Chris Boulton * Kristoffer Gronowski

UNDERSTANDING

Ol

SERVLETS

Understanding SIP Servlets 1.1

For a complete listing of the Artech House Telecommunications Series,
turn to the back of the book.

Understanding SIP Servlets 1.1

Chris Boulton
Kristoffer Gronowski

N
3
ARTECH
HOUSE

BOSTON | LONDON
artechhouse.com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Cover design by Igor Valdman

ISBN 13: 978-1-59693-428-3

© 2009 ARTECH HOUSE
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without permission
in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

10987654321

Contents

Part |

1.1
1.2

1.3

1.3.1
1.3.2
1.3.3

2.1

2.1.1
2.1.2
2.1.3
2.14

Foreword by Gonzalo Camarillo xi
Foreword by James Steadman Xiii
Preface Xv
Introduction to SIP Servlet Technology 1
Introduction to SIP Servlets 3
Session Initiation Protocol 3
SIP Servlets and the SIP Servlet Vision 15
Java Enterprise Edition 17
Servlet Specification 17
Annotations 19
Enterprise JavaBeans (EJB) 19
References 21
The SIP Servlet Container 23
Container Responsibilities 23
Life-Cycle Management 23
Protocol Compliance 25
Mapping Requests to Servlets 25

Receiving SIP Requests 29

v

vi

Understanding SIP Servlets 1.1

2.1.5
2.1.6
2.1.7
2.1.8
2.1.9

2.2
221
2.2.2

2.3

3.1
3.1.1

3.2

3.2.1
3.2.2
323
324

3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

4.1
4.2

4.2.1

Receiving SIP Responses 32
Session Targeting 34
Session Utilities 40
SIP Factory 43
Timer Service 45
Container Convergence 47
HTTP Container Convergence 48
JEE Container Convergence 50
Security 51
References 56
The SIP Servlet Application 58
SIP Servlet Packaging 58
Deployment Descriptor 60
Application Roles 61
Proxy 62
User Agent Client 66
User Agent Server 69
Back-to-Back User Agent 71
Application Constructs 76
SIP Application Session 77
SIP Session 78
Application Data Storage 81
Session Lifetime and Invalidation 83
Annotations 88
References 91
Application Router 92
SIP Servlet 1.1 Composition Model 92
Application Router, Container, and Application

Interaction 98
Subsequent Requests and Responses 107

References 109

Contents

vii

5.1
5.2
5.3
5.4

Partll

8.1
8.2
8.3
8.4
8.5

8.6
8.6.1

8.7
8.7.1
8.7.2

9.1

9.2

Moving Forward 110
SIP Servlet Threading Model 110
Outstanding Issues 111
SIP Protocol Support 111
JSR 309 112
References 113
Developer and Deployment Environments 115
Relationship and Role Within IMS 117
References 122
SailFin 101 123
SailFin Understanding M
History 142
Architecture 143
Logging 145
Network Configuration 147
SIP Container Architecture 151
Writing Your Own Interceptor Layer 158
Writing Custom Application Router 164
Cluster Deployment 169
Load Balancing and IP Sprayers 175
ENUM 180
References 182
SIP Servlet Client Programming 184
Writing HTTP Servlet—Based Client 186
Using Asynchronous HTTP 186

viii

Understanding SIP Servlets 1.1

10.1.1 SipFactory
10.1.2 Authlnfo

10.2.6 SipSession

10.3.1 Proxy

9.3 Using ICEfaces 196
9.4 REST and JAX-RS 202
9.4.1 Consuming a REST Service 213
9.5 Java ME JSR 180 217
Reference 227

10 The SIP Servlet Application Programming
Interface (API) 228
10.1 Container Utilities 229
229
231
10.1.3 SipSessionsUtil 232
10.1.4 ConvergedHttpSession 234
10.1.5 SipServletListener 234
10.2 Application Constructs 235
10.2.1 SipApplicationSession 235
10.2.2 SipApplicationSessionActivationListener 239
10.2.3 SipApplicationSessionAttributeListener 240
10.2.4 SipApplicationSessionBindingListener 241
10.2.5 SipApplicationSessionListener 242
243
10.2.7 SipSessionActivationListener 247
10.2.8 SipSessionAttributeListener 248
10.2.9 SipSessionBindingListener 249
10.2.10 SipSessionListener 250
10.3 SIP Message Routing 251
251
10.3.2 ProxyBranch 255
10.3.3 B2BuaHelper 258
10.3.4 SipErrorListener 260
10.4 SIP Messaging Constructs 261
10.4.1 SipServletMessage 261
10.4.2 SipServletRequest 269
273

10.4.3 SipServletResponse

Contents

10.4.4
10.4.5
10.4.6
10.4.7
10.4.8

10.5

10.5.1
10.5.2
10.5.3

Address 276
Parametable 278
SipURI 279
TelURL 283
URI 284
Timer Service 285
TimerService 286
ServletTimer 287
TimerListener 288
References 289
About the Authors 291
Index 293

Foreword

When SIP was first specified, an important fraction of the IETF community imme-
diately got excited about the possibilities the new protocol promised to open.
SIP was based on the protocols behind two of the most successful Internet appli-
cations so far: the Web and e-mail. SIP’s encoding, transaction, and routing mod-
els were based on Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer
Protocol (SMTP).

The main reason of all the excitement around SIP was that SIP was designed
to facilitate the implementation and deployment of new innovative services on
top of it. The fact that SIP was based on HTTP made SIP an excellent service
enabler. HT'TP was a well protocol on top of which many successful services had
been built. Every computer science student was familiar with the technologies used
to build services on top of HTTP servers. As a consequence, the number of devel-
opers who could develop services on top of SIP using the same technologies was
incredibly high.

Soon after SIP was specified, work to adapt technologies to create services
on top of HT'TP, such as CGI and HT'TP Servlets, to a SIP environment started.
That is how SIP Servlets were born. Since then, many SIP services have been
built using Java technologies in general and SIP Servlets in particular. SIP Servlets
provide an abstraction layer that hides some of the complexities of SIP but still
allow implementers to directly use SIP primitives in their services. This level of
abstraction has proven to be a good match for a wide variety of SIP services.

Chris Boulton and Kristoffer Gronowski do a great job of providing imple-
menters with background information on SIP Servlets, details on how they work,
and practical examples that can be run in an open source framework. Both Chris

Xi

Xii Understanding SIP Servlets 1.1

and Kiristoffer are well-known and respected members of the SIP community. Their
contributions specifying protocol extensions and leading open source development
efforts are very much appreciated by the SIP standardization and implementers
communities.

Gonzalo Camarillo

Coauthor of SIP (RFC 3261)
Cochair of the IETF SIPPING WG
April 2009

Foreword

SIP Servlets have become a key technology for application development in next-
generation networks and are regarded as the primary programming model for
SIP-based applications. The concept of bringing familiar, Java-based program-
ming models to SIP, and abstracting away the underlying protocol complexities,
opened up the network and significantly shortened the learning curve for developers
wanting to build telecom applications. The SIP Servlet 1.0 specification published
in 2003 represented an inflection point; the industry was looking for a technology
that would enable rapid service creation on the emerging SIP and IMS networks,
and SIP Servlets was the first to deliver this.

Much of the initial interest around SIP Servlets came from its relationship
with Java and HTTP Servlets specifications. This close bond brought a familiar-
ity that encouraged the adoption of SIP Servlets. However, this was also the center
of much debate about the differences between SIP and HTTD, in particular the
fact that, although SIP and HTTP are syntactically related, HTTP is funda-
mentally synchronous while SIP is very much asynchronous. These differences
prompted discussion about the suitability of a Servlet component model for SIP
development. Ultimately, the developer did need to be aware of the differences;
they didn’t prove a barrier to the utility of SIP Servlets. A more prevailing issue
was the relation of SIP Servlets to other application components. The linkage
between HTTP and SIP Servlets promoted the idea of combining SIP Servlets
with Web-based applications, but in reality, this was suitable only for simple
applications. More important, because of the demand for more complex appli-
cations and emerging technologies, there were requirements to allow SIP Servlets
to interact with additional constructs such as EJBs, JCA components, JMS queues,

Xiii

Xiv Understanding SIP Servlets 1.1

Spring and OSGi components, and so on, as well as to allow SIP Servlet-based fea-
tures to be exposed as Web services for composition in SOA-based applications.

Addressing such issues, reflecting the changing technology landscape, and
incorporating the raft of suggested specifications improvements were key require-
ments fed into the JSR 289—SIP Servlets 1.1. It was a great pleasure working with
Chris Boulton and Kristoffer Gronowski and the rest of the JSR 289 expert group
to update the specification. In this book, Chris and Kristoffer do an excellent job
of guiding developers through the specification, providing genuine code exam-
ples and touching on appropriately related technologies.

James Steadman

Senior Director of Technical Product Strategy at Oracle
Member of the SIP Serviet 1.1 Expert Group

April 2009

Preface

The way we communicate with each other is changing and will continue to evolve
in the coming years. The advent of improving core networks has led to various
enabling technologies that are helping to maximize the advancements being made.
Handheld and fixed-line devices are now considered to be truly multimedia and
will continue to converge. The Session Initiation Protocol (SIP) is a catalyst that
has propelled IP-based communication over the past 10 years with an increasing
number of live deployments and adoption by major technologies such as the IP
Multimedia Subsystem (IMS). In 2003, SIP Servlet 1.0 was published to leverage
SIP and provide an appropriate application model to rapidly create and deploy new
applications and services. It was highly successful as a concept, with many major
SIP vendors and adopters using SIP Servlet technology. As with any new tech-
nology, implementation experience and real-world application resulted in a num-
ber of areas that could be improved in SIP Servlet 1.0. In conjunction with this,
the core SIP protocol also evolved, which required SIP Servlet technology to align
with it. SIP Servlet 1.1 is the result of such industry collaboration and was offi-
cially published in August 2008.

After many years of working with SIP Servlet technology, we authors felt
that a supplementary text would be a useful companion for those wanting to
learn about the technology and its role. We feel that good SIP Servlet informa-
tion combined with real-world examples and code snippets will provide readers
with a relevant level of knowledge.

The book is split into two main parts. The first part is entitled “Introduc-
tion to SIP Servlet Technology” and includes chapters that cover: SIP Servlet
Containers, SIP Servlet Applications, Application Routers, and the next directions
for the technology.

XV

Xvi Understanding SIP Servlets 1.1

The second part of the book is entitled “Developer and Deployment Envi-
ronments” and includes chapters that cover: SailFin technology overviews, SIP
Servlet programming, and relationship and role of the technology within IMS.

We hope this book will provide a valuable resource for those in academia
and industry who require an in-depth, clear, and concise introduction to SIP
Servlet technology. The real-world examples provide helpful aids to those look-
ing to take advantage of SIP Servlets.

Part |
Introduction to SIP Servlet Technology

Introduction to SIP Servlets

The telecommunications industry has witnessed dramatic change in recent times
with the emergence of Internet Protocol (IP) telephony as a replacement for tra-
ditional circuit-switched networks. The evolution toward IP telephony is still in
a transitional stage; enabling technologies are being developed and implemented
as the telecommunications (telecoms) industry moves toward true multimedia com-
munications. Consumer expectations are constantly increasing as what are becom-
ing multimedia sessions provide not only exchange of traditional voice but also
instant messaging, video, gaming sessions, and an unlimited number of new tech-
nologies. Fulfilling such a future vision is not an easy task and requires supporting
protocols and technologies to provide relevant infrastructure that is interoperable
and scalable. The Session Initiation Protocol (SIP) (defined by the Internet Engi-
neering Task Force in RFC 3261[1]) has emerged as the primary protocol solution
for IP multimedia communication and has already seen widespread implemen-
tation and deployment. It has also been adopted by the Third Generation Part-
nership Project (3GPP) as the core signaling protocol for its IP Multimedia
Subsystem (IMS). SIP Servlet technology is a powerful tool leveraging the mul-
timedia communications that SIP establishes, providing abstracted access to core
signaling operations for rapid development of interoperable next-generation serv-
ices. SIP and SIP Servlets are key enabling technologies that will thrust IP com-
munications into the next phase of evolution.

1.1 Session Initiation Protocol

The Internet has seen an explosion of growth in recent years, which has resulted
in worldwide adoption and expansion of related protocols and technologies. The

3

4 Understanding SIP Servlets 1.1

Session Initiation Protocol is such a protocol and was developed in the late 1990s
by the Internet Engineering Task Force as RFC 2543 [2]. In the early twenty-first
century, the core SIP specification was revised to iron out a number of problems
that emerged as a result of early adopters’ implementations. RFC 3261 [1] has
been the core SIP protocol since and has evolved to become the foundation of
fixed, wireless, and Internet communication services. Early adoption of SIP has
focused on simple toll bypass, where legacy Public Switched Telephone Network
(PSTN) has piggybacked Internet connections for cost-saving purposes, usually
across geographical boundaries. It is now clear that SIP is evolving toward its true
purpose of creating, managing, and terminating multimedia connections over IP
networks.

While RFC 3261 provides the core protocol semantics, the specification was
split to provide a suite of extensions for important functionality areas:

RFC 3262 [3]—“Reliability of Provisional Responses in the Session Initia-
tion Protocol.” This extension provides the ability to reliably send (since the
default for the SIP protocol is unreliable messaging) provisional SIP response
messages before a call is connected. This mechanism is especially useful for
conveying early call information and, potentially, media such as ringtones or
network announcements. It is also used extensively by 3GPP in their IMS
architecture for bearer resource reservation in the early stages of call setup.

RFC 3263 [4]—“Session Initiation Protocol: Locating SIP Servers.” This
extension provides the Domain Name Service (DNS) procedures for SIP
when resolving a SIP Uniform Resource Identifier (URI) into physical-net-
work-routing properties such as IP address, transport protocol (e.g., TCP/
UDP/SCTP), and port number. This applies to both SIP requests and
responses and also provides an inherent failover mechanism in the proto-
col when multiple entries are configured in DNS for a URI.

RFC 3264 [5]—“An Offer/Answer Model with the Session Description
Protocol (SDP).” SDP [6] is used to explicitly describe a multimedia ses-
sion and is used as a payload in SIP session establishment messages. RFC
3264 provides detailed procedures when using SDP with SIP to create a
compatible multimedia session.

RFC 3265 [7]—"“Session Initiation Protocol—Specific Event Notification.”
Subscription and publication of SIP-based events was recognized as an
important part of the general SIP infrastructure. This extension provides an
extensible framework that uses SIP for requesting and receiving events. Spe-
cific usages of the core framework are defined in extension documents that
use the core template provided (e.g., presence-based event subscription and

notification is defined in RFC 3856 [8]).

Introduction to SIP Servlets 5

RFC 3266 [9]—“Support for Internet Protocol Version 6 (IPv6) in the Ses-
sion Description Protocol (SDP).” SIP has support for IPv6 inherently built
into the protocol, and so as part of the core SIP offering it was recognized
that SDP required appropriate extensions to align. This standard specifi-
cation fulfills that requirement.

The remainder of this section provides an extremely brief introduction to
the core SIP specification as defined in RFC 3261. The intention is to provide
limited context for this book; those readers who require more in-depth knowledge
on the SIP protocol should take a look at the previously mentioned specifications
as well as a dedicated book such as SIP: Understanding the Session Initiation Pro-
tocol [10].

SIP is a revolutionary cleartext application layer protocol that is intended
to create, manage, and terminate complex multimedia sessions between enti-
ties with potentially different capability sets. The core protocol can be seen as
a derivative of the much used Hypertext Transfer Protocol (HTTP) [11], and
while they have much in common, there are also significant differences. HTTP
is very much based on a client—server relationship in which the server gener-
ally issues the final response to a request. SIP, on the other hand, is a routing-
based protocol that allows requests to be proxied and redirected for any number
of nodes. HTTP also has an extremely rigid client—server model in which an
HTTP client issues a request to an HTTP server for a response. SIP has no such
constraint, allowing SIP applications and application servers the ability to orig-
inate requests.

SIP is media agnostic, so it is not holistically related to internet telephony
but is designed for any media interaction, such as multiparty multimedia con-
ferences, instant messaging, video, and whiteboard sharing. As described by RFC

3261 [1], SIP:

supports five facets of establishing and terminating multimedia
communications:
» User location: determination of the end system to be used for
communication;
* User availability: determination of the willingness of the called party
to engage in communications;
o User capabilities: determination of the media and media parameters
to be used;
o Session serup: “ringing,” establishment of session parameters at both
called and calling party;
o Session management: including transfer and termination of sessions,

modifying session parameters, and invoking services.

6 Understanding SIP Servlets 1.1

Client Server

Request

Response

Figure 1.1 Request response interaction.

SIP is a request/response protocol that at the most basic level involves a client
issuing a SIP request that will generate a SIP response (as illustrated in Figure 1.1)
by a server node.

A slight variation to this theme occurs with the SIP INVITE primitive, which
will be discussed later in this section. Due to the end-to-end nature of SIP, it is
quite plausible that intervening proxies will not want to remain in the signaling
path. Unlike HT'TD, SIP can run over both reliable and unreliable protocols [both
User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) must
be supported by implementations]. UDP is actually defined as the default signal-
ing protocol for SIP, so a three-way handshake is required to ensure multimedia ses-
sion establishment (as illustrated by the “confirm” message in Figure 1.2).

SIP provides a number of core primitives that are used as request com-
mands for various functions in the establishment and management of multimedia
sessions. They are the following (it should be noted that only RFC 3261 primi-
tives are described here, and that subsequent extension primitives that have been
created are not covered):

INVITE: The most important primitive defined in the core SIP protocol.
The INVITE method is used to initiate and update a multimedia session
with another client using the Session Description Protocol.

ACK: The ACK primitive is used in conjunction with the INVITE primi-
tive. It forms the final part of the three-way handshake that is involved in
establishing a multimedia session.

CANCEL: After issuing an INVITE request, the transaction will take a var-
ied amount of time to complete. It could be instantaneous or take a longer
period of time, maybe in the order of minutes (e.g., as when a telephony
call is ringing at one end, but no one is answering the call). The CANCEL
request primitive provides the originator of the call the option to cleanly
terminate the INVITE transaction before the call is answered (e.g., hang-
ing up the ringing call in the previous example).

Introduction to SIP Servlets 7

Client Server
Request
>
Response
-
Confirm
>

Figure 1.2 Three-way handshake.

BYE: Once a call is established using a SIP INVITE request, it will eventu-
ally come to an end (e.g., in a two-way voice call between two parties). The
BYE primitive request allows either of the clients to terminate the INVITE-
initiated session (e.g., hanging up a voice call once the conversation is com-
pleted). It should be remembered that the previously mentioned CANCEL
primitive differs in that it is specifically for requesting to terminate a ses-
sion that has not been established yet. The BYE request primitive is for ter-
minating established (connected) INVITE-initiated interactions.

REGISTER: For SIP requests such as INVITE to reach a user, a dynamic
mechanism is required that enables a client to inform a server that it is on
the network and available for communication. With such location infor-
mation, a trusted host server can then receive SIP requests on behalf of a
client and direct it to the appropriate place. This can then apply to multi-
ple devices, using a single SIP identifier for applications such as “find-me.”
A client can then also remove the location and routing information from
the server (e.g., turning off a mobile handset, which might result in voice-
mail being activated instead). This server role is as a registrar who collects
important information that is then used by a location service to find users.
The SIP REGISTER primitive is used by the client to convey its current
location information.

OPTIONS: While SIP is a successful multimedia negotiation protocol, it
is sometimes useful to be able to obtain information about a potential or
existing interaction before you attempt an operation. The OPTIONS prim-
itive allows for the probing of both servers and endpoints to obtain impor-
tant information such as what SIP extensions are supported and possible
media types that are supported.

8 Understanding SIP Servlets 1.1

That introduces the basic core primitives involved in SIP and is only half the
story for a request/response protocol. SIP also defines a series of response messages
that are used in conjunction with the previously defined requests. The following
represents the ranges of response codes used in SIP (for more information on spe-
cific response codes, see RFC 3261):

» Ixx: SIP Provisional Response—A SIP response in the range of 100 to
199 is a provisional response indicating that a request has been received
and is being processed.

o 2xx: SIP Success Response—A SIP response in the range of 200 to 299 is
a success response indicating that the request was received and has been
accepted for a multimedia session.

* 3wx: SIP Redirection Response—A SIP response in the range 300 to 399
is a redirection response indicating that request was understood and that
the client needs to contact an alternative location to complete the mul-
timedia session.

* 4xx: SIP Client Error—A SIP response in the range 400 to 499 is a fail-
ure response indicating that the receiving entity could not complete the
multimedia session for some reason (e.g., invalid syntax).

* Sxx: SIP Server Error—A SIP response in the range 500 to 599 is a fail-
ure response indicating that the receiving server could not complete the
valid multimedia session due to a problem occurring.

* Gxx: SIP Global Failure—A SIP response in the range 600 to 699 is a fail-
ure indicating that the receiving entity, and any other server, could not
complete the valid multimedia session for some reason (e.g., the user may
no longer exist in the system).

The most common request/response interaction within the SIP protocol
focuses on the INVITE primitive, which is used to initiate multimedia sessions.
The following example provides a high-level view of the basic SIP INVITE inter-
action for a call setup and termination. As mentioned previously, for more detailed
information on the SIP protocol, the reader is advised to consult the previously
referenced specialist texts.

Figure 1.3 provides an illustrative depiction of a simple, basic SIP INVITE
interaction for the purposes of establishing and terminating a multimedia session
between two clients.

The SIP interaction starts when Chris decides to call Kristoffer from his SIP-
enabled device. An INVITE request is created and sent to the local domain SIP
proxy server, as depicted by (1) in Figure 1.3. It represents a session request from
Chris to Kristoffer. The actual request is shown in Figure 1.4. (Note: The SDP
payload has been left out for simplicity.)

Introduction to SIP Servlets

Chris Proxy Kristoffer
INVITE(1)
-
100 Trying(2)
-
INVITE(3)
>
180 Ringing(4)
-
180 Ringing(5)
-
200 OK(6)
-
200 OK(7)
-
ACK(8)
-
BYE(9)
-
200 0K(10)
-

Figure 1.3 Basic SIP INVITE interaction.

INVITE sip:kristoffer@sipservlet_example.com SIP/2.0

Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG483JKSJ8ew9
Max-Forwards: 70

To: Stoffe < kristoffer@sipservlet_example.com >

From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj84931ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Contact: <sip:chris@pc.sipservlet_example.com >

Content-Type: application/sdp

Content-Length: 150

(Chris’s SDP is not shown.)

Figure 1.4 SIP INVITE request.

10 Understanding SIP Servlets 1.1

A key thing to notice in Figure 1.4 is the first line of the example, which
determines the request type and the destination, known as the Request URI (or
R-URI). The R-URI has a value of “INVITE” to indicate the appropriate request
primitive type followed by a SIP URI indicating the destination of the request.
The following lists the remaining headers from Figure 1.4 and their high-level
meaning (note: these definitions apply to the remaining messages in this exam-
ple as well):

Via: Provides information of the path that has been traversed by a SIP request.
Each entity that forwards a SIP request must add its own “Via” header, which
acts like a stamp of visitation. The list of SIP “Via” headers acts as trace route
path for responses that must traverse the direction opposite to requests.

Max-Forwards: Contains a number indicating the maximum number of
hops a SIP request can visit before it becomes invalid. This prevents requests
from looping infinitely in the system. Each node that processes a SIP request
should decrement the value of the Max-Forwards header.

76: The “To” SIP header contains the original recipient of the SIP request.
Unlike the previously described R-URI, which is a dynamic representation
of a requests destination, it does not change and allows the receiving entity
to view the original recipient of the request.

From: Similar semantics as SIP “To” header, except it indicates the originator

of the SIP request.

Call-ID: Used as a unique token for identifying a particular series of SIP
requests.

CSeq: Within a series of SIP requests (as defined for the SIP “Call-ID”
header) the CSeq provides a numerically increasing value within the scope
of a SIP “Call-ID” header for messaging ordering purposes.

Contact: The SIP “Contact” header in this context indicates the physical
location at which the SIP client can be reached, for subsequent messages to
be exchanged within a series of related request/response interactions.

Content-Type: The SIP “Content-Type” header provides the media type that
is being used in the attached payload of the SIP request.

Content-Length: The SIP “Content-Length” header provides the length of
the attached payload of the SIP request. The combination of “Content-
Type” and “Content-Length” allows a SIP parser to extract the exact pay-
load with the correct multimedia session context.

The proxy server will receive the INVITE request from Chris and respond
with a “SIP 100 Trying” response to signify that the request has been received and
is being processed, which is indicated by (2) in Figure 1.3 and shown in Figure 1.5.

