraints on the
function should be implemented as Dirichlet-type boundary conditions, but that
constraints on the derivative should be implemented as Neumann-type boundary
conditions. In the context of a weak boundary condition, if you can implement it
as a Neumann boundary condition, it does not count as a constraint. Thus, only
Dirichlet-type boundary conditions can be treated with weak boundary
constraints, and the distinction between constraints on the function and on its
derivatives does not apply.

Acknowledgements

We are indebted to Johan Sundqvist and Niklas Rom of COMSOL for
consultation on the handling of weak boundary constraints in this chapter.

References

1. FEMLAB 2.3 User’s Guide and Introduction, p. 1-398ff (2002).
2. W.B. Zimmerman and G.M. Homsy, “Nonlinear viscous fingering in

miscible displacement with anisotropic dispersion.” Physics of Fluids A 3(8)
1859 (1991).

3. J. M. MacInnes, “Computation of Reacting Electrokinetic Flow in
Microchannel Geometries”, Chemical Engineering Science, 57 (21), 4539-
4558 (2002).

350 Process Modelling and Simulation with Finite Element Methods

4. J. M. MacInnes, X. Du and R. W. K. Allen, “Prediction of Electrokinetic and
Pressure Flow in a Microchannel T-Junction”, Physics of Fluids, in press
(2003).

5. S.V. Patankar, S.V., Numerical heat transfer and fluid flow. Hemisphere
Publishing Corporation, New York, 1980.

6. E. B. Cummings, S. K. Griffiths, R. H. Nilson and P. H. Paul, “Conditions
for Similitude between the Fluid Velocity and Electric Field in
Electroosmotic Flow”, Analytical Chemistry, 72 (1 l), 2526-2532 (2000).

Appendix

A MATLABmEMLAB PRIMER FOR VECTOR CALCULUS

W.B.J. ZIMMEFWAN
Department of Chemical and Process Engineering, University of Shefield,

Newcastle Street, Shefield SI 3JD United Kingdom

and

J.M. REES
Department of Applied Mathematics, University of Shefield, Hicks Building, Sheffield

Vector calculus underpins partial differential equations and their numerical
approximation. Modelers must have a good working knowledge of the basics of vector
calculus to use finite element methods effectively. Perhaps because undergraduate
engineers are not confronted with realistic applications of vector calculus, but rather
learn it as a mathematical discipline, their ability to apply vector calculus in engineering
modeling is limited. In this appendix, all the basics of vector calculus are introduced
with reference to MATLAB/FEMLAB utility and implementation. So the other way of
reading this appendix is as a primer for MATLAEWEMLAB basics with regard to
multivariable differential calculus. When we wrote this appendix, we debated whether or
not to augment Chapter One (basics of numerical analysis) with the material directly, as
numerical approximation of derivatives is fundamental to the solution of PDEs - a
FEMLAB “primitive” operation. Indeed, in learning spectral methods for solving PDEs,
the fundamental theorem is the “derivative theorem” - how to use the spectral transform
method to approximate derivatives. So by analogy, the fundamental utility of FEM is
numerical differentiation. The debate was lost in that Chapter One aims to solve basic
problems with FEMLAB straightaway. Approximating derivatives, no matter how
useful, is still an intermediate step in modeling, rarely the objective itself. The only
MATLAB basics we consider essential that are not used in making vector calculus the
point of this appendix are eigenvalue analysis and logical expressions. These are
sprinkled throughout the textbook anyway.

A.1 Review of Vectors

A. 1.1 Representation of vectors

Since FEMLAB deals with scalar, vector, and matrix quantities, if only as input
coefficients, a brief review of the representation of vectors (as a special case of
MATLAB’s Scalar quantities can be
represented by a single number, but vector quantities have magnitude and
direction. Given a righthanded coordinate system as shown in Figure A l , any
vector a is expressible in the form

matrix data type) is in order here.

35 1

352 Process Modelling and Simulation with Finite Element Methods

a = a,i + a2j + a3k

a = (apu2,a3)

where i, j and k are unit vector in the coordinate directions, a, , a2 , a3 are the

components of a relative to this set of axes. They are the projections of a on
to the unit vectors i, jandk . For a point P with coordinates (x,y,z) , the
position vector of P relative to the origin of the coordinate system, 0, is

r = xi + yj + zk

= (X’ Y ’ z)
MATLAB represents vectors in component form as either column
(countervariant) or row (covariant) vectors:

>> a = [l ; 2; 31;
> > a = [l 2 31;

% column vector
70 row vector

In the row vector, the white space (any number of contiguous spaces) serves as
the delimiter. The column vector is delimited by semicolons, or alternatively, by
newlines:

> > a = [l
2
31;

f Z

dx
Figure A l . Position vector of a point P with respect to Cartesian coordinate axes.

A. 1.2 Scalar products, matrix multiplication, unit vectors, and vector products
Typically, scalar products (or dot products) are defined by

3

a.b=la1161cos6=a,b,+a2b,+a3b, = z a i b i (‘43)
i=l

(A1)

(A2)

A MATLAB/FEMLAB Primer for Vector Calculus 353

where 0 is the angle between the vectors a and b. To achieve the same result in
MATLAB, we use the * operator

>> a = [l; 2; 31;

>> b*a
ans =
-2

>> b = [-3 2 -11;

This is a special case of a row vector (1 x 3 matrix) multiplying a column vector
(3 x 1 matrix). As the first dimension of the latter and the second dimension of
the former are the same, these matrices are compatible and can be multiplied
according to the general rule for matrix multiplication

j=1

If A is an m x II matrix and B is an I Z X 1 matrix, then AB is an m x 1 matrix. If the
common size is not respected, then the matrices are incompatible and the product
is not defined. MATLAB can compute scalar products as the special case of
matrix multiplication, but care must be taken to respect compatibility of the
vectors. For instance,
>> a*b
ans =

- 3 2 -1
- 6 4 - 2
- 9 6 - 3

What happened? Simply, a is a 3 x 1 matrix multiplying a 1 x 3 matrix, b. The
product, ab, is a 3 x 3 matrix, viz.

Figure A2. b X a is in the direction of 6.

354 Process Modelling and Simulation with Finite Element Methods

In the case of vectors, the matrix (ab)ik is called the dyadic product of a and b, or
a dyad. It is a special case of the matrix outer product, where the scalar product
is also termed the inner product.

The scalar product of two row vectors or two column vectors can be
computed in MATLAB using the transpose operator ', which is a unary operator
and deceptively easy to mistake as a single quote of a character string, for
instance.
>> a=[l; 2; 31; b=[-3; 2 ; -11; b'*a
ans =

-2
but
>> a*b'

ans =
- 3 2 -1
- 6 4 - 2
- 9 6 -3

still yields the dyad. Care must still be taken to respect the matrix compatibility.
If a and b were row vectors, which combination, b' *a or a*b' yields the inner
and outer products? MATLAB provides a special function dot for this purpose
that blurs the distinction about compatibility:
>> help dot
DOT Vector dot product.

