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Preface

These lectures notes are intended to be used in theModellierung und Analyse
elektrischer Netze (Vorlesungsnummer ETH Zürich 35-526) lectures given at
ETH in electrical engineering. In the lectures three main topics are covered,
i.e.

• Power flow analysis

• Fault current calculations

• Power systems dynamics and stability

In Part I of these notes the two first items are covered, while Part II gives
an introduction to dynamics and stability. In an Appendix, a brief overview
of power system protections is given.

The notes start with a derivation and discussion of the models of the most
common power system components to be used in the power flow analysis.
A derivation of the power flow equations based on physical considerations
is then given. The resulting non-linear equations are for realistic power
systems of very large dimension, which have to be solved numerically. The
most commonly used techniques for solving these equations are reviewed.
The role of power flow analysis in power system planning, operation, and
analysis is discussed.1

The next topic to be covered in these lecture notes deals is fault current
calculations in power systems. A systematic approach to calculate fault
currents in meshed, large power systems will be derived. The needed mod-
els will be given and the assumptions made when formulating these models
discussed. It will be demonstrated that algebraic models can be used to
calculate the dimensioning fault currents in a power system, and the mathe-
matical analysis has similarities with the power flow analysis, so it is natural
to put these two items in Part I of the notes.

In Part II the dynamic behaviour of the power system during and after
disturbances (faults) will be studied. The concept of power system sta-
bility will be defined, and different types of power system instabilities will
discussed. While the phenomena in Part I could be studied by algebraic
equations, the description of the power system dynamics requires models
based on differential equations.

1As stated above, the presentation of the power flow problem is in these lecture notes
based on physical considerations. However, for implementation of these equations in
computer software, an object oriented approach is more suitable. Such an approach is
presented in the lecture notes Modellierung und Analyse elektrischer Netze, by Rainer
Bacher, is also to be dealt with in the lectures. In those lecture notes the techniques for
handling large but sparse matrices are also reviewed.

vii
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These lecture notes provide only a basic introduction to the topics above.
To facilitate for readers who want to get a deeper knowledge of and insight
to these problems, bibliographies are given in the text.

Zürich in March 2003

Göran Andersson
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1
Introduction

This chapter gives a motivation why an algebraic model can be used to de-
scribe the power system in steady state. It is also motivated why an algebraic
approach can be used to calculate fault currents in a power system.

APOWER SYSTEM is predominantly in steady state operation or in a
state that could with sufficient accuracy be regarded as steady state.

In a power system there are always small load changes, switching actions,
and other transients occurring so that in a strict mathematical sense most
of the variables are varying with the time. However, these variations are
most of the time so small that an algebraic, i.e. not time varying model of
the power system is justified.

A short circuit in a power system is definitely not a steady state condi-
tion. Such an event can start a variety of different dynamic phenomena in
the system, and to study these dynamic models are needed. However, when
it comes to calculate the fault currents in the system, steady state (static)
models with appropriate parameter values can be used. A fault current con-
sists of two components, a transient part, and a steady state part, but since
the transient part very often can be estimated form the steady state one,
fault current analysis is commonly restricted to the calculation of the steady
state fault currents.

1.1 Power Flow Analysis

It is of utmost importance to be able to calculate the voltages and currents
that different parts of the power system are exposed to. This is essential
not only in order to design the different power system components such
as generators, lines, transformers, shunt elements, etc so that these can
withstand the stresses they are exposed to during steady state operation
without any risk for damages. Furthermore, for an economical operation of
the system the losses should be kept at a low value taking various constraints
into account, and the risk that the system enters into unstable modes of
operation must be supervised. In order to do this in a satisfactory way the
state of the system, i.e. all (complex) voltages of all nodes in the system,
must be known. With these known, all currents, and hence all active and

1



2 1. Introduction

reactive power flows can be calculated, and other relevant quantities can be
calculated in the system

Generally the power flow, or load flow, problem is formulated as a non-
linear set of equations

f(x,u,p) = 0 (1.1)

where

f is an n-dimensional (non-linear) function

x is an n-dimensional vector with the states, i.e. complex voltages

u is a vector with (known) control outputs, e.g. voltages at generators with
voltage control

p is a vector with the parameters of the network components, e.g. line
reactances and resistances

The power flow problem consists in formulating the equations f in eq. (1.1)
and then solving these with respect to x. This will be the subject dealt with
in the first part of these lecture notes. It is also clear that a necessary, but
not sufficient, condition for eq. (1.1) to have a solution is that f and x have
the same dimension, which condition also will be discussed. But it should
also be clear that in the general case there is no unique solution, and there
are are also cases when no solution exists.

If the states x are known, all other system quantities of interest can
be calculated, i.e. active and reactive power flows through lines and trans-
formers, reactive power generation from synchronous machines, active and
reactive power consumption by voltage dependent loads, etc.

As said above, the functions f are non-linear, which complicates the
analysis. However, the linearized equation

∂f
∂x

∆x = ∆y (1.2)

will give very useful information. Particularly the Jacobian matrix
∂f
∂x

,
whose elements are given by

(
∂f
∂x

)
ij

=
∂fi
∂xj

. (1.3)

can be used for many useful computations, and it is an important indicator
of the system conditions. This will also be elaborated on.
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1.2 Fault Current Analysis

In the lectures Elektrische Energiesysteme it was studied how to calculate
fault currents, e.g. short circuit currents, for simple systems. This analysis
will now be extended to deal with realistic systems including several gener-
ators, lines, loads, and other system components. Generator (synchronous
machines) are important system components when calculating fault currents
and their modelling will be discussed.

1.3 Literature

The material presented in these lectures constitutes only an introduction
to the subject. Further studies can be recommended in the following text
books:

1. Power Systems Analysis, second edition, by Artur R. Bergen and Vijay
Vittal. (Prentice Hall Inc.,2000, ISBN 0-13-691990-1, 619 pages)

2. Computational Methods for Large Sparse Power Systems, An object
oriented approach by S.A. Soma, S.A. Khaparde, Shubba Pandit (Kluwer
Academic Publishers, 2002, ISBN 0-7923-7591-2, 333 pages)



4 1. Introduction



2
Network Models

In this chapter models of the most common network elements suitable for
power flow analysis are derived. These models will be used in the subsequent
chapters when formulating the power flow problem.

ALL ANALYSIS in the engineering sciences starts with the formulation
of appropriate models. A model, and in power system analysis we al-

most invariably then mean a mathematical model, is a set of equations or
relations, which appropriately describes the interactions between different
quantities in the time frame studied and with the desired accuracy of a phys-
ical or engineered component or system. Hence, depending on the purpose
of the analysis different models of the same physical system or components
might be valid. It is recalled that the general model of a transmission line
was given by the telegraph equation, which is a partial differential equation,
and by assuming stationary sinusoidal conditions the long line equations,
ordinary differential equations, were obtained. By solving these equations
and restricting the interest to the conditions at the ends of the lines, the
lumped-circuit line models (π-models) were obtained, which is an algebraic
model. This gives us three different models each valid for different purposes.

In principle, the complete telegraph equations could be used when study-
ing the steady state conditions at the network nodes. The solution would
then include the initial switching transients along the lines, and the steady
state solution would then be the solution after the transients have decayed.
However, such a solution would contain a lot more information than wanted
and, furthermore, it would require a lot of computational effort. An alge-
braic formulation with the lumped-circuit line model, would give the same
result with a much simpler model at a lower computational cost.

In the above example it is quite obvious what model that is the appro-
priate one, but in many engineering studies the selection of the “correct”
model is often the most difficult part of the study. It is good engineering
practice to use as simple models as possible, but of course not too simple. If
too complicated models are used, the analysis and computations would be
unnecessarily cumbersome. Furthermore, generally more complicated mod-
els need more parameters for their definition and to get reliable values of
these require often extensive work.

5



6 2. Network Models

u

dx

u+du

i+di
R´dx L´dx

C´dxG´dx

i

Figure 2.1. Equivalent circuit of a line element of length dx

In the subsequent sections algebraic models of the most common power
system components suitable for power flow calculations will be derived. If
not explicitly stated, symmetrical three-phase conditions are assumed in the
following.

2.1 Lines and Cables

The equivalent π-model of a transmission line section was derived in the
lectures Elektrische Energiesysteme, 35-505. The general distributed model
is characterized by the series parameters

R′ = series resistance/km per phase (Ω/km)

X ′ = series reactance/km per phase (Ω/km)

and the shunt parameters

B′ = shunt susceptance/km per phase (siemens/km)

G′ = shunt conductance/km per phase (siemens/km)

as depicted in Figure 2.1. The parameters above are specific for the line
or cable configuration and are dependent on conductors and geometrical
arrangements.

From the circuit in Figure 2.1 the telegraph equation is derived, and from
this the lumped-circuit line model for symmetrical steady state conditions,
Figure 2.2. This model is frequently referred to as the π-model, and it is
characterized by the parameters

Zkm = Rkm + jXkm = series impedance (Ω)

Y sh
km = Gsh

km + jBsh
km = shunt admittance (siemens) 1

1In Figure 2.2 the two shunt elements are assumed to be equal, which is true for
homogenous lines,i.e. a line with equal values of the line parameters along its lengths, but
this might not be true in the general case. In such a case the shunt elements are replaced
by Y sh

km and Y sh
mk with Y sh

km �= Y sh
mk with obvious notation.
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k m 

kmz

sh
kmysh

kmy

kmI mkI

Figure 2.2. Lumped-circuit model (π-model) of a transmission line
between nodes k and m.

Note. In the following most analysis will be made in the p.u. system.
For impedances and admittance capital letters indicate that the quantity is
expressed in ohms or siemens, and lower case letters that they are expressed
in p.u.

Note. In these lecture notes complex quantities are not explicitly marked
as underlined. This means that instead of writing zkm we will write zkm
when this quantity is complex. However, it should be clear from the context
if a quantity is real or complex. Furthermore, we will not always use specific
type settings for vectors. Quite often vectors will be denoted by bold face type
setting, but not always. It should also be clear from the context if a quantity
is a vector or a scalar.

When formulating the network equations the node admittance matrix
will be used and the series admittance of the line model is needed

ykm = z−1
km = gkm + jbkm (2.1)

with
gkm =

rkm
r2
km + x2

km

(2.2)

and
bkm = − xkm

r2
km + x2

km

(2.3)

For actual transmission lines the series reactance xkm and the series
resistance rkm are both positive, meaning that gkm is positive and bkm is
negative. The shunt susceptance yshkm and the shunt conductance gshkm are
both positive for real line sections. In many cases the value of gshkm is so
small that it could be neglected.
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The complex currents Ikm and Imk in Figure 2.2 can be expressed as
functions of the complex voltages at the branch terminal nodes k and m:

Ikm = ykm(Ek − Em) + yshkmEk (2.4)

Imk = ykm(Em − Ek) + yshkmEm (2.5)

where the complex voltages are

Ek = Uke
jθk (2.6)

Em = Umejθm (2.7)

Example 2.1. The series impedance of a 138 kV transmission line section
is

z = r + jx = 0.0062 + j0.0360 p.u.

The total shunt susceptance (double the susceptance that appears in the
equivalent π-model) is

bsh = 0.0105 p.u.

and the shunt conductance is ignored. Calculate the series conductance and
series susceptance and the ratio between the series and shunt susceptances.

Solution The series conductance is given by

g =
r

r2 + x2
=

0.0062
0.00622 + 0.03602

= 4.64 p.u.

and the series susceptance by

b = − x

r2 + x2
= − 0.0360

0.00622 + 0.03602
= −27.0 p.u.

The b/bsh ratio is given by

b/bsh =
−27.0
0.0105

= −2596

Of interest is also the ratio x/r

x/r =
0.036
0.0062

= 5.8

�

Example 2.2. The series impedance and the total shunt impedance of a
750 kV line section are

z = r + jx = 0.00072 + j0.0175 p.u.

bsh = 8.77 p.u.

Calculate the series conductance and series susceptance and the ratio be-
tween the series and shunt susceptances and the x/r ratio.
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Solution The series conductance and susceptance are given by

g =
0.00072

0.000722 + 0.01752
= 2.35 p.u.

b = − 0.0175
0.000722 + 0.01752

= −57 p.u.

The x/r ratio and b/bsh ratio are

x/r =
0.0175
0.00072

= 24.3

b/bsh =
−57
8.77

= −6.5

�

Note. The 750 kV line has a much higher x/r ratio than the 138 kV line
and, at the same time, a much smaller (in magnitude) b/bsh ratio. Higher
x/r ratios mean better decoupling between active and reactive parts of the
power flow problem, while smaller (in magnitude) b/bsh ratios may indicate
the need for some sort of compensation, shunt or series, or both.

2.2 Transformers

We will start with a simplified model of a transformer where we neglect the
magnetizing current and the no-load losses. In this case the transformer can
be modelled by an ideal transformer with turns ratio tkm in series with a
series impedance zkm which represents resistive (load dependent) losses and
the leakage reactance, see Figure 2.3. Depending on if tkm is real or non-real
(complex) the transformer is in-phase or phase-shifting.

2.2.1 In-Phase Transformers

Figure 2.4 shows an in-phase transformer model indicating the voltage at the
internal - non-physical - node p. In this model the ideal voltage magnitude
ratio (turns ratio) is

Up

Uk
= akm (2.8)

Since θk = θp, this is also the ratio between the complex voltages at nodes
k and p,

Ep

Ek
=

Upe
jθp

Ukejθk
= akm (2.9)
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U ek
j�k

U ek
j�k

U em
j�m

U em
j�m

U ep
j�p

U ep
j�p

k

k

m

m

1 t: km

p

p

zkm

zkm

Imk

Imk

Ikm

Ikm

tkm:1

Figure 2.3. Transformer model with complex ratio tkm = akmejϕkm

(tkm = a−1
kme−jϕkm)

U ek
j�k U em

j�mU ep
j�p

k m
p

zkm

Imk

1 a: km

Ikm

Figure 2.4. In-phase transformer model

There are no power losses (neither active nor reactive) in the ideal trans-
former (the k - p part of the model), which yields

EkI
∗
km + EpI

∗
mk = 0 (2.10)

Then applying eqs. (2.8) and (2.9) gives

Ikm
Imk

= −|Ikm|
|Imk| = −akm, (2.11)

which means that the complex currents Ikm and Imk are out of phase by
180◦ since akm ∈ R.

Figure 2.5 represents the equivalent π-model for the in-phase transformer
in Figure 2.4. Parameters A, B, and C of this model can be obtained by
identifying the coefficients of the expressions for the complex currents Ikm
and Imk associated with the models of Figures 2.4 and 2.5. Figure 2.4 gives

Ikm = −akmykm(Em − Ep) = (a2
kmykm)Ek + (−akmykm)Em (2.12)

Imk = ykm(Em − Ep) = (−akmykm)Ek + (ykm)Em (2.13)
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k

A

ImkIkm

CB

Figure 2.5. Equivalent π model for in-phase transformer

and Figure 2.5 provides the following:

Ikm = (A+B)Ek + (−A)Em (2.14)

Imk = (−A)Ek + (A+C)Em (2.15)

Identifying the coefficients of Ek and Em from expressions (2.12) - (2.13)
and (2.14) - (2.15) yields

A = akmykm (2.16)

B = akm(akm − 1)ykm (2.17)

C = (1− akm)ykm (2.18)

Example 2.3. A 138/69 kV in-phase transformer with a series resistance
of zero, a 0.23 p.u. series reactance, and p.u. turns ratio of 1 : 1.030 (from
the model in Figure 2.4) Calculate the equivalent π-model parameters.

Solution
A = akmykm = 1.030(j0.230)−1 = −j4.48 p.u.

B = akm(akm − 1)ykm = 1.030(1.030 − 1)(j0.230)−1 = −j0.13 p.u.

C = (1− akm)ykm = (1− 1.030)(j0.230)−1 = j0.13 p.u.

Hence, since A, B, and C denote admittances, A and B are inductive, and
C is capacitive. �

Example 2.4. A 500/750 kV in-phase transformer with a series resistance
of zero, a 0.00623 p.u. series reactance, and p.u. turns ratio of 1 : 0.950
(from the model in Figure 2.4) Calculate the parameters for the equivalent
π-model. (100 MVA base)
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U ek
j�k U em

j�m

k m

1 a: kme
j�km

p

zkm

ImkIkm

� � �p k km= +

U a Up km k=

Figure 2.6. Phase-shifting transformer with t = akmejϕkm .

Solution As in the previous example one obtains:

A = −j152.5 p.u.

B = j7.62 p.u.

C = −j8.03 p.u.

i.e., parameter B is capacitive and parameter C is inductive (762 Mvar
and -803 Mvar, respectively, assuming nominal voltage magnitudes and a
100 MVA base). �

2.2.2 Phase-Shifting Transformers

Phase-shifting transformers, such as the one represented in Figure 2.6 , are
used to control active power flows; the control variable is the phase angle
and the controlled quantity can be, among other possibilities, the active
power flow in the branch where the shifter is placed.

A phase-shifting transformer affects both the phase and magnitude of
complex voltages Ek and Ep, without changing their ratio, i.e.,

Ep

Ek
= tkm = akmejϕkm (2.19)

Thus, θp = θk + ϕkm and Up = akmUk, using eqs. (2.10) and (2.19),

Ikm
Imk

= −t∗km = −akme−jϕkm (2.20)

As with in-phase transformers, the complex currents Ikm and Imk can
be expressed in terms of complex voltages at the shifter terminal nodes:

Ikm = −t∗kmykm(Em − Ep) = (a2
kmykm)Ek + (−t∗kmykm)Em (2.21)
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Imk = ykm(Em −Ep) = (−tkmykm)Ek + (ykm)Em (2.22)

There is no way to determine parameters A, B, and C of the equivalent
π-model from these equations, since the coefficient −t∗kmykm of Em in eq.
(2.21) differs from −tkmykm in eq. (2.22), as long as there is nonzero phase
shift, i.e. tkm /∈ R.

Example 2.5. A 230/138 kV transformer (Figure 2.6) has a series resis-
tance of zero, a 0.0127 p.u. series reactance, and a complex turns ratio of
1 : 1.007ej30

◦
(Y-∆ connection).

Show that this transformer can be seen to consist of a series connection
of two transformers: an ideal in-phase transformer with a turns ratio of
1 : 1.007 (constant voltage phase) and a phase-shifting transformer with a
complex turns ratio of 1 : ej30

◦
(constant voltage amplitude) and a series

reactance of 0.0127 p.u.

Note. If no parallel paths exist, the phase-shifting has no significance. The
introduced phase-shift can in such a case been seen as a shift of the phase
angle of the reference node. Y-∆ connected transformers are often used to
provide zero-sequence de-coupling between two parts of the system, and not
for active power flow. For active power flow control usually phase-shifting
much lower than 30◦ is needed. Often the phase-shifting could be varied to
cope with different loading situations in the system.

2.2.3 Unified Branch Model

The expressions for the complex currents Ikm and Imk for both transformers
and shifters derived above, depend on which side the tap is located; i.e.,
they are not symmetrical. It is however possible, to develop unified complex
current expressions which can be used for lines, transformers, and shifters,
regardless of the side on which the tap is located (or even in the case when
there are taps on both sides of the device). Consider initially the model
in Figure 2.7 in which shunt elements have been temporarily ignored and
tkm = akmejϕkm and tmk = amke

jϕmk . In this case

Ikm = t∗kmIpq = t∗km(Ep − Eq)ykm = t∗km(tkmEk − tmkEm)ykm (2.23)

and

Imk = t∗mkIqp = t∗mk(Eq − Ep)ykm = t∗mk(tmkEm − tkmEk)ykm (2.24)

which together yield

Ikm = (a2
kmEk − t∗kmtmkEm)ykm (2.25)
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Figure 2.7. Transformer symmetrical model.
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Figure 2.8. Unified branch model (π-model).

and
Imk = (a2

mkEm − t∗mktkmEk)ykm (2.26)

(This expressions are symmetrical in the sense that if k and m are inter-
changed, as in the expression for Ikm, the result is the expression for Imk,
and vice-versa.)

Figure 2.8 shows the unified branch model. All the devices studied above
can be derived from this general model by establishing the appropriate def-
initions of the parameters that appear in the unified model. Thus, for in-
stance, if tkm = tmk = 1 is assumed, the result is an equivalent π-model of
a transmission line; or, if the shunt elements are ignored, and tkm = 1 and
tmk = amke

−jϕmk is assumed, then the result is a phase shifting transformer
with the tap located on the bus m side. The general expressions for and Imk

can be obtained from the model in Figure 2.8:

Ikm = (a2
kmEk − t∗kmtmkEm)ykm + yshkma2

kmEk (2.27)

and
Imk = (a2

mkEm − t∗mktkmEk)ykm + yshmka
2
mkEm (2.28)
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k

Ik
sh

ysh
k

Figure 2.9. A shunt connected to bus k.

2.3 Shunt Elements

The modelling of shunt elements in the network equations is straightforward
and the main purpose here is to introduce the notation and the sign con-
vention to be used when formulating the network equations in the coming
chapters. As seen from Figure 2.9 the current from a shunt is defined as
positive when injected into the bus. This means that

Ishk = −yshk Ek (2.29)

with Ek being the complex voltage at node k. Shunts are in all practical cases
either shunt capacitors or reactors. From eq. (2.29) the injected complex
power is

Ssh
k = P sh

k + jQsh
k = −(yshk )∗|Ek|2 = −(yshk )∗U2

k (2.30)

2.4 Loads

Load modelling is an important topic in power system analysis. When for-
mulating the load flow equations for high voltage systems, a load is most
often the infeed of power to a network at a lower voltage level, e.g. a dis-
tribution network. Often the voltage in the distribution systems is kept
constant by controlling the tap-positions of the distribution transformers
which means that power, active and reactive, in most cases can be regarded
as independent of the voltage on the high voltage side. This means that the
complex power Ek(I loadk )∗ is constant, i.e. independent of the voltage mag-
nitude Uk. Also in this case the current is defined as positive when injected
into the bus, see Figure 2.10. In the general case the complex load current
can be written as

I loadk = I loadk (Uk) (2.31)
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k

Ik
load

Load

Figure 2.10. Model of a load connected to bus k.

where the function I loadk (·) describes the load characteristics 2. More often
the load characteristics are given for the active and reactive powers

P load
k = P load

k (Uk) (2.32)

Qload
k = Qload

k (Uk) (2.33)

2.5 Generators

Generators are in load flow analysis modelled as current injections, see Fig-
ure 2.11. In steady state a generator is commonly controlled so that the
active power injected into the bus and the voltage at the generator termi-
nals are kept constant. This will be elaborated later when formulating the
load flow equations. Active power from the generator is determined by the
turbine control and must of course be within the capability of the turbine-
generator system. Voltage is primarily determined by the reactive power
injection into the node, and since the generator must operate within its
reactive capability curve it is not possible to control the voltage outside cer-
tain limits. The reactive capability of a generator depends on a number of
quantities, such as active power, bus voltage and other operating conditions,
and a typical example is shown in Figure 2.12. The shape of the generator
capability curve is specific for each generator and depends on design char-
acteristics, type of generator, hydro or steam turbine, stability constraints,
etc. In Figure 2.12 it is also indicated what imposes the different limits for
this particular generator.

2This refers to the steady state model of the load. For transient conditions other
load models apply. These are usually formulated as differential equations and might also
involve the frequency
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Figure 2.11. Model of a generator connected to bus k.
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3
Active and Reactive Power Flows

In this chapter the expressions for the active and reactive power flows in
transmission lines, transformers, phase-shifting transformers, and unified
branch models are derived.

THE SYSTEM COMPONENTS dealt with in this chapter are linear in
the sense that the relations between voltages and currents are linear1.

However, since one usually is interested rather in powers, active and reactive,
than currents, the resulting equations will be non-linear, which introduces
a complication when solving the resulting equations.

3.1 Transmission Lines

Consider the complex current Ikm in a transmission line

Ikm = ykm(Ek − Em) + jbshkmEk (3.1)

with quantities defined according to Figure 2.2. The complex power, Skm =
Pkm + jQkm, is

Skm = EkI
∗
km = y∗kmUke

jθk(Uke
−jθk − Ume−jθm)− jbshkmU2

k (3.2)

where the conductance of yshkm has been neglected.
The expressions for Pkm and Qkm can be determined by identifying the

corresponding coefficients of the real and imaginary parts of eq. (3.2), which
yields

Pkm = U2
k gkm − UkUmgkm cos θkm − UkUmbkm sin θkm (3.3)

Qkm = −U2
k (bkm + bshkm) + UkUmbkm cos θkm − UkUmgkm sin θkm (3.4)

where the notation θkm = θk − θm is introduced.

1This is at least true for the models analysed here. Different non-linear phenomena,
e.g. magnetic saturation, can sometimes be important, but when studying steady state
conditions the devices to be discussed in this chapter are normally within the region of
linearity.

