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Preface

Dramatic growth in computer power has markedly changed our way of life
and we now take for granted machines that were inconceivable twenty years
ago and that routinely carry out tasks that were once unimaginable. It is
inevitable that this revolution has also had a considerable impact on the way
that we perform scientific tasks. Experiments are controlled by computer, the
data logged and analysed by computer, so allowing a continuously increasing
range of accuracy and sophistication in what can be done. Theory relies on
extensive numerical calculation to evaluate the complex formulae derived by
analytical means. An important new methodology has been developed using
simulation, intermediate between theory and experiment, in which synthetic
experiments are devised using basic theoretical concepts.

At its fundamental level physics is a simple subject investigating the forces
between a limited set of bodies - often only two. This theory may lead to very
complex mathematical relations, even for a very simple system, which need
large-scale computer calculations to yield values to be compared with experi-
ment. Theory such as this can be extended to more complex systems, but still
comprising relatively few particles (for example, nuclei or atoms). In all these
cases, although extensive computational effort is needed to generate repre-
sentative values, all that is being done is still, essentially, the calculation of
complex equations generated by the underlying theory.

There exists, however, another class of problems, more closely related
to those in the everyday world, in which we investigate complex systems
comprising a large number of particles with a correspondingly large number
of interactions. Since these are usually the problems of the macroscopic (real)
world - though not always - we generally use the methods of classical physics
to investigate them. These problems are generally handled by simulation. This
involves the construction of a model that is a simplified representation of the
prototype system. Only those elements of the system are retained which will
enable the model accurately to predict the behaviour of the prototype system
within the range of interest; only the prototype itself will be accurate over its
entire range. The model may be experimental (for example, tested in a
wind-tunnel) or, more commonly these days, computational.
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Computer simulation models usually work at a very basic level. The
simulation is performed using the underlying equations defining the problem.
For example, a many-body dynamical problem may involve a large number of
bodies (~106) interacting by a known mutual force (e.g. electrostatic).
Problems may be broken down into two groups - simulation using particles
and simulation using continua. In the latter case averaging over very large
numbers of real particles, which describe the system, defines macroscopic
quantities (such as density, pressure, temperature) from the microscopic values
(such as particle position, velocity). Clearly there are methods intermediate
between these extremes based on particle distribution functions. Generally
continuum methods consider that particles are in local thermal equilibrium,
that is, locally having some form of Boltzmann distribution, so that the
methods of classical thermodynamics are appropriate.

The prototype is usually a complex system with several separate interacting
sub-systems. The model must represent this, although some sub-systems
may not be active under the conditions of investigation. The translation of
the model into a computer program should reflect this structure. Thus the
program will consist of several sub-units which may be either called upon
during the calculation, or pre-processed to generate data, which are sub-
sequently accessed during the run. In either case the program should be con-
structed from sub-programs (subroutines or procedures) which reflect the
structure of the model through its sub-systems. These sub-programs should be
flexible and appended to the main program. This allows separate, independent
testing of them and also their use in other models.

The simulation will yield large quantities of output data. Such data must be
either handled on-line or post-processed. By far the most convenient type of
visual representation is in the form of graphs. A major development in com-
puting over the past decade has been in the area of computer graphics, and
this is a very valuable tool combined with the simulation, usually used as a
post-processor on stored output data. Key output values will be calculated
on-line and output to a file during the program run.

Clearly if a model is to have predictive value we must be sure that it
accurately represents the experiment. To do this we validate the model. There
are several steps in this process. The first and most obvious step is error
checking at the program level. This ensures that the program is performing in
the way intended. It is usually achieved by running the code for a set of cases
in which output values are already known, either from analytical calculation
or from earlier simulations. This is usually a long and painstaking task, but
one that must not be skimped. The second is to check the model itself,
verifying that it can reproduce experimental results, which is achieved by
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running the code against an extensive experimental data set, and identifying
and interpreting the discrepancies. This is always a very instructive task and
may give important insights into the experiment.

Computer simulation models of this type have a very wide range of
application in both physics and engineering. The aim of this book is to give a
general introduction to the general methods used in simulation. It does
not describe computational methods used as a theoretical tool - for example,
atomic physics calculations. It is an introductory text and is therefore not
exhaustive. The intended readership is at the undergraduate level, from the
second year onwards, and those of postgraduate status and beyond for whom
this is a first introduction to the subject. For less advanced readers appendices
are provided which are intended to fill in possible gaps in their knowledge
of some basic material.

In line with the overall purpose of this text, some advanced material is not
included. Thus multi-dimensional computational fluid dynamics does not
receive the attention its practical importance deserves. The other main omis-
sion is the treatment of particle transport phenomena associated with neutron
or radiative transfer. We hope that what we do provide is a starting point from
which the interested reader may access the more detailed literature in any
particular field of interest.

A suite of FORTRAN computer programs is provided (see p. xv) which
cover most of the methods described and will enable the reader to tackle
problems provided at the end of each chapter. These programs are written in
transparent form, with many COMMENT statements, and are designed to be
user-friendly rather than over-elaborate. Some subroutines are derived from
those in Numerical Recipes (Press, Flannery, Teukolsky and Vetterling, 1986),
which is recommended as a useful source of subroutines to those wishing to
write their own programs. Some of the provided programs can, if required,
give output files suitable as input to standard graphics packages. Several of the
figures throughout the text have been produced by GNUPLOT,1 a flexible and
easy-to-use general-purpose package.

An important message we wish to pass on is that, in computational terms,
one should not be constantly reinventing the wheel. Where there is existing
well-tested and well-proven software - be it subroutines, graphics packages or
special-purpose packages - then one should be ready to call upon it. Some-
times it will need to be modified and, where this is done, our exhortation
about validation must be followed. The ease with which programs produced

1 GNUPLOT - an interactive plotting program. © 1986-1993 Thomas Williams and Colin
Kelley. Further information is available from info-gnuplot@dartmouth.edu.
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by others can be used will depend on their clarity; for this reason each
individual should write any major program with the thought that someone else
may wish to use it and understand it. Another, and more selfish, reason to
write clear programs is that, otherwise, even the author will not understand
her or his own program after the passage of a few weeks or months.

York G. J. P.
May 1998 M. M. W.
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Programs available
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Models and simulation

1.1 What is a model?
According to one of his biographers, Einstein, at the age of five, was very
fond of constructing models; his favourite toy was a set of building bricks and
he also constructed card houses. Not a very scientific activity, it might be
thought, yet the making of models is at the very heart of physics and other
sciences as well. The essence of a model is that it should be a simplified
representation of some real object or physical situation which serves a par-
ticular, and perhaps limited, purpose. For example, a child may use modelling
clay to make a model of a car. The body will be crudely shaped with score
marks on the surface to represent doors, windscreen etc., and four discs will
be stuck on the sides to represent wheels. Augmented with the imagination of
a child the model achieves its purpose as a toy although it lacks most of
the attributes of a real car. More complex models of cars are possible - the
wheels can be made to revolve, some form of power can be added, either a
spring-driven or an electric motor, a steering mechanism can be incorporated
with radio control - but at the end of the day the only 'perfect' model of a
car, including the factor of scale, is the prototype, a car itself.

In the example we have given, the car being modelled is a macroscopic
object consisting of a relatively small number of components, and its behav-
iour is well understood and predictable. The physical systems we wish to study
are often very complex, containing entities we cannot see and whose existence
and properties we can only infer. An atom consists of a nucleus containing
protons and neutrons surrounded by a system of electrons, the number of
which equals the number of protons for a neutral atom. The first model
consistent with this picture was given by Niels Bohr in 1913. Electrons were
then pictured as tiny particles possessing mass and charge and considered to
be orbiting around the nucleus, much as planets orbit the sun except that the
centrally-directed forces were electrical rather than gravitational. The diffi-
culty with this model was that classical theory predicted that the electrons,
which are accelerating charged particles, should radiate energy and so spiral
inwards towards the nucleus. Bohr postulated that the electrons could only
exist in stationary states for which the angular momentum had to be some
multiple of a small basic quantity, h/2n, where h is the Planck constant which

1



2 Models and simulation

came from an earlier theory for black-body radiation. In stationary states the
electrons do not radiate but they can jump spontaneously from a state of
higher energy to another at lower energy, and when they do so they emit a
photon with energy equal to the difference in energy of the two states. The
Bohr model worked quite well for the hydrogen atom, for which it was able
to explain the Lyman and Balmer series of spectral lines, but it failed for more
complex atoms. It required the introduction of quantum mechanics by
Schrodinger and Heisenberg in 1926 before there was a satisfactory model for
many-electron atoms.

In describing the Bohr atom we have introduced the concept of a math-
ematical rather than a physical model. While some mechanical system of spheres
and wires could be constructed to represent the Bohr model it would not serve
any useful purpose, whereas the mathematical model can be subjected to
analysis to explore its strengths and weaknesses.

Another area in which modelling is useful is that of the structure of solids.
Figure 1.1 shows a representation of a simple crystal structure where atoms,
all of the same kind, form a simple cubic lattice. For such a crystal at absolute
zero temperature, in a classical model, all the atoms are at rest, although in
the quantum-mechanical model there is motion corresponding to zero-point
energy. The equilibrium of the crystal comes about because of the balance of
forces on each atom, or equivalently because the whole crystal is in a state of
minimum energy. Displacement of an atom in any direction results in a restor-
ing force towards the equilibrium position. For very small displacements the
magnitude of the restoring force is approximately proportional to the displace-
ment and so the vibrations of individual atoms are of simple harmonic
form - the so-called harmonic approximation. For larger amplitudes, which
occur at higher temperatures, the proportionality between the magnitude of
the restoring force and the displacement breaks down and anharmonic
vibrations occur, so that the period depends on the vibrational amplitudes. It
would be possible, although difficult and not very useful (except, perhaps, as

Fig. 1.1 A simple cubic structure.
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a lecture demonstration), to construct a physical model with spheres and
springs to represent such a system, but to explore its properties in depth
requires analysis by a mathematical model.

1.2 Why we use models and how
Many physical systems of interest are extremely complex, with many inter-
acting elements governing their behaviour. An obvious way to explore the
way that a complete system behaves is to construct it and to do a series of
controlled experiments on it. In this way empirical understanding is achieved
of the way that behaviour is affected by the parameters of the system, and that
is the basis of experimental method. However, if it is a nonlinear system the
effect of two changes made together is very different from the sum of the
changes made separately so that it may be impossible to derive enough
information to enable reliable predictions of behaviour to be made over the
complete possible range of parameters. Alternatively, building or running the
experiment may be expensive or dangerous. For example, the nuclear powers
of the world have, in the past, carried out tests of nuclear weapons as a result
of which they have a good understanding of the factors which govern the
nature of the resultant explosion. Many of them wish to retain some develop-
ment of weapons, although it is now generally accepted that tests of such
weapons are damaging to the environment and a danger to life on earth. Thus
the alternative of constructing a mathematical model may be an attractive, or
even an essential, alternative. Complex computer programs have been written
incorporating all the knowledge gained from previous tests so that new
weapons can be tested by computer simulation without the need actually to
explode them.

1.2.1 A simple harmonic oscillator

We can get an idea of the principles behind modelling by looking at a simple
harmonic oscillator. A mechanical model for this would be a pendulum with
a small mass on the end of a cord, as in Fig. 1.2. The force on a small particle
of mass m is proportional to the displacement in the x direction, and directed
towards the equilibrium point which we shall take as the origin. With no other
forces acting, the differential equation describing the motion is just Newton's
second law of motion:
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Forcing vibration

Damping vane

Fig. 1.2 A pendulum with damping and a
forcing vibration.

The solution of this simple differential equation is

where A and £ are arbitrary constants depending on the initial boundary
conditions and w = (k /m) 1 / 2 .

The system can be made more realistic by adding two extra forces. The first
is an imposed periodic driving force with an angular frequency, wc, of the form
Fcos(wc t) , and the second a resisting force proportional to the velocity of the
form — f ( d x / d t ) . This latter force is of the usual form for the resistance on a
body moving through a medium and subjected to a Stokes' law drag. In the
mechanical model, displayed in Fig. 1.2, the viscous drag is produced by air
resistance on the small vane shown and the driving force is a periodic displace-
ment of the frame on which the pendulum is suspended. From an analytical point
of view the form of the differential equation describing the resultant motion is

for which the standard solution is, for f<4km,

and for f > 4km,
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where

and

The possible ambiguity in the value of £ is resolved by the condition that sin(e)
has the sign of the numerator of (1.4d) and, since f and wc are both positive,
-n<e<0.

The values of A, n, C and D in (1.4a) are arbitrary and depend on the
boundary conditions but, because of the exponential factors, the first term is
a transient one which eventually dies away, leaving the second-term steady-
state solution. This has the same frequency as the driving force and an
amplitude, R, which depends on all the constants in (1.3). It is clear that for
fixed values of m, f and k the amplitude will be a maximum when

and the driving frequency is the same as the natural frequency of the undriven
system. For this resonance condition the divisor in (1.4d) is zero, correspond-
ing to e = — n/2, which means that the driven motion lags n/2 behind the
driving force.

Another situation of interest is when a free and undamped mass is subjected
to a driving force - which is what happens if electromagnetic radiation falls
on a free electron - where

with £ the amplitude of the electric field. From (1.4c) and (1.4d) it can be
found that the amplitude and phase of the induced vibration of the free
electron are

This shows that the vibration of the free electron is exactly n out of phase with
the forcing vibration; when the force is in the negative x direction the motion
is in the positive x direction, and vice versa.

Once the solution, (1.4a) or (1.4b), is available then the behaviour of the
pendulum can be found for any circumstance by inserting the appropriate
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values of m, k , f , wc and F. However, let us suppose that the magnitude of the
damping force is no longer proportional to the velocity of the mass but is
proportional to some arbitrary power of the speed - that is, |dx/dt|a. The
direction of the force is still opposed to the direction of motion, so the
differential equation will appear in the form

It is not possible to find an analytical solution for this equation for all values
of a, so to study the behaviour of such a system it is necessary to resort to
numerical methods. There are many available techniques for the numerical
solution of differential equations, of varying degrees of complexity and
efficiency, and in the following section some basic ones will be described.

1.3 Techniques for solving first-order ordinary
differential equations

1.3.1 Euler methods

A first-order ordinary differential equation can be written in the form

with the boundary condition y = yo when X = X 0 . Figure 1.3 a shows a typical
curve together with the point (x0, y0). The simplest method of solving the
differential equation, the Euler method, is to assume that going a small dis-
tance along the curve from (x0, yo) is approximately the same as going a short
distance along the tangent to the curve at (x0, y0). If the integration step length,
that is, the step in the independent variable x, is h, then from Fig. 1.3 a it will
be seen that the estimated coordinates of the next point on the curve are

and, in general,
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Fig. 1.3 (a) The Euler method. (b) The
Euler predictor-corrector method. The slope
of the chord is approximately the average of
the slopes at (x0,y0) and (x1,y1).

It should be clear from the figure that unless h is very small the solution will
quickly deviate from the true curve.

A great improvement on the Euler method, at the expense of a modest
increase in computational complexity, is the Euler predictor-corrector (EPC)
method, the principle of which is illustrated in Fig. 1.3b. To take one step in
the integration without error it is required to go along the chord from (x0,, yo)
to (x1,y1). It can be shown that the slope of this chord is approximately the
average of the slopes of the curves at the two ends. A Taylor series, centred
on the point (x0, y0) and truncated after two terms, gives

Similarly, with centring on ( x 1 , y 1 ) ,
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From these two equations the slope of the chord is found as

Since y1 appears on both sides it cannot directly be derived from (1.12) but
an estimated, or predicted, value of y1 can be found from the simple Euler
approach. A general form of the EPC method is

X

followed by a corrected estimate

We shall be describing other predictor-corrector methods, all of which have
the same general pattern. Firstly, a predicted value of yn+1, Yn+1, is obtained
by an open equation which extrapolates from already known values of y.
Secondly, the prediction is improved, or 'corrected', by a dosed equation
which contains Yn+1 as well as previously known values.

The simple Euler method requires one function evaluation per step and the
EPC method requires two. However, an analysis based on the use of the
Taylor series shows that the error in integrating over a fixed interval in
the simple Euler method is O(h) while that of the EPC method is O(h2). This
means that halving the integration step length halves the error in the simple
Euler method but reduces the error in EPC by a factor of 4 (see Table 1.1).

1.3.2 The Runge-Kutta method
Next we describe the four-step Runge-Kutta (RK) process which requires four
function evaluations per step and is a very good all-purpose method in terms
of combining simplicity and accuracy. The operation of the RK method is
summarized in the following set of equations:
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Table 1.1 The performance of the Euler, Euler predictor-corrector (EPC) and four-step
Runge-Kutta methods in solving dy/dx=y for the range x = 0.0 to 1.0 with y = 1 when x = 0.
The results are obtained with integration steps 6 = 0.1 and 6 = 0.2.

X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

y (Euler)

6 = 0.2

1.000000

1.200000

1.440000

1.728000

2.073600

2.488320

6 = 0.1

1.000000
1.100000
1.210000
1.331000
1.464100
1.610510
1.771561
1.948717
2.143589
2.357948
2.593743

y (EPC)

6 = 0.2

1.000000

1.220000

1.488400

1.815848

2.215335

2.702708

6 = 0.1

1.000000
1.105000
1.221025
1.349233
1.490902
1.647447
1.820429
2.011574
2.222789
2.456182
2.714081

y (Runge-Kutta)

6 = 0.2
1.000000

1.221400

1.491818

1.822106

2.225521

2.718251

6 = 0.1

1.000000
1.105171
1.221403
1.349859
1.491824
1.648721
1.822118
2.013752
2.225539
2.459601
2.718280

ex

1.000000
1.105171
1.221403
1.349859
1.491825
1.648721
1.822119
2.013753
2.225541
2.459603
2.718282

and finally

The value of S1 is the Euler estimate of the increment in y, based on the slope
at the initial point, while S2 and S3 are both estimates of the increment based
on the estimated slope at x = x0 + 1/2h. Finally, s4 is an Euler-type estimate of
the increment based on the estimated slope at the end-point of the integration
step. These four estimates are then combined with weights proportional to
1:2:2:1 to give the final estimated increment.

The error in the RK method is O(h4), which means that the error is reduced
by factor of 16 when the step length is halved. The performance of the Euler,
EPC and RK methods is shown in Table 1.1 for solution of

with y — 1 when x = 0 for the range x = 0 to 1. The analytical solution is y = ex,
so it is possible to compare the performance of the three methods. While
halving the step length does not exactly reduce the error by factors of 2, 4 and
16 for the three methods, the ratios of errors are similar to those expected
theoretically. Note also the progressive improvement of these techniques as the
power of h in the error term increases.

1.3.3 The Adams-Moulton method

The predictor-corrector methodology which has been demonstrated for the
Euler method is one of a family of more accurate and sophisticated integration
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techniques. To illustrate this we shall consider the Adams-Moulton method
applied to a differential equation of the form (1.9). This method requires that
values from four previous steps of integration are available, and we shall refer
to these as (x0,y0), ( x 1 y 1 ) , (x2,y2) and (x3,y3). The objective is to find y4

corresponding to x4; since all the steps in x are equal - say, h - we can,
without loss of generality, take the value xn = nh.

As a first predictor stage we fit a cubic function in x to the four known
values of f ( x , y ) , which we shall indicate as f0, fi, f2 and f3. This can be done
by fitting a Lagrange polynomial which is of the form

By setting x successively equal to x0, x1, x2 and x3 it may be confirmed that
the right-hand side of (1.15) gives f0, f1, f2 and f3 respectively, thus showing
that (f)(x) is the correct cubic function going through the four points. An
estimated value for y4 may be obtained from

Taking the first term on the right-hand side of (1.15) and inserting the known
values of x gives the contribution to the integral on the right-hand side of (1.16) as

The contributions of the other terms can be found in similar fashion and the
open equation (1.16) gives the predicted value

With this predicted value, Y4, a good estimate can be made of f4, which we
indicate as ef4. Now a cubic is fitted to the values of f1, f2, fa and ef4. This
polynomial is inserted in (1.16) to get a better estimate of y4, which will be
better because the equation is of closed form and is not being extrapolated.
The final accepted value of y4 is found as
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The application of (1.17) to get a predicted value of y4 followed by (1.18)
to get a better value constitutes the Adams-Moulton method. It has similar
error characteristics to the Runge-Kutta method and is more efficient in only
requiring two evaluations per step, but it is not self-starting and requires some
other method (such as the Runge-Kutta) to generate yl , y2 and y3 before it can
be used.

1.3.4 The Numerov method
A final predictor-corrector method, which can be very useful at times, is the
Numerov method, which applies to second-order ordinary differential equa-
tions when there is no first-order term present, that is, of the form

This method is best explained by application of the Taylor series to the points
(xo ,yo), ( x 1 , y 1 ) , (x2 , y 2 ) with equal spacing, h, in x, from which we obtain

and

where the superscripts on the ys indicate the order of differentiation. Truncat-
ing the right-hand sides of both these equations after four terms and then
adding gives the open equation for the estimate of y2.

The closed equation is derived from (1.20a) and (1.20b) by retaining six terms
on the right-hand sides and then adding the two equations to give

The final term on the right-hand side of (1.22) can be expressed in terms of
second derivatives by another application of the Taylor series in the form
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and

Adding these two equations, rearranging and then expressing the second
derivatives in functional form leads to

Now the result (1.24) is inserted into (1.22) and the predicted value of y2 from
(1.21) is used on the right-hand side to give the closed equation

Like the Adams-Moulton method, the Numerov method is not self-starting,
although it only requires the values at two previous steps. There are two new
function evaluations per time step, f ( x \ , y \ ) in (1.21) and f(x2, Y2) in (1.25),
which makes it very economical, but the very good characteristic it has is that
the error is O(h5).

The methods given here for the numerical solution of ordinary differential
equations are a small selection of the methods available, but they form a very
useful set for solving the kinds of problem that usually arise in physics. A useful
general reference is Press et al. (1986).

1.4 Solution of the forced, damped oscillator

We now return to the problem of solving equation (1.8), which is a second-
order differential equation with a first-order term of the general form

This can be solved by the Runge-Kutta method or by the Adams-Moulton
method by breaking it up into two coupled first-order equations:

and
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This type of problem is a special case of the situation where there are two
general dependent variables and the differential equations are of the form

and

Starting with the boundary conditions y = yo and u = u0 when x = x0, the
solution proceeds as follows:

The pattern of these equations is similar to that of (1.14) and can be
extended to deal with any number of dependent variables. A FORTRAN
program OSCILLAT, which solves equation (1.8) for different initial bound-
ary conditions and values of a by the Runge-Kutta procedure, is provided
(see p. xv). It is written in a transparent form and well provided
with comment statements, and it is recommended that it should be studied
before use.
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Table 1.2 The steady-state amplitudes for frequencies around resonance for the
standard OSCILLAT problem with a= 1.5.

wc (rads -1 )

300
305
310
312
314
315
316

Amplitude
(10~3m)

1.0
1.5
2.6
3.6
5.6
6.7
7.5

wc ( rads - 1 )

317
318
320
322
325
330

Amplitude
(10-3m)

7.2
6.0
3.9
2.6
1.8
1.1

The program is fairly robust and can handle a wide range of situations. The
standard parameters provided with the program are:

m = 0.001kg, f= 0.003 Nsm - 1 ,

F = 0.01N, wc= 300rads-1, x(0) = 0,

The program has been run with a = 1.5 and a range of forcing angular
frequencies, wc, around the resonance frequency 316.2 rads-1. The resulting
steady-state amplitudes, after the initial transients have died down, are given
in Table 1.2. The values are not too precise as they have been estimated from
graphical output, an example of which is shown in Fig. 1.4, but they indicate
clearly the nature of the resonance curve.

1.5 General ideas about simulation

In building computational models the skill required is to simulate as well as
possible a physical system with a view to investigating its behaviour. The term
'as well as possible' is subject to a whole range of conditions. If the system
under investigation is a system of planets orbiting the Sun, then the number of
bodies is small, the force law governing their motions is well known and the
only limitation in the accuracy of the simulation is the amount of computa-
tional effort that is brought to bear. On the other hand, the physics of the
system we are examining might be quite well known but the system may be
so large and complex - a galaxy of 1011 stars, for example - that we cannot
hope to simulate it perfectly. Yet another kind of situation is where the physics
is not so well defined and all we know is the general form of the behaviour - for
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Fig. 1.4 An OSCILLAT graph for one of the runs giving Table 1.2, with wc = 312rads~1.

example, where oil extraction is being modelled and the nature of the sub-
surface rocks is imperfectly known.

1.5.1 The Trojan asteroids
We shall illustrate aspects of simulation by considering two different N-body
problems. The first problem is a well-known one - that of the Trojan aster-
oids. The planet Jupiter is accompanied in its orbit by two groups of asteroids
which precede it and follow it at an angular distance of n/3. It can be shown
analytically that these are positions of stable equilibrium but, using the
program TROJANS (see p. xv), we shall be able to confirm this by computa-
tion. This program has several components. The main program, NBODY,
includes the Runge-Kutta procedure with automatic step control. The input of
the basic parameters and the definition of the initial state of the system are
controlled by the subroutine START which, for the present application,
enables the starting positions and velocities of the bodies to be entered
manually. For other applications START can be rewritten to compute the
initial boundary condition if that is appropriate. The subroutine ACC gives
the acceleration of each body in terms of the positions and velocities of all
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Fig. 1.5 The positions of Trojan asteroids n/3 ahead of and behind Jupiter in its motion around
the Sun.

the bodies. In the Trojan asteroid case there is no dependence on velocities,
but there will be such a dependence in our second example. The subroutine
STORE stores intermediate values of the time and corresponding positions of
the bodies; for this example this is done every 50 time steps of the computa-
tion. Finally there is a routine, OUT, which produces data files suitable for
input to a graphics package. For different N-body problems the main program
NBODY may be used with different specially written subroutines for the
particular problem under investigation.

Ignoring the other planets of the solar system, Jupiter and the Sun move
around their common centre of mass, as illustrated in Fig. 1.5. The stable
position of a Trojan asteroid is n/3 ahead of or behind Jupiter with respect to
motion relative to the Sun. The combination of the gravitational attraction of
the Sun and of Jupiter gives a resultant force on a Trojan asteroid towards the
centre of mass. This gives a centripetal acceleration of the correct magnitude
for the asteroid to move around the centre of mass with the same period as
Jupiter. With the Sun as origin it can be shown that, for a circular orbit, the
speed of Jupiter is given by

where MO and MJ are the masses of the Sun and Jupiter respectively, and RSJ

is the distance between them. Relative to the Sun, VJ is also the speed of the
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Table 1.3 The initial parameters for the Trojan asteroids problem.

Mass
X

y
z
vx
vvvz

Sun

1
0
0
0
0
0
0

Jupiter

0.001
0

5.2
0

-2.75674
0
0

Trojan 1

0
-4.50333

2.6
0

-1.37837
-2.38741

0

Trojan 2

0
4.50333
2.6

0
-1.37837

2.38741
0

asteroids, and their components of velocity in the x and y directions are
therefore easily found. For calculations involving the solar system it is con-
venient to use solar system units, where unit mass is the mass of the Sun, unit
distance is the astronomical unit (AU) and unit time is one year. For such a
system the gravitational constant, G, is 4n2. With this system the numerical
values for the initial conditions of the Trojan problem, where all positions and
speeds are relative to a stationary Sun, are given in Table 1.3.

The program TROJANS can be run with any specified body as origin. If the
parameters in Table 1.3 are used with the sun specified as origin then the
asteroids stay rigidly in their original positions. However, with some modifi-
cation of the parameters from their ideal values the asteroids do not stay in
their initial positions but oscillate about them - which illustrates the stability
of their equilibrium positions. The graphical output for a run of 1000 years
(more than 80 orbits of Jupiter), reproduced in Fig. 1.6, shows the motion
of the asteroids with respect to Jupiter, rotated so as to be on the y-axis.
The initial asteroid positions and velocities are those in Table 1.3, rounded
off to three significant figures so that some movement of the asteroids is
apparent.

1.5.2 An orbiting satellite under tidal stress
The second example is one where an exact representation of the physical
situation is not possible but where a simulation gives the expected form of
behaviour. A satellite in orbit around a planet is subjected to a tidal stress
which stretches it along the direction of the radius vector. If the orbit is
non-circular then the stress is variable and the satellite expands and contracts
along the radius vector in a periodic fashion. Since the satellite will not be
perfectly elastic there will be hysteresis effects and some of the mechanical
energy will be converted into heat which is radiated away. The overall effect
is that while the system as a whole is losing mechanical energy it must conserve
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Fig. 1.6 (a) Movement of Trojan asteroids in 1000 years: relative to Jupiter with coordinates
(0, 5.2); (b) an enlarged view of the motion of the leading asteroid.

angular momentum. For a planet of mass M and a satellite of mass m («M),
in an orbit of semi-major axis a and eccentricity e, the total energy is

and the angular momentum is

If E is to decrease then a must become smaller, but if H is then to be constant
then e must become smaller - that is to say, that the orbit must round off.



General ideas about simulation 19

Fig. 1.7 The elliptical orbit of a satellite
relative to the planet at one focus. Points q
and Q are the nearest and furthest points
from the planet, respectively.

Fig. 1.8 The satellite is represented by
three masses, each m/3, connected by springs
each of the same unstrained length, /.

The quantity which remains constant is a(1 — e2), the semi-lotus rectum, which
is indicated in Fig. 1.7. The model we shall use to simulate this situation is
shown in Fig. 1.8. The planet is represented by a point mass, P, and the
satellite by a distribution of three masses, each m/3, at positions S1, S2 and S3,
forming an equilateral triangle when free of stress. The masses are connected,
as shown, by springs, each of unstressed length / and the same spring constant, k.
Thus a spring constantly stretched to a length /' will exert an inward force

However, we introduce a dissipative element in our system by making the
force dependent on the rate of expansion or contraction of the spring, giving
a force law
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where the force acts inwards at the two ends. It is the second term in (1.32)
which gives the simulation of the hysteresis losses in the satellite.

The program to examine this model, SATELLIT (see p. xv), has as its main
routine NBODY, which is identical to that used in TROJANS. The input to
the program, controlled by START, is as follows:

number of bodies = 4
mass of first body (planet) =2 x 1027kg
mass of remaining bodies = 3 x 1022kg
initial time step = 10 s
total simulation time = 125 000 s
body chosen as origin = 1
tolerance = 100m
initial distance of satellite = 1 x 108m
unstretched length of spring = 1 x 106m
initial eccentricity = 0.6.

The simulation is somewhat unrealistic in that the satellite is very close to the
planet; the planet mass equals that of Jupiter and if the planet were Jupiter the
satellite would hit it! However, the parameters are chosen to give a reasonable
computational time and the principles of the orbital round-off process will still
 illustrated. The graphical output of the program is given in Fig. 1.9 and

Fig. 1.9 The orbital eccentricity as a function of time. The spikes are due to an exchange
between spin and orbital angular momentum around closest approach.
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Fig. 1.10 The lag and lead in the tidal
bulge of the satellite give spin angular
momentum on approach and subtract it on

Satellite path recession.

needs explanation. There are two types of angular momentum in the simula-
tion, one being that of the centre of mass of the satellite in its orbit around the
planet and the other being that of the spin of the satellite around its centre of
mass. The orbital period is 0.1 day, and this will be seen to be the period of
the spikes in the eccentricity values. The initial position of the satellite is at its
furthest distance from the planet so the first spike, and hence all the others,
occur when the satellite is closest to the planet. The reason for the spikes can
be understood by reference to Fig. 1.10, where the satellite is shown approach-
ing the near point. It is stretched by the tidal force, but due to inertia the
satellite tidal bulge lags behind the radius vector. The departure of the satellite
from a spherical form can be thought of as a sphere plus two bobs of matter
at the points P and Q and the gravitational forces on these are shown. Since
the force at P will be greater than that at Q there will be a net torque impart-
ing angular momentum to the satellite, causing it to spin faster. This angular
momentum is provided at the expense of the orbital angular momentum and
it will be seen in (1.31b) that if H falls in value for constant a then e must
increase. When receding from the near point the tidal bulge is ahead of
the radius vector and the effect is reversed. With the spikes explained in
this way the trend in eccentricity is steadily downwards, which is the pre-
dicted rounding-off process. It should be pointed out that the spikes and
the rounding off are not directly connected. If the dissipation term is removed
then the spikes will remain on the background of an otherwise constant
eccentricity.



22 Models and simulation

This particular simulation illustrates another feature of computational model-
ling. Although the explanation of the spikes is quite straightforward and easily
understood, it may not have been obvious ab initio that such spikes would
occur. A good simulation may well bring out new, unexpected and important
features of the system under investigation.

1.6 Types of simulation and their applications

To tackle the many types of problem which are solved in computational
physics it will not be surprising that several different kinds of method are
available. Here we shall just describe the most common methods in a general
way and indicate the kinds of problem that they can solve. This general
background is intended to do no more than convey the essence of the variety
of techniques available to the computational physicist and the range of prob-
lems to which they can be applied. The subject will here be painted in broad
brush strokes to give the general pattern of the subject; the filling in of detail
will come in the following chapters.

1.6.1 The Monte Carlo method
During the Second World War scientists in the USA were working on the
design of an atomic bomb and they were meeting problems which they needed
to solve quickly and for the solution of which they had little previous direct
experience to guide them. One such problem involved the way that neutrons
would penetrate a barrier, a problem with features which made it different
from, say, the absorption of light or X-rays in a medium. A neutron could
react with matter in different ways - it could be unaffected, be scattered either
elastically or inelastically, or be absorbed - and the probabilities of these
events would be dependent on the energy of the neutron. Although the
dependence on energy of each of the individual probabilities was known, there
was no way of solving this problem by conventional mathematical analysis.
Eventually it was solved by Ulam and von Neumann in a novel numerical way.
They followed the progress of a single neutron passing into the barrier. The
distance it would travel before it approached a nucleus could be estimated but
when it was close to the nucleus several things could happen with various
probabilities. To decide on what would happen, Ulam and von Neumann did
the numerical equivalent of throwing a die, or spinning a roulette wheel -
hence the name of the method. By following the path of the neutron, making
a Monte Carlo decision for each interaction, it could be found whether or not
it penetrated the barrier. By repeating this process for a large number of



Types of simulation 23

individual neutrons the proportion that would penetrate the barrier could be
found with reasonable precision.

We can illustrate the general characteristic of the Monte Carlo method
by a simple example - the random-walk problem, sometimes known as the
drunkard's walk. The problem can be expressed as follows: given that a body
makes n steps each of length d but in random directions, how does the
expected final distance from the starting-point depend upon w? This can be
solved by analysis, and indeed it was solved by Einstein in 1905 in relation to
Brownian motion, the movement of light particles bombarded by the mol-
ecules of a liquid in which they are suspended. We shall set up a simplified form
of the problem which we shall then solve by a numerical simulation. In the
simplified form the body starts at the origin of a square grid of unit side and
in each step the body can move only +1 or — 1 in the x or y directions, with
an equal probability for each of the four directions. The way that the choice
of direction will be made is to generate a random number, r, with a uniform
probability density in the range 0 to 1. The direction of motion is then chosen by

+ x for 0<r<0.25

-x for 0.25 < r< 0.5

+ y for 0.5 < r < 0.75

-y for 0.75 <r< l ,

or something equivalent, giving the required equal probability to each of the
four directions. The program DRUNKARD (see p. xv) for carrying out this
calculation incorporates a simple random number generator which is good
enough for the present purpose but which would not be adequate for a more
sophisticated application. The properties and qualities of random number
generators will be discussed further in Chapter 4.

The analysis used by Einstein for Brownian motion showed that the
root-mean-square distance for n steps of unit length in random directions is
n1/2. It can also be shown that the same result is obtained with our simplified
random walk where the steps are confined to one of four principal directions.
This is illustrated in Table 1.4, the third column of which gives the results of
running DRUNKARD for the standard random-walk problem. It can be seen
that the numerical results in the third column agree quite well with the
mathematical analysis.

Another kind of random walk problem is to find the root-mean-square (rms)
path length for n steps under the condition that the walk is not allowed to
cross itself. This could be a model of a polymer molecule in two dimensions
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Table 1.4 The results from the program DRUNKARD. Column 3 shows the
results from the standard random-walk problem. Column 4 gives the result
where the condition is imposed that the walk may not cross itself.

n Standard random walk Non-crossing random walk

2
4
8

16
32
64

128
256
512

1024

n1/2

1.41
2.00
2.83
4.00
5.66
8.00

11.31
16.00
22.63
32.00

Program

1.40
1.97
2.87
3.93
5.77
8.23

11.24
15.83
22.79
30.85

Program

1.50
2.32
3.63
5.97
9.17

n0.63

1.55
2.39
3.71
5.74
8.88

(say, on the surface of a liquid), where each of the n polymer units is regarded
as a step and the molecule cannot go through itself. The length of the 'walk'
is then the distance between the two ends of a molecule. This is a problem that
Einstein could not have solved but it is one that can be tackled by numerical
methods. There are two possible numerical strategies which give different
results. In the first one the normal random-walk procedure is followed, as in
DRUNKARD, but whenever a crossing occurs that trial is abandoned. In the
other strategy if a step produces a crossing then the step is repeated to see
whether a non-crossing path is available. The latter of these is the strategy used
in the program POLYWALK (see p. xv) where up to four attempts are made
to avoid a crossing, after which the trial is abandoned. The results are shown
in the fourth column of Table 1.4 up to n = 32. Looking for the possibility that
the rms distance may depend on some power of the number of steps, Fig. 1.11
shows the logarithm of the rms distance, as found by the program, plotted
against log(w). The points lie on a fairly good straight line with slope 0.63, and
the value of n0.63 is shown in the final column. Although this relationship
breaks down for larger values of n, we have found by numerical means a useful
relationship as long as it is restricted to its range of validity.

These simple examples illustrate the general principles of the Monte Carlo
method which will be treated in more detail in Chapter 4.

1.6.2 Particle methods
The techniques used to solve the astronomical problems described earlier in
this chapter are examples of particle methods of a very simple kind, where the
number of bodies (particles) is very small. In these simple problems the
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Fig. 1.11 Results from a non-crossing random walk from POLYWALK.

interactions of all pairs of particles were considered. In general, where there
are N bodies then the number of pair interactions is 1/2N(N—1) and for
the N=4 SATELLIT problem the six interactions could easily be handled.
However, scientists are often interested in systems containing large numbers
of particles - for example, galaxies containing 1011 stars or plasma systems or
liquids containing 1024 or so charged or uncharged particles. It is clear that for
such problems all pair interactions cannot be considered, so that some other
approaches are necessary. However, nowadays molecular-dynamic simulations
can be carried out with 107-108 particles if there are only short-range forces to
consider or if long-range forces are handled by the PIC method (Section 3.7).

One basic approach which greatly reduces the number of particles to be
considered is the use of superparticles, each of which represents large numbers
of the real particles. If one is interested in the spiral structure of galaxies, which
depend on gravitational instabilities in a rotating system, then a distribuon of
105 particles (stars) is quite capable of representing this to the required degree
of definition. However, in order that the gravitational forces are properly
represented, each 'superstar' must have the mass of 106 normal stars.

Since it is impossible to treat all pair interactions, even with superparticles,
then instead of calculating the force on each particle due to all the other
particles taken individually a statistical approach is used where the overall
field on each particle due to all the other particles taken together is estimated.
One way of doing this is to consider that particles exist in cells, parallelepiped-
shaped regions, usually but not always cubes. The force on a particular particle
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due to material in a distant cube may be approximated as that which there
would be if all the particles were at the centre of the cube. For some of the
closer particles smaller cubes may be used or the pair interactions may be
calculated.

Another, but quite different, use of cells is to represent an extensive volume
of material (say, a liquid) as a periodic structure so that all the cells have the
same contents and the cells pack together to fill the whole of space. If the
forces between particles are of short range then only close-neighbour inter-
actions need be considered; a particle which moves out of a cell through one
wall is replaced by the corresponding particle moving into the cell through the
opposite wall. This kind of cell model has been very successful in modelling
liquid structure where short-range Lennard-Jones type forces are involved.

The representation of a continuous medium by particles can be quite useful
even when the particles cannot be individually identified as real particles,
which are atoms or molecules in the case of a liquid. Instead the particles can
be considered as the carriers of quantities associated with the medium - mass,
heat content, entropy, charge, etc. - and the way in which density, tempera-
ture, pressure and other properties vary with time is represented by the
variation in the distribution of the particles. The particles are assigned to cells
and the aggregated properties of the particles in a cell are associated with the
centre of the cell. Two kinds of cell structure are possible. The first is the
Eulerian mesh system, which is fixed in space and through which the particles
move; the other, the Lagrangian mesh system, is attached to the particles so
as the particles move so does the mesh. The latter system is difficult to use
where large distortions of the mesh would occur.

Sometimes the material can be uniform in properties (such as a volume of
water of constant density and temperature), and the particles can then just
represent the presence or absence of material. The study of the formation of
waves on a beach or splashes when an object falls into a liquid are examples
of where such a model could be useful.

The above just gives the flavour of the range of particle methods and their
applications. A full treatment, with detailed descriptions of the methods and
examples of their use, will be given in Chapters 3 and 7.

1.6.3 Continuum physics - the finite-difference method

There are many problems in physics where some property of a material -
temperature, density or solvent concentration, for example - varies continuously
in space and time and where the rates of change from point to point are
described by partial differential equations. Such systems can sometimes be
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handled by particle methods, but if the problem has some symmetry then
finite-difference methods are usually preferred. In these methods the property
under investigation - say, concentration, n - is defined at the points of a mesh
which cover the region of interest. The partial differentials, quantities such as
dnldt and d2n/dx2 which occur in the differential equations, are approximately
represented by linear combinations of grid-point values at the current time,
which are known, and of grid-point values after some increment of time,
which are to be determined. If some boundary values are known, a linear
system of equations is found which can be solved for the new grid-point
values.

Various kinds of differential equation require different approaches, and the
kinds of problem that can be solved are those involving diffusion processes,
which include heat flow, wave motions of various kinds and systems involving
Poisson's equation. A range of finite-difference methods and applications will
be fully described in Chapter 2.

1.6.4 Continuum physics - the finite-element method

The finite-element method can be an alternative to finite-difference methods
in some applications, but there are types of problem for which it is most
suitable and for which finite-difference methods would be difficult to apply.
Where it comes into its own is in linear steady-state problems in two or three
dimensions involving configurations with little symmetry and complex bound-
aries and where there is some global relation which the system must satisfy,
such as minimum energy. The region of the problem is defined by a set of
points, called nodes, connections between which define elements, shapes in
one, two or three dimensions which together either exactly or approximately
define the region of interest including the boundary. An example of a set of
nodes and elements defining a two-dimensional irregular region is shown in
Fig. 1.12. The objective of the finite-element method is to find the values of
the quantity of interest, say 4>, at the nodal points in an equilibrium situation.

The condition for the solution of the global relation plus the boundary
conditions of the problem can be transformed to the condition of minimizing
some integral, /, over the region, the integrand of which includes 4> and partial
differentials of O. This integral can be evaluated on the assumption that within
each element the potential at each point is given by linear interpolation
from the defining nodal points and that the components of the gradient,
dO/dx etc., are uniform within the element and also given by the associated
nodal O values. The integral is thus evaluated as a function of the nodal values
and the condition that I should be a minimum is that dI/dO = 0 for all i, where
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Fig. 1.12 A complex shape represented by 21 nodes and 28 triangular elements.

Oi is the value of O at the ith nodal point. This leads to a set of linear equations
in the values of O which can be solved. The finite-element method is described
fully in Chapter 6.

1.7 Complex models - a systems approach
Thus far we have discussed methods for treating simple systems where a few
interactions dominate the behaviour. However, the real power of simulation
lies in its power to model complex systems with a very large number of
interactions in which many dissimilar physical processes are occurring simul-
taneously. A typical example is the interior of a star. At its core the density
and temperature are sufficiently high that nuclear reactions transform the
hydrogen to helium, releasing substantial amounts of energy in the process.
The temperature is maintained by the balance of the energy release against the
heat loss which is principally by radiation. The radiative heat loss is controlled
by the ability of the radiation to escape through a partially absorbing medium,
the opacity of which is a function of its thermodynamic state. The density
throughout the star is determined by the balance between the inward gravi-
tational force and the pressure, which will be a combination of normal gas
pressure and radiation pressure.
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Each of the principal processes - force balance and energy balance - can be
represented by an appropriate equation with the characteristic macroscopic
quantities - pressure, density, temperature, etc. - as variables. However, they
also involve quantities such as the rate of nuclear reactions, opacity, etc.,
which depend on the behaviour of the medium at the microscopic level.
Calculation at this detail is not appropriate within the overall model and we
therefore consider sub-systems in which these quantities are calculated as
parameters for use in the calculation of the complete system. These quantities
are evaluated by pre-processing in terms of analytic functions or data tables
for later use.

In a similar fashion the general state of the system may be subsequently
analysed - post-processed - to yield specific data for another application or to
compare with experiment, for example, to compare the luminosity from the
simulation with that of real stars.

This idea of breaking down the complex system into a set of simpler
interacting sub-systems is a powerful one. In many problems, particularly
those involving time development, many physical processes occur simultan-
eously. Each one can be described by a relatively simple set of equations, but
taken together they present a problem of great complexity in the way that they
influence the same quantities. However, if we advance time in small steps we
may imagine each process occurring independently of the others in time, the
increments in any variable being very small. We develop the history of the
system through the stepwise sequential advance of each sub-system, an
approach known as time-splitting.

Since a stationary state is obtained as a limit of its time development, the
same ideas can be employed in steady systems. In this case the time-splitting
appears as a form of iteration and care is then necessary to ensure that the
sequencing of the sub-systems is not important.

Complex simulation involving several distinct interacting processes is sub-
ject to the same constraints as those for experimental models (Langhaar,
1980). A complete practical system will involve a very large number of inter-
acting processes, many of which will be relatively weak and can be ignored. It
is, however, crucial to identify all those which make a significant contribution
and include them within the model. In principle, this can be achieved by
examination of the appropriate dimensionless products representing the effect,
but often experience and understanding indicate their importance. A particular
problem with general-purpose models is scale effects, whereby the interactions
change their roles as the scale (size) of the problem changes. This can be a
particular difficulty when the user and constructor are separate (for example,
for a commercial package) where the former requires different configurations
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from those envisaged by the latter. A good example concerns problems
involving fluid surfaces: at small scales surface tension dominates and gravity
is negligible, but at large scales the relative importance of the two effects is
reversed.

Computer simulation always involves a compromise between the number of
sub-systems required to enable an accurate description to be made of the
essential physics, and the size and speed of the available computer on which
the resulting program is to be run.

1.8 Validation and testing
Our model is at some stage intended to be a representation of a real
system - the prototype. The output values calculated by the model should
agree with the same quantities measured on the prototype within an acceptable
accuracy limit. How can we be sure this is the case when experimental data
are not available for comparison? Indeed, a major objective of our model may
be to predict the behaviour of the prototype without performing the experi-
ments. To this end, testing and validation are essential.

There are three sources of error in constructing a computer simulation
model: programming errors, numerical errors and modelling errors. Program-
ming errors are errors which cause the program not to perform in the intended
way. The simpler ones will be identified by the compiler or as run-time errors.
More subtle errors produce unexpected behaviour and, if this is recognized,
careful testing will usually reveal the fault. The most troublesome errors are
those which give reasonable-looking, but incorrect, results. If possible, it is
always sensible to test the program in special cases for which either the results
are known or where some features of the result can be predicted.

Numerical errors are errors introduced by the need to use numerical
calculations rather than exact analytical forms. They are caused by round-off
error, due to the finite word size of the computer, resulting in the limited
accuracy of real numbers, which can be minimized by careful programming;
and by truncation errors, due to the limited expansions of analytic expressions
in numerical forms, which are avoided by judicious algorithm selection.

Finally, modelling errors result from the incomplete representation of the
model compared to that of the complete physical reality if any of the missing
terms gives rise to significant effects.

It is essential to ensure that the final simulation code is free of these errors
if it is to be used to give reliable predictions of the experimental behaviour of
a prototype. To this end, there must be extensive testing to validate the code.
This should take several forms. Output inspection and comparison with
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expected behaviour reveal many programming errors. Checks of limited
sections of the code against analytic solutions and earlier codes enable tests to
be made for programming and numerical errors. Modelling errors can be
identified by extensive testing against experimental results. The validation
process is perhaps the most important aspect of modelling. It must not be
skimped and every opportunity should be taken to check against new analytic
and experimental results, and the model improved when found to be deficient.