Introduction to SIP Servlets 11

SIP/2.0 100 Trying

Via: SIP/2.0/UDP sipservlet_example.com;branch=z9hG483JKSJ8ew9;
received=192.0.2.10

To: Stoffe < kristoffer@sipservlet_example.com >

From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj84931ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Content-Length: 0

Figure 1.5 “100 Trying.”

The proxy server will then look to see if it has information relating to the
location of Kristoffer, which could have been added either using the previously
described SIP REGISTER message or using some other third-party means. On
successfully retrieving the location information for Kristoffer, the SIP proxy for-
wards the request to his client, as illustrated by (3) in Figure 1.4 and shown in
Figure 1.6.

Note that the proxy has inserted itself into the INVITE request by adding
a SIP “Via” header and has also altered the R-URI to indicate the physical loca-
tion of Kristoffer [as opposed to the Address of Record (AOR), which is a public
domain-level identifier used in a similar manner to e-mail addresses]. Kristoffer’s

SIP client will receive and process the INVITE request and alert him that he has

INVITE sip:kristoffer@pc.sipservlet_example.com SIP/2.0

Via: SIP/2.0/UDP proxy.sipservlet_example.com;branch=z9hG48jHks7ds
Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG483JKSJ8ew9
Max-Forwards: 70

To: Stoffe < kristoffer@sipservlet_example.com >

From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Contact: <sip:chris@pc.sipservlet_example.com >

Content-Type: application/sdp

Content-Length: 150

(Chris’s SDP is not shown.)

Figure 1.6 Proxy SIP INVITE.

12 Understanding SIP Servlets 1.1

an incoming request. The SIP client will also send out a SIP provisional response
to indicate that Kristoffer has been alerted. This is illustrated in Figure 1.4 by (4),
which shows a SIP “180 Ringing” response (in Figure 1.7) being sent back to the
proxy server.

Kristoffer’s SIP client used the SIP “Via” header inserted in the INVITE
request it received to route the SIP response to the correct location. On receiv-
ing the SIP “180 Ringing” response, the proxy server will remove the SIP “Via”
header that it inserted and forward the request onward to Chris’s SIP client, as
illustrated by (5) in Figure 1.4 and shown in Figure 1.8.

Again, the routing information for sending the response to the correct loca-
tion is obtained from the SIP “Via” header previously inserted by Chriss SIP
client. Eventually Kristoffer answers the request at his SIP client. This results in
a SIP “200 OK” response being generated and sent in a similar manner to the
previous SIP “180” response. The SIP “200 OK” response is sent from Kristof-
fer’s SIP client, as illustrated by (6) in Figure 1.4 and shown in Figure 1.9.

The SIP “200 OK” message is then sent from the proxy server to Chris’s
SIP client, as illustrated by (7) in Figure 1.4 and shown in Figure 1.10.

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP proxy.sipservlet_example.com;branch=z9hG48jHks7ds
Via: SIP/2.0/UDP sipservlet example.com;branch=z9nhG483JKSJ8ew9
To: Stoffe < kristoffer@sipservlet_example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Contact: <sip:kristoffer@pc.sipservlet_example.com >
Content-Length: 0

Figure 1.7 SIP “180 Ringing” from client.

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG483JKSJ8ew9
To: Stoffe < kristoffer@sipservlet_example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj84931ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Contact: <sip:kristoffer@pc.sipservlet_example.com >
Content-Length: 0O

Figure 1.8 SIP “180 Ringing” from proxy.

Introduction to SIP Servlets 13

SIP/2.0 200 OK

Via: SIP/2.0/UDP proxy.sipservlet_example.com;branch=z9hG48jHks7ds
Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG483JKSJ8ew9
To: Stoffe < kristoffer@sipservlet_example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj84931ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Contact: <sip:kristoffer@pc.sipservlet_example.com >
Content-Length: 150

(Chris’s SDP is not shown)

Figure 1.9 SIP “200 OK" from client.

On receiving the SIP “200 OK” response, Chris’s SIP client completes the
three-way INVITE handshake by generating a SIP acknowledgment protocol
message (ACK). The SIP ACK message is sent directly to Kristoffer’s SIP client
and signifies the completion of the multimedia session setup. The ACK message
is illustrated by (8) in Figure 1.4 and represented in Figure 1.11. It should be
remembered that the ACK request forms part of a three-way handshake as part
of a SIP INVITE interaction and does not generate a SIP response. The ACK
request is sent directly to Kristoffer’s SIP client using the direct information pro-
vided in the SIP “Contact” header that was present in the “200 OK” response.
Note that this value has now been substituted into the R-URI of the ACK mes-
sage in Figure 1.11. Once the initial SIP interaction takes place, SIP messages are
sent directly using the values populated in the SIP “Contact” header.

SIP/2.0 200 OK

Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG483JKSJ8ew9
To: Stoffe < kristoffer@sipservlet_example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Contact: <sip:kristoffer@pc.sipservlet_example.com >
Content-Length: 150

(Chris’s SDP is not shown)

Figure 1.10 SIP “200 OK" from proxy.

14 Understanding SIP Servlets 1.1

ACK sip:kristoffer@pc.sipservlet_example.com SIP/2.0

Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG4hd73HUI
Max-Forwards: 70

To: Stoffe < kristoffer@sipservlet_example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 1 ACK

Content-Length: 0

Figure 1.11 SIP “ACK" from client.

At this point, Chris and Kiristoffer are exchanging media (e.g.,
voice/video/IM). At some point in the future, Chris decides to stop the session and
terminates on his SIP client. This results in a SIP “BYE” message being generated
and sent to Kristoffer’s SIP client directly. This is illustrated by (9) in Figure 1.4
and shown in Figure 1.12.

On receiving the SIP “BYE” request, Kristoffer’s SIP client responds with
a SIP “200 OK” response to complete the transaction. This is illustrated by (10)
in Figure 1.4 and shown in Figure 1.13.

BYE sip:kristoffer@pc.sipservlet_example.com SIP/2.0

Via: SIP/2.0/UDP sipservlet_example.com;branch=z9hGmHas7hj
Max-Forwards: 70

To: Stoffe < kristoffer@sipservlet _example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 2 BYE

Content-Length: 0

Figure 1.12 SIP “BYE" from client.

SIP/2.0 200 OK

Via: SIP/2.0/UDP sipservlet_example.com;branch= z9hGmHas7hj
To: Stoffe < kristoffer@sipservlet_example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 2 BYE

Content-Length: 0

Figure 1.13 SIP “200 OK" from client.

Introduction to SIP Servlets 15

This message signifies the completion of an INVITE-based multimedia
session, and media between Chris and Kristoffer stops. This completes our basic
introduction to the SIP protocol and one of its most important constructs.

1.2 SIP Servlets and the SIP Servlet Vision

After that brief introduction to the SIP protocol, it is now time to introduce SIP
Servlet technology. Most readers will already be familiar with HTTP Servlet tech-
nology; for those who are not, a brief introduction is included later. SIP Servlets
are very similar to HT'TP Servlets—they share the same core Java package—but
are related to their appropriate signaling protocols (SIP for SIP Servlets and
HTTP for HTTP Servlets). While it can be stated that they have a very close rela-
tionship, and can even integrate extremely tightly within an application (HTTP
and SIP convergence are discussed later in the book), the reader must also be
made aware that, due to the asynchronous nature of the SIP protocol, either side
can initiate a request within a potentially long-lived session. This imposes different
requirements and demonstrates how SIP Servlets differ greatly from HTTP
Servlets. The developer needs to think of issues such as:

* Storage and retrieval of application data for servicing subsequent and
related requests;

* Subsequent requests arriving from either direction for a particular session;

* Dealing with a forked SIP request and potentially multiple positive
responses;

* Deciding on the specific role that an application will assume.

Add on top of that the ability for any node, at any time, to originate requests
unexpectedly, and the separation between SIP and HTTP Servlets becomes appar-
ent. In short, the SIP Servlet vision is to provide an architecture that has the abil-
ity to fully integrate into Java Enterprise Edition (JEE) while providing similar
functionality to HT'TP Servlets (such as life-cycle management, abstracted Appli-
cation Programming Interface (API), and so forth) and also fully utilizing the power
of the SIP protocol and its extensions for next-generation multimedia commu-
nications. Now let’s have a brief look at the major components of the SIP Servlet
architecture: the SIP Servlet container and the SIP Servlet.

JEE has the concept of specific containers that are hosts to varying tech-
nologies in the Architecture. Examples, which are briefly introduced later in this
section, include HTTP Servlets, which are hosted in a Web container, and Enter-
prise JavaBeans (E]Bs), which are hosted in an EJB container. Containers are
part of a larger overall JEE Application Server that is responsible for managing

16 Understanding SIP Servlets 1.1

SIP Servlet Container
EJB Container

HTTP Servlet Container

JEE Application Server

Figure 1.14 JEE container architecture.

such containers. See Figure 1.14 for an example of multiple containers being
hosted within a JEE Application Server.

It should be noted that, while this is expected to be the most common usage
of SIP Servlet containers moving forward, there is no requirement for SIP Servlets
containers to be deployed within a JEE Application Server. In fact, it is extremely
feasible to have stand-alone instances of SIP Servlets containers that have no
dependency on JEE (e.g., the SIP Servlet container could be deployed using just
a SIP stack’s native API).

The SIP Servlet container has a number of responsibilities when deployed,
primarily focusing on:

* Deployment and management of SIP Servlets-based applications;
* Security related to SIP Servlet applications;

* Management of SIP protocol-level functionality, including listening
ports, interfaces, protocol abstraction, and protocol policing.

Hosted on SIP Servlet containers are SIP Servlet application archives. In a
manner similar to the way Web-based applications are bundled in custom deploy-
ment units, called Web archives, which use the “.war” file extension, and JEE appli-
cations are bundled using the “.ear” file extension, SIP Servlet archives are bundled
using the “.sar” file extension. For example, a SIP Servlet application called
“FindMe” would be packaged under the file “FindMe.sar.” Servlet containers gen-
erally manage a SIP Servlet application and interact using a common API and call-
back mechanism that enables the container to act on the SIP Servlet’s behalf from
a signaling perspective. Due to the open-standards approach of SIP Servlets archi-

Introduction to SIP Servlets 17

tecture, using a common APl and structured packaging, a SIP Servlet application
is able to run on any compliant container. This promotes an open marketplace
for application and container developers. This, in turn, encourages competition and
increases the quality and adoption rate of the technology. It also improves choice
for technology purchasers, who are not locked into a specific container product or
application producer. A more detailed overview of SIP Servlet applications is

included in Chapter 3.

1.3 Java Enterprise Edition

SIP Servlet 1.1 technology (JSR 289 [12]) is being developed by the Java Com-
munity Process (JCP). The JCP has defined a standard architecture called Java
Enterprise Edition (JEE), which specifies a standard platform for hosting JEE-
compliant applications. The ultimate goal of SIP Servlet technology is to be
adopted as part of the official JEE standard for enterprise-level application servers.
This section will not provide a tutorial of JEE and its associated technologies but
has been included as an introduction to related technologies. While SIP Servlets
do not rely on any specific JEE technology, and in fact have been deployed stand-
alone since their conception, it is important to recognize their relationship with
other JEE technologies. The true power and flexibility of SIP Servlets becomes
evident when used as an enabler for a wide variety of applications and deployments.
First, we will take a closer look at the JEE Servlet specification that SIP Servlets
derive from and then introduce the two extremely important technologies of
annotations and Enterprise JavaBeans.

1.3.1 Servlet Specification

The Servlet specification specifies how to package and deploy a Web application
as either stand-alone or part of a larger JEE application. A Servlet is a deployment
unit (Web archive, or .war file) that complies with the associated Servlet specifica-
tion [13]. Application servers wishing to host Servlets must have a compliant Servlet
container for hosting Web archive applications. The containers are extensions
to core Web technology provided by industry standard protocols, such as the
Hypertext Transfer Protocol, and use the classic request/response protocol interac-
tions to provide advanced business logic and dynamic decision making. On deploy-
ing a Servlet, the container then manages the life cycle of the Web application
from initialization to destruction. Figure 1.15 illustrates a simplistic view of
HTTP Servlets that have been deployed in a Servlet container.

As mentioned previously in this section, the SIP protocol was modeled to
some extent on the HT'TP protocol. For this reason, it was a natural fit for SIP
Servlets to follow an extremely similar model to HTTP Servlets. If designed

18 Understanding SIP Servlets 1.1

HTTP servlet 1
HTTP servlet 2
HTTP servlet 3

HTTP servlet API
HTTP servlet container
HTTP protocol stack

Figure 1.15 HTTP Servlet container.

appropriately, it was viewed that a tight relationship between HT'TP and SIP
Servlets would lead to a more powerful programming paradigm. The Servlet
specification defines a generic part of its definition that is not HTTP specific and
is bundled in the Java package “javax.servlet.” The specific HT'TP part of the
package for HTTP Servlets is, then, defined under the package name
“javax.servlet.http.” In a similar manner, SIP Servlets build on the generic Servlet
API under the package name “javax.servlet.sip,” as shown in Figure 1.16.

As all HTTP Servlet containers have to support both the generic Servlet
package and the HTTP package, in a similar way, a SIP Servlet container has to
support both the generic Servlet package and the SIP Servlet package. Introduced
in the SIP Servlet specification is also the concept of convergence between HTTP
and SIP Servlet containers. This allows an HTTP Servlet-based application to
interact with a SIP Servlet-based application and vice versa. Convergence of the
Web and JEE world with SIP provides a powerful and flexible application envi-
ronment for future communication evolution. The concept of SIP Servlets con-
verging with HT'TP Servlets and other JEE technologies will be discussed in
extensive detail in later chapters of the book.

Shared servlet context

| SIP servlet (javax.servlet.sip) |HTTPservlet(javax.servlet.http)|

| Generic servlet (javax.servlet) |

| JAVA |

Figure 1.16 Package structure.

Introduction to SIP Servlets 19

1.3.2 Annotations

The release of Version 5 of JEE included a number of new and important tech-
nologies for improving the usability and ease of development in JEE-compliant
application servers. One such technology, defined in JSR 175 [14], specifies an
annotation function for the Java language. The ability to annotate classes, meth-
ods, and fields provides a flexible programming model that can be used to inject
various resource types into an application and supports a move away from tradi-
tional deployment descriptors that appear in many JEE technologies. As SIP
Servlets make use of both deployment descriptors and the injection of various
resources into applications, Java annotations play an increasingly important role
in SIP Servlet 1.1 technology. More specific information on SIP Servlet-specific
annotations is given in Chapter 3.

Probably the most practical annotation added in SIP Servlet specification
is the @SipServlet annotation. If there is only a single Servlet in a SIP applica-
tion, then nothing more than an empty “sip.xml” descriptor is needed. A sim-
plest possible application would look as follows:

@javax.servlet.sip.annotation.SipServlet
public class SimplestServlet extends javax.servlet.sip.SipServlet {
@Override
protected void doMessage (SipServletRequest req) throws ServletException,
IOException {
SipServletResponse resp = req.createResponse(SipServletResponse.SC_OK);
resp.send();
}
}

1.3.3 Enterprise JavaBeans (EJB)

Enterprise JavaBeans is a well-established technology that has been evolving for
a number of years and, at the time of this writing, is in Version 3.0. The general
EJB architecture focuses on providing a solution for reusable, object-orientated
business logic components that can be linked to provide larger applications and
services. EJB components can be colocated or distributed across different network
locations using the transactional and scalable architecture.

To clarify the focus of E]B, the overall goals of the technology from the EJB
3.0 specifications [15] are included here:

* The Enterprise JavaBeans architecture will be the standard component
architecture for building object-orientated business applications in the
Java programming language.

20 Understanding SIP Servlets 1.1

* The Enterprise JavaBeans architecture will be the standard component
architecture for building distributed business applications in the Java
programming language.

* The Enterprise JavaBeans architecture will support the development,
deployment, and use of web services.

* The Enterprise JavaBeans architecture will make it easy to write appli-
cations: Applications developers will not have to understand low-level
transaction and state management details, multithreading, connection
pooling, or other complex low-level APIs.

* Enterprise JavaBeans applications will follow the Write Once, Run Any-
where philosophy of the Java programming language. An enterprise bean
can be developed once, and then deployed on multiple platforms with-
out recompilation or source code modification.

* The Enterprise JavaBeans architecture will address the development,
deployment and run time aspects of an enterprise application’s life-cycle.

* The Enterprise JavaBeans architecture will define the contracts that
enable tools from multiple vendors to develop and deploy components
that can interoperate at run time.

* The Enterprise JavaBeans architecture will make it possible to build
applications by combining components deployed using tools from dif-
ferent vendors.

* The Enterprise JavaBeans architecture will provide interoperability between
Enterprise JavaBeans and Java Platform, Enterprise Edition (Java EE) com-
ponents as well as non-java programming language applications.

* The Enterprise JavaBeans architecture will be compatible with existing
server platforms. Vendors will be able to extend their existing products
to support Enterprise JavaBeans.

* The Enterprise JavaBeans architecture will be compatible with other Java
programming language APIs.

* The Enterprise JavaBeans architecture will be compatible with CORBA
protocols.

The rules taken from the EJB 3.0 specification provide an indication of the
importance of the technology to the general JEE architecture. EJB provides the
core business component technology including how they are reused, managed,
invoked, and secured. As SIP Servlet aims to be integrated in future versions of
JEE technology, its relationship with EJB is key to improving the value proposition
to both application developers and application deployers. More information will
be provided later in the book on how SIP Servlets 1.1 facilitates both E]JB and
annotation integration, opening the door to the wider JEE architecture.

Introduction to SIP Servlets 21

Entity bean E]Bs can now be used inside a SIP application bundled inside
an EAR (Enterprise Archive). An entity bean can store a Java Bean persistently
in a Structured Query Language (SQL) database using the “EntityManager” inter-
face. Also POJOs (Plain Old Java Objects) can become EJB entity beans with a
call to the “EntityManager.” This reduces the development time of applications
that need to store data between server restarts.

Another important EJB bean is the session bean, which can be both state-
ful and stateless. This kind of bean can be used as a remote integration point for
a SIP application. Imagine writing a presence or a chat server that should include
a remote interface to add new users. It is easy to annotate a function that adds a
user with the @Stateless annotation, making the function accessible over Remote
Method Invocation (RMI) (using a client EJB stub).

The third type of E]B bean is the Message Driven Bean (MDB). The MDB
is simply an asynchronous execution point. The most interesting scenario when
MDBs are used in the context of the SIP container is in conjunction with the JEE
connector framework. The connector has an outbound direction when calling
from within the JEE application server. One common example for the outbound
connection usage is to implement Java Database Connectivity (JDBC). In the case
of the database, they are often request/response interactions. For asynchronous
events on a connector, the MDB is used as an input queue. So, for dealing with
asynchronous events, an MDB would be called and could, in turn, get hold of
the SIP framework to generate a SIP message.

@PersistenceUnit (unitName="PuSample")

private EntityManagerFactory emf;

MyPojo pojo = new MyPojo("Bob,""sip:bob@sipservlet.net");
EntityManager em = emf.createEntityManager();
em.persist(pojo); //Will create an EJB and store it in the DB

References
[1] Rosenberg, J., etal., “SIP: Session Initiation Protocol,” RFC 3261, Internet Engineering Task
Force, June 2002.

[2] Handley, M., et al., “SIP: Session Initiation Protocol,” RFC 2543, Internet Engineering
Task Force, March 1999.

[3] Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses,” RFC 3262, Inter-
net Engineering Task Force, June 2002.

[4] Rosenberg, J., and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Servers,”
RFC 3263, Internet Engineering Task Force, June 2002.

[5] Rosenberg, J., and H. Schulzrinne, “An Offer/Answer Model with the Session Description
Protocol (SDP),” REC 3264, Internet Engineering Task Force, June 2002.

22 Understanding SIP Servlets 1.1
[6] Handley, M., V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC 4566,
Internet Engineering Task Force, July 2006.
[7]1 Roach, A. B., “Session Initiation Protocol (SIP)—Specific Event Notification,” RFC 3265,
Internet Engineering Task Force, June 2002.
[8] Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” RFC
3856, Internet Engineering Task Force, August 2004.
[9] Olson, S., G. Camarillo, and A. B. Roach, “Support for IPV6 in the Session Description
Protocol (SDP),” RFC 3266, Internet Engineering Task Force, June 2002.
[10] Johnston, A. B., SIP: Understanding the Session Initiation Protocol, 2nd ed., Norwood, MA:
Artech House, 2003.
[11] Fielding, R., et al., “Hypertext Transfer Protocol—HTTP/1.1,” RFC 2616, Internet Engi-
neering Task Force, June 1999.
[12] SIP Servlet Specification, Version 1.1, JSR 289, Java Community Process, August 2008.
[13] Java Servlet Specification, Version 2.4, JSR 154, Java Community Process, September 2007.
[14] A Metadata Facility for the Java Programming Language, JSR 175, Java Community Process,
September 2004.
[15] Enterprise JavaBeans 3.0, JSR 220, Java Community Process, November 2007.

The SIP Serviet Container

The introduction provided a high-level overview of a SIP Servlet container and its
core features and responsibilities. This section focuses at a much lower level of
granularity relating to container functionality and its most important operations.
A SIP Servlet container, or Servlet engine as it is sometimes known, provides a
consistent architecture for running compliant home-engineered or third-party
SIP-based applications. It is either deployed as part of a larger JEE application
server, converged SIP, and HTTP container or as a stand-alone SIP entity.

2.1 Container Responsibilities

One of the primary goals of SIP Servlet technology has always been to parallel
related technologies such as HTTP Servlets and EJB in providing application
developers with a programming paradigm that abstracts as much complication
away as possible. To achieve this, SIP Servlet containers have a number of core
responsibilities that allow application developers to concentrate on important
business logic rather than mundane protocol-related tasks.

21.1 Life-Cycle Management

As briefly mentioned in the introduction and covered in more detail later in the
book, SIP Servlet applications are bundled into an appropriately structured
archive that uses the “.sar” extension. On deployment of a SIP Servlet application
to a container, a number of life-cycle management tasks have to be followed for
successful deployment, running, and undeployment of an application. Figure 2.1

23

24 Understanding SIP Servlets 1.1

Service
New() Init() ﬂ Destroy()
-===>0) g ©
Created Initialized Destroyed

Figure 21 SIP Servlet Container Life Cycle.

is taken from the SIP Servlet 1.1 specification [1] and illustrates the life-cycle of
a SIP Servlet application being deployed in a container.

Initially, the SIP Servlet container will inspect the application deployment
unit (“.sar” file) for the appropriate Java class representing the Servlet. It will also
scan the class files and bundled Java archive (JAR) file for any SIP Servlet spe-
cific annotations. At this stage, the container is in the “initialize” state (represented
by “init” in Figure 2.1) of the life cycle, which results in all appropriate configura-
tions being passed into the application from the associated deployment descriptor
file and any logic executed in the Servlets “init” method. Once initialization has
completed, the life cycle is able to offer service (which means it is ready to be
invoked by the container on receiving appropriate SIP signaling). At some stage
in the future, the container (possibly as a result of user interaction) will deactivate
the SIP Servlet application and remove it from active service, resulting in its not
being able to receive any SIP signaling. Such an operation results in the “destroy”
method of the application being called before it is from the list of active container-
managed applications. This represents the full life cycle of a SIP Servlet-based
application.

It should also be noted that, due to the varying roles (as will be discussed
later in the book) that a SIP Servlet application can adopt in relation to SIP sig-
naling, a number of problem areas and race conditions occur when deploying SIP
Servlet applications. For example, an application can be triggered to generate SIP
protocol messages without any incoming signaling. Returning to Figure 2.1, there
is no way a Servlet application can know if the “init” method has totally been com-
pleted, and so it is not aware of exactly when it can initiate SIP signaling. This could
result in SIP messages being generated and sent before all initialization tasks have
taken place. To overcome this problem, SIP Servlet 1.1 has a specific listener that
the container has to invoke only when it truly knows the SIP Servlet application
has been fully initialized and is ready for service. Any application that is intending
to create unrelated SIP signaling or even to carry out other tasks in the initial-
ization phase must implement the listener to learn when it is able to carry out
normal service.

SipServletListener.servletInitialized(SipServletContextEvent ce)

The SIP Serviet Container 25

2.1.2 Protocol Compliance

A SIP Servlet container, along with the SIP Servlet applications, bears some of
the burden of ensuring SIP protocol compliance by both hosted applications and
interactions with external SIP entities. A container would naturally be responsi-
ble for certain objects that form part of the SIP Servlet API and are used by appli-
cations. These are described in SIP Servlet architecture as “container managed”
and include well-known constructs such as application sessions, protocol sessions/
states, and SIP URI objects (all of which will be discussed in more detail later).
When a violation of any states occur, the container must act as the protocol police
and ensure container-managed objects are not compromised, by throwing an appro-
priate Java exception as an indication to the application. A detailed list of appro-
priate exceptions and the conditions under which they are thrown is included in
the SIP Servlet 1.1 specification.