19
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The active and reactive power flows in opposite directions, Pmk and Pmk,
can be obtained in the same way, resulting in:

Pmk = U2
mgkm − UkUmgkm cos θkm + UkUmbkm sin θkm (3.5)

Qmk = −U2
k (bkm + bshkm) + UkUmbkm cos θkm + UkUmgkm sin θkm (3.6)

From these expressions the active and reactive power losses of the lines
are easily obtained as:

Pkm + Pmk = gkm(U2
k + U2

m − 2UkUm cos θkm)

= gkm|Ek − Em|2 (3.7)

Qkm +Qmk = −bshkm(U2
k + U2

m)− bkm(U2
k + U2

m − 2UkUm cos θkm)

= −bshkm(U2
k + U2

m)− bkm|Ek −Em|2 (3.8)

Note that |Ek−Em| represents the magnitude of the voltage drop across
the line, gkm|Ek −Em|2 represents the active power losses, −bshkm|Ek −Em|2
represents the reactive power losses; and −bshkm(U2

k + U2
m) represents the

reactive power generated by the shunt elements of the equivalent π-model
(assuming actual transmission line sections, i.e. with bkm < 0 and bshkm > 0).

Example 3.1. A 750 kV transmission line section has a series impedance
of 0.00072 + j0.0175 p.u., a total shunt impedance of 8.775 p.u., a voltage
magnitude at the terminal buses of 0.984 p.u. and 0.962 p.u., and a voltage
angle difference of 22◦. Calculate the active and reactive power flows.

Solution The active and reactive power flows in the line are obtained by
applying eqs. (3.3) and (3.4), where Uk = 0.984 p.u., Um = 0.962 p.u., and
θkm = 22◦. The series impedance and admittances are as follows:

zkm = 0.00072 + j0.0175 p.u.

ykm = gkm + jbkm = z−1
km = 2.347 − j57.05 p.u.

The π-model shunt admittances (100 MVA base) are:

bshkm = 8.775/2 = 4.387 p.u.

and

Pkm = 0.9842·2.347−0.984·0.962·2.347 cos 22◦+00.984·0.962·57.05 sin 22◦ p.u.

Qkm = −0.9842·(−57.05+4.39)−0.984·0.962·57.05 cos 22◦−00.984·0.962·2.347 sin 22◦ p.u.

which yield
Pkm = 2044 MW Qkm = 8.5 Mvar
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In similar way one obtains:

Pmk = −2012 MW Qmk = −50.5 Mvar

It should be noted that powers are positive when injected into the line. �

3.2 In-phase Transformers

The complex current Ikm in an in-phase transformer is expressed as in
eq. (2.12)

Ikm = akmykm(akmEk − Em)

The complex power, Skm = Pkm + jQkm, is given by

Skm = EkI
∗
km = y∗kmakmUke

jθk(akmUke
−jθk − Ume−jθm) (3.9)

Separating the real and imaginary parts of this latter expression yields
the active and reactive power flow equations:

Pkm = (akmUk)2gkm − akmUkUmgkm cos θkm − akmUkUmbkm sin θkm
(3.10)

Qkm = −(akmUk)2bkm + akmUkUmbkm cos θkm − akmUkUmgkm sin θkm
(3.11)

These same expressions can be obtained by comparing eqs. (3.9) and
(3.2); in eq. (3.9) the term jbshkmU2

k is not present, and Uk is replaced by
akmUk. Hence, the expressions for the active and reactive power flows on
in-phase transformers are the same expressions derived for a transmission
line, except the for two modifications: ignore bshkm, and replace Uk with
akmUk.

Example 3.2. A 500/750 kV transformer with a tap ratio of 1.050:1.0 on
the 500 kV side, see Figure 2.4, has neglible series resistance and a leakage
reactance of 0.00623 p.u., terminal voltage magnitudes of 1.023 p.u. and
0.968 p.u., and an angle spread of 5.3◦. Calculate the active and reactive
power flows in the transformer.

Solution The active and reactive power flows in the transformer are given
by eqs. (3.10) and (3.11), where Uk = 1.023 p.u., Um = 0.968 p.u., θkm =
5.3◦, and akm = 1.0/1.05 = 0.9524. The series reactance and susceptance
are as follows:

xkm = 0.00623 p.u.

bkm = −x−1
km = −160.51 p.u.
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The active and reactive power flows can be expressed as

Pkm = −0.9524 · 1.023 · 0.968 · (−160.51) sin 5.3◦ p.u.

Qkm = −(0.9524·1.023)2(−160.51)+0.9524·1.023·0.968·(−160.51) cos 5.3◦ p.u.

which yield
Pkm = 1398 MW Qkm = 163 Mvar

The reader is encouraged to calculate Pmk and Qmk. (The value of Pmk

should be obvious.) �

3.3 Phase-Shifting Transformer with akm = 1

The complex current Ikm in a phase shifting transformer with akm = 1 is as
follows, see Figure 2.6:

Ikm = ykm(Ek − e−jϕkmEm) = ykme−jϕkm(Eke
jϕkm − Em) (3.12)

and the complex power, Skm = Pkm + jQkm, is thus

Skm = EkI
∗
km = y∗kmUke

j(θk+ϕkm)(Uke
−j(θk+ϕkm) − Ume−jθm) (3.13)

Separating the real and imaginary parts of this expression, yields the
active and reactive power flow equations, respectively:

Pkm = U2
k gkm − UkUmgkm cos(θkm + ϕkm)

− UkUmbkm sin(θkm + ϕkm) (3.14)

Qkm = −U2
k bkm + UkUmbkm cos(θkm + ϕkm)

− UkUmgkm sin(θkm + ϕkm) (3.15)

As with in-phase transformers, these expressions could have been ob-
tained through inspection by comparing eqs. (3.2) and (3.13): in eq. (3.13),
the term jbshkmU2

k is not present, and θkm is replaced with θkm+ϕkm. Hence,
the expressions for the active and reactive power flows in phase-shifting
transformers are the same expressions derived for the transmission line, al-
beit with two modifiactions: ignore bshkm and replace θkm with θkm + ϕkm.

Example 3.3. A ∆ - Y , 230/138 kV transformer presents a 30◦ phase
angle shift. Series resistance is neglected and series reactance is 0.0997 p.u.
Terminal voltage magnitudes are 0.882 p.u. and 0.989 p.u., and the total
angle difference is −16.0◦. Calculate the active and reactive power flows in
the transformer.
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Solution The active and reactive power flows in the phase-shifting trans-
former are given by eqs. (3.14) and (3.15), where Uk = 0.882 p.u., Um =
0.989 p.u., θkm = −16.6◦, and ϕkm = 30◦. The series reactance and suscep-
tance are as follows:

xkm = 0.0997 p.u.

bkm = −x−1
km = −10.03 p.u.

The active and reactive power flows can be expressed as

Pkm = −0.882 · 0.989 · (−10.03) · (−160.51) sin(−16.6◦ + 30◦) p.u.

Qkm = −0.8822(−10.03) + 0.882 · 0.989 · (−10.03) cos(−16.6◦ + 30◦) p.u.

which yield
Pkm = 203 MW Qkm = −70.8 Mvar

The reader is encouraged to calculate Pmk and Qmk. (The value of Pmk

should be obvious.) �

3.4 Unified Power Flow Equations

The expressions for active and reactive power flows on transmission lines,
in-phase transformers, and phase shifting transformers, see Figure 2.8, can
be expressed in the following unified forms:

Pkm = (akmUk)2gkm
− (akmUk)(amkUm)gkm cos(θkm + ϕkm − ϕmk)
− (akmUk)(amkUm)bkm sin(θkm + ϕkm − ϕmk) (3.16)

Qkm = (akmUk)2(bkm + bshkm)
+ (akmUk)(amkUm)bkm cos(θkm + ϕkm − ϕmk)
− (akmUk)(amkUm)gkm sin(θkm + ϕkm − ϕmk) (3.17)

Where, for the transmission lines like the one represented in Figure 2.2,
akm = amk = 1 and ϕkm = ϕmk = 0; for in-phase transformers such as the
one represented in Figure 2.4, yshkm = yshmk = 0, amk = 1 and ϕkm = ϕmk = 0;
and for a phase-shifting transformer such as the one in Figure 2.6, yshkm =
yshmk = 0, amk = 1 and ϕmk = 0.



24 3. Active and Reactive Power Flows



4
Nodal Formulation of the Network Equa-
tions

In this chapter the basic network equations are derived from Kirchhoff’s
Current Law (KCL) and put into forms that are suitable for the formulation
of the power flow equations in the subsequent chapter

THE NET COMPLEX current injection at a network bus, see Figure 4.1,
is related to the current flows in the branches incident to the bus.

Applying Kirchhoff’s Current Law (KCL) yields

Ik + Ishk =
∑
m∈Ωk

Ikm; for k = 1, . . . , N (4.1)

where k is a generic node, Ik is the net current injection from generators
and loads, Ishk is the current injection from shunts, m is a node adjacent to
k, Ωk is the set of nodes adjacent to k, and N is the number of nodes in the
network.

The complex current Ikm in the unified branch model, Figure 2.8, is

Ikm = (a2
kmEk − t∗kmtmkEm)ykm + yshkma2

kmEk (4.2)

where tkm = akmejϕkm and tmk = amke
jϕmk .

Ik
sh

Ik Ikm

ysh
k

Figure 4.1. Generic bus with sign conventions for currents and power flows.
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Equations (4.1) and (4.2) yield

Ik =
(
yshk +

∑
m∈Ωk

a2
km(yshkm + ykm)

)
Ek −

∑
m∈Ωk

(t∗kmtmkykm)Em (4.3)

for k = 1, . . . , N . This expression can be written as

I = YE (4.4)

where

• I is the injection vector with elements Ik, k = 1, . . . , N

• E is the nodal voltage vector with elements Ek = Uke
jθk

• Y = G + jB is the nodal admittance matrix, with the following ele-
ments

Ykm = −t∗kmtmkykm (4.5)

Ykk = yshk +
∑
m∈Ωk

a2
km(yshkm + ykm) (4.6)

We see that the nodal admittance matrix defined by eqs. (4.5) and (4.6)
is modified as compared with the nodal admittance matrix without trans-
formers. Particularly it should be noted that Y as defined above is not
necessarily symmetric.

For large practical networks this matrix is usually very sparse. The
degree of sparsity (percentage of zero elements) normally increases with
the dimensions of the network: e.g., a network with 1000 buses and 1500
branches, typically presents a degree of sparsity greater than 99 %, i.e. less
than 1 % of the matrix elements have non-zero values.

The kth component of I, Ik, defined in eq. (4.3)can by using eqs. (4.5)
and (4.6) be written as

Ik = YkkEk +
∑
m∈Ωk

YkmEm =
∑
m∈K

YkmEm (4.7)

where K is the set of buses adjacent to bus k, including bus k, and Ωk is
the set of buses adjacent to bus k, excluding bus k. Now considering that
Ykm = Gkm + jBkm and Em = Umejθm, eq. (4.7) can be rewritten as

Ik =
∑
m∈K

(Gkm + jBkm)(Umejθm) (4.8)

The complex power injection at bus k is

Sk = Pk + jQk = EkI
∗
k (4.9)
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and by applying eqs. (4.8) and (4.9) this gives

Sk = Uke
jθk
∑
m∈K

(Gkm − jBkm)(Ume−jθm) (4.10)

The expressions for active and reactive power injections are obtained by
identifying the real and imaginaty parts of eq. (4.10), yielding

Pk = Uk

∑
m∈K

Um(Gkm cos θkm +Bkm sin θkm) (4.11)

Qk = Uk

∑
m∈K

Um(Gkm sin θkm −Bkm cos θkm) (4.12)
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5
Basic Power Flow Problem

In this chapter the basic power flow problem is formulated and the basic
bus types are defined. Also, the conditions for solvability of the problem are
discussed

THE POWER FLOW PROBLEM can be formulated as a set of non-
linear algebraic equality/inequality constraints. These constraints rep-

resent both Kirchhoff’s laws and network operation limits. In the basic
formulation of the power flow problem, four variables are associated to each
bus (network node) k:

• Uk - voltage magnitude

• θk - voltage angle

• Pk - net active power (algebraic sum of generation and load)

• Qk - net reactive power (algebraic sum of generation and load)

5.1 Basic Bus Types

Depending on which of the above four variables are known (given) and which
ones are unknown (to be calculated), two basic types of buses can be defined:

• PQ bus: Pk and Qk are specified; Uk and θk are calculated

• PU bus: Pk and Uk are specified; Qk and θk are calculated

PQ buses are normally used to represent load buses without voltage control,
and PU buses are used to represent generation buses with voltage control in
power flow calculations1. Synchronous compensators2, are also treated as
PU buses. A third bus is also needed:

1Synchronous machines are often equipped with Automatic Voltage Regulators (AVRs),
which controls the excitation of the machine so that the terminal voltage, or some other
voltage close to the machine, is kept at the set value.

2Synchronous compensators are synchronous machines without any active power gen-
eration or load (except for losses) used for reactive power and voltage control.
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• Uθ bus: Uk and θk are specified; Pk and Qk are calculated

The Uθ bus, also called reference bus or slack bus, has double functions in
the basic formulation of the power flow problem:

1. It serves as the voltage angle reference

2. Since the active power losses are unknown in advance, the active power
generation of the Uθ bus is used to balance generation, load, and losses

Other possible bus types are P, U, and PQU, with obvious definitions.
The use of multiple Uθ buses may also be required for certain applications.
In more general cases, the given values are not limited to the specific set of
buses (P, Q, U, θ), and branch related variables can also be specified.

Example 5.1. Figure 5.1 shows a 5-bus network with four transmission
lines and two transformers. Generators, with voltage control, are connected
at buses 1, 3, and 5, and loads are connected at buses 4 and 5, and at bus 4
a shunt is also connected. Classify the buses according to the bus types PU,
PQ and Uθ.

Solution Buses 1,3, and 5 are all candidates for PU or Uθ bus types. Since
only one could be Uθ bus, we select (arbitrarily) bus 5 as Uθ. In a practical
system usually a generator, or generator station, that could produce power
within a large range is selected as reference or slack bus. It should be noted
that even if a load is connected to bus 5 it can only be a PU or Uθ bus, since
voltage control is available at the bus. The reference angle is set at bus 5,
usually to 0. Bus 2 is a transition bus in which both P and Q are equal to
zero, and this bus is consequently of type PQ. Bus 4 is a load bus to which
is also connected a shunt susceptance: since shunts are modelled as part of
the network, see next section, the bus is also classified as a PQ bus. �

5.2 Equality and Inequality Constraints

Eqs. (4.11) and (4.12) can be rewritten as follows

Pk =
∑
m∈Ωk

Pkm(Uk, Um, θk, θm) (5.1)

Qk +Qsh
k (Uk) =

∑
m∈Ωk

Qkm(Uk, Um, θk, θm) (5.2)

where

• k = 1, . . . , N (N is the number of buses in the network)
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Figure 5.1. 5-bus system

• Ωk: set of buses adjacent to k

• Uk, Um: voltage magnitudes at the terminal buses of branch k – m

• θk, θm: voltage angles at the terminal buses of branch k – m

• Pkm: active power flow from bus k to bus m

• Qkm: reactive power flow from bus k to bus m

• Qsh
k : component of reactive power injection due to the shunt element

at bus k (Qsh
k = bshk U2

m), where bshk is the shunt impedance3

A set of inequality constraints imposes operating limits on variables such
as the reactive power injections at PU buses (generator buses), se section
2.5, and voltage magnitudes at PQ buses:

Umin
k ≤ Uk ≤ Umax

k (5.3)

Qmin
k ≤ Qk ≤ Qmax

k (5.4)

When no inequality constraints are violated, nothing is affected in the
power flow equations, but if a limit is violated, the bus status is changed

3It is here assumed that all shunts are reactive without losses. If shunts with resistive
components should be included, then eq. (5.1) must be modified accordingly.
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and it is enforced as an equality constraint at the limiting value. This
normally requires a change in bus type: if, for example, a Q limit of a PU
bus is violated, the bus is transformed into an PQ bus (Q is specified and
the U becomes a problem unknown). A similar procedure is adopted for
backing-off when ever appropriate. What is crucial is that bus type changes
must not affect solvability. Various other types of limits are also considered
in practical implementations, including branch current flows, branch power
flows, active power generation levels, transformer taps, phase shifter angles,
and area interchanges.

5.3 Problem Solvability

One problem in the definition of bus type (bus classification) is to guarantee
that the resulting set of power flow equations contains the same number of
equations as unknowns, as are normally necessary for solvability, although
not always sufficient. Consider a system with N buses, where NPU are of
type PU, NPQ are of type PQ, and one is of type Uθ. To fully specify
the state of the system we need to know the voltage magnitudes and volt-
age angles of all buses, i.e. in total 2N quantities. But the voltage angle
and voltage magnitude of the slack bus are given together with the voltage
magnitudes of NPU buses. Unknown are thus the voltage magnitudes of
the PQ buses, and the voltage angles of the PU and the PQ buses, giving
a total of NPU + 2NPQ unknown states. From the PU buses we get NPU

balance equations regarding active power injections, and from the PQ buses
2NPQ equations regarding active and reactive power injections, thus in total
NPU + 2NPQ equations, and hence equal to the number of unknowns, and
the necessary condition for solvability has been established.

Similar necessary conditions for solvability can be established when other
types of buses, such as P, U, and PQU buses are used in the formulation of
the power flow problem.

Example 5.2. Consider again the 5-bus in Figure 5.1. Formulate the equal-
ity constraints of the system and the inequality constraints for the generator
buses.

Solution In this case N = 5, NPQ = 2, NPU = 2, and of course NUθ = 1.
The number of equations are thus: NPU + 2NPQ = 2 + 2 · 2 = 6, and these



5.3. Problem Solvability 33

are:

P1 = P12 + P15

P2 = P21 + P23 + P25

Q2 = Q21 +Q23 +Q25

P3 = P32 + P34

P4 = P43 + P45

Q4 +Qsh
4 = Q43 +Q45

In the above equations P1, P2, P3, P4, Q2, and Q4 are given. All the other
quantities are functions of the bus voltage magnitudes and phase angles, of
which U1, U3, and U5 and θ5 are given. The other six, i.e. U2, U4, θ1, θ2, θ3,
θ4, in total 6 unknowns, can be solved from the above equations, and from
these all power flows and injections can be calculated.

The inequality constraints of the generator buses are:

Qmin
1 ≤ Q1 ≤ Qmax

1

Qmin
3 ≤ Q3 ≤ Qmax

3

Qmin
5 ≤ Q5 ≤ Qmax

5

The reactive limits above are derived from the generator capability curves as
explained in section 2.5. For the slack bus it must also be checked that the
injected active and reactive powers are within the range of the generator,
if not the power generation of the other generators must be changed or the
voltage settings of these. �



34 5. Basic Power Flow Problem



6
Solution of the Power Flow Problem

In this chapter the basic methods to solve the non-linear power flow equations
are reviewed. Solution methods based on the observation that active and
reactive power flows are not so strongly coupled are introduced.

IN ALL REALISTIC CASES the power flow problem cannot be solved an-
alytically, and hence iterative solutions implemented in computers must

be used. In this chapter we will review two solutions methods, Gauss iter-
ation with a variant called Gauss-Seidel iterative method, and the Newton-
Raphson method.

6.1 Solution by Gauss-Seidel Iteration

Consider the power flow equations (5.1) and (5.2) which could be written in
complex form as

Sk = Ek

∑
m∈K

Y ∗
kmE∗

m k = 1, 2, . . . N (6.1)

which is a the same as eq. (4.10). The set K is the set of buses adjacent
(connected) to bus k, including bus k, and hence shunt admittances are
included in the summation. Furthermore Ek = Uke

jθk . This equation can
be rewritten as

E∗
k =

1
Y ∗
kk

[
Sk

Ek
−
∑
m∈Ωk

Y ∗
kmE∗

m

]
k = 1, 2, . . . N (6.2)

where Ωk is the set of all buses connected to bus k excluding bus k. Taking
the complex conjugate of eq. (6.2) yields

Ek =
1
Ykk

[
S∗
k

E∗
k

−
∑
m∈Ωk

YkmEm

]
k = 1, 2, . . . N (6.3)

35
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Thus we get N − 1 algebraic (complex) equations in the complex variables
Ek in the form

E2 = h2(E1, E2, . . . , EN )
E3 = h3(E1, E2, . . . , EN ) (6.4)

...
EN = hN (E1, E2, . . . , EN )

where the functions hi are given by eq. (6.3). It is here assumed that bus
number 1 is the Uθ bus, and hence is E1 given and we have no equation for
node 1. For PQ buses both the magnitude and angle of Ek are unknown,
while for PU buses only the angle is unknown. For PQ buses Sk is known,
while for PU buses only Pk is known. This will be discussed below in more
detail. In vector form eq. (6.4) can be written as

x = h(x) (6.5)

and based on this equation the following iterative scheme is proposed

xν+1 = h(xν) ν = 0, 1, . . . (6.6)

where the superscript indicates the iteration number. Thus starting with an
initial value x0, the sequence

x0,x1,x2, . . . (6.7)

is generated. If the sequence converges, i.e. xν → x∗, then

x∗ = h(x∗) (6.8)

and x∗ is a solution of eq. (6.5).
In practice the iteration is stopped when the changes in xν becomes

sufficiently small, i.e. when the norm of ∆xν = xν+1 − xν is less than a
pre-determined value ε.

To start the iteration a first guess of x is needed. Usually, if no a priori
knowledge of the solution is known, one selects all unknown voltage magni-
tudes and phase angles equal to the ones of the reference bus, usually around
1 p.u. and phase angle = 0. This start solution is often called a flat start.

The difference between Gauss and Gauss-Seidel iteration can be ex-
plained by considering eq. (6.6) with all components written out explicitly1

xν+1
2 = h2(x1, x

ν
2 , . . . , x

ν
N )

xν+1
3 = h3(x1, x

ν
2 , . . . , x

ν
N ) (6.9)

...

xν+1
N = hN (x1, x

ν
2 , . . . , x

ν
N )

1In this particular formulation x1 is the value of the complex voltage of the slack
bus and consequently known. For completeness we have included it as a variable in the
equations above, but it is actually known
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In carrying out the computation (normally by computer) we process the
equations from top to bottom. We now observe that when we solve for xν+1

3

we already know xν+1
2 . Since xν+1

2 is presumably a better estimate than xν2 ,
it seems reasonable to use the updated value. Similarly when we solve for
xν+1

4 we can use the values of xν+1
2 and xν+1

3 . This is the line of reasoning
called the Gauss-Seidel iteration:

xν+1
2 = h2(x1, x

ν
2 , . . . , x

ν
N )

xν+1
3 = h3(x1, x

ν+1
2 , . . . , xνN ) (6.10)

...

xν+1
N = hN (x1, x

ν+1
2 , . . . , xν+1

N−1, x
ν
N )

It is clear that the convergence of the Gauss-Seidel iteration is faster than
the Gauss iteration scheme.

For PQ buses the complex power Sk is completely known and the cal-
culation of the right hand side of eq. (6.3) is well defined. For PU buses
however, Q is not defined but is determined so that the voltage magnitude
is kept at the specified value. In this case we have to estimate the reactive
power injection and an obvious choice is

Qν
k = �

[
Eν
k

∑
m∈K

Y ∗
km(E∗

m)ν
]

(6.11)

In the Gauss-Seidel iteration scheme one should use the latest calculated
values of Em. It should be clear that also for PU buses the above iteration
scheme gives an solution if it converges.

A problem with the Gauss and Gauss-Seidel iteration schemes is that
convergence can be very slow, and sometimes even the iteration does not
converge despite that a solution exists. Therefore more efficient solution
methods are needed, and one such method that is widely used in power flow
computations is discussed in the subsequent sections.

6.2 Newton-Raphson Method

Before applying this method to the power flow problem we review the iter-
ation scheme and some of its properties.