Problems
1.1 For a body of very small mass starting from rest at a distance x0 from
another body with mass M, and accelerating under their mutual gravitational
attraction, it can be shown that the relationship between time, t, and distance
from the body, x, is

With G = 6.67x10-11Nm2kg-2, M = 2xl030kg and x0 = 2 x 1011m, it is
found that, for x = 1.6 x 1011m, t=4.7292146 x 106s.

Write a simple program for the Numerov method, with one initial Runge-
Kutta step to get it started, to calculate the motion to time t with 10, 12, 14,
16, 18 and 20 steps. Check that the error varies approximately as the fifth
power of the step length.

1.2 Run the program OSCILLAT with a = 1.5 for

m = 0.001kg, k = 100Nm-1, F = 0.01N,

o = 316.2rads-1, x(0) = 0, u(0) = 0,

and with damping factors f= 1, 10-1, 10-2, 10~3, 10-4, 10~5 and 10 - 6Nm - 1s.
Find the steady-state amplitude, A, in each case and plot log A against logf. Find
an approximate relationship linking A and fin the range f=1 to 10~3Nm~1s.

1.3 Run the program TROJANS with planets in the orbit of Jupiter but with
masses 2.5 x 10-4, 5 x 10-4, 10~3, 2 x 10~3 and 4 x 10~3MO, the other input
data as in Table 1.3 rounded off to three significant figures. For each planetary
mass find the total range of the asteroid wandering, taking the average from
the leading and trailing asteroids. Find a relationship linking the range of
wandering and the planetary mass.
1.4 Equation (1.31) gives the angular momentum of a satellite in orbit about
a planet. In terms of the greatest planet-satellite distance, D, and eccentricity, e,
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this can be written as H={GM©D(1— e ) } 1 / 2 m . Hence the following combin-
ations of D and e give the same angular momentum:

D (m) 6.6667 x 107 8.0 x 107 1.0 x108 1.3333 x 108 2.0 x108

__e 0.4 0.5 0.6 0.7 0.8

Run SATELLIT with these parameters, the others being those that gave
Fig. 1.9. Estimate de/dt for each value of e and show that there is an
approximate linear relationship between these two quantities.

1.5 Modify program DRUNKARD so that the probability of a step being: in
the same direction as the last step is 0.5; in the opposite direction to the last
step is 0.1; and at right angles to the last step, for each possible way, is 0.2.
For n = 2r steps, with r= 1 to 10, find the average distance, d, travelled. Show
that no simple law of the form d=na is valid over the whole range.

1.6 Modify the program POLYWALK so that the probability of a step: in
the positive x direction is 1/3; in the negative x direction is 0; in the positive
y direction is 1/3; and in the negative y direction is 1/3. For n = 2r steps, with
r = 1 to 8, find the average distance, d, travelled. Show that no simple law of
the form d = na is valid over the whole range.
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2.1 Finite differences for ordinary derivatives
Many problems in physics can be expressed as the solution of either ordinary
or partial differential equations. In this chapter, we shall be dealing with a class
of problem where some quantity which is continuous in nature, such as charge,
density or concentration, varies both in space and in time. These are the
problems of continuum physics and there are a number of powerful and conve-
nient ways of solving such problems using the concept of finite differences.

Consider the continuous function y = f ( x ) shown in Fig. 2.1 and assume that
the value at x = X, f(X), is known together with the values of all the derivatives
at that point. To estimate the value at some other point, x = X+h, we can use
the Taylor series

The remainder, Rn+1 , represents the error when the series is truncated after
n + 1 terms and, as long as the function is differentiable up to f ( n + l ) , it can

Fig. 2.1 The curve y=f(x).

2
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always be expressed in the form

where £ is in the range X to X + h.
If, for example, f(x) = s i n ( x ) , then f'(x) = cos(x), f"(*)= —sin(x) and

f'"(»;) = — COS(x). From sin(n/4)=cos(7t/4) = 2~1/2 we can estimate the values
of sin(O), sin(n/3) and sin(n/2) from the Taylor series centred on n/4, taking
the first four terms of the series

where h = — n / 4 , n/12 and n/4, respectively. The estimates are given in
Table 2.1, together with the true values, the error and the range of possible
errors as calculated from (2.2). It will be seen that the errors increase with
increasing h and are all within the ranges indicated by (2.2).

The above application of Taylor's theorem was to estimate the function for
general values of the independent variable given the values of the function and
its derivatives at one particular value of the independent variable. We now
look at the inverse problem - given f (x) for a number of equally-spaced values
of x, is it possible to deduce the values of the derivatives? If we rewrite (2.1) as

then it is clear that, as long as h is small, the first term on the right-hand
side gives an estimate of f'(X). The estimate is based on the gradient of a chord
connecting the two values f(X) and f(X + h), as shown in Fig. 2.2. This
estimate is a forward-difference estimate since it gives the slope at x = X from
the value of f (X) and the value at one increment of x in the forward direction,
that is, f(X+h). Similarly, a backward-difference estimate can also be made

Table 2.1 Taylor series estimates with four terms included.

h n/4 +h sin(n/4 + h) sin(n/4 + h) Error Estimated range of
(estimated) (true) |error| from (2.2)

-n/4

n/12

n/4

0
n/3

n/2

-0.009274
0.865880
0.987282

0.000000
0.866025
1.000000

-0.009274
-0.000145
-0.012718

0.000000-0.011211
0.000 138-0.000 170
0.011211-0.015854
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from

Fig. 2.2 Estimates of f'(x) from:
forward difference (slope of chord BC);
backward difference (slope of chord AB);
and central difference (slope of chord AC).

The errors in both the forward-difference and the backward-difference esti-
mates of slope are roughly proportional to h, assuming that the first term
neglected in (2.4) is the dominant one. This can be written as

The error is indicated as +O(h), but that is not to say that the error is
necessarily positive.

A much better estimate of f(X) can be made from the chord connecting the
points at X — h and X+h, as shown in Fig. 2.2. From

we obtain by subtraction and rearrangement

The fact that the estimate from (2.8), the central-difference estimate, has an
error dependent on h2, rather than on h, makes it a better estimate than is
given by either (2.5) or (2.6).
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Table 2.2 Values of x and sin(x) for
obtaining finite-difference estimates
of derivatives.

X

n/8
3n/16

n/4

5n/16
3n/8

sin(x)

0.382683
0.555570
0.707107
0.831470
0.923880

We can illustrate the above analysis by finding estimates of dsin(x)/dx
at x = n/4 (for which the true value is 0.707107) using the data given in
Table 2.2. We find the following:

Difference

Forward
Forward
Central
Central

h

7E/16
n/8

n/16
n/8

Estimate

0.633376
0.552008
0.702574
0.689073

Error

-0.073731
-0.155099
-0.004533
-0.018034

The interval in x, h = n/16, is a fairly large one, but the example illustrates the
much higher precision of the central-difference estimate. We can also see that
when h is doubled the error in the forward estimate approximately doubles
but the error in the central-difference estimate increases by a factor of 4, that
is, it is proportional to h2. These estimates are referred to as finite-difference
estimates of the first derivative.

We now turn our attention to the second derivative. This can also be
expressed in a finite-difference form by manipulation of equations (2.7).
Adding the equations and rearranging,

Applying equation (2.9), and again using Table 2.2, we find the following
estimates for d2sin(x)/dx2, for which the true value for x = n/4 is — 0.707107:

Estimate Error

n/16 -0.704845
n/8 -0.698069

0.002262
0.009038

Again, the dependence of the error on h2 is evident.
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2.2 The use of finite differences

Consider the following problem, illustrated in Fig. 2.3. A bar of length 1 m has
a circular cross-section, the radius of which varies linearly from 2cm at one
end to 1 cm at the other. The curved sides of the bar are heavily lagged and
the wide end and narrow end are constrained to be at temperatures 500 K and
300 K respectively. The thermal conductivity of the material of the bar is
200 W m - 1 K - 1 . Find the rate of heat flow along the bar and also determine
the temperature at intervals of 10cm along its length.

The lagging ensures that the heat flow is along the length of the bar to
a good approximation, despite its truncated conical form, so we may treat it
as a one-dimensional problem. The usual equation for one-dimensional heat
flow is

where Q is the rate of heat flow, K the thermal conductivity, A the cross-
sectional area and 0 the temperature. In this case we have a variable cross-
section and can express A as a function of distance along the bar as

Inserting the numerical value of K and rearranging, the problem comes to that
of solving

with boundary conditions 0 = 500K when x = 0 and 0 = 300K when x = \ m.
Although this is a first-order ordinary differential equation, which normally

Fig. 2.3 A bar of truncated conical form. Temperatures are required at the cross-sections
marked, which are 10cm apart.
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requires just one boundary condition, in this case two boundary conditions are
imposed and the equation contains an a priori unknown quantity, Q.

2.2.1 The shooting method
One way of solving this kind of boundary-value problem is by the shooting
method. A first estimate for Q is made, for example, by assuming that the bar
has a uniform cross-section equal to the average cross-section and then using
(2.10) with a uniform temperature gradient. Starting with the boundary
condition at x = 0 the equation is then solved by, say, the Runge-Kutta
method to x = 1 m. The temperature will usually not match the imposed
boundary condition. If the temperature found is lower than 300K it shows
that the assumed value of Q is too high. A lower estimate is made of Q and
from the solution of the differential equation another value for the tempera-
ture at x — 1 m is found. In this way it is possible systematically to find the
correct value of Q by successive approximations.

The program SHOOTEMP (see p. xv) carries out this type of process.
Variation of a statement function at the beginning of the programme adapts it
to solve other problems. The average area of cross-section of the bar is,
approximately, A = n(0.022 + 0.012)/2m2 and the corresponding uniform tem-
perature gradient is (300 — 500)/1 Km - 1 . Inserting these values in (2.10) gives
an approximate value of 30W for Q. The steps in the successive approxi-
mations using SHOOTEMP, with h — 0.01m, are as given in Table 2.3. For
the final value of Q, which gave the correct second boundary condition, the
temperatures at intermediate points of the bar are given in Table 2.4.

The approach to the correct solution in Table 2.3 was by an approximate
process of linear interpolation. Thus the target value for 0(1.0) was 300 K; for
Q = 25.14 W, 0(1.0) was 0.06 K below while for 25.13 W it was 0.02 K above.

Table 2.3 Successive estimations of Q
and the corresponding temperature at
the end of the bar. An analytical solution
gives Q = 8n(25.1327).

Estimated Q (W)

30.0
25.0
25.1
25.2
25.14
25.13
25.1325

0(1.0) (K)
261.27
301.06
300.26
299.46
299.94
300.02
300.00
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Table 2.4 Temperatures at intervals
of 10 cm along the bar for the result in
the final row of Table 2.3.

x (m)

0.0
0.1
0.2
0.3
0.4
0.5

0 ( x ) (K)

500.0
489.5
477.8
464.7
450.0
433.3

x(m)

0.6
0.7
0.8
0.9
1.0

0 ( x ) (K)

414.3
392.3
366.6
336.3
300.0

This suggested that Q should be one-quarter of the way from 25.13 W to
25.14W. Clearly such a process of linear interpolation could be incorporated
in the program so that the answer was found automatically.

2.2.2 Solution by linear equations
There is another type of computational process, using finite differences, which
can solve this type of boundary-value problem without going through succes-
sive approximations. In the steady state the value of Q must be the same for
all cross-sections of the bar. If the values of 0 at N+ 1 equally-spaced points
XO,, X 1 , . . . ,X N are 0 0 , 0 , - - - , 0 N then, from (2.10), for points i and i+1 we can
write

where Ai is the cross-sectional area at the point i. If we represent
the gradient at the point mid-way between points i — \ and i, by the central-
difference estimate, (0i-— 0 i _ 1 ) /h , where h is the spacing of the points, then we
are able to write for i = 1 to N — 1 a set of central-difference-based equations

or
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The squared quantities are proportional to the areas at the points i—1/2 and
i+1/2, respectively. If the bar is divided into five segments, so N = 5, then for
points i = 1,2,3,4 this gives a set of equations

Since the boundary conditions, 00 and 05, are fixed, this set of equations is
easily solved. Equation (2.15a) gives 01 in terms of 02; substitution for 01 in
terms of 02 in (2.15b) gives 02 in terms of 03 and substitution for 02 in terms
of 03 in (2.15c) gives 03 in terms of 04. Finally, substitution for 03 in terms of
04 in (2.15d) gives an explicit solution for 04. Then, by working backwards
through the steps the other values of 0 can also be found.

This systematic approach to the solution of equations (2.15) arises because
of their particular form. The matrix of non-zero coefficients on the left-hand
side of the equations has the pattern

This pattern of coefficients gives what is called a tridiagonal matrix. The
subroutine TRIDIAG (see p. xv) follows the procedure described above, with
first forward and then backward substitution, to solve a set of equations with
coefficients of the appropriate form. This subroutine is used with the main
program HEATRI (see p. xv) to solve the temperature profile problem. The
value of N is taken as 100, corresponding to the integration step length
h = 0.01 for the shooting method, and the results for temperature are exactly
as given in Table 2.4. The value of Q is deduced from (2.10) by estimating the
temperature gradient from the temperatures at i = 0 and i = 1 with the
cross-sectional area at i = l/2. This value of Q, 25.131 W, is slightly different
from that found from the shooting method.
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The problem we have dealt with here is a one-dimensional steady-state
problem with only one independent variable which entailed the solution of a
first-order ordinary differential equation. However, many problems of physical
interest are not steady-state, so that time is introduced as another independent
variable, and/or may be in more than one dimension, which also increases the
number of independent variables. Such problems are often expressed in the
form of partial differential equations and we shall now see how to generalize
the finite-difference concept into these areas by application to the simple
diffusion equation.

2.3 The diffusion equation

In Fig. 2.4 we show a section of a column of solution, of uniform unit cross-
section, with a varying concentration along its length. We may describe the
concentration, «, as the number of particles of solute (the dissolved substance)
per unit volume. Unless the concentration is uniform there will be a constant
net passage of solute from more concentrated to less concentrated regions so
the concentration will be continuously changing in both space and time.

If there is a gradient of concentration, ( dn ldx ) x , at the cross-section A, at
height x, then in a short time St there will be a net transfer of particles in the
positive x direction across A of

This relationship is known as Fick's law, and D is the coefficient of diffusion.

Fig. 2.4 A column of solution with a
concentration gradient.
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At cross-section B, a further distance of dx along the column, the corres-
ponding transfer of particles in the positive x direction is

We now use

which is a two-term Taylor series representation of the left-hand side. In
(2.19), (dn/dx)x is playing the role of f(x) in (2.1).

The net flow of particles into the region between A and B, which has volume
dx, gives a change of concentration

and hence

The partial differential equation

is known as the diffusion equation, and its general form describes a range of
physical situations. For example, if the problem involved heat flow in the x
direction in a bar of uniform cross-section, well lagged except at its ends, then
the corresponding equation for temperature, 6, along the bar would be

where K is the thermal conductivity of the material of the bar, c its specific
heat capacity and p its density.

The nature of diffusion expresses physical behaviour in terms of time
development. Thus we know the physical state, that is, the value of the state
variable (n or 9) as a function of space at a specified initial time. Physically
the system develops in time as the state changes in space subject to known
conditions at the boundaries. Problems which develop in this way are known
as initial-value problems. The reversal of time in such problems - that is to
say, running the problem backwards - always leads to chaotic behaviour.
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Fig. 2.5 Concentrations at points separated by Ax and times separated by At

2.4 Finite-difference representation of partial derivatives
In Fig. 2.5 we show a grid, at the points of which are given the concentrations
at different positions and times for the column of solution in Fig. 2.4. The
separation of the grid points in the horizontal direction, Ax, gives equispaced
positions along the bar which are labelled i — 2, i — 1, i, i + 1,..., while in the
vertical direction the separations At correspond to equal time intervals and the
different time points are labelled j—2, j — 1, j + 1, By analogy with (2.8)
and (2.9), we write the following finite-difference approximations:
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We shall now see how to apply these finite-difference representations in a
variety of ways to the solution of the diffusion equation.

2.5 The explicit method
The aim in solving a diffusion problem is to determine the time evolution of
the concentration (or other quantity such as temperature) at a number of
representative points of the system. Thus if all the concentrations are known
at time tj then one step of the process is to determine them at time ti+l = t j+At.
If this can be done, then, given the initial state, the pattern of concentrations
can be found at all future times. The easiest form of finite-difference equation
corresponding to (2.20) is found by using a forward-difference form for d n / d t
rather than the central-difference form (2.22). This gives

or

where

If boundary conditions are known - for example, as fixed concentrations at
the two ends of the column (or temperatures at the ends of a bar) - then (2.26)
enables concentrations at all points at time tj+1 to be found explicitly from the
concentrations at time tj. We can illustrate this by considering the heat flow
in a bar of length 1 m, well lagged except for the two ends, with a uniform
cross-section, thermal conductivity 200Wm~1K~1, specific heat capacity
1000Jkg~1K~1 and density 2700kgm~3. Initially the bar is at a uniform
temperature of 300K but the two ends are maintained at temperatures of
300 K and 500 K respectively. The problem is to follow the sequence of
temperature profiles in the bar to some steady-state condition. For this
problem the value of r, corresponding to that given in (2.27), is

With Ax = 0.1 m, r can be made a convenient value by the right choice of At.
Thus with At = 33.75 s, r=0.25 and 9 representing temperature, equation (2.26)
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takes the form

The progression of temperatures for the first two time steps is as follows:

300 300 300 300 300 300 300 300 300 300 500
300 300 300 300 300 300 300 300 300 350 500
300 300 300 300 300 300 300 300 312.5 375 500

The calculation is easily programmed and graphical results from the program
HEATEX (see p. xv) are shown in Fig. 2.6 with r = 0.25. It will be seen that
as time progresses so the temperature profile goes towards a straight line,
corresponding to a uniform value of d0ldx. From (2.21) it is seen that this will
make the right-hand side, and hence the left-hand side, equal to zero - which
is the steady-state equilibrium position.

To see the effect of changing the value of r, Table 2.5 shows the results for
a run of total time 1200s but with various values of At, and hence of r. It is
possible to find an analytical solution of (2.21) with the required boundary
conditions for all x and t in the form of an infinite sum of Fourier terms.
However, an examination of Table 2.5 shows that as the time interval
becomes smaller so the solution tends towards a particular temperature profile
which we may take to be close to the analytical solution.

What we see is that as At, and thus the value of r, increases so the error
increases but in a steady and monotonic way. However, for the very last value
of At, 75s, where r = 0.556, the solution is drastically different; it oscillates
as x increases, has internal values lower than 300 K, the lower boundary
condition, and is clearly an unphysical solution. It will not seem surprising that
there is a breakdown in the solution as At increases since the finite-difference
approximations become less valid.

Fig. 2.6 Output from HEATEX.
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Just by considering the validity of the finite-difference approximations then,
as Ax and At are made increasingly smaller, so we might expect the numerical
solution to approach ever closer to the analytical one. To test this assumption
in Table 2.6, we give the values from HEATEX at x = 0.2, 0.4, 0.6 and 0.8m
for a run with a total simulated time of 100s with a constant At = 1 s, which
should give a good finite-difference approximation to dn/dt, albeit a forward-
difference one, and values of Ax which steadily decrease. What we find is that
when Ax is reduced below a certain limit the solution becomes wildly unstable.
An examination of Tables 2.5 and 2.6 would lead us to the conclusion that
for stable behaviour r should be less than about 0.5 but that, within that
constraint, Ax and At should be as small as possible. Later, by an analytical
approach, we shall show that these conclusions are indeed valid.

Table 2.5 Runs of HEATEX for a total simulated time of 1200 s for various values of At (and r)
with Ax = 0.1. Values are given at internal points only since the boundary conditions are fixed.

At(s)

1
2
5

10
20
30
40
50
60
75

r

0.007
0.015
0.037
0.074
0.148
0.222
0.296
0.370
0.444
0.556

0.1

304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
297.5

0.2

310.8
310.8
310.9
310.9
310.9
310.9
310.9
310.9
310.9
326.1

0.3

319.2
319.2
319.2
319.2
319.2
319.3
319.3
319.4
319.4
296.1

0.4

330.9
330.9
331.0
331.0
331.1
331.2
331.3
331.4
331.5
363.2

X

0.5

347.1
347.2
347.2
347.3
347.5
347.6
347.8
348.0
348.1
310.6

0.6

368.5
368.5
368.6
368.7
368.9
369.1
369.4
369.6
369.8
410.6

0.7

395.3
395.3
395.3
395.5
395.7
395.9
396.2
396.4
396.6
359.0

0.8

426.9
427.0
427.0
427.1
427.3
427.5
427.7
427.9
428.1
458.0

0.9

462.4
462.4
462.5
462.5
462.6
462.8
462.9
463.0
463.1
446.9

Table 2.6 Results from HEATEX for a run of simulated time 100s with At=1s and
Ax = (l/N)m. The temperatures are given at four internal points.

N r x (m)

5
10
20
40
80
85
90
95

100

0.0019
0.0074
0.0296
0.1185
0.4741
0.5352
0.6000
0.6685
0.7407

0.2

300.01
300.00
300.00
300.00
300.00
300.00
304.79

2.021 x 105

5.457 x108

0.4

300.16
300.01
300.00
300.00
300.00
299.31

2.136 x107

-3.649 x1013

6.553 x 1018

0.6

302.69
300.82
300.34
300.22
300.19

1876.6
3.544 x 1011

5.215 x 1018

9.609 x1024

0.8

331.16
323.47
320.93
320.30
320.15

-8.380x104

5.638 x 1013

-2.658 x1021

1.689 x1028
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2.6 The Crank-Nicholson implicit method
In the explicit method the finite-difference representation of d 0 / d t was in the
forward-difference form

It would be equally valid to consider the right-hand side of (2.30) as a
central-difference representation of d 0 / d t centred on the space-time point

). Now from (2.25) we have

and similarly,

In the Crank-Nicholson method the second partial derivative (d20/dx2)i,j+(1/2)

is expressed as an average of (2.31) and (2.32), so that the heat-transfer finite-
difference equation, centred on the point (i,j+1/2), becomes

or, with rearrangement,

where r is defined in (2.28). In Fig. 2.7, which is similar to Fig. 2.5, we show
the terms which occur in the Crank-Nicholson equation. It is an implicit
equation in that knowledge of the solution at time tj gives functional (linear)
relationships between the values at different points at time tj+1 and does not
give each of the ti+1 values explicitly, as happens with the use of (2.26). Given
that the right-hand side is known, then, with known boundary conditions, the
coefficients of the terms on the left-hand side form a tridiagonal matrix which
we previously met in Section 2.2.

A program HEATCRNI is available (see p. xv) for solving one-dimensional
heat-flow problems by the Crank-Nicholson method; the program differs
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from HEATEX only in the subroutine CYCLE. It also needs to be linked with
the subroutine TRIDIAG. We now apply HEATCRNI to the problem described
in Section 2.5 for various values of At and corresponding r. Table 2.7 gives the
results for a total simulated time of 1200 s with values of r ranging up to 8.8889.
It is clear in this case that values of r much larger than 0.5, the value at which
the explicit method became unstable, still give stable, although not necessarily
accurate, results for the implicit method. The values of temperature gradually
drift with increasing r but no physically unrealistic results occur until r becomes

Fig. 2.7 The Crank-Nicholson equations
are centred on the point (i,j+1/2) marked by

 a cross. The finite-difference representations
involve the six terms contained in the

i-2 i-1 i i+1 i + 2 dashed boxes.

Table 2.7 Runs of HEATCRNI for a total simulated time of 1200 s for various values of At (and
r) with Ax = 0.1. Values are given at internal points only since the boundary conditions are fixed.

At( s )

10
20
30
40
50
60
80

100
120
150
200
300
400
600

1200

r

0.074
0.148
0.222
0.296
0.370
0.444
0.593
0.741
0.889
1.111
1.482
2.222
2.963
4.444
8.889

0.1

304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.6
304.5
304.1
303.5

0.2

310.8
310.8
310.8
310.8
310.8
310.8
310.8
310.8
310.8
310.8
310.7
310.5
310.2
309.3
307.9

0.3

319.2
319.2
319.2
319.2
319.2
319.2
319.1
319.1
319.1
319.1
319.1
318.9
318.5
317.1
314.0

0.4

330.9
330.9
330.9
330.9
330.9
330.9
330.9
330.9
330.9
330.9
330.9
330.9
330.8
328.9
323.3

X

0.5

347.1
347.1
347.1
347.1
347.1
347.1
347.1
347.1
347.1
347.2
347.2
347.4
348.1
347.0
337.8

0.6

368.5
368.5
368.5
368.5
368.5
368.5
368.5
368.5
368.6
368.6
368.7
368.5
370.3
372.8
360.8

0.7

395.2
395.2
395.2
395.2
395.2
395.3
395.3
395.3
395.3
395.4
395.4
395.2
395.1
405.7
397.5

0.8

426.9
426.9
426.9
426.9
426.9
426.9
427.0
427.0
427.0
427.1
427.3
429.9
421.5
436.2
456.2

0.9

462.4
462.4
462.4
462.4
462.4
462.4
462.4
462.5
462.5
462.5
462.5
460.0
473.2
431.6
550.0
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greater than about 3, as is seen in the last two rows of the table when the change
of temperature along the bar is no longer monotonic. In terms of computational
effort the extra work per cycle in the implicit method is compensated by it being
possible to take larger time steps and hence to reduce the number of cycles.

In Table 2.7 the interval Ax has been kept fixed and At and r have varied.
We expect that as At becomes smaller so the calculated temperatures at
the internal points of the bar will tend towards values which are better
estimates - as long as the numerical algorithm is stable. The reason for this is
that the finite-difference formula for d0ldt given by (2.30) is more accurate
the smaller is the value of At. As previously mentioned, we might also expect
to obtain better estimates if we use smaller values of Ax, and it is clear from
(2.28) that we can make both Ax and At smaller while retaining constant the
value of r. Table 2.8 shows the temperature estimates at four internal points
of the bar, at x = 0.2, 0.4, 0.6 and 0.8, where the calculations have been done
with various values of Ax and At but always with r = 0.8889.

It can be seen that as both Ax and At become smaller so the results tend to
converge towards a particular solution. In Table 2.8 the value for x = 0.8m in
the final row shows a rise of 0.1, but this is due to a combination of round-off
error in the computer and rounding off the printed output to one place of
decimals. To reach a total simulated time of 480s there were 1024 cycles of
the Crank-Nicholson process in each of which a tridiagonal matrix of 159
rows was processed, and there is bound to be some error due to the limited
precision of the representation of numbers in the computer. Actually when all
the calculations giving Table 2.8 are repeated with double-precision real
numbers it is found that the indicated temperature for x = 0.8m does slightly
rise between At = 1.875 and At = 0.46 875 from 390.647464 to 390.650045.
For r>1/2 the Crank-Nicholson method can produce 'oscillatory' solutions.
In this case it appears as an oscillation superimposed on the exact solution.

Table 2.8 Temperature estimates at four internal points of the bar.
Values of Ax and At are reduced together such that r = 0.8889. The
total simulated time is 480s.

Ax (m) At (s) x (m)

0.20000
0.10000
0.05000
0.02500
0.01250
0.00625

480
120
30
7.5
1.875
0.46 875

0.2

301.5
300.8
300.6
300.6
300.5
300.5

0.4

306.2
305.4
305.0
304.9
304.9
304.9

0.6

325.0
327.2
326.9
326.8
326.7
326.7

0.8

400.0
391.0
390.6
390.6
390.6
390.7
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2.7 Differential boundary conditions
The heat-flow problems which have been considered so far have involved
boundary conditions where the temperatures at the boundaries have been
either constant or a known function of time. In Fig. 2.8 we illustrate a problem
in which other kinds of boundary conditions can occur. The bar of uniform
cross-section and length L is buried in insulated material except for one
end-face which is in an enclosure maintained at a fixed temperature. The heat
flow through the bar must be parallel to the axis of the bar and this will be
zero through the left-hand insulated face. The equation corresponding to
(2.17) for heat flow is

and since SQX is zero at the insulated face then so must be the gradient of
temperature at that face.

The right-hand face will, in general, be at a temperature which is different
from that of the enclosure and will exchange heat with it by radiation. If the
end of the bar absorbs and radiates as a black body then the net rate of heat
loss through the exposed end will be

where A is the cross-sectional area of the bar, a is the Stefan constant, 04 the
temperature of the exposed end of the bar and 0ext is the temperature of the
enclosure. If the quantities are in SI units then H will be in watts.

Both these boundary conditions can be accommodated by the use of what
are known as false points. The bar is divided into four sections delineated by
the equidistant points labelled 0,1,2,3,4. Two extra points, with the same
spacing, are added outside the bar as shown and labelled — 1 and 5. For the

Fig. 2.8 A uniform bar, lagged except for one end in a temperature enclosure.
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interior points the explicit equations are used:

For the end-points we use the false positions, so that

Since there is no heat flow across the insulated end, the slope of the
temperature must be zero and if this is represented by the central-difference
formula then it is clear that 0( — 1,j) = 0(1,j), so that we may rewrite
(2.37a) as

At the exposed end of the bar, where x = L, the slope must be such as to give
the heat flow Q = H, that is,

Using the central-difference representation of the partial derivative on the
left-hand side and rearranging, we find

Substituting this value of 6(5, j), equation (2.37b) becomes

Equations (2.36) plus the modified equations (2.38) enable 9 to be advanced
in time.

The program RADBAR (see p. xv) solves these equations. There is a
standard problem provided with the program, for which K = 401Wm~1K~1,
c = 386Jkg-1K-1, p = 8920kgm-3, 0ext = 290K and the bar, of length 1.0m,
has a uniform initial temperature of 500 K. Table 2.9 shows the results of
running the program with eight intervals in the bar and with values of
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Table 2.9 Temperatures given by RADBAR for different values of r and different elapsed
times.

r

0.10

0.15

0.20

0.25

0.30

0.40

Time
(s)

40.2
80.4

120.6
160.8
402.5
40.2
80.4

120.6
160.8
402.5
26.8
53.6
80.4

107.2
402.5

33.5
67.0

100.5
134.0
402.5
40.2
80.4

120.6
160.8
402.5
53.7

107.4
161.1
214.8
375.9

Distance from exposed end of bar (m)

0.000

393.2
380.0
372.6
367.2
350.0
387.2
378.6
371.6
366.4
349.7
342.9
386.9
376.1
372.4
349.4
303.6
396.8
361.1
370.2
348.9
264.3
415.1
327.5
379.9
348.6
185.7
470.0
155.8
438.4
216.3

0.125

484.0
463.7
449.1
438.2
403.3
482.3
461.5
447.5
436.9
402.7
500.0
468.6
458.5
449.0
402.0
500.0
450.9
449.6
437.0
401.0
500.0
429.3
446.2
420.4
399.1
500.0
374.3
463.1
334.8
413.1

0.250

499.2
493.6
486.1
478.5
444.5
500.0
493.8
485.8
478.0
443.9
500.0
500.0
493.7
487.9
443.2
500.0
500.0
487.2
481.3
442.2
500.0
500.0
478.8
475.4
440.5
500.0
500.0
449.7
475.2
407.0

0.375

500.0
499.4
497.4
494.2
471.8
500.0
499.6
497.6
494.5
471.5
500.0
500.0
500.0
498.7
471.1
500.0
500.0
500.0
496.9
470.3
500.0
500.0
500.0
493.6
469.0
500.0
500.0
500.0
479.9
470.2

0.500

500.0
500.0
499.7
498.9
487.4
500.0
500.0
499.8
499.1
487.3
500.0
500.0
500.0
500.0
487.2
500.0
500.0
500.0
500.0
486.8
500.0
500.0
500.0
500.0
486.2
500.0
500.0
500.0
500.0
482.2

0.625

500.0
500.0
500.0
499.8
495.0
500.0
500.0
500.0
499.9
495.1
500.0
500.0
500.0
500.0
495.1
500.0
500.0
500.0
500.0
495.0
500.0
500.0
500.0
500.0
494.9
500.0
500.0
500.0
500.0
495.5

0.750

500.0
500.0
500.0
500.0
498.3
500.0
500.0
500.0
500.0
498.4
500.0
500.0
500.0
500.0
498.4
500.0
500.0
500.0
500.0
498.4
500.0
500.0
500.0
500.0
498.5
500.0
500.0
500.0
500.0
498.7

0.875

500.0
500.0
500.0
500.0
499.4
500.0
500.0
500.0
500.0
499.5
500.0
500.0
500.0
500.0
499.6
500.0
500.0
500.0
500.0
499.6
500.0
500.0
500.0
500.0
499.6
500.0
500.0
500.0
500.0
500.0

1.000

500.0
500.0
500.0
500.0
499.7
500.0
500.0
500.0
500.0
499.8
500.0
500.0
500.0
500.0
499.8
500.0
500.0
500.0
500.0
499.8
500.0
500.0
500.0
500.0
499.9
500.0
500.0
500.0
500.0
500.0

r = 0.1,0.15,0.2,0.25,0.3 and 0.4. For each run with a different value of r the
temperatures are given for four times at equal intervals and then for the first
five values of r at time 402.5 s which they have in common. The expected
behaviour pattern is that the temperature should gradually fall at the exposed
end towards the external temperature and the cooling will move deeper into
the bar as time progresses. The temperature should also fall monotonically
from the insulated to the exposed end.

At the beginning of the process the form of the equations allows tempera-
tures to change only by one space interval per time step. The number of time
steps per output is three for r = 0.10, two for r = 0.15 and one for the other
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values of r. The results for r = 0.10 and r=0.15 seem reasonably consistent,
with the difference of temperature mostly less than 2 K. However, the results
for 402.5s agree to within 0.6 K. When we examine the results for r = 0.20
a departure from expected behaviour is observed where it is seen that the
temperature at the free end rises between t = 26. 8s and t = 53. 6s. The
behaviour thereafter is as expected and the results for t = 402.5s agree
with those for r = 0.10 to within 1.3K. The results for r = 0.25, 0.3 and 0.4
show that as r increases so the initial oscillations of temperature at the
free end become more severe but by t= 402.5s the temperatures along the bar
for r = 0.25 and r = 0.3 are not too different from those for r = 0.1. For r = 0.4
the temperature at the radiating end of the bar is still oscillating at t = 375.9s
and, in addition there are still fluctuations up and down along the bar. If the
r = 0.4 case is run for more than t~ 1000s, the behaviour settles down to that
expected although the temperatures are 20 K or more different from those
given at corresponding times with r = 0.1.

In Section 2.5 we found that, for the explicit method, the system was quite
stable for r< 0.5. Although we are considering an explicit method here, the
nonlinearity in the equations introduced by the radiation from the end of the
bar, as expressed in (2.38b), changes the conditions for stability. The equations
are stable under the conditions we have examined since the solution does not
run out of control but does eventually settle down to a reasonable behaviour
pattern - even if the accuracy is poor. A good rule of thumb is that if two runs,
with values of r differing by a factor of 2, give results at all times within the
tolerance required then the results are probably reliable.

2.8 The Dufort-Frankel method
In the explicit method a forward difference is taken for the derivative in
time and a central difference for the space derivative. Since central-difference
formulae give more precise results it would seem better to replace the time
derivative in (2.21) by a central-difference form. Doing so gives

or

where r is defined in (2.28).
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To use (2.41) to update temperatures at time ti+1 requires temperatures at
two previous times, tj and tj-1. The equation shows that the temperature at tj+1

is obtained from that at tj-1 by adding a quantity derived from temperatures at
time tj. The use of (2.41) is called the leapfrog method. It is not self-starting,
and one stage of another method must be used to generate temperatures at t1

from the initial temperatures t0 before the use of (2.41) is possible.
A program LEAPDF is provided (see p. xv) for implementing the leapfrog

process for the problem described in Section 2.5. It is a modification of the
HEATEX program and requires a different subroutine CYCLE - which also
has provision for another method, shortly to be described. We consider the
standard problem, partly provided by the program, where the bar is initially at
a uniform temperature of 300 K except at one end which is kept at 500 K.
Running this problem soon reveals that the leapfrog method is very unstable.
Figure 2.9a shows the graphical solution after 4, 8, 12 and 16 time steps with
r = 0.1. For the first eight time steps the solutions seem quite normal, but from
12 time steps onwards the solution develops increasingly large, unphysical
fluctuations. The situation is improved if a smaller value of r is chosen in that
a greater simulated time occurs before the instability manifests itself. With
r = 0.01, corresponding to one-tenth of the time step used for Fig. 2.9a, the
instability shows itself after 160 time steps (Fig. 2.9b), equivalent to 16 time
steps for r = 0.1. However, no matter how small a time step is taken,
eventually the instability sets in and the oscillations grow without limit.

The stability condition can be improved by a modification of (2.41) where
the term 2 0 ( i , j ) on the right-hand side is replaced by 0(i,j+l) + 0 (i,j — 1).
Putting together like terms then gives

The application of this equation is the Dufort-Frankel method, which turns
out to be always stable, although it develops limited oscillations for larger
values of r. Figure 2.10 shows the results of the problem which gave Fig. 2.9
but run with the Dufort-Frankel method for r = 1.0. The method is quite
stable, in that if the oscillations appear they do not grow indefinitely, as will
be seen in the figure, but the accuracy may not be high.

In considering finite-difference methods we have referred to stability in a
fairly intuitive way as describing a method which may not necessarily
be accurate but where the errors stay within bounds. In Section 2.10 we deal
in a more formal way with the concept of stability, but first we turn to another
concept, that of consistency, which leads eventually to the condition that gives
convergence.
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Fig. 2.9 (a) Output with LEAPDF run in leapfrog mode after 4, 8, 12 and 16 cycles with
r=0.1; (b) output after 80, 160, 240 and 320 cycles with r = 0.01.

2.9 Consistency
In Table 2.9 the temperatures along a cooling bar are shown after a time of
402.5 s as estimated by running RADBAR with different values of r. Intuitively
we have more confidence in the temperatures found with the lower values of r,
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Fig. 2.10 Output from LEAPDF in Dufort-Frankel mode with r=1.0.

corresponding to smaller time steps At, and we should also expect that using
a larger number of segments in the bar, corresponding to a smaller Ax, should
give higher accuracy. Our intuition is reliable here, and a method is said to be
convergent if as At and Ax both approach zero the solution approaches that
which would be obtained analytically. However, a necessary condition for
convergence is that the finite-difference equations should be consistent - so
that as Ax and At both tend to zero the finite-difference equations should tend
towards the exact differential equation.

We shall illustrate the condition of consistency by analysis of the explicit
and Crank-Nicholson methods. The mathematical tools we need for this are
the Taylor series with its remainder term, dealt with in Section 2.1, together
with a simple theorem which states that if a single-valued function f(x) is
continuous in the range X1 to x2 then one can always write

where x3 is in the range x1 to x2. This theorem can be proved by rigorous
mathematical analysis, but for our purpose it will suffice to satisfy ourselves
that it is true by looking at a diagram. In Fig. 2.11 the point C, the mid-point
of the line PQ, has an ordinate equal to 1 / 2 { f ( x 1 ) + f ( x 2 ) } and a horizontal
line through C cuts the curve at R with abscissa x3. The reader will not find
it possible to draw any single-valued continuous curve between x1 and x2 that
does not give x3, or more than one value of x3, between X1 and x2.
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Fig. 2.11 A demonstration of theorem

2.9.1 Consistency for the explicit method

To consider consistency for the explicit method we start with (2.26), repeated
here for convenience:

These values of n are those actually used in the numerical solution and will
differ from the true values, N, which would be found by analysis. We now
write

where E ( i , j ) is the error in the value of n(i,j). Substituting for the values of n
in (2.26),

We now use the Taylor expansion (2.1), including the remainder term in the
form (2.2), noting that the interval from i — 1 to i, or from i to i+1, is Ax and
the interval from i to i+1 is A£ (see Fig. 2.5). Thus we may write

where xi<r\-i<xi+1. In the remainder term the coordinates at the position of
the second derivative are given explicitly as (n1, tj) rather than in the shorthand
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( i , j) notation. Similarly, we find

and

Substituting (2.46), (2.47), (2.48) and, in part, the expression for r given in
(2.27) into (2.45) gives

There will be various values of E (i,j), for different i, both positive and
negative, but we take the largest magnitude of the set of values as E(j). Let us
consider that in the total calculation where time is advanced to tj+1 the
maximum magnitude of the square-bracketed quantity in (2.49), for any i and j,
is Q. Then, as long as 1 — 2r is non-negative, by putting the maximum positive
value for each term on the right-hand side of (2.49), it follows that

or

Since (2.50) is true for any i, including that which gives the maximum
magnitude of E(i,j+. 1), then we may write

By an extension of (2.51) we find that

Since we may assume that the initial values in the calculation are correct, then
E(0) = 0. In addition, if we take both At->0 and Ax-»0, then the quantity in
the square brackets in (2.49) tends towards
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which, from the original partial differential equation (2.20), equals zero. We
have demonstrated that as Ax and At tend to zero then, as long as r<1/2, the
numerical solution tends towards the analytical solution. This shows that the
explicit method is consistent.

2.9.2 Consistency for the Crank-Nicholson method

To examine consistency for the Crank-Nicholson implicit method, we begin
with (2.33), again reproduced here for convenience:

Substituting from (2.44),

Now we expand two of the terms involving N at time ti+1 using the Taylor
series:

where n1 is in the range xi-1 to xi; and

where f/2 is in the range x, to xi+l. Summing the three terms involving N at
time ti+l gives

By a similar process, the sum of the three terms involving N at time tj is found
to be



60 Finite-difference methods

where 7/3 is between xi-1 and xi and n4 is between xi and xi+1. Hence the sum
of all six terms involving N is

All the four terms in the curly brackets on the right-hand side are functions of
two variables of the same kind, with the first variable in the range xi_l and
xi+1 and the second variable with values either tj or tj+1. From a two-
dimensional version of (2.43) we can write

where n' is between xi-1 and xi+1 and £' is between tj and ti+1. We now apply
the Taylor series to the first term on the right-hand side of (2.58), giving

where £ is between tj and ti+l. Combining (2.58) and (2.59) and substituting
for r from (2.27) gives the N-dependent part of the right-hand side of (2.53)
equal to

The original (2.53) now appears as

If both At->0 and Ax->0 then Q ^ ( d N / 8 t ) - D ( d 2 N / d x 2 ) = 0 because of
(2.20) and the implicit Crank-Nicholson method is consistent. Since the initial
condition is error-free then e(i,0) is zero for all i so that when (2.61) is solved
with Q = 0 then the solution will be e(i, 1 ) = 0 for all i. Clearly the solution for
all times will be error-free and the method is also convergent.
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2.10 Stability
Although consistency is a necessary condition for convergence, it is not
sufficient. The Lax equivalence theorem states that for the kind of well-posed
initial-value problems we are considering here it is also required that the
finite-difference system must be stable. With both consistency and stability
there will be a convergent system.

Stability is concerned with the way that errors do or do not grow as the
solution progresses. If a small error at some stage grows without limit until it
eventually completely swamps the solution then the system is unstable. On the
other hand, if the error falls in value, or stays within reasonable bounds, then
the system is stable. We shall illustrate the phenomenon of stability, as for
consistency, by analysis of the explicit method and the implicit Crank-
Nicholson method.

2.10.1 Stability of the explicit method
The basic equations of the explicit method, (2.26), may be expressed in matrix
form as

The vector nj = {n(l,j),n(2,j),...,n(M —1,j)} where the space of the one-
dimensional problem has been divided into M segments and the vector
bj( = {rn(0,j),0,..., rn(M,j)}) contains the two boundary conditions at time tj.
The square matrix A, illustrated for the case M = 7, is of the tridiagonal form

Let us now suppose that (2.62) represents an error-free calculation, but that
we now add errors to all the values of n at time tj, represented by an error
vector Ej. This will give rise to errors in the values of n at time ti+l which are
the elements of the error vector Ej+1. Then

Subtracting (2.62) from (2.64) gives
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which shows that the propagation of errors is entirely controlled by the
properties of the matrix A. Once an error is present at one stage - say, at time
tj - then at some subsequent time ti+s the errors will be related by

Here we shall assume knowledge of some of the standard properties of matrices
but these are reviewed in Appendix 1. The repeated application of a matrix to
an originally arbitrary non-null vector eventually leads to the equation

where A is the principal eigenvalue of the matrix (that is, the eigenvalue with
the greatest magnitude) and x is the corresponding eigenvector. The applica-
tion of a matrix of form (2.63) to the initial error vector E0 will give a new
error vector El, the elements of which will bear no simple relationship to those
of E0 • However, as each new error vector is generated by successive multipli-
cation by A the pattern will become established whereby each newly-generated
error vector differs from the previous one by having each element multiplied
by the same factor A, the principal eigenvalue of A. This indicates the condition
for stability; if |A|>1 then the elements of the error vectors increase in
magnitude indefinitely and the system is unstable. Conversely if |A|<1, then
the magnitudes of the elements of the error vectors will reduce, or, in the
special case of | A| = 1, will remain constant, and the system will be stable.

The matrix A will have M — 1 eigenvalues, and analysis shows that these are
of the form

Since the second term must be positive the maximum positive value of any A
is 1 but, depending on the value of r, there is no limit on negative values. It is
clear that no eigenvalue can be less than — 1 if the condition

that is, r^0.5, is satisfied, regardless of the values of sin2(mn/2M). This is
consistent with what we have found in numerical experiments with the
program HEATEX.

It should be noted that it is possible for values of r greater than 0.5 to give
stability. For example with M = 7 the six values of sin2(mn/2M) are

0.0495 0.1883 0.3887 0.6113 0.8117 0.9505

and a value of r = 0.526 will make the eigenvalue of largest magnitude equal
to —1. For larger values of M the possible departure from the condition (2.69)
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is very small and it is normal to express the conditional for stability of the
explicit value as (2.69).

2.10.2 Stability of the Crank-Nicholson method
From (2.33) the form of the matrix equation for the Crank-Nicholson
method, illustrated with M = 7, is
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For r = 0 all values of /\ equal 1, while for r — oo all values of A are equal to — 1.
For any positive finite value of r,

which shows that the Crank-Nicholson implicit method is unconditionally
stable.

It is important not to confuse stability with accuracy. Stability merely ensures
that the system will behave in a more or less physically plausible way and that
the solutions will remain finite. However, for any system using finite differences
there is an inherent error, called truncation error, introduced by the remainder
of the Taylor series in the approximations used, although this error may be
reduced to any required tolerance by taking small enough intervals Ax and At.

2.11 Types of partial differential equation
A general second-order differential equation is of the form

in which the capital-letter coefficients may be functions of o, x and y. Partial
differential equations may be divided into three types: hyperbolic, for which
B2 — 4AC>0; parabolic, for which B2— 4AC = 0; and elliptic, for which
B2 — 4AC<0. Each type of equation lends itself to different methods of
solution using the finite-difference approach.

The diffusion equation

is clearly a parabolic equation and the explicit, Crank-Nicholson, leapfrog
and Dufort-Frankel methods are suitable to deal with such problems. In the
following section we shall consider a two-dimensional problem, that of
determining the steady-state distribution of temperature in a thin heated slab
of material, which will introduce methods of dealing with elliptic equations.
Hyperbolic equations will be encountered when we deal with the wave
equation in Chapter 5.

2.12 A heated plate in equilibrium
If we take a thin plate of material, of uniform thickness and well insulated on
both sides, then heat can only flow parallel to the surface of the plate and
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we have essentially a two-dimensional heat-flow problem. We now consider
a small element of the plate of thickness z and rectangular area Sx x Sy
(Fig. 2.12) the corner of which is at ( x , y ) .

The rate of heat flow into the element along the x direction through the face
A of dimension zSy is

and, similarly, the rate of heat flow out of the element through the face B is

This gives the net rate of flow in the x direction into the element,

and the total from both the x and y directions,

where V2 is the Laplacian operator. There may also he some source (or sink) of
heat energy in the element, amounting to Qs per unit volume per unit time,
where Qs is a function of position in the plate. If we are considering the steady-
state case then the net flux of heat energy into the element must be zero, so that

This gives Poisson's equation

1*00 Fig. 2.12 An clement of a heated plate.
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but the special case Qs = 0 gives Laplace's equation

For either Poisson's or Laplace's equation it will be seen from (2.74) that
A and C are finite and equal, with B = 0, so that the condition for elliptic
equations is satisfied.

From (2.25) we find that

where i and i now refer to the x and y directions. If we take Ax = Ay — h, then

The pattern of these terms is shown in Fig. 2.13, which is similar to Fig. 2.5
in form, and (2.81) is sometimes referred to as the five-star formula. From
(2.9) we find that the error in applying this formula is O(h2).