2.1.3 Mapping Requests to Servlets

One of the most important jobs that a container has to carry out once it has estab-
lished that a SIP Servlet application is in service is supplying it with appropriate
SIP signaling. The invocation of hosted applications has certainly evolved during
the technology’s lifetime, and with Version 1.1 of SIP Servlets, we have a mecha-
nism appropriate for advanced next-generation deployments.

Invocation of SIP Servlet applications has a hierarchical approach that is
phased from the moment an initial SIP signaling request enters the container.
The first stage involves the container’s invoking a special container API called the
Application Router (AR) interface, which is specified as part of the SIP Servlet
programming API. An AR is a logical function that implements the AR API with
the intention of receiving a request from the container in the up-call and supply-
ing the SIP Servlet application to be visited next. This process is recursive until
no more applications hosted on the container remain to be visited in the context
of the SIP signaling request and it carries on its journey in the SIP network. Fig-
ure 2.2 illustrates how a container receives a request and consults the AR API for
the purpose of receiving a SIP Servlet application to service the request.

The implementation of the logic behind the AR API interface is totally
vendor specific and allows controllers of networks to deploy and select applications
however they choose. As long as the common AR API interface is implemented,
then the decision-making process can be as complex or as simple as required and
can be in any programming or scripting language. SIP Servlets 1.1 does provide
details in an appendix of a default application router, but this is just to provide
a basic example of how an AR could work. The Default Application Router (DAR)
is provided in order for SIP Container providers to be able to test and verify their

26 Understanding SIP Servlets 1.1

Application
router

Container
calls app
router API

App router API

SIP servlet container

SIP stack

Incoming
SIP
request

Figure 22 Basic Application Router interaction.

implementation. At the same time, the TCK (Test Compatibility Kit) also pro-
vides a Reference Implementation (RI) in order for the Application Router devel-
opers to test and validate their implementation of their deployment-specific AR.
An extensive, dedicated section on application composition and routing follows
in Chapter 4.

Once the AR has been consulted and an application name has been returned
for a SIP signaling request, it is the container’s responsibility to dispatch the SIP
message to the appropriate application archive (“.sar” file). A SIP Servlet appli-
cation is composed of a deployment descriptor file, which provides details relating
to the application, and any number of SIP Servlet class files, which are all pack-
aged into the compliant structure (see later section for more detail relating to
packaging). See Figure 2.3 for a simple view of the SIP Servlet application (“.sar”
file).

A container must determine which of the SIP Servlet class files should be vis-
ited within SIP Servlet application. SIP Servlet 1.0, the previous version of the
specification, provided dedicated XML-based filter-mapping functions so that con-
tainers could take a request that has been dispatched to a SIP Servlet application
and then direct it to the appropriate Servlet class file. This mechanism was known
as Servlet Mappings. SIP Servlet 1.1 has defined a replacement for Servlet mappings
based on the concept that every incoming SIP message will automatically be sent by
the container to a default Servlet class—named the “main Servlet.” If it is decided
that the request should be serviced by another Servlet class within the application,
it is programmatically dispatched. Both of these container selection mechanisms
remain valid in SIP Servlet 1.1, with the latter, main Servlet class recommended.
The following sections will provide detail of both mechanisms.

The SIP Serviet Container 27

SAR

Deployment descriptor

Figure 2.3 Servlet archive (.sar) representation.

2.1.3.1 Default Servlet (SIP Servlet 1.1)

Using this mechanism is relatively straightforward for the container, as it simply
needs to identify the “main” Servlet in the application and overload the message.
Only a single Servlet class in the application that contains multiple Servlets can
be marked as a “main” Servlet and marking it is optional in applications that only
contain a single Servlet. A Servlet marks itself as being the “main” Servlet by
either including the Java annotation “@SipApplication mainServlet” element or
adding the “<main-servlet>” element in the deployment descriptor for the appli-
cation. Figure 2.4 illustrates how, once an application is selected using the Appli-
cation Router, it can be dispatched by the container using the “main” Servlet
mechanism.

The main Servlet will receive all SIP-related requests directed at the applica-
tion, and so it must identify any requests that need to be serviced by an alternative
Servlet and dispatch them appropriately. This is achieved using the “Request-
Dispatcher” interface, which allows a programmer to pass request objects and
associated properties between Servlet applications. Once the initial request has
been dispatched to the appropriate Servlet using the “RequestDispatcher” inter-
face, a developer is also able to configure the application so that all subsequent
associated requests and responses are automatically passed to the correct Servlet
and not the “main.” This is achieved using the “setHandler” method that appears
on in the SIP Servlet API (see later section for more information).

When the main Servlet is dispatching a request to another Servlet within
the same application, it can then call “setAttribute” method on the “SipServlet
Message.” In this way it can pass parameter to the next receiving Servlet that
should take care of the execution of the message. The receiving Servlet would call

28 Understanding SIP Servlets 1.1

SAR

Servlet class
<main-servlet>

Container

Figure 24 Main Servlet dispatch.

“getAttribute” method on the message to retrieve any values that the main Servlet
might have stored for it. Attributes are visible only within one application, so they
cannot be used as a utility in a composition of many different SIP applications.

2.1.3.2 Servlet Mappings (SIP Servlet 1.0)

Servlet mappings proved to be a very popular and well-known selection mecha-
nism in SIP Servlet 1.0. While it has been replaced by the previously described
“main” Servlet mechanism for selecting from multiple Servlets, it is still valid. The
Servlet-mappings approach involves XML elements that appear in the deploy-
ment descriptor and tell the container explicitly which Servlet should be invoked
for the SIP request. Figure 2.5 shows an example of a simple Servlet-mapping.

This very simple Servlet-mapping represents two Servlets in the same appli-
cation. The first in the list instructs the container to dispatch any initial SIP INVITE
requests to a Servlet class called “INVITEServlet.” It also instructs the container to
dispatch any initial SIP SUBSCRIBE requests to a Servlet class called “SUB-
SCRIBEServlet.” If a number of entries in the Servlet-mappings XML element
match, then the first in the list is selected. While this is a well-known paradigm for
selecting a Servlet Class within an application, it is fairly static and does not allow
the same flexibility as the programmatically based “main” Servlet approach.

Note that only one of the two mechanisms must be used when using mul-
tiple Servlets within an application. Specifying both is an error, and the applica-
tion should be rejected by the container when deployed.

The SIP Serviet Container 29

<servlet-mapping>
<servlet-name>INVITEServlet<servlet-name/>
<pattern>
<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
</pattern>

<servlet-name>SUBSCRIBEServlet<servlet-name/>
<pattern>
<equal>
<var>request.method</var>
<value>SUBSCRIBE</value>
</equal>
</pattern>
</servlet-mapping>

Figure 25 Serviet mapping.

Note Servlet mapping is also supported in SIP Servlet 1.1, but the format has changed!
This can cause some confusion on deployment. In SIP Servlet 1.0, the “<servlet-mapping>"
tag is directly under the “<sip-app>” element. In SIP Servlet 1.1, the hierarchy is “<sip-app>,
<servlet-selection>, <servlet-mapping>.”

2.1.4 Receiving SIP Requests

As mentioned previously, the SIP Servlet architecture extends the core Servlet
specification in a similar way to that of the HTTP Servlet. The core Servlet spec-
ification defines a “service” method on its interface that is the primary vehicle for
sending and receiving messages. On receiving a message, the “service” interface
is called in the relevant context, either for a message that is a request or for a
response. Figure 2.6 shows the basic “service” method that appears on the core
Servlet interface.

void service(ServletRequest req, ServletResponse res)
throws ServletException, java.io.IOException

Figure 26 Service interface.

30 Understanding SIP Servlets 1.1

Using this “service” method as a basis when applied to the SIP Servlet API,
the container invokes a SIP specific type of the “service” method. For a SIP sig-
naling request, the “SIPServletRequest” interface is invoked, and for responses,
the “SIPServletResponse” interface is invoked. Each time, the request and response
objects are passed to the SIP Servlet API for processing, as shown in Figure 2.7.

It was found that, to make SIP Servlet programming more user-friendly, a
lower level of granularity is required to reduce complexity when an application
receives a request that has been dispatched by the container. While it is fine to
use just the main SIP Servlet interface and receive SIP signaling in its basic request
and response form, this leads to application developers’ then having to parse SIP
messages to obtain the type of message primitive (e.g., INVITE or BYE). It is for
this reason that the SIP Servlet API defines subclass methods that are called
directly from the “doRequest” method previously defined for receiving SIP requests.
The new methods are representative of a list of primary SIP primitives that are
used in applications:

* dolnvite is invoked by the SIP Servlet “doRequest” method on receiving
a SIP INVITE primitive, as defined in RFC 3261 [2].

* doAck is invoked by the SIP Servlet “doRequest” method on receiving a
SIP ACK primitive, as defined in RFC 3261 [2].

* doOptions is invoked by the SIP Servlet “doRequest” method on receiv-
ing a SIP OPTIONS primitive, as defined in RFC 3261 [2].

* doBye is invoked by the SIP Servlet “doRequest” method on receiving a
SIP BYE primitive, as defined in RFC 3261 [2].

* doCancel is invoked by the SIP Servlet “doRequest” method on receiv-
ing a SIP CANCEL primitive, as defined in RFC 3261 [2].

* doRegister is invoked by the SIP Servlet “doRequest” method on receiv-
ing a SIP REGISTER primitive, as defined in RFC 3261 [2].

* doPrack is invoked by the SIP Servlet “doRequest” method on receiving
a SIP PRACK primitive, as defined in RFC 3262 [3].

* doSubscribe is invoked by the SIP Servlet “doRequest” method on receiv-
ing a SIP SUBSCRIBE primitive, as defined in RFC 3265 [4].

protected void doRequest(SipServletRequest req);
protected void doResponse(SipServletResponse req);

Figure 2.7 SIP Servlet implementation of service.

The SIP Serviet Container 31

* doNotify is invoked by the SIP Servlet “doRequest” method on receiving
a SIP NOTIFY primitive, as defined in RFC 3265 [4].

* doMessage is invoked by the SIP Servlet “doRequest” method on receiv-
ing a SIP MESSAGE primitive, as defined in RFC 3428 [5].

* dolnfo is invoked by the SIP Servlet “doRequest” method on receiving a
SIP INFO primitive, as defined in RFC 2976 [6].

* doUpdate is invoked by the SIP Servlet “doRequest” method on receiv-
ing a SIP UPDATE primitive, as defined in RFC 3311 [7].

* doRefer is invoked by the SIP Servlet “doRequest” method on receiving
a SIP REFER primitive, as defined in RFC 3515 [8].

* doPublish is invoked by the SIP Servlet “doRequest” method on receiv-
ing a SIP PUBLISH primitive, as defined in RFC 3903 [9].

It is an extensive set of potential methods that can be used in SIP Servlet-
based applications as the foundation for filtering incoming requests. Figure 2.8
illustrates an incoming request being dispatched by the container to the appropri-
ate service method using the SIP Request-URI of a SIP request included in the
figure (note that the rest of the SIP message is left out for the sake of simplicity).

The SIP Servlet API also allows total flexibility for new SIP methods that
are either not covered or are proprietary. This can be achieved by overriding the
base SIP Servlet “doRequest” method and using “super.”

doOptions
dolnvite
doBye

[doAck
doRegister
INVITE sip:chris@example.com SIP/2.0

doMessage

dolnfo

Figure 2.8 Dispatching of request.

32 Understanding SIP Servlets 1.1

protected void doRequest(SipServletRequest request)
throws ServletException, IOException

{
if (NewRequest.equals(request.getMethod())
{
doNewRequest;
} else
{
Super.doRequest(request);
}
}

Figure 29 Dispatching of unspecified request.

Figure 2.9 provides an example of “doRequest” being overridden and call-
ing a new method (doNewRequest) if the method extracted for the incoming SIP
request is equal to the value stored in the parameter “NewRequest.” If it does not
match, then the “else” block in the example is called and the request is dispatched
appropriately.

215 Receiving SIP Responses
The handling of SIP Servlet responses when being dispatched to the SIP Servlet

application by the container is very similar to the handling mechanism for requests.
Whereas, for requests, the “doRequest” method dispatches to the appropriate SIP
primitive method (as described in Figure 2.8), the “doResponse” method does the
same when receiving a SIP response message. Depending on the status code of
the SIP message, the response will be dispatched as follows:

* doProvisionalResponse is invoked by the SIP Servlet “doResponse” method
on receiving a SIP response code in the range 101 to 199.

* doSuccessResponse is invoked by the SIP Servlet “doResponse” method
on receiving a SIP response code in the range 200 to 299.

* doRedirectResponse is invoked by the SIP Servlet “doResponse” method
on receiving a SIP response code in the range 300 to 399.

* doErrorResponse is invoked by the SIP Servlet “doResponse” method on
receiving a SIP response code in the range 400 to 699.

* doBranchResponse is invoked once for every SIP branch in a forking proxy
receiving a response. When all branches are completed then the “doRe-
sponse” is called only with the best response.

The SIP Serviet Container

33

SIP/2.0 200 OK

Figure 210 Dispatching of response.

Figure 2.10 illustrates an incoming response being dispatched by the con-
tainer to the appropriate service method using the first line of a SIP response
included in the figure (note that the rest of the SIP message is left out for the sake

of simplicity).

We have now followed the initial stages of a SIP message arriving at a SIP
Servlet container and being matched to the appropriate SIP application archive
(deployment unit using the “.sar” file extension) and then matched to the appro-
priate SIP Servlet within the application archive by using either Servlet-mapping

doRedir

doProvisional

> doSuccessResponse

ectResponse

doErrorResponse

rules from the deployment descriptor or the “main” Servlet approach.

Message Creation

MESSAGE sip:BasketbalChati155. 53. 234,42 SIPf2.0

From: “Stoffe” <spKristoffer @155, 53. 234.42>; tag=123689
To: "BaskethallChat™ sy kethalich 53.234.425>
Max-Forwards: 70

(Content-Length: 40

Contact: sip: 155. 53, 234.42:6060; transport=LIDP

(Cseq: 42 MESSAGE

Via: SIP{2.0/UDP 155.53.234.42:6060;branch =z0hG4bK-123t
Content-Type: text/himl

(Call-1d: 1235893125978

What do you think about Cobe larst right?

Message
sip:Soccer Chat@155. 53, 234. 42 SIPJ2.0Fr ...
/2.0 200 OKFrom: Bob® < 155.53.234....

MESSAGE

53.234.42 SIP[2.0F...

SIP[2.0 200 OKFrom: "Chris” <sp:Ohis@155.53.23...

SIP{2.0 200 OKFrom: “Stoffe” i

MESSAGE sip:DasketbalChat@®155.53.234.42 5IP/2....
@155....

[F] Limit message history to [0 | entries

34 Understanding SIP Servlets 1.1

A SIP Servlet application is now able to apply appropriate application logic
on the SIP protocol requests and responses.

21.6 Session Targeting

The SIP Servlet API is used for a wide variety of applications that have vastly dif-
ferent requirements. One of the most important usages is focused on multiparty
calls where multiple user interactions are linked together, such as a conference call.
Discussed in more detail later in this book are the general concepts surrounding
how an application springs into life on receiving a new SIP request. In short, an
umbrella object called an SIP Application Session is created to be responsible for
storing application-specific data and correlating individual protocol sessions,
called SIP Sessions. A quick example: On receiving a SIP INVITE request from
user A, the container will dispatch to Application X using the mechanisms
described in this section. On entering Application X, a new Application Session
is created along with an appropriate SIP Session. The newly created Application
Session could be, for example, representing a conference. If user B now sends a
SIP INVITE request to the container, it can reach the same application using the
mechanisms defined in this chapter, but this will result in another new Applica-
tion Session and SIP Session being created. As a result, we have two independ-
ent Application Session and SIP Session instances that are in no way related and
that would need some form of proprietary linkage mechanism to be associated.

Using the previous example, it becomes obvious that a container mecha-
nism that allows incoming SIP requests to be correlated to an existing Application
Session instance would be extremely useful and powerful. It would also increase
efficiency as the number of Application Session objects whose life cycles the con-
tainer has to create and manage reduces. The need for proprietary linkage mech-
anisms disappears, which ultimately encourages innovation and interoperability.

The SIP Servlet 1.1 architecture includes three mechanisms for associating
new SIP signaling requests to existing Application Sessions:

* Encode URI mechanism—Involves creating a unique key using the SIP
Servlet API (SipApplicationSession.encodeURI) method, which is then
distributed to all potential users (distribution of such a key is out of scope
of the architecture and therefore this book but could be accomplished
by, for example, e-mail or Instant Message). If an encoded URI appears
in a new SIP request, the container identifies it and makes the appropri-
ate association with the existing Application Session.

o Session Key mechanism—The preferred approach to associating new
SIP requests with an existing Application Session, it makes use of Java
annotations and user-defined algorithms to decide if association should
take place. A more detailed explanation of this mechanism follows in
this section.

The SIP Serviet Container 35

o Targeted mechanism—This is an optional-to-implement mechanism that
is used in association with certain SIP extensions names, such as Join [10]
and Replaces [11]. A more detailed explanation of this mechanism is
also provided later in this chapter.

The Encode URI mechanism has been depreciated in SIP Servlet 1.1, because
implementation experience proved the concept to be inadequate. It also does not
fit with the new direction of SIP Servlet technology, which is very much focused
on application composition chains rather than bypassing the selection process with
a container dispatching a request directly to a SIP Servlet application. The remain-
der of this chapter will focus specifically on the remaining two mechanisms, ses-
sion key and targeted, which very much fit into SIP Servlet 1.1 main concepts
of application selection and chaining.

2.1.6.1 Session Key

The session key mechanism is very different from the session-targeted mechanism,
which will be covered next. They both occur at different times in the application
selection process and are therefore complementary, rather than overlapping or
competing, functions. Earlier in this book, we looked at the traversal of an incom-
ing request on its journey into the container and eventually into a SIP Servlet appli-
cation. The session key mechanism applies at the stage in the selection process
where the Application Router has already selected a SIP Servlet application. The
container should then dispatch the request to the application, but instead of just
automatically creating a newly associated Application Session, it checks using the
session key mechanism to see if it should associate the newly created protocol ses-
sion (SIP Session) with an existing Application Session.

The session key mechanism makes use of Java annotations, which were intro-
duced briefly at the beginning of the book and are discussed in more detail later
on. A new Java annotation called @SipApplicationKey is defined in the specifica-
tion and should appear in a SIP Servlet application wishing to use this mechanism.
The annotation takes a SIP request as input and returns a string as a key to rep-
resent the Application Session created as a result. According to the specification,
this method needs to be a public and static one. The following is a simple exam-
ple of how the @SipApplicationKey would appear in one of the classes contained
in the SIP Servlet application:

@javax.servlet.sip.annotation.SipServlet

public class SipKeyServlet extends SipServlet {
@Override
protected void doMessage(SipServletRequest req) throws ServletEx-
ception, java.io.IOException {
log("Received message : "+req.getContent().toString()+" in SAS
with id = "+req.getApplicationSession().getId());

36 Understanding SIP Servlets 1.1

req.createResponse(200).send();

}
@SipApplicationKey

public static String getKey(SipServletRequest req) {
SipURI source = (SipURI) req.getFrom().getURI();
SipURI target (SipURI) req.getTo().getURI();
String confName = target.getUser();
System.out.println("Assigning user " + source.getUser() + " to
SipApplicationSession with key = "+confName);
return confName;

}
}

MESSAGE sip:SoccerChat@147.214.199.3 SIP/2.0

From: "Alice"<sip:Alice@147.214.199.3>;tag=1220804646377
Max-Forwards: 70

Content-Length: 22

Cseq: 1 MESSAGE

Contact: sip:147.214.199.3:6061;transport=UDP

To: "SoccerChat'<sip:SoccerChat@147.214.199.3>

Content-Type: text/html

Via: SIP/2.0/UDP 147.214.199.3:6061;branch=z9hG4bK-1220804644969
Call-Id: 1220804646377

Who won the last game?

Assigning user Alice to SipApplicationSession with key = SoccerChat
ServletContext.log():Received message : Who won the last game? in
SAS with id = 10,10,SoccerChat/SipAppKeySample

MESSAGE sip:SoccerChat@147.214.199.3 SIP/2.0

From: "Chris"<sip:Chris@147.214.199.3>;tag=1220805161378
Max-Forwards: 70

Content-Length: 23

Cseq: 2 MESSAGE

Contact: sip:147.214.199.3:6061;transport=UDP

To: "SoccerChat'<sip:SoccerChat@147.214.199.3>

Content-Type: text/html

Via: SIP/2.0/UDP 147.214.199.3:6061;branch=z9hG4bK-1220805161376
Call-Id: 1220805161378

I think it was Arsenal!

Assigning user Chris to SipApplicationSession with key = SoccerChat
ServletContext.log():Received message : I think it was Arsenal! in
SAS with id = 10,10,SoccerChat/SipAppKeySample

The SIP Serviet Container 37

However, a message in a totally different context would yield the following:

MESSAGE sip:Basketball@147.214.199.3 SIP/2.0

From: "Kristoffer'<sip:Kristoffer@147.214.199.3>;tag=1220805422864
Max-Forwards: 70

Content-Length: 40

Cseq: 3 MESSAGE

Contact: sip:147.214.199.3:6061;transport=UDP

To: "Basketball'<sip:Basketball@147.214.199.3>

Content-Type: text/html

Via: SIP/2.0/UDP 147.214.199.3:6061;branch=z9nhG4bK-1220805422861
Call-Id: 1220805422864

What do you think about Kobe last night?

Assigning user Kristoffer to SipApplicationSession with key = Basketball
ServletContext.log():Received message : What do you think about
Cobe last night? in SAS with id = 10,10,Basketball/SipAppKeySample

The algorithm used by the annotation is defined by the developer but always
produces a string based on the incoming SIP request. Note that it only needs to
produce a string and does not have to consider the “SipServletRequest” given as
input parameter. An implementation could very well return the weekday as a
string resulting in different “SipApplicationSession” objects, one for every day in
the week.

After receiving the SIP application name to which a new request is being
dispatched by the Application Router, the container will search the application
classes for the @SipApplicationKey annotation. If it is found, it invokes that
method and supplies the SIP request as input. The output is always a string as a
result of the developer-defined processing that has taken place. For example, the
developer algorithm might take the request object and extract the Request-URI,
looking for a specific value like “sip:chat_room@example.com.” The string
returned to the container would always be the same for that SIP URI. So the first
time a request arrives with the Request-URI of “sip:chat_room@example.com,”
a new Application Session would be created to associate the SIP protocol session
(SIP Session). Sometime later, another user sends a SIP request directed at the
same SIP URI. The second time, the container would again look for the
@SipApplicationKey annotation and provide the SIP request as input. The out-
put would be a key in the form of the string that represents the Application Ses-
sion that should be associated with the new second SIP request. The container
then looks at its list of currently active Application Sessions. If the key created as
a result of the “@SipApplicationKey” algorithm already exists as an active Appli-
cation Session, then the container associates the new protocol session with it. If
no existing active Application Session exists, the container creates a new one.

38 Understanding SIP Servlets 1.1

The power of this mechanism lies in the fact that the algorithm for gener-
ating the Application Session key lies in the hands of the developer and can be
as simple or complicated as required. It shows how two unrelated SIP dialogs can
be grouped together by the application key mechanism.