C = DOT(A,B) returns the scalar product of the vectors A and B.
A and B must be vectors of the same length. When A and B are both
column vectors, DOT(A,B) is the same as A'*B.
DOT(A,B), for N-D arrays A and B, returns the scalar product
along the first non-singleton dimension of A and B. A and B must
have the same size.
DOT(A,B,DIM) returns the scalar product of A and B in the
dimension DIM.
See also CROSS.

Example.
> dot(a,b)
ans =

-2
>> dot([l; 2; 31, [-3 2 -11)
ans =

-2

It simply does not matter with dot which combination of rowkolumn vectors is
used.

A MATLAB/FEMLAB Primer for Vector Calculus 355

Vector Magnitude

The norm or magnitude of a vector is found by the formula

MATLAB will compute the norm of a vector with the formula
>> sqrt (a'*a)
ans =

3 . 7 4 1 7

or with the built-in command norm
>> norm(a,2)
ans =

3 . I 4 1 7

where sqrt () is the built-in square root function.

Unit Vector

A unit vector is a vector whose norm is one. Unit vectors can be constructed by
normalization, i.e.

For example,
>> ahat=a/norm(a, 2)
aha t =

0 . 2 6 7 3
0 . 5 3 4 5
0 . 8 0 1 8

The division above is scalar division, which divides each element of the vector
by the scalar.

Cross Product

The vector or cross product is defined

3

a x b = lal/blsin0iz = xE,kajbk2i
i=l

where Gjk is the permutation tensor, which takes the value +1 when indices ijk
are a positive permutation of 123, -1 if they arc a negative permutation of 123,

356 Process Modelling and Simulation with Finite Element Methods

and zero otherwise.
zf is the unit vector in the i-th coordinate direction.

f i is the unit normal vector to the plane containing a and b.

MATLAB provides a special function to compute cross products
>> help cross
CROSS Vector cross product.
C = CROSS(A,B) returns the cross product of the vectors
A and B. That is, C = A x B. A and B must be 3 element
vectors.
C = CROSS(A,B) returns the cross product of A and B along the
first dimension of length 3.
C = CROSS(A,B,DIM), where A and B are N-D arrays, returns the cross
product of vectors in the dimension DIM of A and B. A and B must
have the same size, and both SIZE(A,DIM) and SIZE(B,DIM) must be 3.
See also DOT.

For example,
>> cross (a,b)
ans =

- 8
- 8

8
>> cross (b, a)
ans =

8
8

- 8

We see that the order of factors in a cross product switches the sign of the cross
product, akin to changing the sense of the unit normal f i .

A.2 Arrays: Simple Arrays, Cell Arrays, and Structures

Array manipulation is essential to data extraction from FEMLAB. FEMLAB has
organized models conveniently (for its developers and programmers) around fem
structures for multiphysics and xfem structures for extended multiphysics.
Pruning structures and cell arrays to extract meaningful information is a useful
way of interrogating FEMLAB models (and solutions).

Simple Arrays

Arrays have dimensions (mx nx 1 ...). A matrix is a two-dimensional array.
Each dimension has a length. So two very important commands are s i z e ()
and length () .

A MATLAB/FEMLAB Primer for Vector Calculus 3 5 1

> > a = [1 2 3 4 ; 5 6 7 8 1 ;
>> s i z e (a)
ans =

2 4

Size of an array is itself a row vector of length equal to the array dimensions.

>> length (a (1, :))
ans =

4

The colon (:) placeholder in the second argument of a specifies the entire range
of the second dimension, in this case elements 1 :4, i.e. 1 thru 4.

>> length(a(:,3))
ans =

2
>> a(1,2:4)
ans =

2 3 4

In fact, the colon refers to subarrays of a lower dimension. a(1,:) is the first row;
a(:,3) is the third column of a. a(1, 2:4) gives a subarray of elements 2 thru 4 of
row 1. In higher dimensions, the subarrays extracted are more complicated. For
instance

>> b(1, :)
ans =

1 1 1 1

Here, the subarrays are matrices in the first two cases, but in the third case, the
final two dimensions are rolled up into a single row vector.

FORTRAN programmers will probably feel more comfortable addressing single
elements

rather than subarrays, perhaps by using looping structures.

Array Construction

Arrays can be automatically generated using colon notation, viz.

358 Process Modelling and Simulation with Finite Element Methods

>> a=[O: 0.1: 1l*pi
a =
Columns 1 through 8

0 0.3142 0.6283 0,9425 1.2566 1.5708 1.8850 2.1991

2.5133 2.8274 3 I 1416
Columns 9 through 11

which produces eleven values equally spaced between 0 and K. So does
a=linspace (O,pi,11)
a =
Columns 1 through 8

0 0.3142 0.6283 0.9425 1.2566 1 . 5 7 0 8 1.8850 2.1991

2.5133 2.8274 3.1416
columns 9 through 11

1 inspace is a versatile command for automatic matrix generation, performing
a role that is often done in looping constructs in older programming languages.
>> help linspace
LINSPACE Linearly spaced vector.

LINSPACE(X1, X2) generates a row vector of 100 linearly
equally spaced points between X1 and X2.
LINSPACE(X1, X2, N) generates N points between X1 and X2.
For N < 2, LINSPACE returns X2.
See also LOGSPACE, : .

logspace comes in handy as well.
>> help logspace
LOGSPACE Logarithmically spaced vector.

LOGSPACE(X1, X2) generates a row vector of 50 logarithmically
equally spaced points between decades 1O*X1 and 10AX2. If X2
is pi, then the points are between 10AX1 and pi.
LOGSPACE(X1, X2, N) generates N points.
For N < 2, LOGSPACE returns lO"X2.
See also LINSPACE, : .

Four other common array generators are zeros, ones, rand, and for matrices,
eye. zeros initializes an array with zeros; ones with ones, rand with
uniformly distributed random numbers (randn with normal deviates) and eye
with the identity matrix.
>> help zeros
ZEROS Zeros array.
ZEROS(N) is an N-by-N matrix of zeros.
ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.
ZEROS (M,N,P, . . .) or ZEROS ([M N P . . .I) is an M-by-N-by-P-by-. .
array of zeros.
ZEROS(SIZE(A)) is the same size as A and all zeros.

>> help ones
ONES Ones array.

ONES(N) is an N-by-N matrix of ones.
ONES(M,N) or ONES([M,NI) is an M-by-N matrix of ones.
ONES(M,N,P, . . .) or ONES([M N P . . . I) is an M-by-N-by-P-by-..
array of ones.
ONES(SIZE(A)) is the same size as A and all ones.