A system of nonlinear algebraic equations can be written as

f(x) = 0 (6.12)

where x is an n vector of unknowns and f is an n vector function of x. Given
an appropriate starting value x0, the Newton-Raphson method solves this
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x0x1x2

x1f ( )

x0f ( )

x

xf ( )

Figure 6.1. Newton-Raphson method in unidimensional case

vector equation by generating the following sequence:

J(xν)∆xν = −f(xν)
(6.13)

xν+1 = xν +∆xν

where J(xν) = ∂f(x)/∂x is the Jacobian matrix with elements

Jij =
∂fi
∂xj

(6.14)

6.2.1 Unidimensional case

To get a better feeling for the method we first study the one dimensional
case, and eq. (6.12) becomes

f(x) = 0 (6.15)

where x is the unknown and f(x) is a scalar function. Figure 6.1 illustrates
a simple case in which there is a single solution to eq. (6.15). Under these
circumstances, the following algorithm can be used to find the solution of
eq. (6.15):

1. Set ν = 0 and choose an appropriate starting value x0;

2. Compute f(xν);
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x0x1x2

x1f ( )

x0f ( )

x

xf ( )

Figure 6.2. Dishonest Newton-Raphson method in unidimensional case

3. Compare f(xν) with specified tolerance ε;
if |f(xν)| ≤ ε, then x = xν is the solution to eq. (6.15);
Otherwise, |f(xν)| > ε, go to the next step;

4. Linearize f(x) at the current solution point [xν , f(xν)], as shown in
Figure 6.1. That is, f(xν +∆xν) ≈ f(xν) + f ′(xν)∆xν , where f ′(xν)
is calculated at xν

5. Solve f(xν) + f ′(xν)∆xν = 0 for ∆xν , and update the solution esti-
mate, xν+1 = xν +∆xν , where ∆xν = −f(xν)/f ′(xν);

6. Update iteration counter ν + 1 → ν and go to step 2.

The dishonest Newton-Raphson method is illustrated in Figure 6.2. In
this case at Step 4 of the algorithm, a constant derivative is assigned and
f ′(xν) = f ′(x0). Although the number of iterations required for convergence
usually increases, it is not necessary to recalculate the derivatives for each
iteration and hence the computation burden at each iteration is lower. When
only limited accuracy is needed, the overall performance of the dishonest
version may be better than that of the full Newton-Raphson method.

6.2.2 Quadratic Convergence

Close to the solution point x∗, the Newton-Raphson method normally presents
a property called quadratic convergence. This can be proved for the unidi-
mensional case discussed above if it is assumed that x∗ is a simple (not a
multiple) root and that its first and second derivatives are continuous.
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Hence, f ′(x∗) = 0, and for any x in a certain neighbourhood of x∗,
f ′(x) 
= 0. If εν denotes the error at the ν-th iteration, i.e.

εν = x∗ − xν (6.16)

the Taylor expansion about xν yields

f(x∗) = f(xν + εν)

= f(xν) + f ′(xν)εν + 1/2f ′′(x̄)ε2
ν (6.17)

= 0

where x̄ ∈ [xν , x∗]. Dividing by f ′(xν), this expression can be written as

f(xν)
f ′(xν)

+ εν + 1/2
f ′′(x̄)
f ′(xν)

ε2
ν = 0 (6.18)

Since,
f(xν)
f ′(xν)

+ εν =
f(xν)
f ′(xν)

+ x∗ − xν = x∗ − xν+1 = εν+1 (6.19)

the following relationship between εν and εν+1 results:

εν+1

ε2
ν

= −1
2
f ′′(x̄)
f ′(xν)

(6.20)

In the vicinity of the root, i.e. as xν → x∗, x̄ → x∗, which gives

|εν+1|
ε2
ν

=
1
2
|f ′′(x∗)|
|f ′(x∗)| (6.21)

From eq. (6.21) it is clear that the convergence is quadratic with the as-
sumptions stated above.

6.2.3 Multidimensional Case

Reconsider now the n-dimensional case

f(x) = 0 (6.22)

where
f(x) = (f1(x), f2(x), . . . , fn(x))T (6.23)

and
x = (x1, x2, . . . , xn)T (6.24)

Thus f(x) and x are n-dimensional (column) vectors.
The Newton-Raphson method applied to to solve eq. (6.22) follows ba-

sically the same steps as those applied to the unidimensional case above,
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except that in Step 4, the Jacobian matrix J(xν) is used, and the lineariza-
tion of f(x) at xν is given by the Taylor expansion

f(xν +∆xν) ≈ f(xν) + J(xν)∆xν (6.25)

where the Jacobian matrix has the general form

J =
∂f
∂x

=




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn




(6.26)

The correction vector ∆x is the solution to

f(xν) + J(xν)∆xν = 0 (6.27)

Note that this is the linearized version of the original problem f(xν+∆xν) =
0. The solution of eq. (6.27) involves thus the solution of a system of linear
equations, which usually is done by Gauss elimination (LU factorization).

The Newton-Raphson algorithm for the n-dimensional case is thus as
follows:

1. Set ν = 0 and choose an appropriate starting value x0;

2. Compute f(xν);

3. Test convergence:
If |fi(xν)| ≤ ε for i = 1, 2, . . . , n, then xν is the solution
Otherwise go to 4;

4. Compute the Jacobian matrix J(xν);

5. Update the solution

∆xν = −J−1(xν)f(xν)
(6.28)

xν+1 = xν +∆xν

6. Update iteration counter ν + 1 → ν and go to step 2.
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6.3 Newton-Raphson applied to Power Flow Equa-
tions

In this section we will now formulate the Newton-Raphson iteration of the
power flow equations. Firstly, the state vector of unknown voltage angles
and magnitudes is ordered such that

x =
(

θ
U

)
(6.29)

and the nonlinear function f is ordered so that the first components corre-
spond to active power and the last ones to reactive power:

f(x) =
(

P(x)
Q(x)

)
(6.30)

with

f(x) =




P2(x)− P2
...

Pm(x)− Pm

−−−−−−
Q2(x)−Q2

...
Qn(x)−Qn




(6.31)

In eq . (6.31) the functions Pk(x) are the active power flows out from bus k
given by eq. (4.11) and the Pi are the injections into bus k from generators
and loads, and the functions Qk(x) are the reactive power flows out from bus
k given by eq. (4.12) and Qi are the injections into bus k from generators and
loads. The first m− 1 equations are formulated for PU and PQ buses, and
the last n − 1 equations can only be formulated for PQ buses. If there are
NPU PU buses and NPQ PQ buses, m− 1 = NPU +NPQ and n− 1 = NPQ.
The load flow equations can now be written as

f(x) =
(

P(x)
Q(x)

)
= 0 (6.32)

and the functions P(x) and Q(x) are called active and reactive (power)
mismatches. The updates to the solutions are determined from the equation

J(xν)
(

∆θν

∆Uν

)
+
(

P(xν)
Q(xν)

)
= 0 (6.33)

The Jacobian matrix J can be written as

J =




∂P
∂θ

∂P
∂U

∂Q
∂θ

∂Q
∂U


 (6.34)
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In eq. (6.34) the matrices ∂P/∂θ and ∂Q/∂U are always quadratic, and so
is of course J.

We will revisit this formulation of the power flow equations in subsequent
chapters.
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7
Approximative Solutions of the Power
Flow Problem

In this chapter approximative methods to solve the power flow equations
will be discussed. In some cases the methods will converge to the actual
solutions, whereas in other cases only approximations to the actual solution
is obtained.

IN THE PREVIOUS CHAPTER the exact expressions of the power flow
equations were used. However, since the power flow equations are solved

frequently in the operation and planning of electric power systems there is a
need that the equations can be solved fast, and for this purpose the approx-
imations introduced in this chapter have proved to be of great value. Often
the approximations described here are used together with exact methods.
Approximative methods could be used to identify the most critical cases,
which then are further analysed with the full models. The fast, approxima-
tive methods can also used to provide good initial guesses for a complete
solution of the equations.

7.1 Pθ − QU Decoupling

The ac power flow problem above involves four variables associated with
each network node k:

• Uk, the voltage magnitude

• θk, the voltage angle

• Pk, the net active power (generation - load)

• Qk, the net reactive power (generation - load)

For transmission systems, a strong coupling is normally observed between
P and θ, as well as between Q and U . This property will here be employed
to derive a linear approximation called dc power flow (or dc load flow). This
linear model relates the active power P to the bus voltage angle θ.

45
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Let us consider a π-model of a transmission line, where the series resis-
tance and the shunt admittance both are neglected and put to zero. In this
case, the active and reactive power flows are given by the following simplified
expressions of eqs. (3.3) and (3.4)

Pkm =
UkUm sin θkm

xkm
(7.1)

Qkm =
U2
k − UkUm cos θkm

xkm
(7.2)

where xkm is the series reactance of the line.
The sensitivities between power flows Pkm and Qkm and the state vari-

ables U and θ are for this approximation given by

∂Pkm

∂θk
=

UkUm cos θkm
xkm

∂Pkm

∂Uk
=

Um sin θkm
xkm

(7.3)

∂Qkm

∂θk
=

UkUm sin θkm
xkm

∂Qkm

∂Uk
=

2Uk − Um cos θkm
xkm

(7.4)

When θkm = 0, perfect decoupling conditions are observed, i.e.

∂Pkm

∂θk
=

UkUm

xkm

∂Pkm

∂Uk
= 0 (7.5)

∂Qkm

∂θk
= 0

∂Qkm

∂Uk
=

2Uk − Um

xkm
(7.6)

As illustrated in Figure 7.1, in the usual range of operations (relatively small
voltage angles), a strong coupling between active power and voltage angle as
well as between reactive power and voltage magnitudes exists, while a much
weaker coupling between reactive power and voltage angle, and between
voltage magnitude and active power exists. Notice, however, that for larger
angles this is no longer true. In the the neighbourhood of θkm = 90◦, there
is strong coupling between P and U as well as between Q and θ.

Example 7.1. A 750 kV transmission line has 0.0175 p.u. series reactance
(the series reactance and the shunt admittance are ignored in this example).
The terminal bus voltage magnitudes are 0.984 and 0.962 p.u. and the angle
difference is 10◦. Calculate the sensitivities of the active and reactive power
flows with respect to voltage magnitude and phase angle.
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0 /2/2 ��� �

V V xk m km/
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�km

Qkm

PkmOperation range

Figure 7.1. P − θ and Q− θ curves for a line with a series resistance
and a shunt admittance of zero and considering terminal voltages Uk =
Um = 1.0 p.u.

Solution The four sensitivities are calculated by using eqs. (7.3) and (7.4):

∂Pkm

∂θk
=

UkUm cos θkm
xkm

=
0.984 · 0.962 cos 10◦

0.0175
= 54.1

∂Pkm

∂Uk
=

Um sin θkm
xkm

=
0.962 sin 10◦

0.0175
= 9.5

∂Qkm

∂θk
=

UkUm sin θkm
xkm

=
0.984 · 0.962 sin 10◦

0.0175
= 9.4

∂Qkm

∂Uk
=

2Uk − Um cos θkm
xkm

=
2 · 0.984 − 0.962 cos 10◦

0.0175
= 58.3

As seen the P − θ and Q − U couplings are much greater than the other
couplings. �
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If the couplings Q−θ and P−U are neglected the Newton-Raphson iter-
ation scheme can be simplified. With this assumption the Jacobian Matrix
can be written as

JDEC =




∂P
∂θ

0

0
∂Q
∂U


 (7.7)

Thus there is no coupling between the updates of voltage magnitudes and
angles and eq. (6.33) can be written as two uncoupled equations:

∂P
∂θ

∆θν +P(θν ,Uν) = 0 (7.8)

∂Q
∂U

∆Uν + Q(θν+1,Uν) = 0 (7.9)

In this formulation two systems of linear equations have to be solved instead
of one system. Of course, the total number of equations to be solved is
the same, but since the needed number of operations to solve a system of
linear equations increases more than linearly with the dimension, it takes
less operations to solve eqs. (7.8) and (7.9) than eq. (6.33) with the complete
Jacobian matrix, J . It should be noted that if the iterations of eqs. (7.8) and
(7.9) converge, it converges to a correct solution of the load flow equations.
No approximations have been introduced in the functions P(x) or Q(x),
only in the way we calculate the updates. The convergence of the decoupled
scheme is somewhat slower than the full scheme, but often the faster solution
time for the updates compensates for slower convergence, giving as faster
overall solution time. For not too heavily loaded systems a faster overall
solution time is almost always obtained. The two equations in eqs. (7.8)
and (7.9) are solved sequentially, and then the updated unknowns of the
first equation, eq. (7.8), can be used to calculate the mismatches of the
second system of equations, eq. (7.9), resulting in an increased speed of
convergence.

7.2 Linearization

In this section the linearized dc power flow equations will be derived.

7.2.1 Transmission Line

Consider again expressions for the active power flows (Pkm and Pmk) in a
transmission line:

Pkm = U2
k gkm − UkUmgkm cos θkm − UkUmbkm sin θkm (7.10)

Pmk = U2
mgkm − UkUmgkm cos θkm + UkUmbkm sin θkm (7.11)
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These equations can be used to determine the real power losses in a
transmission line

Pkm + Pmk = gkm(U2
k + U2

m − 2UkUm cos θkm) (7.12)

If the terms corresponding to the active power losses are ignored in eqs.
(7.10) and (7.11), the result is

Pkm = −Pmk = −UkUmbkm sin θkm (7.13)

The following additional approximations are often valid

Uk ≈ Um ≈ 1 p.u. (7.14)

sin θkm ≈ θkm (7.15)

And since
bkm = −1/xkm (7.16)

we can simplify the expression for the active power flow Pkm to

Pkm = θkm/xkm =
θk − θm
xkm

(7.17)

This equation is analogous to Ohm’s law applied to a resistor carrying a
dc current:

• Pkm is the dc current;

• θk and θm are the dc voltages at the resistor terminals;

• xkm is the resistance.

This is illustrated in Figure 7.2.

7.2.2 Series Capacitor

For a given voltage angle spread, the active power flow in a transmission line
decreases with the line reactance (and series reactance normally increases
with line length). Series compensation aims at reducing the effective electric
length of the line: a series capacitor connected in series with the line. If, for
example, a 40% compensation corresponds to a capacitor with a reactance
of 40% of the original line reactance, but with opposite sign, the resulting
reactance of the compensated line becomes 60% of the original value. Thus

xcomp
km = xkm − xsc (7.18)

with obvious notation. In the dc power flow model the series capacitor
can thus be regarded as a negative resistance inserted in series with the
equivalent line resistance.
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sh sh (a)

k

(b)

mxkm

Pkm mk������������� x
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Figure 7.2. Transmission line. (a) Equivalent π-model. (b) DC power
flow model

7.2.3 In-Phase Transformer

The active power flows, Pkm and Pmk, in an in-phase transformer are given
by eq. (3.10)

Pkm = (akmUk)2gkm − akmUkUmgkm cos θkm − akmUkUmbkm sin θkm (7.19)

Neglecting the terms associated with losses and introducing the same ap-
proximations used for transmission lines yields

Pkm =
θkm

xkm/akm
(7.20)

where further approximating akm ≈ 1, i.e. the transformer tap ratio is close
to the relation between the nominal voltages of the two sides, yields the
same expression as for transmission lines

Pkm =
θkm
xkm

(7.21)

This is illustrated in Figure 7.3.

7.2.4 Phase Shifter

Let us consider again the expression for the active power flow Pkm in a phase-
shifting transformer of the type represented in Figure 2.6 with akm = 1
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k
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Pkm mk������������� (xkm akm)

Figure 7.3. In-phase transformer. (a) Transformer comprising ideal
transformer and series reactance. (b) DC power flow model

(eq. (3.14)):

Pkm = U2
kgkm − UkUmgkm cos(θkm + ϕkm)− UkUmbkm sin(θkm + ϕkm)

As with transmission lines and in-phase transformers, if the terms as-
sociated with active power losses are ignored and Uk = Um = 1 p.u. and
bkm = −x−1

km, the result is

Pkm =
sin(θkm + ϕkm)

xkm
(7.22)

and if (θkm + ϕkm) << π/2, then linear approximation can be used, giving

Pkm =
(θkm + ϕkm)

xkm
(7.23)

Note that Pkm has two components, the first depending on the terminal
bus voltage angles, θkm/xkm, and the other depending only on the phase-
shifting transformer angle, ϕkm/xkm. If ϕkm is considered to be a constant,
eq. (7.23) can be represented by the linearized model shown in Figure 7.4,
where the constant part of the active power flow, ϕkm/xkm, appears as an
extra load on the terminal bus k and an extra generation on the terminal
bus m if ϕkm > 0, or vice-verse if ϕkm < 0.

7.3 Matrix Formulation of DC Power Flow Equations

In this section, the dc model developed above is expressed in the form I =
YE. According to the dc model, the active power flow in a branch is given
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Figure 7.4. Phase-shifting transformer. (a) Phase-shifting trans-
former model (b) Thévénin dc power flow model. (c) Norton dc power
flow model

by
Pkm = x−1

kmθkm (7.24)

where xkm is the series reactance of the branch (parallel equivalent of all the
circuits existing in the branch).

The active power injection at bus k is thus given by

Pk =
∑
m∈Ωk

x−1
kmθkm = (

∑
m∈Ωk

x−1
km)θk +

∑
m∈Ωk

(−x−1
kmθm) (7.25)

for k = 1, 2, . . . , N , where N is the number of buses in the network. This
can be put into matrix form as follows:

P = B′θ (7.26)

where

• P is the vector of the net injections Pk

• B′ is the nodal admittance matrix with the following elements:

B′
km = −x−1

km
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P1

P13

P12

P23

P2

P3

= 1.5 = -0.5

= -1.0

1

3

2

x 1/312 =

x 1/213 = x 1/223 =

Figure 7.5. 3-bus network. (Active power in p.u.; branch reactances in p.u.)

B′
kk =

∑
m∈Ωk

x−1
km

• θ is the vector of voltage angles θk

The matrix B′ in eq. (7.26) is singular, i.e. with a determinant equal
to zero. This means that the system of equations in eq. (7.26) has no
unique solution. Since the power losses have been ignored, the sums of
the components of P is equal to zero. This means that the rows of B′ are
linearly dependent. To make the system solvable, one of the equations in
the system is removed, and the bus associated with that row is chosen as
the angle reference, i.e. θref = 0.

In forming the matrix B′, in-phase and phase-shifting transformers are
treated like transmission lines. The phase-shifting transformers also con-
tribute to the construction of the independent vector P with the Norton
equivalent injections shown in Figure 7.4(c).

Example 7.2. Consider the network given in Figure 7.5 in which the ref-
erence angle is θ1 = 0. Use the dc power flow method to calculate the power
flows in the lines.
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Solution In this case, the elements of the matrix B′ are calculated as

B22 = x−1
21 + x−1

23 = (1/3)−1 + (1/2)−1 = 5

B23 = −x−1
23 = −(1/2)−1 = −2

B32 = −x−1
32 = −(1/2)−1 = −2

B33 = x−1
31 + x−1

32 = (1/2)−1 + (1/2)−1 = 4

and thus

B′ =
(

5 −2
−2 4

)

and

(B′)−1 =
(

1/4 1/8
1/8 5/16

)

The nodal voltage angles (in radians) can now easily be calculated

θ =
(

θ1

θ2

)
= (B′)−1P

=
(

1/4 1/8
1/8 5/16

)( −0.5
−1.0

)
=
( −0.250

−0.375

)

The power flows in the transmission lines are according to the dc power
flow model

P12 = x−1
12 θ12 = 3 · 0.25 = 0.75 p.u.

P13 = x−1
13 θ13 = 2 · 0.375 = 0.75 p.u.

P23 = x−1
23 θ23 = 2 · 0.125 = 0.25 p.u.

�

7.4 DC Power Flow Model

The linearized model P = B′θ can be interpreted as the model for a net-
work of resistors fed by dc current sources where P is the vector of nodal
current injections, θ is the nodal vector of dc voltages, and B′ is the nodal
conductance matrix, as illustrated in Figure 7.6.



7.4. DC Power Flow Model 55

1 2 3

45

P1
P2

P3

P4P5

x12

x23

x34

x45

x25

x15

I1 I3

I2

I4

r15

r12

r25

r45

r23

r34

(a)

(b)

Figure 7.6. 6-bus network. (ac power network. (b) dc power flow model.
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8
Fault Analysis

This chapter presents computation techniques for the currents that may oc-
cur in the network under symmetrical short circuit conditions. These short
circuit currents determine the rating of circuit breakers that must be able to
clear the fault in order to avoid permanent damage to the equipment.

SO FAR we have dealt with steady state behavior of power systems under
normal operating conditions. This chapter is devoted to abnormal sys-

tem behavior under conditions of faults. Such conditions are caused in the
system accidentally through insulation failure of equipment or flashover of
lines initiated by a lightning stroke or through accidental faulty operation.

In high voltage networks, short circuits are the most frequent type of
faults. Short circuits may be solid or may involve an arc impedance. Fig-
ure 8.1 illustrates different types of short circuits.

Depending on the location, the type, the duration, and the system
grounding short circuits may lead to

• electromagnetic interference with conductors in the vicinity (distur-
bance of communication lines, personal danger),

• stability problems,

• mechanical and thermal stress (i.e. damage of equipment, personal
danger)

The system must be protected against flow of heavy short circuit currents
by disconnecting the faulty part of the system by means of circuit breakers
operated by protective relaying. The safe disconnection can only be guar-
anteed if the current does not exceed the capability of the circuit breaker.
Therefore, the short circuit currents in the network must be computed and
compared with the ratings of the circuit breakers at regular intervals.

As illustrated in Figure 8.2, the short circuit currents at network nodes
are generally increasing over the years due to

• increased generation,

• increased intermeshing through new lines in existing networks,

57



58 8. Fault Analysis

a) Symmetrical three-phase short circuit b) Two-phase without ground contact

c) Two-phase with ground contact d) Single-phase earth fault

a

a a

a

b

b b

b

c

c c

c

SC current
partial SC current in
conductor or ground

Figure 8.1. Examples for different types of short circuits.

• interconnection of isolated networks to an integrated one.

This is primarily a problem for the expansion planning, where the impacts
of long-term changes on the short circuit currents have to be assessed. If
the short circuit current exceeds the admissible limit at a network node, the
circuit breakers have to be replaced by breakers with higher ratings. Alter-
natively, the impedance between feeder and fault location can be increased
in order to reduce the short circuit current. This is commonly achieved by

• introducing a higher voltage level while splitting the existing lower
voltage network (Figure 8.3),

• use of multiple busbars (Figure 8.4),

• fast decoupling of busbars during faults (Figure 8.5).

Since changing the circuit breakers involves very high costs the proposed
means to reduce the short circuit currents are the generally preferred solu-
tion. However, this results in a more complex network structure. It also
leads to more possibilities to reconfigure the network topology during op-
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Figure 8.2. Development of short circuit currents over the years.

Figure 8.3. Introduction of a higher voltage level.

eration. When a multiple busbar is introduced, for example, a line can be
switched from one busbar to another.

Switching actions have a significant influence on the short circuit cur-
rents, but not all possible topologies can be studied during network planning.



60 8. Fault Analysis

Figure 8.4. Multiple busbar operation.

ts = 70 . . . 80ms

Figure 8.5. Fast busbar decoupling.

Therefore, calculating the short circuit currents has become more and more
a problem for the network operation. Prior to each switching action all
short circuit currents of the new topology must be calculated in order to de-
cide if the switching action may be carried out. This requires computation
algorithms that are sufficient fast for real time applications.

The majority of system faults are not three-phase faults but faults in-
volving one line to ground or occasionally two lines to ground. These are
unsymmetrical faults requiring special tools like symmetrical components.
Though symmetrical faults are rare, symmetrical short circuit analysis must
be carried out, as this type of fault generally leads to the most severe fault
current flow against which the system must be protected. Symmetrical fault
analysis is, of course, simpler to carry out.

A power network comprises synchronous generators, transformers, lines,
and loads. Though the operating conditions at the time of fault are impor-
tant, the loads can usually be neglected during short circuits, as voltages
dip very low so that currents drawn by loads can be neglected in comparison
to short circuit currents.

The synchronous generator during short circuit has a characteristic time-
varying behavior. In the event of a short circuit, the flux per pole undergoes
dynamic change with associated transients in damper and field windings.
The reactance of the circuit model of the machine changes in the first few
cycles from a low subtransient reactance to a higher transient value, finally
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settling at a still higher synchronous (steady state) value. Depending upon
the arc interruption time of the circuit breakers, an appropriate reactance
value is used for the circuit model of synchronous generators for the short
circuit analysis.

In a modern large interconnected power system, heavy currents flowing
during a short circuit must be interrupted much before the steady state con-
ditions are established. Furthermore, from the considerations of mechanical
forces that act on the circuit breaker components, the maximum current that
a breaker has to carry momentarily must also be determined. For selecting
a circuit breaker we must, therefore, determine the initial current that flows
on occurrence of a short circuit and also the current in the transient that
flows at the time of circuit interruption.

We distinguish between two different approaches to calculate the short
circuits in a power system:

• Transient currents calculation

• Stationary currents calculation

First, we will focus on the calculation of transient currents since this will
help us to understand the physical phenomena during short circuits. How-
ever, for large power systems, the computation of transient currents is not
feasible. For this reason simplified techniques for short current computation
will be presented that are based on stationary models.

8.1 Transients on a transmission line

Let us consider the short circuit transient on a transmission line. Certain
simplifying assumptions are made at this stage:

1. The line is fed from a constant voltage source.

2. Short circuit takes place when the line is unloaded.

3. Line capacitance is negligible and the line can be represented by a
lumped RL series circuit.

R L i

v =
√
2U sin(ωt + α)

Figure 8.6. Transmission line model.