2.1.6.2 Session Targeted

The session-targeted mechanism occurs at a different stage of the application
selection process and is intended to ensure the semantics of the special SIP head-
ers Join and Replaces are met. SIP Join and Replaces are quite unusual in that
they are SIP headers of an INVITE request that carry information relating to
existing protocol sessions. In short:

* The SIP Join header is used to join a new SIP protocol session with an
existing protocol session. The Join header appears in an INVITE request
and contains the SIP protocol identifiers of the call it wishes to join. For
example, it models the “barge-in” function where user A is in a SIP call
with user B. User C sends a call to user A instructing that it also be
included in this call, resulting in a three-way call among users A, B, and
C. An example SIP INVITE message would look like the following
(some parts of the SIP message have been left out):

INVITE sip:kristoffer@sipservlet _example.com SIP/2.0
To: <sip:kristoffer@sipservlet example.com>

From: <sip:chris@sipservlet_example.com>
Call-Id:892374@sipservlet _example.com

CSeq: 1 INVITE

Contact: sip:chris@pc.sipservlet_example.com

Join: 789424@sipservlet _example.com;to-tag=xyz;from-
tag=abc

* The SIP Replaces works in the same way as Join except that, instead of
adding a new SIP protocol session to an existing call, it replaces it. This
is used for features such as call pickup. For example, user A is on a call
with user B. User C is able to send an INVITE request containing the
SIP protocol session identifiers to user A instructing that a new session
be setup with user C and the CALL with user B be terminated (replaced).
An example SIP INVITE message would look like the following (some
parts of the SIP message have been left out):

INVITE sip:kristoffer@sipservlet_example.com SIP/2.0
To: <sip:kristoffer@sipservlet_example.com>

From: <sip:chris@sipservlet_example.com>;tag=89320u88
Call-Id:442374@sipservlet_example.com

CSeq: 1 INVITE

Contact: sip:chris@pc.sipservlet_example.com

The SIP Serviet Container 39

Replaces: 832744@sipservlet_example.com;to-tag=xyz;
from-tag=abc

Looking at both Join and Replaces, it is obvious that for such requests to
be successful an incoming request should be dispatched to an appropriate Appli-
cation Session that is responsible for SIP protocol sessions that are referenced in
both Join and Replaces SIP headers. Not providing a mechanism to associate such
requests with an application and simply relying on it being part of normal proce-
dures leaves success to chance and is almost certain to fail in some scenarios. It is
for this reason that the session-targeted mechanism is used to ensure SIP INVITE
requests that contain Join and Replaces SIP headers are dispatched correctly. It
is not only the specific application that has to be targeted but also the correct
“SipSession” object representing the actual SIP UA that is being invoked.

The session-targeted mechanism works at a slightly different level to the ses-
sion key. Remember that the session key is applied only on a request once it has
been sent by the container and has arrived at a SIP Servlet application. Only then
is the SIP Protocol Session associated with an existing Application Session within
the application deployed in the container. To ensure that INVITE requests con-
taining SIP Join and Replaces headers are processed properly, the container has to
ensure that the correct application is selected in the first place, and so it occurs
much earlier in the application selection procedures.

On receiving an INVITE request, the container will inspect Join and
Replaces SIP headers and determine using the SIP protocol identifiers (from the
Join/Replaces header) whether it exists and which application it is associated with.
We briefly mentioned previously that the container recursively interacts with a
logical entity called an Application Router to determine which SIP Servlet archive
should be visited. The container carries out the following additional steps when
interacting with the Application Router to make sure the appropriate application
is invoked to service the Join and Replaces headers: The container calls the Appli-
cation Router API interface requesting the application that should receive the
new INVITE request. The container notices that the new INVITE request con-
tains either a Join or Replaces SIP header. On making the request to the Appli-
cation Router, the container will include the information from the Join or Replaces
header in a “SipTargetedRequestInfo” object along with the application name it
located when the SIP INVITE arrived. As a result, the Application router has the
appropriate contextual information to return the application name that is respon-
sible for the Join or Replaces header. The container is then able to associate the
new SIP INVITE request with the appropriate Application Session, and the appli-
cation logic is free to carry out Join and replaces style operations.

You may be asking yourself why, on receiving the INVITE request, the con-
tainer went to the trouble of looking up the appropriate Application Session and
then provided that information to the Application Router, only to be returned

40 Understanding SIP Servlets 1.1

the same application name. Why not just do the initial lookup and associate the
new INVITE that contains the Join or Replaces header without consulting the
Application Router? The Application Router is a vital concept as part of SIP
Servlet 1.1 architecture and is the primary decision maker on which application
should be invoked. To bypass the Application Router would not be recommended
and is not in keeping with the application composition model. After all, it might
be that invoking a security or monitoring application is required before the actual
target of the Join and Replaces header application. To bypass the Application
Router would result in circumventing such applications. The container using the
Application Router interface to supply appropriate contextual information leaves
the ultimate decision with the appropriate controlling entity (the Application
Router). This maintains a consistent application selection process regardless of
individual semantics that produce new selection requirements. Circumventing
applications for targeted SIP requests was the very reason that the previously
described Encode URI mechanism was depreciated from the specification.

One note worth considering is that the container behaves in exactly the
same way handling both Join and Replaces. It is up to the Servlet programmer
to terminate the replaced SIP Session and generate a properly formatted SIP BYE
message. This is due to the fact that an application might want to include a header
or body into the massage and that a SIP BYE might yield in an authentication
response that needs to be handled in application space.

Having three potential mechanisms is obviously not ideal, so it’s important
that a container implement a clear set of rules in case a conflict occurs. SIP Servlet
1.1 specifies a priority for the three mechanisms that enables a container to man-
age such conflicts. On receiving a request, the container identifies the request with
a Join/Replaces header (and it supports this optional mechanism), and it is able
to locate the associated Application Session—the container uses this information
to consult the Application Router even if an Encode URI was present in the SIP
request. Progressing a step further, if a request is dispatched to an application
using the Join/Replaces targeting mechanism, the container should not use the
@SipApplicationKey annotation method for associating the protocol session with
an existing Application Session. It should associate the Join/Replaces header with
the appropriate Application Session, the one that was identified even before the
Application Router was consulted. If a request is dispatched to an application due
to the presence of an Encode URI, the container should still use the @SIP
ApplicationKey annotation present to associate the SIP protocol session with the
Application Session. Otherwise, use the Encode URI present in the SIP message
to associate the SIP protocol session with the Application Session.

2.1.7 Session Utilities

The importance of integrating SIP Servlet technology into larger applications and
making it part of wider architectures such as JEE results in a number of inter-

The SIP Serviet Container 4

esting facilities that a container must support. The injection, using Java annotations,
of SIP Session Utilities, a Timer Service, and an instance of a SIP Factory are the
three primary enablers for wider application integration. This section will cover
the injection of SIP Session Ultilities, while the next sections will cover SIP Factory
and Timer Service. It should be noted that a detailed section on SIP Servlet-
specific Java annotations is included later in the book.

SIP Session Utilities (or the “SipSessionsUstils” Java interface) provides a
mechanism for applications to look up and use existing SIP Application Sessions.
The lookup may be carried out by the SIP Servlet application itself, which would
result in a local operation, or it might be by a third-party application not located
on the SIP Servlet container, for example, an EJB hosted on a separate EJB con-
tainer. The transparency of Java annotations means that the application developer
using “SipSessionsUtils” cannot tell by the code whether the injection is local or
remote. If it is remote, an appropriate naming directory function such as the Java
Naming and Directory Interface (JNDI), which is part of the JEE architecture,
can used. SIP Application Sessions are looked up based on a unique identifier that
is generated by container.

Let’s step through an example to illustrate how and why an application
might want to look up and use a SIP Servlet Application Session. Let’s imagine
we have a fictional JEE application that has an EJB part to carry out the major-
ity of business logic, which is hosted in an EJB container separate to the SIP Servlet
container. At some point during the operation, the EJB has been instructed to
add the boss to a conference call at a certain time. The conference call commences
on the SIP Servlet container with lots of participants dialing in and discussing
many topics. As a result, the SIP Servlet container will have an active Application
Session representing the conference call and any number of SIP protocol sessions
(SIP Session) representing each user. For every Application Session created by a
SIP Servlet container, an associated, unique identifier is also created that maps 1:1
and lives for the duration of the Application Session. The unique identifier can
be obtained by applications that call the “getld” method on the “SipApplication
Session” interface of the SIP Servlet API. Time lapses and the EJB instance obtain
the unique Application Session identifier by injecting an instance of the “Sip
SessionsUstils.” This is achieved using the @Resource annotation, which is defined
in the Common Annotations for Java Platform (JSR 250) [12]. The Java code in
the EJB would look something like this:

@Resource
SipSessionsUtil util_instance;

An instance of the “SipSessionsUtils” has now been passed locally into the
local instance variable named “util_instance” (note that the specific application
instance would have been specified using the JNDI entry used for the injection
“sip/<appname>/SipSessionsUtil”). Now that our EJB has a local handle on the

42 Understanding SIP Servlets 1.1

“SipSessionsUtils” associated with the SIP Servlet container, it can look up the
Application Session based on the previously discussed unique identifier. How the
EJB obtains the unique identifier is out of the scope of this discussion—it could,
for example, be as a result of a database lookup. The EJB can now use the unique
identifier to get access to the Application Session by calling the “getApplica-
tionSessionByld” method on the local instance of the “SipSessionsUtils” inter-
face (which we previously injected) and passing in the unique identifier. This
would look something like this:

newAppSession = util_instance.getApplicationSessionByID(832748sad);

At this point, an instance of the Application Session associated with the
unique identifier has been assigned to the local “newAppSession” instance. The EJB
application now has control of the Application Session and can use the full range
of facilities available as part of the SIP Servlet API to generate the appropriate SIP
protocol signaling to add the boss to the conference call (the main elements of
the SIP Servlet API will be discussed later in the book).

As we touched on earlier in this section, the ability to inject an instance of
“SipSessionsUtil” into an application is transparent to the developer and can occur
either locally, within a SIP Servlet class, or remotely, as in our example. It should
also be noted that a local SIP Servlet class can also obtain an instance of “Sip
SessionsUtil” using the Servlet Context. The Servlet Context is a concept that is
inherited from the base Servlet specification and provides “a servlet’s view of the
SIP application within which the servlet is running” [13]. It is used for holding
configuration values and essential static application data and is discussed in more
detail later. Injecting an instance of “SipSessionsUtil” from the Servlet Context

would look like this:

SipSessionsUtil util_instance = (SipSessionsUtil)getServletCon-
text().getAttribute("javax.servlet.sip.SipSessionsUtil");

An instance of the “SipSessionsUtil” is injected locally from the context into
“util_instance.” Because this is acting locally and is within the application, there
is no need to specify the application name (as we did using Java Naming and Direc-
tory Interface (JNDI) in the example); it’s a totally local operation. This would
have been no use in our example, as the “SipSessionsUtil” was injected into an
EJB sitting in a remote EJB container.

While injecting “SipSessionsUtil” is a very powerful tool, a container has
to be wary of potential conflicts between remote and local actions being taken
on the same Application Session. So, in our previous example, while the remote
EJB was attempting to directly act on the SIP Application Session, the local appli-
cation may also have been attempting operations. There is no formal model for

The SIP Serviet Container 43

multiple request threads acting on SIP Servlet application session objects, so the
container should ensure that synchronized access is maintained to ensure con-
sistency. It is hoped that in future versions of the SIP Servlet architecture a com-
mon asynchronous mechanism will be introduced.

Note One nice development pattern that the “SipSessionsUtil” provides is that a SIP
application could use a “SipApplicationSession” as a shared storage. Initialization of a
new “SipApplicationSession” could be created with the “SipFactory” method “create
ApplicationSessionByKey.” Then, anywhere in the application, a “SipSessionsUtil” can
be annotated and a reference to the “SipApplicationSession” can be found based on the
key it was created with.

2.1.8 SIP Factory

The SIP Factory (known as “SipFactory” Java interface) is the second of the util-
ities discussed in this section, and its name very much describes its function. It
is an interface that is used by an application to create new instances of certain
important interfaces that exist within the core SIP Servlet API. In other words, it
acts as a factory for producing all the useful artefacts that application developers
use in the SIP Servlet API on a regular basis. The following provides a general list
of methods that an application can access from obtaining an instance of the SIP
Factory of the application:

* createAddress—an “Address” object in the SIP Servlet AP is a representa-
tion of SIP address that is found in a number of key SIP protocol headers
such as “To” and “From.” It is a convenience object for SIP application
developers, because it is a container for not only the SIP URI that appears
in the SIP headers but also display name, if present, and any parameters.
This method allows for “Address” objects to be created when the SIP Fac-
tory is supplied with appropriate parameters in the method call (e.g., the
SIP URI and display name). The address interface basically represents the
“name-addr” format specified in SIP 2.0 RFC 3261 [2].

o createApplicationSession—We have already talked about SIP Application
Sessions and how they are created on receiving new SIP protocol messages
such as INVITE. This method allows the SIP Factory to create a brand-
new instance of an application without the need for any SIP protocol sig-
naling. This might be used, for example, to create a conference that
participants dial in to and that needs to be created before the first one
enters.

* createApplicationSessionByKey—This method is identical to the previous
“createApplicationSession” method, with the exception that the Appli-
cation Session is created using a specific key. You might remember that

44

Understanding SIP Servlets 1.1

we discussed the session key mechanism for targeting SIP Application
Sessions using the @SipApplicationKey Java annotation. Using this
method ensures that a new SIP Application Session is created, which
allows incoming new requests to easily be associated with an existing

SIP Application Session.

createAuthInfo—1It was recognized that programmatically creating appro-
priate authentication interactions, such as those defined for SIP Digest
in RFC 3261 [2], using SIP is quite a difficult task. This method creates
a configurable object (called “AuthInfo”) that can be used in the SIP
Servlet API for easily attaching appropriate authentication information
to appropriate SIP messages.

createParameterable—The “Parameterable” interface is another conven-
ience object within the SIP Servlet API that allows for ease of manipu-
lation of SIP header values. The “createParameterable” method call
creates a new “Parameterable” object based on the input string provided.

createRequest—Once you have an active SIP Application Session (either
through the “createApplicationSession” method defined for this SIP Fac-
tory or as a result of new SIP protocol signaling), a developer is able to
create new SIP protocol requests using this method (e.g., such as a SIP
INVITE). It should be noted that using the SIP Factory in this way cre-
ates totally independent SIP protocol signaling interactions that are unre-
lated to previous SIP Sessions. The ability to send new requests within
an existing SIP Session is discussed later in the book.

createSip URI—The method for inputting the names of the appropriate
user and host part to create a new SIP URI. For example, including a user
part of “chris” and a host part of “sipservlet_example.com” would return
a SIP URI object of “sip:chris@sipservlet_example.com.”

createURI—Similar to previously method call except a string value is
passed as a parameter and a general URI object is returned, as defined
in RFC 2396 [14]. This object can equally be used in SIP requests and
“Address” objects but provides a more generalized format.

All of these are well-known constructs to SIP Servlet application develop-

ers, and the SIP Factory interface provides an easy and consolidated convenience
function for their creation. These constructs will become more familiar later in
the book, when the focus will switch from the container to application creation

and the SIP Servlet API.

As a utility, the SIP Factory is used within applications in a manner simi-

lar to the previously defined “SipSessionsUtil.” It can be made available locally
within a SIP Servlet class using a Servlet Context (which we introduced in the

The SIP Serviet Container 45

“SipSessionsUtil” section) attribute called “javax.servlet.sip.SipFactory.” It would
look something like this:

SipFactory local_instance = (SipFactory)getServletContext().
getAttribute (SIP_FACTORY);

An application can then use the object “local_instance,” taken from our exam-
ple, to call any of the methods defined previously.

An instance of the SIP Factory can also be injected using the Java-based
@Resource annotation that was also used for “SipSessionsUtil.” This can be called
both locally in the SIP Servlet class and externally from a larger JEE application.
It would look something like

@Resource
Private SipFactory local_instance

where an instance of SIP Factory is injected into the local object “local_instance.”

If we progress our previously discussed example forward from the Session
Utilities section of the book, we are attempting to add the boss to an existing con-
ference call at a certain time. The time has elapsed, and we now want to call the
boss for inclusion in the conference call with colleagues. We previously used the
“SipSessionsUtil” by injecting an instance into our EJB-based application, which
allowed us to retrieve the appropriate Application Session based on a unique
identifier. We are now able to use the previously obtained Application Session
with the SIP Factory to achieve the required SIP protocol signaling to add the
boss the conference. For example, using the previously described SIP Factory
methods “createAddress” and “createSipURI,” we can specify the appropriate SIP
URIs to contact the boss. We can then use the previously obtained Application
Session in conjunction with the SIP Factory to create a new request to the boss
using the “createRequest” method. We have now contacted the boss using the pre-
viously obtained Application Session and the SIP Factory.

2.1.9 Timer Service

The Timer Service is the third and final container utility covered in this section and
provides a mechanism for applications to “schedule timers and receive notifications
when timers expire” [13]. Creation of specific timers is achieved using the Timer
Service (TimerService Java interface) while the Timer Listener (TimerListener Java
interface) is a callback interface that can be implanted by applications and is invoked
when a previously created timer fires. A Servlet Timer object (ServletTimer) is
used by the Timer Service to pass appropriate information to the Timer Listener.

46 Understanding SIP Servlets 1.1

The Timer Service only has two variations on the “createTimer” method,
which is used to create and instantiate an application timer. The first instance of
“create Timer” has the following parameters, which are passed in as configuration:

o appSession—Specifies the Application Session that the new timer should
correlate with.

* Delay—The delay in milliseconds before the timer will fire.

o isPersistent—A Boolean value that indicates if the timer should continue
following a shutdown of the system.

* info—A serializable object that enables applications to store generic appli-
cation data that is returned when the timer fires.

The second “createTimer” method in the Timer Service interface consists
of all the previously described methods and the following additions:

* fixedDelay—A Boolean parameter that allows both fixed rate and fixed
delay mode.

* Period—The period in milliseconds between expiration of timers.

In similar way to both the Session Ustilities and SIP Factory interfaces, the
Timer Service can be injected locally in the SIP Servlet class using a Servlet Con-
text attribute, which would look like the following:

TimerService local_instance = (TimerService)getServletContext().
getAttribute (TIMER_SERVICE);

Or it can be injected either locally in the SIP Servlet class or as part of a larger
application using the Java @Resource annotation, which would look like this:

@Resource
TimerService local_instance;

An application that wishes to be notified when a configured timer expires
has to implement the SIP Servlet API Timer Listener (TimerListener Java interface).
This callback interface is triggered when a timer expires and the single method
“timeout” is called by the container. The “timeout” method returns an object of
type “ServletTimer” that contains all of the relevant contextual information asso-
ciated with the timer. The “ServletTimer” object has the following methods that
an application can use on receiving a call to the “timeout” method on the Timer
Listener interface:

The SIP Serviet Container 47

e cancel—Cancel the active timer.

o getApplicationSession—Provides the SIP Application Session associated
with the timer.

* getld—Returns the unique identifier that has been assigned to this spe-
cific timer.

* gerInfo—The ability to retrieve the serialized object of application-specific
information that was inserted during the instantiation of the timer.

o getTimeRemaining—The amount of timer, in milliseconds, that remains
until the timer expires.

* scheduledExecution Time—Provides the expiration time of the timer.

The Timer Listener can be used by applications in one of two ways. It can
make use of the @SipListener Java annotation for receiving the timer events, or
it can use the deployment descriptor <listener> element, which has a child element
<listener-class>, which is hard coded to inform the container where the listener
class exists.

2.2 Container Convergence

A theme running through these first chapters has been the origins of the SIP
Servlet architecture in conjunction with the base Servlet specification. This par-
allels the similarities drawn between the origins of the SIP signaling protocol in
the HTTP protocol. It is natural to see why the SIP Servlet architecture has been
closely aligned with the HTTP Servlet architecture, which provides a convenience
mechanism for those classes of applications that require both technologies (e.g., a
simple click-to-dial application that has both a Web and SIP function). We have
also discussed that SIP Servlet technologies’ ultimate goal is to become part of
the core JEE architecture. Mechanisms and examples have already been introduced
that signify a move toward making integration of larger JEE-based applications
easy. Remember the example in which we used an EJB to include the boss in a
preexisting conference call—it is a classic example of SIP Servlet technology’s
being integrated as part of a larger JEE application.

It is for these reasons that convergence of SIP Servlet technology with other
technologies is considered extremely important. Yes, it is a valid architecture to
deploy a SIP Servlet container as a stand-alone entity, but the real power of the
technology is apparent when used with complementary technologies. The term
convergence plays a major role in the SIP Servlet architecture and is defined by
two main categories:

43 Understanding SIP Servlets 1.1

o SIP Servlet container and HT TP Servlet container convergence—Represents
a tight integration of both a SIP Servlet container and an HTTP con-
tainer with a shared Servlet Context. This allows an application both to
contain SIP Servlet and HTTP Servlet deployment descriptors within
the same deployment unit and also to have direct interactions with each
other. It should be noted that tightly coupled convergence with an HT'TP
Servlet container is not required by an implementation of the SIP Servlet
architecture. The SIP/HTTP convergence mechanisms defined in the
SIP Servlet specifications are used for convenience as they cover a large
majority of simple Web/telecom applications (e.g., click-to-dial).

o SIP Servlet container and JEE convergence—More loosely coupled than
the previous convergence with HTTP, it refers to a SIP Servlet’s being
part of a larger application that can include various other well-known
JEE functions, such as EJB and Web services. The example previously
discussed involving an EJB’s triggering a SIP protocol interaction to
include a boss in a conference call, is an example of such convergence.
SIP Servlet 1.1 has evolved to provide more convenience to such con-
vergence with the introduction of Java-based annotations in conjunction
with Session Utilities, SIP Factory, and Timer Service, which were all
previously covered in this book.

It's important when dealing with convergence of SIP Servlet technology that
it be clear which of the previous two definitions is appropriate. Just using the term
convergence does not supply enough context and can cause confusion.

The remaining two sections will take a closer look at the two types of SIP
Servlet container convergence.

221 HTTP Container Convergence

The tight convergence with an HTTP Servlet container is reasonably well under-
stood, and a number of convenience functions are provided by a SIP Servlet con-
tainer that remove any potential complexity. Having a common mechanism for
such interactions also improves chances of interoperability and encourages fur-
ther innovation and deployments.

Creating applications that potentially have a number of components with
varying technologies results in the need for a set of packaging guidelines. The fol-
lowing lists the associated deployment units that are used for the technologies in
question:

o _sar file extension—Defined by the SIP Servlet architecture, it is the pack-
age structure for a SIP Servlet application.

The SIP Serviet Container 49

* .war file extension—Defined by the HT'TP Servlet architecture, it is the
package structure for a HTTP Servlet application.

e .car file extension—Defined by the JEE architecture, it is the package
structure for a JEE application. It should be noted that a JEE “.ear”
application archive is a higher level container for all JEE technologies and
so can contain both HTTP Servlet and SIP Servlet parts.

A converged application in this particular context can be packaged in either
a “.sar” or “.war” file or can be packaged as part of a larger, JEE-based application
when included in an “.ear” file.

The basis for a SIP Servlet application to be tightly converged is based on
the sharing of the Servlet Context. We mentioned previously that the Servlet
context provides a view of the application and contains static metadata relating
to the application (see later in the book for more detail on Servlet context data).
It is important that both SIP Servlets and HT'TP Servlets have a consistent view
of the application. Figure 2.11 is a high-level representation of a shared context
between both HTTP and SIP Servlets.

The ability to use functions such as Session Ultilities (for obtaining SIP
Application Sessions), SIP Factory (for creating SIP Signaling) and Session Timer
(for creating timer tasks) provided by the SIP Servlet container have already been
discussed. In the case of a shared Servlet context, such functions can be used as if
being called from within the SIP Servlet class. This can be achieved using either the
Servlet Context attributes for each function or the appropriate Java @Resource
annotation. So, for example, you would have an HTTP Servlet class that is able to
directly call the context attribute to obtain a Session Utilities instance (or use Java
annotation). Even though it is outside of the SIP Servlet class, it is considered a local
call due to the single application archive (either .sar, .war, or .ear) and shared Servlet
Context. While entirely legal, it is not the recommended mechanism for obtaining a
SIP Application Session from within an HTTP Servlet Class. The SIP Servlet API
offers an interface called “Converged HTTPSession,” which has a “getApplication
Session” method for obtaining a SIP Application Session. A shared SIP and HTTP
Servlet container makes the “Converged HT TPSession” available to HT'TP Servlet-
based applications, which can then use the “getApplicationSession” method to

HTTP servlet container SIP servlet container

y :

Shared servlet context

Figure 211 SIP and HTTP shared context.

50 Understanding SIP Servlets 1.1

obtain the associated SIP Application Session. If no SIP Application Session exists,
then one is immediately created and returned to the HT'TP Servlet application for
further processing.

A converged Web container makes sure that the “HttpSession” class repre-
senting a cookie session is also implementing the “javax.servlet.sip.Converged-
HttpSession” interface. In SIP Servlet 1.0, this was not specified, so how a container
connected the “HttpSession” to a “SipApplicationSession” was implementation-
specific. Generally, if an “HttpServletRequest” has a session and initiated a new
SIP request with the SipFactory, the container made the association. Now, in SIP
Servlets 1.1, by safe casting the instance of SIP Factory and then by calling “get
ApplicationSession,” this gives the application developer full control.

Using a simple click-to-dial application as an example, the following steps
would occur:

1. Asimple HTTP Servlet application has a Web page with an input field
to identify the user that is to be called. The user enters a valid SIP URI
and clicks the appropriate button to proceed.