A MATLAB/FEMLAB Primer for Vector Calculus 359

>> help rand
RAND Uniformly distributed random numbers.
RAND(N) is an N-by-N matrix with random entries, chosen from
a uniform distribution on the interval (0.0,l.O).
RAND(M,N) and RAND([M,NI) are M-by-N matrices with random entries.
RAND (M,N, P, . . .) or RAND ([M,N, P, . . .I) generate random arrays.
RAND with no arguments is a scalar whose value changes each time it
is referenced. RAND(SIZE(A)) is the same size as A.

>> help eye
EYE Identity matrix.

EYE(N) is the N-by-N identity matrix.
EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1's on
the diagonal and zeros elsewhere.

EYE(SIZE(A)) is the same size as A.

Scalar - Array Math

Arithmetic of scalars acting on arrays threads across the array. For instance,
>> 3*a
ans =
Columns 1 through 8
0 0.9425 1.8850 2.8274 3.7699 4.7124 5.6549 6.5973
Columns 9 through 11
7.5398 8.4823 9.4248

>> 5+a
ans =

Columns 1 through 8
5.0000 5.3142 5.6283 5.9425 6.2566 6.5708 6.8850 7.1991
Columns 9 through 11
7.5133 7.8274 8.1416

Array - Array Element- Wise Math

Arithmetic of arrays on arrays is a tricky area. If the arrays are compatible sizes,
then dot-operators are applied element-wise:
>> b=linspace (1,11,11)
b =

>> size(a)
ans =

>> size(b)
ans =

>> a.*b
ans =
Columns 1 through 8
0 0.6283 1.8850 3.7699
columns 9 through 11
22.6195 28.2743 34.5575

1 2 3 4 5

1 11

1 11

6 7 8

6.2832 9.4248

9 10 11

13.1947 17.5929

360 Process Modelling and Simulation with Finite Element Methods

Cell Arrays and Structures

You could write a whole chapter about cell arrays and structures. The important
thing to note about both is that they are containers for heterogeneous mixtures of
data types - floating point numbers, complex numbers, matrices, character
strings, other cell arrays and structures. The cell array refers to each cell within
the array by an array index. Cell arrays are directly defined with braces
surrounding the list of array elements. The cell command will create an empty
shell which can be assigned individual elements or subarrays.
>> ca = { 'every', 'good', 'boy', 'does', 'find', 3+3i, [O 1; -2 21 }
ca =
Columns 1 through 6
I every I 'good' 'boy' 'does' 'find' [3.0000+ 3.0000il
Column 7
[2x2 doublel

Referencing can be done by array index, with parenthesis, returns the cell
element.
>> ca(3)
ans =

' boy

Referencing by braces and index number returns the contents of the cell element.
>> ca(3)
ans =

boy

Perhaps this is clear with regard to the matrix cell constituent,
>> ca(7)
ans =

>> ca{7)
ans =

[2x2 doublel

0 1
-2 2

Structures are referenced by fields, which are named rather than enumerated,
much as in the C programming language. The greatest utility in using a structure
as averse to a cell array is that if you choose to alter the structure, addition or
elimination of fields does not change the ordering of fields in a meaningful way.
Elimination or addition of cell array elements, however, changes the numbering
of cells or leaves "holes" in the array. The most common structure encountered
by FEMLAB users is the fem structure, which is how FEMLAB organizes the
complete set of data for its multiphysics models and their solutions. Exporting
as fern structure to the MATLAB workspace from FEMLAB produces the
following for our Benard convection model.

A MATLAB/FEMLAB Primer for Vector Calculus 361

>> fern
fern =

sdim:
appl :
draw:

s imp1 if y :
geom:
dim:
form :
equ:
bnd :
pnt :

border :
expr :
var :

sshape :
e 1 emmph :

eleminitmoh:
mesh:

out f orm :
dif f :
shape :

rules :
sol :

version :
xmesh:
const :

'shlag(2, I T ') I }

{'X' vyv}
{ [IXI struc
[lxl struct
'on'
[lxl geom21

I general
[lxl struct
[l x l struct
[lxl struct
1
{IXO cell)

{'U' 'V'

I }
2
{lxo cell}
(1x0 cell1

1 [IX~ struct]}

p' ' T I }

"1x1 struct]
I general I
{'gal ' g ' If' 'rl lexpr')
{ 'shlag(2, I u ') 'shlag(2, 'v') 'shlag(1, 'PI) I

{IXO cell}
[lxl struct]
[lxl struct]
[lxl struct]
{ 'Ra' [17101 'Pr' [l] }

The list is of fields in the structure fem above shows the description of the field
contents. Each field can be addressed with the "dot" notation:
>> fem.sdim
ans =

fem.sdim is a cell array with two cells; the cell array is small enough that its
contents can be displayed. Since it is a cell array, the braces index reference will
act on the contents of the cell element.

'X' 'Y'

>> fem.sdim{l}
ans =
X

As we can see, the fern structure has cell arrays, other structures, characters, and
numbers as its constituents. There is no reason why we cannot have cell arrays
of fem structures, which is indeed the make up of the xfem structure used by
FEMLAB for extended multiphysics, with one fem structure for each logical
geometry. We have frequently had need of the postinterp command which acts
on fern structures or xfem structures to produce values of solution variables
interpolated at points within the domain discretized by finite elements:
[is,pel =postinterp (xfem,xx) ;
[ul =postinterp (xfem, 'ul' , is) ;

Passing the whole of the xfem structure to the postinterp function gives it access
to the complete description of the model and solution, for which it may have to

362 Process Modelling and Simulation with Finite Element Methods

execute different branches of commands given that specific structure. As users
of FEMLAB, we need to know enough about the MATLAB data structure of a
FEMLAB model and solution to extract relevant data if we have particular
postprocessing or modeling requirements that are not built into the FEMLAB
GUI.

A.3 Scalar and Vector Fields: MATLAB Function Representations

Physical properties of matter typically depend on position and sometimes time.
At length scales observable to humans (by eye), most physical quantities are
treated as a continuum - having values at every mathematical point. These
quantities are called fields. Quantitites such as temperature and pressure that
represent a single value are termed scalar fields. A scalar field is a single
number, e.g.

A vector field in 3-D requires three components:

Each component of F is itself a scalar function of position.

Example. @ = x 2 + y 2

-4 -2 0 2 4

2 2
Figure A3. Contour lines for scalar function 4 = X + Y = c for 30 different values of C.

A MATLAB/FEMLAB Primer for Vector Calculus 363

Figure A3 shows the contours of 0 = x2 + y 2 = c for several different values
of the constant C. MATLA B has no data type to represent a field quantity.
Rather, such quantities are represented as functions. There are three major ways
of representing a function in MATLAB

(1) An inline function, defined only in the workspace
>> myfun = 'l+log(r) 1 ;

>> myfuni=inline(myfun, 'r')
myfuni =

Inline function:
myfuni (r) = l+log (r)

>> a=feval(myfuni,l)
a =

>> a=feval (myfuni,lO)
a =

(2) An m-file function, which is stored as a disk file and can be called from
either the workspace or an m-file script. For instance the m-file function
temperat.m contains the following code and is stored in the MATLAB
current directory.