With the above assumptions the line can be represented by the circuit
model of Figure 8.6. The short circuit is assumed to take place at t = 0.
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The parameter α controls the instant on the voltage wave when short circuit
occurs. It is known from circuit theory that the current after short circuit
is composed of two parts, i.e.

i = is + it (8.1)

where is represents the steady state alternating current

is =
√
2U
|Z| sin(ωt+ α− θ) (8.2)

and it represents the transient direct current

it = −is(0) e−(R/L)t =
√
2U
|Z| sin(θ − α) e−(R/L)t (8.3)

with

Z =
√
R2 + ω2L2 ∠

(
θ = tan−1 ωL

R

)
. (8.4)

A plot of i = is + it is shown in Figure 8.7. In power system terminology,
the sinusoidal steady state current is called the symmetrical short circuit
current and the unidirectional transient component is called the DC off-set
current, which causes the total short circuit current to be unsymmetrical till
the transient decays.

imm

i

t

i = is + it

Figure 8.7. Waveform of a short circuit current on a transmission line.

It easily follows from Figure 8.7 that the maximum momentary short
circuit current imm corresponds to the first peak. If the decay of transient
current in this short time is neglected,

imm =
√
2U
|Z| sin(θ − α) +

√
2U
|Z| (8.5)
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Since transmission line resistance is small, θ ≈ 90◦.

imm =
√
2U
|Z| cosα+

√
2U
|Z| (8.6)

This has the maximum possible value for α = 0, i.e. short circuit occurring
when the voltage wave is going through zero. Thus imm may be a high as
twice the maximum of the symmetrical short circuit current:

imm ≤ 2
√
2U
|Z| (8.7)

For the selection of circuit breakers, momentary short circuit current is taken
corresponding to its maximum possible value.

The next question is ‘what is the current to be interrupted’? As has
been pointed out earlier, modern circuit breakers are designed to interrupt
the current in the first few cycles (five cycles or less). With reference to
Figure 8.7 it means that when the current is interrupted, the DC off-set
it has not yet died out and so contributes to the current to be interrupted.
Rather than computing the value of the DC off-set at the time of interruption
(this would be highly complex in a network of even moderately large size),
the symmetrical short circuit current alone is calculated. This current is
then increased by an empirical multiplying factor to account for the DC
off-set current.

8.2 Short circuit of a synchronous machine

Under steady state short circuit conditions, the armature reaction of a syn-
chronous generator produces a demagnetizing flux. In terms of a circuit this
effect is modelled as a reactance Xa in series with the induced emf. This
reactance when combined with the leakage reactance Xl of the machine is
called synchronous reactance Xd. The index d denotes the direct axis. Since
the armature reactance is small, it can be neglected. The steady state short
circuit model of a synchronous machine is shown in Figure 8.8.

Eg

Xl Xa

Xd

Synchronous
reactance

Figure 8.8. Steady state short circuit model of a synchronous machine.

Consider now the sudden short circuit of a synchronous generator that
has initially been operating under open circuit conditions. The machine
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undergoes a transient in all the three phases finally ending up in the steady
state condition discribed above. The circuit breaker must interrupt the
current much before the steady condition is reached. Immediately upon
short circuit, the DC off-set currents appear in all three phases, each with a
different magnitude since the point on the voltage wave at which short circuit
occurs is different for each phase. These DC off-set currents are accounted
for separately on an empirical basis. Therefore, for short circuit studies, we
need to concentrate our attention on the symmetrical short circuit current
only.

In the event of a short circuit, the symmetrical short circuit current is
limited initially only by the leakage reactance of the machine. Since the air
gap flux cannot change instantaneously, to counter the demagnetization of
the armature short circuit current, currents appear in the field winding as
well as in the damper winding in a direction to help the main flux. These
currents decay in accordance with the winding time constants. The time
constant of the damper winding which has low X/R-ratio is much less than
the one of the field winding, which has high leakage inductance with low
resistance. Thus, during the initial part of the short circuit, the damper
and field windings have transformer currents induced in them. In the circuit
model their reactances—Xf of field winding and Xdw of damper winding—
appear in parallel with Xa as shown in Figure 8.9.

Eg

Xl

Xa

Xdw

Xf

Subtransient
reactance

Figure 8.9. Approximate circuit model during subtransient period of
short circuit.

Eg

Xl

Xa

Xf

Transient
reactance

Figure 8.10. Approximate circuit model during transient period of short circuit.

As the damper winding currents are first to die out, Xdw effectively
becomes open circuited and at a later stage Xf becomes open circuited.
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The machine reactance thus changes from the parallel combination of Xa,
Xf , and Xdw during the initial period of the short circuit to Xa and Xf

in parallel (Figure 8.10) during the middle period. The machine reactance
finally becomes Xa in steady state (Figure 8.8). The reactance presented by
the machine in the initial period of the short circuit, i.e.

X ′′
d = Xl +

1
1/Xa + 1/Xf + 1/Xdw

(8.8)

is called the subtransient reactance of the machine; while the reactance ef-
fective after the damper winding currents have died out, i.e.

X ′
d = Xl +

1
1/Xa + 1/Xf

(8.9)

is called the transient reactance. Of course, the reactance under steady
conditions is the synchronous reactance. Obviously X ′′

d < X ′
d < Xd. The

machine thus offers a time-varying reactance which changes from X ′′
d to X ′

d

and finally to Xd.

i

t

√
2I ′′

sc√
2I ′

sc

√
2Isc

0

Subtransient period

Transient period Steady state

Figure 8.11. Symmetrical short circuit armature cureent in syn-
chronous machine.

If we examine the oscillogram of the short circuit current of a syn-
chronous machine after the DC off-set has been removed, we will find the
current wave shape as given in Figure 8.11. The short circuit current can be
divided into three periods—the initial subtransient period when the current
is large as the machine offers subtransient reactance, the middle transient
period where the machine offers transient reactance, and finally the steady
state period when the machine offers synchronous reactance. Hence we dis-
tinguish between
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• the steady state current Isc,

• the transient current I ′sc, and

• the initial subtransient current I ′′sc.

None of the three currents includes a DC component. The steady state and
transient currents are obtained by extrapolating their envelopes backwards
in time. Since we are normally interested in maximum short circuit current,
most short circuit computation is based only on the subtransient current.

8.3 Algorithms for short circuit studies

8.3.1 Generator model

In the power flow analysis we are modeling generators as constant power
sources (PU characteristics) which leads to nonlinear power flow equations.
However, for the short transient period during a short circuit this model is
no longer valid since the power and the voltage regulators operate with much
large time constants. Here, the linear model outlined in Figure 8.12 is more
appropriate. It is used for generators and infeeds, where E′′ represents the
subtransient emf and X ′′

d represents the subtransient reactance of generators
or the internal grid impedance of a feeder. This model may also be applied
to large motor loads.

E′′

X ′′
dR

Figure 8.12. Linear generator model for short circuit computation.

8.3.2 Simplifications

When computing short circuits in an power system further simplifications
can be made. The following simplifications are also proposed in the German
standard VDE 0102:

• All line capacitances are ignored.

• All non-motor shunt impedances are ignored; motor loads are treated
the same way as generators.

• The voltage magnitude and phase angle of generators and infeeds are
all set to the same value

E′′
i = c · Unom (8.10)
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where Unom is the nominal voltage of the system in which the short
circuit occurs. In high voltage systems (¿ 35 kV) c = 1.1 represents the
difference between the effective voltage and the system voltage. If the
minimum rather than the maximum initial AC short circuit current is
to be calculated, c is set to c = 0.95.

• All tap changing transformers are in middle position.

These simplifications are indicated for studies regarding medium- and
long-term network planning. In the planning stage, the calculations are
based on estimated and hence inaccurate data. Therefore, the demands
on the short circuit computation algorithm are lower than for real-time
applications in the network operation, where accurate results are desired.
Studies have shown that the shunt elements and loads have little influence
on the short circuit currents (0.5% . . . 4%) and may compensate each other.
However, disregarding the actual generator pole voltages and the actual
positions of tap changing transformers may sometimes lead to errors of up
to 30%.

8.3.3 Solving the linear system equations

With the linear models of the network elements, a system of linear equations
can be set up for a short circuit at any node i. Figure 8.13 illustrates the
network model. The voltage sources of the generators (Figure 8.12) must be
transformed into equivalent current sources. The admittance of the current
source is considered in the respective element of the admittance matrix.

I1 =
E′′

1
X′′

d

Ih =
E′′

h
X′′

d

Ij = 0

In = 0

I ′′
sc

1

h

j

n

i

Generator
nodes

Load
nodes

Short circuit node

Network

Figure 8.13. Network with short circuit at node i.

In order to calculate the short circuit current I ′′sc at node i the equation

Y ·U = I (8.11)

must be solved, where
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• Y is the nodal admittance matrix

• U is the nodal voltage vector

U =

{
Uj if j 
= i

0 if j = i
(8.12)

• I is the vector of injection currents

I =




Ej

X ′′
dj

for generator nodes j 
= i

0 for load nodes j 
= i

−I ′′sc for short circuit node without generation j = i

−I ′′sc +
Ej

X ′′
dj

for short circuit node with generation j = i

(8.13)

All elements Uj of vector U are unknown variables with the exception of
voltage Ui = 0 at the short circuit node i. On the contrary, all elements
of vector I are known except for the current Ii at the short circuit node i.
To solve the system of equations (8.11), the ith row and the ith column are
removed. The remaining admittance matrix is then factorized into trian-
gular matrices. Backward substitution yields the unknown voltages. The
unknown current Ii at the short circuit node i can be calculated from the
voltages using the ith row of eq. (8.11).

If the short circuit currents I ′′sci are calculated for all nodes i = 1, . . . , n
the equation system has to be set up and solved for every short circuit node.
Since always another row and an other column are removed the matrix
must be factorized each time anew. Therefore, with the proposed method
the computation of all short circuit currents is considerably expensive.

8.3.4 The superposition technique

If two equal voltage sources in reverse direction are introduced into the
short circuit path at node i according to Figure 8.14, neither currents nor
voltages in the network are affected. Since the network consists only of
linear elements the short circuit calculation is a linear problem. Therefore,
the superposition principle can be applied, that means the computation
of the short circuit current may be performed in two steps. These steps
are illustrated in Figure 8.15 and Figure 8.16. The superposition, i.e. the
addition of the results finally yields the desired values. The advantage of
inserting two reverse voltage sources becomes clear if both steps are regarded
separately.



8.3. Algorithms for short circuit studies 69

I1

Ih

I ′′
sc

1
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n

i

Generator
nodes

Load
nodes

Short circuit node

Network

Ui = 0

Uli

Uli

Figure 8.14. Network with short circuit at node i.

First step

Principally, the voltage Uli can be chosen arbitrarily. If it is chosen in such
a way that I ′′(1)sc = 0, the first step corresponds to the computation of node
voltages and branch currents in a power flow analysis. The power flow
analysis yields the voltage Uli, i.e. the voltage at the short circuit node i
before the fault occurs.

If the above simplifications are applied, the first step can be omitted. For
all generators, infeeds and loads the voltage is then uniformely presumed

E′′
i = c · Unom . (8.14)

As already mentioned, disregarding the actual generator voltages may
lead to considerable errors. Therefore, this approximation is not always rec-
ommended. The first step, i.e. calculating the pre-fault voltages, is identical
for all short circuit nodes i = 1, . . . , n and needs to be done only once.
Thus, the additional effort for an exact calculation of the node voltages is
comparatively small.

Second step

In the second step the voltage Uli is inserted in reverse direction at the short
circuit node i. All other sources like generators and infeeds are disregarded.
This yields the equation system

Y · U(2) = I(2) (8.15)

with
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Figure 8.15. Superposition 1st step.
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Figure 8.16. Superposition 2nd step.

• Elements of vector U(2):

U(2) =

{
U

(2)
j if j 
= i

−Uli if j = i
(8.16)

• Elements of vector I(2):

I(2) =

{
0 if j 
= i

−I ′′sc if j = i
(8.17)

Vector U(2) contains the node voltages U (2)
j , all of which are unknown with

the exception of U (2)
i = −Uli. In vector I(2) the only non-zero current is I(2)

i .
Dividing the system of equations (8.15) by −I ′′sc yields the modified system
of equations (8.18) where Û(2) contains only unknown and Î(2) only given
values.

Y · Û(2) = Î(2) (8.18)

with

• Elements of vector Û(2):

Û(2) =




−U
(2)
j

I ′′sc
if j 
= i

Uli

I ′′sc
if j = i

(8.19)

• Elements of vector Î(2):

Î(2) =

{
0 if j 
= i

1 if j = i
(8.20)
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The transformation from eq. (8.15) to eq. (8.18) leaves the admittance
matrix Y unchanged. As a consequence, the triangular factorization of the
admittance matrix must be done only once, even if multiple short circuit
cases are investigated. The superposition technique should therefore be
preferred to the direct solution of the linear system of equations (8.11).

However, if we compute the solution of eq. (8.18) with the known tech-
nique, i.e. triangular factorization and forward-backward-substitution, a new
forward-backward-substitution is required for every short circuit case. This
disadvantage can be avoided with the Takahashi method.

8.3.5 The Takahashi method

The principle idea behind the Takahashi method is the solution of eq. (8.18)
by means of inversion. This yields

Z · Î(2) = Û(2) (8.21)

where
Z = Y−1 (8.22)

is the impedance matrix of the system. The unknown initial short circuit
current I ′′sc at node i can be found in the ith element of vector Û(2)

Û
(2)
i =

Uli

I ′′sc
(8.23)

resp.

I ′′sc =
Uli

Û
(2)
i

. (8.24)

From eqs. (8.20) and (8.21) follows

Û
(2)
i = zii (8.25)

where zii is an element on the main diagonal of matrix Z. Inserting eq. (8.25)
in eq. (8.16) finally yields:

I ′′sc =
Ui

zii
(8.26)

For the calculation of the short circuit current only the main diagonal
element zii of the impedance matrix Z is required. Knowing all main diag-
onal elements zii (i = 1, . . . , n) is therefore sufficient to compute the short
circuit currents I ′′sci at all nodes i.

Often, also the partial short circuit currents Iji are to be determined.
These are the currents that flow from adjacent nodes j to the short circuit
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node i. With the simplification that all generator voltages are identical the
partial short currents are

Iji =
(
U

(2)
j − U

(2)
i

)
yji

=
(
U

(2)
j − U

(2)
li

)
yji (8.27)

where yji is the admittance of the branch between j to i. If this simplification
is not permitted the terms from the first step must be added here.

With eq. (8.21) follows:

Iji =
(−zji I

′′
sci + zii I

′′
sci

)
yji

= I ′′sci (zii − zji) yji (8.28)

For the calculation of the partial short circuit currents from node j to the
short circuit node i in addition to the main diagonal element zii all elements
zji are required. Because node j is connected directly to node i, the element
yji in the admittance matrix is non-zero. Although the impedance matrix Z
is not sparse like the admittance matrix Y relatively few elements of Z must
be known to calculate the short circuit currents and the partial short circuit
currents for all nodes. Apart from the main diagonal elements zii these are
the elements zji that are non-zero in the corresponding admittance matrix.

In the Takahashi method only those elements of Z are determined that
have non-zero counterparts in the triangularly factorized admittance matrix.
Except for the few fill-ins that emerge during factorization these are the
elements of Z essential for the short circuit computation. The method shall
be demonstrated here:

Eq. (8.22) can be written as

Y · Z = E (8.29)

where E is the identity matrix. Y is factorized into triangular matrices and
eq. (8.29) can be transformed in the following way:

L · D · R · Z = E | · L−1 (8.30)

D · R · Z = L−1 | · D−1

R · Z = D−1 · L−1 |+ Z − R · Z
Z = D−1 · L−1 + Z − R · Z
Z = D−1 · L−1 + (E− R)Z (8.31)

The inverse of diagonal matrix D is again a diagonal matrix. Each element
on the main diagonal contains the reciprocal value of the element before the
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inversion:

D−1 =



d11 0

d22

. . .
0 dnn



−1

=




1
d11

0
1
d22

. . .
0 1

dnn


 (8.32)

The inverse of the lower triangular matrix L is a triangular matrix with the
same structure. Since all elements on the main diagonal of L are 1, the
determinant is also 1. Thus, the main diagonal remains unchanged after
inversion. The values of the remaining elements are of no interest due to
the nesting of the system of equations (8.31).

L−1 =



1 0
· 1

· · . . .
· · · 1



−1

=



1 0
· 1

· · . . .
· · · 1


 (8.33)

The product of the diagonal matrix D−1 with the triangular matrix L−1 is
a triangular matrix with modified main diagonal. Therefore, eq. (8.31) has
the following form:




z11 z12 · · · z1n

z21 z22 · · · z2n
...

...
...

...
zn1 zn2 · · · znn



=




1
d11

0
· 1

d22

· · . . .

· · · . . .
· · · · 1

dnn



− (8.34)

−




0 r12 · · · r1n

0 0 · · · z2n
...

...
...

0 0 · · · r(n−1)n

0 0 · · · 0


 ·




z11 z12 · · · z1n

z21 z22 · · · z2n
...

...
...

...
zn1 zn2 · · · znn




With the system of equations (8.34) all elements of the impedance matrix
Z can be determined recursively. We start with the main diagonal element
znn on the nth row and continue with the row (n − 1). For each row, first
the secondary diagonal elements zji and then the main diagonal element zii
are calculated.

Here we take advantage of the fact that the admittance matrix Y and
also their inverse—the impedance matrix Z—are symmetrical. This is due to
the simplifying assumption that all tap changing transformers are in middle
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position.

zij

∣∣∣
i<j

= zji =



not calculated if rij = 0

−
n∑

l=i+1

ril zlj
(8.35)

zii =
1
dii

−
n∑

l=i+1

ril zlj (8.36)
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Figure 8.17. Sample network.

Example 8.1. The whole procedure shall be demonstrated in single steps on
the sample network given in Figure 8.17. With the arbitrarily chosen node
numbering the admittance matrix Y has the following structure.

Y =



y11 y12 0 0 y15

y21 y22 y23 0 0
0 y32 y33 y34 y35

0 0 y43 y44 y45

y51 0 y53 y54 y55


 (8.37)

Solution During the triangular factorization of Y a fill-in element c25 is
generated in the upper triangular matrix. The recursive solution of the
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system of equations (8.34) is then

z55 =
1
d55

(8.38)

z45 = z54 = −r45 z55 (8.39)

z44 =
1
d44

− r45 z54 (8.40)

z35 = −r34 z45 − r35 z55 (8.41)
z34 = −r34 z44 − r35 z54 (8.42)

z33 =
1
d33

− r34 z43 − r35 z53 (8.43)

z25 = −r23 z35 − r25 z55 (8.44)
z23 = −r23 z33 − r25 z53 (8.45)

z22 =
1
d22

− r23 z32 − r25 z52 (8.46)

z15 = −r12 z25 − r15 z55 (8.47)
z12 = −r12 z22 − r15 z52 (8.48)

z11 =
1
d11

− r12 z21 − r15 z51 . (8.49)

Figure 8.18 illustrates this sequence. �
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Figure 8.18. Solution sequence with Takahashi method.

Until now we have assumed that the admittance matrix Y is symmet-
ric. This assumption is valid only if all tap changing transformers are in
middle position. However, the Takahashi method can also be applied to un-
symmetric matrices. In this more general case we get instead of eq. (8.31)
two similar matrix equations. With one of these equations the secondary
diagonal elements above the main diagonal are calculated, with the other
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equation the elements below the main diagonal. The elements on the main
diagonal can be calculated with either equation.

Unsymmetric matrices require about double the effort of symmetric ma-
trices. Since neglecting the actual tap positions can lead to errors of 30%,
considering the actual tap positions is indicated for network operation ap-
plications, that require short circuit computations with high accuracy.

Concluding remarks

The Takahashi method is an algorithm especially designed for the demands
of short circuit computations. Having the same accuracy it needs only a
fraction of the computation time of conventional methods. This advantage
is important in real-time applications.

However, with the Takahashi method only the initial short circuit cur-
rents can be calculated. This includes the partial short circuit currents
Iji that flow from the adjacent nodes to the short circuit node i. It is not
possible to determine the short current shares delivered from individual gen-
erators or infeeds. Thus the breaking current at the generators can not be
determined with the Takahashi method but requires Gauss elimination.
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9
Introduction

This chapter contains a brief overview of some of the basic concepts in power
system dynamics. A classification of different dynamic phenomena is given
and the requirements on modelling are discussed. Stability is a fundamental
concept and a definition of stability in power systems is introduced. Insta-
bilities in power systems can be classified according to their physical origins,
and this classification is reviewed. Finally, a list of further reading in the
subject is given.

IN A ELECTRIC POWER SYSTEM a great variety of different dynamics
occurs. These dynamic phenomena have different physical origin and

they occur in different time scales. A system is in a dynamic states if
the time derivative of any system quantity is non zero, and to describe a
dynamic system mathematically differential or difference equations must be
employed. As an example, the electric consumer loads in a power system
vary spontaneously all the time, and consequently one could state that the
power system is never in steady state in a strict mathematical sense. Such
a point of view is however unpractical in most cases, and one must, as when
it comes to most large and complex systems, study and analyse more or less
simplified models of the system. To do relevant and adequate simplifications
is beneficial for the analysis, and contributes also to achieving results that
are easy to understand and easy to interpret. In addition, when deriving
simplified models one is forced to identify the most important processes
and phenomena in the studied systems, which provides insight and deeper
understanding. Thus, as an example, the assumption that the loads are
constant and that the electric power output from the generators are constant
are relevant approximations for many studies of a power system, and the
power system is under these assumptions described by a solution to the
power flow equations. In the following we will refer to this state as the
steady state of the power system. 1

1In order to emphasise that this state is an approximation or idealisation, it is some-
times referred to as quasi steady state. More generally, a quasi steady state is a state that
strictly is a dynamic state, but could with sufficient accuracy be described by algebraic
equations. One such example is fault current calculations, which often is done by using
algebraic models even if it is a true dynamic phenomenon, see Figure 9.1.
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9.1 Dynamics in Power Systems

There are a lot of different dynamical phenomena with different character-
istics in a power system. The phenomena could be local, in which case they
only involve a minor part of the system or a single component. But they can
also involve interactions between different parts of the system that might be
geographically far from each other. In many cases these system wide inter-
actions are initiated by a local disturbance causing e.g. an earth fault with
subsequent change in network topology. In this compendium interactions
and phenomena that involve many power system components, e.g. gener-
ators and loads, or parts of the system are dealt with. These interactions
have in common that they can cause system instabilities that can lead to
black outs in large parts of the system, i.e. to interruptions of power supply
for many consumers.

Dynamics can also be initiated from actions from different controllers
or from switchings of lines or other components by system operators. Such
“disturbances” should be regarded as normal and should consequently not
endanger the stability of the system.

9.1.1 Classification of Dynamics

Dynamic phenomena in power systems are usually classified as

1. Fast (electro-magnetic) transients (100 Hz - MHz)

2. Electro-mechanical swings (rotor swings in synchronous machines) (0,1 -
3 Hz)

3. Non-electric dynamics, e.g. mechanical phenomena and thermody-
namics (up to tens of Hz)

Approximate values of typical frequencies are given in brackets.
One single initial event in the power system can give rise to dynamics in

all the three groups above. A lightning stroke in a power line can induce so
high over-voltages that the insulation fails, causing a earth fault. The earth
fault can cause rotor swings in synchronous machines with high amplitudes.
This can trigger protections to disconnect generators, so that an unbalance
between produced and consumed power in the system arises. The frequency
in the system drops and generators participating in the frequency control
compensate this by increasing their power outputs. Thus the initial lightning
stroke has initiated dynamics in all the three groups above.

Another way to classify dynamic phenomena is given in Figure 9.1. This
classification is based on the time scale of the phenomenon and the (math-
ematical) models used in analysis.
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Figure 9.1. Dynamic phenomena in a power system. In the figure
approximate time scales are given and types of mathematical mod-
els used. The different groups are called: A. Fast (electro-magnetic)
transients. B. Synchronous machine dynamics. C. Quasi steady state
phenomena D. Steady state phenomena.

9.1.2 Modelling

It is of course almost impossible to develop models that can describe all dy-
namics in a power systems and still being of practical use. Often one has to
utilise a model that captures correctly the specific dynamic phenomenon or
interaction that is the aim of the particular investigation. Depending on the
purpose of the study the appropriate model of a given power system com-
ponent could vary significantly. It is obvious that if the aim is to study rela-
tively slow power oscillations between generators in the system, completely
different models are required as compared with if one wants to analyse the
influence of lightning impulses in the windings of the synchronous machine.