2. The HTTP Servlet application uses the “ConvergedHttpSession” that
has been made available by the container and invokes the “getApplication
Session” method to obtain the related SIP Application Session.

3. The HTTP Servlet application is now able to obtain the appropriate SIP
Factory for the application and create the SIP protocol-level signaling
to connect the users together using the “createRequest” method from the
SIP Factory interface.

2.2.2 JEE Container Convergence

While convergence with an HTTP Servlet container provides a nice convenience
for application developers who want to write simple applications, the real power
and flexibility of SIP Servlet technology is evident when discussing convergence
with JEE. A clear division of responsibilities between the telecom-based infra-
structure and the enterprise business world provides a highly scalable architecture.

The division of responsibility, as shown in Figure 2.12, allows specific spe-
cialist technologies to handle appropriate application logic relevant to the area of
expertise. As illustrated by Figure 2.12, the JEE is dealing with business tech-
nologies such as Web services, EJB, and Java Message Service (JMS), while the SIP
Servlet container handles SIP signaling logic and lower level multimedia session-
related logic. This is not saying that this book is promoting convergence with JEE
over HTTP Servlet. Convergence with both types of technology has its place in
the SIP Servlet architecture and represents a totally different set of deployments.
It must also be remembered that a SIP Servlet container does not have to converge
with either of the two technologies discussed and can act as a stand-alone entity

The SIP Serviet Container 51

Web
JMS services

EJB

Business logic

Telecom logic

SIP servlet container

Figure 212 Division of responsibility.

providing just SIP-based multimedia logic. It is fair to say, however, that con-
vergence with JEE can cover the entire range of deployments of a converged HTTP
container and more. It is not fair to say the reverse, that a converged HT'TP con-
tainer has the same range of flexibility. On the flip side, it is overkill to require a
full-blown JEE Application server to create a very simple click-to-dial application,
and so a converged HTTP Servlet container is perfect.

The majority of details surrounding convergence with JEE have been dis-
cussed directly and indirectly already and will be continue to be discussed as a gen-
eral theme. In fact, not only has the book looked in detail at SIP Servlet container
functions such as remotely using Session Utilities, SIP Factory, and Timer Service,
it has even given a simple example of an EJB’s triggering SIP Servlet logic (recall
the example of adding the boss to a conference call at a certain time).

As specified by JEE, a converged SIP Servlet application will be bundled in
an enterprise archive file format (an “.ear” file, e.g., MyConvergedApp.ear). For
more information on how “.ear” files are structured and packaged, the reader should
take a look at the latest version of the core JEE specification. The Enterprise Archive
format acts as boundary for converged application. This includes the availability
of previously mentioned facilities such as Session Utilities, SIP Factory, and Session
Timer. That is not to say that a stand-alone container not part of a JEE application
server cannot offer these functions to third-party servers; however, in the context
of a JEE Application Server, the Enterprise Archive acts as the boundary for access.

2.3 Security

Whether a container’s role is one of the three we have previously discussed (JEE con-
verged, HTTP Servlet converged, or stand-alone), security plays a major role. A SIP
Servlet container needs to be able to provide a common security architecture that

52 Understanding SIP Servlets 1.1

allows application developers the ability to clearly state security constraints associated
with the application. Those then responsible for actually deploying and managing
a live application in the network need to be able to ensure that these security con-
straints are being effectively enforced. Add to that the requirement that an applica-
tion could be sold and deployed to a wide range of customers and deployed on a
wide range of SIP Servlet containers produced by many vendors. It is for this rea-
son that the SIP Servlet architecture has a common security framework that is
implemented and enforced by a container, which should ensure consistency across
a wide range of deployments. The deployment descriptor file is the primary vehicle
for specifying the security framework.

The security requirements for a SIP Servlet container are quite wide rang-
ing. While, on one hand, a container could be deployed in a totally closed network
where access is controlled at the perimeter, the security requirements will not be
nearly as strong as if it is deployed in an open environment as part of a JEE appli-
cation server deployment. On a multitenant system, there could be a plethora of
potential users attempting to get access to container resources. It is for this rea-
son that the SIP Servlet architecture splits security properties into a number of
core requirements, which are specified in the SIP Servlet specification [13] and
listed here:

Authentication: The means by which communicating entities prove to one
another that they are acting on behalf of specific identities that are author-
ized for access [13].

Access control for resources: The means by which interactions with
resources are limited to collections of users or programs for the purpose of
enforcing integrity, confidentiality, or availability constraints [13].

Data integrity: The means used to prove that information has not been
modified by a third party while in transic [13].

Confidentiality or data privacy: The means used to ensure that the infor-
mation is made available only to users who are authorized to access it.

The security architecture spans both elements that will appear in the deploy-
ment descriptor (described as “declarative security” in the SIP Servlet architecture)
and can appear in the actual application code using specific methods (described as
“programmatic security” in the SIP Servlet architecture). It is a combination of
both these mechanisms that allows for appropriate security constraints to be spec-
ified by an application and enforced by a container.

One area in which the security mechanism needs to be aligned is the case
where a SipServlet requires authentication from the client executing the code. This
is done by issuing a 401 SIP response asking for valid credentials. The SIP client
making the initial call then provides the right data, and the Servlet can validate

The SIP Serviet Container 53

its authenticity. So far, this is a normal description of how a SIP entity would
behave. The important part is that the JEE application server should behave as one
entity. Any call generated from the SIP Servlet has to pass on the authentication
and authorization information collected by the SIP container. If a call is made to
EJB, then there should not be a need for a new authentication for accessing a spe-
cific resource. Only the authorization step is run, since we already know the iden-
tity of the SIP client on whose behalf it runs.

To protect a Servlet, the sip.xml configuration file would look like the
following:

<?xml version="1.0" encoding="UTF-8"7?>
<sip-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=http://www.jcp.org/xml/ns/sipservlet
http://www.jcp.org/xml/ns/sipservlet/sip-app_1_1.xsd" version="1.1">
<app-name>UASAuthSample</app-name>
<servlet>
<servlet-name>UASAuthServlet</servlet-name>
<servlet-class>net.sipservlet.sample.AuthServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>UASAuthServlet</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>REGISTER</value>
</equal>
</pattern>
</servlet-mapping>
<security-constraint>
<resource-collection>
<resource-name>UASAuthServletProtector</resource-name>
<servlet-name>UASAuthServlet</servlet-name>
<sip-method>REGISTER</sip-method>
</resource-collection>
<auth-constraint>
<role-name>authenticated</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>DIGEST</auth-method>
<realm-name>sipservlet.net</realm-name>
</login-config>
</sip-app>

Here the “UASAuthServlet” is protected for any calls to the REGISTER SIP
method. It will do a digest 401 authentication. If the authentication step is done,
it will ensure that the authenticated user has the “authenticated” role assigned to i.

54 Understanding SIP Servlets 1.1

If not, then a 403 SIP response would get generated. If both the authentication
and authorization are successful, then the actual Servlet would get invoked. Here
is how the Servlet code would look:

public class AuthServlet extends SipServlet {
@0override
protected void doRegister(SipServletRequest req) throws Servlet
Exception, IOException {
log(reqg.getRemoteUser());
log(req.getUserPrincipal().toString());
log("Role = "+req.isUserInRole("authenticated"));
SipServletResponse resp = req.createResponse(200);
resp.send();

The Servlet prints the authentication information and simply creates a SIP
200 response for the registration. Running it would yield the following printouts:

[#| | INFO|sun-comms-
appserveri.0|javax.enterprise.system.container.web|_ThreadID=23;_
ThreadName=SipContainer-serversWorkerThread-5060-7; |PWC1412:
ConvergedContextImpl[/AuthServer] ServletContext.log():stoffe|#]

[#] | INFO|sun-comms -
appserveri.0|javax.enterprise.system.container.web|_ThreadID=23;
ThreadName=SipContainer-serversWorkerThread-5060-7; |PWC1412:
ConvergedContextImpl[/AuthServer] ServletContext.log():stoffe|#]

[#] | INFO|sun-comms -
appserver1.0]|javax.enterprise.system.container.web| ThreadID=23;
ThreadName=SipContainer-serversWorkerThread-5060-7; |PWC1412:
ConvergedContextImpl[/AuthServer] ServletContext.log():Role = true|#]

Note Each application server has its own way of defining where the user name and pass-
word information are collected. Normally, it is done using some version of JAAS (Java
Authentication Authorization System). Running this on SailFin requires one table with
the user name and password and also another table with the user-to-group mapping. To
make it easier in deployment, it also needs a “sun-sip.xml” descriptor file to map between
the group and the roles. This is due to the fact that, while one person creates the appli-
cation, it can be another person who deploys it. As you see in the sample, checks for
“isUserInRole” can be made programmatically without the mapping, but one might have
to recompile the SIP application, which is not an acceptable approach [15].

This was security mechanism acting as a User Agent Service (UAS), but there
is a corresponding pattern for writing SIP User Agent Client (UAC) code.

The SIP Serviet Container 55

@javax.servlet.sip.annotation.SipServlet(name = "authServlet",
loadOnStartup = 2)
public class AuthSipServlet extends javax.servlet.sip.SipServlet {

@Resource
SipFactory sf;
@Resource
TimerService ts;

private static final long serialVersionUID = 3978425801979081269L;

//Reference to context - The ctx Map is used as a central storage
for this app

ServletContext ctx = null;

@Override

public void init(ServletConfig config) throws ServletException {
super.init(config);
ctx = config.getServletContext();

@0override
protected void doResponse(SipServletResponse resp) throws
javax.servlet.ServletException, java.io.IOException {
SipUser user = (SipUser) ctx.getAttribute("sipuser");
if (resp.getStatus() == SipServletResponse.SC_UNAUTHORIZED ||
resp.getStatus() == SipServletResponse.SC_PROXY_AUTHENTICATION_
REQUIRED) {
AuthInfo info = sf.createAuthInfo();
info.addAuthInfo(resp.getStatus(), user.getRealm(),
user.getUser(), user.getPassword());
SipServletRequest req = resp.getSession().createRequest
(resp.getMethod());
req.addAuthHeader (resp, info);
req.pushRoute(sf.createAddress(user.getOutboundproxy()));
reqg.getSession().setHandler("authServlet");
if (resp.getRequest().getContent() != null) {
req.setContent(resp.getRequest().getContent(), resp.get
Request().getContentType());
}
if (resp.getRequest().getExpires() > 0) {
req.setExpires(resp.getExpires());

}
req.send();

} else if (resp.getStatus() == SipServletResponse.SC_OK) {
log("Auth OK : " + resp.getHeader("Contact"));

if ("REGISTER".equals(resp.getMethod())) {
String serviceRoute = resp.getHeader("Service-Route");
if (serviceRoute != null && serviceRoute.length() > 0) {
user.setServiceRoute(serviceRoute);

56 Understanding SIP Servlets 1.1

The user information is kept in a JavaBean “SipUser” where username,
password, and realm are kept. This Servlet would normally be set to deal with
responses. If a SIP server generates a 401 or 407 authentication request, then in
“doResponse” method this Servlet would create the right authentication infor-
mation. First an “AuthInfo” object is created with the help of the SIP Factory.
Then the “AuthInfo” object is populated with the response code, username, pass-
word, and realm in the “addAuthInfo” method call. The last step is to append the
“AuthInfo” to the request and send it back to the server. If the server accepts, then
we would get a 200 response back. If any of the credentials are wrong or we do
not have the right authorization, then we would receive a 403 response.

Note that an entirely new request is created based on the “SipSession” of the response.
This means that any extra SIP headers or SIP body from the original request needs to be
copied from the original request to the one with “AuthInfo.” We cannot add the
“Authlnfo” to the initial because the “CSeq” would need to be increased. We cannot
send the original request one more time.

References

[1] SIP Servlet Specification, Version 1.1, JSR 289, Java Community Process, August 2008.

[2] Rosenberg, J., etal., “SIP: Session Initiation Protocol,” RFC 3261, Internet Engineering Task
Force, June 2002.

[3] Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses,” REC 3262, Inter-
net Engineering Task Force, June 2002.

[4] Roach, A. B., “Session Initiation Protocol (SIP)—Specific Event Notifications,” RFC 3265,
Internet Engineering Task Force, June 2002.

[5] Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,”
RFC 3428, Internet Engineering Task Force, December 2002.

[6] Donovan, S., “The SIP INFO Method,” RFC 2976, Internet Engineering Task Force, Octo-
ber 2000.

[7]1 Rosenberg, J., “The Session Initiation Protocol (SIP) UPDATE Method,” RFC 3311, Inter-
net Engineering Task Force, September 2002.

[8] Sparks, R., “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, Internet
Engineering Task Force, April 2003.

The SIP Serviet Container 57

Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication.” RFC
3903, Internet Engineering Task Force, October 2004.

Mahy, R., and D. Petrie, “The Session Initiation Protocol (SIP) Join’ Header,” REC 3911,
Internet Engineering Task Force, October 2004.

Mahy, R., B. Biggs, and R. Dean, “The Session Initiation Protocol (SIP) ‘Replaces’ Header,”
RFC 3891, Internet Engineering Task Force, September 2004.

Common Annotations for the Java Platform, JSR 250, Java Community Process, May 2006.
SIP Servlet Specification, Version 1.1, JSR 289, Java Community Process, August 2008.

Berners-Lee, T., R. Fielding, and L. Masinter, “Uniform Resource Identifiers (URI): Generic
Syntax,” RFC 2396, Internet Engineering Task Force, August 1998.

Binod’s blog on SailFin Authentication: http://weblogs.java.net/blog/binod/archive/2008/
09/md5_authenticat.html.

The SIP Serviet Application

This book has taken a good look at the roles and responsibilities of a SIP Servlet
container, and it’s now time to closely examine the role of an application that would
utilize such container functionality. This section will focus on the main con-
structs that are used to both build and represent an application. The following
section will focus more on the SIP Servlet API that is exposed to application
developers when creating SIP Servlet applications. The two sections are closely
related and will reference each other to aid in greater understanding.

3.1 SIP Servlet Packaging

This book has already touched on the packaging of SIP Servlet. A SIP Servlet
application is wrapped up in a standard deployment unit that aligns with the
JEE architecture. The deployment unit specified for a SIP Servlet application is
defined as a Servlet archive and makes use of the “.sar” file extension. The “.sar”
file extension has a standardized directory structure that allows containers to eas-
ily deconstruct and extract appropriate resources when deploying an application.
The standard directory structure allows for interoperability when deploying appli-
cations on multiple vendor instances of a SIP Servlet container.

A directory folder appears in the root of a SIP Servlet application named
“WEB-INE.” This directory acts as container for everything that is related to an
application. When a SIP Servlet container actively deploys an application, it will
look straightaway for an existence of the “WEB-INF” directory so it can begin
processing. The “WEB-INF” directory will contain a file called “sip.xml” that rep-
resents the deployment descriptor element of the application. (The details of the
deployment descriptor can be found in Section 3.1.1 The “WEB-INF” directory

58

The SIP Serviet Application 59

then has a further number of subdirectories that contain the rest of the applica-
tion resources. A “classes” directory contains the related SIP Servlet classes that
are to be included by the applications class loader and made available at run time
to the container. These would contain the relevant application logic that has uti-
lized the SIP Servlet API. Finally, a directory called “lib” would also exist, which
is used to include various Java archive files (.jar files) that are used by the appli-
cation during run time.

Figure 3.1 illustrates the directory structure that is expected within a SIP
Servlet application. It is worth noting that in this chapter the directory structure
has only really been discussed in relation to the SIP Servlet archive format (.sar).
Previously in the book we have introduced the concept that SIP Servlet applications
can be converged and deployed with HTTP Servlet applications (using a web
archive) and JEE applications (using an Enterprise Archive). The directory struc-
ture when included in either a Web archive (.war) or an Enterprise Archive (.ear)
remains the same under the umbrella of the base “WEB-INF” directory. The struc-
ture of a SIP Servlet application mirrors that of an HTTP Servlet application, which
also has a base “WEB-INF” directory and a deployment descriptor file called
“web.xml” (as opposed to “sip.xml” in a SIP Servlet application). In the case where
a SIP Servlet application is converged with an HTTP Servlet application, only a sin-
gle “WEB-INF” directory exists, which is then shared by both the HT'TP and SIP
Servlet applications. Figure 3.2 shows an example of the single use of “WEB-INE”

The existence of a “sip.xml” and a “web.xml” signifies that this application
archive has both SIP and HTTP Servlet parts. Due to the common root directory
structure, the actual archive file extension type used by the converged application
does not matter. For example, a SIP Servlet archive (“.sar” file) can contain a

* class files *jarfiles

sip.xml file classes directory lib directory

WEB-INF directory

Figure 3.1 SIP Servlet directory structure.

60 Understanding SIP Servlets 1.1

*class files * jar files

web.xml file sip.xml file classes directory lib directory

WEB-INF directory

Figure 3.2 SIP and HTTP converged directory.

HTTP Servlet part by the inclusion of a “web.xml” file in the “WEB-INF” direc-
tory. On the flip side, an HTTP Servlet archive (“.war” file) can contain a SIP
Servlet part by the inclusion of a “sip.xml” file in the “WEB-INF” directory. The
“WEB-INF” directory can then be included in a higher level Enterprise Archive
(“.ear” file) for inclusion in a larger JEE application.

3.1.1 Deployment Descriptor

The importance of the deployment descriptor file was certainly highlighted in the
previous section. Its mere presence in the “WEB-INF” directory structure signi-
fies SIP Servlet application components in an archive that might not actually be
a SIP Servlet archive. The deployment descriptor is also used to specify a wide range
of configuration values that are used in various forms by both the container and
the application. This section will delve a little deeper to provide more information
on the important elements that appear in a “sip.xml” file of the deployment descrip-
tor. The top-level elements are named here, and appropriate child elements will
be discussed in the relevant sections.

<app-name>—Unique name of an application (“.sar” file) within the con-
text of a SIP Servlet container instance (including clustered container
instances).

<distributable>—Informs the container that the application being deployed
is able to function correctly in a distributable environment.

<context-param>—~Allows an application to configure a set of initial
application-level parameters that can be used during the life cycle.

<listener>—The listener interfaces that are associated with the application.
<proxy-config>—Configures proxy-related parameters.

<session-config>—Session configuration as per JEE specifications.

The SIP Serviet Application 61

<security-constraint>—Used to conﬁgure security constraints in association

with SIP Servlets.

<login-config>—Enables an application to configure authentication mech-
anisms and appropriate parameters.

<security-role>—Security role configuration as per JEE specifications.

Figure 3.3 provides an example of a basic “sip.xml” deployment descriptor
file containing some of the major elements discussed previously.

3.2 Application Roles

We have already discussed how, while the evolution of SIP Servlets has been very
much influenced by the HT'TP protocol and HT TP Servlet specification, a num-
ber of major differences exist. One of the main differences between HT'TP and
SIP is the nature of interactions. The HT'TP protocol is very much a client—server
protocol that results in simple request and response interactions. The SIP proto-
col, on the other hand, is based on peer-to-peer interactions that can result in either

<?xml version="1.0" encoding="UTF-8"7?>
<sip-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=http://www.jcp.org/xml/ns/sipservlet
http://www.jcp.org/xml/ns/sipservlet/sip-app_1_1.xsd" ver-
sion="1.1">
<app-name>TestSample</app-name>
<servlet>
<servlet-name>TestSample</servlet-name>
<servlet-class>net.sipservlet.sample.TestSample</servlet-
class>
</servlet>
<servlet-mapping>
<servlet-name>TestSample</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
</pattern>
</servlet-mapping>
</sip-app>

Figure 3.3 SIP Servlet deployment descriptor.

62 Understanding SIP Servlets 1.1

client issuing new request messages. The SIP protocol also employs the concept of
multiple hops, which can result in a SIP message traversing multiple servers in its
quest to find the destination. It is for this reason that the SIP Servlet architecture
is based on a much varied set of functions that also heavily influence the SIP Servlet
API and therefore the applications written. Taking the previous information into
account, a number of roles can be assumed by applications to fully utilize the SIP
protocol, including User Agent Client (UAC), User Agent Server (UAS), Proxy, and
Back-to-Back User Agent (B2BUA). The roles are well-known constructs in the SIP
protocol world and are mapped successfully to the SIP Servlet architecture. The fol-
lowing sections will provide an introduction to the roles. It should also be noted
that the following roles within the general SIP architecture are normally inde-
pendent entities. The SIP Servlet API allows an application to assume a specific role
by key actions it takes on receiving a new SIP protocol request. In general, once an
application has assumed a role for a request, changing it would violate core SIP prin-
ciples. For this reason, a container will enforce specific rules on applications if they
make decisions to assume a role but then later attempt an action specific to another
role, which violates core SIP protocol and its associated state machines.

3.21 Proxy

A SIP Servlet application, using the SIP Servlet API (see Chapter 10 on the SIP
Servlet API for more details related to using the API for the proxy role), is able to
act as a SIP “Proxy.” A SIP Proxy is defined in the core SIP Specification [1] as:

An intermediary entity that acts as both a server and a client for the purpose
of making requests on behalf of other clients. A Proxy server primarily plays
the role of routing, which means its job is to ensure that a request is sent to
another entity “closer” to the targeted user. Proxies are useful for enforcing
policy (e.g., making sure a user is allowed to make a call). A proxy inter-
prets, and, if necessary, rewrites specifics parts of a request message before for-

warding it.

A SIP proxy server is an extremely powerful and widely used entity in SIP
networks and provides the main routing engine for the protocol. It should be
noted that a SIP Proxy has a strict set of rules that must not be violated in order
to avoid undesirable consequences. As mentioned previously in this book, the very
fact that the SIP protocol has the ability to locate and proxy a request onward to
a more suitable location is one of the biggest differences between it and the HTTP
protocol (and therefore the resulting API). HTTP Servlet containers are gener-
ally only required to generate responses to HT'TP requests and have no concept of
forwarding requests to a more appropriate location. Figure 3.4 illustrates a server
that has taken an incoming SIP request and is now proxying it onward.

The SIP Serviet Application 63

SIP servlet container

Proxy application

2N
VAN

Incoming SIP Outgoing proxied
request SIP request

Figure 3.4 Simple proxy.

An incoming request that arrives at the application from the container is
represented by a “SipServletRequest” interface. The application is able to initiate
the intent to act as a proxy server by obtaining what is called the Proxy object from
the “SipServletRequest” interface by calling as follows:

SipServletRequest.getProxy();

Now that the application has control of the Proxy object it has set its prece-
dent to act in such a manner and can’t act as one of the other roles discussed in
this section. The application is able to use the Proxy interface to configure as
appropriate for onward routing of the request. This might include, for example,
adding multiple destinations to attempt when routing the request or searching
through that list sequentially rather than in parallel. More detail on the config-
uration options for the Proxy interface can be found in the Appendix. Once the
entire configuration for onward routing has been completed, the application calls
the “proxyTo” method from the Proxy interface:

Proxy.proxyTo(sip:voicemail@sipservlet_example.com);

The SIP URI from the previous example would be used by the application
to forward the request onward. For example, if the application received the fol-
lowing SIP INVITE request,

64 Understanding SIP Servlets 1.1

INVITE sip:kristoffer@sipservlet_example.com SIP/2.0

Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG483JKSJ8ew9
Max-Forwards: 70

To: Stoffe < kristoffer@sipservlet_example.com >

From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet _example.com

CSeq: 1 INVITE

Contact: <sip:chris@pc.sipservlet_example.com >

Content-Type: application/sdp

Content-Length: 150

(Chris’s SDP is not shown.)

The application would be presented with a “SipServletRequest” object by
the container. It would use the “.getProxy” method on the object to obtain the
Proxy object. By calling the previous “.proxy” example, it would forward the
request to the SIP URI “sip:voicemail@sipservlet_example.com,” and the out-
going SIP request would look like the following:

INVITE sip:voicemail@sipservlet_example.com SIP/2.0

Via: SIP/2.0/UDP proxy.sipservlet_example.com;branch=z9hG4a93uidal9
Via: SIP/2.0/UDP sipservlet_example.com;branch=z9nhG483JKSJ8ew9
Max-Forwards: 70

To: Stoffe < kristoffer@sipservlet_example.com >

From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

Contact: <sip:chris@pc.sipservlet_example.com >

Content-Type: application/sdp

Content-Length: 150

(Chris’s SDP is not shown.)