1

3 . 3 0 2 6

function t=temperat (r)
%TEMPEMT evaluates T = 1 + In r
% T = temperat(r)

t=l+log (r) ;

>>a=temperat (10)
a =

,

3 . 3 0 2 6

(3) Interpolation functions. The values of the function at certain points are
specified. Values at nearby points are estimated by assumption about how
smooth the function is locally. Interpolation requires a series of MATLAB
commands, but eventually results in a functional form. MATLAB has built-
in functions for I-D and 2-D data. The Rock Fracture Model in the
FEMLAB Model Library (FEMLAB/Geophysics/rock-fracture) uses 2-D
interpolation of a supplied dataset in a MATLAB mat-file, as an m-file
function (flafun.m) that does 2-D interpolation:

function a=flafun(x,y)
%FLAFUN Interpolate aperture from sampled data.
% A = FLAFUN(X,Y) interpolates rock fracture aperture from sampled
data.
% X and Y are coordinates for node points in an unstructured grid.
% A is the interpolated aperture in the the node points.
%
% FLAFUN is a function used as diffusion coefficient in the
geophysics
% ROCK-FRACTURE model in the Model Library.

3 64 Process Modelling and Simulation with Finite Element Methods

,

% Use FLAFUN as flafun(x,y)*3 in the diffusion coefficient in GUI.
% This implements the cubic law for fracture conductivity in a
% potential flow model.

% The sampled data is stored in the file FLAPERTURE.MAT.
%
% See also FLDOPING.

% B. Sjodin 9-21-99.
% Copyright (c) 1994-2000 by COMSOL AB
% $Revision: 1.3 $ $Date: 2001/10/26 13:24:57 $

% Load the aperture data matrix.
load flaperture
% Create sample coordinates.
[m, nl =size (aperture) ;
dx=l;
dy=l;
[xl,yl]=meshgrid(O:dx: (m-l)*dx,O:dy: (n-l)*dy) ;

% Interpolate from rectangular grid to unstructured grid.
a=interpZ(xl,yl,aperture,x,y);

Chapter three has a similar usage for using interpolant functions for representing
velocity fields around a pellet. Chapter five represents a I-D pressure field as an
interpolant function in an m-file pinit.m:
function a=pinit (XI
presgrad= [
183.59
183.471

2.00851
0.03;
xlist=[0:0.1:10] ;
a=interpl(xlist, presgrad, x, 'spline');

We have judiciously abridged the pressure data set in presgrad. Here the cubic
spline interpolation method is used forming a 1-D interpolant. The 2-D form
above uses bilinear interpolation.

Typically FEMLAB field entry for coefficients and boundary data is done
by in-line forms expressing the predefined independent, dependent, and derived
variables. For instance, in general form with a single dependent variable u and
independent variable x, expressions such as

...

u + 5 * x + sin(3 * pi * x) + 3" u*ux

can be entered. But MATLAB m-file functions (including interpolants) can be
used just as readily. An important point is that FEMLAB expects data entry as
scalar components. If a vector or matrix is required, it is always through
specification of scalar components, any of which can be (complex) functions.

FEMLAB represents its results in a FEM structure with the degrees of
freedom specified in fem.so1 for a mesh specified in fem.mesh (or fem.xmesh).

A MATLAB/FEMLAB Primer for Vector Calculus 365

FEMLAB provides a special post interp function to extract interpolated
values from fem.sol for each dependent variable and derived variable. The book
is littered with examples of using postinterp to represent functions. It can even
be automated in an m-file function that calls the appropriate fem structure from a
mat-file.

A.4 Differentiation in Multivariable Calculus

A.4.1 The gradient of a scalar field

If $=$(x,y,z), then the vector

is called the gradient of the scalar field $, and is denoted as well by grad $. The
gradient operator v (the nabla character) is the vector operator

a . a a
ax ay az V=i -+j - -+k-

in Cartesian coordinates in 3-D.

A FEMLAB example. Suppose 4 = x2 + y 2 , then V$ = (2x, 2y, 0).

But MATLAB does not directly deal with such symbolic calculations, however
its symbolic toolbox does. FEMLAB, however, routinely calculates the
numerical approximation of the derivatives of a solution. So the gradient of a
scalar field can be constructed by FEMLAB “primitive” operations. How do we
easily access this information? Here’s the recipe.

366 Process Modelling and Simulation with Finite Element Methods

Model Navigator

Options
Draw
Boundary Model
Boundary Settings
Subdomain Model
Subdomain Settings
Mesh Mode
Solve
Post Process

2-D geom., PDE modes, general form (nonlin stat)
independent variables: x,y dependent:phi
Set AxesIGrid to [-l,l]x[-l,l]
Rectangular domain [-l,l]x[-l,l]
Set all four domains to Neumann BCs

In domain 1, set r = 0 0; da = 0; F = phi-xA2-yA2

Remesh using default (418 nodes, 774 elements)
Use default settings (nonlinear solver)
Switch to arrow mode (automatically set to vectors

I of grad @.) See Figure A4.

X

It should be noted that since no PDE is actually being solved, Neumann BCs
amount to a neutral or non-condition on the boundaries. Otherwise, only if the
boundary data are compatible with the condition 0 = phi-xA2-yA2 is a solution
possible.

Now export the fem structure to MATLAB (file menu). We will use postinterp
to get the approximate numerical value, along with MATLAB bilinear
regression. The code below should look familiar to those who recall the porous
catalyst (pellet) model of Chapter four.
>>x=o.5;y=o.5;
[xx, yy] =meshgrid(-1: 0.01: 1, -1: 0.01: 1) ;
xxx= [xx (:) ' ; yy(:) ' I ;
phix=postinterp(fem,'phix',xxx);
phiy=postinterp(fem,'phiy',xxx);
uu=reshape (phix, size (xx)) ;
vv=reshape (phiy, size (xx)) ;
u=interpZ (xx,yy,uu,x,y) ;
v=interpZ (xx,yy,w,x,y) ;
[u I vl

Y 1 phix 1 phiy

ans =

1.0000 1.0000

0.5
-0.25
0.75
0.25

0.5 1 .oooo 1 .oooo
0.75 -0.5000 1.5000
-0.5 1.5000 - 1 .oooo
-0.75 0.5000 -1 .so00

Table A l . Numerical estimates of grad 4 using FEMLAB model.

By any accounting method, the use of FEM for finding first derivatives is fairly
accurate. The global error of 0(10-'6) as reported in the convergence criteria
leads to a minimum of four decimal places in the estimated gradients.