To illustrate the way that this formula can be used, we treat the problem
shown in Fig. 2.14. A square plate of dimensions 20cm x 20cm, well insulated
on its top and bottom surfaces, has all its edges maintained at fixed
temperatures, the so-called Dirichlet problem. The plate is divided into square
elements of side 5 cm and the problem is that of finding the nine temperatures,
01 to 09, at the internal grid-points. There are no sources of heat within the
plate, so we have a Laplace problem, and from (2.81) we find the following

i-2 i i+1
Fig. 2.13 Elements of the five-star
formula.
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Fig. 2.14 A square plate with constant
temperature edges.

set of equations to solve:

These can be expressed in matrix form
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and

b = (-700, -400, -700, -300,0, -300, -700, -400, -700).

The matrix A has a characteristic banded form with a dominant diagonal. The
solution can be found from a standard program for dealing with linear
equations, but the strong diagonal makes the iterative Gauss- Seidel method a
simple alternative.

2.13 Gauss-Seidel, relaxation and
conjugate-gradient methods
2.13.1 The Gauss-Seidel method

For the Gauss-Seidel method each equation in the set (2.82) is rewritten in a
form which expresses the variable with the strong diagonal coefficient in terms
of the other variables. Thus the set of equations (2.82) become:

Starting with some initial estimates of all the temperatures - say, each one
equal to the average of the boundary temperatures, 350 K - a new estimate is
found for 0I - which happens also to be 350 K. Next, a new estimate is found
for 02 with all the current estimates of temperature on the right-hand side
including the new value of 01; this estimate is 362. 5 K, which is then used in
finding a new estimate for 03. When the first new estimate for 09 is found a
second iteration is commenced, starting with 01 again. Table 2.10 shows the
progression of the process, and it will be seen that in six cycles it converges to
the final solution to a tolerance level of 0.001. The convergence is quite fast
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Table 2.10 Solution of the problem illustrated in Fig. 2.14, showing the results of successive
iterations with (2.85). The process finishes when the greatest difference in any value in two
successive cycles is less than the requested tolerance of 0.0001.

Cycle

0
1
2
3
4
5
6
7

350
350
350
350
350
350
350
350

1

.000

.000

.000

.000

.000

.000

.000

.000

2

350.000
362.500
363.281
362.598
362.512
362.502
362.500
362.500

3

350.000
353.125
350.391
350.049
350.006
350.001
350.000
350.000

4

350.000
337.500
336.719
337.402
337.488
337.498
337.500
337.500

0nfor« =
5

350.000
350.000
350.000
350.000
350.000
350.000
350.000
350.000

6

350.000
338.281
337.598
337.512
337.502
337.500
337.500
337.500

350
346
349
349
349
349
350
350

7

.000

.875

.609

.951

.994

.999

.000

.000

8

350.000
361.719
362.402
362.448
362.498
362.500
362.500
362.500

9

350.000
350.000
350.000
350.000
350.000
350.000
350.000
350.000

because the starting estimated temperatures were not too far from their correct
values. However, even starting much further away still gives the solution, for
example, starting with all estimated initial temperatures equal to zero gives the
solution after 23 cycles. In fact, indicating the elements of matrix (2.84) by ai,ji,
the set of equations (2.82) satisfies the condition that

'

for all i, a condition known as diagonal dominance which ensures that
the Gauss-Seidel method will converge to the correct solution no matter what
is the initial trial solution vector. Even starting with each element of the initial
vector equal to 10000 gives the solution to the same tolerance level as in
Table 2.10 in 28 cycles.

2.13.2 The relaxation method
At each stage in the Gauss-Seidel method, when a new estimate for one of the
variables is found the equation which gives that estimate is satisfied by the
current estimates for all the variables. However, the other equations will, in
general, not be satisfied and the residuals of the equations (the differences
between the left- and right-hand sides) will be different for each equation. In
the Gauss-Seidel method no account is taken of the magnitudes of the
residuals and the equations are used in sequence. There is a relaxation method,
first suggested by Southwell in 1940 before computers were available, which
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does take account of the residual magnitudes and will accelerate the conver-
gence somewhat. We can illustrate this with a simple system of equations:

which are rewritten in the form

where all terms are on the left-hand side and the equations are scaled to make
the dominant coefficient in each equation equal to 1 . Starting with the estimate
x = y = z = 0 the residuals of the equations are — 1, — 1, — 2, and the last
equation gives the greatest residual magnitude. By making z = 2 this residual
can be reduced to zero and the three residuals, with x = y = 0, z = 2, are —0.5,
— 1.5, 0. The residual with largest magnitude is now that for the second
equation, and by making y = 1.5 this residual can be reduced to zero. This
process, where for the equation with the largest residual the dominant variable
is assigned a new value to reduce the residual to zero, is repeated until the
process converges on the solution. Doing the calculation by hand to three
places of decimals gives the progression in Table 2.11, which shows that the
solution is obtained in 1 7 steps. However, a computer solution with a program
GAUSSOR, described later, which applies the Gauss-Seidel method with the
equations taken sequentially without regard to residuals, gave the solution in
18 steps (six cycles of the three equations) so not much is saved by the
relaxation method in this case. There are cases where the relaxation process
can lead to considerable savings, but it is a method which is awkward to
program and the advantage of requiring fewer cycles can be swallowed up by
the process of finding the largest residual.

2.13.3 The over-relaxation method
In applying the relaxation method Southwell found that acceleration of the
process could sometimes be obtained by over-relaxation. This consisted of
changing the value of the variable so that it did not just change the residual to
zero but took it through zero so that it changed sign. The over-relaxation factor
w, the amount by which the shift of value was multiplied, could be between 1.0
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Table 2.11 A hand application of the Southwell relaxation method to
equations (2.87). The residuals of the three equations are indicated by
R1, R2 and R3.

Step

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

X

0
0
0

0.875
0.875
0.875
0.875
0.875
0.875
1.011
1.011
1.011
1.011
1.001
1.001
1.001
1.001
1.000

y
0
0

1.500
1.500
1.500
0.985
0.985
1.070
1.070
1.070
1.004
1.004
0.995
0.995
0.995
1.000
1.000
1.000

z
0

2.000
2.000
2.000
0.813
0.813
1.156
1.156
1.027
1.027
1.027
0.993
0.993
0.993
1.002
1.002
1.000
1.000

R1
_ 1

-0.500
-0.875

0
-0.297
-0.169
-0.082
-0.104
-0.136

0
0.017
0.008
0.010

0
0.003
0.002
0.001

0

R2

-1
-1.500

0
0.219
0.516

0
-0.086

0
0.032
0.066

0
0.009

0
-0.003
-0.005

0
0
0

R3

-2
0

0.750
1.188

0
-0.257

0
0.128

0
0.046
0.035

0
-0.005
-0.010

0
-0.003

0
0

and 2.0, but it was difficult to tell in advance what degree of over-relaxation
would give the best efficiency. In general, the most effective value of w increases
with the number of equations; for a five-equation system w=1.2 might be
appropriate, whereas for a 100-equation system w= 1.8 could be most effective.

The relaxation method is no longer used, but the over-relaxation idea can be
applied to the Gauss-Seidel procedure when it is called the successive over-
relaxation (SOR) method. In this procedure when a change in the value of a
variable is found from the normal Gauss-Seidel process this change is multiplied
by a factor w. A program GAUSSOR is available (see p. xv) which carries out
the SOR procedure - which is normal Gauss-Seidel if w is made equal to 1 .
The program asks for a tolerance value, t; the iterations cease when the largest
change in the value of any variable in one complete cycle of operations is less
than T. We apply GAUSSOR to the following set of equations:
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for which the solution is x1 = l, x2 = 2, x3 = 3, x 4 = — 2 and xs= —3. The
tolerance is set at 0.0001, initial values of xi to zero and values of w are used
from 1 to 2 in steps of 0.1. The number of cycles required for solution is
shown in Table 2.12. It is clear that a value of w about 1.3 gives the most
efficient procedure, but it should not be thought that this value would be best
for any set of five equations. For example, the following set of equations

run with GAUSSOR, gives the result show in Table 2.13. For this example the
straightforward Gauss-Seidel approach with no over-relaxation gives the best
results.

The best over-relaxation factor depends on the elements of the coefficient
matrix and analysis using the techniques of matrix algebra is capable of giving
the optimum value of w for any set of elements. For the two-dimensional
version of Laplace's equation and a uniform mesh with Nx cells along x, each
of size Ax, and Ny cells along y, each of size Ay, the optimum relaxation
coefficient for the resultant linear equations is

Table 2.12 The number of cycles of SOR required for the solution of
equations (2.88) with a tolerance 0.0001 and various values of the over-
relaxation factor w.

w 1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.8 1.9 2.0
Cycles 21 17 13 9 11 14 19 26 43 85 >100

Table 2.13 The number of cycles of SOR required for the solution of
equations (2.89) with a tolerance 0.0001 and various values of the over-
relaxation factor w.

w 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Cycles 8 11 13 35>100 Unstable and divergent - no solution
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where

and

2.13 .4 Conjugate-gradient methods

With the increasing power of modern computers the SOR method is being
displaced by conjugate-gradient methods, which are appropriate to use when
the coefficient matrix is sparse, as when Laplace's equation is solved. We shall
not describe the details of the process here, but just indicate what the methods
actually do. The conjugate-gradient solution of the set of equations Ax = b
minimizes a function such as g(x) = |Ax— b|2. If the solution vector has n
elements then g(x) is a function in an n-dimensional space. Starting with a trial
solution X0, a better solution is found by reducing the value of g(x). The
conjugate-gradient method does this by finding the gradient in this n-space,
u0 = Vg(x) at x = x0, and moving along the gradient by an amount /\u to make
g(x) a minimum. This gives the next approximation to the solution as
X1 = x0 + /\uo. This process is repeated until the refinement function g(x) has an
acceptably small value. Standard programs exist for applying the conjugate-
gradient method which require as input the elements of A, the right-hand-side
vector b and an initial trial solution x0. For efficient use of the programs it is
also necessary to provide subroutines which exploit the sparseness of the
matrix to evaluate economically As and ATs, where s is a vector, and the
matrix AT is the transpose of A and is obtained from A by interchanging rows
and columns, so that AT(i,j)=A(j, i). A first-principles derivation of a simple
conjugate-gradient approach is given in Appendix 2, together with an indica-
tion of how the linear equations may be preconditioned to optimize the
method.

2.14 The solution of general heated-plate problems
The program HOTPLATE (see p. xv) can be used to solve automatically the
plate problem shown in Fig. 2.14. This program defines the plate in terms of
a square mesh with up to 11x11 points, corresponding to 10 x 10 square
elements. The plate need not be rectangular, but all the edges must be either



74 Finite-difference methods

along the principal directions of the mesh or make an angle of 45° with a
principal direction. In the input, for a boundary point at a fixed temperature
the temperature is entered, and for an internal point, the temperature of which
has to be found, the symbol U is entered. The input is called for row by row
and for the Fig. 2.14 problem the input is of the form

350 400 400 400 350

300 U U U 300

300 U U U 300

300 U U U 300

350 400 400 400 350

At the corners where there is a junction of two boundaries at different
temperatures the mean temperature is entered. For this problem the corner
points are not involved in the calculation, but there are some circumstances
where junction points do get involved. The tolerance, T, and the over-
relaxation factor, w, are also input by the user. The program begins with all
the temperatures to be determined set equal to zero; although this is not the
most efficient value to take, the calculation is so rapid on modern computers
that it makes little difference what are taken as the initial temperature
estimates.

HOTPLATE has been applied to the non-rectangular plate shown in
Fig. 2.15. The description of the plate is based on a rectangular area and points
within the 7x7 grid, but outside the plate, are entered as X. Thus the inpul
data defining the extent of the plate and its boundary temperatures are:

X X X 350 400 400 450

X X 300 U U U 500

X 300 U U U U 500

350 U U U U U 500

400 U U U U U 500

400 U U U U U 500
350 300 300 300 300 300 400

It should be noted that, in this instance, the point with temperature 350 K
at the left-hand edge, where two fixed-temperature sides come together, wil
be involved in the solution. Running the problem with HOTPLATE foi
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w = 1.0 and T = 0.0001 gives the solution shown in Fig. 2.16 in 45 cycles
of the Gauss-Seidel process. With SOR the same solution was obtained for
all values of w from 1.1 to 1.9, at steps of 0.1, but the solution had not
been reached with w = 2.0 after 1000 cycles, the maximum permitted by
HOTPLATE. The number of cycles required for the various values of w are
shown in Table 2.14.

Although simple problems of this kind take very little time on modern
computers, a time usually dwarfed by the time of manual input of the data,
there could still be interest in optimizing the process by a proper choice of w.
An application could be envisaged where the initial data were being generated
by computer and where a large number of problems were being set up and

300K
Fig. 2.15 A non-rectangular plate with
constant-temperature edges.

THE TOLERANCE IS 0.00010
THE OVER-RELAXATION PARAMETER IS 1.00
THE NUMBER OF CYCLES IS 45

-1. -1. -1. 350. 400. 400. 450.

-1. -1. 300. 352. 397. 436. 500.

-1. 300. 327. 362. 401. 445. 500.

350. 339. 345. 367. 400. 444. 500.

400. 359. 350. 360. 387. 432. 500.

400. 348. 334. 337. 355. 397. 500. Fig. 2.16 HOTPLATE output for the
problem shown in Fig. 2.15. Points marked

350. 300. 300. 300. 300. 300. 400. -1 are outside the plate.
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Table 2.14 Number of cycles required for solution of the problem
described in Fig. 2.14 with T = 0.0001 and different values of the over-
relaxation factor, w.

w 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Cycles 45 36 28 19 19 25 33 47 74 147

run. The best value to take for w is given by (2.90), which has been derived
from a theoretical approach. However, for the solution of a HOTPLATE
problem defined on a p x q grid, if n = (pq)112 then a good rule-of-thumb is that

w

For the HOTPLATE problem defined in Fig. 2.15 we have n = 7 which gives
woptimum = 1.38, while (2.90) gives 1.39, both of which are consistent with the
results in Table 2.14.

So far we have considered plates with boundaries at fixed temperatures but
without any heat generation within the plate. This has involved the solution of
Laplace's equation (2.79) but the addition of heating (or cooling) within the plate
will transform the problem into one of solving Poisson's equation (2.78). When
translated into finite-difference form, the equation at the point (i,j) becomes

where Q(i,j) is the rate of heat generation per unit volume at the point (i,j).
Transformed into a standard form for SOR solution, this equation becomes

The program HOTPLATE makes provision for the extra heating term. It is
necessary for the user to provide a function subprogram HEAT (X, Y) which
gives the heating rate per unit volume (cooling if negative) at the point (X, Y)
such that X = (i — 1)h and Y=(j — 1)h, where the coordinate origin is at the
point (i,j) = (1,1). There is also a DATA statement which must be modified to
give the appropriate values of h, the dimension of the square grid, and K, the
conductivity of the material of the plate.

We illustrate the application of this facility by solution of the problem
described in Fig. 2.15 with a heating term Q(X, Y) = 106(X+Y)Wm - 3 and
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with h = 0.lm and K = 400 Wm -1K -1. The value of w was taken as 1.38, the
optimum value suggested by (2.91), with T — 0.0001. The solution, found after
19 cycles of the SOR process, is shown in Fig. 2.17. Comparison with Fig. 2.16
shows the effect of the heating term which, as expected, gives higher tempera-
tures within the plate.

The final feature which can be introduced into the heated-plate problem is
to have differential boundary conditions corresponding to an insulated bound-
ary or one exchanging heat with its environment. These are the kinds of
differential boundary conditions dealt with in Section 2.7, where the gradients
at the boundary were treated by using false points. In Section 2.7 we assumed
that the end of the bar was exposed to a constant-temperature enclosure and

THE TOLERANCE IS 0.00010
THE OVER-RELAXATION PARAMETER IS 1.38
THE NUMBER OF CYCLES IS 19

-1. -1. -1. 350. 400. 400. 450.

-1. -1. 300. 365. 414. 449. 500.

-1. 300. 342. 388. 430. 466. 500.

350. 352. 372. 401. 435. 470. 500.

400. 376. 378. 396. 422. 458. 500. Fig 2.17 HOTPLATE Output for the

problem shown in Fig. 2.15, together with
400. 362. 355. 363. 381. 416. 500. heat generation

The element edge is 0.1 m and the thermal
350. 300. 300. 300. 300. 300. 400. conductivity K = 400Wm-1 K -1 .

ig. 2.18 A plate with one insulated
edge and one exchanging heat with its
surroundings. The external 'false' points
have temperatures related to the internal
temperatures at the heads of the arrows.
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that transfer of heat to and from the bar was by radiation. Another important
form of heat exchange is by convection, and in many cases this may be the
dominant mode of heat exchange between an exposed surface and its sur-
roundings. The total loss or gain of heat, as expressed by the thermal gradient
at the boundary, is often modelled by

where the thermal gradient is along the normal to the boundary and K and S
are two constants. The plate shown in Fig. 2.15 is shown again in Fig. 2.18,
but this time with one left-hand edge insulated and the other exchanging
energy with its surroundings. For the insulated edge the thermal gradient at
the insulator must be zero, and that is obtained by making the temperature of
the false point A I 0 ( A i ) = 0(A.), and similarly 0(c1) = 0(C). The radiating edge
is at 45° to the principal directions of the grid. The given values of K and S in
(2.94) enable the thermal gradient to be found and hence the temperature of
the false point Br in terms of the temperature at B. To illustrate the use of
HOTPLATE we run the problem of finding the equilibrium temperature in the
plate illustrated in Fig. 2.19 which incorporates the use of all the facilities in
the program as follows. Side AB is held at a constant temperature of 500 K.
Side BC is held at a constant temperature of 700 K. Side CD is exchanging heat

Fig. 2.19 A non-rectangular plate with edges at constant temperature, insulated and
exchanging heat with their surroundings.



Other geometries 79

with its surroundings: the program calls for the input of values of K and S for
the points indicated by E when defining this boundary. Side DE is held at a
constant temperature of 800 K. Side EF is exchanging heat with its surround-
ings with a given K and S. Side FA is insulated, indicated by I. The plate
heating is given by H=107XY(1.0-X)(1.0-Y)Wm-3, and h = 0.125m,
K = 400Wm-1K-1. The input to HOTPLATE describing the plate within a
9x9 mesh is:
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X
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u
u
u
u
u
u
E

u
u
u
u
u
E
X

700
700
700
700
700
X
X

800 800 800 800 800 800 X X X

The output of the program is shown in Fig. 2.20 with contours added by hand
better to appreciate the overall temperature distribution.

2.15 The Poisson, Laplace and diffusion equations with
other geometries
The Laplacian operator V2 which appears in Poisson's and Laplace's equa-
tions, (2.78) and (2.79), has so far been treated only in a two-dimensional
Cartesian coordinate system where

For three-dimensional problems this may be extended to

The Laplacian operator also occurs in the three-dimensional form of the
diffusion equation, and (2.20) may be generalized to
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Fig. 2.20 HOTPLATE output for the plate shown in Fig. 2.19. Temperature contours have
been added by hand.

The rectangular Cartesian geometry has been suitable for dealing with thermal
equilibrium in the plates we have described so far, which are either rectangular
or have sides at 45° to principal directions. However, other forms of the
Laplacian operator are available for dealing with problems with different
geometries - for example, for two-dimensional polar coordinates ( r , 0 ) we
have

The grid that is appropriate to (2.97) is shown in Fig. 2.21, which shows
circular arcs corresponding to constant values of r and radial lines correspond-
ing to constant values of 9.

2.15.1 The control-volume method
Many problems are conservative, by which we mean that the total quantity of
the field variable is a constant and gains and losses within a particular region
of space are balanced by fluxes through the boundary surface. Setting up
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finite-difference equations which are conservative for generalized geometries
can be achieved by the control-volume method which applies the conservation
law directly to each cell. We take as an example a two-dimensional problem
based on the cell structure shown in Fig. 2.21. For the purpose of illustrating
the control-volume method we modify the cell to the form shown in Fig. 2.22
so that the field variable is determined at points such as P corresponding to
integral values of i and j and half-integral values define the edges of the cell.
Assuming that D in (2.96) is constant and isotropic, we can express in

Fig. 2.21 A grid for two-dimensional polar coordinates. To retain the periodic nature of
angular measure, values of j should be taken modulo 12.

Fig. 2.22 Cells for the control-volume
method.
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finite-difference form the inward flux into the volume element ABCD in Fig. 2.22
which is assumed to have unit thickness. The cells are defined by constant
intervals of r and & so that r i—r i_1 = Ar for all i, 0i — 0i_1 = A0 for all i, and

The inward flux of solute through AB in time At is given by

where lAB is the length of the arc AB and the mean radial concentration
gradient is assumed to be half-way along the arc from B to A, at the point
(ri+l/2, 0i). In finite-difference form this becomes

where the superscript t is an integer indicating the time. Similarly,

In addition, we find the finite-difference form of the inward flux of solute
through the plane faces of the element as

and

For conservation this is equated with the finite-difference expression for the
increase in solute within the control volume, which is the change of concen-
tration times the volume. If an explicit equation is required, then this is of the
form

Equating (2.100) to the sum of (2.99a), (2.99b), (2.99c) and (2.99d), we
obtain
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Since ri+l/2 = ri+^&r and ri_ll2 = ri—\^r, (2.101) can be put in the form

This is exactly the form of relationship which would have been derived from
the form of V2 given at the end of (2.97) and shows that this form is
conservative. It would be possible to derive a finite-difference equation from
the first form of V2 given in (2.97); this would involve terms such as n t ( i+2, j )
and n'(i—2J) and it would not be conservative.

2.15.2 A heat-flow problem with axial symmetry
A problem in which (2.96) might be useful is where fluid is transmitted at
constant temperature through a long, thick-walled pipe, the outside of which
is also at a fixed temperature. The flow of heat is radially outwards and the
problem of finding the temperature distribution within the wall of the pipe is
essentially a one-dimensional one, for which the Laplacian operator is

Laplace's equation can be solved analytically in this case and gives

where 0 is temperature and A and B are constants which may be deter-
mined from the fixed temperatures at the inner and outer walls of the pipe.

The finite-difference form of Laplace's equation for this problem is given by
the first two terms within the square brackets in (2.102) and, writing Ar = h,
a set of linear equations is obtained of the form

We take the inner and outer radii of the pipe as 0.05 m and 0.10m respective-
ly, with 10 divisions in the thickness of the pipe, so that h = 0.005m, and the
temperature of the inner and outer walls is given by 00 = 300 K and 010 = 500 K.
The equations for the interior points of the wall, which give coefficients
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Table 2.15 The matrix coefficients and right-
hand-side vector for the equations solving for the
temperature within the walls of the pipe.

i

1
2
3
4
5
6
7
8
9

Coefficients of

0,_i

191.67
192.31
192.86
193.33
193.75
194.12
194.45
194.74

#,

-400
-400
-400
-400
-400
-400
-400
-400
-400

0,-+i

209.09
208.33
207.69
207.14
206.67
206.25
205.88
205.55

Right-hand-side
vector

-57000

-102500

Table 2.16 A comparison of the solution of
the problem of temperature within the pipe
wall from GAUSSOR with the analytical
solution from (2.104).

(GAUSSOR) (analytical)

1
2
3
4
5
6
7
8
9

327.5
352.6
375.7
397.1
417.0
435.6
453.1
469.6
485.2

327.5
352.6
375.7
397.1
417.0
435.6
453.1
469.6
485.2

forming a tridiagonal matrix, are indicated in Table 2.15. The solution of
this set of equations, given in Table 2.16, as determined by the program
GAUSSOR, agrees exactly with the analytical solution from (2.104).

Finite-difference methods can be used to solve Laplace's or Poisson's
equation for any coordinate system as long as the proper form of the Laplacian
operator is used. From the pipe problem, where comparison with an analytical
solution is possible, it will be seen that the method can be quite precise. As a
check, where high precision is important, it is advisable to run the problem
twice with intervals h and 2h in each of the dimensions. If the two results agree
within the required tolerance then the result with the smaller interval can be
accepted with confidence.
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Problems

2.1 A bar of length 1 m, lagged along its length, has a cross-sectional area
varying linearly from 0.0001m2 at x = 0 to 0.0002m2 at x = 1.0m. The
material of the bar has thermal conductivity 250 Wm^K"1. If the tempera-
ture at x = 0 is 500 K and at x = 1.0m is 400 K then, by use of the modified
program SHOOTEMP, find the heat flow along the bar and the temperature
at x = 0.25, 0.50 and 0.75m.

2.2 Use the program HEATRI to solve Problem 2.1. It will be necessary to
calculate the appropriate coefficients for the tridiagonal matrix and right-
hand-side vector and to incorporate these into a modified program.

2.3 A bar of length 2 m with uniform cross-section is lagged along its length
but has exposed ends. At time t=0 it is at a uniform temperature of 300 K,
except for one end which is held at a constant temperature of 400 K. If the
material of the bar has thermal conductivity 150Wm^K"1, specific heat
capacity 1250J kg - 1 K-1 and density 3500kgm-3, then find the temperature
profile at 20 cm intervals along the bar after 2000 s using:

(i) the explicit method with HEATEX;
(ii) the Crank-Nicholson method with HEATCRNI;

(iii) the Dufort-Frankel method with LEAPDF.

Investigate the instability of the leapfrog method.

2.4 Run the standard RADBAR problem with external temperature (i) 300 K
and (ii) 400 K. Divide the bar into eight segments and use r = 0.2 (At = 26.8s).
Find the temperature profile in the bar after 107.3, 214.7 and 322.0s.

2.5 Solve the following set of equations with GAUSSOR and find the opti-
mum over-relaxation factor. You will find it convenient to modify GAUSSOR
so that different relaxation factors can be tried without restarting the program
and re-entering the equation coefficients each time.

8 -1 0 2 3 0 1 -1
0 6 0 1 -1 1 -1 1
0 -2 5 -1 -1 0 0 -1
1 3 2 11 -1 0 -1 0
3 -1 -1 1 -9 0 1 1
0 1 0 -1 1 7 2 1
0 -1 0 1 0 1 4 -1
1 -1 1 -1 1 -1 1 7 -

~*i '
*2

*3

X4

x5
X

6

X7

-X8 •

- 28
-10

6
-2

-23
7
4

- -8-



86 Finite-difference methods

2.6 Figure 2.23 has top and bottom faces insulated and the edges at constant
temperature, insulated or exchanging heat with the surroundings as shown.
The thermal conductivity of the plate is 300 W m - 1 K - 1 and, with respect to
the origin O, is heated according to H= 107sin(7nx)sin(7ny) Wm~3, where x and
y are in metres. Use the program HOTPLATE to find the distribution of
temperature in the plate.

Fig. 2.23 Diagram for Problem 2.6.
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3.1 Types of problem
We have already been introduced to particle methods in Section 1.4 and
Section 1.5, where bodies were simulated by point masses. In the case of the
oscillator the motion of only a single mass was followed, but in the case of the
Trojan asteroids there were four masses. These are representative of a class of
problems where the number of bodies is small and there is a one-to-one
correlation between the bodies in the system and those in the simulation.
Examples of few-body problems which fall into this category are: individual
electron orbits in magnetic and/or electric fields, as in the lens system of an
electron microscope; planetary motion with either a single planet or several
planets; and the evolution of small stellar clusters. In particle-interaction
problems it is often necessary to consider interactions between all pairs of
bodies. Assuming that interactions are symmetrical, so that the force on
particle i due to particle j, Fi;j , is equal to — Fi;j , and that particles do not exert
forces on themselves, then the total number of pair interactions is 1 / 2 N ( N — 1),
where N is the number of bodies. Thus for a cluster of 100 stars there are 4950
pair interactions, which can easily be handled with computers of modest
power.

The astronomical example of the cluster of 100 stars has been suggested
as a few-body system, but astronomy offers much larger systems - for
example, globular stellar clusters with 105-106 stars. Here the number of
pair interactions is in the range 5 x 109 to 5 x 1011, which is clearly beyond
the capacity of even the most powerful computers on a reasonable time-scale.
There are systems which are much larger still in terms of the number of
particles they contain. Examples are: liquids containing ~1016 molecules in
l ug; galaxies containing 1011 stars; plasmas, which are intimate mixtures of
positive ions and electrons, the predominant state of matter in the universe;
and electrons in solids, of interest in semiconductor device simulation, for
instance. It is clear that pair interactions cannot be considered in systems of
this size and the study of such systems involves approximations which, while
making the problem manageable, still give results of sufficient precision to
be useful.

3
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3.2 A few particles with inter-particle forces
A body moving in a region where its potential energy at position r is V(r)
experiences a force

or

Equation (3.1b) may be replaced by a pair of first-order equations:

where v is the velocity of the body. For a single particle in three dimensions
this requires the solution of six coupled differential equations:

In Section 1.5.1 the Runge-Kutta process for the solution of differential
equations was applied to the problem of the stability of Trojan asteroids and
also the decay of the orbit of a tidally affected satellite. The Runge-Kutta
process was generalized for two dependent variables and the principle of
extending the process to any number of dependent variables was clearly
indicated. Even a simple problem involving two interacting bodies in a
three-dimensional space gives 6 dependent variables and the system of equa-
tions to be solved is then of the form:
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The general strategy for solving a problem with many interacting bodies,
where only pair interactions occur, is to consider all pairs of bodies in turn.
For the pair of bodies i and j, the contributions to the left hand sides of (3.4)
can be found and added into appropriate arrays. When all pairs have been
considered the arrays will contain the complete contributions to the right-hand
sides of (3.4).

The four step Runge-Kutta process is one member of a family of methods,
some of which are simpler than the four-step process and some of which are
much more complicated, involving five or more steps. In general the more
steps in the process the greater is the accuracy which can be obtained for a
given amount of computational effort. Alternatively, for a particular accuracy
less computational effort is required. However, for many problems high
accuracy is not required and methods are available which are simple in
concept, easy to program, and very economical to apply. In the course of this
chapter the reader will be introduced to this kind of approach.

3.2.1 A binary -star system
Here we shall demonstrate the general principle of handling few-body systems
by the simple problem of a binary-star system. The problem is not that of one
body orbiting another which is essentially at rest; this would only be true if
one of the bodies had a very small mass. With finite mass for both bodies it is
more complicated because the two stars are both in orbit around their
stationary centre of mass. The situation is illustrated in Fig. 3. la where the
stars, S1 and S2, with masses M1 and M2, are separated by a distance r. The
centre of mass is at O, so that

and

The accelerations, shown in Fig. 3. la, have magnitudes GM2/r
2 and GM1/r

2,
respectively.

From the representational point of view it is an advantage to transform the
problem so that one of the stars is at rest at the origin. This can be done
by applying a uniform acceleration to the whole system which brings one of
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(a) (b)

Fig. 3.1 (a) Two bodies orbiting around their centre of mass. (b) An acceleration bringing
to rest changes the acceleration of S2 to

the stars to rest and then taking its position as the origin. This is shown in
Fig. 3.1b, where S1 becomes the origin. Bringing S1 to rest requires that the
acceleration of S2 now has magnitude G(Mi + M2)/r

2. For a two-body system
this is equivalent to using a reduced mass frame where the mass M 1 M 2 /
(M1 + M2) is subjected to a force with magnitude GM 1 M 2 / r 2 , but the concept
of applying a uniform acceleration to bring one body to rest is applicable in
many-body systems.

One way of testing the accuracy of the computational process is to check
on the conservation of energy, momentum and angular momentum. When the
origin is shifted to one of the bodies the conservation of momentum cannot be
checked because the assumption has been built in that the centre of mass is
given by equations (3.5). If the velocity of S2 relative to S1 is v12 then the
velocities of S1 and S2 relative to the centre of mass are

and

This implies that the momentum relative to the centre of mass is always zero.
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The total energy of the system is given by

from equations (3.6), this can be expressed as

which quantity should be conserved during the progress of the computation.
In general, the angular momentum for an n-body system can be expressed as

This can be written in component form as

where the symbol ^ indicates the unit vectors in the x, y and z directions. For
the binary-star problem, which is two-dimensional, the motion can be defined
in the x-y plane so that the angular momentum vector points along z. The
quantity to be conserved in this case is

where the coordinates of the stars are with respect to the centre of mass. Using
equations (3.6), this becomes

where the velocity components and coordinates are those of S2 relative to S1

as origin.
We can illustrate the conservation of energy and angular momentum with

results for a binary-star simulation run with a modification of the program
NBODY. The two stars had masses 0.75Mo and 0.25M0 and were separated
by a distance 5.2AU. One star was initially at rest, with the other moving
perpendicular to the separation vector at speed of 2.755 359 AUyr - 1 in the
astronomical system of units described in Section 1.5.1. This gives a circular
motion of each of the planets around the centre of mass. The program was
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Fig. 3.2 Changes of energy (full line) and angular momentum (dashed line) with different
tolerances.

run with different tolerances and the variation of energy and angular momen-
tum with time is shown in Fig. 3.2. For a simulated time of 200 years there
was no change in energy or angular momentum to one part in 105 for a
tolerance of 10-5 or less, but for tolerances of 10-4 and 10-3 there were
significant changes.

The tolerance required for any particular problem will depend on the aim
of the simulation. It is clear from Fig. 3.2 that a tolerance of 10-3 is leading
to large errors, which increase as the simulation time increases. A tolerance
level of 10-6 would give no detectable change of energy and angular momen-
tum over 200 years, but if it was intended to look at the long-term develop-
ment of the binary system - over, say, 108 years - then even this tolerance
would probably be inadequate. To decrease the tolerance even further would
involve a heavy penalty in computation time and bring increasing danger of
significant error due to computational round-off, so the answer to the problem
is to use a better integration routine. The Runge-Kutta process we have shown
here is a four-step process. There are other routines of similar type with more
steps for each advance of the independent variable which, although they take
longer per time step, allow longer time steps and are more economical for a
given accuracy. A very detailed treatment of such methods has been given by
Dormand (1996).
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3.3 An electron in a magnetic field

factorized into the pair of equations

and

which leads to the set of differential equations

If we take a simplified system with two-dimensional motion v = (vx,vy, 0)
perpendicular to a magnetic field B = (0,0,BZ) then the equations to be
solved are

together with

or an electron moving with speed v in a circular orbit perpendicular to a
uniform magnetic field B, equating central force to mass times centripetal
acceleration gives

The basic equation for the motion of an electron in a magnetic field is

where e is the charge of the electron and B the magnetic field. This may be
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or

This value of w, which is independent of the radius of the orbit and therefore
is characteristic of the field at a point, is called the local cyclotron frequency
and usually represented by the symbol O. This quantity, like the field itself,
can vary in both space and time. The two final equations in (3.15) can now
be written

The four coupled differential equations describing the motion of the electron
could be solved using the Runge-Kutta method, but here we shall show a
solution process involving finite differences. Using /' to represent the time, with
time step At, similar to the notation developed in Section 2.4, the four
equations now appear in the form

On the right-hand side of these equations the averages of vx and vy in the
interval t(j) to t ( j + 1 ) are used.

Equations (3.17c) and (3.17d) can be solved for vx(j + 1) and v y ( j + l ) ,
giving

and
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where \l/=1/2OAt, which is half the cyclotron angle through which the electron
rotates in time At. Inserting results (3.18) in (3.17a) and (3.17b),
we find

and

If the field, which is restricted to the z direction, is a function of x, y and t
then the value of w used in (3.19) should correspond to the field at the average
position and average time. This will be

Equations (3.18) and (3.19) enable the motion of the electron to be followed.
From equations (3.18) it is readily found that if Bz is a constant, so that w

is the same at times tj and tj+1, the kinetic energy, EK, of the electron remains
constant since

If this were not so then the electron would gradually spiral inwards or
outwards in order to change its energy and no stable closed motion in a
constant magnetic field would be possible.

If an electric field is added with direction in the x-y plane, then equations
(3.16) become

The equations corresponding to the previous equations (3.17c) and (3.17d) are
now

and
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Equations (3.17a), (3.17b), (3.23a) and (3.23b) may be solved to give
position and velocity at time t ( i+1) in terms of the corresponding quantities
at time t ( i ) . The equations giving the velocities are of the form

and

The first two terms in each of these equations are just those which appear in
equations (3.18), and the final terms give the extra components of velocity due
to the presence of the electric field. Part of these extra components added to
vx(i+1) and vy(i +1) is in the direction of the electric field, but another part,
proportional to Ey and — Ex respectively, is perpendicular to the electric field.
Thus an important effect of the electric field, which can be observed, is to give
a slow drift of the electron's motion perpendicular to the direction of the
electric field. This pattern of motion is also found if more precise ways of
solving the differential equations are used.

3.3.1 The electron-microscope lens
An important application of the motion of electrons in magnetic fields is in
the design of lenses for various types of electron microscope. Here we shall
illustrate the principle by which focusing is achieved with a two-dimensional
example. We consider electrons moving in the x-y plane starting at position
(0, Y) fairly close to the origin and moving in a direction making a small angle
with the x-axis. There is a magnetic field along the z direction with magnitude

where c is a constant. The trajectories of such electrons can be followed with
the computer program MAGELEC (see p. xv). We consider 1 keV electrons,
for which the corresponding speed is 1.785 x 107ms-1. It is evident that
electrons starting at the origin and moving along the x-axis will not be
deflected because they are in zero field. We now take an electron starting at
the origin for which the initial components of velocity in the x and y directions
are vx = 1.78S x 107ms -1 and vy = 1.785 x 105 ms - 1 . The constant cm (3.25)
is taken as 0.5Tm -1 and the time step for solving equations (3.18) and (3.19)
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Fig. 3.3 The trajectories of electrons in a magnetic field Bz=cy.

is fixed at 5 x l0-11s. The trajectory found is the one shown as path 1 in
Fig. 3.3, which is seen to cut the axis at points A and B. Path 2 also starts from
the origin but in this case the component of velocity vy is doubled to
3.570 x 105ms-1 and it too crosses the x-axis at the points A and B. Electrons
which set out from the origin in directions making a small angle to the x-axis
will all pass through A and B, which clearly shows a focusing effect. Next
we start the electrons from a point P at a distance 1 mm from the origin
and consider trajectories of electrons all of which have the same x component
of velocity, 1.785 x 107ms-1 but with y components 1.785, 0 and —1.785 x
105ms-1 (paths 4-6). These are shown in Fig. 3.3, and it is found that they
all pass through the points C and D, with the same x coordinates as A and B,
respectively. A one-dimensional object situated on the y-axis would form an
inverted image on the line AC and an upright image on the line BD.

3.4 N-body problems
We have already mentioned the difficulties associated with the solution of
problems involving a large number of interacting bodies. If there are N bodies
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interacting gravitationally then the system of equations to be solved is

For N = 2 there is an analytical solution, as there also is for some special
three-body problems such as the Trojan asteroids. For larger values of N
numerical methods must be used.

We have seen that such problems can be tackled by using the Runge-Kutta
method which is incorporated in the program NBODY. However, in equations
(3.26) it can be seen that the changes in position depend on velocity and the
changes of velocity depend upon position, and this enables the leapfrog
method (Section 2.8) to be used. While this will be much less accurate than
the Runge-Kutta method, it will be much faster and also require much less
computer memory for large systems. If the interest is in the general behaviour
pattern of a system rather than in determining the precise position of every
body then it may be adequate. The form of the leapfrog equations correspond-
ing to (3.26) is as follows:

and

with corresponding equations for the y and z components.

3.4.1 Evolution of a stellar cluster

The problem with the leapfrog method, apart from its lack of precision, is that
its continual use depends upon a constant time step, and this may lead to
complete failure of the computation for systems which are unpredictable in
their behaviour. Thus if two bodies come so close together such that the
distance between them is less than the distance moved in one time step then
the results may become meaningless. The program CLUSTER is designed to
integrate the motions of a cluster of solar-mass stars from a quasi-stable initial
condition using the leapfrog method. The chosen number, N, of stars is
randomly placed in a spherical volume of radius R. Each star is given the same
speed V but in a randomly chosen direction; the speed is found from the virial
theorem (Appendix 3). Small corrections are made to the randomly chosen
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positions and velocities to put the centre of mass at the origin and to give zero
momentum. Since the leapfrog method is not self-starting it is initiated with
one step of a simple Euler predictor-corrector process (Section 1.3). The initial
time step is estimated as 0.01 times the minimum distance between stars
divided by the maximum speed of any star. This ensures that the distance
between any pair of stars should not change by more than 2 per cent during
the time step. At the beginning of each time step the ratio of minimum distance
to maximum velocity times time step is found. If this is outside the range 50
to 150 then a new beginning is made with the leapfrog method using an initial
predictor-corrector step and a resetting of the time step as previously
described. In this simple, albeit not the most efficient, way the conditioning of
the leapfrog method is kept as favourable as possible.

Table 3.1 shows the results of running CLUSTER for N = 40 and
R = 40000AU for various simulation times from approximately 10000 years
to 320 000 years. Since the force on star i due to star /' is equal and opposite
to that on star j due to star j, the leapfrog process should conserve momentum.
From the columns COM and <V> in the table it will be seen that the mean
position and the zero momentum of the stars is preserved for all simulation
times to within the precision of the computation. Something which is not
necessarily conserved by the algorithm is energy, and it will be seen that the
total energy does change and by almost 5 per cent for the longest simulation
time. The table shows a clear tendency for the total energy to increase (that
is, become less negative) with time. In fact it can be shown that for this type
of calculation and with nearly random truncation errors energy will progres-
sively increase in a random fashion. For a system with potential and kinetic
energy satisfying the virial theorem the mean square distance of particles from

Table 3.1 The results from CLUSTER with 40 solar-mass stars initially within a
spherical volume of radius 40000 AU and with initial speeds given by the virial theorem.

Time (years)

0
10037
20158
40122
80041

160330
320017

ER2 (AU2)

3.89 x lO10

3.91 x 1010

3.94 x 1010

4.00 x 1010

4.12 xlO10

4.42 x 1010

5.17 x lO10

COM (AU)

3.68 x 10-4

1.34 x10 - 3

1.25 x lO-3

2.37 x lO - 3

1.67 x lO - 3

6.79 x lO-3

9.41 x 10-3

<V> (AUyr-1)

2.72 x lO- 9

1.59 x l O - 9

2.68 x lO - 9

5.61 x10-9

1.72 x lO-8

2.93 x 10-8

2.87 xlO-8

TOTEN
(M0AU2yr-2)

-0.4650
-0.4643
-0.4643
-0.4643
-0.4649
-0.4641
-0.4438

ER2 is a measure of the geometrical moment of inertia (Appendix 3); COM is the distance
of the centre of mass from the origin; < V> is the speed of the centre of mass; and TOTEN
is the total energy of the system.
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the origin, <R2>, should be invariant with time. It will be seen that this is not
true, especially for the longer simulation times, but this is linked to the
previously mentioned non-conservation of energy.

In this application, as time progresses, the leapfrog method is showing
instability, as mentioned in Section 2.8. It is not recommended for N-body
problems demanding precision - for example, following the motions of a
system of planets for millions of years or more. For such applications it
is necessary to use the very accurate integration algorithms described by
Dormand (1996).

3.5 Molecular dynamics
Molecular dynamics is a very powerful and widely used technique for a large
range of applications involving solid-atom systems, molecular structure and
liquids. The general principle is very simple. The dynamics of a single particle i
of position r, and velocity v,, subject to a total force Fi is computed by the
numerical integration of the kinematic equation of motion,

and Newton's second law,

where mi is the mass of the particle. The force Fi is the sum of the external
forces and the mutual interactions. As we have already noted, the total force,
in principle, contains too many terms to be calculated on a repetitive basis.
However, in problems where molecular dynamics is used the short-range
nature of the forces allows these sums to be greatly curtailed. This occurs in
two ways:

1. The general structural arrangement of particles is fixed, so that each
individual particle has a set of clearly identifiable neighbours. Examples of
this are models of chemical compounds, widely used in the pharmaceutical
industry to design drugs; surface behaviour (for example, the study of
catalysts); models of chemical reactions.

2. The medium is effectively infinite, but uniform, so that any one region is
similar to any other. This allows the use of periodicity to restrict the
number of particles required, as illustrated in the following example.
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3.5.1 Simulation of a liquid by molecular dynamics
A liquid is a state of matter where the potential energy of the system, arising
from the inter-molecular forces, has a magnitude similar to that of the kinetic
energy of the molecular motion. Individual molecules may acquire enough
kinetic energy to leave the surface of the liquid, forming a vapour, but the bulk
of the material will be bound together so that the volume is fixed. Within the
liquid the molecules move around forming small ordered aggregations which
are constantly breaking up and reforming in new arrangements. By contrast,
in a solid, potential energy dominates and the molecules will be rigidly bound
in a lattice. While the individual molecules or atoms will possess energy of
vibration around their mean positions, this energy is insufficient to disrupt the
bonds binding the system together. Finally, for a gas, with much greater
distances between molecules, the kinetic energy is dominant and molecules
move freely, occupying all the space available to them.

An obvious approach to creating a model of liquid behaviour is to use
molecular dynamics where the motions of individual molecules are followed.
It is necessary to know the force law between molecules but, if this is known,
then an N-body simulation can be carried out - at least in principle. From the
molecular motions and the changing pattern of molecular positions it may
then be possible to derive the properties of the liquid by statistical means.
However, for such a model, where it is required to deduce the properties of
the bulk fluid it is necessary to escape from the restriction of having a
boundary. One obvious way of doing this is to have a very large system with
very many molecules and then to make the estimate of properties from the
behaviour of the molecules at the centre of the system well away from the
boundary. This would require an enormous number of particles - too many to
follow by any precise method of integration of the equations of motion.
However, as previously mentioned, another way to simulate an effectively
infinite liquid without needing to consider a very large number of particles is
by using a periodic cell structure, illustrated in Fig. 3.4 in two dimensions. The
centre cell in Fig. 3.4 contains 15 particles representing atoms or molecules,
and this cell is reproduced on a lattice to give the eight similar neighbouring
cells. All normal force laws are, in principle, infinite in their range but in
practice it is nearly always possible to terminate them at a finite distance.
There are two reasons for this: first, beyond a certain distance the actual
magnitudes of the forces will be small; and second, forces due to the infinite
region beyond a certain distance will, by symmetry, tend to cancel each other.
Thus in our two-dimensional case only the particles within some circle of
radius rL need to be considered in determining the forces on particle A.
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Fig. 3.4 Simulation of a two-dimensional liquid by a cell model.

A condition for this cell method to work satisfactorily is that the side of the cell
should be greater than the accepted range of the force - two or three times
greater gives a very satisfactory system. The repeated-cell model has the prop-
erty that the number of particles in each cell remains constant as the dynamics
is followed. If particles A and B move out of the cell as shown then the ghost
particles A' and B' move in to take their place. This also ensures that the density
of the liquid remains fixed, which is required in most, but not all, simulations.

3.5.2 The equation of state of a liquid
Before embarking on a description of methods of modelling liquids, we should
first consider some basic theory concerning the equation of state of a liquid,
because deducing that is an important goal of the modelling. We consider a
cubical container, with an origin of coordinates at its centre, of side L,
containing N molecules each of mass m. The ith molecule has coordinates
(xi,yi,zi), a velocity ci with components (ui ,vi ,Wj) , and experiences a force Fi,
with components ( F X , i ,Fy , i ,FZ , j ). Then we may write
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with similar equations for the other two components. We now note the
relationship

Combining the results of (3.29a) and (3.29b), we find

Adding the components in the other directions and summing over all molecules,

Since the molecules are confined in the box the quantity on the left-hand side,
although it will slightly fluctuate, must average to zero. The second term on
the right-hand side is twice the total translational kinetic energy of the
molecules. Since each molecule has three degrees of translational freedom,
each with average energy 1/2kT, where k is the Boltmann constant and T the
absolute temperature, then the value of this final term is 3NkT.

The first term on the right-hand side of (3.31) is known as the virial of
Clausius, and we shall now see how to express it in a more convenient way.
The forces on the molecules are of two kinds - those of the molecules on each
other and those due to the walls of the container. If we take the molecules very
close to the wall at x =1/2L then each of these will exert a force on the wall and
the wall will exert an equal reaction force on the molecule. The total force on
the wall in the x direction is PL2, where P is the pressure on the wall. This is
therefore the magnitude of the sum of the forces exerted by the wall on the
molecules near the wall, all with coordinate 1/2L. The contribution to the virial
term is thus — 2 PL3, and there will be the same contribution from each of the
six walls - giving a total contribution — 3PL3= — 3PV, where V is the volume
of the container.