Even if it were theoretically possible to develop a complete model of all
the dynamics in the power system, it is questionable if such a model were
particularly useful. Firstly, such a model would require an enormous amount
if parameter data to be uniquely specified. Secondly, the results obtained
from such a model would be very hard to analyse and interpret. Critical
review and understanding of obtained results is a necessary prerequisite
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for sound engineering. When making simulations and computations, which
all are done with the help of computers nowadays in system sciences, it is
important to have an expectation of what are reasonable outputs. Thus
trivial errors due to wrong input data files, mistakes in modelling, etc. can
be eliminated to a large extent. The human factor is of utmost importance
in computer based analysis and simulation.

Models can in principle be erroneous in two different ways. Firstly, it
can have the wrong structure. It can be too simple overlooking important
interactions and processes or modelling them incorrectly. This is of course
very serious and might give rise to detrimental consequences. But it is also
very serious if wrong parameter data is used in a models of the correct
structure. This latter shortcoming occurs not seldom in technical systems,
which might look surprising at first sight. Since technical systems are man
made, one should in principle have access to all design parameters defining
the system. But it turns out that many parameters, e.g. the gain in the
controller, could easily be changed after the system has been commissioned
and such changes are not always reported to system analysts. It is obvious
that the consequences could be very serious. In technical systems there are of
course parameters that are “genuinely” unknown, e.g. the ground resistivity
under a power line. In a large system like a power system, thousands of
parameters are needed to define the system completely. It is a very difficult,
but also very important, task to maintain and keep the data bases where all
these parameter values are stored updated. This is now a special activity
usually referred to as data engineering.

In this compendium models needed for the problems to be analysed are
developed. Due to space limitations more detailed and elaborate derivation
cannot be presented, but the reader is advised to consult other sources, e.g.
books in electrical machines or the books listed at the end of this chapter.

9.2 Power System Stability

9.2.1 Definition of Stability

A dynamic phenomenon in a power system is, as said above, initiated by
a disturbance in the system. Such a disturbance could as an example be
that a line impedance is changed due to an external cause. The behaviour
of the system after this disturbance depends of course on a how “large”
this disturbance is. A small disturbance results usually in small transients
in the system that are quickly damped out, while a larger disturbance will
excite larger oscillations. We all have a intuitive feeling for what is meant
with stability in this context. Stability is associated with that the system
oscillations decay and that the operation of the power systems can continue
without any major impacts for any of the consumers. But, and this is
very important, as the power system is a nonlinear system (this will be
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elaborated on later) system stability depends on the kind and magnitude of
the disturbance. 2 This distinguishes nonlinear systems from linear systems
that can be classified as stable or unstable independent of the disturbance,
i.e. stability is a property of the linear system as such. As will be shown
later, stability of a power system is strongly coupled to both the magnitude
and character of the disturbance as well as to the initial operating point.

Over the years many different definitions of power system stability have
been proposed. The most recent one, which will adopted in these lecture
notes, was the result of a joint IEEE/CIGRE working group. In the report
in reference 7 of section 9.3, the following definition is given:

Definition 9.1. Power system stability is the ability of an electric power
system, for a given initial operating condition, to regain a state of operating
equilibrium after being subjected to a physical disturbance, with most system
variables bounded so that practically the entire system remains intact.

The following two comments elaborate on some important aspects of this
definition.

Comment 9.1. It is not necessary that the system regains the same steady
state operating equilibrium as prior to the disturbance. This would be the
case when e.g. the disturbance has caused any power system component
(line, generator, etc.) to trip. Voltages and power flows will not be the same
after the disturbance in such a case. Most disturbances that are considered
in stability analyses incur a change in system topology or structure.

Comment 9.2. It is important that the final steady state operating equi-
librium after the fault is steady state acceptable. Otherwise protections or
control actions could introduce new disturbances that might influence the sta-
bility of the system. Acceptable operating conditions must be clearly defined
for the power system under study.

As mentioned above there are also other definitions of power system sta-
bility in the literature. They are not all identical, but could differ in some
details, but most of them are in line with the definition proposed above.
Power system dynamics can be modelled by systems of differential and al-
gebraic equations, and the mathematics of those are studied in the theory
of dynamic systems. It is therefore desirable that the stability definitions
introduced in a more mathematical stringent way are compatible with the
more practically oriented definition above. In the report where the above
definition is proposed and motivated, these aspects are further discussed.

2To give an example of what is meant with magnitude in this context one could consider
a three phase to earth fault on a power line that is cleared by disconnecting the line. The
magnitude of this disturbance increases with the fault clearing time. If the fault clearing
time is sufficiently small, the system will remain stable, while a longer fault clearing might
cause system instability. Similarly, a high impedance fault gives a smaller disturbance than
a solid fault.
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9.2.2 Classification of Power System Stability

To achieve a better overview and structure of stability analyses of power
systems, it is of great help to classify possible power system stability. The
classification to be introduced here is based on the physical mechanism be-
ing the main driving force in the development of the associated instability.
It could be either the active or the reactive power that is the important
quantity.

A common characteristic of the instabilities to be discussed here is that
they have their origin in too large an imbalance of active or reactive power in
the system, locally or globally. This imbalance can then develop in different
ways and cause unstable behaviour depending on system characteristics.
Exactly what is meant with imbalance will be elaborated in the following.

Rotor Angular or Synchronous Stability

The total active electrical power fed into the power system by the genera-
tors is always equal to the active power consumed by the loads including
the losses in the system. On the other there is not always a similar bal-
ance between the loads and the power fed into the generators by the prime
movers, e.g. the hydro and steam turbines. If such an imbalance develops
the rotating parts of the generators, and other rotating machines, will act
as energy buffer, and the kinetic energy stored in these will decrease or in-
crease as a result of the imbalance. Rotor angle stability refers to the ability
of synchronous machines of a power system to remain in synchronism after
a disturbance.

If the disturbance is local and substantial, e.g. an earth fault close to
an generator, the generator can fall out of step since it has been accelerated
during the fault. As quite big currents will flow in the generator windings
in such a case, it must be disconnected to avoid that it is damaged. Typical
time scale for such an instability to develop is a second to a couple of sec-
onds. This kind of instability is called transient instability, and, instability is
usually in form of aperiodic angular separation due to lack of synchronizing
torque. This form of instability is also referred to as large-disturbance rotor
angle instability.

Small-disturbance (or small-signal) rotor angle stability is concerned
with the ability of the power system to maintain synchronism under small
disturbances. These disturbances are considered to be sufficiently small that
linearization of the system equations is permissible for purposes of analysis.
Usually small-disturbance rotor angle stability is associated with insufficient
damping of oscillations.
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Frequency Stability

A third variety of active power imbalance, which is different from the ones
above, is when the imbalance is not local but global. In the cases of the
proceeding cases the sum of active power infeed was enough but there was
an imbalance locally. But if the total power fed into the system by the prime
movers is less than what is consumed by the loads, including losses, this im-
balance will influence the frequency of the whole system. As explained above
the kinetic energy stored in rotating parts of the synchronous machines, and
other rotating electrical machines, will compensate for the imbalance result-
ing in a frequency deviation. If the imbalance is not too large the generators
participating in the frequency control will regulate the active power input
from their prime movers, and bring back the frequency deviation to accept-
able values. If the imbalance is too large, the frequency deviation will be
significant with possible serious consequences. Particularly thermal power
plants are sensitive to large frequency drops of long durations, since detri-
mental oscillations could be excited in the turbines. As a last resort the
generators are disconnected, making the situation even more serious. This
type of instability is called frequency instability and the time scale could be
from a few seconds up to several minutes. Since the involved mechanisms
could be quite different, one often distinguishes between short-term and
long-term frequency instability. In the latter, the control and protections
characteristics of turbines, boilers, and reactors play important roles.

Voltage Stability

When it comes to reactive power balance the situation is not as clear and
simple as concerning active power. There is always a balance between “pro-
duced” and “consumed” reactive power in every node of a network. This
is in fact a direct consequence of Kirchoff’s first current law. When one
talks about imbalance in this context we mean that the injected reactive
power is such, normally too small, that the voltage in the node cannot be
kept to acceptable values. (At low load the injected reactive power could
be high resulting in a too high voltage, possibly higher than the equipment
might be designed for. This is of course not desirable but it could usually be
controlled in such a way that no instabilities develop.) When we talk about
imbalance in this case we thus mean that the injected reactive power differs
from the desired injected reactive power, needed to keep the desired voltage.
If this imbalance gets too high, the voltages become outside the acceptable
range.

Reactive power is a more local quantity than active power since it cannot
be transported as easily in power system where normally X >> R. This
explains why voltage problems often are local, and often only occur in part
of the system. When the imbalances (voltage problems) develop into insta-
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Figure 9.2. Classification of power system stability.

bilities these are called voltage instabilities or voltage collapses. In the latter
case the instability develops into very low voltages in the system. In prin-
ciple too high voltages can also occur at a voltage instability. Low voltages
arise at high load conditions, while high voltages are associated with low
load conditions. Depending on the time scale the voltage instabilities are
classified as short-term, a couple of seconds, or long-term, tens of seconds to
minutes. The short-term voltage instability involves dynamics of fast acting
components such as induction motors, electronically controlled loads, and
HVDC converters, while the long-term voltage instability involves slower
acting equipment such as tap-changing transformers, thermostatically con-
trolled loads, and generator current limiters. As for rotor angle stability
one distinguishes between large-disturbance and small-disturbance voltage
stability.

The classification of power system instabilities is summarised as in Fig-
ure 9.2.

Connection between Instabilities and System Components

As explained above the generators, i.e. the synchronous machines, are very
important in angular instabilities, and it is sometimes said that these are
the driving force in this instability. A more detailed analysis shows that the
loads are very often the driving force when it comes to voltage instability,
which consequently sometimes is called load instability.



9.3. Literature on Power System Dynamics and Stability 87

Instabilities in Real Systems

The classification above is based in simplified an ideal conditions in the
system. In a real system these assumptions might not be valid. In real
system instabilities it is not seldom a combination of active and reactive
power imbalances that trigger an instability. However, in many case it is
possible to identify which is the dominating processes in the beginning of
the instability. During the course of the dynamics new consequential imbal-
ances might occur, resulting in a combined angular and voltage instability
in the final phase. There are examples of black outs in power systems that
have started as slow voltage instabilities, which through low voltages have
reduced the power transfer capability resulting in rotor angular instabilities
causing the final collapse of the system. On the other hand, rotor angular
instabilities can cause generators to trip, which most systems are designed
to cope with, but it can effect the reactive power balance in such a way that
voltage instabilities can develop.

The purpose of a classification is to define a structure for a complicated
problem and thereby better understanding it. Furthermore it often helps to
identify important and critical quantities, processes and components in the
system. Classifications of this kind should not be driven too far. Most im-
portant is always that useful and adequate results are obtained from realistic
models of the power system.

9.3 Literature on Power System Dynamics and Sta-
bility

These lecture notes should be seen as an introduction to power system dy-
namics and stability. For those that want to get deeper knowledge in the
subject there are a number of books than can be recommended. They have
all their strong and weaker sides, and one has often to consult several books
to get a complete view of a problem. Below are only references listed that
are fairly modern and focus on power system dynamics and stability.

1. Power System Stability and Control by Prabha Kundur. (McGraw-
Hill Inc., 1994, ISBN 0-07-035958-X, 1176 pages)
This is the most complete modern book on the subject and is already
a classic textbook. It covers most subtopics and its approach is rather
practical, but it contains a fair amount of theory also. The book
contains a lot of references to other books and published papers.

2. Power System Dynamics and Stability by Jan Machowski, Janusz W.
Bialek and James R. Bumby. (John Wiley & Sons Ltd, 1997, ISBN
0-471-97174-X, 461 pages)
This book does not contain as many applications as the previous one.
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On the other hand it contains rather detailed motivations and deriva-
tions of many of the basic assumptions in power system analysis. A
large part of the book is devoted to control and supervision of power
systems.

3. Power Systems Dynamics. Stability and Control by K. R. Padiyar.
(John Wiley & Sons Ltd, 1996, ISBN 0-471-19002-0, 629 pages)
The book gives a good overview with many solved problems. The
focus is on angular stability, while voltage stability is on briefly dealt
with.

4. Power System Dynamics and Stability by Peter W. Sauer and M. A.
Pai. (Prentice Hall, 1998, ISBN 0-13-678830-0, 357 pages) The mathe-
matical level in this book is higher than the previous ones and to fully
appreciate it knowledge in the theory of nonlinear systems is needed.
Only angular stability is included.

5. Power System Voltage Stability by Carson W. Taylor. (McGraw-Hill
Inc., 1994, ISBN 0-07-063184-0, 273 pages) This book deals only with
voltage stability. The approach is rather practical. Many examples
from voltage instabilities in real systems are reviewed and analysed.

6. Voltage Stability of Electric Power Systems by Thierry Van Cutsem
and Costas Vournas. (Kluwer Academic Publishers, 1998, ISBN 0-
7923-8139-4, 378 pages) Voltage stability is the subject of this book
also. However the approach is more mathematical than in the previous
one, and to fully appreciate it, knowledge about nonlinear systems is
required.

7. Definition and Classification of Power System Stability IEEE/CIGRE
Joint Task Force on Stability Terms and Definitions, 2002.
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Simplified Model of Synchronous Ma-
chine

This chapter starts with a short discussion that motivates why synchronous
machines are important when electro-mechanical oscillations are studied. A
very brief overview of the operating principles and design of the synchronous
machine is given. This forms the basis of a simplified model that is derived.
Even if this model is very simple and neglects a number of features, it cap-
tures the most important properties to model electro-mechanical oscillations
in power systems.

SYNCHRONOUS MACHINES , i.e. practically all generators together
with synchronous motors and synchronous compensators, are the most

important power system components in the analysis of electro-mechanical
oscillations in power systems. The oscillations are manifested in that the ro-
tors of the synchronous machines do not rotate with constant angular veloc-
ity corresponding to system frequency, but superimposed are low frequency
oscillations, typically 0.1 – 4 Hz. It is important that this superimposed
oscillations is not too large, because then the stability of the power system
can be endangered. A correct description of these oscillations requires often
detailed models of many different system components, but to get an under-
standing of and insight into the basic physical phenomenon and processes
that determine the stability it is often sufficient to employ the simple model
that will derived and motivated in this chapter. This simplified model of
the synchronous machine together with a simple model of the power trans-
mission system provide a description that will be used in chapter 12.

As the name electro-mechanical oscillations suggests, both electrical and
mechanical phenomena are involved, i.e. both currents in and voltages across
different windings in the machines but also the mechanical motion of the
rotor. Therefore, models of both electrical and mechanical parts of the
synchronous machine are needed.
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10.1 Design of Synchronous Machines

The rotor in a synchronous machine rotates in normal steady state with
an angular velocity that corresponds to the electrical power frequency of
the system. In modern synchronous machines, the field winding, in which
the field current flows that generate the field flux, is on the rotor. This
rotating flux, which is constant in steady state, induces through its rotation
voltages in the three stator windings, one for each phase. By geometrically
placing the stator windings appropriately, the induced voltages can be made
perfectly sinusoidal. The stator voltages, or generator terminal voltages,
give rise to currents that then are transformed to power in the loads of the
system. The voltages and currents in the stator windings give rise to a
torque through the air gap flux that thrives to retard the rotor. In steady
state this torque must be compensated for by the mechanical torque from the
prime mover of the generator. The prime movers, i.e. gas, hydro or steam
turbines, drive the rotor through the turbine shaft so the rotor rotates with
synchronous speed. 1

Larger synchronous machines are usually equipped with different con-
trol systems with different purposes. One of the most important ones is the
Automatic Voltage Regulator, AVR, which regulates the voltage on the gen-
erator terminals to the desired value irrespective of load currents and other
voltages in the system. By compensation one could also control other volt-
ages close to the synchronous machine. The AVR controls the direct voltage
that feeds the current to the field winding. The field current determines the
flux in the field winding and hence the voltage on the generator terminals
can be controlled.

Often the turbine is equipped with a controller that regulates the me-
chanical power input from the prime mover to the turbine. Some selected
generators have also a controller that regulates the mechanical power input
in response to frequency deviations in the system. By this control the fre-
quency can be kept to values close to the nominal value in steady state. In
the interconnected Nordic power systems the frequency control keeps the
frequency within 50± 0.1 Hz.

Figure 10.1 shows a schematic picture of a synchronous machine that
explains the connections between the different parts discussed above.

1A synchronous machine can also be used as a motor. In this case the electrical torque
tries to accelerate the rotor and the retarding torque comes form the load of the motor, e.g.
a pump or a fan. Usually only very large motors, typically several MW, are synchronous
machines. Smaller motors are usually induction machines where the field winding is short-
circuited and it rotates with a speed lower than the synchronous one. In this compendium
it assumed, if not explicitly stated, that the synchronous machine operates as a generator.
The synchronous compensator, or sometimes called synchronous condenser, is a special

type of synchronous machine. It has only a rotor and possibly a flywheel, and it has no
turbine or load. It is used for voltage control through control of its reactive power output.
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Figure 10.1. Schematic drawing of the main circuits and mechanical
parts of a synchronous machine. The powers indicated are positive
according to the definitions in the figure for a generator in steady
state operation. In addition to what is shown in the figure there are
controllers and protections that are important for the operation of the
synchronous machine.

10.2 Model of Mechanical System

As stated above the rotor of a synchronous machine rotates with synchronous
speed in steady state. If the electrical frequency of the system is ωe, the
mechanical angular velocity ωm of the rotor is given by

ωm =
ωe

p/2
(10.1)

where p are the number of poles of the machine. This is easily seen from
Figure 10.2. When the prime movers are steam or gas turbines, the number
of poles is usually two, and the electrical and mechanical frequencies are the
same. For hydro turbines the number of poles is usually much larger. The
optimal mechanical angular velocity is in this case determined by a number
of parameters, such as head, water flow, etc., resulting in mechanical speeds
from around 100 rpm and higher. In some cases gear boxes are installed
between the turbine and the rotor, which will influence the relation between
ωe and ωm.

An important parameter in the analysis of rotor oscillations is the total
moment of inertia of the synchronous machine J . This is the sum of all
moments of inertia of all rotating parts of the synchronous machine, i.e.
the sum of the moments of inertia of the rotor, turbines, shafts and other
devices on the shaft system, e.g. generator feeding the field winding. As for
electrical quantities it is practical to express J in a suitable p.u. base and
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Figure 10.2. Schematic picture showing the relationship between
mechanical and electrical frequency. p = 2 for the left machine and
p = 4 for the right one.

therefore the inertia constant of the synchronous machine H is defined as

H =
0.5Jω2

mo

S
(10.2)

where S is the MVA rating of the machine. In eq. (10.2) the numerator is an
expression for the total kinetic energy stored in the synchronous machine in
steady state and the unit for H is thus seconds. (If there is a gear box in the
system, it is of course difficult to define one mechanical angular velocity. In
such a case H is calculated as the ratio between total stored kinetic energy
and the MVA rating of the machine.) The inertia constant states how long
time it would take to bring the machine from synchronous speed to standstill
if rated power is extracted from it while no mechanical power is fed into it.
The value of the inertia constant will vary within a much smaller range than
the value of J for different machines. Table 10.1 shows typical values of H
for different types of synchronous machines. It can be concluded that the
value is higher for thermal units as compared with hydro units. Typically
30 – 60% of the total moment of inertia comes from the turbines and shafts
for thermal units, while the corresponding value for hydro units is 5 – 15%.
For synchronous motors the inertia constant depends to a high degree of
what kind of load that is connected.
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Type of Synchronous Machine Inertia Constant H (s)
Thermal Power
• Steam Turbine 4 – 9
• Gas Turbine 7 – 10
Hydro Power

• Slow (< 200 rpm) 2 – 3
• Fast (≥ 200 rpm) 2 – 4

Synchronous Compensators 1 – 1.5
Synchronous Motors ≈ 2

Table 10.1. Typical values of H för different types of synchronous machines.

10.3 Model of Electrical System

10.3.1 Active and Reactive Power

The purpose of the discussion here is not to give a detailed model of the
electrical properties of the synchronous machine, but rather to give a brief
motivation and background to a simple standard model used at simplified
analysis of rotor oscillations in power systems. Important in this context is
to derive expressions of active but also reactive power, as function of gener-
ator terminal voltage and rotor angle. In these discussions the synchronous
machine is regarded as a system component and its behaviour as seen from
the system is of interest. The intrinsic behaviour is not of primary interest
here in this analysis. For more detailed models and models of the intrinsic
behaviour the reader is referred to courses and books in electrical machines.

The standard way to model synchronous machines is to transform the
three physical phase quantities to three new components by Park’s trans-
formation, see section 10.3.2. These new quantities are called direct and
quadrature components, or d- and q-components, respectively. (We disre-
gard the 0-component here, which is not of interest in this context.) It is
important to know that these new quantities are related to the rotor, and
can thus be thought of as rotating synchronously with the rotor. It is also
important to know that the reactances in d-axis and q-axis are different, and
are in steady state denoted as Xd and Xq, respectively. It is always the case
that Xd ≥ Xq. For machines with non salient poles, i.e. most thermal units,
Xd ≈ Xq, while for salient pole machines, i.e. hydro units, the difference
between Xd and Xq can be significant, see Table 10.2.

All resistances are neglected in the following. This will not impose any
significant limitations on the analysis to done here. Figure 10.3 shows a
phasor diagram of the synchronous machine in steady state. The flux in the
field winding in the rotating rotor give rise to a flux in the direction of the
d-axis and the induced voltage E will consequently be in the direction of
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Non Salient Poles Salient Poles

Xd(p.u.) 1.0 – 2.3 0.6 – 1.5

Xq(p.u.) 1.0 – 2.3 0.4 – 1.0

X
′
d(p.u.) 0.15 – 0.4 0.2 – 0.5

Table 10.2. Typical values of reactances for synchronous machines.

d-axis

q-axis

I

Iq
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Ud

Uq
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θ

Eq

jXdId

jXqIq

Figure 10.3. Phasor diagram of voltages and currents of synchronous
machine in steady state operation.

the q-axis. From the diagram in Figure 10.3 one obtains

Eq = U + jXdId + jXqIq (10.3)

or in the form of components

Ud = IqXq

Uq = Eq − IdXd

(10.4)

The current is defined as positive flowing out from the machine. The com-
plex power S is give by

S = P + jQ = U · I∗ (10.5)

which could be written as

P + jQ = (Ud + jUq)(Id + jIq)∗ (10.6)
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The axes have been chosen such that the real axis coincide with the d-axis
and the imaginary axis with the q-axis in Figure 10.3.

From eq. (10.4) one gets

Id =
Eq − Uq

Xd

Iq =
Ud

Xq

(10.7)

and by using the relations

Ud = U sin θ

Uq = U cos θ
(10.8)

the following expressions of P andQ are obtained by substitution in eq. (10.6)
and identification of real and imaginary parts

P =
EqU

Xd
sin θ +

U2

2

(
1
Xq

− 1
Xd

)
sin 2θ

Q =
EqU

Xd
cos θ − U2

(
cos2 θ
Xd

+
sin2 θ

Xq

) (10.9)

The second term in the above expression of P is called reluctance power
and is due to the saliency of the poles. It is concluded that if the voltages
are constant, the active and reactive power are only functions of the angle
θ, i.e. the rotor angle relative to a reference synchronous machine rotating
with synchronous speed.

During transients the above expressions are not valid any more. Since we
are interested in studying the synchronous machine during rotor oscillations
we need to derive another model. Assume that the machine is in steady
state operation before the disturbance causing the rotor oscillations occurs.
Then the currents and voltages after the disturbance will be as given below.
(Superscript 0 refers to the steady state values before the disturbance.)

Id = I0
d +∆Id

Iq = I0
q +∆Iq

(10.10)

and
Ud = U0

d +∆Ud = IqXq

Uq = U0
q +∆Uq = U0

q −∆IdX
′
d

(10.11)

where it has been assumed that Eq is constant during the dynamics. In
eq. (10.11) the value of the transient reactance in d-axis X ′

d has been used.
The reason for this is that the rotor circuit is in the d-axis which makes
the reactance for transients much smaller, and it is given by X ′

d. For slower
phenomena the synchronous reactance Xd should be used.
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A more detailed analysis shows, in principle, that the effective reactance
varies with time after the disturbance, and for the period up to typically a
second after the disturbance the value X ′

d should be used, and after that
Xd is valid. For really fast dynamics, a few tens of milliseconds after a
disturbance, the sub-transient reactance X ′′

d should be used. During this
first period after a disturbance, the coupling to damper windings must be
taken into account. When the currents in the damper winding has decayed,
the effective reactance is X ′

d, where the coupling to the rotor exciter winding
must be considered. When the transient currents in the rotor winding also
has decayed, the effective reactance is Xd. Since the resistance in the exciter
winding is small, the time constant for the transient decay in the exciter
winding is of the order of several seconds, while the time constant of the
damper winding is some tens of milliseconds. In the q-axis the reactance is
the same for the time scales considered here, but a more detailed analysis
shows that different reactances occur also in the q-axis. (This is discussed
more in courses and books in electrical machines.) If the lower of eq. (10.4)
is combined with the lower of eq. (10.11) one obtains

Uq = E′
q − IdX

′
d (10.12)

With E′
q given by

E′
q = Eq − (Xd −X ′

d)I
0
d (10.13)

and E′
q is consequently constant during the transient considered here. It is

seen that eq. (10.12) is identical with the lower of the equations in eq. (10.4)
if current and voltages are those after the disturbance, and if Eq is changed
to E′

q and Xd is changed to X ′
d. The phasor diagram during the transient

above is shown in Figure 10.4. The active and reactive power during the
transient is thus given by (Corresponding changes as above are done in
eq. (10.9).)