Remember from the brief introduction to SIP at the beginning of this book
that the top line of a SIP request, known as the Request URI (R-URI), indicates
the next routing location. The R-URI in this example has been altered by the appli-
cation from “sip:kristoffer@sipservlet_example.com” to “sip:voicemail@sipservlet_
example.com.” The simple code snippet for this application would look like the
following:

public void doInvite(SipServletRequest local_Request)

{
Proxy local_Proxy = local_Request.getProxy();

local_Proxy.proxyTo(sip:voicemail@sipservlet_example.com);

An application can proxy to as many destinations as it wants, either by call-
ing the “ProxyTo” method on the Proxy interface a number of times or by pass-

The SIP Serviet Application 65

ing a preconfigured list as a parameter to the “proxyTo” method. The addition
of more than one location to a proxy operation generates individual branches, as
shown in Figure 3.5.

Using this mechanism for creating SIP proxy operations is certainly well
understood and has been used extensively during the evolution of SIP Servlets.
In the latest version of the specification, a more powerful variation for creating
proxy operations has been introduced to complement the existing mechanism.
As discussed earlier in this section, an application developer has the opportunity
to configure various parts of a proxy operation before routing the SIP request
onward. Unfortunately, such configuration values apply to all destinations used.
For example, if we pass a list of five SIP URIs into a “proxyTo” method, then the
configuration applies to all five SIP URIs. While this might be acceptable in most
application scenarios, implementation experience has resulted in a more flexible
approach that can be used, called Proxy Branches. Proxy Branches is similar to
the “proxyTo” method, with the exception that it allows certain configuration val-
ues to change on specific branches. The mechanism for obtaining and configur-
ing Proxy Branches is identical to that in the previous example, with the exception
of its extra configuration flexibility. So, our previous code would look as follows:

public void doInvite(SipServletRequest local_request)

{
Proxy local proxy = local_request.getProxy();
local_proxy.createProxyBranches(sip:voicemail@sipservlet
example.com);
local_proxy.startProxy();

This achieves exactly the same result as in the previous example of using the
“proxyTo” method. It differs in that the application could call the “createProxy

Incoming SIP
request Outgoing proxy

Proxy object branch 2

Figure 3.5 Proxy branches.

66 Understanding SIP Servlets 1.1

Branches” method again to add another location (note: you can call “proxyTo”
method multiple times as well) until a final SIP response is passed upstream but
with the important difference that the application developer can configure cer-
tain properties differently for each branch. The restricted properties that can be
changed per branch are the following:

¢ DPush alternate SIP route headers on each branch rather than the same
one for all proxy locations.

* Issue a SIP CANCEL request on a specific branch rather than for all
branches.

* Set different properties per branch on important SIP headers such as
Record Route [1] and PATH headers [2].

¢ Set different recursive properties on each individual branch for SIP 300-
class responses. In the SIP protocol, a 300-class response can either be
acted upon by the Proxy or passed farther upstream.

* Specify a difference timeout value for each branch instead of for every
branch.

* Generally manipulate SIP headers differently for each branch.

More detail on the Proxy Branches and Proxy interface API can be found
in Chapter 10.

3.22 User Agent Client

A User Agent Client (UAC) is another role that a SIP Servlet application can
assume and is defined by the core SIP specification [1] as follows:

A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of the UAC lasts
for only for the duration of that transaction.

The UAC acts as a SIP client, and unlike a Proxy, it is an originator and
sender of a SIP request from nothing, as compared to an entity that simply
receives and forwards onward. Figure 3.6 simply illustrates how a UAC creates a
request and sends externally from a SIP Servlet container. A Web-initiated call is
a good example of UAC-type behavior in that a SIP Servlet container receives a
request to start a call from a trigger that is not SIP (e.g., an EJB call). This would
result in an application creating an appropriate SIP INVITE request and send-
ing to the destination, therefore acting as a UAC. The application is, in effect,
acting as a common SIP user agent, generating a call. Figure 3.6 provides a simple
illustration of an application acting in the UAC role.

The SIP Serviet Application 67

SIP servlet container

UAC application

SIP stack \

Outgoing UAC
SIP request

Figure 3.6 User Agent Client.

In the previous section, we discussed how a simple proxy server role can be
carried out, and you might recall that in the simple code example the incoming
SIP message was passed to the application in the form of a “SipServletRequest”
object (from the “dolnvite” interface method). An application acting as a UAC has
a similar starting point. It is an originator of requests, does not have the incom-
ing trigger of a proxy server, and is not passed a “SipServletRequest” object. It
instead needs to be able to create a “SipServletRequest” object with no external
SIP protocol trigger. It is clear that the container needs to provide a facility for
applications to create a “SipServletRequest” object without an incoming SIP pro-
tocol trigger. Wait a second—that type of facility sounds familiar. Recall the exam-
ple included in the section in Chapter 2 named “The SIP Servlet Container” that
allowed the boss to be included in a conference call at a certain time using the pre-
viously discussed SIP Factory (“SipFactory” interface from SIP Servlet API) facil-
ity provided by the container? (If not, it would be worth going back to review
that section.) So the SIP Factory interface provides the functionality we need to
create the required trigger for a UAC-style application. In general, the following
occurs when an application wants to act in the role of a UAC:

1. An instance of the SipFactory is obtained. This can be achieved either
locally within the application, by obtaining a SIP Factory from the appli-
cations Servlet Context, or both locally and externally (from another
JEE component like an EJB) by injecting an instance of the @SipFactory
Java annotation (see examples of both techniques in the Chapter 2).

68 Understanding SIP Servlets 1.1

2. Once the application has an instance of a SIP Factory, it is able to use
the “createRequest” method to create the “SipServletRequest” object
that forms the foundation of the UAC.

3. The “SipServletRequest” interface has a “send” method, which is then
invoked by the application to send the SIP protocol message, acting in
the role of a UAC.

The “SipServletRequest” object has numerous method calls that enable an
application acting as a UAC to manipulate and configure the request before it is
sent. For further information, take a closer look at the “SipServletRequest” inter-
face as detailed in the Appendix.

A simple code snippet for a UAC-based application generating a SIP
INVITE request would look like the following:

@Resource SipFactory local_Factory_

SipApplicationSession appSession = local_Factory.createApplication
Session();
SipServletRequest local_Request = local_Factory.createRequest(app
Session, INVITE,

sip:userA@sipservlet_example.com, sip:userB@sipservlet_example.
com);

[At this point the "SipServletRequest" request object would be con-
figured by the application using the appropriate methods and values:
String local_Sdp = . . .]

local_Request.setContent(local_Sdp, "application/sdp");
local_Request.send();

First, an instance of the applications SIP Factory is injected into a local han-
dle named “local_Factory.” The factory is then used to create a “SipServletRequest”
object called “local_Request.” It should be noted that the SIP Factory “create
Request” method takes in a number of parameters that configure the local
“SipServletRequest” object (“local_Request” from the example):

* The first parameter passed on specifies the SIP Application Session to
which the request will be associated.

* The second specifies the type of SIP request we are generating: a SIP
INVITE request in this case.

* The third parameter specifies who the request is from: the SIP URI
“sip:userA@sipservlet_example.com” in our example. The value in this
parameter would populate the SIP From header in the request.

The SIP Serviet Application 69

* The fourth parameter specifies who the request is to—the SIP URI
“sip:userB@sipservlet_example.com” in our example. The value of this
parameter would populate the SIP “To” header and Request-URI in the

I equest.

The new “SIPServletRequest” object created by such an operation also
results in a new SIP Session (see later in this section for a detailed explanation of
the relationship between SIP and a SIP Session). The SIP Session is also then asso-

ciated with the Application Session specified in the “SipFactory” “createRequest”
method call.

3.2.3 User Agent Server

A User Agent Server (UAS) is the third role in our series. After the discussion the
role of the UAC in detail in the previous section the role of the UAS becomes
obvious. The core SIP specification [1] defines the role of a UAS as follows:

A user agent server is a logical entity that generates a response to a SIP
request. The response accepts, rejects, or redirects the request. This role lasts
only for the duration of that transaction.

So the role of UAS is, in fact, the exact opposite of a UAC. In the context
of the SIP Servlet AP, it is an application that is hosted on the container that
makes a decision to not act as proxy (would not call the “getProxy” method on
the SipServletRequest interface) when receiving a SIP request but generates a SIP
response directly. Figure 3.7 provides an illustration of an application acting as a
UAS.

In a similar fashion to the Proxy role, a UAS-based application is pre-
sented with a “SipServletRequest” object that is passed to it by the container.
The “createResponse” method that appears on the “SipServletRequest” interface
provides the ability for applications to act in the role of a UAS. On calling this
method, the container will automatically generate a “SipServletResponse” object
that is compliant to the SIP protocol based on the request object (in that all
SIP headers are appropriately populated). The SIP response code used is spec-
ified as a parameter of the “createResponse” method. The application then has
the opportunity to manipulate the request object as required using the other
methods made available through the “SipServletResponse” interface. Once
the application is happy that the “SipServletResponse” object is correct, it calls
the “SipServletResponse” “send” method, which dispatches the response to the
intended recipient.

70 Understanding SIP Servlets 1.1

SIP servlet container

UAS application

/ SIP stack

Incoming SIP
request/
outgoing SIP
response

Figure 3.7 User Agent Server.

A simple example-code snippet from a UAS-based application receiving a
SIP INVITE request would look like this:

public void doInvite(SipServletRequest local_Request)
{

SipServletResponse local_Response = local_Request.create
Response(200);

. At this point the SipServletResponse object would be
configured by the
application using the appropriate methods and values....

local_Response.send()

The incoming SIP INVITE request is passed by the container to the appli-
cation using the “dolnvite” interface method. The application uses the “SipServlet
Request” object (localRequest) to create a new SIP response object by calling the
“createResponse” method on the “SipServletRequest” interface. Note that the
application passes a “200” as a parameter to the method, which would result in
a SIP 200 response being generated. The number would be changed appropriately
for other responses. The application would now use other methods made avail-
able to manipulate the SIP response as required (additional information on func-
tions available when manipulating the “SipServletResponse” object can be found

The SIP Serviet Application n

in the section “SIP Servlet API”). Once the application is happy with the response
that has been generated, it sends it to the intended recipient using the “SipServlet
Response” “send” method.

3.24 Back-to-Back User Agent

The final role to be covered in this chapter is a Back-to-Back User Agent (B2BUA).
A B2BUA is one of the most used constructs in SIP networks today and is defined
as followed in the core SIP specification [1]:

A back-to-back user agent (B2BUA) is a logical entity that receives a request
and processes it in the user agent server. In order to determine how the
request should be answered, it acts as a user agent client and generates
requests. Unlike a proxy server, it maintains dialog state and must partici-
pate in all requests sent on the dialogs it has established.

In summary, a B2BUA in the context of the SIP Servlet API can be viewed
as an application that acts as a concatenation of both the UAC and UAS roles that
have been discussed in this section. In short, it is an application that is able to
receive requests acting as a UAS, which then subsequently generates a request as a
UAC for the same SIP protocol interaction. Figure 3.8 illustrates a simple B2BUA.

A B2BUA differs significantly from the Proxy role, which only acts on a SIP
message to route it downstream. A B2BUA is responsible for generating a response
(acting as a UAS) to the originator of the SIP request and also generating a SIP

SIP servlet container

B2BUA
application

UAS UAC

/X
/N

Incoming SIP Outgoing proxied
request SIP request

Figure 3.8 Back-to-Back User Agent.

72 Understanding SIP Servlets 1.1

request to route the call onward (acting as a UAC). The roles of UAC and UAS
are linked by the SIP Servlet API, which maps requests and responses between
both roles. The role of B2BUA is important for applications that need to main-
tain control over the SIP signaling, because SIP Proxy applications are not allowed
to generate SIP requests as per RFC 3261 [1]. A good example of a B2BUA would
be a prepay solution. It would receive calls and act as a UAS on one side while gen-
erating a new request to connect the call on the other side of the B2BUA. The
prepay application then starts a timer to check on the credit that is available to the
caller who initiated the call. When the credit timer fires, the application generates
the termination messages to hang up the call.

The B2BUA Helper only supports a one-to-one UA relationship. If deal-
ing with a conference where the relation is one-to-many, it will not be of any help;
the various legs would have to be managed one by one. The following code pro-
vides an example of the B2BUA Helper class being used. The first Servlet is the
“B2BTerminatorServlet,” which provides the main logic. If you work your way
through the code, you can see that, on first receiving a request (in the “doRequest”
method), an instance of the “B2BuaHelper” is obtained by calling the “getB2
buaHelper” method. The method is then eventually sent using the “.send” method
after copying the content of the message. In the “doResponse” method, the appli-
cation retrieves the “B2buaHelper” instance and starts a timer on sending a SIP
“200 OK” response. After 60 seconds the call is terminated. Work your way through
the code to gain familiarity with how the SIP Servlet API is used to implement
this basic B2BUA. Functions are also included for dealing with ACK for messages
and the initial INVITE request. When the timer fires after 60 seconds, the “time-
out” method is called, which results in the sending of the SIP BYE messages.

package net.sipservlet.sample;

import java.io.IOException;

import java.util.Iterator;

import java.util.lList;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.servlet.ServletException;
import javax.servlet.sip.B2buaHelper;

import javax.servlet.sip.ServletTimer;
import javax.servlet.sip.SipApplicationSession;
import javax.servlet.sip.SipServlet;

import javax.servlet.sip.SipServletMessage;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServletResponse;
import javax.servlet.sip.SipSession;

import javax.servlet.sip.SipSessionEvent;
import javax.servlet.sip.SipSessionListener;

The SIP Serviet Application 73

import javax.servlet.sip.TimerListener;

import javax.servlet.sip.TimerService;

import javax.servlet.sip.UAMode;

import javax.servlet.sip.annotation.SipListener;

/**

*

* @author stoffe

*/

@SipListener

public class B2bTerminatorServlet extends SipServlet implements
TimerListener, SipSessionListener {

@Resource
TimerService ts;

@0override
protected void doRequest(SipServletRequest req) throws Servlet
Exception, IOException {
if (req.isInitial() || req.getMethod().equals("ACK") |
req.getMethod().equals("CANCEL")) {
super.doRequest(req); //Handled by the normal doXXX methods
} else { //Subsequent signaling re-Invite, Bye
B2buaHelper b2b = req.getB2buaHelper();
SipSession linked = b2b.getlLinkedSession(req.getSession());
SipServletRequest other = b2b.createRequest(linked, req, null);
copyContent(req, other);
other.send();
log("Subsequent request!" + req.getHeader("Cseq"));

@Override
protected void doResponse(SipServletResponse resp) throws Servlet
Exception, IOException {
log("Got response : " + resp.getStatus());
if (resp.getStatus() == SipServletResponse.SC_REQUEST_TERMINATED)

return; //487 already sent on Cancel for initial leg UAS

}

B2buaHelper b2b = resp.getRequest().getB2buaHelper();
SipSession linked = b2b.getLinkedSession(resp.getSession());
SipServletResponse other = null;
if (resp.getRequest().isInitial()) { // Handled separately due to
possibility of forking and multiple SIP 200 OK responses
other = b2b.createResponseToOriginalRequest(linked, resp.get
Status(), resp.getReasonPhrase());
//Start the timer on 200

74 Understanding SIP Servlets 1.1

if (resp.getStatus() == SipServletResponse.SC_OK) {
SipApplicationSession sas = resp.getApplicationSession();
ServletTimer st = ts.createTimer(sas, 60000, false,
"enough"); //Cut the call after 60 sec
sas.setAttribute("CallTimerId", st.getId());
log("started the timer ID = " + st.getId());
}
} else { //Other responses then to initial request
SipServletRequest otherReq = b2b.getLinkedSipServletRequest
(resp.getRequest());
other = otherReq.createResponse(resp.getStatus(), resp.get
ReasonPhrase());
}
copyContent(resp, other);
other.send();
log("B2B Response " + resp.getHeader("Cseq"));
}

@Override //doInvite is only called for the first initial INVITE
protected void doInvite(SipServletRequest req) throws Servlet
Exception, IOException {
B2buaHelper b2b = req.getB2buaHelper();
SipServletRequest other = b2b.createRequest(req, true, null);
copyContent(req, other);
other.send();
log("Initial Invite! " + req.getHeader("Cseq"));
}

@Override //Only ACK for 200 error ACK created by container, find
it in pending
protected

void doAck(SipServletRequest req) throws ServletException, IOException {
log("Got ACK in.");
B2buaHelper b2b = req.getB2buaHelper();
SipSession ss = b2b.getLinkedSession(req.getSession());
List<SipServletMessage> msgs = b2b.getPendingMessages(ss, UAMode.
UAC) ;
for (SipServletMessage msg : msgs) {
if (msg instanceof SipServletResponse) {
SipServletResponse resp = (SipServletResponse) msg;
if (resp.getStatus() == SipServletResponse.SC_OK) {
SipServletRequest ack = resp.createAck();
copyContent(req, ack);
ack.send();
log("Sent ACK out.");

The SIP Serviet Application 75

@Override
protected void doCancel(SipServletRequest req) throws Servlet
Exception, IOException {

log("Got CANCEL in.");
B2buaHelper b2b = req.getB2buaHelper();
SipSession ss = b2b.getLinkedSession(req.getSession());
SipServletRequest cancel = b2b.createCancel(ss);
cancel.send();
log("Sent CANCEL out.");

private void copyContent(SipServletMessage source, SipServlet
Message dest) throws IOException {
if (source.getContentLength() > 0) {
dest.setContent(source.getContent(), source.getContentType());
String enc = source.getCharacterkEncoding();
if (enc != null && enc.length() > 0) {
dest.setCharacterEncoding(enc);
}
}
}

public void timeout(ServletTimer st) { //timer started on 200 for
Invite
if ("enough".equals(st.getInfo())) { //terminate all B2B legs
Iterator i = st.getApplicationSession().getSessions();
while (i.hasNext()) {
Object o = i.next();
if (o instanceof SipSession) {
SipSession ss = (SipSession) o0;
SipServletRequest bye = ss.createRequest("BYE");
try {
ss.setHandler ("DummyResponseServlet"); //Not to send
response to the B2buaHelper

bye.send();
} catch (IOException ex) {
log("", ex);
} catch (ServletException ex) {
log("", ex);
}
log("Sent bye to call-id : " + ss.getCallld());

}
}
}
}

public void sessionCreated(SipSessionEvent event) {

}

76 Understanding SIP Servlets 1.1

public void sessionDestroyed(SipSessionEvent event) {

}

public void sessionReadyToInvalidate(SipSessionEvent event) { //BYE
state, cancel the timer
SipApplicationSession sas = event.getSession().getApplication
Session();
String timerId = sas.getAttribute("CallTimerId").toString();
ServletTimer st = sas.getTimer(timerId);
if (st != null) { //Already canceled, we forced the BYE
st.cancel();
log("canceled the timer ID = " + timerId);
}
}
}

The second Servlet, “DummyResponseServlet,” is a simple function included
to log the receipt of a response to the SIP BYE requests.

package net.sipservlet.sample;

/**

*

* @author stoffe

*/

public class DummyResponseServlet extends javax.servlet.sip.
SipServlet {

@Override
protected void doResponse(javax.servlet.sip.SipServletResponse
resp) throws javax.servlet.ServletException, java.io.IOException {
log("Got response for BYE : "+resp.getStatus());

}

3.3 Application Constructs

In the scope of an application, there are two well-known primary constructs that
are used and that should be familiar to SIP Servlet application developers. They
are the SIP Application Session and SIP Session. Both of these concepts have
been touched upon during other chapters of this book, and this section aims to
provide a detailed reference.

The reader is already well aware of the tight evolutionary relationship that
the SIP Servlet specification has with the HT'TP Servlet specification. This theme
continues when introducing both SIP Session and SIP Application Session con-
cepts. Protocols such as HT'TP and SIP can involve a series of messages that are

The SIP Serviet Application 77

related and need to be processed as such. In HT'TP this is solved by using the con-
cepts of a “HttpSession,” which represents the association of multiple numbers
of HTTP requests. The SIP Servlet architecture has a similar concept in the form
of SIP Sessions, which are used to correlate a series of messages from and to a user.
As SIP Servlets are stateless when deployed, the SIP Session is also used to store
specific information relating to the SIP signaling interaction. The differing types
of interactions that can occur in the SIP protocol can result in the need for many
protocol sessions to be associated. The SIP Application Session provides an
umbrella construct that allows an application to achieve such correlation. The SIP
Application Session represents a specific instance of an application, which in turn
can contain zero or more associated SIP Sessions representing SIP protocol sig-
naling interactions, as Figure 3.9 illustrates.

In the same way that, due to the statelessness of SIP Servlets, an application
developer can store related data in the SIP Session, there is also the ability to store
application data in the SIP Application Session. More detail is provided on these
two extremely important concepts in the next two sections.

3.3.1 SIP Application Session

A SIP Application Session is a fairly simple construct within the SIP Servlet API
(compared to SIP Session) and primarily has two functions. It provides the devel-
oper the ability to store application-related data persistently across both proto-
col and nonprotocol invocations. It also acts as a correlating structure for multiple
associated SIP signaling interactions. A conference is a good example of a repre-
sentation of a SIP Application Session correlating a number of SIP protocol sessions
(SIP Sessions): An employee decides to schedule a conference call and include ten

SIP application
session

Application data

Figure 3.9 SIP Application and SIP Session.

78 Understanding SIP Servlets 1.1

employees from the company, including himself. The conference call is due to
start at 4 p.m. that day. When 4 p.m. arrives, the SIP Servlet-based application
creates a SIP Application Session to represent the employee’s conference call. As
time goes on, a number of invited attendees successfully dial into the conference
call as instructed by the host. As each of the attendees dials in, it creates a one-to-
one SIP signaling interaction with the Application Session representing the con-
ference. By the time everyone has dialed in, we are left with a single SIP Application
Session that contains 10 associated SIP Sessions, as shown in Figure 3.10.

3.3.2 SIP Session

A SIP Session represents SIP protocol sessions that are being managed by the SIP
Servlet container. RFC 3261 [1] defines a SIP dialog as being “...a peer-to-peer
SIP relationship between two UAs that persist over some time.”

It is, therefore, obvious that the state machine for a SIP Session is almost
identical to that of a SIP dialog. When the SIP Servlet container receives a SIP
request and passes it to the appropriate application, a SIP Session is created to
represent that protocol interaction between two entities.

Conference
(application session)

Participant 6
(SIP session)

Participant 7
(SIP session)

Participant 1
(SIP session)

Participant 8
(SIP session)

Participant 5
(SIP session)

Participant 2
(SIP session)

Participant 9
(SIP session)

Participant 10
(SIP session)

Participant 4

Participant 3 (SIP session)

(SIP session)

Conference data

Figure 3.10 SIP Application Session conference example.

The SIP Serviet Application 79

Undefined Early Confirmed Terminated
XX 2XX s
— —_—
S @, / @

S ey

3xx—Bxx 2XX 3xx—Bxx

Figure 3.11 SIP dialog state machine.

Figure 3.11 is taken from the SIP Servlet specification [3] and illustrates the
various states of a SIP dialog. Figure 3.12 is also taken from the SIP Servlet spec-
ification [3] and illustrates the state machine of a SIP Session.

The main difference between the two state machines can be seen as an addi-
tional state, called “INITIAL,” that was introduced in the SIP Session state
machine (as described later in this section).

The state machine represented by a SIP Session is extremely important due
to the close relationship with the SIP protocol. Application developers are able to
carry out a wide, powerful range of protocol operations that could violate the SIP
Session state machine and cause undesired protocol signaling side effects. It is for
this reason that an application developer should act responsibly when carrying
out various protocol-level operations. A container must also enforce the state mod-
els discussed in this section by throwing an “IllegalStateException” when a vio-
lation occurs.

As noted from Figure 3.12, a SIP dialog has four possible states that it can
be in, depending on the state of the associated SIP signaling protocol session. The
states are as follows:

* Initial—Represents the additional state introduced in the SIP Servlet
API when no SIP dialog is currently in progress (e.g., before you receive
a SIP protocol response and after you receive a negative response). The
initial state allows for an application to carry out further processing on

Initial Early Confirmed Terminated

Txx __gz(_)g__ho —.‘©

3xx—_6xx 2xX

Figure 3.12 SIP Session state machine.

80 Understanding SIP Servlets 1.1

receipt of an unsuccessful SIP protocol response. In SIP, the receipt of
such negative responses results in the termination of a SIP dialog. In SIP
Servlet programming, it is often useful to be able to carry out subsequent
operations that might result in the resending of the SIP request, which

might then be successful. The addition of the INITIAL state allows for
such flexibility in SIP Servlet-based applications.

* Early—A SIP Session is in the early state when it receives a SIP provi-
sional response in the range of 101 to 199.

* Confirmed—A SIP Session is in the confirmed state when it receives a
200 class response.

* Terminated—In some scenarios, it is not possible for the state to transi-
tion back to the INITIAL state, because it would break the SIP state

machine.