If the x component of the force on molecule i due to molecule j is Fx(ri j),
where rtj is the distance between the two molecules, then
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which gives the x component of the molecule-molecule contribution to the
virial term as

The terms in the summation Cx involve interactions between all pairs of
molecules. For the pair of molecules i and j the net contribution to Cx is

since the force on i due to j is equal and opposite to that on j due to i. If the
force on i due to j is directed along the line joining the two molecules then we
can write

and hence the total contribution of the pair of molecules i and j, for all three
components, is

With the values we have found for all the terms in equation (3.31) it now
appears as

where the averaging bracket round the final term is to allow for the fluctua-
tions with time of all the terms in the equation. Without the second term on
the right-hand side we just have the equation of state for a perfect gas where
the individual molecules do not interact. The liquid equation of state contains
in addition the final term which is completely concerned with molecule-
molecule interactions.

3.5.3 The equation of state from molecular dynamics

A molecular dynamics program FLUIDYN, based on a cell model, is available
(see p. xv ). It is assumed that pairs of molecules separated by a distance r give
a Lennard-Jones potential of the form
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The second term represents a long-range attraction and the first a convenient
way of representing a short-range repulsion when the molecules approach each
other too closely. The form of this potential is shown in Fig. 3.5a, and the
corresponding force-distance relationship in Fig. 3.5b. At distance rc the force
is zero and at distance a the potential is zero. The depth of the potential well
is E. Other forms of (3.38) can then be found as

or

The constants E and a provided for the Lennard-Jones potential in FLUIDYN
are those for argon, and constants for other inert gases and for nitrogen are
given in Table 3.2. The cell contains 125 molecules which are initially placed
on a regular grid and then slightly displaced in a random fashion. The
molecules of an actual fluid would actually have a distribution of speeds given
by the Maxwell-Boltzmann distribution, which is what happens when a
system of particles undergoes perfectly elastic interactions. In FLUIDYN the
particles are all given an initial speed equal to the root-mean-square speed
appropriate to their temperature but in random directions. It is assumed that

Fig. 3.5 The variation of (a) potential and (b) force for a pair of molecules with a
Lennard-Jones potential.
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Table 3.2 The Lennard-Jones constants a and E (in the
form T0 = E /k , where k is the Boltzmann constant) for
some inert gases and nitrogen.

Constant

a (nm)
T0 = E/k (K)

Neon

0.275
36

Krypton

0.360
171

Xenon

0.410
221

Nitrogen

0.370
95

by the time the particles have interacted for 50 time steps the velocity
distribution will be approaching the correct form.

The integration of the molecular paths is carried out by the Runge-Kutta
method and at each step after the first 50 steps the contributions to the virial
term in (3.37) are found and accumulated. The value of the virial term finally
taken is the average found for all the steps after the first 50. Again after each
step the radial distribution function, p(r), is found. This is the average density
as a function of distance taking one of the molecules as origin, relative to the
average density in the complete cell taken as unity. Clearly, because of the
strong repulsion at small distances, the value of p(r) is zero for r« o-. It peaks
at the average separation of molecules and then has other fluctuations at
greater distances. A classical solid at absolute zero with the same average
molecule separation would have a radial density distribution consisting of a
series of delta functions. The radial density distribution for a fluid will be a
blurred version of this since the molecules are able to move, so giving a greater
variety of inter-molecule distances. The peaks will be sharper at high fluid
densities as the molecules cannot depart too far from the arrangement of a
solid without some very close interactions between molecules.

The results of running FLUIDYN for argon at a temperature of 329 K, for
which experimental results are available, are shown in Fig. 3.6. The dimension-
less quantity V* is given by

where N molecules are contained in a cell of volume V, so that the larger the
value of V* the smaller is the density of the fluid. The quantity determined as
a function of V* is PV/NkT, which would be unity for a perfect gas. It can be
seen that the results from the cell model are a little low but in reasonable
agreement with experiment. The radial distribution functions for V* =0.9 and
V* = 1.25 are given in Fig. 3.7; the increasing fuzziness with decreasing density
is evident.
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Fig. 3.6 PV/NkT for argon from experiment and from the programs FLUIDYN and
METROPOL (see Section 4.4).

g. 3.7 Radial distribution functions for argon from FLUIDYN with two values of V*
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There is an alternative Monte Carlo approach to the study of the properties
of liquids which will be described in Section 4.4.

3.6 Considerations in modelling plasmas
Plasmas are often called the fourth state of matter, the others being solids,
liquids and gases. They consist of mixtures of ions and electrons together with
some neutral atoms if the material is only partially ionized. For many-electron
atoms there can be different degrees of ionization which will in general depend
on the temperature and the density of the material. There will be quasi-
neutrality in the plasma, with

where ne and ni are the electron and ion density respectively, and Z the average
ion charge number. Approximate neutrality is caused by the large space-charge
fields which are generated by any significant imbalance of charges. Most
plasmas are at temperatures above 104K and temperatures of interest go up to
108K and beyond, which is the thermal regime for research into energy
generation by fusion.

The individual ions of a plasma placed in an electric or magnetic field,
or a combination of the two, will experience forces which were described
for electrons in Section 3.3. In one class of problems, described by the
term magnetohydrodynamics, the motions of the electrons and ions can be
described in terms of currents and the behaviour is dominated by the forces
on the current elements due to magnetic fields, both imposed externally and
also generated by the currents themselves. As the currents can be regarded as
flowing in closed circuits there is little or no charge separation in such a
system. The behaviour of such a system is governed by fluid dynamics and by
Maxwell's equations of electromagnetism. Another class of problems is where
electrostatic fields are dominant, which may partly be externally applied and
partly space-charge fields. In one-dimensional systems where current loops do
not exist there are no current-generated magnetic fields; it is this latter class
of problems which we shall deal with here; the equations which describe the
motion of the jth individual particle, with mass mj and charge qf, are
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and

where E and B are the total electric and magnetic fields at the position of the
particle and p the total charge density. As previously indicated, it is assumed
here that any magnetic field is imposed externally and not generated by
currents within the plasma.

It is clear that, in view of the large numbers of charged particles involved,
there would be no way of modelling such systems using individual particles,
one for each ion or electron. In a plasma, motions are coherent over the whole
system so that we are interested in the collective behaviour of a plasma, the
way that streams of electrons and ions move relative to one another or
themselves. Collective effects mean that the individual charges are lost into a
continuum description which enables us to simplify the problem by the use of
superparticles which represent large numbers of electrons or ions and possess
the combined mass and the combined charge of the group of particles they
represent. For a good simulation, if the continuous nature of the charge
distribution is to be well represented, then it is necessary that there should be
many superparticles. In a particular model the number of superparticles being
handled might typically be in the range 104-107, with each superparticle
representing 107-109 electrons or ions.

Even with the reduction in number by the use of superparticles, dealing with
the simulation by particle-particle interactions is still not practicable. In the
case of the Lennard-Jones potential in the liquid simulation considered in
Section 3.5, it was permissible to consider that the forces were short-range and
that they could be terminated at a certain distance from the particles.
However, this approximation is not applicable for long-range inverse-square
forces. For example, one cannot say that the gravitational field at the Earth's
surface is mainly due to nearby material: the centre of action is at the centre
of the Earth and distant material at the far side of the Earth is having a
significant effect. Nevertheless, it is evident that distant particles do not have
to be dealt with individually but that a reasonably small cluster of them will
have almost the same effect as the combined charge at the centre of mass of
the cluster. Although in the method to be described the field experienced by
individual particles is not calculated by dividing the combined charge of a
cluster by the square of its distance, it is instructive to see what errors might
come about from such an approximation. In Fig. 3.8 we show in two dimen-
sions a square box of unit side with centre at coordinates (m, n). Using a
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Fig. 3.8 Ten equal charges randomly
placed in a unit-side square box with the
box centre at (m, n) with respect to the
origin.

random number generator, 10 equal charges are positioned in the box and the
components of field at the origin due to the 10 individual charges are found.
For each value of (m,n) 100 different random configurations are generated
and the mean and standard deviation of the components of field at the origin
are calculated. These results are shown in Table 3.3, compared with the
approximate field components calculated by assuming that all the 10 charges
were at the centre of the box. It will be seen that there is a systematic
difference between the mean and approximate values which can be sum-
marized by the statement that 'the average of inverse squares is greater than
the inverse square of the average'. This effect is small for the larger distances
but, as appears from a comparison of the mean and approximate values, can
be as much as 10 per cent for very small distances. The standard deviations
show that the random fluctuations can be even larger, as much as 20 per cent
or even more, at close distances. The errors would be smaller, but similar in
size, if the combined charge were taken at the centre of mass of the charges
rather than at the centre of the box.

The way in which the distribution of electrons and ions is transformed into
electric fields in the method to be described is not by the direct process we
have used in this test. However, one part of the method does involve the
approximation that all particles act as though they were placed at the nearest
point of a grid and the errors we have found here will still appear, albeit in a
less transparent way. For the errors to be small the cells defined by the grid
should contain ~ 100 particles; another condition, if the coherent motions of
electrons are to be properly represented, is that the cell size should be small
compared with the characteristic coherence length. In Section 3.7 we shall
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Table 3.3 Testing the approximation that 10 charges in a unit-side
square box may be replaced by the combined charge at the centre of the
box. The coordinates of the box centre are (m,n).

m n Approx. Mean o-
x Approx. Mean o-

y

Ex Ey Ey

10
10
10
8
8
8
6
6
4
4
3
3
2
2
2
1
1

10
6
2
8
4
0
6
2
4
0
3
1
2
1
0
1
0

0.0354
0.0631
0.0943
0.0552
0.1118
0.1562
0.0982
0.2372
0.2210
0.6250
0.3928
0.9487
0.8839
1.7888
2.5000
3.5355
10.0000

0.0354
0.0631
0.0943
0.0554
0.1120
0.1563
0.0985
0.2378
0.2223
0.6283
0.3967
0.9608
0.9027
1.8430
2.5641
3.8746
10.9798

0.0006
0.0011
0.0018
0.0011
0.0025
0.0038
0.0025
0.0074
0.0087
0.0300
0.0208
0.0602
0.0727
0.1751
0.2426
0.7075
2.1222

0.0354
0.0378
0.0189
0.0552
0.0559
0.0000
0.0982
0.0791
0.2210
0.0000
0.3928
0.3162
0.8839
0.8944
0.0000
3.5355
0.0000

0.0354
0.0378
0.0188
0.0553
0.0559
-0.0001
0.0983
0.0789
0.2217
-0.0012
0.3953
0.3169
0.8981
0.9090

-0.0129
3.8488

-0.1879

0.0006
0.0008
0.0010
0.0011
0.0017
0.0019
0.0025
0.0043
0.0085
0.0158
0.0202
0.0351
0.0698
0.1080
0.1419
0.6740
1.5704

'Approx. Ex' and 'approx. Ey' are the field components with the combined
charge at the box centre. 'Mean Ex' and o-

x are the mean and standard
deviation of the x component of the field for 100 random arrangements
of charges; there are similar quantities for the y component.

describe the cloud-in-cell method in which each particle is spread out over
several cells, which reduces the errors.

The forces acting on a charged particle can be divided into two types: those
due to distant charges, which give a slowly varying field in the vicinity of the
particle and so contribute to collective motion of the particles in its region;
and those due to nearby particles which cause it to move relative to its
neighbours in an uncorrelated way. The correlated motions are governed by a
time-scale which is known as the plasma period, tp, which is the time-scale
for natural oscillations in the plasma. Consider a slab of plasma, as illustrated
in Fig. 3.9a, that is then subjected to a brief electric field which slightly
separates the charges and creates two thin layers of opposite polarity, each of
thickness x, as shown in Fig. 3.9b. An infinite sheet of uniform charge density
a per unit area gives rise to a uniform field o-/2e in its vicinity. Since the surface
density of charge in each layer has magnitude nex and they reinforce one
another within the plasma, the total field is nex/E0 in an upward direction.
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Each electron, of mass m, experiences a force —ne2xlE0 and thus undergoes
simple harmonic motion with angular frequency, known as the plasma
frequency,

corresponding to a plasma period

The distance within which the uncorrelated particle-particle interactions are
regarded as important is called the Debye length, which we denote by AD. If
we consider the Debye sphere, a sphere of radius AD surrounding the particle,
then the effect of the distribution of charge beyond a distance AD is substan-
tially reduced by screening. To understand the role of screening consider a test
charge q at the origin surrounded by electrons in thermal equilibrium. Time-
averaged over the statistical fluctuations the electron density, n, at a position
with potential O will be governed by the Boltzmann probability and will be
ne e x p ( e o / k T ) , where e is the electron charge and T the temperature. Since the
plasma is globally quasi-neutral the electron space charge is on average

Fig. 3.9 (a) A neutral plasma with equal
positive ion charge (vertical lines) and
negative electron charge (horizontal lines).
(b) Two slabs of charge, each of thickness
x, due to the separation of the charges.
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balanced by that of the ions, so that the average electron density, ne, is
Z times that of the ions, ni, where Z is the mean ion charge.

Thus in the neighbourhood of the test charge there exists a space charge,
due to the electron-density fluctuation resulting from the potential, given by

The potential O is determined by the space charge from Poisson's equation
(3.44) which in this context, with the appropriate spherically-symmetric form
of the Laplacian operator, is

subject to 0 ->• q/4neor as r -> 0, the local test charge field. The solution of
(3.48) with the imposed boundary condition is

where

is the Debye length. It is evident that for r«AD the field is due to the test
charge, but for r of order AD or greater the field is substantially reduced
(screened) by the electrons (and also by an equivalent, but neglected, term due
to the ions).

For distances less than the Debye length the fields due to individual charged
particles are effective and the plasma behaves as a collection of individual
uncorrelated particles. Over large distances the individual behaviour is
screened out by the collective action of many particles. Indeed, over these
lengths only collective behaviour, in which the particles behave coherently,
usually in the form of a plasma wave, can occur. It is in this latter region that
particle-in-cell simulation is appropriate.

Particle behaviour in the short-range (individual) regime is characterized by
collisional effects, distinguished from those in gases by the importance of the
simultaneous interaction of the test particle with many other bodies. Now the
question is to decide how important are the induced motions due to local
particle-particle interactions compared to the collective motions due to the
more distant particles. To do this we consider an interaction between two
particles, each with magnitude of charge e, as shown in Fig. 3.10. The distance
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Fig. 3.10 Relative motion of two charged
particles with B at rest.

of nearest approach of the two bodies is D and the speed of A relative to B is
V. It can be shown (Appendix 4) that the effect of the interaction is to give to
A a component of velocity along the direction CB of magnitude

where m is the mass of particle A. This corresponds to an angular deflection
of its path by

A collision time-scale, tc, is defined which is the expected time for a particle
to be deflected through an angle of n/2. Since the individual deflections
are randomly oriented in space then N deflections, each with a root-mean-
square magnitude of deviation <802>1/2, will give an expected total deviation
of magnitude N1/2 <802>1/2. Based on this relationship, it is shown in Appendix
4 that the ratio tc/tp is of the order of the number of particles in the Debye
sphere. If the number of particles in the Debye sphere is very large, which it
normally is, then the modelling of a plasma may be carried out over several
plasma periods without collision effects being important. Under these condi-
tions the system can be regarded as collisionless and the modelling done on
the basis of calculating smoothed-out average fields in the vicinity of each
particle.

3.7 The collisionless particle-in-cell model
Modelling of plasmas can be done in one, two or three dimensions. The
physical reality is that any plasma must be three-dimensional, so when we
study a two-dimensional plasma - say, in the x-y plane - we are assuming
that all sections of constant z are similar and also that the system has infinite
extent in the z direction. The latter condition can never be true but may be a
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reasonable assumption if the z dimension is large compared with the scale of
the fluctuations in particle densities. Each superparticle in a two-dimensional
simulation represents a rod of charge and mass density per unit distance
parallel to z. Whereas point charges give a 1/r2 force law for fields, charge
rods give a 1/r, law although this relationship is not explicitly used in the
computations. For a one-dimensional plasma each superparticle represents an
infinite sheet of charge and mass density per unit area perpendicular to x.
Infinite charge sheets give a uniform field independent of distance from the
sheet.

In the collisionless particle-in-cell (PIC) model the particles are placed in a
mesh, which is usually cubical in three dimensions and square in two
dimensions. What is needed from the distribution of charges is the electric field
at the position of each electron or ion so that its acceleration can be found and
its motion followed. The steps in the process for purely electrostatic fields are:

1. Construct a convenient grid in the one-, two- or three-dimensional space
within which the system can be defined. As examples, in one dimension 250
cells may be used, in two-dimensions 60 x 60 cells and in three dimensions
30 x 30 x 30 cells. The number of cells will depend on the problem and the
computing power available.

2. Decide on the number of superparticles, both electrons and ions, and
allocate positions to them. To obtain as little random fluctuation in the
fields as possible it is required to have as many particles as possible per cell.
Between 25 and 100 particles per cell is desirable but with the limitation
that the cell dimension must be less than a Debye length. The superparticles
may be initially uniformly positioned within the cells. For some modelling
problems a perturbation away from a uniform distribution is required and
this can be imposed.

3. If there is a uniform drift velocity then this can be given to all particles.
A drift velocity requires an open system otherwise particles will pile up at
one closed end and a particle vacuum will be created at the other. Where
there is a drift velocity then periodic boundary conditions are usually used
as described for liquid models in Section 3.5. Another possibility is for the
boundary to reflect the particles back into the system. The size of the space
being modelled must be larger than the scale of the largest significant
feature in the phenomenon being investigated.

4. A 'cold' plasma is one in which there is no random thermal motion of the
particles. This is very rarely used as numerical energy generation heats the
particles because the Debye length is very small. For the more usual 'warm'
plasma model, velocities must be chosen randomly from a Maxwellian
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distribution and allocated to the particles in random fashion. Due to
statistical fluctuations with small numbers of superparticles, 'hot-spots' or
'cold-spots' may develop within the plasma, and in some codes correction
procedures are built in to avoid this.

5. Assign the charge of each superparticle to the nearest grid-point, or
grid-points, and calculate the charge densities at the grid-points.

6. Using the densities at grid-points, Poisson's equation

is solved to find the potential at each grid-point using techniques similar
to those described in Section 2.12 or otherwise (see Section 3.71).

7. From the potentials, field components are found at the grid-points by the
finite-difference approximation

or otherwise (see the one-dimensional example which follows). Alternatively,
this can be done by Fourier differentiation (see (3.73)).

8. Move the superparticles by numerical solution of (3.42). This can be done
by any suitable method; a leapfrog procedure is often used for speed of
application. For complex problems a combination of computer storage
and time will often dictate the method to be used. The time step for the
integration should be about 0.03 or so of the shortest time of interest in
the system - which in the electrostatic case we are considering here would
be the cell crossing time or, less likely, the plasma period.

9. Calculate and store any characteristics of the plasma which are required.
Output numerically or graphically at required intervals.

10. If the total simulation time is not exceeded then return to 5.

3.7.1 A one-dimensional plasma program
We shall describe a simple one-dimensional program for investigating aspects
of plasma behaviour. One simplification that can be imposed is in the way that
the ions are handled. Although in general ions and electrons must be treated
as distinct kinds of particles with different charge-to-mass ratios, it is obvious
that, because of their large mass, ions move much less than do electrons. For
some kinds of problem it is sufficient to consider the ions as a stationary
background just contributing to the net charge density, and this is the assump-
tion for this program.
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The one-dimensional cell structure for a total of N cells is set up as shown
in Fig. 3.11, where the centres of cells are at

and the boundaries of cells at

For one dimension, Poisson's equation can be simplified to give fields directly
from charge density by

A finite-difference form for the field at the cell boundary is (Gauss's theorem)

or

and the field at a cell centre is then given as

The recurrence relationship (3.56a) for the fields at boundaries can be
initiated either by some field boundary condition imposed by the problem,
such as E_(1/2) = 0, or by some known potential drop across the system, such as

-X

i = 0 1 2 3 4 Cell boundaries

i= \ 3/2 I 7/2 Cell centres

Fig. 3.11 A one-dimensional cell structure with cell boundaries at integral values of i and cell
centres at half-integral values.
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The charges at cell centres are found from the positions of the individual
particles by

where the summation is over all the particles, particle j has coordinate xj and
charge qj , and where the weighting function w i (x ) gives the proportion of the
charge of a particle at position x that is allocated to the centre of cell i. There
are various weighting schemes, the simplest being to allocate all charge to the
nearest grid-point, for which the weighting function is

The cloud-in-cell method is another simple scheme, where the charge is
assumed to be uniformly distributed over a length Ax and each part of
the charge is then allocated to the nearest cell centre. This is illustrated in
Fig. 3.12; the vertically-shaded portion of the charge is allocated to cell centre
i and the horizontally-shaded portion to cell centre i+1. The weighting
function is:

Since changes in velocity depend on the positions of the particles through
the fields they generate and changes of position depend upon velocities, it is
convenient to solve the equations of motion by a leapfrog process. For the jth
electron (the ions are not moved) this is of the form

where the superscript n represents the number of time steps from the beginning
of the calculation. To find the field at any particle position the same weighting

Fig. 3.12 The cloud-in-cell method. The
vertically shaded part of the charge is
allocated to cell with centre at i and the
horizontally-shaded part to cell with centre
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functions used for the charge density, described in (3.59), must be used so that

which involves either taking the field at the nearest cell centre or linearly
interpolating from the flanking cell centres in the two cases we have considered.

With computations of this kind the use of an appropriate time step is very
important. Since the natural period of disturbances in the plasma will be of
the order of the plasma period, a time step which is some small fraction of
that period is an obvious requirement, and stability requires that At < 0.2tp.
What usually turns out to be a more important requirement is that in a single
time step no particle should be able to travel more that one cell length so that
it cannot cross more than one cell boundary. This depends on the maximum
speed of any particle, and for a one-dimensional case we can safely set vmax

equal to four times the root-mean-square speed of the electrons. The limitation
of the time step by this condition may be found to be given by the relationship

Since the scale length of events in the plasma will be of order AD and the cell
length must be less than the Debye length, (3.62) will then be the critical
relationship for determining the time step.

The program PIC (see p. xv) models the dynamic boundary of a plasma
layer. The initial ion density is set up as shown in Fig. 3.13, where the density
is constant for the first X1 Debye lengths, then falls linearly over the next X2

Fig. 3.13 An initial configuration of ion density of PIC. The total extent of the mesh is Xt

Debye lengths.
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Fig. 3.14 Position-velocity and position-field plots from PIC for: (a) t = 0s; (b) t=
6.727 x 10-15s; (c) t=2.018 x 10---14s; (d) t=2.691 x l0-14s.

Debye lengths, and then is zero to the end of the mesh which has a total extent
of Xt Debye lengths. For the program as given Xt= 10, X1 = 2.5 and X2 = 0.
The number of cells in the mesh is 100, so each cell is one-tenth of a Debye
length. The temperature of the plasma is set at 104K and the density of ions
in the constant-density body of the plasma is 1025 m - 3 . The program generates
10000 random electron positions using a generator which gives the required
distribution and also assigns velocities to these electrons following a Maxwell-
Boltzmann distribution, which in one dimension is a normal distribution with
zero mean and standard deviation (kT/m) 1 / 2 . The initial positions are those for
zero time and the calculated velocities are taken as those for time=1/2 At to get
the leapfrog process started. To keep the plasma electrically neutral on
average, particles which leave the mesh region are returned. Any leaving at
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Fig. 3.14 (cont) Position-velocity and position-field plots from PIC for: (a) t=0s; (b) t =
6.727 x lO-15 s; (c) t=2.018 x 10-14 s; (d) t = 2.691 x 10-14s.

x = 0, at the dense plasma boundary, are returned with their directions of
motion reversed and speeds randomly chosen from a Maxwell-Boltzmann
distribution. Those leaving at the other boundary, x=xt are reflected back into
the system with reversed velocity.

The results this kind of model are best understood from graphical output
and we show a number of stages in Fig. 3.14. The top diagrams show the
position-velocity coordinates of each particle with dimensionless velocities
expressed as fractions of vmax. The bottom diagrams show the variation of field
throughout the mesh where the field is given in a dimensionless form as
E/(Emax —Emin). Since each particle represents an infinite sheet of charge, which
gives a constant field independent of distance from the sheet, the field at a
point is just a measure of the total imbalance of charge up to that point.



122 Simulation with particles

From Fig. 3.14a, which shows the situation at t = 0, it is clear that the net
charge seen by a test particle at the right-hand end of the mesh is zero, so there
is no net field. As the test particle moves towards the origin this situation is
still true, until it enters that part of the region initially occupied by the plasma.
Within the plasma the fluctuations in field are just due to the statistical nature
of the distribution of the electrons.

The top diagram of Fig. 3.14b shows the transient effect of the faster
thermal electrons leaving the dense plasma and moving into the vacuum,
leading to a positive field everywhere outside the ion boundary. This positive
field also exists in most of the ion region except near the left-hand reflecting
boundary, where a local accumulation of electrons reverses the field. Even-
tually, as seen in Fig. 3.14c, electrons are reflected back from outside the mesh
on the right-hand side, seen as the lower negative-velocity band. As time
progresses so this band moves upwards as slower electrons move into and
across the vacuum region (Fig. 3.14d). Eventually this fills and the particle
distribution and field settle down into a nearly quiescent state - dynamic
equilibrium. A careful study of simulations of this kind can lead to a good
understanding of plasma behaviour.

3.8 Galaxy simulation
Another system which can be modelled by the collisionless PIC method is a
galaxy. A photograph of a spiral galaxy, similar to our own Milky Way
system, is shown in Fig. 3.15a, and a simplified model of it in Fig. 3.15b.
A real galaxy contains of the order 1011 stars of varying masses but with an
average mass similar to that of the Sun. Some of the mass is in the central
bulge, the halo, which is simulated by a uniform distribution of stars in a
spherical non-rotating region. It plays no part in the simulation except to
provide a constant external gravitational field in which the other stars move.
This external field will vary as r -2 outside the halo but will be proportional
to r inside the halo. The remaining stars are in a thin disc and one of the
parameters of the model is the proportion, f, of the total number of stars in
the disc. A value of f=0.2 corresponds to a heavy halo and f=0.7 a light one.
If the radius of the disc is rd and the radius of the halo is rh, then another
parameter of the model is a = rd/rh. A compact halo would correspond to a = 3,
and a diffuse halo to a = 1. The radius of a galaxy will be typically 6 x 1020m
(20 kpc), with a disc of thickness 2 x 1019 m (~ 0.7 kpc). The period of rotation
varies little with radial distance, because of the way the mass is distributed in
the galaxy, and for the Milky Way the period is estimated as 2 x 108 years.



Galaxy simulation 123

Fig. 3.15 (a) A photograph of the 'Sombrero hat' galaxy Ml04. (b) A model galaxy with halo
radius rh, and disc radius rj.

Fig. 3.16 A star displaced from the central plane of the disc experiences a restoring force, F•",
due to the stars in the shaded region, of thickness 2x.

The disc stars can be represented by 104- 10s superstars distributed in a thin
disc with the gravitational contribution of the stationary halo calculated from
its configuration as a uniform-density sphere. What is of interest is to deter-
mine for how many rotational periods the simulation can be followed so that
the collisionless PIC assumption is valid. To do this, we need quantities which
are analogous to the plasma frequency and the Debye length. The quantity
equivalent to the plasma frequency is the period of oscillation of a star due to
the gravitational field gradient in the disc. Figure 3.16 shows a cross-section
of the disc, assumed to be infinite in extent. A star displaced from the central
plane by a distance x experiences a net restoring force due to the gravitational
field of the stars in the shaded slab. For an infinite slab the field is found to
be 2nGo-, where O- is the mass per unit area of the slab. Replacing a by 2xp,
where p is the density in the disc, assumed uniform, we see that the field per
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unit displacement is 4nGpx. The motion of the star across the disc is therefore
a simple harmonic oscillation with frequency W

This is equivalent to equation (3.45) with m replacing e and E0 replaced by
l/(47nG), which is the way that the electrostatic force law is transformed into
the gravitational force law. Taking the number of stars in the disc as 5 x 1010,
each of solar mass (2 x 1030kg) it is found that the period of the oscillations
through the disc, ts, is 1.04 x 108 years or about one half of the rotational
period, tr. By analogy with the result found for a plasma in Appendix 4, the
ratio tc/ts will be approximately the number of superparticles in the Debye
sphere so that the ratio tc/tr, will be about one-half of that number. Making
the transformation from electrostatic to gravitational forces, the Debye length
for gravitational forces is

The temperature in this equation is a measure of the random translational
motion of the stars (as it is for ions and electrons), so we may substitute

to give

Thus the ratio

The product nm is the mass of stars (or superstars) per unit volume and we
can replace n by N/V, where N is the total number of superstars in the
simulation and V the volume of the disc. Taking vran as 40kms -1, an
observational figure, we find

This suggests that in order to stay within the collisionless assumption it is
necessary to have more than 1200 superparticles per rotation of the galaxy.
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Using a different basis, Hockney and Eastwood (1988) come to a figure of 140
superparticles per rotation. However, the difference is not important; if
100000 superparticles are used then, on either basis, this is adequate to
preserve the collisionless assumption for 40-60 rotations, which covers the
range of estimates for the lifetime of the universe.

Figure 3.17 shows the calculated evolution of a galaxy with f=0.2, a = 1
and with no random velocity imposed on the original superstar motions
(Berman et al., 1978); the results show striking similarities to some photo-
graphs of spiral galaxies.

3.9 Fourier series methods of solving Poisson's equation

For galaxy simulation, or plasma simulation in more than one dimension by
a PIC method, it is necessary to solve Poisson's equation repeatedly in two or
three dimensions and on a very extensive grid. For this reason it is desirable
to find a more efficient method than those described in Section 2.12 and, to
this end, very effective methods based on Fourier series have been devised. We
shall describe the basis of such methods for a particular example where there
is a two-dimensional grid within a square region of side L defined by n x n
square cells, each of side A( = L/n), and where the boundary condition is
everywhere O = 0 or a constant. For such a situation the potential may be
described over the square area as a half-sine-wave discrete Fourier series plus
a constant

where OB is the constant potential of the boundary. From Poisson's equation
we find

from which it is clear that p must be zero along all boundaries. Thus it is
possible to represent the charge density as a half-sine-wave series, but we use
the discrete form
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Fig, 3.17 A particle-in-cell s imulation of an evolving galaxy. The times (t) are in units of
rotation ocriods (Berman et al.. 1978).
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where (i,j) represents a grid-point and where i/n=x/L and jln = ylL. The
coefficients Dhk can be found from the charge densities at the grid-points from

(Appendix 5). The Ds may thus be determined from the charge-density
distribution at the grid-points and, from (3.69) and (3.70),

With the C coefficients known the potential may be calculated in the L x L
region. In addition, as an alternative to finding field components by a
finite-difference approach, as in (3.52), one may use

The Fourier summations required in (3.68), (3.71) and (3.73) can be carried
out by the fast Fourier transform (FFT) algorithms (see Press et al., 1986)
which were pioneered by Cooley and Tukey (1965) and give a great advantage
in time in dealing with large grids in two or three dimensions. The principle
underlying the FFT process is explained in one dimension in Section 5.6.

Although the process has been described for two dimensions and particular
boundary conditions, it can be generalized. If the gradient of the potential is
zero at the boundary then a half-cosine series is required to describe the
density and for more general periodic boundary conditions it is necessary to
use a full Fourier series with both sine and cosine terms.

Problems

3.1 Make a copy of MAGELEC and modify it to simulate a magnetic lens
for which B = Dy for 0.02 <x< 0.03 and B = 0 otherwise. By computational
experiments find the value of D which gives a magnification of two for 1 keV
electrons.

3.2 Make a copy of CLUSTER and modify it so that the initial total energy
is zero and so that kinetic energy rather than total energy is output. Also
change FORMAT statement 300 so that the geometrical moment of inertia,
R2, is output with El1.5. Run the program for 50 stars with an initial radius
of 50000AU and for times up to 100000 years at intervals of 10000 years.
Use the finite-difference expression (2.9) to find d2(R2)/dt2 over the time range
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and confirm that, within the accuracy of the computation, it equals twice the
kinetic energy. Show that this follows from the virial theorem.

3.3 Modify the data statements in FLUIDYN to find PV/NkT for xenon at
600K and 800K for V* values of 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8 and 2.0. The
values of a and E/k are given in Table 3.2.

3.4 Examine a listing of PIC to understand what it does. Run PIC with the
following parameters:

XT = 12, IT = 100, NT = 600, DT = 0.2,

X1 =3, X2 = 3, DENS = 1024m-3, TEMP = 2 x l04K.

Produce graphical output for the velocity of the electrons and the field within
the space for times close to 5 x 10-14s and 1 x 10-13s and comment upon your
results.
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4.1 Applications of Monte Carlo simulations
In Section 1.6.1 the Monte Carlo method was introduced by describing its very
first application to the penetration of barriers by neutrons and also two kinds
of random-walk problem. The physics of many real problems is stochastic,
that is, dependent on chance; examples are the behaviour of a small number of
radioactive atoms and the outcome of an interaction between an electron and
an atom. For radioactivity we know the probability of disintegration of a
single atom per unit time but we do not know for certain what will be the fate
of any particular atom. Repeated experiments with the same initial number of
atoms for a fixed period of time will give a variety of final states. For electron
collisions there are competing processes of X-ray emission or ejection of an
Auger electron with known probabilities for each. However, with both these
examples if we take a very large system - say, 1020 radioactive atoms or
bombardment of a sample by an intense beam of electrons - then possible
outcomes will have very small fluctuations about the average so that for all
practical purposes the system can be regarded as deterministic, meaning
that the final outcome is exactly determined by the initial conditions of the
system.

There are two types of problem to which we can apply Monte Carlo
methods. The first type is that of purely stochastic problems where it seems
natural that a solution may be found by making random number selection
mimic the inherent randomness of the physical behaviour. The second type is
where we replace a deterministic problem, or one with no obvious random
behaviour, with a stochastic model whose average over many trials gives the
same solution. Another important application of the Monte Carlo process,
which is often related to the solution of a physical problem, is the evaluation
of multi-dimensional integrals. In this application what is obtained is not only
an estimate of the integral but also a standard deviation which is a measure
of the uncertainty of the estimate. This is a characteristic of all Monte Carlo
calculations; one always obtains an estimate and a deviation, and the reduc-
tion of the standard deviation, or variance, is an important aspect of the
application of the method.

4
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4.2 The generation of random numbers - uniform deviates
In Section 1.6.1 a simplified random-walk problem was developed in which
the steps could only be on a square grid in the +x directions or the ±y
directions. The four directions had equal probability and the decision was
made by generating a random number with a uniform probability density in
the interval 0 to 1 and using its value in one or other of the ranges 0 to 0.25,
0.25 to 0.5, 0.5 to 0.75 and 0.75 to 1 to decide on the direction of the step.

The generation of truly random numbers is more complicated than it might
seem on first consideration. One infallible way, which is used to select the
winners of Premium Bond prizes in the UK, is to use a random noise generator,
essentially a device emitting random electrical discharges which are interpreted
as the bits of a binary number. With a properly designed generator this gives
truly random numbers, but it is inconvenient for most scientific calculations
where the preference is for pseudo-random number generators. These generate
the succession of numbers by some numerical algorithm which gives the
advantage that numerical models can be repeated with the same sequences of
numbers if required. Thus in the DRUNKARD program it will be seen in the
listing that the random number generator is of the form

IR = MOD(IR*IX + IY,IM)

R = FLOAT(IR)/FLOAT(IM)

This kind of random number generator is called a linear congruential generator.
The integers IR can be anywhere in the range 0 to IM — 1, and with a proper
choice of IX, IY and IM a sequence of IM integers will contain all possible
values. Clearly the sequence that follows will then be a repetition of what has
gone previously. If IM is sufficiently large, 53 125 in the DRUNKARD pro-
gram, then the random numbers will be discrete but with very small intervals
between allowed values - which will cause no difficulties for most modelling
problems. However, if more than IM random numbers are required then the
randomness of the sequence of numbers will be lost.

4.2.1 Sequential correlation

Another problem which afflicts linear congruential generators is that of
sequential correlation. Users of standard system-provided random number
generators should be aware that they may present this problem. If the
requirement for randomness is very demanding, a specialized subroutine
designed to avoid sequential correlation should be used. Sequential correla-
tion is a difficult concept to describe in an abstract way but can be illustrated



Random numbers - uniform deviates 131

with a simple example. We consider the linear congruent generator IR =
MOD(7xIR + 3,ll). Starting with IR = 1 the sequence generated is 1, 10, 7,
8, 4, 9, 0, 3, 2, 6, 1, 10, .... It is not a totally efficient sequence because 5 is
missing (just as well, because it generates itself!) but the principle can still be
illustrated. We now take successive pairs of values as (x, y) coordinates and
plot them in a coordinate system where the x coordinate is repeated cyclically.
The values shown plotted in Fig. 4.1 are of all adjacent pairs in the sequence
(1,10), (10,7), (7,8), (8,4), (4,9), (9,0), (0,3), (3,2), (2,6) and (6,1). The
sequential correlation is shown by the points lying on sets of parallel lines in
the two-dimensional space. In general, with sequential correlation, if sets of s
successive points are taken then they will fall on (s — l)-dimensional planes in
an s-dimensional coordinate system. To avoid this phenomenon, the random
numbers can be generated several at a time and then shuffled by use of a
second random-number generator to change their order of acceptance. Excel-
lent programs for doing this will be found in Press et al. (1986).

So far we have considered only random numbers with a uniform probability
density between 0 and 1, i.e. the probability of a value between x and x + dx
is dx, which are described as uniform deviates (0-1). By a simple linear
transformation the range can be changed; for example, if a set of uniform
deviates (0-1), r, are generated then the values of 2r— 1 will have a uniform
distribution between — 1 and +1. The extension of this principle to other
ranges is straightforward.

4.2.2 The selection of random points within a sphere
A problem which often occurs in a Monte Carlo calculation is that of selecting
random points within a sphere with rectangular Cartesian coordinates based

Fig. 4.1 Sequential correlation produced
by a linear congruential generator. Adjacent
pairs of values, treated as (x, y) coordinates,
give points lying on a set of straight lines.



132 The Monte Carlo method

on an origin at the sphere's centre. This may occur in an astrophysical problem
in which the motion of stars in a spherical cluster is to be followed under their
mutual gravitational interactions. To select a random point within a unit
sphere we first select three uniform deviates (0-1), r1, r2 and r3, and then
transform them to the range — 1 to +1 by x = 2r1 - 1, y = 2r2 - 1, z = 2r3 — 1.
These can be thought of as Cartesian coordinates within a cube of side 2 units
centred on the origin. The quantity S2 = x2 + y2 + z2 is calculated and if it is
greater than unity then the selection is discarded. Another requirement for the
astrophysical problem would be the selection of a random direction for the
initial motion of each star. A method of generating a random set of angles
( 0 , O ) from two uniform deviates is given in Section 4.7.

4.3 The generation of random numbers -
non-uniform deviates

4.3,1 The transformation method

Sometimes there is a need to generate variables with a particular non-uniform
probability density. Figure 4.2 shows the probability density P(x), normalized
to give fx x P(x)dx = l, so that the probability of values between x and x + dx
is P(x)dx. The integral 0 ( x ) = f x x P ( x ' ) d x J is the cumulative distribution func-
tion, namely the probability of generating a value <x. To obtain the required
distribution the probability of generating a value less than xr, the value of x at
the point C in Fig. 4.2, must be r = O(xr). For a uniform distribution (0-1) the
probability of a value <r is just r. Hence if we generate a uniform deviate r
and find the corresponding x such that the cumulative probabilities are the
same, then the values of x so generated will have the required distribution

Fig. 4.2 Points C, such that the shaded area
is a uniform deviate (0-1), will be deviates
of the normalized probability density, P(x).
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distribution P(x). The values of xr are found from r = O(x r) or xr

process for choosing successive values of x is as follows:
1 r). The

1. Generate r, a uniform deviate (0-1).
2. Since the probability of a value less than r is just r, this is equated to the

cumulative value to give the required value of x. This is equivalent to
finding the x value of the point C in Fig. 4.2 such that the shaded area
equals r.

Let us see how to do this for the normalized distribution P(x)=1/2nsinnx in
the range 0 < x < 1 . The area under the curve from x = 0 to x = X is 1/2( 1 — cos nX) .
If a uniform deviate (0-1), r, is chosen then we need the value of X which
satisfies

which is

Figure 4.3 shows a histogram of values of X chosen by this algorithm, together
with the theoretical distribution.

Fig. 4.3 A histogram of values of x derived from (4.3) compared with the theoretical curve
(broken line) y=1/2nsin(nx)
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4.3.2 The normal distribution - the Box-Muller algorithm

A very common requirement in Monte Carlo calculations is to produce random
numbers having a normal (or Gaussian) distribution with zero mean and a
particular standard deviation, a. If numbers can be produced having a normal
distribution with zero mean and unit standard deviation then just multiplying
those numbers by a gives what is required. For a non-zero mean all that is
necessary is to add the required mean to the generated numbers. The
normalized distribution with zero mean and unit standard deviation is of the
form

A straightforward application of the transformation method is not possible
since areas under the curve involve the so-called error function whose inverse
is not normally provided as an intrinsic function. Figure 4.4 shows a small
rectangular block of sides dx and dy in the x-y plane. If the probability
distribution for x values is given by (4.3) and for y values is given by (4.3) with
y replacing x, then the probability of finding a point in the box is

Since x2 + y2 = r2 and (4.4) gives the probability per unit area, it can be seen
that the probability of finding the particle at a distance between r and r + dr

Fig. 4.4 Areas in the x-y plane for deriving
normal variates.
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from the origin is

Thus the probability of finding a point somewhere between infinity and
distance R from the origin is

We now require s, a uniform deviate (0-1), but for this purpose it is con-
venient to derive it in an unusual way. Two uniform deviates (0-1), t1 and t2,
are chosen such that s=t2/1 + t2/2 (readers may confirm that 5 is a uniform
deviate between 0 and 1 either analytically or with a computer program). A
value of R is now found from (4.6) such that the area under the curve P(r)
between infinity and a distance R from the origin is s. This is

A random point on the circle of radius R will give two independent random
numbers from a normal distribution of unit standard deviation (normal
deviate, 0- = l). Because of the way that s was chosen we can now avoid the
use of computer-expensive trigonometric functions to find the random point
on the circle, and the two normal deviates are found from

This is known as the Box-Muller method for generating normal deviates.

4.3.3 The rejection method
A useful and quite efficient general method of developing variables with a
particular distribution is the rejection method devised by von Neumann. To
give a simple illustration of the principle of the rejection method in Fig. 4.5
we show the distribution function P(x) which is restricted to the interval
a<x<b and has a maximum value of Pm. We also show the distribution
function U(x), which gives a uniform distribution in the interval and is shown
scaled to a maximum value of Pm. If we select a uniform deviate in the interval
then the probability that it falls in the interval x to x + dx is dx. We now find
another uniform deviate (0-1), x', and compare the values of Pmx' and P(x).
The probability that Pmx'<P(x) is proportional to P(x). If that condition is
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satisfied then the variate x is accepted - otherwise it is discarded and next x
is generated and tested in the same way. From this we can see that the
probability of accepting a value between x and x + dx will be P(x)dx, which
will give the required distribution.

From Fig. 4.5 we can see that the rejection method as described might be a
rather inefficient process in that the proportion of variates accepted will be the
area under P(x) divided by the area of the reactangle ABCD. It becomes far
more efficient if instead of choosing the variates x from a uniform distribution
we chose them from a distribution very similar to the one of interest for which
variables can be easily derived. Figure 4.6 again shows the distribution P(x)
together with S(x) = Csin{n(x—a)l(b — a)}, which has been scaled to have a
maximum value of Pm so that S(x) > P ( x ) for all x - a necessary condition. The
variates for this distribution are just linearly transformed versions of those given
in (4.2). We now choose a variate from this distribution; the probability that its

Fig. 4.5 The rejection method. From pairs
of uniform deviates single deviates from the
distribution P(x) may be found.

Fig. 4.6 Function P(x) (full line) and
Csin{n(x—a)/(b—a)} (dashed line) scaled
to have the same maximum value.
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value is between x and x + dx is S(x)dx. If we make the probability of accepting
this value of x proportional to P(x)/S(x) then the retained values of x will have
the required distribution. A uniform variate, x', in the range 0 to 1 is now
selected. If P(x)/S(x) >x' then the value of x is accepted, otherwise it is rejected
and the retained values of x will have the required distribution. If P(x) and S(x)
have similar values over most of the range then the values of P(x)/S(x) will be
close to unity over most of the range and the rejection rate will be low - which
makes the process more efficient.

4.3.4 Markov chain methods
In the study of physical systems, where the ideas of statistical mechanics are
involved, for example, it is sometimes desirable to generate configurations of
a many-particle system such that some property - such as the potential
energy - of the system has a required distribution. To achieve this end it may
be possible to use a Markov chain method provided each separate event is
independent of the preceeding ones. We shall illustrate the idea with some
simple examples involving a single variable which may take discrete values
with particular probabilities. From each of the possible values a stochastic
operator is applied to generate the next value. The successive operations
should be able to generate all possible values of the variable and, if the process
is to be useful, their probability distribution should eventually settle down to,
and remain at, the one required.

Consider a variable which may only have one of two values, X1 and x2.
When the variable has value x1 the probabilities that the next variable will be
either x1 or x2 are P1,1 and P1,2, respectively. Similarly, when the variable has
a value x2 the probabilities that the next variable will be either x1 or x2 are
P2,1 and P2,2, respectively. The values of P can be thought of as the elements
of a stochastic matrix

We take the values P1,1 = 1/2, P1,2 = 1/2, P2,1 =1/3 and P2,2 = 2/3, where the sum of the
probabilities in each row of the matrix equals unity. Starting with either of the
values and generating each successive value by applying the appropriate
probabilities it is found that the final probabilities of obtaining x1 and x2 are
2/5 and 3/5, respectively after many trials.

The usual situation is that the probability distribution is known and the
need is to find the stochastic matrix which generates it. For the simple
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situations we are considering here there are three conditions to be satisfied for
the generation of variables to settle down to the required distribution:

(1) that the sum of the elements in a row should equal unity;
(2) that p(x i}P i j=p(x j)P^ where p ( X i ) is the required probability for variable Xi,
(3) that the elements should allow all variables to be accessed.

We now illustrate the development of a stochastic matrix by the requirement
p ( x 1 ) = 0.2, p(x2) = 0.3 and p ( x 3 ) = 0.5. From condition (2), P2,1 = 2/3P1,2 P3,1 =
2/5P 1,3, and P3,2 = 3/5P2,3. We may start by assigning arbitrary values to P1,1 and P1,2,
subject to their sum being less than unity. Their sum could be equal to unity but
zeros in the matrix tend to slow down the acquisition of the steady-state
distribution. Let us choose P1,1 = P1,2 = 1/3. From condition (1) we must have
P1,3=1/3. From condition (2) we now have P2,1 = 2/9 and P3,1 = 2/15. We now make
another arbitrary assignment P2,2 =4/9 which, by (1), gives P2,3 = 1/3. From (2) we
must have P3,2 = 1/5 and hence from (1) P3,3 = 2/3. The full matrix is thus

15

1 1
3 3
4 1
9 3
1 2
5 3

These values may be inserted in the program MARKOV3 (see p. xv) to
confirm that the required distribution for the values of x1, x2 and x3 are
obtained. In finding the stochastic matrix three elements were chosen arbitrar-
ily. Another possible matrix, giving the same distribution, is the following:

1 2 2
5 5 5

The Markov chain principle can be applied in much more complicated
forms to finding configurations of systems, usually systems of particles, for
which the energy conforms to some theoretical distribution. We now describe
one such application.

4.4 Simulation of a fluid by a Monte Carlo method
It is known from statistical mechanics that the probability of finding an
arrangement of interacting particles for which the total potential energy is $
is proportional to exp( — $/kT), where k is the Boltzmann constant and T the
absolute temperature. Thus, for example, if there were some quantity Q
associated with the collection of particles then the average value of Q for all
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possible arrangements of the system would be

where 1 is the potential energy of the system and the summation over a implies
that it is over all possible arrangements. It should be possible in principle to find
a good approximation for <Q> by generating a very large number of random
configurations and evaluating the two summations for them but, in practice,
this will not work. Virtually all the arrangements will have one or more pairs of
particles very close together so that $ for the arrangement is very large, thus
making the probability vanishingly small.

4.4.1 The Metropolis algorithm - the equation of
state of a liquid
A way of overcoming this difficulty was found by Metropolis et al. (1953),
whereby a succession of configurations can be generated by a Markov chain
process in such a way that the probability of generating a configuration with
potential energy $ is proportional to exp( — $/kT). The configurations which
are most probable are produced most often and <Q> can be found just from
an unweighted average of Q from the generated configurations. Different
variants of the process can be devised. One approach is as follows:

1. Generate an initial configuration. This can be a uniform distribution since
the process eventually randomizes the distribution. The total potential
energy $ is found.