P =
E′
qU

X ′
d

sin θ +
U2

2

(
1
Xq

− 1
X ′

d

)
sin 2θ

Q =
E′
qU

X ′
d

cos θ − U2

(
cos2 θ
X ′

d

+
sin2 θ

Xq

) (10.14)

In the following we will primarily be interested in the active power since this
is most important for the rotor oscillations.

It is straightforward to show that for a system according to Figure 10.5,
the active power from the machine will be given by

P =
E′
qUN

X ′
d +Xe

sin θ +
U2
N

2

(
1

Xq +Xe
− 1

X ′
d +Xe

)
sin 2θ (10.15)

where Xe is the total reactance of the external network, including generator
transformer, and the voltage of the infinite bus is UN . The phase angle of the



10.3. Model of Electrical System 97

d-axis

I

Eq′

U0

θ

Eq

j Xd Xd
′–( )Id

0

I0
jXqIq

U jXd
′Id

Figure 10.4. Phasor diagram over voltages and currents of a syn-
chronous machine during a transient. Solid phasors = during the tran-
sient. Dashed phasors = steady state before the disturbance.

infinite bus is set to zero and is chosen as the reference angle. (Also for the
external network we neglect the resistance. This is not a severe simplification
if the main purpose is to get a basic understanding of and insight into the
problem. The expressions including resistance get more complicated without
anything is gained in understanding and insight. More complicated models
must usually be analysed by use of computers.) An infinite bus is a bus for
which the voltage magnitude and phase are constant even if load currents are
drawn from or injected into it. Even if the model in Figure 10.5 is primarily
focused on studying the basic principles governing rotor oscillations in power
systems, this model provides a fairly good description of rotor oscillations
of a generator, or group of generator that are connected by a line to a larger
power network.

It is possible to make further simplifications of the expression in eq. (10.15).
The right hand side of eq. (10.15) consists of two terms, and in Figure 10.6
these both terms have been plotted for typical values of a hydro generator

Infinite bus
Xe~

UN 0∠

Figure 10.5. Synchronous machine connected to infinite bus by a line.
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Figure 10.6. The different contributions to P in eq. (10.15). Solid
curve = P . Dashed curve = first term in eq. (10.15). Dotted curve
= second term in eq. (10.15), i.e. the reluctance term. (E′

q = 1.2,
UN = 1.0, Xq = 0.7, X ′

d = 0.25 and Xe = 0.35)

connected to an infinite bus by a line. If the second term, i.e. the reluctance
term, is neglected, it is seen from Figure 10.6 that the approximation is not
too drastic. Consequently the active power can be written as

P ≈ E′
qUN

X ′
d +Xe

sin θ (10.16)

which is the expression of active power that is going to be used in the
following. In this model the synchronous machine is modelled as a constant
voltage (emf) behind the transient reactance, and the circuit equivalent in
Figure 10.7 can thus be drawn.

From the derivation above a number of simplifications have been done
to arrive at eq. (10.16). There are however also other simplifications that
have been done that have relevance for electro-mechanical oscillations. In
the derivation it has been assumed that P is a function of only the angle
θ and the voltages UN and E′

q . Actually P is also a function of θ̇, i.e.
on the angular velocity of the rotor relative to a machine rotating with
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Figure 10.7. Simplified circuit model of synchronous machine for
studies electro-mechanical oscillations.

synchronous speed. The power depending on θ̇ originates from currents
induced in the rotor and this power tends to damp out the oscillations. For
large disturbances the part of P given by eq. (10.16) is however the most
important one, and this part is determining if the machine should stay in
synchronism or not after a disturbance, see section 12.1. Some issues related
to damping is briefly discussed in section 12.4.

10.3.2 Park’s Model of Synchronous Machine

In Figure 10.8 a schematic picture of a synchronous machine with salient
poles is shown. In this figure the following windings are depicted:

• The three stator windings denote a,b, and c.

• Field winding denoted F. This winding carries the field current, which
gives rise to the field flux. This rotating flux induces the voltages in
the stator windings.

• Short circuited damper winding in the d-axis denoted by D.

• Short circuited damper winding in the q-axis denoted by Q.

The different windings in Figure 10.8 are characterised by their self and
mutual inductances. Since the rotor is rotating, these inductances will vary
in time periodically. This imposes a complication which can be overcome by
transforming the three phase quantities in the a-, b-, and c-phases to three
new quantities, d-, q-, and 0-components, through a suitable linear trans-
formation. This transformation must of course be invertible. If the phase
currents are transformed by the so called Park’s transformation, sometimes
also called dq-transformation, an equivalent synchronous machine model ac-
cording to Figure 10.9 will be obtained. the transformation matrix is given
in section 9.2.3 in the static analysis of this course..
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Figure 10.8. Synchronous machine with definitions for Park’s transformation.

In addition to that the time dependence of the inductances disappear,
a number of mutual inductances will be zero in the transformed system.
Thus there are no couplings between equivalent circuits on different axes in
Figure 10.9, but only between those on the same axis.

A disturbance in the current in the stator winding d will incur current
changes in the D- and F-windings. This current changes will decay with
different time constants in the two circuits. That is the reason why different
effective reactances will be seen dependent on the time scale considered.

Park’s transformation can as said above be regarded as a transformation
to a system that rotates in synchronism with the rotor. Phasor representa-
tion of sinusoidal current can also be seen as a transformation to a system
that rotates with synchronous angular velocity. This implies that it is very
simple to transform from phasor quantities to Park transformed quantities,
a phase shift and possibly a scaling depending on definitions used in the
transformations. This is a further attractive feature of the dq-quantities
and explains why they are extensively used in power system analysis.
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Figure 10.9. Equivalent electric circuit of the system in Figure 10.8
after Park’s transformation.
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11
The Swing Equation

This chapter contains a derivation and a discussion of the swing equation,
which is the basic mathematical relation describing how the rotor of a syn-
chronous machine will move (swing) when there is an unbalance between
mechanical power fed into the machine and the electrical power extracted
from it. Even if the basic physical relations are very simple, a number of
simplifications must be done to make the equation useful in practice.

THE SWING EQUATION is of fundamental importance in the study of
power oscillations in power systems. Electro-mechanical oscillations is

an important phenomenon that must be considered in the analysis of most
power systems, particularly those containing long transmission lines, as e.g.
the Swedish system. 1 In normal steady state operation all synchronous
machines in the system rotate with the same electrical angular velocity, but
as a consequence of disturbances one or more generators could be acceler-
ated or decelerated and there is risk that they can fall out of step. i.e. lose
synchronism. This could have a large impact on system stability and gen-
erators losing synchronism must be disconnected otherwise they could be
severely damaged. (A short description of power system protections is given
in Appendix A.)

1It might be of interest to know that the first Ph.D. thesis in engineering in Sweden
addressed the same subject as in this and subsequent chapters. The title of the thesis was
”The Dynamic Stability of Long Transmission Lines”, and was written by Ivar Herlitz.
The thesis defence was at the Royal Institute of Technology on the 12 April, 1928. It
was a timely topic, since there was an ongoing discussion concerning the question how
energy could be transmitted from the north of Sweden, where an abundance of hydro
power was available, to the southern part. Ivar Herlitz made pioneering work, and he was
for a long time active within ASEA in Väster̊as, which today is ABB, as an expert on
stability in electric power transmission systems. In his Ph.D. thesis, Ivar Herlitz provides
an approximate solution to the swing equation which determines the dynamics for a system
that basically is the same as shown in Figure 10.5. Since today’s powerful computational
tools were not available at that time, Ivar Herlitz was forced to do certain simplifications
and approximations to be able to solve the problem. With help of his work Ivar Herlitz
could determine which disturbances the system could suffer without losing stability. Ivar
Herlitz thesis was in principle the first engineering work done in Sweden using scientific
methodology, i.e. it was based mainly on analysis and computations of mathematical
models rather than experiments based on empirical data.
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Figure 11.1. Schematic description of powers and torques in syn-
chronous machines.

11.1 Derivation of the Swing Equation

The synchronous machine models developed in the previous chapter will
form the basis for the derivation of the swing equation describing the electro-
mechanical oscillations in a power system. Schematically the different torques
and powers of a synchronous machine can be depicted as in Figure 11.1. In-
dex m denotes in the following a mechanical quantity, and index e denotes an
electrical quantity. The differential equation describing the rotor dynamics
is

J
d2θm
dt2

= Tm − Te (11.1)

The quantities in eq. (11.1) are:
J = The total moment of inertia of the synchronous machine (kgm2)
θm = The mechanical angle of the rotor (rad)
Tm = Mechanical torque from turbine or load (Nm). Positive Tm corre-
sponds to mechanical power fed into the machine, i.e. normal generator
operation in steady state.
Te = Electrical torque on the rotor (Nm). Positive Te in normal generator
operation.

If eq. (11.1) is multiplied with the mechanical angular velocity ωm one
gets

ωmJ
d2θm
dt2

= Pm − Pe (11.2)

where
Pm = Tmωm= mechanical power acting on the rotor (W)
Pe = Teωm = electrical power acting on the rotor (W)

If the angular acceleration should be expressed in electrical angle instead,
eq. (10.1) is used to give

2
p
ωmJ

d2θe
dt2

= Pm − Pe (11.3)
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where the left hand side can be re-arranged:

2
2

pωm
(
1
2
ω2
mJ)

d2θe
dt2

= Pm − Pe (11.4)

If eq. (11.4) is divided by the rating of the machine S, and eq. (10.1) is
utilised again, the result is

2
ωe

(1
2ω

2
mJ)
S

d2θe
dt2

=
Pm − Pe

S
(11.5)

Observations and experiences from real power systems show that during
disturbances, the angular velocity of the rotor will not deviate significantly
from the nominal values, i.e. from ωm0 and ωe0,respectively. This implies
that eq. (11.5) together with the definition eq. (10.2) can be written as

2H
ωe0

d2θe
dt2

= P pu
m − P pu

e (11.6)

where superscript pu indicates that the mechanical and electrical powers
should be expressed in p.u. of the rating of the synchronous machine. It is
of course possible to use another base power than the rating of the machine in
eq. (11.6), but this must then be made consistently regarding the definition
ofH and when calculating the power values in the right hand side. If another
base power than the rating is used, the physical interpretation of H made
in section 10.2 will not be valid anymore. Furthermore the typical values
of H in Table 10.1 do not apply. In the following it will be assumed, if
not otherwise explicitly stated, that electrical angles and electrical angular
velocities are considered, and consequently the index e in the left hand side
of eq. (11.6) can be omitted. It is also assumed that powers are expressed
on the same base power as H, and the superscript pu can also be omitted
in eq. (11.6). We are thus going to use the following form of the swing
equation:

2H
ω0

d2θ

dt2
= Pm − Pe (11.7)

11.2 Analysis of the Swing Equation

Before applying the swing equation to a specific system, it could be of value
to briefly discuss the different terms of eq. (11.7) and their influence. This
will give an insight into the fundamental relations governing the dynamics
during rotor oscillations.

The difference between mechanical power fed into the machine and the
electrical output power will cause a motion of the rotor relative to a rotation
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with constant angular velocity ω0. 2 Therefore it is of interest to discuss in
some detail how Pe and Pm will vary during a rotor swing.

The mechanical power Pm is in most case provided by a hydro, steam
or gas turbine. This power is determined by the gate opening of the tur-
bine, and the time constant for changing the mechanical power is in most
cases several seconds. There are different reasons why the mechanical power
should be changed. For each generator there is a dispatch plan made for each
hour. This plan is determined by the expected load in the power system.
These plans are often the result of extensive optimisations of the resources
available with due consideration to load, prices, cots, etc. The mechanical
input powers are changed in accordance with these dispatch plans. But it
is not possible to exactly forecast the power consumption in the system,
Furthermore, generators could suddenly be disconnected due to faults, re-
sulting in a shortage of power in the system. These unbalances will cause
a frequency deviation in the system. This frequency deviation can be used
as an input signal to selected generators, which will change their mechan-
ical input power and thereby their electrical output so that the frequency
deviation is brought down to acceptable levels, ±0.1 Hz in the Nordic sys-
tem. The frequency controller could be rather fast, but since it takes several
seconds to change the mechanical power Pm it will take some time for the
frequency control to act. Generally it can be said that Pm = Pm(θ̇) for those
generators that are equipped with frequency controllers, but if time scales
up to some seconds are considered it is a fair approximation to say that
Pm = constant, at least for studies and discussion of more principal nature.

In section 10.3.1 an expression for the active power of a synchronous
machine connected to an infinite bus was derived, eq. (10.16). As can be
seen the power depends in the angle θ, and the rotor angle occurs thus on
both sides of the swing equation. This applies for a synchronous machine
connected to an infinite bus, but it can be shown to be the case also for
more complex systems with more synchronous machines. In this latter case,
the electrical power of a given machine will not only depend on the value
of its own rotor angle, but also on the rotor angles of other machines. The
result is thus a system of coupled differential equations.

A more detailed analysis of the electrical power shows that it depends not
only on θ but also on θ̇, that is on the relative angular velocity as compared
with a synchronously rotating system. This contribution, which only occurs
during transients, is due to currents induced in the rotor circuits, and it
tends to damp out the oscillations. A voltage controller might also give a
contribution to the electrical power depending on θ̇.

2In the following it is assumed that the synchronous machine is a generator. The same
discussion could be applied to a synchronous motor, but then the signs of the electrical and
mechanical powers must be changed. But since the dynamics of the system is dominated
by the generators, it is natural to use these as the basis for type discussion. However, there
is no principal difference in the dynamics between a synchronous motor and generator.
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With fairly good accuracy the electrical power can written as

Pe = Pe(θ, θ̇) = Ps(θ) + Pd(θ̇) (11.8)

with Ps being the synchronising power and Pd being the damping power.
This is further explained in section 12.4.

11.3 Swing Equation as System of First Order Differ-
ential Equations

The swing equation (11.7) is an ODE of the second order. 3 ODEs of higher
orders can be written as a system of first order ODEs, which in many cases
is practical. Particularly for multi-machine systems this turns out to be
an attractive approach. In most cases it is not possible to solve the swing
equation analytically, but one has to use numerical integration in solving it.
Numerical integration requires usually that the ODE is in the form of ODEs
of first order.

By introducing ω = θ̇ eq. (11.7) can be written as[
θ̇
ω̇

]
=

[
ω

ω0

2H
(Pm − Pe)

]
(11.9)

This form of the swing equation will also be used in the following. The
quantities θ and ω in eq. (11.9) are named state variables, or just states,
and eq. (11.9) describes the system in state form or standard form. The
vector [θ ω]T is the state vector of the system.

Some clarifications will be made concerning the angular velocity ω intro-
duced in eq. (11.9) above. This angular velocity denotes the frequency with
which the rotor oscillates relative to a system rotating with the synchronous
and constant angular velocity = ω0. The absolute angle of the rotor θabs
relative to a reference system at time t is given by

θabs = ω0t+ θ + θ0 (11.10)

where θ0 is the angle of the rotor at t = 0. Differentiation of eq. (11.10)
with respect to time gives

θ̇abs = ω0 + θ̇ (11.11)

from which it can be concluded that the absolute angular velocity of the
rotor ωabs is given by

ωabs = θ̇abs (11.12)

and the angular velocity relative the synchronously rotating system ω is
given by

ω = θ̇ (11.13)
3The abbreviation ODE for Ordinary Differential Equation is here introduced.
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It is this latter relative angular velocity that is of interest when rotor oscil-
lations are studied, while the absolute angular velocity is of interest when
studying frequency stability.



12
Power Swings in a Simple System

In this chapter the models and equations earlier derived are applied to the
simple system of a synchronous machine connected to an infinite bus. De-
spite the simplicity of the system, useful and general information can be
gained from this analysis. Through qualitative discussions the features of
the equilibrium points of the system can be determined. Time simulations
of the system show the principal behaviour of stable and unstable solutions.
The equal area criterion is derived. This is a very powerful method for deter-
mining the stability of a system. Another powerful tool is provided by small
signal analysis, or linear analysis, which gives valuable information about
the local behaviour of the system. The chapter is concluded by a discussion
of different ways of improving the angular stability of a power system.

ACOMPLETE STABILITY analysis of a power system is an extensive
and complicated task. However, it turns out that many of the most

important phenomena and mechanisms can be found in very simple systems,
where they can be seen very clearly. In large and complicated systems it is
often hard to distinguish the fundamental and decisive phenomena from the
more irrelevant ones. It is therefore of importance to study simple systems
to get an insight into and understanding of the basics, that can be used
in the analysis of more complex systems. This chapter focuses on power
oscillations in the simple system of Figure 12.1. This system can be a model
of a synchronous machine or group of synchronous machines connected to a
larger system through a one or more power lines. The reactance Xe in Fig-
ure 12.1 is here an equivalent reactance including transformers and parallel
lines. Even if this system is simple, a number of simplification are required
to get simple solutions to the system.

The reader is encouraged to solve problems from the problem set to get
a better understanding of the issues discussed here.

12.1 The Swing Equation and its Solutions

The solutions to the swing equations of the simple system in Figure 12.1
will be analysed and discussed in this sub-section. Despite its simplicity, a
number of important conclusions concerning the angular stability in large
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systems can be drawn from this system. Earlier a number of simplifications
and assumptions have been made, more or less explicitly, and for the sake
of completeness and clarity they are summarised here:

1. The synchronous machine is modelled as a constant emf behind the
transient reactance X ′

d. The angle of the emf is assumed to coincide
with the rotor angle.

2. Resistances in lines, transformers, and synchronous machines are ne-
glected.

3. Voltages and currents are assumed to be perfectly symmetrical, i.e.
pure positive sequence.

4. The angular velocity is close to the nominal one.

5. Static models for lines are used.

6. The mechanical power Pm, i.e. the power from the prime mover, is
constant during the transient under study.

Furthermore, it is assumed that the damping power of the system can writ-
ten as

Pd = Dθ̇ (12.1)

An electrical equivalent to Figure 12.1 is shown in Figure 12.2. Together
with the assumptions above the swing equation can now be formulated as

2H
ω0

d2θ

dt2
= Pm − Pe (12.2)

with

Pe =
E′
qUN

X ′
d +Xe

sin θ +Dθ̇ (12.3)

and
Pm = Pm0 = konstant (12.4)

Now we introduce

Pe,max =
E′
qUN

X ′
d +Xe

(12.5)

Infinite bus
Xe~

UN 0∠

Figure 12.1. Synchronous machine connected to infinite bus.
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Xe

~
Xd

′

UN 0∠Eq
′ θ∠

Figure 12.2. Equivalent electric circuit of a synchronous machine
connected to an infinite bus.

and eq. (12.2) can be written as

2H
ω0

d2θ

dt2
= Pm0 − Pe,max sin θ −Dθ̇ (12.6)

which is the complete swing equation of the simplified system with the in-
troduced assumptions.

12.1.1 Qualitative Analysis

In order to make a qualitative analysis of the solutions to eq. (12.6) a further
simplification will be made, i.e. the damping is neglected and D is thus set
to zero :

2H
ω0

d2θ

dt2
= Pm0 − Pe,max sin θ (12.7)

Of fundamental importance to a non-linear system is its equilibrium points,
i.e. the points in state space where all time derivatives vanish. For the
equilibrium points the right hand side of eq. (12.7) is thus zero resulting in
the following equation for θ0

Pm0 = Pe,max sin θ0 (12.8)

Figure 12.3 shows how Pe and Pm vary with rotor angle θ, and the following
conclusions about the equilibrium points can be drawn from this figure:

1. If Pm0 < Pe,max there are two equilibrium points, i.e. θ0 and π − θ0

for 0 ≤ θ ≤ π.

2. If Pm0 = Pe,max there is exactly one equilibrium point θ0 = π/2 for
0 ≤ θ ≤ π.

3. If Pm0 > Pe,max there is no equilibrium point.

(The angle θ0 is given by θ0 = arcsin(Pm0/Pe,max).)
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0
0

θ

P(θ)e

πθ0 π−θ0

Pe, maxsin θ

Pm0

Figure 12.3. Diagram showing the variation of electric and mechan-
ical power for the system in eq. (12.7).

It is clear that if Pm0 > Pe,max the system is unstable and further analysis
is superfluous. In this case the rotor will be accelerated until the protections
trip the generator and turbine. A necessary condition for stability is that
at least one equilibrium point exists.

In the case of Pm0 < Pe,max the equilibrium point θ = θ0 is stable for
(sufficiently) small disturbances, which implies that that if the system is
moved away from θ0 the dynamics of the system tends to bring it back to
θ0. This is verified by the following qualitative reasoning:

If the rotor has been accelerated so that θ > θ0, the right hand side of
eq. (12.7) will be negative and the system is decelerated and starts to move
back to θ0. Correspondingly a deviation θ < θ0 will give an acceleration so
that θ is brought back to θ0. (As seen from Figure 12.3 these arguments
are valid only for sufficiently small deviations from θ0 och ω = 0.) It is seen
that if θ > π − θ0 and if ω ≥ 0 then the system will never return to θ = θ0.

For a state vector [θ ω]T in the two dimensional state space, or phase
space as it is sometimes referred to, that initially is close to [θ ω]T = [θ0 0]T ,
will be close to this point for all t > 0. As in a real system there is posi-
tive (hopefully) damping, so the solution will converge (asymptotically) to
[θ0 0]T . The region that above has been described as close to [θ0 0]T is
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called the region of attraction of this equilibrium point, and the curve that
separates this region from points that will not converge to [θ0 0]T , is called
the separatrix. This curve separates the stable and unstable solutions from
each other.

A similar discussion concerning the equilibrium point θ = π − θ0 shows
that this point is unstable.

A stability criterion for the system in Figure 12.3 can now be formulated:

Stability Criterion
The system i Figure 12.3 is stable, i.e. the synchronous machine will not
fall out of step, if it after a disturbance is in the region of attraction of the
equilibrium point [θ0 0]T . 1

The criterion above implies that the system must have decelerated so that
ω = 0 before the point θ = π − θ0 is reached, otherwise the generator will
fall out of step. The discussion above has disclosed a number of important
features of the system without that any equation has been solved. The
solutions to eq. (12.7) are not easy to solve analytically. It is seen that
eq. (12.7) is the same as the equation describing a mathematical pendulum,
and the exact solutions are given by elliptic integrals. Usually a mathe-
matical pendulum is studied by its linearised equations, but one cannot get
all information regarding stability from the these equations. The linearised
equations can however give other kinds of useful information, and we will
come back to that in section 12.4.

In the next section the behaviour of the stable and unstable solutions
will be discussed.

12.1.2 Stable and Unstable Solutions

In order to verify the conclusions drawn from the qualitative discussion
above simulated solutions to eq. (12.7), i.e. for the system in Figure 12.1,
will be shown for a few cases.

The disturbance considered here is a three phase to earth fault on one
of the lines close to the generator. That the fault is close to the generator
implies that the electric power during the fault is zero. The faulty line
is disconnected be be the distance protections, see Appendix A, causing
that the reactance Xe is changed when the fault is cleared. By varying the
fault clearing time different types of solutions to the swing equation can be
obtained.

1It is clear that θ = θ0 is the only possible stable equilibrium point. P (θ) is periodic
with the period 2π, but if the system has moved so that θ is close to another “stable”
equilibrium point, ω will be so large that it is outside the region of attraction of this
equilibrium point.
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Figure 12.4. The electric power before the fault, Pe = 1.86 sin θ,
after the fault, Pe = 1.26 sin θ, and the mechanical power, Pm = 1, as
function of the rotor angle, θ.