The SIP Servlet specification has a strict set of rules that govern how a con-
tainer should transition to and from the SIP Session states depending on the type
of role it occupies (as in UAC, UAS, or Proxy application). In general, non-
dialog-creating requests do not result in a state change from INITIAL. Non-
dialog-creating requests are considered single interactions that do not expect to
have subsequent messages sent or received. The SIP MESSAGE [4] method can
be seen as an example of a nondialog-creating request. It represents a one-shot,
SMS-style message between users. An INVITE request, however, does represent
a SIP dialog-creating request that maps to the full state machine for SIP Session.

An application acting as a UAC and sending a dialog-creating request such
as INVITE would use the full state machine discussed in this section to map to the
SIP dialog interactions, with the exception on receiving a non-200-class error
response. While in the INITAL or EARLY state, the SIP Session state would tran-
sition back to INITIAL rather than TERMINATED. If the SIP Session state had
transitioned to TERMINATED, then the SIP Session would have been over. Tran-
sitioning back to the INITIAL state gives the application developer the opportu-
nity to attempt the request again, maybe with a change to the signaling as a result
of the response or to route to an alternative location that might be successful.

An application assuming the role of a UAS that is handling a dialog-creating
request also tracks the SIP Session but does not have the exception of transi-
tioning back to the INITIAL state when issuing a non-200 class response. It in
fact moves to the TERMINATED state, because the interaction is complete, and
no further processing can take place when acting in this type of role.

Applications acting as a Proxy have a role similar to the role of a UAC in
that they map the SIP Session state as per Figure 3.12, but they transition back to
the INITIAL state on receiving a non-200 class SIP response. As with a UAC, this
allows an application developer to attempt alternative SIP signaling to create an

The SIP Serviet Application 81

established dialog. This is most common in popular applications, where the result
of a failure leads to an alternative location being attempted, such as directing a
call to voicemail when the user does not answer. Such flexibility is essential to
make SIP Servlet programming useful when acting as a UAC or Proxy. If the proxy
server does not include such logic to catch a non-200 class response, then it is con-
sidered the best response and is passed upstream to the originating client. The
selection of the best non-200 class response by SIP proxy servers to be passed
upstream is a well-known SIP operation defined in RFC 3261 [1]. On sending
the non-200 class response upstream, the SIP Session state would transition to
the TERMINATED state. If the best response being passed upstream was a 200
class response, then the SIP Session state would transition to CONFIRMED.

3.3.3 Application Data Storage

SIP Application Sessions and SIP Sessions, which have been previously introduced
in this section, provide containers for application data storage. SIP Servlets are con-
sidered stateless in that they do not directly monitor or hold any specific transac-
tional data. When dealing with a number of correlated SIP messages in association
with an application, it is the responsibility of the application developer to decide
what application data needs to be stored across multiple SIP transactions.

The SIP Servlet API provides convenience mechanisms on both SIP and SIP
Application Sessions. The following description applies to both. An application
has the ability to bind object attributes to SIP and SIP Application Sessions. An
object that an application binds to either the SIP or SIP Application Session is
then accessible to any other Servlet that makes up the application archive (“.sar”
file). Just to reiterate, this does not mean that other SIP Servlet applications can
gain access to the attributes stored—only SIP Servlets that fall under a specific
Servlet Context (boundary within a “.sar” file). Figure 3.13 illustrates application
data being stored.

SIP Session and SIP Application Session interfaces provide the following
methods to enable applications to bind, manage, and remove attributes:

o “SipSession.setAttribute” and “SipApplicationSession.setAttribute”—An
application is able to bind a Java object representation of the application
data to either the SIP or SIP Application Session using this method call.
It simply passes in the object as a parameter along with a unique name
of type ‘string’ for identification purposes. It is important for an appli-
cation to devise an appropriate naming convention when adding new
attributes to a SIP or SIP Application Session. Adding an attribute with
the same name as one that already exists will result in the previous value
being overwritten.

82

Understanding SIP Servlets 1.1

SAR file

SIP application
session

el N

SIP session

SIP application
session

App data 3

App data 1

SIP session

Figure 3.13 Application data storage.

“SipSession.getAttribute” and “SipApplicationSession.getAttribute™—As the

name suggests, this method call allows an application to retrieve a previ-
ously stored Java object that had been bound using the “setAttribute”
method on the SIP and SIP Application Session objects. The method call
simply takes the unique string name of the attribute as a parameter and
returns the previously stored Java object.

“SipSession.getAttributeNames” and “SipApplicationSession.getAttribute
Names™—Calling this method, which takes no parameters, on either a SIP
or SIP Application Session results in a list of unique string names being
returned for valid attributes that have been bound previously.

“SipSession.removeAttribute” and “SipApplicationSession.removeAttribute”™—

An application is able to remove or unbind data by calling the “remove”
attribute method on either SIP or SIP Application Session interfaces and
including the unique attribute string value as a parameter in the call to
identify the appropriate object.

The SIP Serviet Application 83

The SIP Servlet API provides all the tools to easily manage SIP and SIP
Application Session data across an application. It is important to note that any
number of components in a SIP Servlet application could rely on and also have
the ability to manage the bound application data (e.g., add, remove, and change).
For this reason, the SIP Servlet API has listener interfaces for both SIP Session
and SIP Application Session. The “SipApplicationSessionBindingListener” and
“SipSessionBindingListener” both can be implemented by applications that want
to receive notifications on attribute data that is bound. An application imple-
menting either of these interfaces will receive a notification when an object is
bound or unbound to the SIP or SIP Application Session. It receives a “SipSession
Binding” event, which can then be used to identify the unique name associated
with the application data attribute and also to obtain the associated SIP or SIP
Application Session, if required.

3.3.4 Session Lifetime and Invalidation

SIP and SIP Application Sessions have emerged as the major constructs that make
up the SIP Servlet architecture. It is therefore important to ensure they are man-
aged appropriately by both SIP Servlet containers and applications. A division of
responsibility exists with the life-cycle of such session objects with a strong empha-
sis that SIP and SIP Application Session objects are efficiently managed. The
following sections will cover the life-cycle and invalidation of SIP and SIP Appli-
cation Sessions.

3.3.4.1 SIP Application Session

A SIP Application Session can be created from a number of mechanisms that have
been discussed in this book. For example, a SIP Application Session could be
created as a result of an incoming SIP protocol message or from using the con-
tainer’s SIP Factory utility. The amount of time that a SIP Application Session is
considered active is specified in two ways:

1. It can be specified using the “session-timeout” parameter that exists in
the application deployment descriptor (“sip.xml”).

2. It can also be specified using the “@SipApplication” (sessionTimeout)
Java annotation for configuring “SipServlet” applications.

The value contained in both the deployment descriptor and the Java anno-
tation indicates a value in seconds that the SIP Application should be considered
“alive” for application processing. If neither of these two mechanisms is specified,
the timeout value for a SIP Application Session defaults to three minutes. If either
the deployment descriptor or @SipApplication did specify a value that was either

84 Understanding SIP Servlets 1.1

negative or zero, the timer should not be started, and the container should con-
sider the SIP Application Session to be long lived and thus necessarily managed
by the application. Managing the SIP Application Session wholly within the
Application logic does work but must be heavily guarded so as not to leave around
redundant SIP Application Session objects that will never be cleaned up and will
therefore cause memory leaks.

The SIP Servlet API defines a “SipApplicationListener” interface that sup-
plies appropriate information to applications relating to the SIP Application Ses-
sion. One of the methods called on the interface is “sessionExpired,” which
provides application logic with the SIP Application Session object that has just
expired. The application logic then has the ability to request an extension to the
lifetime of the SIP Application Session object by calling the “setExpires” method
on the SIP Application Session interface. The container will return a value based
on the request from the “setExpires” method call and will either accept an exten-
sion by returning a positive number of seconds (note that the returned time may
not be the one requested by the application and could be smaller, for example, if
local policy dictates) or return the value of zero to indicate that the application
to extend the SIP Application Session lifetime was rejected. If the application
does not call the “setExpires” method within the implementation of the “Sip
ApplicationListener” interface (or doesn't even implement the “SipApplication-
Listener” interface) then the SIP Application Session is considered expired and
ready to be appropriately invalidated. The invalidation of an expired SIP Appli-
cation Session results in the destruction of the object so that it can no longer be
used, including any bound application data. The container should also call the
“sessionDestroyed” method that appears on the “SipApplicationSessionListener”
interface.

Historically, SIP Application Sessions were simply explicitly invalidated by
the application when it was considered appropriate. This led to a number of
problems and race conditions in which developers were invalidating sessions
incorrectly, which often led to complicated code structures to determine when
invalidation should take place. The latest version of the SIP Servlet architecture
provides a much cleaner, complementary mechanism that uses container knowl-
edge to cleanup SIP Application Sessions only when appropriate. The two mech-
anisms are known as “Explicit Invalidation” and “Invalidate When Ready.”

Explicit Invalidation—This basically involves the application logic call-
ing the “invalidate” method that appears on the “SipApplicationSession”
interface. This results in the purging of the SIP Application Session and
all its related data with immediate effect and does not take into consid-
eration the state of the object or its related protocol sessions. This is the
original SIP Servlet mechanism for invalidation and should be used with
caution.

The SIP Serviet Application 85

Invalidate When Ready—An elegant approach to invalidation that takes
into account the associated SIP protocol sessions and timer objects that
might be active. A SIP Application Session transitions from an active to
“invalidate-when-ready” state when the final associated protocol session
has been invalidated and the last timer object has expired. In order to
complement this mechanism, the following new methods were added in
the latest version of the SIP Servlet architecture to the “SipApplication
Session” interface:

isReadyToInvalidate—Returns a Boolean value that is set to “true” if the
SIP Application Session is in the “ready-to-invalidate” state and “false”
otherwise.

setInvalidateWhenReady—A container will monitor a SIP Application
Session and notify the container using the “sessionReadyTolnvalidate”
method on the “SipApplicationListener” callback interface. An applica-
tion can use this “setInvalidateWhenReady” Boolean value to indicate
whether the container should notify using this method. A value of “true”
instructs the container to call the “sessionReadyTolnvalidate” method on
the “SipApplicationListener” interface, while “false” instructs the con-
tainer not to call this method. For applications written to the latest SIP
Servlet specification (based on version 1.1), the default value is “true,”

and for older applications (based on version 1.0) the default value is
“false.”

getlnvalidateWhenReady—This method returns a Boolean value indi-
cating the status of the container in relation to its monitoring state. So
a value of “true” is returned if it is currently monitoring for the “ready-
to-invalidate” state, and “false” is returned if it is not monitoring.

As mentioned in the previous list, if the container is instructed to notify the
application when a SIP Application Session moves into the “ready-to-invalidate”
state, it must call the “isReadyTolnvalidate” method on the “SipApplication
Listener” interface. On receiving such a notification, the application could choose
to invalidate the session using the previously described explicit invalidation mech-
anism by calling the “invalidate” method on the “SipApplicationSession” interface.
The difference this time is that the application is confident that the SIP Applica-
tion Session object is in a state that constitutes a safe invalidation. The application
can also carry out any other tasks that might be required at this appropriate junc-
ture. It might be that the application does not explicitly invalidate the Sip Appli-
cation Session in the code or in fact it has not even implemented the “Sip
ApplicationSessionListener” interface. In these cases, the container will automat-
ically invalidate the session at the appropriate time. In the case that an applica-
tion has implemented the “SipApplicationSessionListener” but has not explicitly

86 Understanding SIP Servlets 1.1

invalidated, this occurs when the “isReadyTolnvalidate” method returns from
the application.

3.3.4.2 SIP Session

A SIP protocol session or SIP Session mirrors its parent SIP Application Session
lifetime and invalidation mechanisms. A SIP Session does not have its own spec-
ified timeout values and naturally inherits the value for the SIP Application Ses-
sion. If a SIP Application Session transitions to the expired state, it results in all
associated SIP Sessions also transitioning to the inherited expired state.

The SIP Session has the same invalidation mechanisms as a SIP Applica-
tion Session, with the additional inheritance invalidation as a result of the par-
ent SIP Application Session’s being invalidated.

Explicit Invalidation—As with the SIP Application Session, this involves
the original invalidation mechanism specified by the SIP Servlet archi-
tecture, where application logic can call the “invalidate” method on the
“SipSession” interface. This results in the SIP Session object and all its
related application data’s being destroyed immediately. The explicit
invalidation of SIP Sessions has the same problems as its SIP Applica-
tion Session parent in that, if the underlying protocol session is not in
the correct state to be invalidated, it can cause spurious and negative
message exchanges. The application code would need complex code
structures to ensure that inappropriate invalidations and race conditions
don’t occur.

Invalidate When Ready—This also follows a pattern similar to its SIP
Application Session equivalent but with some subtle differences to map
to the underlying protocol session semantics. A SIP Session should be
considered “ready to invalidate” only when the underlying SIP protocol
interactions are in a completed state. This SIP Session state is monitored
by the container and only considered transitioned to the “ready-to-inval-
idate” state, which is defined in the SIP Servlet specification [3] thus:

* A dialog corresponding to a “SipSession” terminates when the “Sip-
Session” transitions to the TERMINATED state.

* A “SipSession” transitions to the CONFIRMED state when it is act-
ing as a nonrecord-routing proxy.

* A “SipSession” acting as a UAC transitions from the EARLY state
back to the INITIAL state on account of receiving a non-2xx final
response and has not initiated any new requests (does not have any
pending transactions).

The “SipSession” interface defines the same three method calls as the
“SipApplicationSession” interface but with slightly different semantics:

The SIP Serviet Application 87

isReadyToInvalidate—Provides an application with a Boolean return
value to indicate whether the container is monitoring the SIP Session and
will notify an interested application when it has transitioned to the “ready-
to-invalidate” state. A value of “true” indicating that the SIP Session is
ready to invalidate and a value of “false” indicating that it is not ready
to be invalidated.

setInvalidateWhenReady—This method allows an application to pro-
grammatically instruct the container to monitor a SIP Session and inform
an interested application when it has transitioned to the “ready-to-
invalidate” state. A value of “true” tells the container to report “invalidate-
when-ready” state, and a value of “false” tells the container not to report
“invalidate-when-ready” state. If the value is set to true, the container will
invoke the “sessionReadyTolnvalidate” method on the “SipSession
Listener” callback interface when the SIP Session transitions to the
“invalidate-when-ready” state. The application would need to implement
the “SipSessionListener” to receive such notifications.

getInvalidate WhenReady—DProvides a Boolean return value that indicates
to an application whether the container is monitoring “invalidate-when-
ready” status on a given SIP Session. A value of “true” informs the appli-
cation that “invalidate-when-ready” state for the SIP Session is being
monitored by the container, while a value of “false” informs the appli-
cation that “invalidate-when-ready” state for the SIP Session is not being
monitored by the container. The default value indicating the “invalidate-
when-ready” status of SIP Sessions is set to “true” for applications using
the latest version of the SIP Servlet specification (Version 1.1) and “false”
for those applications using an older version (Version 1.0).

Parent Invalidation—As previously mentioned, SIP Sessions are totally
dependent on their parent SIP Application Session. If the parent SIP
Application Session is invalidated, for example, using the explicit inval-
idation mechanism, the underlying SIP Sessions will be destroyed auto-
matically, along with any associated application data.

An application wishing to safely invalidate a SIP Session should use the
“invalidate-when-ready” mechanism discussed in this section. This is achieved by
implementing the “SipSessionListener” interface and making use of the “session
ReadyTolnvalidate” method that the container calls when the SIP Session tran-
sitions into the “ready-to-invalidate” state. On receiving a call from the container
to this method, the application can then safely invoke the explicit invalidation
mechanism using the “invalidate” method on the “SipSession” interface. It can
also then clean up any other application state. If the application does not use
explicit invalidation within the implementation of the “SipSessionListener” (or the

88 Understanding SIP Servlets 1.1

application does not even implement the interface), the container will automat-
ically invalidate the SIP Session and clean up any related application data.

At the SIP protocol level, it is possible that a container might receive SIP
protocol signal after a SIP or SIP Application Session has been invalidated.
Depending on local policy, the container should choose to either attempt “best
effort” routing to try to complete the transaction—but without application
intervention—or, if policy does not allow, an appropriate SIP error response such
as “481” should be returned.

3.3.5 Annotations

We have already discussed how Java annotations play a major role in the evolution
of SIP Servlet architecture as it moves toward JEE 5 integration. This section will
take a closer look at some of the Java annotations that should be supported by a
container and used in various ways by applications. Some annotations that pro-
vide container-injected utilities such as SIP Factory, Session Timer, and Session
Utilities have already been discussed, while others are included to reduce the need
for static deployment descriptor files. The following is a selected list of impor-
tant Java annotations that are used within applications:

@SipServliet—This top-level annotation actually reduces the need for a
deployment descriptor to exist at all. Its presence alone in a class defines a
SIP Servlet application. The “@SIPServlet” annotation then has a number
of elements that are used to represent certain parameters that appear in the
deployment descriptor being used to specify a SIP Servlet application. These
elements include the following:

* name—Represents the “servlet-name” name element from the deploy-
ment descriptor file.

* applicationName—Specifies the associated application name.

* description—Provides information relating to the application.

* loadOnStartup—Maps to the “loadOnStartup” element that can
appear in the deployment descriptor.

@SipApplication—This annotation is used represent an application that can
consist of multiple SIP Servlets, as defined by the @SipServlet annotation.
This annotation also has a number of elements that are used to provide the
appropriate configuration that could have appeared in a deployment
descriptor. These elements include the following:

* name—Represents the “application-name” element from the deploy-
ment descriptor and is mandatory for the latest versions of the spec-
ification (Version 1.1).

¢ displayName—Represents the “display-name” element of the deploy-
ment descriptor, providing an appropriate application display name.

The SIP Serviet Application 89

* largelcon—Represents optional “large-icon” element from the deploy-
ment descriptor.

* smalllcon—Represents optional “small-icon” element from the deploy-
ment descriptor.

* description—Represents optional “description” element from the
deployment descriptor that is intended to provide contextual infor-
mation about the function of the application.

o distributable—Represents the “distributable” attribute from the
deployment descriptor that signifies if the application is distributable
across platforms.

o proxyTimeour—Represents the “proxy-timeout” element from the
deployment descriptor that specifies a general timeout figure in sec-
onds for SIP protocol proxy transactions.

o session Timeout—Represents the “session-timeout” element from the
deployment descriptor that specifies in minutes the timeout period for
SIP Application Sessions.

* mainServlet—Represents “main-servlet” element from the deploy-
ment descriptor that indicates which Servlet is considered the default
for initial SIP incoming requests.

@SipListener—This annotation provides an alternative to the “listener” ele-
ment from the deployment descriptor and annotates a class to be a listener.
The listener classes being used as Java indicated by the implementation of
the class.

@SipApplicationKey—Used to help associate new incoming requests with
existing SIP Application Sessions. Use of this annotation for session tar-
geting is discussed Chapter 10.

SipFactory Injection—Uses the Java @Resource annotation to inject an
instance of the SIP Factory into an application. This is discussed in detail
in Chapter 2.

SipSessionUtil Injection—Uses the Java @Resource annotation to inject an
instance of the SIP Session Utilities into an application. This is discussed
in detail in Chapter 2.

TimerService Injection—Uses the Java @Resource annotation to inject an
instance of the Timer Service into an application. This is discussed in detail
in Chapter 2.

For those familiar with earlier versions of SIP Servlet programming (Ver-
sion 1.0), the latest version of the specification provides a table that indicates how
deployment descriptor properties can now be mapped to the to various Java @
annotations. The table, taken from JSR 289 [3], looks as in Figure 3.14:

90 Understanding SIP Servlets 1.1

Display Name display-name

@SipApplication displayName

Description description @SipApplication description
Distributable distributable @SipApplication distributable
Context context-parm , Not applicable
parameters param-name ,

param-value
Listener listener-class @SipListener

Servletname servlet-name

@SipServlet name

Application
name

app-name

@SipApplication name

Servlet class servlet-class

@SipServlet

Initialization
parameters

init-parm ,
param-name ,
param-value

Not applicable, suggested to use constants.

Startup order ~ load-on-startup

@SipServlet loadOnStartup

Proxy timeouts proxy-timeout

@SipApplication proxyTimeout

Session session-timeout @SipApplication sessionTimeout
timeouts

resources resource-* @Resource , @Resources

Security Roles security-role * @DeclaresRole

EJBs ejb-ref * @EJB

Run as run-as * @RunAs

Web Services Not applicable @WebServiceRef

Figure 3.14 Annotations mapping.

The core Servlet specification, from which the SIP Servlet specification
derives, requires that a number of annotations be supported. The reader should
refer to Servlet 2.4 (see [5] to view the complete list and usages of supported anno-
tations). As well as supporting the annotations included in Servlet 2.5, a SIP Servlet
container has the following list of additional classes and interfaces that must be

supported for compliance in conjunction with Java annotation support:

* Javax.servlet.sip.SipServlet Servlet class interface;

* Javax.servlet.sip.SipApplicationSessionListener listener interface;

* Javax.servlet.sip.SipApplicationSessionActivationListener listener interface;

* Javax.servlet.sip.SipSessionAttributeListener listener interface;

Javax.servlet.sip.SipSessionListener listener interface;

The SIP Serviet Application 91

* Javax.servlet.sip.SipSessionActivationListener listener interface;
* Javax.servlet.sip.SipErrorListener listener interface;

* Javax.servlet.sip. TimerListener listener interface.

The version of SIP Servlet specification (Version 1.1—JSR 289) that intro-

duces Java annotation support into the architecture takes a subset from Servlet
2.5, the common Java annotations specification [6], and adds newly created SIP
Servlet-specific annotations. The complete list of Java annotations that are sup-
ported by a JEE-compliant container, as defined by the SIP Servlet architecture,
can be listed as follows:

@RunAs
@DeclaresRole
@Resource
@Resources
@E]B
@WebServiceRef
@PostConstruct
@PreDestroy
@SipServlet
@SipApplication
@SipListener
@SipApplicationKey

The topic of various deployment architectures was covered earlier in the book.

Those deployment architectures that are not part of a JEE system are required to
support only Java annotations that are related to SIP.

References

Rosenberg, J., et al., “SIP: Session Initiation Protocol,” RFC 3261, Internet Engineering Task
Force, June 2002.

Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for
Registering Non-Adjacent Contacts,” RFC 3327, Internet Engineering Task Force, Decem-
ber 2002.

SIP Servlet Specification, Version 1.1, JSR 289, Java Community Process, August 2008.

Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,”
RFC 3428, Internet Engineering Task Force, December 2002.

Java Servlet Specification, Version 2.5, JSR 154, Java Community Process, September 2007.
Common Annotations for the Java Platform, JSR 250, Java Community Process, May 2006.

Application Router

SIP Servlet technology had evolved dramatically since its conception and has
taken advantage of a large amount of industry interest and support. Such adoption
has resulted in an evolving technology that has kept pace with increasing require-
ments and adapted to fulfill key roles in various next-generation architectures. One
of the primary advancements between SIP Servlet 1.0 (JSR 116) and SIP Servlet
1.1 (JSR 289) was the introduction of a logical role called the Application Router.
The Application Router aids in providing a new, sophisticated application com-
position model that is highly configurable and adaptable. This section will provide
a detailed overview of the new application composition model and the Application
Router.