A MATLABIFEMLAB Primer for Vector Calculus 361

Arrow: [ph ix, p h iy 1

- 0 2 - ' '

Figure A4. Arrow plot of vectors of grad 4

The Directional Derivative

The directional derivative of $J is the rate of change of $ (x,y,z) along a given
direction. If f i is the unit vector in that direction, then the directional derivative
is given by

The coordinate directions are the easiest to compute, e.g.

We used directional derivatives in the ECT models of Chapter seven to directly
compute the normal derivatives of the electric potential (see $7.3.2 and equation
(7.5)). Clearly, directional derivatives are intimately related to the concept of
flux. The total flux across a material surface for a "linear" property (Fick's Law,
Fourier's Law, etc.) is proportional to the integral of the normal derivative along
that surface. The local flux is proportional to the normal derivative at a point.

At this point in most vector calculus texts, it is demonstrated that the
direction in which the rate of change of q3 is greatest is the direction of grad 4,
and that I grad @ I is the rate of change in that direction. We can show this at say
the point (x,y)=(0.25,-0.75) by stepping through the angles @+O,n] and plotting

the (scalar value) - . MATLAB code that achieves this is written below. a@
an

>> theta=linspace(O, pi, 100) ;
dirder = zeros (size (theta)) ;
for k=l :length (theta)
dirder (k) =cos (theta(k)) *u+sin(theta(k)) *v;
end
plot (theta, dirder)

368 Process Modelling and Simulation with Finite Element Methods

Directional derivative versus angle thee

7 7

I
'0 0 5 1 1 5 2 25 3

theta
5

Figure A5. Directional derivative versus direction (angle 0) in radians. Note the presence of a
minimum in directional derivative - the direction of steepest descent, which corresponds to the
gradient direction.

Of course I refuse to apologize for my FORTRAN-ish programming bias which
is revealed in the looping structure above. Were I in a more MATLAB-ish
mode, then judicious use of threading achieves the same results without the loop:
>>dirder = u*cos (theta) +v*sin(theta) ;
plot (theta,dirder)

cos and sin functions thread across each element of the vector theta,
producing an output vector of the same length.

Level SetdLevel Suqaces

Note that the directional derivative (dirder) crosses the x-axis, i.e. there is a
direction for which the directional derivative is zero - no rate of change at all in

that direction. It can be shown that the direction hfor which -=()is

perpendicular to the gradient direction. So in this direction, @=constant locally.
Tracing out the curve (in 2D) or surface (in 3D) of each constant identifies a
family of curves (surfaces) called level sets of 4 (see Chapter eight). In 2D, level
sets are also called contours. The terminology of the directional derivative is
analogous to survey maps, where 4 is the elevation of land. The contours all
have the same height above sea level (level sets); the directional derivative
6 * v@ is the rate of climb in the direction 6 , and the gradient is in the
direction of steepest climb (or descent) and the rate of climb is I grad 4 I. In fluid
dynamics, the quantity that is most often represented by a contour plot is the
streamfunction, with contours all being streamlines (particle paths in steady
flow) tangent to the velocity field. In Chapter three, the buoyant convection
example shows how to compute streamfunction (see equation (3.3)).

a$
an

A MATLAB/FEMLAB Primer for Vector Calculus 369

A.4.2 Derivatives of vector fields

The vector differential operator V may be applied to a vector field F(x) in two
ways: (1) the scalar product V - F called the divergence, (2) the vector product
V x F , called the curl.

The divergence is given by

aq a ~ , a4
ax ay az

- -- +-+-

The curl is given by

I aF3 dF2 a< aF, aF2 a< - - -- - -- - -- -[ay aZ ' aZ ax ' ax ay
Eijk is the permutation tensor introduced earlier. Of course one can see readily

that div F is a scalar, while curl F is a vector.
The operator I; - V is often seen in advection terms in heat or mass transport

equations. Clearly, it is not the divergence, since

a a a F . v = 6 -+ F~ 2+ F~ - ax ay aZ
which is still an operator, in contrast to (A15), which is a scalar.

370 Process Modelling and Simulation with Finite Element Methods

Model Navigator

Options
Draw
Boundary Model
Boundary Settings
Subdomain Model
Subdomain Settings

Mesh Mode

Solve
Post Process

As we saw before, the numerical approximation of derivatives is a
“primitive” of FEMLAB, so we should be able to compute approximations to
both div and curl.

A FEMLAB example. Suppose F = (x 2 , 3 q , x 3) . Here’s the recipe.

3-D geom., PDE modes, general form (nonlin stat)
independent variables: x,y z; 3dependent: u l , u2, u3
Set Axes/Grid to [O,l]x[O,llx[O,ll
Block BLK1= [0,1]~[O,l]~[O,l]
Set all four domains to Neumann BCs

set rl = 0 0 0; dal = 0 0 0; F1 = ul-xA2
set r2 = 0 0 0; da2 = 0 0 0; F2 = u ~ - ~ * x * Y
set r3 = 0 0 0; da3 = 0 0 0; F3 = u3-xA3
Remesh using mesh scaling factor 3 (201 nodes, 719
elements)
Use default settings (nonlinear solver)
1. Color plot of ulx+u2y+u3z for the divergence
2. Arrow plot for the curl of
(u3y-u2z,ulz-u3x,u2x-uly)

Again, it should be noted that since no PDE is actually being solved, Neumann
BCs amount to a neutral or non-condition on the boundaries. Otherwise, only if
the boundary data are compatible with the conditions 0 = ul-xA2, 0 = u2-3*x*y,
0 = u3-xA3 is a solution possible.

Symbolically, it is straightforward to compute

VXF = (0,-3x2,3y)

So how good is the numerical approximation? Try the divergence:

>7 xxx=[O.42; 0.57; 0.33l;postinterp(fem,‘ulx+u2y+u3z’,xxx)
ans = 2.1137
>> 5 * 0 . 4 2
ans = 2 . 1 0 0 0

A MATLAB/FEMLAB Primer for Vector Calculus 37 1

Clearly, for such a coarse mesh, half a percent error is not a bad result. Now for
the curl.

>>xxx= LO. 42; 0.57; 0.331 ; [postinterp (fern, 'u3y-u2z' ,xxx) ;
postinterp(fem,' ulz-u3x',xxx);postinterp(fem,'u2x-~iy',xxx)]
ans =

0.0043
-0.5319
1.7100

>> [O; - 3 * 0 . 4 2 A 2 ; 3*0.57]
ans =

0
-0.5292
1.7100

The worst error here is again half a percent.

Figure A6. Isosurfaces of divergence computed for the example F = (X ' , 3Xy, X')

Figure A6 shows the numerical approximation by FEM to the divergence, which
qualitatively shows isosurfaces consistent with v . F = 5x. Figure A1 shows
the arrow plot of curl F. Since most of us have little feel for three-dimensional
vector plots, determining whether the plot is consistent with the closed form
calculation is beyond our visual capacity for numeracy. Nevertheless, the FEM
solution shows the very important feature of numerical solutions - visualization
of solutions. Does anyone have a feel for the analytic solution

v X F = (0, -3x2, 3 y) either?