The system is thus described by the following equation

2H
ω0

d2θ

dt2
= Pm0 − Pe,max sin θ −Dθ̇ (12.9)

The electric power is as follows: Pre-fault Pe,max = 1.86 p.u., post fault
Pe,max = 1.26 p.u. and during the fault Pe = 0. Power curves before and
after fault are shown in Figure 12.4 where also the constant power from the
turbine Pm = 1 p.u. is drawn. Before the fault θ = 32.5◦, which corresponds
to the left intersection between Pe = 1.86 sin θ and Pm = 1. During the fault
the rotor will accelerate since Pe = 0 and consequently Pm −Pe > 0. When
the fault is cleared the electric power will follow the curve Pe = 1.24 sin θ.
If the system is stable it will settle down to the point θ = 53.5◦which is
the left intersection between Pe = 1.24 sin θ and Pm = 1. When the rotor
angle is between 53.5◦ and 180 - 53.5 = 126.5◦, which corresponds to the
right intersection between Pe = 1.24 sin θ and Pm = 1, then Pm − Pe < 0
and the rotor will decelerate. Should the rotor move beyond this point, then
Pm−Pe > 0 and the rotor will accelerate and the system becomes unstable.
It is often said that the generator falls out of step or loses synchronism.
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The longer the duration of the fault, the more the rotor will be accel-
erated and the larger the rotor angle. If the duration of the fault is too
long there is a risk that the rotor swing is so large that it passes the right
equilibrium point and the synchronous machine loses synchronism. To ver-
ify and demonstrate this the system has been simulated for fault clearing
times equal to 4, 6, 6.5, and 8 cycles. 2 Results from these simulations are
shown in Figures 12.5 to 12.8 where both the swing curves and the phase
portraits of the system are shown. The phase portrait, or phase trajectory,
is the trajectory of the system in the (ω θ)-plane during the transient. The
damping D is set to 0.02. The value of the damping determines how fast
a stable solution will converge to its equilibrium point, and this value has
minor influence on the first swing directly after the fault. 3

With a fault clearing time of 4 cycles the system is clearly stable, see
Figure 12.5. The maximal rotor angle is ≈ 90◦ which gives an ample margin
to the critical value of 126.5◦. The system will eventually converge to the
point θ = 53.5◦.

If the fault clearing time is increased to 6 cycles, see Figure 12.6, the
stability margin is much smaller. The rotor swings out to ≈ 120◦ and
it is very close to the critical point where it will start to accelerate. If
the fault clearing time is increased to 6.5 cycles the curves of Figure 12.7
are obtained, and here the system is unstable. The generator cannot be
decelerated enough before it reaches the critical point, but it passes this point
and is further accelerated and loses synchronism. This type of instability
is called first swing instability. The phase portrait in this case shows that
rotor is close to be decelerated before reaching the critical point, but it never
reaches a zero value of ω. The previous fault clearing time, i.e. 6 cycles, is
called critical fault clearing time.

The last case shows a simulation with the fault clearing time equal to 8
cycles, see Figure 12.8. In this case the rotor is accelerated for such a long
time that it passes the critical point very soon. The deceleration period
could hardly be seen in the swing curve. The phase portrait shows also that
the deceleration just after fault clearing is clearly insufficient to stabilise the
system.

2Fault clearing times are often given in cycles of the power frequency. The reason for
this is that part of the clearing time comes from the time needed for the breakers to clear
the fault. Since the fault current only can be intercepted at a zero crossing, it is natural
to measure the breaker time in cycles. Modern high voltage breakers can break a fault
current in 2 – 3 cycles. Should still faster breaker times be required, special breakers could
be installed, but these are more expensive than standard breakers. Protections are also
described in Appendix A.

3This is the case for realistic values of D. If the damping is very large, and positive,
this will increase the stability significantly in the system. The value used here is typical
in a system where no special equipment has been installed to increase the damping, e.g.
Power System Stabilisers on the voltage regulators.
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Phase Portrait of Generator Against Infinite Bus

Figure 12.5. Swing curve and phase portrait for generator swinging
against an infinite bus. Fault clearing time = 4 cycles. Critical fault
clearing time = 6 cycles.
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Phase Portrait of Generator Against Infinite Bus

Figure 12.6. Swing curve and phase portrait for generator swinging
against an infinite bus. Fault clearing time = 6 cycles. Critical fault
clearing time = 6 cycles.
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Phase Portrait of Generator Against Infinite Bus

Figure 12.7. Swing curve and phase portrait for generator swinging
against an infinite bus. Fault clearing time = 6.5 cycles. Critical fault
clearing time = 6 cycles.
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Figure 12.8. Swing curve and phase portrait for generator swinging
against an infinite bus. Fault clearing time = 8 cycles. Critical fault
clearing time = 6 cycles.
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12.2 Equal Area Criterion

It was concluded above that even for quite simple systems, like the one in
Figure 12.1 it was hard to get analytical solutions to the system equations.
But quite often the exact behaviour of the solutions is not of interest, but
most important is to determine if the system is stable or not after a given
contingency. By using the equal area criterion that will derived in this sec-
tion, it is possible with rather simple calculations to investigate the stability
of the system in Figure 12.1 for different disturbances. The equal area cri-
terion can be extended to more complicated systems, so that preliminary
stability analyses could be done very fast.

The swing equation of the system in Figure 12.1 can be written as

d2θ

dt2
=

ω0

2H
(Pm − Pe,max sin θ) (12.10)

or
d2θ

dt2
=

ω0

2H
Pa (12.11)

with the accelerating power Pa defined by

Pa = Pm − Pe,max sin θ (12.12)

As the interest here is focused on the dynamics during the first swing, the
damping can be neglected, i.e. D = 0. From the Figures 12.5 to 12.8 it can
be concluded that a necessary, but not sufficient, condition for stability is
that there exists a moment in time tm during the swing such that θ̇(tm) = 0.
The corresponding angle is θm. Some formal manipulations with eq. (12.11)
together with the condition θ̇(tm) = 0 will provide a stability criterion. If
eq. (12.11) is multiplied with θ̇ one gets

θ̇
d2θ

dt2
=

ω0

2H
Paθ̇ (12.13)

which can be written as

1
2
d

dt

(
dθ

dt

)2

=
d

dt

(
ω0

2H

∫ θ

θi

Padθ
′
)

(12.14)

that can be integrated to give

dθ

dt
=

√
ω0

H

∫ θ

θi

Padθ′ + C (12.15)

with C being a constant of integration, which is 0, since θ̇ = 0 when θ = θi.
(θi is the pre-fault rotor angle.) Thus a necessary condition for stability is
that there is an angle θm such that

ω0

H

∫ θm

θi

Padθ
′ = 0 (12.16)
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or ∫ θm

θi

Padθ
′ = 0 (12.17)

The stability criterion can thus be formulated as:

The system is stable if there exists an angle θm such that the area below the
accelerating power Pa in the θ–P (θ) diagram between θi and θm vanishes.

In most cases of practical interest the dynamics could be divided into two
different phases: A first phase when the rotor is accelerated, and a second
phase when it is decelerated. Assume that the rotor is accelerated up to
θ = θc and that it is decelerated when θc ≤ θ ≤ θm. Then two different
areas in the θ–P (θ) plane can be defined as

Aa =
∫ θc

θi

(Pm − Pe(θ′))dθ′ (12.18)

Ar =
∫ θm

θc

(Pe(θ′)− Pm)dθ′ (12.19)

Indices a and r denote here accelerating and decelerating (retarding) areas,
respectively. The angle θc is most conveniently chosen as the angle when
the fault is cleared. The stability criterion can now be formulated as

The system is stable if there exists an angle θm such that the areas Aa and
Ar are equal, i.e. Aa = Ar.

This latter formulation have given rise to the name equal area criterion
for this stability criterion. This is illustrated in Figure 12.9.

The advantage with the equal area criterion is that the stability of a
system can be investigated without any excessive computational efforts. But
the price paid is that the time t was eliminated from the equations. Since
the time does not appear explicitly in the equations, actions to improve
the stability must formulated in the angle space, which usually is not so
practical. It is of course of more interest to have these actions formulated in
terms of times, e.g. critical fault clearing times. By the equal area criterion
critical fault clearing angles could be formulated, and these must then be
transformed to critical fault clearing times. Sometimes this can be done
easily, sometimes it is not straightforward.

In the second formulation of the equal area criterion, an angle θc was
introduced. This angle defines for which values that Pa should be calculated
as positive and negative, respectively. The choice of θc has no influence on
the result from the equal area criterion, which is obvious from the first
formulation. When applying the equal area criterion in a practical case it is
natural to chose θc as the angle when the fault is cleared. At this angle the
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Figure 12.9. Application of the equal area criterion after a disturbance.

topology of the system is often changed, and thus the expression for Pe(θ),
resulting in different expressions for Pe in the computation of Aa and Ar.

Different stability related problems can be solved by using the equal
area criterion. One common application is the calculation of how fast a
fault must be cleared to ensure stability of the system. The maximum fault
clearing time for which the system remains stable is called critical fault
clearing time, as mentioned above, and the corresponding angle is called
critical fault clearing angle. The equal area criterion can also be used to
calculate the maximum power that can be transmitted for a given fault
scenario. A third application is to determine if a system is stable or not
for given data and disturbances. It is strongly recommended that problems
from the problem set are solved to get an understanding of the application
of the equal area criterion.

12.3 Lyapunov Stability Criterion

The theory of the Russian mathematician A. Lyapunov (1857 -1918) offers
powerful tools for stability analysis of dynamical systems. In this theory the
following theorem, first formulated in 1899, forms the basis.
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Theorem. Consider the dynamical system ẋ = f(x), where x0 is an equi-
librium point. If in a region around the point x0 there exists a real valued
and continuously differentiable function V such that

1. V(x) > 0 and V(x0) = 0,

2. V̇(x) = grad(V(x)) · f(x) ≤ 0,

then x0 is a stable equilibrium point. If V̇(x) < 0, then x0 is asymptotically
stable.

The existence of the function V is also a necessary condition for stability.
A problem with Lyapunov’s theorem is that it does not give any informa-
tion on how to find the function V. It is obvious from the theorem that
V can be regarded as a form of energy, and the theorem says that if the
system is stable, it will stay in the region around x = x0 where V is positive
definite provided the “energy” introduced to the system by a disturbance is
sufficiently small.

For the system studied above the following function can be shown to
fulfill the requirements of Lyapunov’s theorem

V(ω, θ) = H

ω0
ω2 + Pm0(θ0 − θ) + Pe,max(cos θ0 − cos θ) = Vk + Vp (12.20)

with
Vk =

H

ω0
ω2 (12.21)

and
Vp = Pm0(θ0 − θ) + Pe,max(cos θ0 − cos θ) (12.22)

Vk can here be interpreted as kinetic energy and Vp as potential energy.
It is straightforward to show that V̇ = −Dω2 by using eq. (12.6), and

consequently the second requirement of the above theorem is fulfilled if D ≥
0. It is clear that V is positive definite in ω. In Figure 12.10 the potential
energy, Vp is shown for a system with Pm0 = 0.3 and Pe,max = 1 and it
seen that it is positive definite in a neighbourhood of the equilibrium point
θ0 = arcsin(Pm0/Pe,max). Thus if the energy injected into the system during
the fault will be less than the potential energy at the local maximum of Vp,
the system will be stable. It can be shown that the above Lyapunov function,
V, gives the same stability criterion as the equal area criterion.

12.4 Small Signal Analysis

The equal area criterion offers a tool to make stability analyses of the system
in Figure 12.1 by rather simple computations.. For this system it is also
possible to do other types of analyses that do not require any more extensive
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Figure 12.10. The function Vp of eq. (12.22).

computations. One method often used to analyse non-linear system is to
linearise the system and study this latter system. Linear analysis is usually
not so computationally demanding, and there exists many different tools for
linear analysis. If the non-linearities of the system are “small”, it is clear
that the linear system is a good approximation of the non-linear one. But
it can be shown that for non-linear systems in general, provided the system
equations are locally differentiable, the linear system would give valuable
information about the non-linear system, e.g. regarding its stability. Small
signal, or linear, analysis will now be applied to the system in Figure 12.1.

The system in Figure 12.1 is described by[
ẋ1

ẋ2

]
=

[
x2

ω0

2H
(Pm0 − Pe,max sinx1 −Dx2)

]
(12.23)

with
[x1 x2]T = [θ ω]T (12.24)

It is now assumed that the system is in an equilibrium point

[x10 x20]T = [θ0 0]T (12.25)
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M

K

Figure 12.11. Mass and spring in analogy with the system in Figure 12.1.

The linearised system describes the behaviour of small oscillations around
the equilibrium point eq. (12.25). A first order Taylor expansion of eq. (12.23)
about the equilibrium point gives

[
∆ẋ1

∆ẋ2

]
=

[
0 1

− ω0

2H
Pe,max cos x10 − ω0

2H
D

][
∆x1

∆x2

]
(12.26)

From eq. (12.26) the frequency of small oscillations about the equilibrium
point can be calculated and they are given by the eigenvalues of the 2x2
matrix, the Jacobian matrix, in the right hand side of eq. (12.26).

First it is assumed that there is no damping in the system, i.e. D = 0.
The eigenvalues of eq. (12.26) are then purely imaginary, which corresponds
to (undamped) oscillations if 0 ≤ θ0 ≤ π/2,

λ = ±
√
− ω0

2H
Pe,max cos θ0 (12.27)

and the frequency of oscillation is given by

ωp =
√

ω0

2H
Pe,max cos θ0 (12.28)

Eq. (12.28) is similar to the equation describing the motion for a mass con-
nected to a wall with a spring according to Figure 12.11. The frequency of
oscillation for this system is given by

ωKM =

√
K

M
(12.29)

By comparing eq. (12.28) with eq. (12.29) it is seen that the spring
constant K in the mechanical system corresponds to Pe,max cos θ0, which
sometimes is called the stiffness of the electrical system or its synchronising
power. Furthermore, M corresponds to 2H/ω0.

From eq. (12.27) it is also seen that if π/2 < θ0 < π, the eigenvalues will
be real, and one of them will be positive corresponding to an unstable mode.
This was earlier also concluded by the qualitative discussion in section 12.1.1,
and this is now verified by the mathematical analysis done here.
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It was earlier pointed out that the damping is not significant for large
disturbances in the system. For large disturbances it is the ability of the
system to stay within the region of attraction of the equilibrium point that
is important. This is depending on the stiffness of the system. The damping
is more important for how the system settles down to the equilibrium point
when it has survived the first swing. The linearised could thus be used for
studies of the damping in power systems. For the simple system studied
here the eigenvalues with D 
= 0 become

λ = −D′

2
± j

√
(ωp)

2 −
(
D′

2

)2

(12.30)

with ωp given by eq. (12.28) and

D′ =
ω0

2H
D (12.31)

As the damping in a power system usually is quite small, eq. (12.30) can be
approximated by

λ ≈ −D′

2
± jωp (12.32)

The frequency of oscillations can also in this case with good accuracy be
approximated by eq. (12.28), and it is thus determined basically by the
stiffness of the system and the inertia constant of the machine.

12.5 Methods to Improve System Stability

It is obvious that its desirable that a power system can withstand as many
disturbances as possible without becoming unstable. However, it is realised
that it is not possible to design a system that can cope with all conceivable
contingencies, so one has to restrict the considered disturbances in the de-
sign of the system. Usually, one considers only the most frequent faults in
the system. It is also important to consider the consequence of a fault or
disturbance when designing a system. Generally it can be said that the more
investments that can be made in a system, the more robust the system can
be made. One is thus faced with a technical-economical optimisation prob-
lem that is very complex. Furthermore, there are a number of parameters
that are both very important in the optimisation process and at the same
time very hard to quantify. Such a parameter is the value that consumers
put on uninterruptable supply of electric power of good quality. This opti-
misation process has gained a lot of interest during the last few years due to
the liberalisation (de-regulation) of the power market taking place all over
the world. Theoretically the optimum value of reliability of power supply is
when the marginal increase in the value perceived by the customers is equal
to the cost of the investment made to achieve this increase in reliability.
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Practically it is of course impossible to deduce this optimum, and one has
to judge by different methods if the consumers are satisfied with the relia-
bility of the system, and if not if they are willing to pay more to improve
it.

To have some more clear and practical rules for system design a number
of deterministic rules have been used over the years. One such rule is the
so called (N − 1)-rule, which says that a system should be able to supply
customer loads with any component, generator, line, etc., out of service.
The disconnection of the component should preceded by a fault and the
transients triggered by this fault should be considered. A more conservative
approach would be to apply an (N − 2)-criterion, which would result in a
more reliable but more expensive system.

Modern methods apply probabilistic tools. In many of these approaches
one considers both the probability of a fault and its consequences. By as-
signing a measure, i.e. a number, for this combination of fault probability
and consequence a risk based security analysis can be made. Some of these
aspects are also discussed in chapter 14.

This section will be concluded by a discussion of different ways to improve
the angular stability in power systems. The stabilising effect of the different
methods can be verified by studying Figures 12.3 and 12.9. Which method to
apply in a given situation depends on a large number of parameters and must
be determined from case to case, usually after extensive studies. In some
cases, one or several methods can be excluded, e.g. the construction of new
lines since the needed permission cannot be granted from the authorities.
The most common methods to increase system angular stability are:

• Increase of the inertia constant of the generators. This makes the
rotors more difficult to accelerate in connection with faults and the
risk for losing synchronism is reduced. In most cases this is a very
expensive means and only in special cases it can be applied, e.g. by
installing a flywheel on a small hydro unit.

• Increase of system voltage. This increases Pe,max and for given power
Pm the stability margin is increased.

• Reduction of the transfer reactance Xe. This will also increase Pe,max

as in the previous case. This can be achieved by constructing parallel
lines, or by installing series capacitors on existing lines or new lines.
By installing series capacitors the effective reactance of the line is
reduced. This method has been used extensively over the years, e.g.
in the Swedish system.

• Installation of fast protections and fast breakers. In this way the time
with a fault connected can be reduced and thereby the time during
which the generator rotors are accelerated. The ability for the system
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to decelerate the rotor swings is increased. Another way is to use
automatic re-closure after the fault is cleared, see Appendix A.

• Implementation of fast valving in steam turbines. By fast control of
the mechanical power during and after a fault, the acceleration of the
rotors can be decreased. It cannot be applied to nuclear power plants
by security reasons. The method has not been used to any larger
extend, since it is claimed to impose large thermal and mechanical
stresses on valves, turbines, etc.

• Installation of braking resistors. These are shunt resistors that are
connected by breakers fast after a fault close to a critical generator.
The electric load of the critical machine increases and the risk for
losing synchronism is reduced.

• Stability control of controllable devices such as High Voltage Direct
Current (HVDC), controllable series capacitors, controllable reactive
shunt compensation (SVC), etc. These devices are usually to expensive
to install just for stabilising the system, but when they are installed,
the cost to use their controllability for stabilisation is usually marginal.
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Oscillations in Multi-Machine Systems

This chapter contains a very brief overview of modelling of multi-machine
power systems. Many of the issues mentioned here will be dealt with in the
advanced course on power system analysis

13.1 Simplified Model

The simplified model considered in the previous section has of course a
limited application to realistic systems. The analysis of such a simple model
is primary motivated by the insight it gives, and by that the model can be
used for simplified, preliminary calculations. In this section we will expand
the model to a system with more than one machine. The same assumptions
for modelling is done, i.e.:

• The damping is neglected.

• The mechanical power is constant.

• The synchronous machines are modelled as constant voltage sources
behind the transient reactance. The phase angle for the voltage source
coincides with the rotor angle.

• Loads are represented by impedances (admittances).

A model based on these assumptions is usually referred to as the classical
model for electro-mechanical oscillations.

Since the loads are represented by impedances the load buses can be elim-
inated and included in the node-admittance matrix, and the power which
flows out from the generators can be written as a function of the voltage
magnitudes and phase angles of the different machines.

Pei = Pei(E, θ) (13.1)

where E is a vector of voltages, of the N generators, and θ is a vector of
their rotor angles

θ =
[
θ1 θ2 . . . θN

]T (13.2)
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and analogously for E. The swing equation for machine i can now be written
as [

θ̇i
ω̇i

]
=

[
ωi

ω0

2Hi
(Pmi − Pei)

]
(13.3)

To get a compact form of this system of equations we introduce

x =
[
θ1 ω1 . . . θN ωN

]T (13.4)

and the N coupled equations in (13.5) can be written as

ẋ = f(x) (13.5)

where f is a vector valued function containing the swing equations for the
different machines. This system of swing equations is not easily analysed in
the general case. In most cases numerical methods must be used for studies
of the solutions. It can also be done by studying the linearised system
according to the method in ection 12.4. It is found that the system can be
compared to a mechanical system with N masses connected with springs
and with spring constants determined by the stiffnesses of the lines. The
eigenvalues and eigenvalues of the Jacobian matrix give the swing modes
of the system, which often give a very good picture of how the real system
behaves at disturbances. Actual oscillations in the system can often with
good accuracy be approximated with linear combinations of these swing
modes. Another way to analyse the system is by solving the non-linear
equations with numerical integration (time-simulations).

13.2 Detailed Model

A number of simplifications were earlier introduced to facilitate the analysis
of the equations by utilising well known mathematical methods. Unfortu-
nately, the used model has some important shortcomings which makes it less
appropriate for more accurate studies of the dynamics of the power system.
The most serious shortcomings are:

• The load model is too simple. A large part of the loads consists of
asynchronous machines and other drives and their characteristics do
not follow that of an impedance at voltage oscillations. In principle,
the loads consume as much power as the generators produce. Therefore
it is equally motivated to develop realistic load models as to make
detailed models of the synchronous machines.

• The dynamics of the synchronous machines is too simple. Here it
is only determined by two states, θi and ωi, while a realistic model
needs more states for a satisfactory description. Different fluxes in the
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synchronous machines will vary with time and different regulators,
e.g. for voltage and frequency, will have influence on the process.
Saturation phenomena in generators can also have influence.

• Modern controllable equipment like static compensators (SVC) and
high-voltage direct current transmissions (HVDC), will in many cases
have a great influence on the stability of the system. Therefore these
should be modelled in an adequate way.

The shortcomings originate essentially from a simplified modelling of
important components in the system. A more detailed description gives
naturally a better description, but the overview and handiness of the prob-
lem are at the same time lost. More complicated models imply that more
state variables must be introduced. In the classical model every generator
is modelled by two states, θi and ωi, while a more detailed model demands
more states. To model exciters, voltage regulators and turbine regulations
more states also need to be introduced. Components like SVC and HVDC,
with associated control equipment generally also require dynamic modelling,
which imply that new state variables must be introduced. For more real-
istic load models, the load buses cannot be eliminated, as was done in the
classical model. This implies that the equations for loads will formulate
a constraint that the state variables must fulfill. The above outlined gen-
eral model for electro-mechanical oscillations have the following properties,
which are worthwhile to comment:

• It is differential-algebraic. The classical model resulted in a pure dif-
ferential equation. Differential-algebraic systems are much more com-
plicated to analyse than systems which can be modelled by a ”pure”
system of differential equations.

• The system is non-linear.

• The system is non-time invariant, i.e. the time occurs explicitly in the
equations. This depends on events in the system, e.g. disturbances
and connections, but even on protective actions of different kind.

For realistic power systems the number of state variables is very large.
As an example, the Nordic system contains hundreds of generators and the
total number of states at simulations can be up to several thousands. The
used analysis methods are based, either on the linearised system or on time-
simulations of the complete model.
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14
Control of Electric Power Systems

This chapter gives an introduction to control of power systems. Both the
faster distributed controls and slower centralised controls are described.

APOWER SYSTEM is planned, designed and built to supply the con-
sumers with electrical energy considering:

• Economy

• Quality

• Supply security (Reliability)

• Environmental impact

The last point has during the latest years become more and more im-
portant. This can be seen from the fact that most of the larger companies
nowadays have special departments responsible for that the companies fol-
low laws and regulations within the environment area. The three first points
above constitute the basis of the optimisation that the power companies
must make regarding their investments and daily operation. It is evident
that economical considerations must be regarded when deciding issues about
quality and supply security for the system. The higher quality and supply
security that is required, the more expensive the electrical energy becomes.
Methods based on mathematical analysis and decision making theory (oper-
ations research) have been worked out to handle this optimisation problem,
which contains several considerations/adjustments that are hard to formu-
late in a stringent mathematical form. As cheap and safe access to electrical
energy is of great importance for almost all activities in a modern society,
it is not surprising that the decisions makers in the power industry were
pioneers to utilise advanced optimisation methods and other analysis tools
for expansion and investment planning.

In this compendium we will limit ourselves to discuss how a power system
can be controlled to fulfill the constrains regarding quality. A very short
introduction is also given about the overall control in a power system, which
besides its aim to fulfill the quality even plays an important role in the
supply security.
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Three important factors that decide the electrical quality are:

• Frequency variations

• Voltage variations

• Waveform of voltage and current

The two first factors will be dealt with in this course, but the last point
is getting greater importance because more nonlinear components are con-
nected to the electrical system, e.g. power electronics. These give rise to
harmonics, see Chapter 14 in the Static Analysis.