2. Select a molecule at random. This is done by first selecting r, a uniform
variate (0-1). If there are N molecules then the molecule selected is
indicated by the integer INT(rN) +1.

3. A random direction is chosen in which to move the molecule. This is done
by the process described in Section 4.7 involving the selection of two
uniform variates (0-1).

4. The molecule is moved in the chosen direction a distance d which is itself
chosen from a uniform distribution between 0 and A, where A can be of
order 0.05 of the average distance between molecules.

5. Calculate the new potential $' and the change of potential A4 = $' — $.
6. If A$ is negative, which means that the potential energy has been reduced

by moving the molecule, then the new configuration is accepted as one of
those from which the value of <Q> will eventually be found. Then return
to step 2 to find the next configuration.
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7. If A$ is positive then the quantity exp( — A $ / k T ) , which will be between
0 and 1, is calculated. A uniform variate (0-1), r, is selected and then

(a) if exp( — A$/kT)> r, the new configuration is accepted and contributes
to <Q>;

(b) if exp( — A$ lkT)<r, the new configuration is rejected and the original
contribution makes a further contribution to <Q>.

Then return to step 2 to find the next configuration.

This algorithm achieves the desired end of generating configurations with the
required probabilities. It is incorporated in the program METROPOL (see
p. xv) which, as provided, deals with 125 molecules per cell. Starting from the
uniform configuration it ignores the first 20 000 configurational changes to
eliminate any initial bias and then calculates the virial term in (3.37) and
inter-molecule distances every 20 configurations for the next 80 000 configur-
ations. Then, as for FLUIDYN (Section 3.5.2), it gives the value of PV/NkT
and the radial density distribution.

The variation of PV/NkT with V* for the Monte Carlo method is shown in
Fig. 3.6, and it is seen to give values higher than the molecular-dynamics
model and also higher than experiment. The radial distribution functions for
V* = 0.9 and V* = 1.25 are given in Fig. 4.7, which are similar to those found
from the molecular dynamics approach in Fig. 3.7.

Fig. 4.7 Radial distribution function from METROPOL for two values of V*
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There are ways of modelling liquids other than those of molecular dynamics
(Section 3.5.2) and the Monte Carlo approach. In practice, the modelling
processes we have examined are inadequate in that they assume that only
two-body effects are important - in other words, that the force between two
bodies is independent of the presence of a nearby third body. This is not
actually true because of polarization effects. The third body will modify the
electron distribution in each of the other two and thereby change the forces
between them. There are ways of modelling such many-body effects, but they
are time-consuming and difficult to apply.

4.5 Integration by Monte Carlo methods

In some scientific problems multi-dimensional integrals may occur which would
be extremely expensive to evaluate by conventional quadrature techniques. If
there is a system of n particles with pair potential energy </>(r i , j) then the classical
partition function

involves integration in 3n dimensions. If n — 20 and coordinates were taken at
two points in each dimension then the number of points at which the integrand
is evaluated is 260. With a supercomputer which could carry out 109 function
evaluations per second this task would take about 40 years. A description of the
commonly used methods of quadrature is given in Appendix 6. A quite efficient
procedure is Gauss quadrature, and if a ten-dimensional integral were to be
evaluated with an integrand requiring five Gauss points per dimension then this
would require about 107 function evaluations - which is feasible but expensive
in time on desktop computers. There is an alternative approach using Monte
Carlo ideas based on the concept that since the value of (4.11) is actually

where V is the volume of the system, then Monte Carlo methods can be used
to find the average value of the integrand.

This principle will now be illustrated in one dimension. We consider the
function f(x) shown in Fig. 4.8 which is defined in the range a to b. The integral
of the function over the range, which is the area under the curve, equals the
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Fig. 4.8 The area under f(x) between a
and b equals (b—a)(f(x)y.

average value of f(x) over the range multiplied by the range, in this case

In the trapezium, Simpson and Romberg methods of numerical quadrature
(Appendix 6) the values of f(x) are sampled at uniform intervals of x in order
to estimate the value of <f (x)> . An alternative, albeit seemingly inferior,
method is to select random values of x by a Monte Carlo procedure in the
range of the integrand. We illustrate this process with

The second column of Table 4.1 shows the value of the integral found as the
average of (1 + x2) -l from n different random values of the uniform variate x in
the range 0 to 1. The estimate is clearly better as n increases, which is to be
expected. If the Monte Carlo integration were repeated several times with n
function evaluations but with a different seed for the random number generator
each time, there would be a range of different estimates. It is possible to evaluate
the variance of the estimates from sampling theory. We envisage a situation
where there is a large, effectively infinite, set of variables xi with a mean <X>
and variance a2

u. A random sample of n of these variables is selected and has a
mean <x> and variance a2

s. From the sample the best estimates of the mean and
variance of the whole population are <x> and na23/(n — 1) respectively, the latter
being approximately a2

S if n is sufficiently large. If many different estimates
from samples of n are found then these samples would have a variance of a2

Uln
which gives a measure of the reliability of an estimate from a single sample.
Normally, with a population of unknown character, the variance of the
estimate would be estimated as a2

S/n. For the present example the standard
deviation of the estimate (aS /n1 / 2) is given in the third column of Table 4.1.
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Table 4.1 Monte Carlo estimates of S1
01/(l+x2)dx and standard

deviations without variance reduction and with variance reduction
using Q(x) = 1 /3(4-2) .

n

10
100

1000
10000

100000
1000000

Without variance reduction

Estimate

0.753097
0.810334
0.792977
0.786674
0.785470
0.785399

o

0.057005
0.016174
0.005059
0.001607
0.000508
0.000161

With variance reduction

Estimate

0.780962
0.784293
0.785572
0.785446
0.785407
0.785399

a

0.006259
0.001 954
0.000 621
0.000200
0.000063
0.000020

There are ways of finding an estimate of the integral with a much smaller
variance if an integrable function is known with similar shape to the function
to be numerically integrated. The general idea behind this technique is similar
to that used in the rejection method of finding random variables described in
Section 4.3.3. We suppose that we have a function Q(x), the form of which
has some similarity to that of f(x) and is normalized in the range a to b. We
express (4.13) in the form

A change is made to a variable s such that

and

From (4.16) the transformation from x to s is found and since the range of s
is from 0 to 1 the integral (4.15) now appears as

This is now evaluated from values of s chosen as uniform variates in the range
0 to 1. Since Q(s) has been deliberately chosen to have a similar form to f(s)
the values of the integrand in (4.17) will have little variation and hence the
variance of the estimate of I will be correspondingly smaller. We illustrate this
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for the example in (4.14); the form of Q(x) we take is

which is normalized in the range of the integral and falls linearly over the
range from 4/3 to 2/3 which is in the same ratio as the fall in the values of the
integrand in (4.14) between x = 0 and x = 1. From (4.16) we have

from which we find

The integral is now transformed to

The Monte Carlo estimates of / and their standard deviations are shown in the
fourth and fifth columns of Table 4.1. It is clear that the estimates are better
and the standard deviations are smaller.

All the above is just for illustrative purposes, as in practice one would not
evaluate a one-dimensional integral in this way - a much better sample of the
integral range is found by taking values of the variable systematically, as in
the methods in Appendix 6, rather than randomly. An important feature of the
Monte Carlo method is that the expected error is O(n -1 /2) so that increasing
the number of integrand evaluations by a factor of 100 decreases the expected
error by a factor of 10. The Monte Carlo method can be applied to a multi-
dimensional integral by evaluating the integrand at random points in the
multi-dimensional space where each coordinate is a uniform variate in the
range of that coordinate. If it turns out that an integrable model function
similar to the one being evaluated is available then a solution with smaller
standard deviation may be found. Regardless of the number of dimensions, of
the integral the error will still be O(n-1/2).

Suppose, however, that the « integrand evaluations are used for an
m-dimensional integral; then the number of points for each coordinate range is
n/m. The expected error for standard methods usually depends on some power
of the integration interval, say a, and so will be O([m/n]a) which will also be the
order of error of the total m-dimensional integral. For a particular n, at some
value of m the balance of favour will switch from factorized conventional
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integration to the Monte Carlo procedure. As an example, a somewhat artificial
one but it illustrates the principle, we consider the integral

The integral can be factorized into a product of 10 similar integrals and its true
value is easily found as 0.1942. A Monte Carlo estimate based on 310 (59 049)
points, without variance reduction, gave a reasonable estimated value 0.1943
with a standard deviation of 0.0117. A ten-dimensional Gauss integration with
three points in each dimension gives a poor estimated value, 0.5 1 1 7.

Because of the simplicity of programming the Monte Carlo method is often
used for multi-dimensional integration (n>4) when its use would not be
justified by considerations of precision alone.

4.6 Monte Carlo solution of Poisson's equation
In Section 2.13 a finite-difference approach was used to solve Poisson's
equation in the form

If we write Q'(i,j) = ( h 2 / 4 k ) Q ( i , j ) then we can now look at this equation in
another way by considering that the four quantities 6 ( i + 1 , j ) + Q '(i,j),
6(i- l , j ) + Q'(i,j), 0 ( i , j+ 1) + Q'(i,j-1) and 0(i,j-l) + Q'(i,j) are estimates of the
temperature at the point (i,j), each with a probability of 0.25. If we made
Monte Carlo selections of the four quantities with equal probabilities then the
average of a large number of selections would give the required temperature.
However, unless a neighbouring point is a boundary point at fixed temperature,
its temperature is also unknown but it too can be estimated from its
neighbouring points in the same way as described above. In Fig. 4.9 P is the
point for which the temperature 0(P) is required. A neighbouring point S1 is
selected and, assuming our probability interpretation and a change of notation,
we can say that 0(S1) + Q'(P) is an estimate of 0(P). If now S2, a neighbouring
point to S1, is selected then 0(S2) + Q '(S1) may be considered as an estimate of
0(S1) and hence 0(S2) + Q'(P) + Q'(S1) becomes an estimate of 0(P). Eventually,
after m, steps a boundary point will have been reached where the temperature is
known as 0(B) and there will then be an estimate of 0(P) given by
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A single estimate will not be very reliable but by repeating the process many times
the average of the estimates will give a reasonable measure of 0(P). If n Monte
Carlo trials are made then the average of the individual estimates will be the
overall estimate of 0(P) and the standard deviation of the overall estimate will
be the standard deviation of the individual estimates divided by n1/2. The Monte
Carlo program MCPLATE (see p. xv) is a modification of HOTPLATE (Section
2.14) and solves the Dirichlet problem where the boundaries are all at fixed
temperatures. The input is similar to that for HOTPLATE except that the user
must specify the number of Monte Carlo trials per point whose temperature is to
be determined. The problem described in Fig. 2.15 is solved with 1000 trials per
point, and the solution is shown in Fig. 4.10 together with the standard devia-
tions. The solution compares favourably with that shown in Fig. 2.16 although
it took somewhat longer to obtain. In general, problems of this sort would not be
solved by the Monte Carlo method unless there were special circumstances. If, for
example, the geometry of the surface was very complicated and the temperature
was required at only one point then the Monte Carlo method could be an attrac-
tive alternative to finite-difference, finite-element (Chapter 6) or other methods.

Fig. 4.9 A random walk from point P to
a boundary point in the Monte Carlo
method of solving the Dirichlet problem.

-1. -1. -1. 350. 400. 400. 450. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-1. -1. 300. 352. 400. 433. 500. 0.0 0.0 0.0 1.9 2.2 2.1 0.0

-1. 300. 326. 361. 402. 443. 500. 0.0 0.0 1.7 2.4 2.6 2.5 0.0

350. 339. 344. 365. 402. 443. 500. 0.0 1.6 2.1 2.6 2.8 2.6 0.0

400. 358. 348. 363. 388. 432. 500. 0.0 1.7 2.1 2.5 2.9 2.9 0.0

400. 348. 335. 338. 357. 397. 500. 0.0 1.7 1.9 2.2 2.7 3.1 0.0

350. 300. 300. 300. 300. 300. 400. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 4.10 (a) The Monte Carlo solution of the Dirichlet problem shown in Fig. 2.15. These
results should be compared with the finite-difference solution in Fig. 2.16. (b) Standard
deviations of the temperature estimates.
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4.7 The Monte Carlo method applied to a nuclear reactor
We shall conclude our description of the use of the Monte Carlo technique with
a detailed case study of the operation of a nuclear reactor, which is a good
illustration of the power of the method. Natural uranium contains two isotopes:
238U, the major component; and 235U, the minor component which accounts for
0.7194 per cent of the mixture. When a slow neutron is absorbed by a 235U
nucleus fission may occur, with the release of energy and the production of fast
neutrons with an energy distribution with mean 2 MeV. The average number of
fast neutrons produced per fission process is 2.47. In order for these fast
neutrons to be slowed down so that they can interact with 235U, a moderator is
present. This is a light-atom material, graphite (carbon) or heavy water
(deuterium), which takes energy from the fast neutrons by elastic collisions
while at the same time being a poor absorber of neutrons. However, in competi-
tion with the moderating process, while the neutrons are slowing down, there is
a loss of neutrons by resonance absorption, principally in 238U. This peaks
in a number of well-defined energy bands which would make resonance
absorption rather expensive to simulate in detail, but fortunately it is possible to
average over the resonances to give an average cross-section in the slowing-down
regime.

Since many of the fission-produced neutrons are absorbed either within the
reactor or by the walls of the reactor, it is clear that for the energy production
to be self-sustaining at least one neutron per fission process must itself go on
to produce another fission process. The average number of neutrons per fission
that go on to produce further fission is called the multiplication factor for the
reactor. The multiplication factor must be greater than unity for continuous
energy production; on the other hand, if the multiplication factor is greater
than unity then feedback control will be necessary where extra control rods of
boron, a heavily absorbing material, are introduced when required to prevent
a runaway increase in energy production leading to an explosion.

If natural uranium is used in a reactor then it is necessary to separate the
fuel into a series of comparatively slender rods separated by the moderator.
With this geometry a large proportion of the fission neutrons will be able to
leave the rods and be slowed down to thermal energy by the moderator before
entering another rod with the possibility of producing a fission event. On the
other hand, if the uranium is enriched in 235U then it is possible to have an
intimate mixture of fuel and moderator and still to have a multiplication factor
greater than unity. Here we shall consider the program REACTOR (see p. xv)
which gives a simulation of an enriched-fuel reactor in a spherical container.
Various aspects of the simulation will now be described and will be found
within the program itself.
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Neutron production
The distribution of energies (in MeV) of fission-produced neutrons, the Watt
spectrum, is approximately given by

where C is a normalization constant and the proportion of neutrons with
energies between £ and E + dE is N(E)dE. This distribution is illustrated in
Fig. 4.11. The neutrons are emitted isotropically; the mean energy of the
distribution is 2 MeV and the peak of the distribution is at 0.72 MeV.

Interaction cross-sections
In moving through the moderator-fuel mixture the neutrons are capable of
interacting with nuclei in various ways. Associated with each type of reaction
there is a cross-section which is defined as the effective area that the nucleus
places in the path of the neutron for the interaction to take place. The natural
unit in which to express cross-sections in particle interactions is the barn:
1 barn = 10~28m2. A type of interaction that a neutron can have with any type
of nucleus is elastic scattering, with scattering cross-sections 0-

sm = 4.8, 0-
s35 =

10 and 0-7s38 = 8.3 barns for C (graphite), 235U and 238U nuclei, respectively.
An elastic collision which results in the neutron being deflected through an

Fig. 4.11 The energy distribution of fission neutrons from 235U.

3
E (MeV)
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angle 6 gives a ratio of final neutron energy, £', to initial energy, E, as

where A is the mass number of the scattering nucleus. Since the mass numbers
of uranium nuclei are so large they do not greatly effect the energy of the
scattered neutrons. On the other hand, the neutrons are slowed down from
initial MeV energies to thermal energies (~ 0.025 eV) by elastic collisions with
moderator atoms; for C this requires of the order of 100 collisions.

An important aspect of the behaviour of a neutron in a reactor is its
scattered path through the material, for one way it can become ineffective as
a fission producer is to be absorbed by the walls of the reactor. If there were
only a single type of scatterer with scattering cross-section as and number
density ns then the scattering probability per unit path would be ns

a
s. For the

mixture in the reactor the scattering probability per unit path is

Another type of interaction is where the neutron is absorbed by the nucleus
and is lost as a potential fission-producing neutron. Absorption by moderator
material is very low and, indeed, moderators are chosen to have this property;
for carbon aam = 3.2 x 10-3barn. Absorption by 238U is a resonance phenom-
enon, and therefore a very strongly varying function of the neutron energy
during the slowing-down process. To follow this in detail in the Monte Carlo
process would require extensive sampling in the resonance region and following
a large number of neutron paths to obtain meaningful statistics. Fortunately, it
is possible to average over the resonances and to produce an average cross-
section in the slowing-down regime. This is of the form

where E0 is the initial neutron energy which comes from (4.24) and Eth is the
thermal energy, taken as 0.025 eV. The quantity ae is defined by

with aa38 = 2.73 barns. The results of this calculation are given in Table 4.2.
Finally, we come to the absorption cross-section of 235U, aa35. For fast

neutrons it is very small but for thermal neutrons it is extremely high, 694
barns, but of this 582 barns is af, the cross-section for fission.
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Table 4.2 The absorption cross-section aa38 derived from (4.28) and (4.29) as a function of
E

S
/n

38.

ES/n38 8.3 50 100 300 500 800 1000 2000 oo
aa38 0.601 1.066 1.506 2.493 3.096 3.754 4.138 5.400 15.936

The total probability per unit path of some interaction or other will be

E = Es + Ea = (nm(asm + n35as35 + n38aS38) + (nmaam + n35(aa35 + n38aa38) (4.29)

and the mean free path, A, between interactions will be E -1. The probability
of a free path between / and / + dl is then

The following procedure follows a particular neutron through the spherical
reactor of radius R.

1. Calculate an initial random neutron energy from the distribution (4.24)
using the generator DISDEV provided in REACTOR. This uses the rejec-
tion method (Section 4.3.3).

2. Choose a random direction for the resultant speed, to give velocity v, and
place the neutron at some distance from the centre of the reactor (see step 5).

3. From distribution (4.30) select a distance for the neutron to travel to the
next interaction. If x is a uniform deviate (0-1) then

If the initial distance of the neutron from the centre of the reactor is r and
the angle between the radius vector and v is U0, then after travelling a
distance / the new values are r\ and U1, where

and

(see Fig. 4.12). If r1>R then the neutron has been absorbed by the walls of
the container and that particular neutron gives no fission.

4. Select the next interaction as either absorption or scattering with branching
probabilities Ea/E and ES/E, respectively. This is done by comparison with x,
a uniform variate (0-1). If absorption is selected and the neutron has
thermal energy then the probability of fission is A f /Ea and the neutron path
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concludes with the production of 2.47 fast neutrons. Otherwise the neutron
path concludes without production of further neutrons.

For scattering, account must be taken of the three-dimensional geometry
of the reactor. Figure 4,13 shows, in the centre-of-mass frame of the neutron
and scatterer, the initial velocity v, the new velocity v' and the radius vector r.
The angle of deflection, 0, is the angle between v and v' and we take $ as
the angle between the plane defined by v and r and the plane defined by
v and v'. The angles 0 and 0 have the same relationship as the angles defining
direction in a spherical polar coordinate system where 9 has a normalized
probability density P(0) = 1/2sin0 and $ is a uniform variate (0-2;n). The
values of cos 9 and $ may be selected from two uniform variates X1 and x2

(0-1), where cos 0 = 2x1 — 1 and $ = 2nx2. If, prior to the scattering, in the
laboratory frame of reference, the angle between v and r was v and after
scattering the angle between v' and r is v' then it can be shown that

Fig. 4.12 Changes of distance from
reactor centre, O, and of angle between
radius vector and direction of motion after
neutron moves a distance |+

Fig. 4.13 The angle of deflection is 0, and
$ is the angle between the shaded planes.
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and the energy loss is as given by (4.25). If the neutrons have been
thermalized and are in equipartition equilibrium with the other particles,
then there is no longer any net energy change, and this is simulated by
keeping the energy constant regardless of the scattering conditions.
Once the neutron has been launched on its journey the above steps 1- 4 will
enable it to be followed to its conclusion of either being absorbed or
producing a fission - from which the multiplication factor can be found.
Where to start the neutron has still to be decided. There are computation-
ally expensive ways of doing this which come from the results of compu-
tation itself, but the best and most economical way is to use an analytical
result that the neutron density profile will be given by

where r is the distance from the centre of the spherical reactor.
The fall-off at the boundary of function (4.35) is due to diffusion loss in

that region. In REACTOR the random number generator DENDEV yields
deviates with distribution (4.35). This also uses the rejection method.

The output from REACTOR gives not only the multiplication factor but
also the thermalization probability, the proportion of neutrons slowed down
to thermal speeds before being absorbed, and also the fission probability, the
proportion of neutrons giving fission. Figure 4.14 shows the multiplication

Fig. 4.14 The multiplication factor as a function of the enrichment factor for a spherical
reactor of radius 6m with Z7/C=0.001.



Problems 153

factor as a function of the enrichment factor for

Uranium: graphite atomic ratio 1:1000
Radius of reactor 6 m
Number of trial neutrons 10 000.

It will be seen that the multiplication factor reaches unity at an enrichment
factor of about 2.7.

Monte Carlo programs, much more complex than REACTOR and including
control rod simulation, exist to model the working of nuclear reactors and no
reactor would ever be built until a simulation had shown that it could be
operated efficiently and safely.

Problems
4.1. Write a program to:

(i) generate N uniform deviates (0-1);
(ii) find the average of the N values and the departure, dN, from the expected

value, 0.5;
(iii) repeat this process 100 times and find <d2

N>.

Plot log<d2
N> against logN for N= 10, 20, 40, 80, 160 and 320 and hence find

a relationship linking <d2
N> and N.

4.2. According to the central limit theorem the sum of N random variables
with means xt and variances Vi will have a normal distribution with mean
EN

i=1xi; and variance EN
i=1V, if N is large (theoretically infinite). A uniform

variate between — 1 and +1 has a variance of 1/3 so that sums of 27 such
deviates should have a normal distribution with mean zero and standard
deviation a = 3. Using a uniform-deviate generator find 100 000 such sums and
find the proportions within a, 2a and 3a from the mean. For a normal
distribution these should be 0.6826, 0.9545 and 0.9973.

4.3. Use the rejection method to generate 1 000 000 deviates for the probab-
ility distribution P(x) — Ce -3x in the range x = 0 to x = l, where C is the
normalizing constant. Use the comparison function Q(x)=D(l — 0.95x),
where D is the normalizing constant. Find the numbers of deviates in ranges
of 0.1 from x = 0 to x = 1 and compare with the theoretical values.

4.4. Develop a 4 x 4 stochastic matrix P such that the four probabilities
generated are p(x1) = 0.1, p(x2) = 0.2, p(x3) = 0.3 and p(x4) = O4. You may
choose the first three elements in the top row arbitrarily and thereafter you
will need to choose arbitrarily the middle two elements in the second row and
the third element in the third row. Write a program to use the matrix in a
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Markov chain process to generate 1 000 000 variables and check that the
correct probabilities are found.

4.5. Repeat Problem 3.3 using METROPOL. Since this program takes much
longer than FLUIDYN you might wish to modify the program so that it will
complete all values of V* in a long single run.

4.6. Write a program to evaluate

by the Monte Carlo method using the number of samples, N = 10, 100, 1000,
10 000 and 100 000. Give the result for one run of the program for each value
of N. Modify the program to run 25 times for each value of N and by com-
paring the 25 results with the analytical result 70 — 16sin n/8 + 56sin n/4| —
112sin 3n/8 = 5.371 873 x 10-4, find the standard deviation, aN,, for each value
of N. Plot logo-av against logN and hence show that aN a N-(1/2). Make sure
that the program is so designed that for each of the 25 runs the seed of the
random number generator is different.

4.7. A thin plate, as shown in Fig. 4.15, is insulated on its top and bottom
surfaces and had edges maintained at the temperatures indicated. With res-
pect to the origin shown, it also is heated according to H =107sin(nx)
sin(ny)Wm -3, where x and y are in metres. The square grid within the plate
has side 0.lm and the thermal conductivity of the plate is 500 Wm-1Kr-1.
Modify the program MCPLATE to find the temperature distribution within
the plate using 1000 trials per point.

Fig. 4.15 Diagram for Problem 4.7.
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4.8. Run the program REACTOR with the following data:

ratio of atomic fuel to graphite 0.001
fuel enrichment factor 2.7
number of trial neutrons 10 000
radius of reactor 1.0 to 9.0m in steps of 1.0m.

Find how the multiplication constant varies with reactor radius and comment
on your results.



The wave equation

5.1 General solutions of the wave equation
Wave motions occur commonly in problems in physics, in vibrations on strings
or as electromagnetic waves, as solutions to the Schrodinger equation and in
the behaviour of plasmas, to give a few examples. The general form of the
wave equation in one dimension is

where c is the velocity of the wave motion, assumed constant. It is a linear
equation with two independent variables, x and t, and one dependent variable,
the displacement n, and from Section 2.11 it will be seen that it is a hyperbolic
partial differential equation.

A general solution of (5.1) is

where f is any function. If several individual solution functions, f\, f2,..., fn,
exist then any linear combination of these,

will also be a solution. Simple solutions of the wave equation are often
expressed as sine or cosine waves or in complex exponential form, thus enabling
the power of the Fourier series or of the Fourier transform to be exploited in
dealing with the problem.

To give some physical picture of the wave equation we illustrate in Fig. 5.1
some regular waves moving down a canal with an observer standing on the
bank. The observer sees the waves with wavelength A, and v waves pass him
per second. The velocity of the waves moving along the canal is clearly a
product of the wavelength A and the frequency v, or

5
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Hg. 5.1 Waves along a cana) as seen by an observer on the bank.

If the waves are simple sine waves then they can be described by

where $ is a phase angle which may be adjusted to give the required value of
n) for any chosen origins of x and t. At a fixed position x - for example, the
position of the stationary observer - the water oscillates up and down with
amplitude A and frequency v. At a fixed time, as may be recorded by a
photograph, the water surface has a sinusoidal profile with amplitude A and
wavelength A.

The wave in the canal is a progressive wave that moves continuously
without any boundaries - at least in theory. There are also standing waves
that exist in a restricted region and where some kind of boundary conditions
exist. Such a wave occurs in a taut plucked string fixed at both ends, where
the velocity of the wave is given by

in which T is the tension in the string and m its mass per unit length. The
motion of the string can be a simple sine wave, as shown in Fig. 5.2, or much
more complex, as is usually the case with the plucked string of a musical
instrument. For a simple sine wave the standing-wave pattern can be thought
of as two superimposed wave motions moving in opposite directions, or
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Fig. 5.2 A standing wave consisting of three half-waves.

At a fixed position along the string it vibrates with frequency v and amplitude
A|sin(2nx/l)\ and at a fixed time the displacements form a wave with wave-
length A and amplitude A|cos(2nvt)\. If the string is fixed at both ends then it
is clear that for simple sine-wave vibrations the length of the string, L, must
contain a whole number, n, of half-wavelengths, so that

Any complex displacement of the string will be expressible in the form of a
sum of half-sine waves (see, for example Section 3.9). Since the velocity is the
same for all components and the wavelengths are of the form 2Llm
(m = l,2, 3, ...), then, from (5.4), the frequencies are of the form cm/(2L). Thus
when the component of longest wavelength 2L has completed one complete
vibration the component of wavelength 2Llm would have undergone m com-
plete vibrations and the string would have returned to its original condition.
This shows that, without any damping processes, the mixture of frequencies, or
harmonic composition, of plucked string would remain unchanged with time;
in practice, the damping rate differs for the different components so that the
harmonic composition of the note changes as it becomes quieter.

5.2 A finite-difference approach
We can express the differential terms in the wave equation (5.1) in finite-
difference form, as given in Section 2.4, as

where i and j represent increments in space and time, respectively. This can be
rearranged as

The solution process for this finite-difference equation is not self-starting since,
to advance knowledge of the displacements to time ti+1 requires knowledge of
the displacements at two previous times.
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The equation can be somewhat simplified by setting At and Ax such that
cAt/Ax = l since this eliminates the terms involving n ( i , j ) . However, what is
required to initiate the solution is to define not only the initial displacement of
the string when j = 0 but also the motion of the string, ri(i, 0) for all i. We can
write, in finite-difference notation,

The interpretation is now made that the initial motion of the string can be
described from (5.11) in terms of its displacements at time /'= 1 and hypothet-
ical displacements at time ;'= —!. On this basis, we find by substitution in (5.11)

and it is these hypothetical displacements that allow the process of solution
from (5.10) to be started. If, as is often the case, the initial configuration is a

The program WAVE (see p. xv) uses equations (5.13) and (5.10) to solve
the vibrating-string problem. Numerical output can be on the computer screen
and/ or printed, and there is a facility to produce output files for subsequent
input to a graphics package. Figure 5.3 shows the output of such a package
for an initial displacement of the string such that

Eax,

where the string is released from rest. The simplification cAt/Ax = l has been
used and the output configurations are for every second time step. The string
is divided into 12 segments for the purpose of the calculation, and the solution
shows this in the non-smooth representation of the motion. By using many
more segments the motion of the string may be represented somewhat better.
In obtaining this solution no information has been employed relating to the
tension in the string, its length and its mass per unit length. Such information
enables a time-scale to be attached to the calculated results. For example, if

static one, so that ri(i,j) = 0 for all i, then the initial condition is that n(i, – 1) =
n(i,!). Substituting this in (5.10),
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Fig. 5.3 Output from WAVE showing the vibration of a string under tension.

the tension in the string is 400 N and the mass per unit length of the string is
0.0lkgm"1 then, from (5.6), the wave velocity is 200ms -1. If the length of
the string is 1 m then Ax = 0.0825 m which, combined with the wave velocity,
gives At = 4.125 x 10-4s. The interval between the stages of output in Fig. 5.3
is therefore 8.25 x l0-4s.

5.2.1 Stability of the finite-difference equations
The wave equation can be expressed in the form of a pair of coupled first-
order partial differential equations involving the gradient of the displacement,
u = dn /dx , and the velocity of the displacement v = dn\dt:

A leapfrog formulation of the solution of these equations is
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centred on (i,j+1/2), and

centred on (i + 1/2,j). Reverting to displacements, for example,

and

makes (5.15a) an identity and (5.15b) equivalent to (5.10) but centred on
(i+1/2,j). Form (5.15) is convenient if the wave motion is expressed as a pair of
dynamic equations involving a restoring force dependent on displacement and
a damping term involving velocity.

To investigate the properties of this system of equations, we consider the
travelling- wave solution of (5.1)

where w = ck. Since v(x,t) = dn /d t , it follows that

where

and similarly

where

The solution represents the familiar backward and forward travelling sinus-
oidal waves. With U(t) = U0 exp( + iwt) and V(t) = V0 exp( + iwt), another form
of the equations is

and
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In the finite-difference representation (5.17) has the discrete formulation

Substituting from (5.18) into (5.15), we obtain

and

Substituting the right-hand side of (5.19b) for V(J +1/2) in (5.19a) gives

Equations (5.19b) and (5.19c) can be expressed in the form

where

The complex matrix

is called the amplification matrix. Its eigenvalues contain information on the
time dependence of the waves generated in the finite-difference calculation.
From (A1.18) in Appendix 1 the eigenvalues are the roots of the equation

In Appendix 1 it was shown that if a non-null vector was repeatedly multiplied
by a given square matrix then eventually the principal eigenvector of the matrix
is produced and each new vector generated by the process is the previous vector
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multiplied by the principal eigenvalue. Hence if the principal eigenvector of G is
greater than 1 then solutions for u and v (and hence n) grow exponentially
without limit and the process is unstable. From (5.21), if |a|>2 then the
eigenvalues are real and of magnitude greater than 1, so giving instability. This
treatment is the basis of the von Neumann stability condition (Section 7.4)
which requires that the amplification factor for all the Fourier modes must have
amplification factors not greater than 1.

If in (5.21) a <2 then the roots are complex. The quadratic equation (5.21)
can also be put in the form

where h1 and h2 are the eigenvalues. Comparing coefficients, it is clear that

and

Since the right-hand sides of (5.22a) and (5.22b) are real it follows that h1 = h2|,
and hence that h1h2 = | h1 |2 = | h2 12 = 1 - giving a stable process. From this result
we also find from (5.22a) that

or

where Q = arg(h1) = -arg(h2).
From (5.20b) the condition for stability, a <2, is satisfied for any k if

an important result derived in a classic paper by Courant et al. (1928). This
paper established the general concept that explicit finite-difference solutions of
wave problems are stable provided the wave propagates no more than one
mesh interval in one time step; it is known as the Courant-Friedrich-Lewy
condition and C is the Courant number.

Since the eigenvalues have magnitude 1 the displacement gradient, velocity
and amplitude remain constant. The phase change per time step is Q =
+ arccos[l — C2{1— cos(kAx)}] instead of the exact value kcAt=kCAx.
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The phase change is therefore correct if C=l or if kAx is very small. The
former case represents a transformation of one cell per time step with no
interpolation; the latter case corresponds to having wavelengths that are long
compared with the mesh spacing. For short wavelengths, comparable with the
mesh spacing, the phase errors are significant and the wave speed differs from
c. As a consequence the numerical solution suffers from dispersion - that is,
different propagation speeds for different wavelengths - unless a suitably large
mesh with small spacing is used.

5.3 Two-dimensional vibrations

The equivalent of (5.1) where there are two space dimensions is

However, if the system and its vibrations have circular symmetry then the
corresponding equation is

This equation can be used to find the circularly-symmetrical vibrations of a
circular drumskin. The velocity, c, is given by an expression of form (5.6)
where the mass is per unit area of the drumskin and T, its tautness, is in units
of force per unit length.

In finite-difference form (5.24b) appears as

where i indicates increments in the radial space domain and j increments in
the time domain. The updating of displacements comes from
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Assuming an initial stationary start, for the first step we take n (i, —1) = n(i, 1)
so that for the first time step only we use

The simplification that cAt/Ar=l gives good results in general.
Equations (5.25b) and (5.26) are incorporated in the program TWODWAVE

(see p. xv) which enables the circularly-symmetric vibrations of a circular
drumskin to be investigated. Figure 5.4 shows the output for a drumskin of
radius 0.25m with m = 0.01kgm-2 and T=200Nm - 1 , where the initial
displacement is of the form

From general principles it would be expected that the drumskin would always
be horizontal at its centre, but this is not apparent in Fig. 5.4. By taking smaller
intervals Ar and At, but keeping the ratio of the two constant, the calculated
behaviour pattern is seen to resemble that expected better.

Fig. 5.4 Output from TWODWAVE showing the radial profile of a drumskin making
circularly-symmetric vibrations.
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5.4 Optical diffraction
Electromagnetic waves, which can propagate through a vacuum, manifest their
wave properties most strikingly in the phenomenon of diffraction. Optical dif-
fraction patterns are very easy to observe. A street lamp at some distance seen
through a handkerchief held close to the eye will show satellites around the main
image due to diffraction by the rectangular grid of apertures produced by the
warp and weft of the fabric. In Fig. 5.5 we consider a small area dQ, in a plane,
P1, illuminated by coherent light; the coherence could come from having all the
oncoming light radiating from a very small source or from an extended intrinsi-
cally coherent source such as a laser. For simplicity we shall consider a small
point source of light at A of source strength S, and we shall take the transmission
function of a point in the plane P1 as t(r), where r is the vector position relative to
some origin within the plane. The amplitude of the light wave falling on area dQ
will be S /d 1 and its phase, relative to the wave motion at A, will be 2nd l/h. The
disturbance at the position of dQ may thus be described in amplitude and phase by

A proportion f ( r Q ) is transmitted by the plane P1 and this scatters in all
directions with the area dQ acting as a secondary source. A point B, on the
other side of the plate from A, receives from A via the small area dQ a wave
disturbance which may be described in amplitude and phase as

The total disturbance at B will be obtained by integrating (5.29), giving

Fig. 5.5 Light travelling from A to B via
scattering from a small area dQ.
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where the integral is over the illuminated part of the plane P1. An obliquity
factor should be included in (5.29) and (5.30) to allow for the fact that the
secondary scattering is most effective in the direction of the incident radiation
and falls off with increasing angle from that direction. However, we shall
restrict ourselves to situations where the angle between the two directions is
small so that the factor is essentially unity.

In optics two simplified types of diffraction are recognized, associated with
the names Fresnel and Fraunhofer. In Fig. 5.6 the plane P1 is perpendicular to
the z direction and passes through the origin, and the point source A has
coordinates (0,0, — DA). The coordinates of the point B are (XB, yB, DB) and the
coordinate of a scattering point in the plane P1 is given by (x,y, 0). We now
express the quantities d1 and d2, which occur in a very sensitive way in the
phase term of (5.30), in terms of the coordinates. Making the usual binomial
approximations,

and

If terms involving higher than the first powers of x and y can be ignored in
the phase term of (5.30), then we have Fraunhofer diffraction; otherwise, if
quadratic terms are significant and higher-order terms can be neglected, then
we have Fresnel diffraction. With R as the radius of the scattering region in Pj

Fig. 5.6 Points shown in Fig. 5.5 with Cartesian coordinates.
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the condition for Fraunhofer diffraction is, from (5.31),

where the condition must hold for both D = DA and D = DB.
There is no sharp division between Fraunhofer and Fresnel diffraction, and

they merge one into the other. However, if R 2 / (2D)> h/2 then certainly the
diffration would be in the Fresnel regime.

5.5 Fraunhofer diffraction
A simple experimental way of producing Fraunhofer diffraction is illustrated
in Fig. 5.7. The diffracting mask is illuminated by parallel light, effectively a
point source at infinity, and the diffraction pattern is observed at the focal
plane of the lens L so that the diffracted image is equivalent to that at infinity
without the lens. The phase lag of radiation scattered from Q, relative to that
scattered at the origin O, is given by

Fig. 5.7 (a) An arrangement for producing Fraunhofer diffraction. (b) The path difference for
scattering from Q relative to that from O is MQ + QN.
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where r is the vector position of Q relative to the origin O and S and S0 are
unit vectors in the incident beam and scattered beam directions, respectively.
We now make the simplifying assumption that S0 is perpendicular to the
diffracting mask so that r .S0 = 0. All the radiation scattered from different
points of the mask which moves along the direction S is combined by the lens
to fall on a screen in its focal plane. The scale of the diffraction pattern on the
screen will depend on the focal length of the lens, but its actual form will not
depend on the focal length. Representing S by its direction cosines (l,m, n),
then the position on the screen will be (u,v) = (cl,cm), where c is a scaling
constant. Since r • S = (x, y, 0) • (/, m, n) = lx + my, then

With a suitable choice of scaling factor, hc=1 and the disturbance on the
screen can be described as

are carried out over the whole infinite plane of the diffracting mask, although
in practice they are limited to the transmitting region. As defined in (5.34),
F(u,v) is the Fourier transform of f(x,y), and theory shows that f(x,y) is the
inverse Fourier transform of F(u, v) and is given by

f ( x , y ) = l l F(u,v)exp{ — 2ni(ux + vy)}dudv. (5.35)

Both f(x,y) and F(u,v) are continuous functions within the planes in which
they are defined, and in computational work the functions must be sampled
over grids which are fine enough to reveal all the detail they contain. Such
calculations are normally carried out very efficiently by fast Fourier transform
(FFT) algorithms, which were mentioned in Section 3.9. The basic principles
of the FFT process will now be described.

5.6 Discrete Fourier transforms
The implementation of FFT algorithms for multi-dimensional transforms is
very complicated, but here we shall restrict the discussion to one dimension
with a function defined within a region from x = 0 to x = 1. This range can

where any overall scaling constants have been absorbed in f(x, y). The integrals
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always be imposed by a suitable change of scale and origin, and doing this
gives no loss of generality in the analysis which follows. The Fourier transform
we wish to find can now be expressed as the finite integral

and this can be approximated by a trapezium-rule summation as

where N+l values are taken on a uniform grid in the range of x, w(0) =
w(N) = 0.5 and all other ws equal unity. If f(x) is a periodic function, so that
f(0) =f(1), or if f(x) = 0 at x = 0 and x = 1, then the summation appears as

In this form the F(u)s would be called the discrete Fourier coefficients of the
periodic function. From the form of (5.38) it is easily seen that F(u + N) = F(u)
and that F( — u) = F*(u) where '*' indicates the complex conjugate. Hence it is
only necessary to find the complex quantities F(u) for u = 0, 1 ....... int(N/2),
where int(n) means the integral part of n since all other Fourier coefficients
may be determined from this set.

5.6.1 Fast Fourier transforms

The N values of F(u) ate linear combinations of the values of f(x) at the grid-
points. We now make a simplification in notation by writing

and, because of the nature of the right-hand side function,

Expressed in matrix notation, the N values of F(u), for N = 8, are given by
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To evaluate an element of the left-hand side vector involves eight product
operations and seven additions, and to evaluate the complete left-hand-side
vector would involve 8x15 = 120 operations in total. The general expression
for the number of operations would be N(2N— 1) which, for large N, is
proportional to N2. Cooley and Tukey (1965) gave an algorithm which needed
fewer operations which therefore speeded up the calculation. Here we shall
just explain the concepts of the fast Fourier transform process and for
simplicity assume that N is a power of 2 - which makes it easier to program,
although it is not a necessary condition to apply the method.

The main step in the process is the factorization of the matrix in (5.41) into
a product of two simpler matrices. The forms of the component matrices are
simplified if the equations (5.41) are reordered to give
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Writing (5.42) as F=ABf, the product Bf involves 16 multiplications and 8
additions. The matrix A is in block-diagonal form so the equation for evaluat-
ing F can be broken into separate parts for odd and even values of u:

and

The evaluation of each of (5.43a) and (5.43b) requires 16 multiplications and
12 additions. The total evaluation using the factorization of the original 8x8
matrix thus takes 80 operations rather than the 120 from directly using (5.41).
However, this is not the only economy of effort: the 4x4 matrices occurring
in (5.43a) and (5.43b) can also be factorized as products of two simple 4x4
matrices, thus:

and
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The reader may confirm that the use of the factorized 4x4 matrices again
gives a saving in the number of operations to be performed. Applying the FFT
algorithm when N is a power of 2 involves a number of operations proportional
to Nlog2N, whereas the straightforward multiplication in the form (5.41)
requires a number of operations proportional to N2. The saving for large N
can be considerable: for N = 128 the number of operations required would be
reduced by a factor of about 18.

There are many standard FFT programs available. Examples can be found in
Press et al. (1986). They give a one-dimensional subroutine FOUR1 and a
general multi-dimensional subroutine FOURN, and the programs can give
either the Fourier transform or the inverse Fourier transform as described in
(5.35). The function being transformed, which can be either real or complex, is
presented to the subroutines as arrays with sample values of the function at
points of a grid. As an example the array of numbers, forming a letter X as
shown in Table 5.1, was input to FOURN. Within the function space x = 0 to 1
and y = 0 to 1 the function is centrosymmetric, which is to say that f(x, y) —
f(1 — x, 1 — y). Under this condition the Fourier transform is real and Table 5.2

Table 5.1 The function f(x,y) forming a letter X.

0/8
1/8
2/8
3/8
4/8
5/8
6/8
7/8

0/8

0
0
0
0
0
0
0
0

1/8

0
1
0
0
0
0
0
1

2/8

0
0
1
0
0
0
1
0

3/8

0
0
0
1
0
1
0
0

4/8

0
0
0
0
1
0
0
0

5/8

0
0
0
1
0
1
0
0

6/8

0
0
1
0
0
0
1
0

7/8

0
1
0
0
0
0
0
1

Table 5.2 The Fourier transform F(u, v) of the function shown in Table 5.1.

V

0
1
2
3
4
5
6
7

0

13.0
-1.0
-3.0
-1.0
-3.0
-1.0
-3.0
-1.0

1

-1.0
5.0

-1.0
-3.0
-1.0
-3.0
-1.0

5.0

2

-3.0
-1.0

5.0
-1.0
-3.0
-1.0

5.0
-1.0

it

3

-1.0
-3.0
-1.0

5.0
-1.0

5.0
-1.0
-3.0

4

-3.0
-1.0
-3.0
-1.0
13.0

-1.0
-3.0
-1.0

5
-1.0
-3.0
-1.0

5.0
-1.0

5.0
-1.0
-3.0

6

-3.0
-1.0

5.0
-1.0
-3.0
-1.0

5.0
-1.0

7

-1.0
5.0

-1.0
-3.0
-1.0
-3.0
-1.0

5.0
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Table 5.3 The function f(x, y) forming a letter C.

y

0/8
1/8
2/8
3/8
4/8
5/8
6/8
7/8

X

0/8

0
0
0
0
0
0
0
0

1/8

0
0
0
0
0
0
0
0

2/8

0
0
1
1
1
1
1
0

3/8

0
1
0
0
0
0
0
1

4/8

0
1
0
0
0
0
0
1

5/8

0
1
0
0
0
0
0
1

6/8

0
0
1
0
0
0
1
0

7/8

0
0
0
0
0
0
0
0

Table 5.4 The Fourier transform F(u,v) of the function shown in Table 5.3. The
imaginary component is shown below the real component.

0

1

2

3

4

5

6

7

0

13.000
0.000
1.828
0.000

-3.000
0.000

-3.828
0.000

-3.000
0.000

-3.828
0.000

-3.000
0.000
1.828
0.000

1

-4.828
3.000

-3.414
-2.414

0.000
1.000
3.414
0.414
4.828

-1.000
3.414
0.414
0.000
1.000

-3.414
-2.414

2

-5.000
0.000
3.828
0.000
3.000
0.000

-1.828
0.000

-5.000
0.000

-1.828
0.000
3.000
0.000
3.828
0.000

3

0.828
-3.000

0.586
2.414
0.000

-1.000
-0.586
-0.414
-0.828

1.000
-0.586
-0.412

0.000
- 1.000

0.586
2.414

4

5.000
0.000

-3.828
0.000

-3.000
0.000
1.828
0.000
5.000
0.000
1.828
0.000

-3.000
0.000

-3.828
0.000

5

0.828
3.000
0.586

-2.414
0.000
1.000

-0.586
0.414

-0.828
-1.000
-0.586

0.414
0.000
1.000
0.586

-2.414

6

-5.000
0.000
3.828
0.000
3.000
0.000

-1.828
0.000

-5.000
0.000

-1.828
0.000
3.000
0.000
3.828
0.000

7

-4.828
-3.000
-3.414

2.414
0.000

-1.000
3.414

-0.414
4.828
1.000
3.414

-0.414
0.000

-1.000
-3.414

2.414

gives the values found from FOURN. An inverse transform using the values
shown in Table 5.2 exactly reproduced the original function shown in Table 5.1.

To illustrate a Fourier transform of a non-centrosymmetric function, the
array shown in Table 5.3 was input, defining a letter C. The Fourier transform
of this function is complex, and is shown in Table 5.4. Applying the inverse
Fourier transformation to these complex values of F(u, v) gives precisely the
values shown in Table 5.3.

The theory and practice of Fourier transforms we have illustrated here for
one and two dimensions can be carried over into any number of dimensions.
An important application of Fourier transforms occurs in the theory of X-ray
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crystallography where X-rays are diffracted from crystals. Crystals are effec-
tively infinite three-dimensional periodic arrays of scatterers and the Fourier
transforms of such arrangements have finite values only at the grid-points of a
reciprocal lattice - corresponding to having only integer values of three
quantities equivalent to u and v in (5.25). A full treatment of the theory of this
kind of scattering will be found in Woolfson (1997).

5.7 Fresnel diffraction

For Fresnel diffraction it is necessary to evaluate the integral in (5.30),
including the quadratic terms in (5.31a) and (5.31b). Ignoring terms higher
than quadratic in x and y is valid if the scattering region in the plane P1 and
the point B at which the diffraction is observed (Fig. 5.5) are both fairly close
to the axis. While the quadratic terms in the expansion of d1 and d2 will be
important in the phase part of the integrand, the value of the divisor d1d2 will
vary very little for different values of (x,y) and so can be replaced by DADB

and taken outside the integral. With these conditions in place, the disturbance
at point B is found as

where

The phase-component terms outside the integral can be ignored if only the
intensity of the diffraction pattern is required since they have unit magnitude.
We now write
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Since G(u, v) is the inverse Fourier transform of g(x, y), we can use the
power of the FFT to calculate a Fresnel diffraction pattern. The steps are as
follows:

1. Multiply the mask transmission function f(x,y) by e x p { 2 n i ( x 2 + y 2 ) /h .Z} to
give the complex function g(x,y).