312 Process Modelling and Simulation with Finite Element Methods

Figure A7. Arrow plot of curl computed for the example F = (xz, 3xy, x3) .

The Lapluciun Operator

For the scalar field Q,

- a2$ a2+ a2$
ax2 ayz az --+-+7

By parallel with other nabla operators,

div (grad) = V . V

- a* a2 a2
-a,2+p+g

So for shorthand, the operator div(grad) is called the Laplacian and denoted V2.
Typically, the Laplacian is used in differential equations, rather than computed
directly. For instance, Laplace’s equation

A MATLAB/FEMLAB Primer for Vector Calculus 3 73

V2$ = 0

is an example where the Laplacian is known (zero) but the function @ is to be
found. FEMLAB routinely computes the first derivatives of a dependent
variable, but not necessarily the second, directly. But as we already know how
to compute both div and grad separately, computing div(grad) is a matter of
using auxiliary dependent variables vl,v2,v3 that are assigned values in the last
example of

Fl=vl-ux; F2zv2-u~; F3zv3-u~

so that

v 2 u = vlx + v 2 y + v3z

Scalar and Vector Potentials

Quite a lot of space in vector calculus books is devoted to the topics of scalar
and vector potentials.

A scalar potential @ for a vector field F is a scalar function for which V@=F.
The textbooks show that this is only possible if, and only if, curl F=O.

Similarly, a vector potential A for a vector field F is a vector function for which
F=curl A. Again, the textbooks show that this is only possible, if and only if,
div F=O.

Scalar and vector potentials are useful for simplifying pde systems that are
either irrotational or divergence free (solenoidal). In the case of fluid flow,
either inviscid or completely viscous flow are simplified dramatically by such
potentials. One might ask, can FEMLAB help in the task of identifying these
potentials? In the case of 2-D flows, we already saw that the streamfunction acts
like a vector potential (3.3), so the answer is a qualified yes. For many years in
both electrodynamics and hydrodynamics, the hunt for vector potentials or scalar
potentials to simplify calculations was paramount - many analyses end is
solving, even approximately, for such a potential. Yet whether sufficient
symmetries exist in a given modeling situation to use scalar and vector potentials
to simplify the calculations is now almost a moot point. General pde engines
like FEMLAB can compute numerical approximations to the primitive variables
in the most general cases, limited only by their CPU requirements. So the virtue
of finding such simplifications is a reduction of CPU usage, for which we must
still pay the price of numerical differentiation to arrive at the primitive variables
(using our grad and curl recipes) if detailed solutions are required.

It is perhaps a sobering note to end our Appendix on that general purpose
numerical solvers like FEMLAB limit the need for many of the complexities of

(A20)

(A21)

374 Process Modelling and Simulation with Finite Element Methods

vector calculus, since much of the higher theory was developed to treat
intentionally idealized models. Nevertheless, the basics of vector calculus are
necessary to understand what such pde engines do, and how they do it. Theory
simultaneously becomes more important in some aspects - dealing with
complexities that are still beyond computability, proposing physical models that
are amenable to numerical computation - but also less necessary for “run-of-the-
mill” applications. Theorists should be challenged that they must remain ahead
of the game to still be relevant practioners due to the advent of general purpose
solvers like FEMLAB.

Epilogue (WBJZ)

As an epilogue to this book, I have found that MATLAB programming is not
really essential to modeling with FEMLAB. The GUI, with experience, serves
for most purposes rather well. I believe that many experienced FEMLAB users
are amazed at the flexibility I have teased out of the FEMLAB GUI. So
MATLAB programming is really essential in only a few cases: (1) Massively
parallel parameter space studies; (2) Non-PDE models of nonlocal, discrete
coupling; (3) Moving boundaries; (4) Getting the detailed data out for post-
processing. This list is probably not complete. I am not sure that FEMLAB
developers envisaged people would do (1)-(3) with their tools. (4) should be
addressed in later editions of FEMLAB. An I10 wizard of some sort to read in
data into initial conditions or functions and to write output into standard formats
would go a long way in removing the need to write your own MATLAB
code. Until then, information concentrated in this Appendix on the
MATLABIFEMLAB interface, and sprinkled throughout the book in worked
examples, will prove invaluable to the budding expert user.

A S End Note: Platform Dependence of Meshes

I could not think of a good place to put this note. As you might have noticed, the
book was developed under both FEMLAB 2.2 and FEMLAB
2.3LCS/2.3/2.3a/2.3b, with either MATLAB 5.316.116.5, while using both
Microsoft Windows and linux operating systems. This is bad news in that your
MAT-files are not necessarily compatible across versions and platforms. So the
advice here is to save your models as m-files for cross platform transfer. But in
many cases, it is the results of the computations that are required to cross
platforms. For instance, for us it was useful to do long computations on our best
linux workstation as background jobs, then save the solution (the whole fem or
xfem structure) and read it into the MATLAB workspace, and upload the
relevant parts into the FEMLAB GUI (see all those import options on the file
menu). For several of our models, we found that the same sequences of m-file

A MATLAB/FEMLAB Primer for Vector Calculus 315

commands generated different meshes (node and element numbers and places)
so that the solution formats (degrees of freedom in fem.so1) were incompatible
across platforms, FEMLAB and MATLAB versions. The workaround we found
was to save the solutions (fernsol) and the mesh on the compute server, and
upload these through MATLAB into the FEMLAB GUI as imports on the file
menu. The best advice is to always maintain a consistent environment, but if
not, then carry both solutions and meshes in MATLAB MAT-files and do your
model set up in an m-file - it gets the closest to portability!

This page intentionally left blank

INDEX

0-D 23. 24. 25. 26. 36. 59
2-D triangular element 90

cubic 90. 92. 93
linear 65. 66. 69.73.74. 80. 8 1.

quadratic ... 66. 71. 72. 76. 80. 81. 90
84. 88.90. 94. 96. 105

acoustics

Animate
............. 75, 77. 78

349

convection and diffusion 125. 129.
152. 155. 194.299. 321

incompressible Navier-Stokes ... 117.
129. 194.216. 221. 293. 294.
296.304.315.321. 332

Argyris elements

Aspen
AspenPlus

Automatic Scaling of Variables 242

basin of attraction 1 13
Benard convection .. 173. 177. 178. 215

360
Biot type boundary condition 168
bisection method 24
blockage factor 219. 222. 223. 225
boundary fluxes 257. 314. 315. 317.

Boundary integration 222. 245.253.

boundary value problems 33. 44

318
boundary integral method 293

269. 317

BVP 33. 44. 45
Boussinesq approximation 1 17

buoyant convection 108. 109. 117.
130

Capacitance 144. 145. 152. 160.245.
246. 247. 248. 264.280.291. 313.
349

Cell arrays and structures 360
cellular automata 174. 246
CFD4,5,64,9292

FLUENT

chemical waves
coalescence of drops ...
coefficient form

Coefficient View 69. 73
compaction front 227.228.229.230.