It has been shown earlier that the frequency is a very good indicator
on the active power balance in a power system. The frequency is constant
when the same amount of electrical power is produced as consumed by the
loads, including system losses. If this is not the case frequency changes will
occur. It can also be noted that the frequency is the same in the whole
system at steady state. This depends on that the active power easily can be
transported in the system (that is why it has been possible to build the power
systems of today’s size). It is often said that the active power is a global
quantity, unlike the reactive power which is a local quantity, since reactive
power cannot be transmitted over longer (electrical) distances. (This is
because of that X normally is much greater than R in a power system, at
least for transmission and sub-transmission networks.)

The frequency of the system is reduced when a load increase is not
compensated for by a corresponding increase of the turbine power of the
connected generators. The power deficit decelerates the generator rotors
and consequently the frequency is reduced.

Frequency reductions also arise when production is lost, e.g. as a con-
sequence of failures in the system which lead to that protections disconnect
the failed equipment. Too large reductions of the frequency could lead to
system collapse, since a lot of equipment in the power stations, e.g. power
supply systems, do not tolerate too low frequencies. A load reduction in the
system which is not compensated for by a reduction of turbine power leads
to a frequency increase.

The permitted stationary frequency deviation in the Nordic power sys-
tem (Nordel) is at normal operation 0.2 % or 0.1 Hz. There are also re-
quirements on how large the difference between actual, physical time and
the time corresponding to the integrated frequency from the system can be.
This time difference is normally not permitted to be larger than 10s. (Dif-
ferent power systems have different rules for accepted deviations. If nothing
else is stated, the values given here refer to the Nordic system.)

It is also important that the voltage deviations in the system is limited.
This is of importance for the connected loads, but a “good” voltage profile is
also essential for keeping the losses low and for utilising the reactive reserves
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Figure 14.1. Typical variation of the load in a power system. The
upper curve shows the highest hourly average values over the year and
the lower curve the lowest hourly average value.

to establish a secure operation of the system. Voltage control is, as been
pointed out earlier, a more local control than the frequency control. If the
voltage deviate from the set value in a node, the control action must be
made in this or a nearby node.

14.1 Control of Active Power and Frequency

Since the stored energy in the system is relatively small, the constant of
inertia for a typical generator is≈ 4 s, the electrical energy must be produced
in the same moment as it is consumed by the loads. Since the load varies, a
certain power reserve must constantly be availably. In addition for the daily
variation, see Figure 14.1, there are continuously spontaneous load variations
up to ≈ 2 % of the total load during a minute. The generation reserves
are generally divided into different groups according to their properties:
spinning, supplementary and back-up, see Figure 14.2. The reserves are at
operation planning divided into normal operation and disturbance reserve
after the cause of the needed reserve.
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Figure 14.2. The different generation reserves in a power system.

At the operation planning of the power system forecasts over the ex-
pected load are carried out continuously. Forecasted values can never exactly
coincide with real values, why a reserve which can adjust the difference is
required. Therefore frequency variations arise, which must be compensated
for. Both power imbalances due to incorrect load forecasts and to occasional
load variations are controlled with the normal operation reserve.

Events which can lead to utilisation of the disturbance reserve are: gen-
erator trips or line trips. Disturbances of that kind can lead to frequency
reductions and reserves must often be put into operation.

In the operation the reserves are divided after needed time for activation,
see Figure 14.2. To keep reserves is expensive and therefore it is of interest
to minimise the needed effort of the reserves for maintaining the wanted
reliability and security.

14.1.1 Spinning reserve

The spinning reserve is co-ordinated in the Nordic system and is above all
located in hydro units with turbine control, see Figure 14.3. The turbine
control is activated within some seconds if the frequency deviates from the
normal and changes then the turbine setting for the regulating generators by
changing the guide vane opening to the turbines. When the system frequency
is changed the power demand of certain loads is also changed, specially for
motors, in such a way that a frequency increase leads to increased power
consumption and a frequency decrease gives lower power consumption. This
frequency dependence of the load stabilises the frequency. Components for
heat- and light production are fairly insensitive to frequency variations.

The resulting change in active power, ∆P , at a frequency change in the
system is:

∆P = ∆Pg −∆Pl (14.1)
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Figure 14.3. Generator unit with voltage regulator and turbine reg-
ulator for frequency control.

where: ∆Pg = the total change in output power from the generators par-
ticipating in the frequency control, ∆Pl = the total frequency dependent
load power change. The frequency dependence of the load can often be
approximated as

∆Pl = D∆f (14.2)

where D is a constant. The value on D is typically 0 − 4 %/Hz, but large
variations occur depending on the kind of load.

The frequency control is performed so that, at least for small frequency
deviations, the total change in output power of the frequency controlling
generators are (in steady state) proportional to the frequency change, ∆f .
The relation between changes in active power and frequency deviations can
then be written

∆Pg = −R∆f (14.3)

The constant R is determined by the setting of the turbine control of the
frequency controlling generators, and is named the systems frequency regu-
lation constant or frequency droop and is normally given in MW/Hz. The
frequency regulation for a system is established so that the frequency does
not fall outside given limits at certain dimensional disturbances which can
occur, e.g. trip of the largest generator in the system. The frequency droop
in the Nordic system is about 6000− 8000 MW/Hz according to these con-
siderations.

It shall be noted that the variation of frequency, computed from the
above relations, are the steady state values which are obtained after the
frequency controllers have responded. The transient frequency deviation
during the process following a large disturbance can be considerably larger
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Figure 14.4. The transient frequency response after a production
loss. The diagram is a recording from the Nordic system at a loss of a
1000 MW unit on the 24 November 1983.

than the stationary one, up to some Hz. In Figure 14.4 it is shown how
the frequency can vary after a disturbance in the system. As seen the
maximal frequency deviation is considerably greater than the stationary
one. The transient behaviour of the frequency is highly dependent on the
characteristics of the turbine regulators of the generators, and in this respect
the hydro turbines and steam turbines are totally different. Shortly it can
be said that the transient frequency deviation is considerably larger if the
frequency control is performed by hydro power. This is due to that the
hydro turbine is a non-minimum-phase system.

14.1.2 Supplementary Reserves

Supplementary reserves must also be available to cope with fast changes in
the generation plan at large forecast deviations or at permanent outages
when the spinning reserve has been used and must be restored. From the
remaining deviation of frequency and the knowledge about the system fre-
quency droop it is straightforward for the system operators to compute how
much “new” power production that must be connected to restore the sys-
tem within the prescribed limits. This can either be done by connecting new
production or by increasing the turbine power at generators in operation.
In the Nordic system this is handled manually, but in some countries, e.g. in
USA, this is at certain power companies taken cared by slow automatic con-
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trollers, so-called Automatic Generation Control (AGC). This regulation is
considerably slower than frequency control and must be designed not to
interact with the frequency control in an adverse way.

Any co-ordination of the fast reserve does not exist in the Nordic system.
The fast reserve is above all needed in the southern part of Sweden and it
shall be available within 15 minutes. It is desirable to locate the fast reserve
to hydro power in northern Sweden, but at high load with large transfer
from hydro power in the north the fast reserve must be in the form of gas
turbines and in extreme cases, thermal power system in southern and central
part of Sweden.

14.1.3 Back-Up Reserves

The slow reserve shall be availably within about 2 h. It is needed for security
reasons to restore the fast reserve when this has been used. The slow reserve
can consist of thermal power which is kept at stand by. This implies that
pressure and temperature is kept on a level which permits synchronisation
and load recovery within 2 hours. The co-generation back pressure aggregate
for which it is possible to increase the electrical power can also be used.

14.2 Control of Reactive Power and Voltage

14.2.1 Reactive Power Control

In steady state operation both active power balance and reactive power
balance must be maintained. The reactive power generated by synchronous
machines and capacitances must be equal to the reactive power of the loads
plus the reactive transmission losses. If the active power balance is not
kept, the frequency in the system will be influenced, while an imbalance in
reactive power will result in that the voltages in the system differ from the
desired ones.

If the power system is operated in the correct way, the voltage drops on
the lines are usually small. The voltages in the nodes of the system will
then almost be the same (flat voltage profile). In this case the transmission
system is effectively used, i.e. primarily for transmission of active power,
and not for transmission of reactive power.

As known from the Static Analysis the voltage in a system is strongly ef-
fected by the reactive power flow. Consequently the voltage can be controlled
to desired values, by control of the reactive power. Increased production of
reactive power gives higher voltage nearby the production source, while an
increased consumption of reactive power gives lower voltage. Therefore it
is of great interest to study which components and devices which can be
used to regulate the reactive power in a power system. While the active
power is entirely produced in the generators of the system, there are several
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sources of reactive power. In the other hand the reactive power cannot be
transported over long distances in the system, since normally X >> R in a
power system.
Important producers of reactive power are:

• Overexcited synchronous machines

• Capacitor banks

• The capacitance of overhead lines and cables

Important consumers of reactive power are:

• Inductive static loads

• Under-excited synchronous machines

• Induction motors

• Shunt reactors

• The inductance of overhead lines and cables

• Transformer inductances

• Line commutated static converters

For some of these the reactive power is easy to control, while for others it
is practically impossible. The reactive power of the synchronous machines is
easily controlled by means of the excitation. Switching of shunt capacitors
and reactors can also control the reactive power. If thyristors are used to
switch capacitors and/or thyristors are used to control the current through
shunt reactors, a fast and step-less control of the reactive power can be
obtained. Such a device is called SVC (Static Var Compensator).

As has been shown earlier it is most effective to compensate the reactive
power as close as possible to the reactive load. There are certain high
voltage tariffs to encourage large consumers, e.g. industries, and electrical
distributions companies to compensate their loads in an effective way. These
tariffs are generally designed so that the reactive power is only allowed to
reach a certain percentage of the active power. If this percentage is exceeded,
the consumer has to pay for the reactive power. The high voltage network
is in that way primarily used for transmission of active power.

The reactive looses of power lines and transformers depend on the size of
the reactance. At overhead-transmission line the reactance can be slightly
reduced by the use of multiple conductors. The only possibility to radi-
cally reduce the total reactance of a transmission line s to connect a series
capacitor, see 8.1.4 in the Static Analysis.
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14.2.2 Voltage Control

The following factors influence primarily the voltages in a power system:

• Terminal voltages of synchronous machines

• Impedances of lines

• Transmitted reactive power

• Turns ratio of transformers

A suitable use of these leads to the desired voltage profile.
The generators are often operated at constant voltage, by using an auto-

matic voltage regulator (AVR). The output from this controls via the electric
field exciter the excitation of the machine so that the voltage is equal to the
set value, see Figure 14.3. The voltage drop caused by the generator trans-
former is sometimes compensated totally or partly for, and the voltage can
consequently be kept constant on the high voltage side of the transformer.
Synchronous compensators are installed for voltage control. These are syn-
chronous machines without turbine or mechanical load, which can produce
and consume reactive power by controlling the excitation. Nowadays new
installations of synchronous compensators are very rare.

The impact of the impedances of the lines on the reactive power balance,
and thereby the voltage, have been analysed in the Static Analysis. These
are generally not used for control of the reactive power. Series capacitors
are generally installed to increase the active transmission capacity of a line.

From the static analysis it is also known that the reactive power trans-
mitted, has a great impact on the voltage profile. Large reactive transmis-
sions cause large voltage drops, why these should be avoided. Instead, the
production of reactive power should be as close as possible to the reactive
loads. This can be made by the excitation of the synchronous machines,
which have been described above. However, there are often no synchronous
machines close to the load, so the most cost-effective way is to use shunt
capacitors which are switched according to the load variations. An SVC can
be economically motivated if fast response or accuracy in the regulation is
required. Shunt reactors must sometimes be installed to limit the voltages
to reasonable levels. In networks which contain a lot of cables this is also
necessary, since the reactive generation from these is much larger than from
overhead lines. (C is larger and X is smaller.)

An important method for controlling the voltage in power systems is
by changing the turns ratio of a transformer. Certain transformers are
equipped with a number of taps on one of the windings. Voltage control can
be obtained by switching between these taps, see Figure 14.5. If switching
during operation can be made by means of tap changers, this possibility to
voltage control is very effective and useful. Normally the taps are placed
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Figure 14.5. Transformer with variable turns-ratio (tap changer).

on the high voltage winding, the upper side, since then the lowest current
needs to be switched.

If N1 is the number of turns on the upper side and N2 is the number of
turns on the lower side, the turns ratio of transformer is defined as

τ =
N1

N2
(14.4)

Then the relation between the voltage on the high voltage side, U1, and on
the low voltage side, U2, at no load is

U2 =
U1

τ
(14.5)

If the voltage decreases on the high voltage side, the voltage on the lower
side can be kept constant by decreasing τ , i.e. by switching out a number of
windings on the high voltage side. When the transformer is loaded eq. (14.5)
is of course not correct, since the load current gives a voltage drop over the
leakage reactance of the transformer, zk, but the same principle can still be
applied at voltage control.

Transformers with automatic tap changer control are often used for volt-
age control in distribution networks. The voltage at the consumers can
therefore be kept fairly constant even though voltage variations occur at the
high voltage network. Time constants in these regulators are typically some
ten seconds.

Sometimes the turns ratio cannot be changed during operation, but just
manually when the transformer is off load. In this case one can only change
the voltage level in large but not control the voltage variations in the net-
work.
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Figure 14.6. The different operating states of a power system.

14.3 Supervisory Control of Electric Power Systems

The frequency- and voltage control described above are performed by local
controllers, but overall and central control is also needed to secure safe and
economical operation of the power system. This control is performed from
control centres which generally are hierarchically organised. Often there
is a national centre on the top, which supervises the national transmission
system and co-ordinate the frequency control. In certain cases this centre can
also co-ordinate the operation of different power companies, which in that
way can optimise their operation. Next level contains a number of regional
control centres which co-ordinate and supervise the regional networks and
control the generation within that region. Next level of operation centre has
the task of controlling the operation for one or several power stations. The
information flow between these different levels is very large and there is an
extensive communication system parallel with the electrical power system to
handle this. Computers are extensively used to perform the overall control
of the power system, but also the operators make important decisions in the
control process.

The different states that a power system can be found in is often de-
scribed according to Figure 14.6. Normal operation is the state which is
desired for a system. Besides that all quantities in the system are within
the limits given by the equipment and the system, there are margins so
that the system can tolerate certain predetermined disturbances, e.g. loss
of lines and generation, without endangering the system security. When
the system is in alert operation all quantities are still within the allowed
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Operating Rating Pgen = Pload + Ploss

Margins Limits
Normal State OK OK OK
Alert State No OK OK
Emergency State No No OK
Extremis State No No No

Table 14.1. Characteristics of the different operating states of a power system.

limits, but the margins which existed for normal operation have been lost
as a consequence of some disturbance(s). In alert operation power can be
supplied as usual, and the consumers do not notice that any disturbance
has affected the system. In this state the goal for the control is to bring the
system back to normal operation through connecting equipment to establish
margins to cope with new disturbances. Emergency operation can occur if
further disturbances occur or if a large disturbance strikes the system. Some
quantities, e.g. voltages or power flows on the lines, are now outside the per-
mitted limits. Still there is no shortage of power, but fast actions must be
taken otherwise further equipment will be tripped by different protections.
If it is not succeeded to bring the system to alert operation and gradually
to normal operation, there is a risk to end up in extremis operation. In this
state there is not enough with power to supply the connected loads, and the
frequency is decreasing. Load shedding is usually needed to save the system.
First of all such load is shed, that easily can be connected again without any
larger damages to the consumers, for example electrical heaters or domes-
tic loads. As a last resort loads, which demand long time for restoration,
e.g. process industry, are shed.

If this defence is not successful the system, or often parts of the system,
will collapse, i.e. be de-energised, which is a state which must be avoided by
all means. If this state should be reached the system must as fast as possible
be brought back, often part by part, to normal operation. This process is
called system restoration. The transitions which are marked with unbroken
lines in the Figure 14.6 are initiated and performed from different control
centres. (The broken lines denote undesired disturbances.) The central
control plays an important role to get the system into normal operation.

In Table 14.1 the characteristics of the different operating states of a
power system are summarized.



Appendix A
Protections in Electric Power Systems

In this Appendix a brief summary of how protections are designed and how
they function is given. The very important distance protections and their
operating principles are discussed. Some special protections and system
wide protections that are of relevance for power system stability is briefly
reviewed.

DIFFERENT TYPES of protections are installed to protect the equip-
ment in an electric power system. Their task is to disconnect failed or

overloaded equipment or parts of the system to avoid unnecessary damages
on equipment and personnel. The purpose is also to limit the impact of
failures on the parts of the system that have not failed. Special types of
protection are the “system protections”. Their task is to prevent collapse
(black out) of the system or parts of the system.

An intensive development of protections based on modern information
technology is going on both regarding hardware and software. On the hard-
ware side microprocessors have been used over a long time to implement
different functions in the protections, and with the recent developments
more and more complicated functions can be implemented in a reliable way.
Powerful methods like signal processing, state estimation, and “artificial
intelligence”, are being integrated into the protections. In general the func-
tions which earlier were handled with separate relays are increasingly being
integrated with other functional units for control and supervision. Further-
more, more complicated criteria for activation of protections can be applied.
The interested reader is referred to the literature for further information.
The summary here is concentrated on general principles for protections.

A.1 Design of Protections

A protection for an electric power system comprises the following parts:

• Measurement device with current- and/or voltage transformers and
other sensors measuring the relevant quantities.

• Relay which when certain conditions are fulfilled sends signals to a
circuit breaker or another switching device. This relay was earlier a
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separate unit, but can in modern protections be a part of a larger unit
for protection, supervision and control.

• Circuit breakers which execute the given instruction(s) from the relay.

• Telecommunication system is mainly used at distance (line) protec-
tions to get a faster and more reliable performance.

• Power supply systems which shall secure the power supply to the pro-
tection system, even with faults in the system.

The requirements on a protection system are that they should be selec-
tive, sensitive, reliable and fast.

• Selectivity implies that not more than necessary pieces of equipment
and apparatuses are disconnected to isolate a fault.

• Sensitive relays are needed to detect failures which cause small fault
currents, e.g. high impedance faults. This implies that the risk for
misoperations increases at ”small” disturbances, e.g. at energisation
of transformers, or at high load operation but normal operation.

• The protection must obviously be reliable. To achieve desired reliabil-
ity double or even triple sets of certain parts of the protection or of
signal paths might be needed. Malfunctions can be divided into not oc-
curring or unwanted operations. Normally none occurring operations
are more serious malfunctions than unwanted ones.

• Fastness of the protection secures that damages on persons and equip-
ment are prevented or limited.

The protections are often classified according to the object that they
protect. An example is shown in Figure A.1. If a failure occurs within an
indicated area in Figure A.1 this area should be isolated from the rest of the
network.

Many of the protections which protect separate pieces of equipment or
parts of a system with occupy a limited physical area are so called current
differential protections. These protections measure the difference between
two currents, which in normal operation should be equal, and the protection
is activated if this deviation exceeds a predetermined value. Both differences
in amplitude and phase can trigger the relay. The principle for a current
differential protection is shown in Figure A.2.
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Figure A.1. The different protection zones in a power systems.

A.2 Distance Protections

A.2.1 General Principles

So called distance protections are important protections concerning stability
and dynamics in a power system. Their task is to disconnect faulted lines
or cables. Since large parts of the power system consist physically of lines
and these are exposed to different disturbances, e.g. lightning strokes, down
falling trees etc., it is important that those faults can be isolated to minimise
the impact on the rest of the system. The most common faults are ground
(earth) faults, i.e. short circuits between two or more phases and ground
(shunt faults). Also interruptions in the lines can occur (series faults). The
operating principle of the distance protection is shown in Figure A.3.

Current and voltage are measured in both ends of the line and from these
an apparent impedance can be calculated: Z = U/I. In normal operation
this impedance varies within a certain area (large and almost resistive values
on Z), but if a fault occurs it will drastically change. The given value
depends on where on the line the failure occurs, and from system parameters
as line data and short circuit capacity, it can be calculated where the fault
has occurred.

For each distance protection there are several protection zones defined
in the Z plane according to Figure A.4. A low value on Z implies that the
fault is close to the measurement. From line data and short circuit capacity
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Figure A.2. Principles of a current differential protection.
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Figure A.3. The operating principle of a distance protection.

it can then be decided if the fault is in the protected line, within Zone 1,
or not. If that is the case, a trip order is given to the breaker at the same
station within some milliseconds, typically 10 ms, after Z has reached Zone
1. At the same time a trip order is given to the breaker in the other end of
the line. This latter trip order is not needed for isolation of the fault, if the
protection system in the other end works as it should, but this trip order
(transfer trip) increases the security in the system.

If the measured value on Z is in Zone 2 or 3, it implies that the fault is
outside the actual line. This implies that neither breaker 1 nor 2 in Figure
A.3 shall be opened. If the breakers, which according to the protection plane
should isolate the fault, are not operated by some reason other breakers
which are further away from the fault must isolate it. These secondary
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breakers will be used first after it is clear that the primary breakers have
not isolated the fault. Therefore if, Z is in Zone 2, the breaker does not get
the trip order until typically some hundred milliseconds have passed.

To coordinate and tune the settings of the protections to give a fast,
reliable, sensitive and selective protection system is a complicated and an
important task in an electric power system. In modern protection systems
different areas can be defined according to Figure A.4 with in principal ar-
bitrary geometric shapes, which facilitates the work. A plan comprising the
different areas of protections and time settings is usually called a selectivity
plan. The work to establish a selectivity plan is often very time consuming
because it should be appropriate for every feasible state of operation, i.e. for
different numbers of generators and lines connected and also at different
load levels. Often trade-offs must be made to reach acceptable results.

A.2.2 Automatic Re-Closure

When a ground fault or a short circuit occurs an ionised plasma (arc) that
carries the fault current is often formed. This arc remains ionised as long as
a the current flows through it. If the fault current is extinguished it is usually
sufficient for the plasma to cool down during some hundred milliseconds to
rebuild the isolation so that the line can be re-connected. This is used in
many systems and the line is automatically re-energised after a given time
period after fault clearing. This is the case in Sweden, where failed 400 kV
lines are automatically re-closed after 400 ms disconnection. If the failure
would still remain, the line is kept disconnected during a larger time period,
typically 800 ms, before the next re-closure is done. If the failure would
remain after the second re-closure attempt, more attempts to re-close will
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not be made. In this latter case the isolation of the line has probably been
permanently damaged and it must be repaired before the line can be put in
operation again.

Automatic re-closure must be made with certain carefulness when it is
made close to large thermal power plants, e.g. nuclear power plants. The
connection can in this case cause large stresses on the generator shaft if it
occurs at certain phase positions. In Sweden, the re-closure is in this case
done in the remote end of the line seen from the thermal power plant, and
then a synchronised re-closure at the other end is made. (With synchronised
closure is meant that the voltage over the breaker is zero when it is closed.)
In that way the transients in the system are drastically reduced, but of
course the re-closure takes longer time.

In Sweden all fault clearings on the high voltage grid are nowadays made
on all three phases. I certain countries one phase clearing is used. This
means that only the faulty phase(s) is (are) disconnected at fault clearing
and re-closure.

A.3 Out of Step Protections

A synchronous machine which has fallen out of step, i.e. its angular velocity
does not coincide with the angular velocity of the net, has lost the synchro-
nism with the system, and the machine must be disconnected. In order to
supply electrical power to the system it must be phased in to the system
later on. During the time period when the synchronous machine falls out
of step large current pulses will pass through the generator, and if these
becomes too many they can damage the generator and limit its life time.
Furthermore, vibrations that can jeopardise the generator can arise. To
protect a synchronous machine which has fallen out of step the synchronous
machine is equipped with a out of step rely.

Also in this case an impedance is defined from voltage and current. If the
operation state of the generator is in the critical impedance zone a clock is
started. If the generator then comes into the critical zone repeatedly times,
this is a criterion that the generator is falling out of step, and the protection
gives a trip order to the generator breakers.

Generators are also equipped with other protections against overload
(stator current protection), over-excitation, etc.

A.4 System Protections

System protections are special types of protection, the primary task of which
is not to isolate failed equipment, but to prevent that the total system or
large parts of it collapse. System protections often use information from
several different points in the system or quantities which can give a reliable
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diagnosis of the state of the system. These systems often works in a time
scale which is considerably longer than the more device oriented protections
which were considered earlier, typically several seconds or minutes. An
example on a system protection is load shedding. This is used to avoid
that the frequency in the system decreases under acceptable values if the
generation capacity has dropped in the system. The load shedding then
disconnects predetermined loads depending on how much and how fast the
frequency is falling. Voltage collapse protection is another system protection,
the task of which is to prevent voltage collapse in the system. Load shedding
uses only the frequency as input signal, while the voltage collapse protection
often uses several different quantities as input signals.