2. Use an FFT to calculate G(u,v), the inverse Fourier transform of g ( x , y ) .
3. The value of the inverse transform at (u,v) , where u and v are integers, is

the value of the integral at the point ( x B , y B ) = (hDBu, hDBv).
4. |G(u, v)\2 gives intensities on a relative scale. If the amplitude and phase of

the diffraction pattern are required then
added to the phase of G ( u , v ) .

is

As an example, Fig. 5.8 shows a transparent annular aperture illuminated
by a point source A. The external diameter of the aperture is 0.5 mm and the
internal diameter is 0.1875mm. The distances DA and DB are 60mm and
120mm respectively, which gives Z = 80 mm; under the conditions of geomet-
rical optics the image of the aperture on the screen B would have an external
diameter of 1.5mm and an internal diameter of 0.5625mm. The aperture is
modelled in a 1 mm square region divided into a 128 x 128 mesh with the origin
at the centre. Grid-points corresponding to opaque parts of the mesh have a
value of zero and those at clear parts have a value exp { (2n/AZ)i(x2 + y2) }, where
h was taken as 5 x 10 - 4 mm. The real and imaginary parts of g ( x , y ) were cal-
culated and stored in two separate tables for input to FOURN. The output
Fourier transform gave real and imaginary values on a grid for (xB ,yB) at incre-
ments of distance in each direction of hDB, or 0.06 mm. The radial intensity,

Mask with annular
aperture

Screen for
diffraction pattern

Fig. 5.8 An arrangement for observing Fresnel diffraction.



Problems 177

Fig. 5.9 The computed radial intensity profile for Fresnel diffraction from an annular aperture.

obtained from the sum of the squares of the real and imaginary parts of the out-
put, is shown in Fig. 5.9. It will be seen that transmission through the aperture
does not give a sharp shadow image but that edges are blurred and there are
clear diffraction rings. A very notable feature is the high intensity at the centre
of the diffraction pattern. Such a high intensity occurs at the centre of a Fresnel
diffraction pattern of any round object and the experimental observation of this
by Fresnel and Arago in 1818 was the final proof that led to general acceptance
of the wave theory of light.

Problems
5.1. Run the program WAVE with the standard parameters provided. Write a
subroutine WAVIN.FOR which gives an initial wave profile n] = s in3(nx/L).
Obtain either printed or data-file output at times corresponding to 10nAt, with
n from 0 to 6. Plot the solution by hand, or input the data files to a graphics
package, to view the wave profile as a function of time.
5.2. A circular drumskin of radius R, with the standard parameters given by the
program TWODWAVE, is struck dead centre so that the depression at t=0 is
exp{ — 20(r/R)2}, where r is the distance from the centre. Produce output to plot
the displacement of the drumskin at times corresponding to 10nAt, with n from
0 to 6. Plot the solution by hand, or input the data files to a graphics package, to
view the drumskin profiles as a function of time.
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5.3. With the program FOURN from Press et al. (1986), or some similar
program, find the Fourier transform of the 'arrow' shown below.

y

0/8
1/8
2/8
3/8
4/8
5/8
6/8
7/8

X

0/8

0
0
0
0
0
0
0
0

1/8

0
0
0
1
0
0
0
0

2/8

0
0
1
0
0
0
0
0

3/8

0
1
0
0
0
0
0
0

4/8

1
1
1
1
1
1
1
1

5/8

0
1
0
0
0
0
0
0

6/8

0
0
1
0
0
0
0
0

7/8

0
0
0
1
0
0
0
0

(i) Fourier transform the arrow and then carry out the inverse transform to
obtain the arrow again.

(ii) Do an inverse transform just using the real part of the transform of the
arrow and find the corresponding intensity.

(iii) Do an inverse transform just using the imaginary part of the transform of
the arrow and find the corresponding intensity.

Also examine the amplitude/phase distribution in the inverse transforms in
parts (ii) and (iii), and interpret them in terms of the original arrow.



6 The finite-element method

6.1 Introduction
There is a alternative complementary approach to formulating numerical
solutions to multi-dimensional partial differential equations, based on error
minimization rather than consistent representation as in the finite-difference
methods we have thus far explored. This is the so-called finite-element
approach, which may be formulated in a number of different ways depending
on our definition of the error. It is particularly useful for handling irregular
multi-dimensional domains in which the physical problem can be expressed in
terms of a quantity minimization - a variational problem. Typical examples
are the principles of least energy, least action and least time and the variational
principle in quantum mechanics. Such problems are usually stationary and
in their differential form must be of second order. The former condition implies
that time-marching is not involved, and stability is not a consideration, and
the latter condition implies that not all problems can be solved by this
variational approach. The method is widely used for solving for equilibria in
structural mechanics and Laplace's equations in engineering configurations.

6.2 Differential equations and functionals
There is a class of problems, which arise either in a scientific context or as a
part of a branch of mathematics known as the calculus of variations, which
involve functionals or 'functions of functions'. A common type of functional is

where Q is a function of x which satisfies Dirichlet boundary conditions
Q ( a ) = a and Q(b) = B and Q' = dQ/dx. The calculus of variations is concerned
with finding the function Q which will optimize the value of the functional,
and in our application we shall be concerned with minimization.

Consider the graphical representation of some function Q ( x ) between x=a
and x = b as shown in Fig. 6.1. Each point of the curve gives x, Q and Q' and
hence a value of f ( x , Q, Q'} which can all be expressed in terms of x. We now
need to find the condition that the function Q is such that when f ( x , Q , Q ' )
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Fig. 6.1 A curve with boundary conditions.

is integrated between x = a and x = b it gives a minimum value. If a slightly
different function, Q + dQ, is chosen which satisfies the same boundary
conditions then

where f is written for f(x, Q, Q'). If I(Q) is at a minimum then its rate of change
with respect to changes of Q should be zero, or

It should be noted that dQ is a function of x which has very small values in
the range x = a to x = b and dQ' is its derivative with respect to x. The function
dQ must be zero at x — a and x = b in order that the boundary conditions
should be satisfied by Q + dQ.

We now take a special form of f (x, Q, Q' ) which leads to an equation of
interest in the solution of physical problems. This is

where c is a constant and G and F may be functions of x. For this function
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The condition for the functional to be a minimum is thus, from (6.3),

The last term in the integrand is now integrated by parts to give

The first term on the right-hand side is zero since dQ is zero at both limits, so
that the condition for a minimum of the functional can be written as

This condition will certainly be met if the integrand is zero over the whole
range of x or

from x = a to x = b. A function which satisfies (6.9) with the boundary
conditions Q ( a ) = a. and Q(b) =B will make

The task of solving the differential equation (6.9) can be achieved by finding
a function which satisfies (6.10) and also has the required boundary condi-
tions. However, it seems that the problem of solving the differential equation
has just been transformed into what is, apparently, an equally difficult prob-
lem of finding a function which minimizes the integral. If a precise solution of
the differential equation was required that would be true; in fact we have good
techniques for numerically solving the differential equation, while it is more
difficult to find a precise numerical solution satisfying the condition (6.10).
However, there are analogues of the differential equation in two and three
dimensions where it is somewhat more difficult to find a numerical solution,
although finite-difference methods may be applicable, but there may be
comparatively simple methods for finding an approximate function for mini-
mizing the integral. The main advantage of obtaining a solution through
minimization of a functional comes when problems are in more than one
dimension and where the boundaries of the problem are irregular.
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The technique which is used to solve the integral minimization problem
approximately is the variational method, which finds applications in many
areas of physics. Often the approximate form of the solution may be known
or can be guessed and some analytical expression with adjustable parameters
can be found with the right general shape. Alternatively, the solution can be
approximated by a polynomial expression with a limited number of terms
which, by adjusting the coefficients (parameters) can take on a variety of
forms. The essence of the variational method is as follows:

1. Decide on the analytical function which contains adjustable parameters.
2. Evaluate the functional in terms of the unknown parameters or coefficients.
3. Find the values of the parameters which minimize the functional.
4. Insert these parameters into the analytical function to give the required

approximate solution.

Clearly the success of this method will depend on the extent to which the
variational function can take on a form similar to the correct one and the skill
in getting the best from the variational method is in choosing a good
variational function. We shall now illustrate the principle of the variational
method with a simple example.

We wish to find y in the range x = 0 to x = n/2 where

with boundary conditions x = 0, y = 0 and x = n/2, y = n/2.
Comparing (6.9) and (6.11) we find c = l, G = l and F = 2cos:x. We shall

use a variational function of the form

which satisfies the boundary condition at x = 0. For the other boundary
condition

which gives

This leaves one variational parameter, a, to minimize the functional. With this
value of b
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Table 6.1 Comparison of the variational method solutions
based on the quadratic function (6.12) and the two-straight-line
function (6.16a) with the analytical solution.

X

0
n/12

n/6

n/4

n/3

5n/12
n/2

yquad

0.000
0.138
0.325
0.563
0.849
1.185
1.571

yanal

0.000
0.067
0.262
0.555
0.907
1.264
1.571

ytsl
0.000
0.189
0.379
0.569
0.903
1.237
1.571

We now find a by minimizing the integral (6.10) which, for this problem, is

LThe minimization requires that d I (a) /da = 0 and we can differentiate each of
the terms in the integrand with respect to a before integrating. This leads to

which gives a = 0.4333 and hence, from (6.14), b = 0.3607. The approximate
solution of the differential equation (6.11) from the application of the
variational principle with function (6.12) is

Table 6.1 shows this solution, yquad, compared with the analytical solution
y = xsinx. The solution is not a very good one because the variational function
was not flexible enough to give a good match. A better result could be
obtained with a higher-order polynomial; indeed, by choosing a polynomial of
sufficiently high order a result as close to the analytical result within any
desired tolerance could be obtained.

6.3 Linear variational functions

The match of the variational function (6.15) to the correct solution of the
differential equation is shown in Fig. 6.2 and is not a very close one. What
can be seen just by visual inspection is that a pair of straight lines, shown as
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Fig. 6.2 Full line - the analytical solution
of (6.11). Dashed line - the quadratic
variational function estimate. Dash-dotted
line - a two-straight-line estimate. For this
estimate a is the variational parameter.

OA and AB, would probably give just as good a match taking the range of x
as a whole. Given that boundary conditions at O and B have to be satisfied
such a pair of straight line lines would be defined by a single parameter a, the
ordinate of point A if its x coordinate is fixed at, say, n/4. We shall now apply
the variational method to find the equations of the two straight lines and hence
find an approximate solution of the differential equation (6.11).

To match the straight lines to the points O, A and B their forms are

and

The corresponding derivatives are

The functional which is to be minimized is
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The minimization condition dI(a)/da = 0 leads to a = 0.569 and the variational
function as the two straight lines

and

As seen in Table 6.1, the average deviation of the two-straight-line solution,
ytsl , from the correct values is similar to that for the quadratic function, but
the quadratic function is to be preferred because the deviations are more
uniform over the range.

6.3.1 Many-straight-line variational functions
Figure 6.3 shows a many-straight-line piece-wise continuous linear variational
function where the variational parameters are the ordinates at equally spaced
values of x. If each straight line corresponded to a short, approximately linear
part of the true solution then linear interpolation between the values of x would
define the true function well. We shall introduce the following terminology: each
straight-line section is called an element and each junction of elements is called
a node. Then the y coordinate for some value of x in the element between nodes
xi and xi+1 is given by

Fig. 6.3 A many-straight-line variational
 function.
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Fig. 6.4 (a) N i ( x ) and Ni+1(x) in the range xi to xi+1 (b) Ni_1(x) and N'(x) in the range xi_1

to
6.4 (a) Ni(x) and Ni+1(x) in the range xi to xi+1. (b) Ni - 1(x) and N' (x) in the range xi - 1

. (c) The tent-shaped f

Ni is known as the shape function. It gives the contribution of the value ai at
node i to the value, y, at point x. The form of Ni and Ni+1 in the range xi to
xi+1 is shown in Fig. 6.4a, and the form of Ni-1 and Ni in the range xi_l to %,
in Fig. 6.4b. Taking all the ranges together, Ni is a tent-shaped function which
is non-zero over the pair of elements covering xi-1 to xi+l and is zero
elsewhere. This is shown in Fig. 6.4c, where the N is at the apex of each
corresponding tent, and it will be seen that there is only one-half of a 'tent'
for the two end-points. With such a definition of the Ns the value of y at any
point in the total range x0 to xn can be written as

From (6.21) we can also write
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and

Within the double summation (6.22a) some of the terms will disappear since

In addition, if the spacing of the x values is h then the slopes of the tent sides
are 1/h and — 1/h on the left- and right-hand sides respectively, from which

and

We now use these results to find a four-element solution to the differential
equation (6.11), where the functional to be minimized is

with

and

The variational parameters (ordinates) al, a2 and a3 correspond to x = n/8,
n/4 and 3n/8, so that h = n/8 and 1/h2 = 64/n2. Since a0 = 0 it is not included
in the summations, but the other boundary value a4( = n / 2 ) is included. The
method of approach is to make dI(a1,a2,a3)/dai = 0 for i = l,2 and 3 and then
to solve the resulting equations for a1, a2 and a3. This gives the approximate
solution of the differential equation at the nodal values. Using relationships
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Table 6.2 Nodal values with the four-element
variational method compared to the analytical
solution.

anal

n/8 0.1540 0.1503
Tt/4 0.5592 0.5554

1.0901 1.0884

(6.24) the integrals are straightforward to evaluate and the full calculation is
given in Appendix 7. From dIlda1 = 0 we find

The other two equations, from dl/da2 = 0 and dl/da3 = 0, are found to be

and

The solution of the set of equations is given in Table 6.2, together with the
corresponding analytical values. The agreement is quite good at the nodal
points but would be less good if interpolated values were taken along the
straight lines defining the approximate solution. However, if function values
were required between nodal points then finding a polynomial fit to the nodal
points would give better estimates. Again, if more elements were taken then
obviously the approximation can be made as close as required to the analytical
solution.

Although equal intervals of x were used to define the elements there is no
reason why unequal intervals should not be used. Elements could be longer
where the function changed slowly and shorter where the function changed
more rapidly. However, the use of such a strategy implies pre-knowledge of
the form of the solution which is not always available.

The system of equations (6.26) can be expressed in matrix form as

and it will be noticed that the tridiagonal matrix on the left-hand side has the
same coefficients in each row. This comes about because G in (6.9) is not a
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function of x; we shall now represent it by g. With T1, T2 and T3 as given
previously and with n elements, we find

Similarly,

For the first term, from (6.20), in the range #,•_! to xh Ni = (x—xi_i)lh and
Ni_l = (xi—x)/h. Hence for the first term, the coefficient of ai_1 is

This is also the coefficient of ai+l . The coefficient of ai is

This gives

It will be seen from (6.31) that dT3 /dai, does not add anything to the elements
of the matrix in (6.27) so in the equation produced by partial differentiation
with respect to ai the terms are
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For the differential equation (6.11) c = l and g = 1 and for the four-straight-
line variational function h = n/8. Substituting these values in (6.39) gives

which confirms the matrix elements in (6.27).
The right-hand-side vector in (6.27) depends on the functional form of F in

(6.9) and also on the contributions from the boundary conditions. The
application of the variational method with discrete elements spanning the
domain is the basis of the finite-element method. The matrix which appears in
(6.27) is referred to as the stiffness matrix and the right-hand-side vector is
called the load vector, these terms arising because the finite-element method
was first applied to engineering mechanical-structure problems.

6.4 Applications of the finite-element method in
one dimension

6.4.1 Time-dependent heat flow

The time-dependent diffusion equation applied to heat flow in one
dimension - as, for example, in heat flow along a bar with insulated walls - is
given by (2.21) as

This problem is one which is better solved by the finite-difference method and
is used here simply to provide an example for illustrating principles. The
problem can be transformed into a form suitable for solution by the finite-
element method if the left-hand side is expressed in a forward-difference form as

where the temperature 9 is that to be determined at points in the bar and 0prev

is the known temperature at the previous time step. Inserting (6.35) in (6.34)
and rearranging,

Equation (6.36) has the same form as (6.9) with c = K/cp, G = — 1/Af and
F= — (l/At)0prev.. Given that the boundary conditions are fixed, or are known
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as a function of time, then the method described in Section 6.2 may be used
for each time step in calculating the evolving temperature profile. The nodes
can be chosen in the same way as for the finite-difference method, although
unequal elements are usually chosen for the finite-element method if it is
suspected that the temperature profile justifies this. If unequal elements are
used then, although the stiffness matrix stays symmetric, it does not have the
uniformity shown in (6.27).

6.4.2 Heat flow with differential boundary conditions
The problem to be considered is that described in Section 2.7 where a uniform
bar, insulated along its length, has one or both ends either insulated or exchang-
ing heat with the environment either by radiation or convection. For the
finite-element method the linear functions within elements which have one end
at a boundary point define the rate of change of temperature at the boundary.

There are three basic types of boundary condition which naturally occur.
Expressed in one-dimensional terms, these are as follows:

1. (j) is specified on the boundary - the Dirichlet condition.
2. d o / d x is specified on the boundary - the von Neumann condition.
3. d o / d x = — Mo + S on the boundary - a mixture of conditions 1 and 2.

Conditions (1) and (3) have been encountered already in a two-dimensional
form as in the problem illustrated in Fig. 2.18. Condition (2) may occur in a
problem dealing with potentials where the field, E = — do /dx , is fixed at a
boundary.

Returning to our one-dimensional thermal problem, if one end is insulated
so that, say, ( d 0 / d x ) 0 = 0, then this implies that 00 = 01 so that 00 does not
appear explicitely in the linear equations; the notation used here is that the
variational parameters are 01 to 0n_1.

For a boundary exchanging radiation with a constant-temperature enclos-
ure, the gradient at the end of the bar is, from (2.39),

where 0n is the temperature at the end of the bar and 0ext the temperature of the
enclosure. Where the problem is time-dependent (implied by the use of partial
differentiation in (6.37)) then the right-hand side can be estimated from the
previous time step. This will give, in the finite-difference notation of Chapter 2,
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where h is the length of the element. In this way the temperature at the end is
given explicitly in terms of the temperature of the neighbouring node and
again the equations found are linear in the internal nodal values - which are
the variational parameters. Very often the heat loss from an exposed end is
modelled as

which is an approximate description of convective exchange with the sur-
roundings.

For a steady-state problem where Laplace's equation is valid the solution of
conducting bar problems are always obvious. If the ends are at fixed tempera-
tures then the final state is a linear variation along the bar between the fixed
temperatures. If one end is in radiation equilibrium with an enclosure then
eventually that end attains a temperature such that the uniform gradient along
the bar gives a heat flow equal to the net gain or loss of heat from the radiating
end. If one end of the bar is insulated then eventually the whole bar has the
temperature of the non-insulated end. However, if there is temperature
generation along the bar, so that Poisson's equation is applied in its general
form, then the solutions may not be so obvious. If an end of the bar is
radiating into an enclosure then the unknown temperature at that end will
appear to the fourth power so that the linearity of the equation system to be
solved will be destroyed. In problems of this kind it is customary to transform
to an exchange-of-heat equation based on Newton's law of cooling rather than
a fourth-power radiation law. Newton's law of cooling takes the form

where H is the rate of loss of heat, A the area of the surface and C a constant.
This is an approximation to the radiation-law formula (2.35)

If 6 and 0ext are not too different, then (6.41a) can be written as

which is of the same form as (6.40) with C = 4aOlxt. The Newton's law
approximation is very imprecise if the absolute temperatures 6 and 0ext differ by
more than 10 per cent or so. From (6.40) the condition at the end of the bar is
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which gives for the nodal values

or

which maintains the linearization of the equations to be solved. Losses by both
convection and radiation are usually lumped together in the form given
by (6.38).

6.4.3 Heat generation, point sources and sinks

For a bar with heat generation the differential equation to be solved in the
steady-state situation is

where Q(x) is the rate of energy generation per unit volume at the position x
in the bar. Comparing (6.44) with (6.9), c = l, G = 0 and F = Q(x)/K, and the
solution can be found using the finite-element method in a straightforward
way. The heat generation term will contribute to the ith element of the load
vector of (6.27) an amount

In many real physical situations there occurs an input of some quantity - for
example, heat energy - over such a highly localized region that it can be
considered a point source. In this case, if the point source is at position xp, the
function Q(x) in (6.44) may be written in the form

where s is the Dirac delta function which has the properties

and
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where xp is in the range a to b. A property of a delta function which follows
from (6.47) is that

where xp is in the range a to b. The function f(x) has the constant value f(xp)
in the finite region of S(x—xp) and so can be taken outside the integral. Result
(6.48) then follows from (6.47).

If a point source arises in a problem then it simplifies matters if the elements
are so chosen as to put it at a node - say, at Xj. The contribution of the source
to the element i of the load vector in (6.27) will be

which, from (6.48) equals N i(x i)Qp/K. At node i,Ni = l, and all the other Ns
are zero - from which it follows that the source will contribute QP/K to the
jth element of the load vector in (6.27) and nothing elsewhere.

The discussion above has been in terms of a point source providing a
positive heating effect. It is also possible to have a sink which would be some
kind of cooling mechanism which takes heat out of the system at a particular
rate. A sink, like a source, can be concentrated and effectively a point or
extended. The treatment given above is also valid for sinks but the sign of the
contributions to the load vector in (6.27) will be negative.

6.4.4 A one-dimensional finite-element program

The one-dimensional finite-element program HEATELEM (see p. xv) calcu-
lates the temperature distribution in a uniform conducting bar, insulated along
its length, with boundary conditions which can be a fixed temperature, an
insulated boundary or one exchanging radiation with its surroundings. It
includes the linearization of the radiating condition, as in (6.41), although
this may not be very precise. There is also provision for an extended heating
(or cooling) function and/or point heating and cooling. We now show the
results for various situations: in each case the bar was divided into ten
elements.

1. Length of bar 1 m, thermal conductivity 400Wm-1K-1 . Lower boundary
300 K, upper boundary 500 K. The result is shown in Fig. 6.5 and is the
expected one where there is a uniform temperature gradient along the bar.
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Fig. 6.5 Results from HEATELEM for a bar of length 1 m and thermal conductivity
400Wm-^K-1. (i) Lower boundary 300 K, upper boundary 500 K. (ii) As (i) but with
an extended source Q(x)=2 x lO5x(1-x) W m- 3. (iii) As (i) but radiating into an enclosure
at 1000 K at upper boundary. (iv) As (iii) but with point source 4xl05W, 0.3m from
300 K end.

2. This is as situation 1, but with the addition of an extended source of
heating of the form

The function Q(x) gives the greatest heating effect at the centre of the bar,
and this is evident from the form of the temperature profile.

3. This is as situation 1, except that the end originally at 500K is now in an
enclosure with a constant temperature 1000 K. Figure 6.5 shows that the
temperature gradient is uniform along the bar and has adjusted itself so that
the rate of heat flow along the bar equals the net rate of gain of heat from
the enclosure.

4. This is as situation 3 but with a point source of strength 4xl0 5 W m-3

situated at a distance of 0.3m from the 300 K end. It is seen to give a
discontinuity of slope at the position of the heat input.

The reader is advised to study the listing of HEATELEM to see how boundary
conditions and the heating terms influence the stiffness matrix and the load
vector in the linear equations which give the variational parameters.
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6.5 The general finite-element approach
The preceeding simple one-dimensional example illustrates the general prin-
ciples underlying the finite-element approach. Here we describe how this is
accomplished by a series of steps, which are conveniently expressed within the
program structure.

1. Discretization of the domain: the physical space is broken down into a
series of finite elements filling the 'volume' whose size and shape vary
to reflect the boundaries and the expected form of the solution. The geo-
metrical form of the elements will vary but typically will be the simplest
consistent with the dimension of the space - line segment in one dimension,
triangle in two and tetrahedron in three.

2. Choice of nodes: the form of the interpolation is chosen, and determines
the number of nodes, in each element - for example, linear interpolation
requires 2, 3 or 4 nodes in 1, 2 or 3 dimensions, respectively. The nodes
are positioned conveniently within the element - for example, at vertices.

3. Evaluation of the functional in each element: using the interpolation form,
the functional is evaluated in each element in terms of bilinear forms
involving the nodal values. Differentiating yields the stiffness matrix and
load vector for each element.

4. Summation of the stiffness matrix and load vectors: summing the contribu-
tion to the total stiffness matrix and load vector from each element enables
the full set of simultaneous equations for the nodal values to be developed.

5. Inclusion of the boundary conditions: at present all the nodal values are free
and the set of simultaneous equations is incomplete (singular). In fact some
nodes have values fixed by boundary conditions. These must now be
included and the set of equations modified where appropriate by adjusting
elements of the stiffness matrix and load vector.

6. The stiffness matrix is usually a band symmetric matrix, which may be
solved by a standard method - for example, the Cholesky method.

Within this general arrangement some additional steps can be taken further
to reduce the computational load. In particular the stiffness matrix will, in
general, be quite sparse as each element contains only a limited number of
nodes and matrix elements only exist between nodes in the same element. By
judicious selection of the node numbers the stiffness matrix can be arranged
into a symmetric band of finite width about the diagonal with zeros elsewhere.
This can be used to reduce both the required memory and the computational
load of solving the simultaneous equations.
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6.6 Laplace's equation in a two-dimensional space
We set up a linear interpolation scheme based on a set of triangular elements
spanning the entire domain as in Fig. 6.6. Each element has three nodes i,j,k at
its corners (Fig. 6.7). The linear interpolation shape function for element * is then

where

and A is the area of the triangle given by

i

Fig. 6.6 A boomerang-shaped figure
modelled with triangular elements.

Fig. 6.7 A triangular element.
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The shape functions Nj
(e) and Nk

(e) are obtained by circular permutation of the
symbols (i,j, k). Within the element VNj

(e) is a constant given by

where i and j are unit vectors in the x and y directions, respectively. For
any point within the element a linearly interpolated value of the dependent
variable is

It is easily confirmed that, for x = xt and y — y,, Nj
(e) = 1 and Nje) = Nk

(e) = 0, from
which (6.51) gives 0 = 0 j as it should. In a single triangular element, contours
of constant Nje) are straight lines parallel to the side jk as shown in Fig. 6.8a;
the lines corresponding to Ni

(e) = 0.0, 0.2, 0.4, 0.6,0.8 and a parallel line
through the apex i(Ni

(e) = 1.0) are equispaced. Another useful geometrical
interpretation of the Ns is shown in Fig. 6.8b, where it is seen that they are
proportional to the areas of triangles formed by the point in question and the
apexes of the triangular element. This result is easily derived. Within the
triangle the shape function Ni

(e) varies linearly from 1 at i to zero on jk and is
proportional to the distance from jk to the point P and therefore to the area Ai.
Since Ni + Ni + Nk = l and Aj + Aj + Ak= A, then Ni = A/A.

The functional corresponding to Laplace's equation is complicated to
derive but is

Fig. 6.8 (a) Lines of constant N,. (b) For the point P,
the areas shown.

: N, : Nk = Aj : Aj : Ak, where the As are
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where s is that part of the boundary of the domain on which the normal
gradient of 0 is specified in the form d 0 / d n = — M0 + S, that is, the free or
natural boundary conditions.

We now find the contribution of the element (e) to the functional. Given
(6.51),

from which the contribution to the functional from the first integral in (6.53)
is, from (6.50d),

where each of / and m range over the points i, j and k.
If one or more sides of the triangular element forms part of the boundary,

then there is a contribution to the functional from the second integral in
(6.52). Any value of (j) or d 0 / d n involved in the integral will involve only two
of the components in (6.51) - say, corresponding to the line joining point / to
point m, A common situation - where, for example, there is thermal equi-
librium in a plate with isotropic thermal conductivity - is where V0 is
perpendicular to the boundary, and we shall restrict our discussion to that
simple case. For

the second integral in (6.52) is

where the integral is along the element edge Im, of length L. Along that edge

and, with origin at the point /, N\e} goes from 1 to 0, and Nm
(e) goes from 0 to 1,

as s goes from 0 to L or
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from which the contribution of the edge Im to the functional is

It is clear from (6.54) and (6.58) that when all the contributions from all
elements and all edges of elements forming boundaries are added together the
functional is of the form

The condition for minimizing the functional is that

for all i, and this yields a set of simultaneous linear equations, the solution of
which gives the required values of (f) at the nodes. It is evident that the
quantities Kij form the elements of the stiffness matrix, K, while the quantities
P, define the load vector, P.

If all the values of 0 have to be determined then the matrix K is symmetrical
and positive definite, meaning that all its eigenvalues are positive. Such
matrices give well-conditioned sets of linear equations for the various solution
techniques we have previously mentioned. However, some of the nodal values,
say the set OI, have prescribed values and cannot be varied in the minimization
procedure. These are called forced, essential or geometric boundary condi-
tions. Thus the corresponding equations in the set (6.60) do not exist. It is very
convenient to maintain the overall symmetry of the matrix and this is done by
changing K and P thus:

and to maintain the symmetry of K,

6.6.1 The time-independent heated-plate problem

We now consider a time-independent heated two-dimensional plate problem,
insulated on its top and bottom surfaces, with edges exchanging heat with the
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surroundings or insulated and with either point or extended sources of heating
within it. The differential equation describing the equilibrium of the plate is
of the form

and the boundary temperatures are of the form (6.55). If in (6.55) M and S
are non-zero then we have a boundary exchanging heat with its surroundings.
If M and S are both zero then this corresponds to an insulated boundary, but
it is clear that this will make no contribution to either the stiffness matrix or
the load vector. In (6.61) there is provision for an extended heating source
and/or a point source located at vector position ri which is assumed to be at a
node. Excluding the point-source term, which is straightforward and can be
treated separately, the functional to be minimized is

where A indicates integration over the whole domain. We have previously
dealt with all terms in the functional except for the second integral which, for
an individual triangular element, gives, with (6.51),

If Q is a constant then the integral (6.63) is readily evaluated since, from the
form of the function N, within the triangle (Fig. 6.8a) it can be shown that

For simplicity it is usually assumed that Q is constant within an element with
mean value

which gives

which provides contributions to components i, j and k of the load vector.
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Finally, we come to the contribution of a point source, say Qp acting at node
p. By reasoning similar to that given in the one-dimensional case this gives a
contribution Qp 0 P/K to the load vector.

The steps outlined above will give the complete stiffness matrix and load
vector defining the equations which give estimates of temperature at the
nodes. Here we have taken a rather special case of temperature variation
in a two-dimensional plate; other problems involving, say, the flow of fluids,
the bending of elastic structures or finding distributions of electrical poten-
tial will have features not considered here. There are various complex pack-
ages capable of dealing with generalized finite-element problems but the
temperature-distribution example illustrates the general principles quite
well. A program specifically designed to deal with the two-dimensional
temperature-distribution problem is now described.

6.7 A two-dimensional finite-element program
The two-dimensional finite-element program FINELEM2 (see p. xv) will deal
with the kinds of heated-plate problem solved by HOTPLATE, described in
Section 2.14. FINELEM2 has provision for point sources, which must be
located at nodes, and triangular elements are used which can be arranged to
simulate irregular shapes far better than does fitting a square grid which is all
that HOTPLATE offers. An example of a problem solved by FINELEM2 is
shown in Fig. 6.9. The plate is square, of side 0.375 m, and is divided into 18
similar triangular elements defined by 16 nodes. Figure 6.10 shows the
FINELEM2 output. The first section is an echo-print of the input data giving
the elements defined by the corner nodes. The second section gives the
coordinates of the nodes and the third section the nodes with fixed tempera-
tures. The fourth section shows that there are two point sources situated at
nodes 6 and 11 with strengths 2 x 105 and 3xl05 W m-3, respectively.
Not included in the output is information on distributed heating, defined
by a FUNCTION statement which has to be inserted in the source program
before it is compiled and run. In this application the form of heating is
represented by

which is zero at the plate edges and a maximum at the centre of the plate.
Edges with differential boundary conditions which are exchanging energy

with their surroundings are described by the nodes at the two ends, and the
values of M and S as defined in (6.55). The stiffness matrix is quite heavily
populated with non-zero elements and has not been modified as described
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Fig. 6.9 The 18 elements and 16 nodes
of the heated plate problem. There is a
distributed source of heating Q(x) =
106xyx (0.375 -x)(0.375 -y)W m- 3

and point sources at nodes 6(2 x. 105 Wm-3)
and 11(3 x105W m-3).

CONDUCTIVITY IS 400.0 W m**[-l] K**[-l]

NODE NUMBERS ASSOCIATED WITH EACH ELEMENT
1
4
7
10
13
16

5
7
5
7
9
14

2
3
9
10
13
15

1
6
6
11
10
11

2
5
8
11
14
17

6
3
6
7
10
11

2
7
9
11
13
15

5
4
10
8
14
12

COORDINATES OF NODES
1 0.0000 0.3750
4 0.3750 0.3750
7 0.2500 0.2500
10 0.1250 0.1250
13 0.0000 0.0000
16 0.3750 0.0000

2 0.1250 0.3750
5 0.0000 0.2500
8 0.3750 0.2500
11 0.2500 0.1250
14 0.1250 0.0000

NODES WITH FIXED TEMPERATURES
1 350.0 2 300.0 3
5 400.0 9 400.0 13
15 500.0 16 500.0

300.0
450.0

NODE
1
5
9
13

TEMP
350.
400.
400.
450.

3
6
9

12
15
18

4
14

POSITIONS AND STRENGTHS OF POINT SOURCES
6 0.2000E+06
11 0.3000E+06

DIFFERENTIAL BOUNDARY EDGES AND PARAMETERS
NODE1 NODE2 M S

4 8 0.567 567.000
8 12 0.567 567.000
12 16 0.567 567.000

2
4
6
8

10
12

6
7
10
11
14 15
15 16

3
8
7
12

3 0.2500 0.3750
6 0.1250 0.2500
9 0.0000 0.1250
12 0.3750 0.1250
15 0.2500 0.0000

300.0
500.0

2
6

10
14

300.
565.
528.
500.

3
7
11
15

300.
533.
766.
500.

4 300.
8 500.
12 633.
16 500.

Fig. 6.10 Output from FINELEM2.
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Fig. 6.11 A contoured plot of the output
500 from Fig. 6.9 given in Fig. 6.10.

previously to a symmetric positive-definite form. For small-scale problems
amenable to FINELEM2 a general linear-equation solver to determine the
variational parameters is adequate and a subroutine employing the Gauss-
Jordan elimination method, GAUSSJ, which comes from Press et al. (1986), is
provided. Finally, in the output from FINELEM2, the solution is given as a
list of the nodes with the temperature at each of them. Figure 6. 11 shows this
result plotted on a grid and contoured; the influence of the point sources gives
a local maximum at node 11 and a tongue of higher temperature extending
towards node 6. The effect of the distributed heating is masked by the
contributions of the point sources.

The data for a large finite-element application can be rather extensive, and
it is usually better to enter it through a data file so that if there are errors the
file can simply be amended and then tried again. A program FINDATA is
available (see p. xv) for preparing such a data file. As a back-up FINELEM2
includes provision for data correction after the data have all been entered but
before the main calculation commences.

6.8 Applications of the finite-element method

We have chosen here to restrict our description of the finite-element method
to two dimensions and to steady-state heat transfer problems, except for a
brief reference to time-dependent problems in Section 6.4.1. There we saw that
the time dependence is treated as a finite difference while retaining the
finite-element form for the spatial part. If this is done the normal stability
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Fig. 6.12 A tetrahedral element.

constraints associated with temporal differencing (Section 2.9) will still apply.
If the spacial terms are explicitly treated then a time-step limit must be
imposed. However, since this is determined by the eigenvalues of the stiffness
matrix, which are not known in advance, it is not very convenient to treat time
dependence in this way. It is therefore usual to difference the problem
implicitly; the resultant extra matrix terms are already included in the stiffness
matrix, so that no extra computational burden is introduced.

Finite-element methods have been applied to a wide range of problems other
than those of heat transfer. Some examples are: the twisting of bars of non-
circular cross-section; the irrotational flow of fluids around obstacles; finding
patterns of acoustic vibrations within finite volumes; mechanical structure
analysis; and finding energy levels from the Schrodinger equation. Some of
these applications require three-dimensional treatment and, just as triangles
can be used for elements in two dimensions, so tetrahedra (Fig. 6.12) can be
used in three dimensions. The development of the theory for three dimensions
very closely parallels that for two dimensions. In (6.52) the first integral is over
the volume contained by the surface and the second integral is over that
surface. With tetrahedral elements the surface is simulated by a series of planes
from contiguous triangular faces. The constants M and S then describe the
derivatives of 0 along the normals to the triangular faces.

There are formulations of the finite-element method other than the vari-
ational approach which has been described here. The variational approach
is fairly straightforward and illustrates the general principles of the finite-
element method quite well, although it does have the disadvantage that it
cannot handle differential equations with a first-derivative term. We now
describe other finite-element approaches which can be applied to more general
problems.

6.9 The residual formulation of finite-element methods
As we have already pointed out, only a limited class of problems can be
expressed in a variational form. Although a large number of the characteristic
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equations in physics, such as Laplace's equation and Schrodinger's equation, can
always be handled in this way, it is restricted to second-order differential equa-
tions. In addition, it may not be possible to identify the functional for particular
cases. It is therefore important to have an alternative finite-element formulation
which can be applied directly to the original partial differential equation and the
more familiar and available differential operator which it contains.

The philosophy which is adopted for these calculations is similar to that
described previously in that we set up an approximate solution to the problem
based on a set of arbitrary values (the nodal values or displacements ).1 Using
this approximation, we evaluate an error in some appropriate function and
minimize its value by varying the values of the displacements. These methods
are known as weighted residual methods. The residual that gives the error is
defined as a weighted integral of the differential operator with respect to the
approximation. Thus, suppose our differential equation can be written

where & is the differential operator and 0 the field variable. Then we set up
the approximation for O in terms of the set of displacements 0 i. The value of
the residual A= 0 gives a measure of how well the approximation 0 fits the
required equation (6.67). By introducing a series of weight functions wj and
integrating over the domain we can define a set of errors

which we minimize by finding the set of 0 i which either (and usually) zeroes
the set EJ or minimize a single residual.

The various methods are characterized by the choice of wj.

1. Least squares: by taking w = & 0 the overall error is the least-square value
of the residual over the entire domain. Only a single error is obtained, in a
bilinear form, and its value is minimized by differentiating. The method is
little used.

2. Point collocation: this takes w = s ( r — r i ) where rj is the position of the
node j.. This form zeroes the residual at each node, and is simple to apply,
although it is little used.

3. Volume collocation: here w j=W(r — rj), which spreads the residual over
a zone around the node ;'. It is widely used in the form of the Galerkin
method (see 4).

1The nomenclature of finite-element methods - nodes, displacements, stiffness matrix and load
vector - stems from their origins in numerical stress analysis.
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4. The Galerkin method: this uses WJ = N(R— RJ), where N is the shape function
used in the interpolation giving 0. The weight used in the residual is
therefore complementary to that used in the interpolation. The residual
associated with each node is zeroed. This method is very widely used. For
self-adjoint equations2 it is exactly equivalent to the variational method,
provided analytic integration by parts is used to reduce the second deriva-
tives to a first-order form. The reader may well find this the most con-
venient approach.

6.9.1 Laplace's equations with the Galerkin method
We now consider the problem we examined in Section 6.6, solving Laplace's
equation

We set up a series of triangular elements (e) with three nodes i, j and k and
linear interpolation as before. The shape functions in the element (e) are those
described in Section 6.6 and within the element (e) the interpolating function
is that given by (6.51).

Since 0(e) is linear in the coordinates then V20 = 0 within the element, which
automatically satisfies Laplace's equation no matter what are the values 0i, 0j
and 0k. However, we can circumvent this problem by calculating the residue
associated with node j within element (e):

By using the idendity

we find

This implies equations for which the coefficient matrix is self-adjoint (typically Hermitian so
that matrix element aij=a*ji; this includes a symmetric matrix with real coefficients). The
eigenvalues of such a matrix are real; if, in addition, the eigenvalues are all positive then the
matrix is positive-definite. Solutions of many physical problems involve such matrices.
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Here we apply Gauss's theorem, which states that the surface integral of the
divergence of a vector field equals the line integral of the normal component
of the field around the boundary, so that

giving

where the surface integral is taken over the surface of the element (e). For
internal elements the boundary terms cancel in the sums over the elements and
so can be omitted, but must be retained at the domain boundaries if the
gradient normal dQIdn is defined and is non-zero. Performing the integrations,
the residual for the element (e) for the node /' is of the form

where the constants bi, ci are given in (6.50b) and lij is the length of the
boundary edge between nodes j and l. The load vector is thus seen to be
associated with one kind of boundary condition, that when the gradient is
specified (natural or free boundary conditions). The final result is identical to
that which has already been obtained using the variational method.

Problems

6.1 Use the variational method with variational function y = ax + bx2 to solve
numerically the differential equation

with boundary conditions x = 0, y = 0 and x = l, y = e. From the variational
function find the estimated values of y(x) for x from 0 to 1 by steps of 1/6.
6.2 Use the variational method to find a three-straight-line solution to the
differential equation in Problem 6.1 with the variation parameters taken
at x=1/3 and x = 2/3. By fitting a parabola to the (x,y) values you find at
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x = 0,1/3 and 2/3 (see equation (A6.5) in Appendix 6), estimate the value of y
at x=1/2.

6.3 A bar 2 m long, with material of thermal conductivity 300 W m-1 K - 1 , is
insulated along its length and at one end. The other end is in an enclosure at
a temperature of 800 K. There is a source of extended heating described
by Q(x) = 3 x 103xWm- 3, where x is in metres, and a point source of heat-
ing lx104 Wm- 3 situated 0.5 m from the insulated end. Use the program
HEATELEM to determine the temperature distribution along the bar. Compare
the result with that obtained by removing the extended source of heating.

Fig. 6.13 Diagram for Problem 6.4.
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6.4 A plate with insulated top and bottom surfaces is shown in Fig. 6.13 with
boundary conditions indicated. It has thermal conductivity 400 W m - 1K- 1.
A network of finite elements is shown and point heat sources are situated as
follows:

Node: 3 2 0 2 1 2 2
Strength ( Wm- 3) 8 x 105 2 x W5 2 x105 2 x 10J

There is a uniform extended source of heating of strength Q(x, y) = 10 3 Wm- 3

throughout the plate. Using FINELEM2 find the temperature distribution
within the plate. (Note: A data-preparation program, FINDATA, is available
and you are advised to use it. By editing the data file you will be able quickly
to run modifications of the problem given here and so explore the influence of
the various parameters.)



7 Computational fluid
dynamics

7.1 A general description of fluid dynamics
The flow of fluids is something which happens all around us constantly and in a
variety of different ways. Examples are the flow of a river, the winds that blow
and the flow of gas through pipes that feed home appliances. In these few
examples we can see that a variety of different characteristics are possible in fluid
flow. The fluid can be a gas which is easily compressed or a liquid which is not.
The flow can be in an effectively infinite space, such as the movement of air in
the atmosphere, or can be restricted, as in flow through a river bed or a pipe. It
can also be turbulent flow, where there is a random component to the motion
leading to energy transfer into heating the fluid, or laminar flow, which is well
ordered. To define a particular problem we need know the physical characteris-
tics of the fluid, the forces which act upon it and the space in which it moves.
Then if we can find its density, velocity and temperature as a function of position
and time the problem has been solved. We shall be looking at particle methods
for solving the equations of fluid dynamics. The difference between this kind of
problem and the plasma and galactic problems of previous chapters is that the
fluid case is dominated by collisions, so that within any small region the par-
ticles (molecules and the superparticles that represent them) are constantly
sharing their properties by collisions and can be assumed to be in local
thermodynamic equilibrium at any time. The condition for a fluid description is
that the mean free path is short compared with the characteristic lengths in the
problem and the mean time between collisions is short compared to the
characteristic time.

A fluid in motion is a macroscopic manifestation of the behaviour of matter
at a molecular level. When a model boat is placed in a smoothly flowing river
the motion of the boat is governed by the average force generated by water
molecules bombarding it from all directions, and their net effect is to move it
with the flow of the water. However, the water molecules are not all moving
with a uniform velocity equal to that of the river as a whole. Relative to the river
velocity they will be moving in random directions, with a distribution of speeds
given by a Maxwell distribution appropriate to their temperature. Another way
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to visualize this situation is to imagine that a bucket of red dye is inserted into
the water, forming a circular patch. The centre of the red patch flows down-
stream with the speed of the smoothly-flowing river but, at the same time, its
radius gradually increases as the dye diffuses outwards from the centre of the
patch. Fluid flow transports the properties of the fluid - in the present case
'redness' - and we can recognize two different kinds of transport. The first is
advection, corresponding to the macroscopic motion of the fluid and describing
the motion of the centre of the red patch. The second kind, diffusion, is that
which describes the spreading of the patch as it flows downstream.

In this chapter we shall first deal with computational aspects of the
transport of properties of a fluid by advection and diffusion and then deal with
fluid flow as the movement of the fluid itself.

7.2 The equations of transport of fluid properties
The phenomenen of diffusion was encountered in Chapter 2 and the one-
dimensional diffusion equation (2.20) in terms of transport of some conserved
quantity q can be written

where D is the diffusion coefficient. They are many methods available for
the solution of this parabolic equation, for example, the explicit method
(Section 2.5 ), the Crank-Nicholson method (Section 2.6) and the Dufont-
Frankel method (Section 2.8).

For advection we consider the one-dimensional flow of a f luid which contains
some conserved quantity Q with a concentration q ( x , t ) (that is, the amount of
Q per unit volume) which changes in both space and time. In Fig. 7.1 we show a
tube of the flowing liquid of unit cross- sectional area with two planes, A and B,
perpendicular to the flow and a distance cx apart. In a time 6t the amount of Q
entering the volume at A is

Fig. 7.1 A rube of flowing liquid of unit
cross-sectional area.
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where v is the constant velocity of the fluid. In the same time the amount of
Q leaving at B is

The net change in concentration in the volume dx in the time 5t is thus

Taking the limit ct—>0 gives the advection equation

In the case where both diffusion and advection occur then (7.1) and (7.4)
can be combined into the advection-diffusion equation

We shall now describe several numerical methods for solving (7.5), some
successful and some not. The results of using them are found with the program
ADVDIF (see p. xv) which contains all the algorithms which are described.

7.3 Numerical studies of diffusion and advection
The application of the explicit method to pure diffusion, using ADVDIF, is
illustrated in Fig. 7.2. The initial distribution of q has a triangular form, and
Fig. 7.2a illustrates the concentration at 5 s intervals with a diffusion coefficient
of 0 . 1 m2 s - 1 , the x interval Ax = 1 m and the time interval A.t = 5 s, which gives
the value of r in (2.27) equal to 0.5, the critical value. The solution is quite
stable but has an unphysical waviness which shows lack of precision. Taking
Ax = 0.5 m and A* = 1.25s, again giving r = 0.5, gives a somewhat improved
appearance (Fig. 7.2b) although the overall diffusion spread is not very different.

We now see what happens when the advection equation (7.4) is converted
into an explicit finite-difference form by taking a forward difference in time
and a central difference in space. This gives
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Fig. 7.2 Explicit method applied to the diffusion of a triangular distribution with
D = 0.1m2 s-1 for: (a) Ax=l m, At = 5 s; (b) Ax = 0.5m, At = 1.25 s.

The quantity vAtlAx is a dimensionless quantity which is called the Courant
number, C, and its value controls the behaviour of finite-difference equations in
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which it occurs. Equation (7.6), applied through ADVDIF, was used to study
the advection of a triangular distribution of q; the result with C = 1, Ax = 1 m
and At = 1 s is given in Fig. 7.3a. It is a poor outcome which is not improved by
taking smaller intervals (Fig. 7.3b). It is an example of an absolute instability
which cannot be controlled by time step adjustment.

Fig. 7.3 Advection of a triangular distribution using forward difference in time and central
difference in space, with: (a) C = l, Ax=l m, At=l s; (b) C=0.5, Ax = 0.5 m, At = 0.25 s.
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We now explore another way of setting up an explicit finite-difference solu-
tion for advection, but this time using a backward-difference representation
of dq/ dx - or upwind difference, as it is often called - which might be expected
to give an answer inferior to that obtained with the central-difference represen-
tation. The finite-difference equation now appears as

The result of applying ADVDIF to (7.7) with the triangular distribution with
C = 1, Ax = 1 m and At = 1 s is shown in Fig. 7.4a, and is seen to preserve the
triangular distribution without any distortion whatsoever. This is not surpris-
ing, as from (7.7) it will be seen that with C= 1 the first term on the right-hand
side disappears and in each time step the whole distribution is displaced
through a distance Ax. Using C = 0.5, Ax = l and At = 0.5 gave the results in
Fig. 7.4b, where the distribution spreads out as it progresses. This kind of
behaviour, when spreading occurs which should not be there and which is due
to the numerical process being used, is called numerical diffusion.