231. 233. 235. 236. 237. 238. 239.
240. 241

complex systems 20. 173. 174. 175
condensers ... 75
conservation laws 63
continuum hypothesis 63

12. 137. 139. 151.211.241.
.250.257. 3 13.333. 348

Convolution integrals 281
coupling variables12. 18. 137. 147.

148. 149. 150. 151. 165. 170. 245.
246. 247. 253. 254. 255. 256. 257.
265.266.267. 269. 270. 271. 273.
274. 277. 278. 284. 286. 290. 334.
339.340.341. 347
extrusion 247. 27 1. 273. 274.275.

277. 278. 280. 284. 285. 286.
287. 288

projection 58. 85. 246. 247. 249.
265. 266. 267. 269. 270. 271.
273.274.277.278. 284

scalar
cubic splines
curvature analysis ... 293. 297. 305. 307.

3 10

311

adiabatic tubular reator..................123

animation...............................75,77,78
anisotropic dispersion.....209,213,243

ANSYS..5,290
application modes

conductive media.........................321

CFX..5

chaos theory...................................174

coeffiecient mode........................27,28

Arnoldi iterative method...................212
ARPACK................198,209,212,213
Aspen...5

assemble......................................49,57

control.....
247,248

378 Process Modelling and Simulation with Finite Element Methods

curved mesh elements 93
cusp formation 293. 304

Damkohler number 45

derivative theorem 35 1
design 16. 23. 38.44. 63. 123. 137.

dielectric constants 250. 254. 255.

Danckwerts boundary conditions 123

139. 147. 349

2.59.262.263. 264

Dirac delta fun

double diffusion ..
dynamical similarit

edge nodes

eigenmode 173. 177. 200. 210. 211
eigenvalue 53.57.60. 61.173. 176.

EIDORS

177. 183. 188. 190. 191. 192. 198.
199. 201. 202. 207. 208. 209. 210.
213. 351

electrical conduct
electrochemical b

313.314.320.32.5.336. 349
... 320. 321. 326. 346

Complex 90
Multiplex 90
Simplex 90

elliptic66
equilibrium ... 29. 32.63. 141. 159. 171.

..........................
.............................

...................................

174. 184.213.294. 32.5
Euler method 33. 34

exact Jacobian 27. 28
exact numerical simulation 246
Export to file 131
extended multiphysics 11. 137. 139.

165.246

FEM eigenanalysis 173
FEMLAl3 mat-files

............. 315. 316. 317

............................. 119
FEMLAB models

turbulent static mixer model
femnlin ... 24
fiber composite medium ..245. 246. 27.5
Fick‘ s law .. 159
FIDAP
film drying 215. 227. 228. 241. 242.

finite elements
flash
flash distillation
Fragmentation 28 1. 292. 311
free boundary problems 216
free convection 136. 1.52, 157. 158.

272

160
front tracking 293. 294

Galerkin method 245. 314. 315
Galerkin’s formulation 97
gas constant 71
Gauss’ law
general form
General Mode
geometric continuation 19. 215. 216.

217.223.225.227. 241
geometrical continuation
global emergent properties 173
GNUPLOT 235
gravity current
grid independence 242

Hagen-Poiseuille 2 18. 21 9. 222
heat conduction 23
Heat transfer 55. 56

hyperbolic 63. 65. 75
HYSYS 5. 140. 290

Hermite elements 91. 92. 93

differential side wall heating107
differentiation rules................1119,120
diffuse interface modeling293

diffusion equation.............................70

301
discrete element methods................246
discretization...............................89,95
distillation....................................63,75

distributed constraints.......................140
divergence theorem......................79,94

Eignvalues..52
Eigenvectors.....................................52

motion...313
eletrokinetic flow......20,108,155,256,

electrophoresis........320,321,326,346
element type

ect.mat.........................315,316,317
freeconv.mat.................................119

Index 379

imperfect mixing 145, 146. 15 1. 159.

Incompressible Navier-Stokes

Index into matrix is negative

Inf or NaN repeatedly found in

160. 171

application mode 1 10

or zero ... 242

solution . Returned solution has

integral equations 19.63. 245. 27 1.
272.277.280.281. 290
Fredholm 271. 272. 273.275. 277.

Volterra 271.272. 275. 277. 280.

Integrating by parts 94
integro-differential equations246.

280

284

247.272. 273

inverse function .
inverse problem245. 246. 247. 249.

250.257. 259

Jacobian 18, 24, 26, 27, 28. 32.
37. 43.48. 74. 77. 81. 84. 86. 89.
113. 144. 175. 242. 255. 257.
286. 289

Kernel 272. 273. 276. 277. 279
kinetic asymmetry 140. 141. 143
Krylov subspace decomposition 2 12

Lo norm ... 237
L2 norm ... 237
Lagrange elements 91, 92. 93
Lagrange multiplier 87. 216. 289.

315, 318
Lagrange multipliers 86. 87. 88

generalized boundary flux 3 15
Langmuir isotherms 228
Langmuir-Hinshelwood 167
Laplace transforms 7 1
Lattice Boltzmann method 293
Laurent series 226
least squares solution 88

level set method 20. 293. 294. 295.
297.299.302. 3 10

lidar 245.246.266. 270
Lighthill Poisson equation 332

..................... 246

Liquid chromatography 228
local shape functions 96
logically disjoint domains 138
lumped parameter ... 139. 140. 145. 152.

159. 160
lumped parameters 137. 153
lumped variables 140

magnetohydrodynamics 108
marching 23. 33. 35. 36. 44. 59
mass transfer 63. 75
mass transfer coefficient 141. 143.

145. 152. 168
matlab functions

assemble 174. 198. 199. 208. 209.

asseminit 234. 235. 241
cross .. 356
det

257

235
dot 352, 354, 359, 361
eig ... 52, 53
eigs .. 53, 57
element-by-element division 53
eye 110, 245, 358, 359, 362
femeig 182, 186, 187, 188, 190,

f m i n s e a r c h 262, 264
for ... 116
fzero .. 28
i n t e r p l 118, 120, 127, 163,

i n t e r p 2 133. 154, 364, 366
linspace 37. 38. 358, 359, 367
logspace 358
Matrix inversion 51
meshgrid 132, 154, 364, 366

177, 237, 260, 261, 262,

198, 199,207,208, 209

196. 364

263. 355
norm

inverse equations......245

dlmwrite............116, 190, 208, 224

IVP...................................33,44,45
initial value problems.................33,44

not converged25

linux................................116,121,130
linear system analysis.......................23
Line integrals.................................246

380 Process Modelling and Simulation with Finite Element Methods

ones 16. 51. 120. 174. 211. 223.

plot 35. 44. 48. 58. 59
postint ..115. 189.224.260.261.

postinte rp ... 132. 154. 163.235. 265.