Finally, we examine what happens when (7.5) is transformed into finite-
difference form. From the experience of dealing with diffusion and advection
separately, it would appear to be expedient to express the diffusion term on
the right-hand side in the usual central-difference way but the advection term
with a backward-difference formulation as has been found to give good results
for advection alone. The combination of these two features gives the finite-
difference equation

From experience with advection and diffusion treated in isolation, it might be
expected that if values of Ax and At can be found which give C = 1 and r — 0.5
then good results might be obtained. In fact the results are completely unstable
under these conditions, and with C = 1 the value of r has to be reduced to 0.1
before the results, found with ADVDIF, can even be displayed for a short simu-
lated time, as seen in Fig. 7.5. Even then it is clear that the results are not very
useful.

Before further consideration of the advection-diffusion problem, it would
be wise to see if some sense can be made of the results already found.
Procedures found on an intuitive basis seem not to be successful, while using
the upwind difference for advection alone, which might seem not to be a good
thing to do, actually works. We shall now find out how the behaviour of a
finite-difference equation may be understood and predicted.
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Fig. 7.4 Advection for a triangular distribution with upwind (backward) differencing for space
and forward differencing for time, with: (a) C = 1, Ax = lm, At=l s; (b) C = 0.5, Ax = l m,
At = 0.5 s.
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Fig. 7.5 Advection plus diffusion for & triangular distribution using central differencing for the
diffusion term, backward difference for advection and forward difference for time. Instability is
seen for C=l and r=0.1.

7.4 Stability conditions
Analytical solutions of the advection-diffusion equation can be found of the
form

Substituting this into (7.5) gives

or

This is the form of a decaying progressive wave and is a solution for any value
of a. It is helpful to imagine that we are looking for a solution within the range
x — 0 to L with cyclic boundary conditions, and then we can write a general
solution of (7.5) in the form

For each term the wave index, k, is the number of waves which fit into the
distance L so that the wavelength ̂  = L/k. The frequency associated with each
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term Vk = v //\k.. The initial disturbance profile, for t = 0, is

and by inverse Fourier transformation (Appendix 5) the coefficients f(k) may
be found from

In the process of applying a finite-difference equation to advance the time
by At the coefficients f(k) will, in general, change and von Neumann has given
a condition for stability of the finite-difference procedure - which is that
amplification of the magnitude of the term of index k, g(k), should be less than
or equal to unity for all k. Even if only one of the terms increases its amplitude
without limit, then clearly the solution will be unstable. It should be noted that
this is not a condition for accuracy but just for stability (see Section 2.9),
although it clearly has some relation with the 'accuracy' of the representation
of a particular problem.

Writing

as the contribution to q(xi, tj) of the term with wave index k, it is found that

where Ak =2nkax/L
This result is now applied to the term of index k for the finite-difference

equation (7.6) which was found to be unstable. This gives

Inserting (7.15) in (7.16) gives

i

The instability of (7.6) is shown by von Neumann's condition since

so that the amplification factor
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We now apply the same treatment to (7.8) which was found to be unstable
with C= l and two values of r, 0.5 and 0.1. Applying (7.15) to the term of
index k of (7.8)

The quantity in curly brackets is the amplification factor, and its properties can
be considered by a graphical approach. If C+2r> 1 then, in Fig. 7.6a, we see
the quantity 1 — C— 2r indicated along the negative real axis of an Argand
diagram. Since C + r and r are both positive, the maximum magnitude of the
amplification factor is when &k = n and the total contribution, shown in
Fig. 7.6a, is

so the solution is not stable.
We now consider the situation when C+2r<1. As shown in Fig. 7.6b, the

quantity 1 — C — 2r now points along the positive real axis and the maximum
value of g(k) is when A^O. Now we have

so the solution is stable. The output for an application of (7.8) with C = 0.5
and r = 0.25 (C + 2r= l) is given in Fig. 7.7; it is quite a good representation
of advection plus diffusion, although some of the diffusion will be numerical
and not that implied by the diffusion term in (7.5).

Fig. 7.6 The maximum amplification factor for the algorithm leading to Fig. 7.5 with:
(a) C+2r> l; (b)
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Fig. 7.7 An application of (7.8) with C=0.5 and r=0.25 showing stability.

7.5 Central difference for advection and diffusion
It might be expected that better results would be obtained for advection and
diffusion by using central-difference forms for both of the space terms. This
gives

q(i,j+l) = (l — 2r)q(i,j) + (r — C/2)q(i + l,j) + (r +C /2)q(i — l,j). (7.21)

and before showing the results of its use we find the conditions for stability.
The amplification factor for the contribution of wave index k is

The condition for stability is thus

which leads to the condition

Since C2 must be positive and cos2 1/2Ak can take its maximum value of unity
for some k this shows a necessary condition r<1/2. It is also readily confirmed
by differentiation that the right-hand side of (7.23) monotonically increases as

goes through its permitted range of 0 to 1, so that the minimum valuecos2 2
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ig. 7.8 An application of (7.21) with C = l and r=0.5 which suppresses diffusion.

Fig. 7.9 An application of (7.21) with C = 0. 7 and r = 0.245 showing diffusion.

of the right-hand side is 2r. This gives the stability condition

which permits C = l and r = 0.5 which were used in applying ADVDIF to
(7.21) as shown in Fig. 7.8. The result is pure advection with no diffusion, and
by inserting C= 1 and r = 0.5 in (7.21) the reason for this will become obvious.
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By changing to C = 0.7 and r = 0.245, which just satisfies (7.24), the result in
Fig. 7.9 is obtained which restores diffusion - but the uncertain contribution
of numerical diffusion to the result reduces its usefulness.

7.6 The Lax -Wendroff method
The Lax -Wendroff method is one which was formerly very widely used and
forms the basis of many modern methods because it gives comparatively little
numerical diffusion. It can be applied to the general differential equation

but we shall illustrate its use with simple advection, for which F(q) = vq. We
begin by expressing (7.25) for a point in space-time which is at the point i in
space and half-way between points / and /+ 1 in time thus:

Expressing both sides in central finite-difference form using half-way points in
space,

or

We now find approximations for the terms in parentheses on the right-hand
side from

from which, by taking a forward-difference time derivative over a half time
step, we obtain

Next, by taking the first term on the right-hand side as the average of the two
flanking points in space,
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Finally, by inserting (7.28) into (7.27), the Lax-Wendroff advection equation
is found as

Running our standard advection problem using ADVDIF with C = l gives
the equivalent result to upwind differencing, as seen in Fig. 7. 10a. However,
with C = 0.8 (Fig. 7.10b) some numerical diffusion occurs. Clearly the Lax-
Wendroff process offers only a limited advantage over upwind differencing in

Fig. 7.10 Application of the Lax-Wendroff advection equation with (a) C = l and (b) C = 0.
showing numerical diffusion.
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this simple advection case, but it is very useful for general functions F(q) where
backward differencing would not give such a good result even if applicable. In
addition, it gives substantially less numerical diffusion.

7.7 The QUICKEST method
A very successful and accurate process for dealing with the one-dimensional
advection - diffusion equation has been developed by Leonard (1979). Its
name, QUICKEST, stands for Quadratic Upstream Interpolation for Convect-
ive Kinematics with Estimated Streaming Terms, but here we shall just develop
the associated finite-difference equation without interpreting it in terms of the
name. The general approach is to take each of the terms in (7.5) and to
develop it up to and including the third partial derivative with respect to x.
Thus, starting with the first term, we use Taylor's theorem to give

From (7.5) we see that we can convert from partial differentiation with respect
to t to partial differentiation with respect to x by the operator transformation

Given that we are only interested in terms up to the third partial derivative
with respect to x, we find

Substituting from (7.31) and (7.32) in (7.30) and rearranging,

From another application of Taylor's theorem,

and
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Subtracting the second equation from the first and rearranging gives

No modification of the term (d2qldxi)'i in (7.33) is needed as any correction
to the usual finite-difference form (2.9) involves partial differentials of order
higher than 3.

It is found that the finite-difference form of the third partial derivative
which gives the best stability of the final equation is that based on the four
points i+ 1, i, i — 1 and i — 2, and is

Substituting (7.35) in (7.33) and (7.34) and then (7.33) and (7.34) in (7.5) with
the final term expressed according to (2.9) gives the final equation,

The advection- diffusion problem of the initial triangular profile run with
the QUICKEST option in ADVDIF is shown in Fig. 7.11 with two different
Courant numbers, 1.0 and 0.5 and r = 0.5. The results, which are for

Fig. 7.11(a)
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Fig. 7.11 Application of QUICKEST to advection plus diffusion with (a) C= 1 and (b) C = 0.5.

equivalent times, are seen to agree reasonably well with each other and with
Fig. 7.7. However, it is found that QUICKEST results show less unphysical
fluctuations which are a feature of the simple finite-difference equations we
have been considering. The stability conditions are very complicated and Fig.
7.12 shows the (r, C) stability field. The system can be stable for 1 < C<2, but
not if r = 0. Experience indicates that the region around (0.5,0.5) gives both
stability and accuracy in most situations.

This concludes our treatment of the transport of the properties of a fluid by
advection and diffusion, and we now consider the motion and behaviour of
the fluid itself.

7.8 The basic equations of fluid dynamics
In order to analyse the behaviour of the fluid there are two basic ways of
observing it. One is to imagine that we have a fixed frame of reference and
that we consider how the properties of the fluid vary with time at fixed pos-
itions in the frame. Since the fluid is moving, we are looking at different
elements in the fluid at each point as time progresses. This gives us the
Eulerian formulation of hydrodynamics. The other way to observe the fluid
behaviour is to travel with a fixed element of the fluid and to observe the varia-
tion of its properties with time. This constitutes the Lagrangian formulation of
hydrodynamics. Now we shall derive the basic equations of fluid dynamics in
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Fig. 7.12 Stability conditions for QUICKEST.

one dimension and then generalize the equations to a three-dimensional form.
We shall do this for both the Eulerian and Lagrangian formulations, and also
find out how to transform from one form to the other.

7. 8. 1 Conservation of mass - Eulerian form

In Fig. 7.1 3 we see two parallel plane surfaces, A and B, each of unit area,
separated by a distance dx and normal to the direction of flow of a fluid, defined
as the x direction. In time dt the mass flowing through the plane A into the
volume between the planes is
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Fig. 7.13 Flow of a compressible fluid
across two unit-area planes A and B in the
Eulerian formulation.

where p is the density and v the speed of the fluid at the position of plane A.
Similarly, the mass flowing out of the volume through plane B is

Hence the net flow into the region is

The volume of the region is dx, and by going to the limit 6x -> 0, 5t-> 0, we
find the equation for conservation of mass

The three-dimensional form of this equation is

7.8.2 Conservation of momentum - Eulerian form
The rate of change of momentum of the material between the surfaces A and B
in Fig. 7.13 is due first to the rate at which momentum is transported by the
fluid into and out of the volume through the two surfaces and also to the change
of pressure between the two surfaces. With only pressure forces operating, and
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in the absence of gravity and viscosity, the fluid transport of momentum per
unit time is

The momentum generated within the volume due to the pressure difference
between A and B can be visualized by noting that pressure equals force per
unit area or rate of change of momentum per unit area. Hence the momentum
generated per unit mass within the volume due to the pressure change across
it will be

Hence the rate of change of momentum within the volume dx is given by

or

which is the one-dimensional equation for conservation of momentum. To
transform this equation into a three-dimensional form we note that

The three-dimensional form of the equation for conservation of momentum is
not simply related to the one-dimensional form, since it involves tensor-related
quantities. It is

Before moving on to the conservation of internal energy, we shall first consider
the Lagrangian equations for the conservation of mass and momentum.

7.8.3 Conservation of mass and momentum -
Lagrangian form

We now consider again the conservation of mass in one dimension, but this time
we focus our attention on a fixed element of the fluid. In Fig. 7. 14 A and B are
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Fig. 7.14 After time St the element of
fluid between unit-area planes at A and B
has moved to the region between A' and B'.

two parallel unit-area planes, separated by a distance dx, which define an
element of the fluid. After a time dt the fluid originally at A has moved to A' and
that originally at B has moved to B'; the element of fluid between A' and B' is
just that originally between A and B. The distance AA' is vdt, where v is the
velocity of the fluid at A and the distance BB' is (v + ( d v / d x ) d x ) d t , so that the
distance A'B' is

that is,

The left-hand side of equation (7.43) is just the negative of the fractional change
of density, so that

Taking dt->0 gives the Lagrangian form of the conservation of mass equation,

The total (Lagrangian) derivative on the left-hand side reflects what an observer
sees when travelling with the element - that the mean density within it just
varies with time. However, the same observer can detect a velocity within the
infinitesimal element that varies both in position and time - hence the partial
derivative on the right-hand side.
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Rewriting (7.38a) as

we can see that a transformation from the Eulerian to Lagrangian form is
obtained by replacing the operator d / d t + v ( d / d x ) by d/dt. The corresponding
transformation in three dimensions is to replace d/dt + v V by d/dt. The three-
dimensional form of the Lagrangian equation derived from (7.44a) is

As an exercise the reader should confirm that the same transformation gives,
from (7.41a), the Lagrangian form of the one-dimensional equation for momen-
tum conservation,

and in three dimensions, from (7.41b),

7.9 The incompressible fluid
Liquids are often regarded as incompressible because they require such high
pressures to compress them appreciably. However, it is quite legitimate in many
applications to consider even a gaseous medium such as the atmosphere to be
incompressible. The characteristic of a gas that causes it to resist compression is
its pressure, which is its thermal energy density per unit volume. This is charac-
terized by the mean square thermal speed of the molecules and for, say,
nitrogen, the major component of the atmosphere, at 300 K this is 2.66 x
105 m2 s-2. If we now consider the energy of motion of the air moving at
60 km h-1, then this corresponds to a speed squared of 277 m2 s-2. Thus the
internal energy of the atmosphere greatly exceeds that of its mass motion and
flow cannot appreciably compress it unless it is moving rapidly.

For an incompressible fluid we may write dp/dt = 0 and, inserting this in
(7.38), we find
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Incompressible flows are inherently two- or three-dimensional, since the one-
dimensional case has only the trivial solution v = constant. Having a zero
divergence of the velocity is a well-known condition for incompressibility.
Again, given a constant density and (7.46), equation (7.41b) becomes

One factor which has so far been ignored is that of viscosity. Including the
kinematic viscosity v gives the Navier-Stokes equation

Equations (7.46) and (7.47b) are all that is required to deal with incom-
pressible fluids and no equation which deals with internal energy is required.
We now describe a finite-difference approach to the numerical solution of the
equations of incompressible motion and eventually, using some of the ideas
from that, a particle method which enables the movement of surfaces of
incompressible liquids to be modelled.

7.10 The pressure method for incompressible fluids

By rearranging (7.47b) and taking the divergence of all terms, we find, for
constant v,

Since the divergence of the velocity is zero so is its rate of change, and the first
term on the right-hand side vanishes. In addition A. V2 v = A2 A. v, so the final
term also disappears, giving

We now consider a two-dimensional problem where at each point in the fluid
there is a pressure and a velocity described by its components (u,v ). From (7.46)
we find
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Expanding (7.49) gives

The second term on the right-hand side is (u(8/8x) + v(d /dy) ) (du /dx + 8v/8y),
which is zero because of (7.50). The expansion of (7.49) then gives

The general form of (7.51) also applies in three dimensions. With
= ( x 1 ,X 2 , x 3 ) and v = (v1 ,v2 ,V3), the condition for incompressible flow is

which, together with (7.49), gives

For the x component of (7.47b) we find

Because of (7.50) it is possible to replace — u ( d u / d x ) — v ( d u f d y ) by — du2/dx —
duv/dy, so the x-component equation now appears as

with a corresponding y-component equation

We can now use these equations to solve for the variables u, v and P in the
space defined by the square Eulerian mesh of side Ax, illustrated in Fig. 7. 15.
Harlow and Welch (1965) applied a simple method, which gives stability, and
it requires that w, v and P are defined at the points of three interlocking
meshes. Thus, in Fig. 7.15, P is defined at the cell centres, points such as (i.j)
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Fig. 7.15 The three interlocking meshes for the Lax method.

where both coordinates are integers; u is defined at face mid-points such as
(i + 1/2,j); and v at points such as (i,j+ 1/2). Referring to Fig. 7.15, we see that the
condition similarly for the divergence to be zero for the central cell at time
t+1 is

An approach by Amsden and Harlow (1970) gives a much less diffusive result
than earlier methods and makes use of ZIP differencing, for which, as an
example, [u(i,j)]2 = u(i-1/2,j)u(i + 1/2,j). Another part of the finite-difference
representation transforms the viscous term in (7.54a) by using (7.50) to give

This form allows the viscous term to satisfy the numerical condition of
A-v = 0. Equations (7.54a) and (7.54b) are used in a finite-difference form to
find the velocity components at time t+1 from the velocity components and
the pressure at time t. The Amsden-Harlow formulation of (7.54a) is now
given, where, for brevity, ut(i+ a,j + B) is written as u(a,B) on the right-hand
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side although the time superscript, £+1, is retained on the left-hand side:

This is a forward-difference equation giving ut+1(i + 2,j) from known values of
u, v and P at time step t. Similar equations can be found for the other velocity
components on the right-hand side of (7.55). If the values found for the
right-hand side terms are substituted into (7.57) it will be found, in general,
that DO is non-zero. The form of the equation giving D0 at the advanced time is

where F(u, v) is a sum of the velocity component dependent part of (7.57) and
those from three similar equations. The solution of the set of equations

determines the new pressures and ensures continual zero divergence of the
velocity. These values of the pressure are then used to recalculate the velocities
from (7.57).

In this method the time step is once again limited by a Courant-Friedrichs-
Lewy condition. A safe condition is that if u max and vmax are the greatest
components of velocity for any cell, then
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Because of the viscosity term another condition on the time step is involved:

and the more stringent of the time-step constraints is applied.
The pressure method enables the solution of problems in which the fluid is

completely enclosed by fixed boundaries - for example, in a pipe. However, if
there is a free boundary the method must be extended to take account of the
surface and, in particular, it is necessary to identify the location of the interface.

7.11 The marker-and-cell method
This class of modelling problems concerns the way that liquids behave when
there is a dynamic liquid-air interface - for example, the breaking of waves
on a beach, the flow of water through a sluice-gate or the splash formed when
a projectile falls into a liquid. It is necessary to add gravitational forces to the
previously derived equation of hydrodynamics; modifying (7.47b) to include
gravity, we have

As a simplification, in some circumstances viscosity can be removed, especially
where the liquid is water, for which the kinematic viscosity is comparatively
small.

The objective of the marker-and-cell method is to define the surface of the
fluid as it moves by means of marker particles. Initially marker particles are
placed in Eulerian cells to define the space occupied by the fluid, which will
include some cells which define the boundary of the fluid. Such a distribution of
particles is shown in Fig. 7.16 for water in a sluice before the gate is opened.
There are two types of boundary - first, where the fluid is in contact with the
rigid walls of a container (fixed); and second, where the surface is in contact
with the air (free). The fixed boundaries give boundary conditions on both
pressure and velocity. If the wall is horizontal, then the pressure gradient
normal to it is pg. On the other hand, if the boundary wall is vertical then there
is no pressure gradient normal to it. The general constraint which applies to
horizontal walls, vertical walls or inclined walls is
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Kg. 7.16 A marker-and-cell configuration
for a sluice-gate. When the gate is opened
water moves from left to right.

where n is the unit normal to the wall. In the immediate vicinity of a rigid wall
the velocity can only be parallel to the wall, and we shall indicate it by vp.
Two extreme assumptions can be made - the first (no-slip condition) that the
fluid sticks to the wall so that vp = 0; and the second that the fluid moves freely
relative to the wall so that there is no drag on it and in the absence of viscosity
dVp/ar=0 (r parallel to n). Intermediate assumptions are also possible.

The general approach in the marker-and-cell process is to solve for the
motion of the f luid by the pressure method and to interpolate from the velocity
components so found to move the individual particles. Dealing with boundary
conditions at the surface is clearly an important part of this process, and for this
we define a surface cell as one which contains marker particles hut is in contact
with an empty cell, which we call a vacuum cell. In two dimensions a surface
cell may have one, two, three or four neighbouring vacuum cells, as shown
in Fig. 7.17. The velocity of the fluid relative to the moving surface can only be
parallel to the surface, and for this reason the velocity gradient perpendicular
to the surface must be zero. This condition is approximately represented in
Fig. 7.17a by the condition v(i,j + 1/2) = v(i,j—1/2), although this really depends on
the surface being truly horizontal. Similarly, with two neighbouring vacuum
cells, as shown in Fig. 7.17b, the conditions are v(ij+1/2) = v(i,j — 1/2) and
u(i+ 1/2,j) =u(i — 1/2,j). For the arrangement of vacuum cells in Fig. 7.17c
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Fig. 7.17 Possible environments of a sur-
face cell in two dimensions: (a) one neigh-
bouring vacuum cell; (b) two neighbouring
vacuum cells; (c) three neighbouring vac-
uum cells; (d) four neighbouring vacuum
cells.

there arc no horizontal accelerating forces on the cell, giving conditions
v(i,j + 1/2) = v(i,j-1/2), u i + 1 ( i + 1/2,,j) = u ' ( i + 1/2,,j) and u'+l(i-1/2,j) = ut(i-1/2,j). Finally,
for an isolated cell, as in Fig. 7.17d, there are no horizontal forces but there is an
acceleration due to gravity in a veritcal direction, giving u t + 1(i+ 1/2, j)=u t( i+ 1/2,/)
and ui+'(i-1/2,/) = u'(i-1/2,/), together with v t+1(i,j+1/2) = v1(i,J + 1/2)+gAt and
v t ( i , J — 1/2) = v1(i,J-1/2)+gAt- This method was pioneered by Harlow and
coworkers, and Fig. 7.18 shows some results obtained by the method. A
comparatively simple marker-and-cell program, MAC, is provided (see p. xv).
Output from it, shown in Fig. 7.19, illustrates the opening of a sluice-gate where
the gate is instantaneously removed and the block of water is suddenly released
to move under gravitational forces. In the marker-and-cell method only the
behaviour of the surface is indicated and the positions of marker particles
within the body of the fluid are not indicative of fluid properties - for example,
density. The case illustrated in Fig. 7.19 assumes free movement parallel to the
walls of the enclosure. Since the calculation of components of the fluid velocity
by (7.57) implies knowledge of velocities outside the rigid boundary, these
hypothetical velocities can be provided by the boundary conditions. A useful
way of visualizing this is to imagine that there are mirror fluid systems with
common boundaries. Thus in Fig. 7.20 the mirror system A has mirror-image
related points with horizontal components such that UA= —U and vertical
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Fig. 7.18 Marker-and-cell simulation of water coming through a sluice gate (Harlow,
Shannon, and Welch, 1965). © American Association for the Advancement of Science.

components such that VA= V, with pressures related by PA = P. For the mirror
system B we similarly have UB=U, VB= — V, PB = P, and in addition gravity
is reversed so that gA= —g. The operation of this symmetry will be seen in the
listing of MAC.

7.12 Polytropic gases
For many applications in fluid mechanics an equation is required to determine
the variation of pressure, and this comes from the equation of state. In general,
this needs an equation - that for energy balance - to supply the second
thermodynamic variable required to specify the state of the fluid. However,
inviscid flow is without dissipation (frictionless) and the entropy of a fluid
element is therefore constant, and therefore adiabatic equations of state can be
used. For a so-called polytropic fluid this is of the form

which is the equation for an adiabatic change of state of a gas where y is the
ratio of the specific heat of the gas at constant pressure to that at constant



Polytropic gases 241
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Fig. 7.19 Simulation by MAC of the flow of a fluid initially constrained to one half of the
enclosure.

Fig. 7.20 The pattern of velocity components and gravity in mirror systems which give free
movement of liquid parallel to boundaries.
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volume. This condition is particularly easy to state in Lagrangian form, for the
Lagrangian cell contains a fixed mass of gas for which

Bynow making the transformation to a Eulerian form, we find 

A more useful equation is found by combining (7.38b) and (7.66) in the form

Regrouping the terms as

we find

We now have three coupled partial differential equations involving density,
velocity and pressure which, given initial boundary conditions, enable the
behaviour of a fluid to be followed in time. Putting these together, in Eulerian
form they are

and
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7.13 The von Neumann-Richtmyer method for
compressible fluids
The von Neumann-Richtmyer approach is a leapfrog finite-difference method
which will be described here for systems which involve a single space
coordinate, that is, for one dimension (n = 1), two dimensions with cylindrical
symmetry (n = 2) or three dimensions with spherical symmetry (n = 3). Cells are
defined, as shown in Fig. 7.21 for one dimension, which cell edges at
coordinates Ri _2, Ri- 1, Ri,+1, Ri +2, ••• , along the x-axis, and a set of fluid
particles are situated at the mid-points of the cells with coordinates Ri_3/2,
Ri-1/2, Ri-3/2, Ri+3/2, ••• • The numerical algorithm follows the motions of these
particles and finds the internal energy associated with them at every time step.
The basic equations which are to be solved in a Lagrangian system for an
inviscid compressible fluid are:

and

where P, V and u are the pressure, specific volume ( = 1 / p ) and speed at the
position, R, of a fluid particle and e is the specific internal energy, or internal
energy per unit mass. Although (7.68) and (7.45b) have been written in vector
form, for the systems we are considering there is only one non-zero component
of the vectors concerned. Equation (7.69) is simply the first law of thermo-
dynamics for an adiabatic change, which says that the change of energy de

R

Fig. 7.21 The arrangement of cells and fluid particles for the von Neumann-Richtmyer
algorithm.
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equals the work done ( — PdV) on the gas. The equations are easily cast into a
leapfrog finite-difference form by defining the spacial positions at time jAt and
the velocity at intermediate time (j— 1/2)At so that

where the superscripts indicate time, which is advanced in steps of At. We
indicate as Ami the constant mass of material in a region bounded by Ri+1/2

and Ri-1/2 - if n = 1, this is per unit area normal to the axis (planar geometry);
if n = 2, it is for the area defined by an angle of one radian perpendicular to
the cylindrical axis and unit length along the axis (cylindrical geometry); and,
if n = 3, it is per steradian (spherical geometry). With n defining the appropri-
ate geometry the following finite-difference expression is found for the specific
volume:

v

The inverse of Vj+1 gives pi
i
+l and from the equation of state, for a poly-

tropic gas,

P\+l can then be found. The specific internal energy at (i,j +1) is found from
a finite-difference form of (7.69) as

and finally, from (7.45b) with the appropriate form of Laplacian operator,

This completes the leapfrog cycle and the value of ui
i+1/2

+3/2
 goes into(7-70) to

begin a new cycle.
The condition for stability of this leapfrog scheme is found to be

for all (i,/), where

is the speed of sound in the fluid. This is the Courant-Friedrichs-Lewy
condition for the stability of the von Neumann-Richtmyer method.



Artificial viscosity 245

7.14 Artificial viscosity
In Section 7.4 the motion of a fluid was described in terms of a sum of wave
motions of different wavelengths, and it is clear that for any mesh that is used
the components of small wavelength will be less well defined. This is
illustrated in Fig. 7.22. The wave represented in Fig. 7.22a has a wavelength
covering four cells and the wave displacements on the mesh form the pattern
0, 1, 0, —1, 0, 1, .... Given that the energy per unit length associated with a
point on the wave is proportional to the square of the displacement, then it is
clear that the average energy per wavelength is 2 in our arbitrary units. If the
wave is displaced on the grid as shown in Fig. 7.22b then the pattern of
displacements is 2~1/2, 2-1/2, — 2~1/2, — 2-1/2, 2-1/2, ... and the average energy
per wavelength is the same. This component can be represented on our mesh
without any energy dissipation. By contrast, we now consider a wave which
covers two cells; in Fig. 7.22c the average energy per wavelength is 2 but if
the wave is displaced (a phase shift) as in Fig. 7.22d then the energy per
wavelength is zero. This illustrates that for systems where there are high
gradients, the components of which are not well resolved by the grid, then

Fig. 7.22 When the wave in (a) is
displaced as in (b) the mean intensity
(displacement2) at grid points remains

(d) constant. When the wave in (c) is displaced
as in (d) the mean intensity at grid-points
changes.
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there will be energy dissipation. This manifests itself through the numerical
algorithm being used, and with finite-difference schemes this depends on the
number of terms present in the finite-difference equations from the Taylor
expansions of the expressions being represented. The von Neumann-Rich-
tmyer scheme has third-order accuracy, that is, it correctly represents the
Taylor series (2.1) to four terms, and in general it is well behaved and gives
little numerical energy dissipation.

A characteristic of many real fluid-dynamical systems, particulary where
supersonic motions occur in compressible fluids, is the presence of shockfronts
where density, pressure and temperature have such high gradients that they
can be considered as almost discontinuous, although they do actually vary
smoothly through the shocked region. In shock fronts entropy generation, or
the transfer of energy of motion to thermal energy, is occurring. The processes
that are causing this are on a molecular scale, both in space and time, and the
macroscopic equations of fluid dynamics do not strictly apply on these scales.
However, an accurate description of the discontinuity is obtained using fluid
mechanics with viscosity and thermal conduction. In classical fluid dynamics
entropy generation occurs due to the presence of viscosity or heat conduction.
When viscosity is included in computational work, or if the algorithm contains
numerical dissipation, then all transitions are smooth and continuous. How-
ever, the natural viscosity of a normal system is usually quite small and some
algorithms, in particular that of von Neumann and Richtmyer, have little
numerical dissipation, so if a shock is introduced into the calculation then
large spurious oscillations occur on either side of the shock. To deal with this
problem von Neumann and Richtmyer suggested the introduction of an artifi-
cial viscosity of such a form that the shock would be distributed over a few
(typically three or four) grid intervals. By this device the numerical solution of
the fluid dynamics equations could proceed normally and the shock, spread
out over a few cells, would show the jump in conditions with about the correct
magnitude and with the shockfront moving at about the correct speed.

A form of artificial dissipation suggested by von Neumann and Richtmyer
is as an extra pressure term

where, to obtain a suitable spread of the shockfront, £ should be in the range
3.5-4, although trial and error may be required to find the best value. The
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form of (7.77) only gives entropy creation when the fluid is being compressed;
in this form, where the viscosity is proportional to the square of the rate of
change of strain (compression), the thickness of the shock is independent of
the shock strength, which is an attractive feature.

The equations, including artificial viscosity, which must be solved where
shocks are present are (7.68) and, in place of (7.45b) and (7.72),

and

where q is given by (7.77). We shall now look at an application of the von
Neumann and Richtmyer method with artificial viscosity included.

7.15 Blast-wave modelling
When atomic weapons were first introduced the efficiency of chain reactions
was not well known and hence the energy yield of early tests could not be
estimated. Actually a reasonable estimate of the energy can be made from the
motion of the expanding front of the resultant fireball based on the hydro-
dynamic theory of blast waves developed independently by Taylor in the UK
and Sedov in Russia after the first atomic weapon tests in New Mexico in
1944. When unclassified photographs of the first test were available in 1947,
Taylor applied his theory to give the first reasonably accurate estimate of the
yield. While the analyses of Taylor and Sedov were quite complicated it is
possible to derive the same information by matching the photographic infor-
mation to the results of a numerical simulation.

The model looks at the hydrodynamic motion induced in a body of uniform
density, po, by an instantaneous release of energy, of amount E0,, at a point,
chosen as the origin, r = 0. Gas near the origin is raised to a very high pressure
and temperature which drives a shock wave into the undisturbed gas. The
luminous front of the fireball, seen in the photographs, is identified with the
shock wave. Behind the shock the gas expands and cools; such a flow is called
a blast wave. The model is simplified by considering a polytropic gas with an
equation of state given by (7.72) and with a constant value of y = 1.4
appropriate to air, which mainly consists of diatomic molecules. Actually,
under the blast conditions the effective value of y will change due to
dissociation and ionization. The most serious deficiency of the model is the
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absence of radiation which, firstly, will remove energy from the system, and
secondly, will also contribute in driving the shockfront.

A great deal may be learned about the system from dimensional analysis.
The parameters which determine the radius r of the spherically expanding
wave for a particular 7, which is dimensionless, are £0, po and t. The only
dimensionless product which can be formed from these quantities is

The radius of the shock wave is thus given as a function of timeby

where A must depend on y, which controls the equation of state. Relationship
(7.81) involves no arbitrary parameters and this system has the property of
self-similarity which means that the same relationship will apply at all scales.

7.15.1 A nuclear explosion program
The program BLAST (see p. xv) applies the von Neumann-Richtmyer
algorithm with artificial viscosity to this problem. A description of BLAST can
be followed in a listing of the program. The flow is calculated in a polytropic
gas of index GAMA and ambient density RHO. The energy, EIN, is deposited
at r = 0 (J = l) of a mesh of JM cells occupying a total width ROUT. The
calculation can be performed in planar, cylindrical or spherical geometries
(ID = 1, 2, 3, respectively). Also required as input data are the initial time step,
DTIME, a total run time, TTIME, and an output interval, TOUT. The input
data are provided by a file BLAST.DAT, and one particular set of input data
is provided as an appendage to BLAST.FOR. The final output in a form
suitable for printing is in BLAST.OUT, while up to ten other files,
BLASTk.GRA (k = 0 to 9) give output information in a form suitable for a
graphics package.

The program with the input data provided gives values of the radius of the
shockfront, r, for various times, t. Figure 7.23 shows density as a function of
distance for t = 0, 0.2, 0.4, 0.6 and 0.8s for a run of BLAST with EIN = 1,
RHO = 1, ROUT = 1.1, JM = 190 and GAMA = 1.4. The values of r estimated
from the figure are 0.55, 0.72, 0.84 and 0.95, and the corresponding values of
rlt215 are 1.05, 1.04, 1.03 and 1.04 respectively, thus confirming the relationship
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Fig. 7.23 Output from BLAST.

Table 7.1 Values of r and
Mexico atomic bomb test.

from photographs of the New

t (ms)

0.10
0.38
0.66
0.94

Mm)

11.1
25.4
31.9
36.3

t (ms)

1.22
1.50
1.79
3.26

Mm)
41.0
44.4
46.9
59.0

t (ms)

3.80
4.34

25.0
53.0

Mm)

62.9
65.6

130.0
175.0

between r and t given by (7.81). Since E0 and po are both of unit value this is also
the value of Ar Table 7.1 gives a selection of values of r and t estimated from
photographs of the New Mexico atomic bomb test. A plot of log r against log t,
with the exception of the first point, gives a good straight-line fit with a slope
very close to 0.4, again confirming the relationship between r and t given in
(7.81) for the actual explosion. From the self-similarity condition we may now
express the energy in the real atomic bomb, Eb as

where subscript b corresponds to atomic-test conditions and subscript 0
to computational modelling conditions. Using the values in the last entry in
Table 7.1, r0/t

2/o/5 = 1.04 and the density of air pb = 1.25kgm-3, we find Eb =
6.00 x 1013 J. It is customary to express the yields of atomic weapons in terms of
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the equivalent mass of the explosive TNT giving the same energy. From the
conversion factor 1 kiloton = 4.24 x 1012 J, the yield of the New Mexico test
was somewhat over 14 kilotons.

In this particular case the theory of Taylor and Sedov enabled the yield to
be obtained from analytical expressions but the analysis is very difficult. This
atomic-test example is a good illustration of the way that computational
methods can give the required answer in a simple way and, for other types of
problem where no analysis was available, it may be the only way.

7.16 Multi-dimensional compressible flow
Most fluid dynamics simulation is concerned with the multi-dimensional flow
of a compressible fluid - for example, in aerodynamics and plasma physics.
The additional dimensions introduce severe complications to the simple von
Neumann-Richtmyer algorithm discussed in Section 7.13. As a result, there
are many different approaches appropriate for different problems. In this
section we outline various classes of problems and sketch without detail the
corresponding methods.

These methods split into two basic sets using either Eulerian or Lagrangian
formulations of fluid mechanics. Eulerian techniques are much more widely
used in multi-dimensional problems because of their general robustness and
programming ease. They are usually based around some development of the
Lax-Wendroff method with at least second-order accuracy to reduce numerical
diffusion. Some form of artificial dissipation is used to control shock forma-
tion and to prevent the growth of high-order nonlinear instability. This can be
achieved in one of two ways. Explicit artificial dissipation terms (as for the
von Neumann-Richtmyer method) have been very successfully exploited by
Jameson in programs designed for aeronautical simulation. Alternatively, the
dissipation can be introduced implicitly by modifying the advection algorithm
based on criteria required to ensure good physical behaviour. This has been
successfully achieved in the schemes developed by van Leer and by Boris and
Book. In such approaches the key is a sensitive application of strong dissi-
pation controlled by the program itself, so that it is only applied when required
and for most of the run a low-dissipation routine is used, thus ensuring little
numerical diffusion. Phase errors can be reduced by introducing a measure of
upstream differencing.

The very powerful and widely used Eulerian methods can handle both surface
and open boundaries naturally. They may use a framework on which a large
assembly of additional physics can be supported - for example, complex
equations of state, chemical reactions under thermal equilibrium, thermal
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conduction, and heat release in explosions. This flexibility is enhanced by
careful choice of the algorithm to maintain mass, momentum and energy
conservation. They suffer from one major deficiency, an inability to treat
contact surfaces, that is, material interfaces. Although methods to overcome
this problem can be devised they are not entirely satisfactory. We note that this
was the difficulty that led to the marker-in-cell adjunct to the pressure method.

Lagrangian methods, by following the fluid automatically, maintain contact
surfaces. However, they suffer from major programming problems. The direct
generalization of the von Neumann-Richtmyer method treats quadrilateral
cells. Unfortunately these are subject to topological problems in shearing
flow - for example, cells become pathological, resembling two triangles joined
at a common apex instead of a rectangle in two dimensions, causing the
program to fail. This can be prevented but makes the fluid 'stiff' by restricting
shear. Instead of quadrilaterals we can use triangles which do not become
pathological but may severely distort by becoming long and thin, so giving poor
differencing. Triangles also give rise to mesh numbering problems for the
programmer. The solution to these problems is to use free Lagrangian methods
with no structure, only a set of Lagrangian points which can move freely. In this
case the code starts to resemble a finite-element mesh and careful programming
is essential to ensure efficient sorting routines in order to develop the necessary
differencing relations. Despite the problems, multi-dimensional Lagrangian
codes of all these types have been successfully constructed and used, although
usually for specific tasks.

7.17 Smoothed particle hydrodynamics
Smoothed particle hydrodynamics (SPH) is a method developed by Lucy
(1977) and Gingold and Monaghan (1977) which has been widely used for
astrophysical problems. It is a free Lagrangian code where each particle
represents one cell of the Lagrangian mesh but where the need to define the
shapes of highly distorted cells does not arise. The ith particle has associated
with it a mass mi,, velocity v,, position ri, and a quantity of internal energy, ui,-.
At each point in the fluid being modelled the properties are a weighted average
of properties contributed by neighbouring particles, with the weight function,
called the kernel or smoothing function, monotonically decreasing with
distance. The kernel is usually terminated at some distance and is a function
of h, the smoothing length, which is a scale factor defining the range and
standard deviation of the kernel. In an ideal situation it is desirable to have at
least 20-30 particles contributing to the averaging process but the density of
the fluid, and hence the number density of the particles, will be a function both
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of position and time so that the smoothing length is adjusted at each time step
for each particle.

The kernel is a normalized function so that

where the integral is over the volume occupied by the kernel. As an example
of its use, the density at point j in the fluid due to all the surrounding particles
is given by

where the pre-subscript s on the left-hand side indicates that it refers to a
general point in space (which could be the position of a particle) and where
ri j, is the distance from particle i to the point j. For the value of a general
quantity, q, at point j we write

On the right-hand side pi refers to the density at the point i and qi, the amount
of property q associated with the point i. For example, the velocity of the
material at point j is estimated as

Several analytical forms of kernel have been suggested, the necessary
condition being that as h->0 the kernel should become a delta function and
that it should also be differentiable. In their original work Gingold and
Monaghan suggested a Gaussian form

which was usually truncated when r = 2h, which slightly disturbed the normal-
ization. In later work polynomial forms of kernel have been preferred.

The property of differentiability of the kernel is important when it comes to
calculating quantities such as the divergence or gradient of some property at
a point. As an example, if we want to find Vq then we evaluate
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On the other hand, if we wish to find V • s, where s is a vector quantity, then
we find

To deal with shocks, as previously explained, it is customary to introduce
artificial viscosity which broadens the shocks to a width which is compatible
with the distance between the particles and retains physically-plausible behav-
iour of the system. This is only necessary if the natural viscosity, as it appears
in (7.47b), is too small to give the required effect.

Including contributions from gravitational forces, pressure gradients as
given by (7.45b) and artificial viscosity, the equations of motion which have
to be solved in the SPH process are

and

where $j, is the gravitational potential, P the pressure, p the density and vj
a the

artificial viscocity at the position of particle j.
If the contribution to the force on particle j due to particle i is not equal and

opposite to the contribution of the force on particle i due to particle j there
will be consequent non-conservation of linear and angular momentum. For
this reason a symmetric form of the pressure-gradient term is used. Artificial
viscosity is usually incorporated in the pressure term and a common form of
pressure plus artificial viscosity, which preserves symmetry, is

In (7.91)

where
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Ci j, pi,i and hij are the means of the sound speeds, densities and smoothing
lengths at the positions of the particles i and j', the numerical factors a and B
are usually taken as 1 and 2 respectively, and n2~0.01 h2 il; is included to
prevent numerical divergences.

The gravitational potential at the position of particle j due to the surround-
ing points cannot best be simulated by point-mass gravitational effects because
each particle actually represents a distribution of matter. A common way of
handling this has been by using a form such as

although more complex forms have also been used.
All the components are now in place to be inserted in (7.90b) and it only

remains to consider the change in the internal energy associated with each
particle. For a polytropic gas as defined in (7.46), the equation of state is given
by (7.72)

where e is the specific internal energy. The internal energy is changed by
compression of the gas and by viscous dissipation. The rate of change in
specific internal energy associated with particle j is given by

From the density and internal energy the pressure can be found from (7.72)
and then the temperature can be found from

where n is the mean molecular mass of the material being modelled.
Jeans (1919) proposed a tidal theory for the origin of the solar system. In

this theory a massive star pulled a filament of matter from the Sun and
condensations in the filament gave rise to a family of planets. Jeans showed
that a filament of density p would be gravitationally unstable and break up
into a series of condensations. If the mass of gas in each condensation exceeds
a certain critical mass related to the density and temperature of the material,
then gravity would cause it to collapse to form a planet - otherwise it would
dissipate. The instability of a filament under gravity was modelled by Coates
(1980) using an SPH procedure. His result, shown in Fig. 7.24, illustrates the
validity of the Jeans analysis which predicts break-up into five condensations.
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Fig. 7.24 Fragmentation of a filament
modelled by SPH (Coates, 1980).

SPH is a good example of a free-zoning Lagrangian system which works
very well in practice and does give very good simulations of the behaviour of
astrophysical systems, although it does not have general application.

Problems

7.1 Modify the program ADVDIF to run in the mode using equation (7.8)
for advection plus diffusion. With constant Courant number 0.5, diffusion
coefficient 0.05 m2 s"1 and velocity 0.5 m s"1 study the diffusion of a triangular
distribution centred on x = 8.Om with half-width 2.4m for a period of 12 s
with (i) Ax = 0.8m, (ii) Ax = 0.4m and (iii) Ax = 0.2 m. Compare plots of the
distribution after 12 s for the three conditions. Consider the stability of the
computation in the light of the value of C + 2r.

7.2 Modify ADVDIF to run in the Lax-Wendroff mode for advection alone.
Setting v — 0.5ms 1 and Ax = 1.0m, plot the final configurations after 792s
of a triangular distribution centred on x = 4.0m with half-width 3.0m for
(i) C = 0.8, (ii) C = 0.9 and (iii) C =1.0.

7.3 Modify ADVDIF to run Problem 7.2 with ADVDIF in the QUICKEST
mode. Confirm that, without diffusion, so that r = 0, the process is unstable
for C > 1.0.
7.4 With ADVDIF in the QUICKEST mode, study the behaviour of a
'top-hat' distribution after 120s with V = 0.5ms"1, D = 0.15m2 s"1 and
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Ax = 1.0 m. The distribution is defined by

Run with values of C from 0.4 to 1.2 in steps of 0.2 and plot the final
distribution. Calculate values of r corresponding to each value of C and
confirm from Fig. 7.12 that the process should be stable in each case.

7.5 Modify the program MAC so that in the ranges 0<x< 0.25m and
0.075<x<1.00m the fluid is initially at height 0.45m and elsewhere in the
range is at a height of 0.15m. Find the form of the fluid surface at various
stages up to 64 iterations of the program.

7.6 By modifying the data file BLAST.DAT run the program BLAST with
values of y = 1.1, 1.2, 1.3, 1.4 and 1.5. The output file BLAST.OUT, which
can be read in editing mode, gives the radius of the blast front at intervals of
0.1 s up to 1.0 s. From this information estimate the values of Ay (7.81) for each
value of y and plot the results.
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The elements of
matrix algebra

We give here a very brief account of matrices, sufficient to explain the concepts
of eigenvalues and eigenvectors which occur frequently in scientific theory.
Fuller accounts will be found in standard mathematical texts.

A matrix is a rectangular array of quantities arranged in rows and columns
with the convention that an m x n matrix has m rows and n columns. In practice
the individual quantities, the elements of the matrix, with which we shall be
concerned, are numbers although they can also be other kinds of quantity, such
as partial derivatives. The 5 x 4 matrix A represents the array of elements

A special kind of matrix is a vector, which has either one row or one
column. Thus we may have the column vector

and the row vector

The relationship between b and bT is that each is the transpose of the
other - that is, their rows and columns have been interchanged.

Matrices may be added or subtracted if they are of the same dimensions
(have the same numbers of rows and columns); thus, if

then

1
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It is also possible to take a product of matrices, written as

but the rule for the dimensions here is that the number of columns of A must
equal the number of rows of B. The product of an m x n matrix with an n x p
matrix is an m x p matrix. The individual elements of C are obtained from
those of A and B by

As an example,

Square matrices, in which the number of rows equals the number of
columns, play an important role in scientific theory. Valid products of such
matrices can be taken in either order but, in general, they do not commute,
which is to say that

There are a number of special types of square matrix. Two such are the
diagonal matrix, which has non-zero elements only along the principal diag-
onal, and the unit or identity matrix, usually indicated by I, which is a
diagonal matrix in which each diagonal element equals unity. We show a
general diagonal matrix and a unit matrix:

The unit matrix has the property that it commutes with any other square
matrix of the same dimension, so that

The unit matrix also gives a way of defining the inverse matrix of A, A-1, by
the relationship

It is possible to represent a set of linear equations in matrix form a
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As an example,

is equivalent to the set of equations

Matrices may be treated algebraically, giving rise to the branch of mathematics
called matrix algebra and, in the notation of that subject, (A1.9) may be
manipulated to give

giving, from (A1.8),

Multiplying any matrix or vector by the unit vector leaves it unchanged, so
the solution of the equations is

Another important quantity is the determinant of a square matrix, written as

The value of a determinant is a number which comes from a sum of terms
involving products a1j1 a 2j2 a3j3 Where the first subscripts are in numerical order
and j1, j2 and j3 are the integers 1, 2 and 3 in all possible orders. In this case
there are six possible combinations of j1, j2 and j3 and, in general, for a
determinant of dimension n, there would be n! terms in the summation. The
general form is given by

The values of e are either + 1 or — 1 according to the following rule. If it takes
an even number of interchanges of pairs of terms in j1 j2 ...to produce the
natural order 12 ... n, then e is +1. If it takes an odd number of interchanges
then e is — 1. Thus, 3 12 in one interchange gives 132, and a second inter-
change gives 123- hence e312= + 1• Similarly, e321 = — 1.
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An important property of a determinant is that if the rows (or columns) of
the matrix are linearly dependent, which means that any one row (or column)
is equal to some linear combination of the others, then the value of the
determinant is zero. A matrix, the determinant of which is zero, is referred to
as a singular matrix.

Any square matrix, A, will have associated with it a set of eigenvalues, H i,
each with an associated eigenvector, xi,, giving the relationship

However, since

then we may write a revised form of (A1.13), without suffixes, as

where 0 is the null vector which has all elements equal to zero. It should be
noted that the bracketed quantity involves the difference of two matrices of
the same dimensions and so is a valid matrix of form
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The relationship (A1.15) is equivalent to a set of linear homogeneous equa-
tions involving the elements of x, meaning that they are linear equations for
which the right-hand-side vector, b, in (A1.9) has all elements zero. A trivial
solution to all such equations is that x = 0 or that all the elements of the
solution vector are zero. This solution is not usually of much interest if the
problem is a scientific one but is the only solution in the general case.
However, other solutions are possible if the matrix A is singular, which means
that its determinant is zero and that its rows are linearly dependent. We shall
illustrate this with the following numerical example:

Since the third equation is just the sum of the first two equations it may be
discarded and the remaining two equations written as

where z 2/x3 .The solution of these equations is Z1 =
Z2 = l or

but X3 can have any value. Thus there are an infinite number of solutions of
equations (A1.17), but the relative values of x1, x2 and x3 are the same for all
of them.

On this basis, for (A1.15) we can get non-null solutions for the eigenvectors
under the condition

and the form of A — AI seen in (A1.16) shows that the left-hand side of (A1.18)
is a polynomial of degree n in A This will have n different solutions for A, each
of which will be an eigenvalue, and each value of 1, substituted in (A 1.1 5),
will give a different eigenvector. As the solution of (A1.17) shows, an eigen-
vector is characterized by the ratios of its elements and an eigenvector multi-
plied by an arbitrary constant is still the same eigenvector. This property is
evident from (A1.13), where the eigenvector was introduced.

There are various standard computer programs available for finding the
eigenvalues and eigenvectors of a matrix. There is a simple way of finding the
principal eigenvalue, the eigenvalue of greatest magnitude. This consists of
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Table A1.1 The effect of repeatedly multiplying a
vector, initially with unit elements, by the matrix A in
(A1.19).

taking an arbitrary vector r (say, one with all unit elements), and repeatedly
pre-multiplying it by the matrix. Eventually each new vector will just be some
constant times the previous vector; at this stage the vector is the principal
eigenvector and the constant is the principal eigenvalue. As an example of this
process we take the matrix

and an initial vector with all unit elements. The effect of multiplying this
vector repeatedly by A is shown in Table Al.l for the first few cycles and then
for cycles 49, 50 and 51. For the final three cycles the ratio of the elements is
almost, but not quite, constant and the eigenvalue is somewhere between 2.07
and 2.08. The elements of the eigenvectors could be renormalized to keep
them as smaller numbers but, since we are interested in the ratios of elements
from successive cycles, this has not been done.

This short treatment of matrices, eigenvalues and eigenvectors is by no
means complete but may be helpful to those for whom the material is new and
an aid to memory to those who have met it previously.



A simple conjugate-
gradient method

The conjugate-gradient method is an efficient approach to the solution of a set
of linear equations Ax=b when the square matrix A, of dimension N, is
sparse - that is, has many fewer than N2 non-zero elements. A straightforward
solution is given by (A1.10) but the number of operations required to find A-1

is of order N3, and that is true even for a sparse matrix since A-1 is dense.
In the conjugate-gradient method the problem of solving the set of linear

equations is transformed into the minimization of the function

which is clearly a minimum (zero) for the required solution vector. A straight-
forward mathematical procedure is illustrated in two dimensions in Fig. A2.1
which shows contours for a function of two variables f ( x 1 , x 2 ) . Starting at the
point P, the goal is to reach the minimum of the function at point O. The first
step is to move in the direction of the greatest rate of change of f, which is
perpendicular to the contours - that is, in the direction of vf. The move is in
the direction in which f decreases and up to the point Q, which corresponds
to the minimum value of f along the line. At point Q this procedure is repeated
to give point R, and so on until the minimum is reached or a point sufficiently
close to the minimum for the purpose in hand. We shall now translate this
steepest-descent process into a mathematical form by dealing with a specific
2x2 matrix from which we can derive the general formulation.

Fig. A2.1 A graphical illustration of the
conjugate gradient method.

2
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The equations we are considering are

so the function being minimized is

The components of Vf are a f / a x 1 and d f / d x 2 , so that a vector in the direction
of Vf is

We now seek a scalar quantity A such that f(x + Au) is a minimum, which will
be so when

This gives

Moving to x + Au is equivalent to making one step, say from P to Q, in
Fig. A2.1. The process converges at a rate which depends on how well
conditioned the system is and may be stopped when successive iterations differ
by less than some given tolerance.

Looking at the vector forms of (A2.4) and (A2.5), it is seen that one iteration
requires three products of either A or AT with a vector and one scalar product
of two vectors, and that no matrix inversion is required. If the matrices are
sparse then by efficient programming only products with non-zero elements
are computed so that the number of operations required for a complete
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solution is a few times the product of the number of non-zero elements with
the number of iterations. For large N this will be considerably less than the
O(N3) operations required for the direct one-step solution (A1.10).

The simple conjugate process described here is comparatively inefficient.
If the multi-dimensional surfaces of constant g around the solution point give
a long narrow valley configuration then successive steepest-gradient steps may
be very short and very slowly move towards the required minimum. To over-
come this, a number of pre-conditioning techniques can be applied. These use
either an approximate solution to start the iteration or, more commonly,
modify the matrix to a form which converges rapidly. One very effective way
of increasing the efficiency involves finding an approximate inverse of the
matrix A, A-1, with a sparse form - typically that of the matrix A.
By pre-multiplying both sides of the original equation by A-1 the equations to
be solved by the conjugate gradient method are A -1Ax = A - 1b which, since
A-1A is nearly the identity matrix, converges very quickly. Other efficient
approaches, with programs, that involve movements in the n-space in direc-
tions other than along Vg, are given in Press et al. (1986). These approaches
can be much faster than the one described here.

Even the simple approach involving (A2.4) and (A2.5) is significantly more
efficient for a sparse-matrix problem than methods which use the equivalent
of matrix inversion. In a test involving 1000 equations and 5000 non-zero
matrix elements, the matrix inversion approach took 920 s to reach a solution
on a Pentium 166 MHz PC. The simple conjugate-gradient approach, as
described here, with a required precision of 0.001 in the determination of each
element of the solution vector (elements of order unity) took about 2s- nearly
500 times faster. However, if greater precision had been required the advan-
tage factor would have been less. In another test, with 2000 equations and
10000 non-zero matrix elements which could not be tackled on the PC
because of limited RAM, the simple conjugate-gradient approach took 3.4s
while a pre-conditioning procedure which modified the matrix A led to a
solution in 7.5 ms. This indicates the importance of using the best available
procedures which can make a difference in timing of several orders of
magnitude.

The program CONJUG (see p. xv) solves a set of up to 2000 linear equa-
tions where the left-hand-side sparse matrix has a particular five-banded struc-
ture which occurs in some kinds of finite-difference problems. Also available
is CHOLESKY (see p. xv), which requires the supplied subroutine ICCG,
which solves the same equations after they have been pre-conditioned. The
much greater efficiency of the pre-conditioned algorithm may be confirmed by
experiments with these programs.



The virial theorem

The virial theorem applies to any system of particles with pair conservative
interactions for which the total volume of space occupied by the system is
constant. This states that

where T is the translational kinetic energy and O is the potential energy. We
shall demonstrate the validity of the theorem for a system of gravitationally-
interacting bodies.

We consider a system of N bodies for which the ith has mass mi, coordinates
( x i , y i , Z i ) and velocity components ui, vi, wi. We define the geometrical
moment of inertia as

Differentiating I twice with respect to time and dividing by 2, we obtain

The first term is 2T; the second can be transformed by noting that m1 x1is the
total force on body i in the x direction due to all the other particles, or

Combining the contributions of the force on i due to / and the force on j due
to i, we find, for the second term on the right-hand side of (A3.3),

3
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Equation (A3.3) now appears as

and if the system stays within the same volume and has the same distribution
of particles, at least in a time-averaged sense, then <i> = 0 and the virial
theorem is verified.

The virial theorem has a very wide range of uses, and can be applied to a
cluster of stars or to the molecules in a star where the translational kinetic
energy is just the thermal energy of the material. For a spherical cluster of N
stars, each of mass m with a uniform distribution in a sphere of radius R, the
potential energy will be

Equating — O to twice the translational kinetic energy of the stars gives

giving the rms speed of the stars,



The condition for
collisionless PIC

In Fig. A4.1 we show an interaction between an electron and a singly-charged
ion. The electron at C experiences an acceleration towards the ion at O
equal to

where D is the closest approach of the interaction. By symmetry, the net
change of velocity of the electron due to the interaction will be in the direction
AO and the component of the velocity change in that direction in time dt will
be dv± = acos 0 dt. If the velocity of the electron relative to the ion is v then
( d s / d t ) = v and since s = Dtan 0 then (ds/d0)=Dsec20. From these results we
find that the change of velocity in the direction AO in going from C to C' is

The total change in velocity along AO due to the passage of the electron is

Fig. A4.1 An electron at C moving
at speed v relative to a singly-charged
ion at O.

4



The condition for collisionless PIC 271

This will cause a deviation in the path of the electron,

The deviations due to close interactions will be in completely random
directions and the root-mean-square deviation after N interactions at speed v
will be

The analysis is simplified by making the approximation <1/D2)1/2 = <1/D); the
answer so obtained is changed by a factor of order unity but the conclusions
drawn from it are still valid. We now have

We assume a maximum value of D, Dmax, for a close interaction. The total
target area for a close interaction is thus nD2 and for a closest approach
between D and D + dD the target area is 2nDdD. From this the value of
<1/D> is found as

The more precise analysis, without our simplification, involves finding <1/D2>

and requires the introduction of a minimum distance for an interaction, Dmin.
This is taken as the Landau length, the distance of an interaction that will give
a deviation of n/2.

From (A4.5) we can now find the expected number of close interactions
required to give a root-mean-square deviation of n/2 which will happen in
time tc. This is

As the electron travels through the plasma every ion within a distance Dmax

will give a close interaction. To give Nc close interactions requires a distance
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requiring a time

when n is the number density of ions. From (3.47), which gives an expression
for the plasma period,

Writing mv2 = 3kT and using (3.49b), the expression for the Debye length,
we find

which is about six times the number of particles in the Debye sphere.
This result applies to the number of superparticles in the Debye sphere of

the model since the root-N statistics we used will be relevant to the model and
not to the plasma being modelled.



5 The coefficients of a half-
sine-wave Fourier series

We consider a function, f( i,i '), defined on a two-dimensional grid forming n x n
square cells and with f(i,j) = O at all boundaries, represented by the half-sine-
wave Fourier series

Multiplying both sides by s in(nHi/n)s in (nKj /n) and then summing over
all i and j, we have

The half sine waves with different coefficients form an orthogonal series
so that

where 6h,H is the Kronecker delta. Thus the only non-zero term on the
left-hand side of (A5.2) is that for which h = H and k =K. This gives the result

which leads to (3.71) as required.



6 Numerical quadrature

Numerical quadrature, or 'finding the area under the curve', consists of
evaluating definite integrals. Initially, we shall restrict our description to one
dimension, to estimating

but later these ideas will be extended to multi-dimensional integrals.
The simplest technique of numerical quadrature is the trapezium method,

illustrated in Fig. A6.1. The range of x from b to a is divided into n equal
segments (five in the figure), each of width h, and the area is simulated by
the sum of the areas of the five trapezia shown. Since the area of a trapezium is
the product of the base length and the average height the integral is estimated as

For the general case of n equal segments this becomes

Fig. A6.1 The trapezium method gives the area under the curve as the sum of the areas of the
trapezia shown.
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Table A6.1 Values of the integral given in (A6.3) for various intervals h by the
trapezium rule and Simpson's rule. The error of each estimate, in units of the
least significant figure, is indicated in parentheses.

Segment (h) Trapezium rule Simpson's rule

n/8

It/16

n/32

0.98712(1288)
0.996 79 { 321)
0.999 20 ( 80)

1.00013459(13459)
1.000 008 30 ( 830)
1.000 000 52 ( 52)

Fig. A6.2 Pairs of segments for Simpson's
rule.

It is obvious from Fig. A6.1 that the smaller are the segments the better will
be the estimate. Table A6.1 shows the estimate of

for the trapezium method for various values of h. It can be shown theoretically
that the expected error in the trapezium-rule estimate is proportional to hz,
and the results in the table confirm this. Each reduction in h by a factor of 2
gives a reduction in the error by a factor of 4.

As an improvement on fitting a straight line to two neighbouring points to
simulate part of the function f(x), we now consider fitting a parabola to three
equi-spaced points as shown in Fig. A6.2, where the x coordinates are
arbitrarily taken as —h, 0 and h and the three ordinates of the curve as f _ l t f0

and fi. We fit the parabola f(x)=ax2 + bx + c. From the centre point where
x = 0 we find c — f0 and from the flanking points
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From these equations we find

The area under the parabola between x = — h and x= +h is

The result (A6.6) leads to Simpson's rule for numerical quadrature. The
interval from a to b must be divided into an even number of segments and then
a parabola is fitted to the ordinates defining pairs of segments. The area under
all these parabolas gives the estimate of the total area under the curve and is,
for n segments,

This gives the Simpson's rule pattern of coefficients

Theoretically the estimates from Simpson's rule should have errors propor-
tional to h4; this is confirmed by examination of Table A6.1, which shows that
halving the interval decreases the error by a factor close to 16.

It can be shown that Simpson's rule will give a precise solution for any
function which is a polynomial of cubic power or less. If the function is of the
form f(x) =x" within the range a to b then the true value of the definite integral
is (bn+l — a"+l)/(n + l). Dividing the interval into two segments, so that
fj = (l)(b—a), the Simpson's rule estimate is

It may be confirmed that the estimate is correct for n = 0, 1, 2 and 3, and this
will also be true for a function f(x) which is a linear combinations of such
powers of x. A quadratic must give a correct result, since this is the form of
the curve fitted to f(x), but what we have shown here is that positive and



Numerical quadrature 277

negative errors due to fitting a quadratic function to a cubic f(x) exactly cancel
each other.

Returning to the results for the trapesium method in Table A6. 1, we can
write the errors for segments h = n/8 and n/16 (four and eight segments in the
interval 0 to n/2) in the form

and

where I is the correct value for the integral. However, from theory e4 = 4eg

To get a result as good as this with the trapezium rule would require several
hundred points, but we notice from Table A6.1 that it is also the answer for
eight segments with Simpson's rule. In fact this is exactly what it is. If values
of the function at equal intervals of x separated by h are f0, fi and f2 then

and

which is the Simpson's rule result.
Since we also know the way that the error varies with h for Simpson's rule,

a similar procedure can be carried out for these results. For the Simpson's rule
method in Table A6.1 we can write the errors for h = n/8 and n/16 as

where I is the correct value for the integral. However, we know from theory
that 564 = 16se8, from which we find
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Table A6.2 The generation of successively improved estimates of definite
integrals by the Romberg method. The initial calculations are of Tn,
the trapezium-method estimates with n segments. Others are calculated
as: Sn = (4Tn-Tn/2)/3; Rn = (16Sn-Sn/2)/l5; Qn = (64Rn-Rn/2)/63; pn =

Number of
segments

1 T1,
52

2 T2 R4

$4 Q8

8

16

32 T32

Table A6.3 A Romberg table with eight segments for the integral (A6.3).

T1 = 0.785 398164
S2 = 1.002 279 877

T2 = 0.948 059 449 R4 = 0.999 991567
S4 = 1.000134 586 Q8 = 1.000 000 007

T4=0.987115802 R8 = 0.999 999 875
58 = 1.000 008 295

T8 = 0.996 785172

This result is one we could get by dividing the range into eight segments and
fitting a quartic to each of two abutting ranges, each with five points. It would
be possible, but complicated, to work out the coefficients of the five ordinates
which would give the required estimate, but it is much easier to find it from
(A6.9). The error in the estimate (A6.9) depends on h6, so the principle by
which the result (A6.9) was generated could be extended to give estimates
depending on fitting an eighth-order polynomial to sets of nine points. This
process is the basis of the Romberg method of quadrature which is illustrated
in Table A6.2. The final result, O32, is that which would be found by fitting
a 32-order polynomial to all 33 ordinates. In practice, if a certain tolerance is
acceptable, the Romberg method would terminate once all the results in a
column agreed to within the tolerance limit. Table A6.3 shows the stages in
estimating the integral (A6.3) starting with eight segments and four trapezium
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Fig. A6.3 The ordinates for Gauss two-
point quadrature.

estimates. If only four decimal places of precision were required then one
could accept the answer 1.0000 from £4 and R8.

The Romberg process involves repeated arithmetical operations affecting the
least significant parts of the numbers being processed, so round-off errors can
build up. However, with double-precision floating-point arithmetic this is
rarely a problem.

A very effective alternative to methods which require division of the
integration interval into equal segments is Gauss quadrature, which fixes the
number of points at which the integrand must be evaluated but where these
points are not equally spaced. We shall illustrate the principle of this method
with two-point Gauss quadrature. The integral to be evaluated will be put
in the form

which is illustrated in Fig. A6.3. The problem we seek to solve is to find
fractional numbers oei and a2 with corresponding weights wi and w2 such that

Since A is the integration interval then the bracketed expression in (A6.ll) is
an expression for the average value of the integrand in the range.

Clearly values of al5 a2, u/i and w2 cannot be chosen which will give a precise
solution for every possible function f(x) in (A6.10), but what can be done is
to find values which will make the solution exact for f(x) = l,f(x)=x and
f(x) = x2 and hence for linear combinations forming a quadratic expression.
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These conditions give

which gives

or, since w\ + w2 = 1,

Finally,

Using results (A6.12) and (A6.13), this gives

To find an explicit solution to equations (A6.12), (A6.13) and (A6.14), we
impose the condition that the points shown be placed symmetrically around
the mid-point of the range so that

From (A6.13), substituting from (A6.12) and (A6.15), we find

or

The solution of (A6.16), ai = 2, is not acceptable because this also
makes a2 = 1/2 which gives only one point and not two as required. The
acceptable solution is to give equal weights w\ = W2 = 1/2. From (A6.14), we
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now find

or

the two solutions of which give 04 and «2 as

and

If we apply the two-point Gauss formula with these values to integral
(A6.3), we find

which is much better than the trapezium method estimate with two points,
0.7854, and is also slightly better than the three-point Simpson's rule estimate,
1.0022799.

It can be shown that the two-point Gauss formula gives a precise solution
even for a cubic function. The reader should verify that

is equivalent to the Gauss two-point expression

In general a Gauss n-point formula gives a precise result for polynomials up
to degree 2n — 1. Tables of weights and abscissae (values of a) can be found in
mathematical tables (such as Abramowitz et al., 1968). Some tables give the
abscissae in the range +1 to — 1, centred on zero with the sum of weights
equal to 2, rather than 1 as given by our analysis. Conversion from one system
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Table A6.4 Abscissae and weights for Gauss quadrature.

n

3

4

7

10

Abscissae
0.1127017
0.5
0.8872983
0.0694318
0.3300095
0.6699905
0.9305682

0.0254460
0.1292344
0.2970774
0.5
0.7029226
0.8707656
0.9745540
0.0130467
0.0674683
0.1602952
0.2833023
0.4255628
0.5744372
0.7166977
0.8397048
0.9325317
0.9869533

Weights

0.2777778
0.4444444
0.2777778
0.1739274
0.3260726
0.3260726
0.1739274

0.0647425
0.1398527
0.1909150
0.2089796
0.1909150
0.1398527
0.0647425
0.0333357
0.074 725 7
0.1095432
0.1346334
0.1477621
0.1477621
0.1346334
0.1095432
0.0747257
0.0333357

to the other is straightforward. Table A6.4 gives weights and abscissae for a
few selected values of «.

The evaluation of multi-dimensional integrals will be illustrated by a
two-dimensional integral; the principle can easily be extended to any number
of dimensions. We consider the integral

The x range is divided into « segments, each of width h, so that nh = b—a
and the y range into m segments, each of width k, so that mk = d—c. Both
« and m must be even. For the application of Simpson's rule in each direction
the estimate is given by



Numerical quadrature 283

where nwi,- and mw1 follow the series 1,4,2,4,..., 4,2,4,1 with +1 and m +1
members, respectively. For Gauss integration, n-point in the x direction and
m-point in the y direction, the estimate is found from

where Ax = b—a, Ay = d—c and the ws and as are abscissae and weights as
given in Table A6.4.

Formulae such as (A6.18) and (A6.19) are simply coded in computer
programs (as nested DO loops in FORTRAN, for example) up to the extent
of nesting allowed by the software. For many dimensions, say more than four,
Monte Carlo methods (Section 4.5) are more convenient and can give better
precision for a given amount of computer effort.



7 Calculation of the four-
element solution to (6.11)

In this appendix we follow in detail the steps in finding the four-linear-element
solution to (6.11) by minimizing the functional

where

The variational parameters (ordinates) di, ^2 and a3 correspond to x = n/8,
7i/4 and 3r/8, so that h = n/8 and l/h2 = 64/n2. Since ao = 0 it is not included
in the summations but the other boundary value a4( = n/2) is included. The
method of approach is to make dI(a-i,a2,a3)/8ai = o for i = 1,2 and 3, and then
to solve the resulting linear equations for 01}32 and a3. This gives the approxi-
mate solution at the nodal values.

With a slight change of notation for the Ns, we begin by finding

where a4 = n/2, the upper boundary condition. The last two terms give no
contribution because of (6.24a), and the other products of N values are given
by (6.24b) and (6.24c). Hence
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the limits of the integrals corresponding to the ranges within which (Nj)2 and
N'iN'2 are non-zero. Similarly

We now turn our attention to terms involving T2. From (6.25b), putting
a4 = n1/2, we have

In the various ranges of x the values of N are as follows:

From (A7.6),

but, because of (6.23), only the first two terms in the parentheses will give a
finite result. Hence
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and similarly,

Finally

which gives

similarly,

Assembling terms,

or 4.83116a1-2.61193d!2= -0.71634, which is equation (6.26a). Equations
(6.26b) and (6.26c) are found similarly from dl/da2 = 0 and dl/8a3 = 0.



Problems - solutions and
comments

Chapter 1

1.1 The errors for the various steps should be found to be close to the
following:

n 10 12 14 16 18 20
Error (xl05m) 1.0140 0.4803 0.2482 0.1345 0.0735 0.0385

This is approximately consistent with the error being proportional to h5.

1.2 The log A against logf plotted points give a fairly good straight line
between f=1 and f = 1 0 - 3 . From this the relationship A = 1 .58f 0 . 6 7 , or
something similar, should be found. For the smaller values of f the value of A
tends to a constant corresponding to f=0.

1.3 The estimation of the range, R, of motion of the asteroids can only be
found approximately from the graphical output, a typical example of which is
in Fig. 1.6b. However, the results should give something close to

Mp(M0) 2.5 x 10-4 5 x 1 0 - 4 1 0 2 x10-3

R (AU) 0.50 0.34 0.24 0.18 0.13

A plot of log R against log Mp gives a straight line with a slope very close to
-0.5, suggesting that RocM-

 p
1/2.

1.4 It is clear from Fig. 1.9 that the rate of change of e, indicated by the
regions between the spikes, is not constant, so there is considerable uncertainty
in estimating the mean slope. Some estimated results are now given, although
different individuals will end up with different estimates:

e
de/dt
(days-1)

0.4
5.3 x lO-4

0.5
4.0 x l O - 4

0.6
3.4 xlO'4

0.7
1.9 xlO-4

0.8
1.3 x10 - 4

These points straddle a straight line and, in view of the uncertainty in
each estimate, it is reasonable to postulate a straight-line relationship in this
range.
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1.5 The following results were found from the modified DRUNKARD
program.

n 2 4 8 16 32 64 128 256 512 1024
d 1.65 2.67 4.07 5.95 8.44 11.91 17.49 24.18 31.81 46.65

A plot of log(d) against log(n) gives a distinct curvature, so no simple power-
law relationship holds over the range. However, a simple polynomial fit may
be possible.

1.6 The following results were found from the modified POLYWALK
program.

n 2 4 8 16 32 64 128 256
d 1.63 2.84 4.85 8.66 16.14 31.05 61.21 119.19

For n = 256 there were only four successful walks out of 1000 trials, so this
result is not very reliable. It will be seen that the walks for each n are longer
than those given in Table 1.4. This is reasonable as excluding motion in one
direction stretches out the walk and also reduces the probability of path
crossing - which is why longer walks were feasible in this case. A plot of
log(d) against log(n) gives a distinct curvature so no simple power-law
relationship holds over the range. However, as for the modified DRUNKARD
results, a simple polynomial fit may be possible.

Chapter 2
2.1 The basic differential equation for this problem is

and the statement function must be changed accordingly. Inserting the mean
cross-sectional area, 0.00015m2, suggests an approximate heat flow of
3.75W. A set of successive approximations leading to a solution is:

Trial Q Temperature (K) at x = 11.0m

By linear interpolation

By linear interpolation

3.75
3.50
3.607
3.606
3.6067

396.03
402.96
399.99
400.02
400.00

The temperatures at x = 0.25, 0.50 and 0.75m are 467.81, 441.50, 419.27K.

2.2 The changes to the HEATRI program necessary for this application are
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The temperatures found are 467.80, 441.50, 419.26 K with heat flow
3.6068 W, slightly different from those found by the shooting method.

2.3 Each of the programs HEATEX, HEATCRNI and LEAPDF (Dufort-
Frankel mode) was run with the parameters given in the problem and in each
case with 100s time steps, corresponding to r = 0.3429. The numerical
solutions gave:

x (m) =
HEATEX
HEATCRNI
LEAPDF

0.2
300.0
300.0
300.0

0.4
300.0
300.0
300.0

0.6
300.0
300.0
300.0

0.8
300.1
300.2
300.0

1.0
300.6
300.8
300.0

1.2
303.1
303.3
300.4

1.4
310.8
310.7
303.0

1.6
328.6
328.0
314.4

1.8
359.5
358.8
346.3

There is reasonable agreement between the explicit and Crank-Nicholson
methods, but the Dufort-Frankel result is significantly different from the other
two. The leapfrog method is too unstable to be able to deal with this problem
except for very short periods of time, much less than 2000 s.

2.4 Time = 107.3s:

x
0 =300K
0ext=400K

0.0
375.7
426.1

0.125
450.3
468.8

0.250
488.2
492.6

0.375
498.8
499.1

0.500
500.0
500.0

0.625
500.0
500.0

0.750
500.0
500.0

0.875 1.000
500.0 500.0
500.0 500.0

Time = 214.7s:

0ext=300K
0ext=400K

0.0
364.3
419.6

0.125
426.7
455.8

0.250
468.4
480.6

0.375
489.5
493.5

0.500
497.5
498.4

0.625
499.6
499.7

0.750
500.0
500.0

0.875 1.000
500.0 500.0
500.0 500.0

Time = 322s:

x
0ext=300K
0ext=400K

0.0
357.5
416.8

0.125
412.5
448.1

0.250
453.6
472.1

0.375
479.1
487.3

0.500
492.1
495.2

0.625
497.6
498.5

0.750
499.4
499.6

0.875 1.000
499.9 500.0
499.5 500.0

2.5 The solution is

X\ X2

2 -1 0
X5

3
X6

1
X7

0

The best over-relaxation factor is w = 1.0, which then requires 10 cycles
starting from all zero estimates. For w = 1.3 a solution is not reached after 100
cycles and the system seems to be unstable for larger values of w.
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2.6 The description of the plate as input into HOTPLATE is

X

The values of K and S for the five points marked E are 10 and 5 x 104, respec-
tively. The relaxation factor chosen, 1.5, was not optimal but nevertheless
gave the answer efficiently. The output solution, hand-contoured at 200 K
intervals, is shown in Fig. P.1.

THE TOLERANCE IS 0.01000
THE OVER-RELAXATION PARAMETER IS 1.50
THE NUMBER OF CYCLES IS 25
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Chapter 3
3.1 The action of the lens can be seen with three electron trajectories, one
from the origin leaving at some angle to the axis and two inclined to each
other leaving from a point such as (0,0.001). The output in Fig. P.2 shows
that the required value of D is close to 0.7.

Fig. P.2

3.2 The values of R2 and kinetic energy (KE) from the program are as
follows:

Time (years)
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

R2 (AU2)
7.1379
7.2238
7.3330
7.4696
7.6284
7.8116
8.0186
8.2554
8.5126
8.7871
9.0885

KE (solar system units)

1.2163
1.2145
1.2107
1.1854
1.1772
1.2614
1.1506
1.1228
1.1013
1.0978
1.0688

The values of d2(R2)/dt2 vary around 2.4 with quite large variations, while
values of twice the kinetic energy vary between about 2.1 and 2.5 in solar
system units. No better agreement can be expected in view of the lack of
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precision of the computation, which is evident from the jump in kinetic energy
for 50 000 years.

From the virial theorem, (A3.1), 1/2't=2T+£l, and since, in this calculation,
T+Q = 0 the relationship d 2 (R 2 ) /d t 2 = 2T follows.

3.3 The xenon results are shown in Fig. P.3 and are similar to those for
argon. If the ratio of the temperature of the calculation to the temperature
describing E is the same for different Lennard-Jones liquids then the relation-
ship between PV/NkT and V* should be the same.

Fig. P.3

3.4 A graphical representation of the results is shown in Fig. P.4 for the times
5.105 x 10-14 S((a) and (c)) and 1.0210 x 10-13s ((b) and (d)). For the earlier
time, reflection of the faster electrons can just be seen in the lower right-hand
corner. At the later time, reflected particles have almost returned to x = 0 and
sufficient time has elapsed for some slower electrons to be reflected back into
the system. The field diagrams are similar to those in Fig. 3.13, and the
explanation given in Section 3.7 applies here also.

Chapter 4

4.1 A program using the random number generator RAN1 (Press et at., 1986)
gave the results shown in Fig. P.5 and the plotted points are close to a line with
slope —1. It can be shown theoretically that <82i

N > is proportional to N-1.



(a) Velocities and positions 
(b) Velocities and positions

Field v. position

Fig. P.4

Fig. P.5
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4.2 For three different seeds a program using the random number generator
RAN1 gave the following results:

Runl
Run2
Run3

a

0.6818
0.6825
0.6822

2a

0.9562
0.9536
0.9548

3a

0.9977
0.9972
0.9977

These results agree well with the correct values, although for some purposes
they might not be good enough. If, for example, the interest was in the tails
of the distributions beyond 3a then runs 1 and 3 indicate a proportion 0.0023
against the correct value 0.0027. By dividing all the sums by 3, a normal
distribution with unit standard deviation would be obtained.

4.3 The normalizing constant C for P(x) is found to be 1.90476 and,
by transformation, deviates from Q(x) are found from uniform deviates
(0-1), r, by

1-l-0.9975r
= x

0.95

The maximum ratio of P(x)/Q(x) is unity for x = 0 so no further scaling is
necessary. The numbers from a program, compared with the analytical results,
were:

Range
0.0-0.1
0.1-0.2
0.2-0.3
0.3-0.4
0.4-0.5
0.5-0.6
0.6-0.7
0.7-0.8
0.8-0.9
0.9-1.0

Program
272 814
201 226
149608
110985
82551
60629
45572
33079
24952
18584

Analytical
272 762
202067
149695
110897
82154
60 861
45087
33401
24 744
18331

4.4 There is no unique solution to this problem but one possible stochastic
matrix is:

0.2 0.2 0.3 0.3
0.1 0.2 0.3 0.4
0.1 0.3 0.2 0.4

0.075 0.2 0.3 0.425]

The elements in bold were those chosen arbitrarily. From a program using this
matrix the number found for each of the variables was:

x1 (100319), x2 (199805), x3 (299707), x4 (400169)

very close to 1:2:3:4.
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4.5 The results for METROPOL are shown in Fig. P.6. The results for 600 K
and 800 K are related similarly to those from FLUID YN but the values of
PV/NkT are higher than for FLUID YN, as is also seen in Fig. 3.6.

4.6 Some typical individual results for the integral, /, are:

N 10
/( x 10-4) 5.3686

100
5.4487

1000
5.3556

10000
5.3684

100000
5.3728

A plot of log aN against logN is shown in Fig. P. 7 and the slope close to —1/2\
shows the required relationship.

4.7 The input for this problem is

X X X
X X X
X X X

400 400 350
U U 300
U U 300
U U 300

400 U 300
X 400 300
X X 350
X X X

X
X
X
350
300
300
300
300
300
300
350

X
X
400
U
U
U
U
U
U
U
400

X
400
U
U
U
U
U
U
U
U
400

450
U
U
U
U
U
500
500
500
500
450

X
500
U
U
U
U
500
X
X
X
X

X
X
500
U
U
U
500
X
X
X
X

X
X
X
450
U
U
500
X
X
X
X

X
X
X
400
U
U
450
X
X
X
X

Fig. P.6
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Fig. P.7

The output, contoured by hand, is shown in Fig. P.8a with the corresponding
standard deviations in Fig. P.8b.

4.8 A run of REACTOR with the required data gave the following results:

Radius
Mult. const.

1.0
0.537

2.0
0.848

3.0
0.945

4.0
0.976

5.0
0.996

6.0
1.003

7.0
1.008

8.0
1.003

9.0
1.020

Allowing for the inevitable standard deviations in a Monte Carlo process, it
is clear that the multiplication constant increases with radius but saturates at
a value slightly greater than unity at a radius of about 6 m. For smaller radii
many of the neutrons are absorbed by the walls of the reactor. However, the
larger is the reactor the greater is the ratio of volume to surface area and so
the less is the influence of wall absorption. It is clear that for given fuel-
moderator conditions a minimum size of reactor is required but that increasing
the size beyond that gives a diminishing return in terms of output per unit
material.

Chapter 5
5.1 Graphical output using 50 intervals is shown in Fig. P.9. The six output
profiles show the wave motion for slightly more than half a period.

5.2 Graphical output using 50 intervals is shown in Fig. P.10.

5.3 Figure P. 11 shows the intensity patterns from a program written to carry
out the processes required.
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(i) The final row and column have been added to show the top and right-hand
edges of the field. The arrow is exactly reproduced in Fig. P.11a.

(ii) The amplitude map shows two half-amplitude arrows, related by a centre
of symmetry at (1/2,1/2), added together. The map in Fig. P.11b shows the shaft
of the arrow with unit intensity and the heads with one-quarter intensity.

Fig. P.10
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(iii) The amplitude map only shows non-zero results in the arrow head
regions and these are the negative of each other. There are, in fact two
half-amplitude arrows added together with phases differing by n so the
two shafts cancel each other. The intensity map is shown in Fig. P.11.c.
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LENGTH OF ROD 2.00 CONDUCTIVITY
BOUNDARY CONDITION 1 IS I
BOUNDARY CONDITION 2 IS E800

300.0

POINT
0
6
12
18
24
30

(a) 36

SOURCE STRENGTH 0.
936.
936.
933.
923.
913.
903.
893.

1
7

13
19
25
31
37

936.
936.
931.
921.
911.
901.
891.

2
8
14
20
26
32
38

10E+05 AT
936.
936.
929.
919.
909.
899.
889.

3
9
15
21
27
33
39

NODE
936.
936.
928.
918.
908.
898.
888.

10
4
10
16
22
28
34
40

936.
936.
926.
916.
906.
896.
886.

5
11
17
23
29
35

936
934
924
914
904
894

Fig. P.12a

Fig. P.12b

Chapter 6
6.1 The variational function is found to be y = 0.563 85x + 2.15443x2. From
the boundary conditions b = e — a so there is only one variational parameter to
be determined. The analytical solution of the differential equation is y—xex.
The estimated values of y, together with the true values, are:

X

Estimated y
True y

6
0.154
0.197

1/3
0.427
0.465

1
2

0.821
0.824

2/3
1.333
1.298

6
1.966
1.917
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6.2 The linear equations found which link the variational parameters are

6.2222a1- 2.944 4a2= -0.93905,

-2.9444a1,+ 6.2222a2 = 6.693 14.

The solution of these equations gives a1, the estimate of y(1/3), = 0.461 and a2,
the estimate of y(2/3), = 1.294. Fitting a parabola at x = 0, 1/3 and 2/3 gives an
estimate of y(1/2) = 0.831. It is clear by comparison with the solution to Problem
6.1 that, overall, the straight-line variational function is superior in perform-
ance to the parabolic equation, although it requires two variational parameters
to be determined.

6.3 Figure P.12a shows the printed output for the 'no extended heating' case
and Fig. P.12b a graphical output showing the difference of the two cases.
Despite the fact that the heating is more concentrated at the exposed end the
general effect of heating is to increase the temperature by about 125 K at the
insulated end and somewhat less at the exposed end.

6.4 The printed output and a graphical contoured representation of the
temperature distribution are shown in Figs P. 13 and P. 14. The contours show
the local influence of the point sources.

Chapter 7

7.1 The superimposed distributions for the three cases are shown in
Fig. P. 15. The larger values of Ax give additional numerical diffusion. The
values of C + 2r for the three cases are 0.625, 0.750 and 1.000, respectively.

7.2 The superimposed plots for the three values of C are shown in Fig. P. 16.
The lower the value of C, the greater the numerical diffusion. In addition, for
these lower values, an asymmetry developes in the distribution and the peak
is displaced from its true position.

7.3 The superimposed plots for the three values of C are shown in Fig. P.17.
The improvement over the Lax-Wendroff results is evident. The distribution
remains symmetrical and centred on the true value, although there is some
numerical diffusion for the smaller values of C.

7.4 The superimposed plots for the five values of C, and associated values of
r, are shown in Fig. P. 18. They completely overlap and any differences do not
show up on the plot. The lack of variation of results for the different
combinations of C and r indicates the lack of numerical diffusion and accuracy
of the results.
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CONDUCTIVITY IS 400.0 W m**[-l] K**[-l]

NODE NUMBERS ASSOCIATED
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46

1
3
3
4
7
7
10
12
15
15
18
20
23
23
26
28

COORDINATES OF
1 2
4 3

.0000

.0000
7 0.0000
10 3
13 2
16 1
19 4
22 3
25 2
28 0
31 0
34 3

.0000

.5000

.0000

.0000

.5000

.0000

.5000

.0000

.0000

2 3
6 4
5 9
10 11
12 8
15 12
13 18
15 16
20 16
23 20
21 26
23 24
28 24
31 28
29 34
31 32

NODES
5.0000
4.0000
3.0000
3.0000
2.5000
2.0000
2.0000
1.5000
1.0000
0.5000
0.0000
0.0000

WITH
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47

2 1.
5 1.
8 1.
11 4.
14 3.
17 2.
20 0.
23 0.
26 3.
29 2.
32 1.
35 4.

EACH ELEMENT
1
2
3
5
9
8
10
13
17
16
18
21
25
24
26
29

0000 4
5000 3
0000 3
0000 3
5000 2
0000 2
5000 1
0000 1
0000 1
5000 0
0000 0
0000 0

3
7
9
8
13
12
18
17
21
20
26
25
29
28
34
33

.0000

.5000

.0000

.0000

.5000

.0000

.5000

.0000

.0000

.5000

.0000

.0000

4
8
6
9
10
16
14
18
18
24
22
26
26
32
30
34

3
6
9
12
15
18
21
24
27
30
33

3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48

2.0000
2.5000
2.0000
0.5000
0.0000
3.0000
2.5000
1.0000
4.0000
3.5000
2.0000

2
2
4
6
10
9
11
14
18
17
19
22
26
25
27
30

4.
3.
3.
2.
2.
2.
1.
1.
1.
0.
0.

5
8
6
9
14
17
14
18
22
25
22
26
30
33
30
34

0000
5000
0000
5000
0000
0000
5000
0000
0000
5000
0000

3
5
10
10
11
13
19
19
19
21
27
27
27
29
35
35

NODES WITH FIXED TEMPERATURES
1
15

500.0
400.0

4 500
23 400

.0

.0
7 400.0
31 400.0

11
32

500.0
400.0

POSITIONS AND STRENGTHS OF POINT SOURCES
3 0.8000E+06
20 0.2000E+06
21 0.2000E+06
22 0.2000E+06

DIFFERENTIAL BOUNDARY EDGES AND PARAMETERS
NODE1 NODE2

1 2
2 7
11 19
19 27
27 35

NODE
1
5
9
13
17
21
25
29
33

TEMP
500.
972.
899.
872.
937.
1001.
834.
666.
500.

M
1.000 1000
1.000 1000
1.000 2000
1.000 2000
1.000 2000

2
6
10
14
18
22
26
30
34

989.
853.
746.
756.
904.
984.
829.
665.
500.

S
.000
.000
.000
.000
.000

3
7
11
15
19
23
27
31
35

1268.
400.
500.
400.
874.
400.
828.
400.
500.

4
8
12
16
20
24
28
32

500
730
522
558
592
510
428
400

Fig. P.13
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Fig. P.16

7.5 The graphical output in Fig. P. 19 shows the liquid surface after 4, 16,
32 and 64 iterations. Some of the detail in the final view is probably due to
the crudeness of the model; with a greater number of cells a smoother
appearance would be evident.
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Fig. P.18

Fig.P.19
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Fig. P.20

7.6 For each y the values of r/t2/5 at the different times give estimates of Ay

For example, the estimates at times from 0.1 s to 1.0s at intervals of 0.1 s for
y = 1.5 are 1.090, 1.090, 1.090, 1.089, 1.089, 1.089, 1.088, 1.088, 1.087,
1.087 with a mean 1.089. For all values of y the means are:

1.1
0.788

1.2
0.905

1.3
0.980

1.4
1.039

1.5
1.089

These results are shown graphically in Fig. P.20.
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absorption cross section 149
Adams-Moulton method 9-11
ADVDIF 213
advection 212
advection-diffusion

equation 213
stability conditions 218—20

advection equation 213
amplification matrix 162
amplification factor 219
anharmonic vibrations 2
artificial viscosity 245-7, 253
atomic bomb test 249

backward difference 34
binary-star system 89-92
BLAST 248
blast-wave modelling 247-8
Bohr model 1-2
boundary conditions 50, 200
boundary-value problem 38
Box-Muller algorithm 134-5

calculus of variations 179
cell model 101-2
central difference 35
CHOLESKY 267
closed equation 8
cloud-in-cell method 111, 118
CLUSTER 98
coefficient of diffusion 41
collective behaviour 109, 113
collisionless particle-in-cell

method 114-16, 270-2
column vector 259
compressible fluids

multidimensional 250—1
shockfronts 246
von Neumann—Richtmyer

method 243-4
CONJUG 267
conjugate-gradient methods 73,

265-7
consistency 55—60
continuum physics 26-8
control-volume method 80—3
convection 78

convergence 56
for the Crank-Nicholson

method 59-60
for the explicit method 57-9

Courant-Friedrichs-Lewy
condition 163, 236, 244

Courant number 163, 214
Crank-Nicholson method 47-9
Cumulative distribution

function 132

damping 4
Debye length 112
Debye sphere 112, 272
determinant 261
diagonal dominance 69
differential boundary

conditions 50, 191-3
diffusion equation 41-3, 212
Dirac delta function 193
Dirichlet problem 66
DRUNKARD 23
Drunkard's walk 23
Dufort-Frankel method 53—5

eigenvalue 62, 262, 263
eigenvector 262
electron in a magnetic field 93-6
electron-microscope lens 96—7
equation of state of a liquid

102-4
error vector 61
Euler method 6-7

predictor—corrector
method 7-8

explicit method 44-6

false points 50
fast Fourier transform (FFT) 127,

170-4
Pick's law 41
FINDATA 204
FINELEM2 202-4
finite-difference method 26-7
finite-element method 27-8,

179-208
element 185

general approach 196
load vector 190
node 185
shape function 186, 198
stiffness matrix 190

finite differences 33-6
partial derivatives 43

five-star formula 66
fluid dynamics 211-12
fluid properties transport

equations 212
FLUIDYN 104
forward difference 34
Fourier series 273
Fourier transform 169
Fraunhofer diffraction 168-9
free electron 5
Fresnel diffraction 175—7
functionals 179-81

galaxy simulation 122—5
Galerkin method 207-8
GAUSSJ 204
GAUSSOR 71
Gauss quadrature 141, 279-83
Gauss-Seidel method 68-9
Gauss's theorem 117
geometric moment of inertia 268

harmonic approximation 2
HEATCRNI 47
HEATELEM 194
HEATEX 45
heat-flow equation 37
HEATRI 40
HOTPLATE 73
hydrodynamics

Eulerian formulation 227
Lagrangian formulation 227
mass conservation—Eulerian

form 228-9
mass and momentum

conservation—Lagrangian
form 230-2

momentum conservation—
Eulerian form 229-30



310 Index

ICCG 267
implicit method 47
incompressible fluid 232-3

pressure method 233—7
initial-value problems 42
integration by Monte Carlo

method 141-5
interaction cross section

148-50

kernal (smoothing
function) 251-2

Lagrange polynomial 10
Laplace's equation 66,

197-200, 207
Laplacian operator 79-80
Lax equivalence theorem 61
Lax-Wendroff method 223-5
LEAPDF 54
leapfrog method 54, 98-100
Lennard-Jones potential 104
linear congruential

generator 130
linear equations method 39—41
linear variational functions

183-90
liquid equation of state

Metropolis algorithm 139-41
local cyclotron frequency 94

MAC 239
MAGELEC 96
magnetohydrodynamics 108
marker-and-cell method 237-40

surface cell 238
vacuum cell 238

MARKOV3 138
Markov chain methods 137
matrix 62

diagonal 260
eigenvalue 262
eigenvector 262
identity (unit) 260
inverse 260

matrix algebra 259-64
Maxwell-Boltzmann

distribution 120
MCPLATE 146
METROPOL 140
Metropolis algorithm 139—41
modelling errors 30
moderator 147
molecular dynamics 100

simulation of a liquid 101-2
Monte Carlo method 22-4

applications 129
fluid simulation 138-9
nuclear reactor 147-53

NBODY 91
«-body problems 97-8
Newton's law of cooling 192
normal distribution 134
nuclear reactor

Monte Carlo method 147-53
multiplication factor 147

null vector 262
numerical diffusion 216
numerical errors 30
Numerov method 11-12

open equation 8
optical diffraction 166-8
OSCILLAT 13
oscillator

general solution 12-14
simple harmonic 3-6

over-relaxation method 70-3

partial differential equations 64
particle methods 24-6
partition function 141
PIC 119
plasma

period 111
frequency 112

plasma modelling 108—22
point sources and sinks 193-4
Poisson's equation 65

finite difference solution 66—8
Fourier series solution 125-7
Monte Carlo solution 145-6

polymer model 23
polytropic gases 240-2
POLYWALK 24
post-processing 29
pre-processing 29
probability densities

Box-Muller algorithm 134-5
Markov chain methods 137-8
rejection method 135-7
transformation method 132-3

programming errors 30
progressive waves 157

quadrature 274-83
Gauss method 141, 279-83
Romberg method 278-9
Simpson's rule (method) 142,

276-7
trapezium method 142, 274-5

QUICKEST method 225-7

RADBAR 51
radial-distribution function 106
random numbers

non-uniform deviates 132-8
uniform deviates 130—2

random walk 23
REACTOR 147
reduced-mass frame 90
rejection method 135—7
relaxation method 69-70
Romberg method 142, 278-9
row vector 259
Runge-Kutta method 8-9

for several dependent
variables 88-9

SATELLIT 20
satellite under tidal stress 17—22
scale effects 29
scattering cross section 148
self-similarity 248
semi-latus rectum 19
sequential correlation 130-1
SHOOTEMP 38
shooting method 38
Simpson's rule (method) 142,

276-7
smoothed particle

hydrodynamics 251-5
smoothing function (kernal)

251-2
smoothing length 251
stability 61-4

of the explicit method 61—2
of the Crank-Nicholson

method 63-4
standing wave 157
steepest-descent process 265
stellar cluster 98-100
stochastic matrix 137
stochastic model 129
sub-systems 29
successive over-relaxation (SOR)

method 71-3
superparticles 25, 109, 211
systems approach 28-30

Taylor series 33
time-dependent heat flow 190-1
time-independent heated

plate 200-2
time-splitting 29
tolerance 92
transformation method 132-3
trapezium method 142, 274-5
TRIDIAG 40
tridiagonal equations 40
Trojan asteroids 15-17
TROJANS 15
truncation errors 30, 64, 99
TWODWAVE 165



Index 311

uniform deviates 131
upwind difference 216

validation and testing 30-1
variational function 182
variational method 182-3
variational parameters 187
virial of Clausius 103
virial theorem 268—9

von Neumann—Richtmyer
method 243-4

Watt spectrum 148
WAVE 159
wave equation

finite-difference
approach 158-60

general solutions 156—8

stability of finite-difference
equations 160-4

two-dimensional
vibrations 164

wave index 218
weighted residual

methods 206

ZIP differencing 235