235.327.357. 358

303

361.365.366.370. 371

save 121. 127. 131. 132
scalar product 353
...................35,35

61.268.300.303. 355
..... 54

zeros 115. 132. 150. 182.
189. 199. 208. 223. 234. 358.
359. 367

MATLAB programming 9. 10.
11. 15. 21. 114. 117. 119. 120.
130. 136
Cell arrays and structures 360
fem structure 121. 132
FEMLAB programme ...
inline function
looping structure 114

matrix equations 48. 49. 50. 51. 57
Max element size near vertex 69
Max element size near vertices 11 I.

131. 135

.................... I20

err0rnm.m 261. 263. 264
fmin.m 262. 264
initc0nd.m
pel1etu.m
pelletv . m 133
pin1t.m 195. 196. 364
sheetu.m 163. 164. 167
square.m 340
tankp.m. 155
tanku.m 154. 155. 156. 162. 165

. .

tankv.m 155
temperat.m 363
watrdens.m 118

ana1ysis.m 303, 305
bifurc3.m
convection.m
ect.m
ect2.m
fi1mdry.m
flowsheet2.m 166
freec0nv.m 116
high8av.m 121
ro0tfinder.m 27, 30
rtfindgen.m 28, 30
test.m

m-file scripts

microfluidics ...

minimization in the energy 87
mixture rule 334
Model Library 2,4, 6, 7, 1 1, 12, 14,

molecular dynamics 246
Monte Car10 methods
multiphase flow
multiphysics4, 5 , 1 1, 12, 16, 18,20,

129

107, 109, 129, 130, 132, 136

new kind of science 174
Newton’s Method 24. 27. 113
Newton-Raphson Method 24
non-convergence 129
non-isothermal tubular reactor 107
nonlocal 247, 272. 281. 292. 374
normal equations 88
numerical analysis 24
Numerical Instability 35
numerical integration 23. 33. 35. 38.

40.44. 59

192
Nusselt number 112. 115. 122. 186.

optimization 64. 86. 137. 245. 246.
259.262.263.264.290. 315

posplot..................................187, 200
rand.......................................358, 359
randn....................................204, 358
reshape........................132, 154, 366

sqrt....
svd.........................

vf_eigs.m.....................................208
waterdensity.m.............................120
Ystaged.m......................;.............342

microhydrodynamics...............138,246

Max size near vertices.....................126
Maxwell's equations..........................249
MEMs......................................290,313
m-file functions

dwatrden.m..................................120
erfcnois.m....................................204

Index 381

orifice plate 2 17, 2 18. 2 19. 222. 225.

oscillatory disturbance 151
226. 227

parabolic 63, 65, 70
parametric continuation 18, 107, 113,

114, 115, 116, 117, 121, 136, 186,
187,209,215,241, 288

Parametric continuation 113, 114

parametric slaving .
Parametric Solver 186
parametrization 138
particle processing 245
PDE Toolbox 28
Peclet number 125
periodic boundary conditions 75,78,

phenomologically 63
physicochemical hydrodynamics 108
platelet 217, 227
Point mode 10, 13
Point Mode
Point Settings
point sources
point-source vortex
Poisson’s equation
population balance equations ... 16, 245,

246,282, 292
positive definite 88
power ultrasound 75
Prandtl number 109

Principal Axis Theorem

105

..
Process integration
pseudo-advection .

quasi-diffusion 230
quasi-linear terms 105
quasilinearization 123

Rankine vortex 66
Rayleigh number 109. 110. 115. 116.

117. 119. 156. 160. 178. 179. 184.
186.188. 190. 192. 215

Rayleigh-Benard convection 177
RC-circuit .. 145
reaction and diffusion equation 44
Reduction of order 36
Reuresentation of vectors 351
Resistance coefficients 63
Retrofit 64. 137. 139
root finding ... 23. 24. 25. 28. 29. 30. 59
Runae-Kutta methods 34

secant method 24
self-similarity 74

114. 123. 137. 139. 173. 174. 177.
185. 187. 188. 197. 205. 208. 211.
216.241.246. 270.290.291.294.
297. 298. 300. 302. 303. 304. 305.
307.309.310. 332

Simulink 5. 137. 140
singular 26.27.28.50. 51.52. 53.

singular value decomposition 5 5 2 1.
skewness .. 89
Smooth particle hydrodynamics 246.

sonochemistry 75
square wave

Fourier cosine series ..337. 339. 340.

54.55. 57

290

341
Stepsize too small . Returned solution

has not converged
Satiff Systems
stiffness energy 88
stiffness matrix ... 18.26. 27. 28.49. 55.

57. 81. 84. 85. 86. 87. 88. 97. 98.
99. 100. 105. 173. 187. 197. 232.
286.288. 327

stoichiometry 40. 144
stratification ..107,145,152, 156, 157 . 156. 157.

streaklines 110
streamfunction 66. 69. 110. 11 1. 112.

130. 180. 201. 202. 211. 227. 368.
373

159. 161. 171. 179. 184

separations.......................................108
shell balance....................................145
SIMPLE algorithm..........................332
simulation.........1,3,5,19,23,41,113,

ProcessEngineering Fundamentals,

pressure datum.................111, 112, 121

parametric sensitivity studies..........139

382 Process Modelling and Simulation with Finite Element Methods

streamlines 110. 112. 113. 121
strong form 78. 94
subdomain integration245. 303
supercriticality 186
superficial velocity ... 40. 145. 146. 193.

194
surfactant 215. 228. 229. 230. 233.

235.236.237.239.240.241. 243
swirl atomizers 75

Taylor expansion 24
thermofluids 108
Thiele moduli 63
tomography245. 246. 247. 248. 264.

transient analysis 139. 210
tridiagonal matrix 100
trusses .. 93
tubular reactor 23. 38

291.313. 349

unit operations 75. 137. 138. 139.

user defined elements 93
user defined programming 3. 4.

162. 171. 247

10. 14. 117

Variational Formulation 94
variational principle 87
variational principles 64. 82

viscous fingering 173. 192. 194.

volume of fluid method 293
vorticity 66. 68. 70.71. 88. 110. 202.

200.211.213.243.334. 349

203.205.211. 221

wave dynamics
wave equation 75
wavenumber 184. 185. 190. 203.

209. 211
weak boundary constraints 313. 314.

318.324.326.336. 349
caveats .. 318
clarifications 319
Handling nonlinear constraints ... 3 14
ideal dim constraint 256. 316. 317
Implementing constraints using

derivatives 314
non-ideal dim constraint

Very accurate flux computations
weak boundary contraints

weakform 78. 79. 86. 87. 94. 108

weight function 82. 94. 97
Weak terms

Y -iunction electrokinetic valve 330

zeta potential 320. 321. 328. 336

314