4.1 SIP Servlet 1.1 Composition Model

SIP Servlet 1.1 introduced a powerful capability for allowing multiple applications
to be invoked by an initial SIP signaling request on a single visit to a SIP Servlet
container. As described in Chapter 3, an application archive (“.sar” file) contained
a deployment descriptor file (sip.xml) in the same way HT'TP Servlets have a con-
figuration file (web.xml). A SIP Servlet container, on receiving a new SIP request,
inspects the <servlet-mapping/> element of the deployment descriptor XML file,
which provides the rule set for requests to be passed into a SIP Servlet application.
An example of a <servlet-mapping/> element is as follows:

<servlet-mapping>

<servlet-name>ExampleServlet</servlet-name>
<pattern>

92

Application Router 93

<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
</pattern>
</servlet-mapping>

This provides a simplistic view of a <servlet-mapping/> element that
informs the SIP Servlet container to pass all initial SIP INVITE requests to the
application associated with the “sip.xml” deployment descriptor file. The con-
tainer will move on to the next application and its associated “sip.xml” deploy-
ment descriptor file in a preconfigured order that is implementation specific. The
<servlet-mapping/> can also makes use of “and” and “or” structures that allow
multiple combinations of entry configuration to be set. The following provides
a simple “or” operation when checking a new request:

<servlet-mapping>
<servlet-name>ExampleServlet</servlet-name>
<pattern>
<or>
<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
<equal>
<var>request.method</var>
<value>SUBSCRIBE</value>
</equal>
</or>
</pattern>
</servlet-mapping>

In this example, a container will pass a new SIP request to the SIP Servlet
named “ExampleServlet” only if the message is either an INVITE or a SUB-
SCRIBE. In a similar manner, the “and” operator can be used as follows:

<servlet-mapping>
<servlet-name>ExampleServlet</servlet-name>
<pattern>
<and>

<equal>
<var>request.method</var>
<value>INVITE</value>

</equal>

<equal>

<var>request.to.uri.user</var>

94 Understanding SIP Servlets 1.1

<value>chris</value>
</equal>
</and>
</pattern>
</servlet-mapping>

In this example, a container will pass a new SIP request to the SIP Servlet
named “ExampleServlet” only if the message is of type INVITE and the user part
(before “@”) of the SIP URI in the “To” header is equal to the string “chris.” The
“and” and “or” operators can also be combined (as well as other constructs) to start
building complex filtering rules, as shown in the next example:

<servlet-name>ExampleServlet</servlet-name>
<pattern>
<and>
<or>
<equal>
<var>request.method</var>
<value>MESSAGE</value>
</equal>
<equal>
<var>request.method</var>
<value>REFER</value>
</equal>
</or>
<or>
<equal>
<var>request.from.uri.user</var>
<value>Simon</value>
</equal>
<equal>
<var>request.from.uri.user</var>
<value>Chris</value>
</equal>
<not>
<equal>
<var>request.from.uri.user</var>
<value>Kristoffer</value>
</equal>
</not>
</or>
</and>
</pattern>
</servlet-mapping>

Although it is a contrived example, it illustrates an outer “and” block with
multiple embedded “or” blocks. In short (in pseudo code),

Application Router 95

IF the SIP request method equals "MESSAGE" OR "REFER"
AND

The user in the SIP "From" header equals "Simon,
"Kristoffer," then pass to the application;

"Chris," or

It should be noted that more than one SIP Servlet class can exist within a
“sip.xml” and can be represented by a <servlet-mapping/> element. The <servlet-
name/> element specifies a pointer to a SIP Servlet class and can be included
multiple times when creating more complex application admission rules. The fol-
lowing example conveys multiple options for a container when attempting to dis-
patch a SIP request to a hosted application:

<servlet-mapping>
<servlet-name>INVITEServlet</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
</pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>SUBSCRIBEServlet</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>SUBSCRIBE</value>
</equal>
</pattern>
</servlet-mapping>

In this example, two separate Servlets exist within a single SIP Servlet
archive (“.sar” file). SIP INVITE requests will be passed to the “INVITEServlet,”
while SIP SUBSCRIBE requests will be passed to the “SUBSCRIBEServlet.” A
“sip.xml” can have any number of Servlets. If more than one Servlet matches, gen-
erally it’s the first (and only the first) one that receives the request.

For more information on the options available when using the <servlet-
mapping/> element of a SIP Servlet deployment descriptor, please see the appro-
priate XML schema provided as part of the SIP Servlet specification.

Figure 4.1 provides an illustrative view of a SIP request traversing a con-
tainer using SIP Servlet 1.0 application composition.

On the left-hand side of Figure 4.1, there is an arrow that signifies an
incoming SIP request into the SIP Servlet container. Once the request has been
parsed by the SIP stack, it is passed to the container as a new SIP request. This is
denoted by the “Decision Point” on Figure 4.1. The container inspects the

96 Understanding SIP Servlets 1.1

Container

APP 1

Buiddew-}ajniag
‘\N
w

(=)

Incoming request

Decision
Outgoing request point

-«

APP 2

A

Buiddew-jajniag

Figure 4.1 SIP Servlet 1.0 application routing.

<servlet-mapping/> elements of the SIP Servlet applications (“.sar” file), which
are deployed in a predefined configuration order. On finding a match (as discussed
earlier in the introduction to the XML format), the container dispatches the request
to “App 1,” as illustrated by (1). The Servlet mappings dictate which of the SIP
Servlet classes will receive the incoming request. At (2), the <servlet-mapping/>
element routes the request to “Servlet 1.” On finishing with the request, “Servlet
17 returns it back the container to make the next decision, as indicated by (3) and
(4). The container then dispatches the request to “App2,” (5). The <servlet-
mapping/> elements are again inspected, which results in the request being dis-
patched to “Servlet 2,” (6). Once processing of this request has completed, the
request is returned back to the container, (7) and (8). The container then iden-
tifies that no more SIP Servlet applications should service the SIP request. The
SIP request is then routed onward on its journey, according to core SIP protocol
rules as defined in RFC 3261 [1].

This example illustrates a straightforward approach to application compo-
sition and routing, which changes dramatically when you consider that an appli-
cation can assume different roles. For example, an application acting as a User
Agent Server (UAS) would not dispatch the request back to the container once it
had completed processing but would generate a SIP response message that acts as
the final destination for the SIP request. Similarly, an application acting as a User
Agent Client (UAC) would generate its own, unsolicited SIP requests based on
a third-party trigger. The general rules for assessing and dispatching requests
remain the same, just with different behavior (mostly focused on entry and exit
of the SIP request) depending on role.

Application Router 97

This brief introduction to SIP Servlet 1.0 application composition and rout-
ing touches on the power that can be achieved within a SIP Servlet container. For
several years, this technique provided adequate application composition and rout-
ing functionality. It is fair to say that in the SIP Servlet 1.0 specification the use
of this mechanism from a container perspective was not that clearly defined. While
all containers could easily comply with the appropriate deployment descriptor XML
files, it was found that container behavior in this area varied between implemen-
tations. It was also noted that, while the static XML style filtering that was used in
SIP Servlet 1.1 allowed for a consistent selection process, it was not ideal as more
complex application composition scenarios were emerging.

As a result of such experiences, a new application composition model is
introduced in SIP Servlet 1.1 that builds on the foundations of previous experi-
ence. Whereas in SIP Servlet 1.0 there was reliance on the container inspecting
the deployment descriptor XML files for the purpose of dispatching a SIP request
to an application, SIP Servlet 1.1 includes an explicit application selection mech-
anism. A logical entity called an “Application Router” is introduced to act as the
decision point for application selection in a composition chain. Figure 4.2 illustrates
the new application selection process, in which a container asks the “Application
Router” to inform it of the next application selection step.

Container
o APP 1
2 s
el
3 ‘5/
. =]
Incoming request / E '
[{=]
Decision °
Outgoing request point
< ¢ v | APP2
1 7 13 o)
<
S S SRS e
3
Q
=]
5 1
[{=]

YIVIY

2 8 14
Application router

Figure 4.2 SIP Servlet 1.1 application routing.

98 Understanding SIP Servlets 1.1

The initial step is identical to that described in the previous SIP Servlet 1.0
example. As illustrated on the left-hand side of Figure 4.2, a new SIP request arrives
at the SIP Servlet container. Once it has been passed to the container, it reaches a
point where the container must decide the next step. This is where the process dif-
fers. The container now uses the new logical entity called the Application Router.
In simplistic terms, the container is asking the Application Router which appli-
cation it should dispatch to next. This takes the onus away from the container and
puts the responsibility on the Application Router.

In the example in Figure 4.2, the container has asked the Application Router
where it should send the new SIP request (1). The Application Router inspects the
request and determines that the request should be routed to “App 1.” The Appli-
cation Router responds to the container, informing it to dispatch the request to
“Appl,” at (2) in the figure. The container then dispatches the new SIP request to
“App 1,7 at (3). It should be noted that the use of the <servlet-mapping/> element
is now no longer required in this composition model (which will be discussed
later). It is a well-known construct that is used widely by SIP Servlet application
developers and is now an optional part of an application that can be used as a final
filtering rule to allow SIP requests entry. The favored method is to use the “main
Servlet” approach in conjunction with the Request Dispatcher and Handler as
discussed in Chapter 2. The SIP request reaches “App 1,” indicated by (4) in the
figure, and application logic is executed until the request is returned back to the con-
tainer for further application composition decisions, (5) and (6). At (7), the con-
tainer then carries out the same process of asking the Application Router which
application should receive the request next. The Application Router responds to
the request, informing the container to dispatch the request to “App 2,” at (8). The
container forwards the request to “App 2,” (9) and (10), which processes the request
(carries out appropriate application logic) and returns it back to the container, (11)
and (12). The container again asks the Application Router which application should
receive the request next, (13). The application router determines that no more
hosted applications should receive the request and informs the container appro-
priately, (14). The container then routes the SIP request as defined by the core
SIP specification RFC 3261 [1].

This example has provided a high-level introduction of the Application
Router and its role in SIP Servlet 1.1. The remainder of this chapter will take a
closer look at the main interactions and functions that are involved in the appli-
cation routing process.

4.2 Application Router, Container, and Application Interaction

The Application Router provides a powerful decision-making entity that removes
ambiguity and provides clarity in the application selection and composition process
of SIP Servlet 1.1. It has always been the intention that an Application Router not

Application Router 99

be tied in any way to the container with which it operates and the applications
that it is selecting. In reality, the majority of Application Routers will be produced
by the associated container vendors, but allowing independence provides a lot more
flexibility and power. The majority of concepts discussed in this chapter provide
such independence.

In order to fulfill such requirements, it is important that Application Router
implementations are transferable across varying container implementations for
differing vendors. It is the container’s responsibility to identify and instantiate the
Application Router when it starts up. To achieve this, the SIP Servlet 1.1 specifi-
cation mandates that container implementations be packaged to comply with the
JAVA SE Service Provider Framework. As part of this mandate, an Application
Router “.jar” file has to contain a file named “SipApplicationRouterProvider.” The
full path for the file is “META-INF/services/javax.servlet.sip.ar.spi.SipApplication
RouterProvider.” The content of this file allows the container to identify the pub-
lic Java subclass of the “javax.servlet.sip.ar.spi.SipApplicationRouterProvider.”
SIP Servlet 1.1 gives more detail on how a container is able to identify the Appli-
cation Router instance and instantiate the correct version.

Once an Application Router has been successfully deployed by a container,
it is available for service on receiving new SIP requests. For Application Routers
to be truly portable requires a simple, common interface that containers can call to
learn of the next application to route to (as illustrated in the early SIP Servlet 1.1
composition example). The “SipApplicationRouter” interface, which is part of the
SIP Servlet API, provides the required common interaction point and must be
implemented by all Application Routers. On commencement of service, it is impor-
tant that the container has a mechanism for informing the Application Router
which applications are available for service. This allows the Application Router
to make informed decisions based on the applications available rather than blindly
route SIP requests. The “SipApplicationRouter” interface has two methods that
provide such a service. The container calls the “SipApplicationRouter.application
Deployed” method, which provides the Application Router with a list (in the form
“java.util.List<java.lang.String>") of new applications that have been deployed.
The container continues to call this method during the life-cycle of the container
to inform of newly deployed applications. On the flip side, an Application Router
also needs to be made aware when applications are undeployed and taken out of
service. The “SipApplicationRouter.ApplicationUndeployed” method is called
by the container during its life cycle, supplying a list of (type “java.util.List
<java.lang.String>") applications that have been removed from service. This allows
the Application Router to ensure it is making decisions on applications that are
definitely available for service.

The other important method in the “SipApplicationRouter” interface pro-
vides the key interaction for a container when it wants to dispatch a SIP request to
an application instance that is currently in service. The “SipApplicationRouter.
getNextApplicationRouter” method is repeatedly called by container for a request

100 Understanding SIP Servlets 1.1

until no further applications are intended to service the SIP request. The method
provides the appropriate context to an Application Router to allow for an appro-
priate application selection decision to be made. The return value from the method
call not only informs the container of the appropriate application to dispatch
to but also supplies appropriate context for future invocations relating to the
same SIP request. By supplying the container with such contextual information
allows an Application Router to remain stateless, which improves efficiency
and performance.

Referring back to the example provided in Figure 4.2, on receiving an ini-
tial request the container executes the “SipApplicationRouter.getNextApplication”
method to inquire about dispatching of the SIP request. It is the container’s role
to populate this method call with enough information so that the Application
Router can make an educated decision. The method has the following parameters:

* The first parameter is an instance of the “SipServletRequest” interface,
which represents the incoming SIP request. The Application Router is
not allowed to modify in any way the interface instance representing the
SIP request, because its intention is to provide information and context
to aid the application selection process.

* The second parameter is of the type “SipApplicationRoutingRegion”
interface, which basically provides the Application Router with a string
of “NEUTRAL_REGION,” “ORIGINATING_REGION,” or
“TERMINATING_REGION.” The concept of the routing region is quite
straightforward. If a request is being serviced with applications on behalf
of a user that generated a SIP request, the container and Application
Router are acting in the originating region. The user that is “originating”
can be determined from various mechanisms, such as Digest Authenti-
cation, as defined in RFC 3261 [1], and SIP Identity [2]. If no authen-
tication mechanism is available, then the SIP “From” header could simply
be used. Once a container has finished servicing an originator of a SIP
request, it carries out the same procedures but this time sets the parame-
ter as “TERMINATING_REGION.” The terminating region signifies
the intended recipient of the SIP request as specified by the SIP Request
URL. This continues until the Application Router returns a value of “null”
in response to a request for the next application, which then results in
the SIP request being routed as per core SIP protocol. There also exists
a third routing region that can optionally be executed in the middle of the
originating and terminating regions. The “Neutral” region allows the con-
tainer to execute applications on a SIP request that are not really associ-
ated with the originator or terminator of a SIP request. A simple example
might be a logging application that is required to log all events regardless
of the routing region. To recap, on receiving an initial SIP request, the

Application Router 101

container will first invoke the “SipApplicationRouter.getNexApplication
Router” method with the routing region set to “ORIGINATING_
REGION?” until the Application Router has executed all appropriate
applications. It will then optionally repeatedly call the “SipApplication
Router.getNextApplication” method with the routing region set to
“NEUTRAL_REGION” until the Application Router has executed all
appropriate applications. It will then repeatedly call the “SipApplication
Rotuer.getNextApplication” method with the routing region set to
“TERMINATING_REGION?” until the Application Router returns
“null” as the name of the next application. Figure 4.3 provides a graph-
ical representation.

It should noted that the previous description makes an assumption
that the SIP Servlet container is the primary application service function
in the deployment (services all users). This most definitely will not always
be the case, and it is more than likely that users will be spread across
multiple instances of SIP Servlet containers that will also span geo-
graphical boundaries. It is not always the case, therefore, that a SIP
Servlet container will carry out originating processing and terminating
processing on a new SIP request. Often, a “home” instance of a SIP
Servlet container will carry out the originating application processing
for a user before using SIP to route the request to the “home” instance
of the SIP Servlet container providing terminating application services
for the intended recipient of the SIP request. Figure 4.4 provides a graph-

ical illustration of such an arrangement.

* The third parameter in the method call provides an Enum contact signi-
fying the routing directive of the request. The routing directive is a con-
cept introduced in SIP Servlet 1.1. The directive can have one of three
values that relate to how the Application Router should treat the request
in the context of a composition chain. The following lists the context that
each routing directive provides:

o NEW—The container informs the Application Router that the
request is brand new and is not part of an existing application

Application composition

Originating region | Neutral region | Terminating region

Processing order

>

Figure 4.3 Region processing.

102 Understanding SIP Servlets 1.1
SIP servlet container SIP servlet container
Incoming SIP Outgoing SIP Incoming SIP Outgoing SIP
request ORIGINATING request request | TERMINATING request
PROCESSING "| PROCESSING

Figure 4.4 Split application composition.

composition chain. The Application Router should treat it as such
and select the first application to service the appropriate user.

CONTINUFE—The container informs the Application Router that
this request is part of an existing application composition chain
that has been seen previously. The request has already been dis-
patched to at least one application, so the appropriate next appli-
cation should be selected in the composition chain.

REVERSE—This directive is not as common as the previous two.
The container informs the Application Router to reverse the direc-
tion of the call. The SIP Servlet 1.1 specification provides cases in
which this feature can be useful.

The routing directive of a request obtains its values in one of two ways.
By default it is derived by the actions taken by applications and then
supplied to the Application Router. The implicit deductions for the rout-
ing directive are dependent on the role an application is assuming (User
Agent Client, User Agent Server, or Proxy), based on the following SIP
Servlet API method calls:

o If the SIP factory is used (as introduced in Chapter 2) to create a

request based on an instance of the “SipApplicationSession” inter-
face when acting as a User Agent Client, the container will assume
a “NEW” directive. For example:

Sip_Request = Sip Factory.createRequest (SipApp
Session, "INVITE," sip:from@example.com,
sip:to@example.com)

If an application uses the “Proxy” interface, it assumes the role of
a SIP proxy server. The container will automatically set the rout-
ing directive to “CONTINUE” in this case, as in the following:

Request.getProxy().proxyTo()

If the SIP Factory is used (as introduced in Chapter 2) to create a
request based on an instance of the “SipServletRequest” interface
when acting as a User Agent Client, the container will assume a

Application Router 103

“CONTINUE?” directive. This differs from the previous SIP Factory
example in that the new request is based on an incoming request,
which implies a Back-to-Back User Agent (B2BUA). The previous
Factory example was not based on an incoming request and so is
assumed to be unrelated to any other requests, as in the following:

Sip_Request = B2buaHelper.createRequest(SipServlet
Request)

o While the default behavior has been discussed, there are cases in
which an application intentionally does not want a directive to be
assumed. The “SipServletRequest.setRoutingDirective” method of
the SIP Servlet API allows an application to override the default
container behavior and set the routing directive to one of the valid
values, as follows:

Sip_Request.setRoutingDirective (CONTINUE,
orig_SipServletRequest)

Full details of the “SipServletRequest.setRoutingDirective” method
can be found in the Appendix.

* The fourth parameter is used when an incoming request is determined
to be a targeted request. A targeted request is defined as one that con-
tains either a SIP “Join” header or a SIP “Replaces” header, or one whose
Request URI contains an encoded URI (as defined in the SIP Servlet 1.1
specification). The parameter is an instance of the “SipTargete-
dRequestInfo” class, which informs the Application Router of the type of
targeted request it is dealing with (a SIP “Join” header, SIP “Replaces,”
or an Encode URI). Before calling the Application Router, the container
inspects the list of active “SipSession” interface instances to see whether
a match can be found for the targeted operation in the new SIP request.
If an instance is found, the corresponding “SipApplicationSession”
instance and application name is determined. If the container deduces
that the identified “SipApplicationSession” instance is acting in the
role of a User Agent (either User Agent Client or User Agent Server)
and not a Proxy, then the application name is included in the instance
of the “SipTargetedRequestInfo” class along with the target type. If the
request is not a targeted request or the “SipApplicationSession” can’t be
located or the located instance was acting as a Proxy, the “SipTargeted
RequestInfo” is set to “null.”

* The fifth parameter is an object of type “java.io.Serializable,” which allows
an Application Router to store appropriate state information related to

104 Understanding SIP Servlets 1.1

the composition chain. On initial requests, the state object is set to “null,”
but on future calls to the Application Router the state object that is
returned as part of this method call must be included. This enables the
Application Router to store information that, along with the other para-
meters in this method call, allow for an accurate application selection in
a composition chain. It also allows the Application Router to remain
stateless.

On receiving the “SipApplicationRouter.getNextApplication” method call,
the Application Router can extract all the supplied information as well as the state
information if it is a subsequent call for a SIP request. At this point, the mecha-
nisms and logic used by an Application Router to decide on the next application
for the SIP request (if one at all) is totally implementation specific. The interface
only provides a simple front end to interact with the container. The outcome of
the application selection process could be as simple as looking at a static file and
as complex as required, maybe even including interactions with third-party servers
[such as a database or Home Subscriber Server (HSS) query]. Once the Applica-
tion Router has made its decision, it composes its response to the “SipApplication
Router.getNextApplication” method call. This is accomplished by populating an
instance of the “SipApplicationRouterInfo” class, which contains the following
methods for the container to use:

1. The first method (SipApplicationRouterInfo.getNextApplicationName)
provides a string representation of the application name being hosted
by the container that the request should be dispatched to.

2. The second method (SipApplicationRouterInfo.getRouteModifier)
returns contextual information related to the third method call (Sip-
ApplicationRouterInfo.getRoutes), which will be discussed next. A value
of “NO_ROUTE?” indicates to the container that the “SipApplication
RouterInfo.getRoutes” method does not contain any valid routing infor-
mation. A value of “ROUTE” indicates to the container that the “Sip
ApplicationRouterInfo.getRoutes” method will return valid SIP Route
headers that should be populated in the SIP request (as the top-most
SIP “Route” headers). A value of “ROUTE_BACK?” instructs the con-
tainer to insert a SIP “Route” header pointing to itself before including
the SIP “Route” headers that are returned as a result of “SipApplication
RouterInfo.getRoutes.” This has powerful connotations when in certain
distributed environments where applications can be hosted on a variety
of disparate server instances. As an example, the IP Multimedia Sub-
system (IMS) architecture has a centralized application composition
entity, called the Serving Call Session Control Function (S-CSCF). This
entity uses the pushing of SIP “Route” headers (pushing a SIP “Route”

Application Router 105

header that points back to itself), which allows a SIP request to return
once it has been serviced by an application. Further processing and appli-
cation selection can then take place. The ability for a SIP Servlet con-
tainer to select applications that are hosted either locally or on an external
server is an extremely powerful tool that can be used when designing
complex application composition chains.

. The third method (SipApplicationRouterInfo.getRoutes) returns an array
of type string that the container must add to the front of the SIP route
set. These SIP “Route” headers define the next routing steps for the request.
For more information relating to the use of pushing preloaded SIP
“Route” headers see the core SIP specification [1]. It should be noted
that a SIP “Route” header can be both internal and external to the SIP
container. It is not mandatory for an Application Router to push a SIP
“Route” header when routing to an internal application, because the
application name returned as part of this method call provides enough
information to request SIP routing. It is an optional approach that can
be viewed as a more complete, elegant solution that truly treats hosted
applications as independent SIP entities. Effectively, an internal SIP
“Route” header that appears in this method call would be pushed and
popped (added to and removed to the list of valid destinations) imme-
diately. This is certainly a purist approach that provides true application
independence, because in theory, it could be hosted anywhere, and not
specifically on the container instance in question.

. The fourth method call (SipApplicationRouterInfo.getRoutingRegion)
provides the routing region that this SIP request is currently being exe-
cuted in. The previously discussed values of the routing region can be
“ORIGINATING_REGION,” “TERMINATING_REGION,” and
“NEUTRAL_REGION.” It is then the container’s responsibility to store
the appropriate region associated with a SIP request so it can be supplied
back the Application Router on further queries (invocations of the Sip
ApplicationRouterInfo.getNextApplication) for the same SIP request.
This helps in keeping the Application Router as lightweight and state-

less as possible.

. The fifth method (SipApplicationRouterInfo.getSubscriberURI) informs
the container of the subscriber that is being serviced. This differs for a
SIP request depending on the routing region (either originating or ter-
minating) being executed.

. The sixth and final method (SipApplicationRouterInfo.getStateInfo)
enables the container to obtain the associated state with the application
composition chain. The container will store this instance of “java.io.
Serializable” and provide it back to the Application Router on further

106

Understanding SIP Servlets 1.1

invocations of the “ApplicationRouter.getNextApplication” method for
the same SIP request. This allows the Application Router to store any
proprietary, relevant information that will enable it to accurately resume
the composition chain. This supports the premise that an Application
Router can be totally stateless.

It should be noted that full, detailed descriptions of the SIP Servlet API
interfaces, methods, and class related to this area are provided in Chapter 10.

It would be useful to take the previously discussed information and relate
it back to the example SIP request flow that was introduced in Figure 4.2. Please
refer back to that figure in relation to the following description: A new request
arrives at the container, at which point a decision needs to be made on exactly
which applications should receive the request. The container would call the pre-
viously described “SipApplicationRouter.getNextApplication” method (1), pop-
ulating the appropriate parameters. This includes the following:

A read-only copy of the SIP request;
The routing region (probably set to “ORIGINATING_REGION” in

the example);
The routing directive (would be set to “NEW” on an initial request);
Set to “null” because it is not a targeted request;

State information also set to “null” because it is a new request.
q

On receiving the request from the container, the Application Router would
populate the appropriate parameters in the “SipApplicationRouterInfo” object to
return back to the container, (2). For the purpose of the example, this would
include the following:

The name of the application that should receive the request;

The routing region (still set to “ORIGINATING_REGION” in the
example);

The Subscriber URI (set to the originating user for the request, as deter-
mined by authentication, for example);

An empty list of SIP “Route” headers;
A route modifier with a value of “NO_ROUTE”;

An object containing proprietary state information.

The container inspects the instance of the “SipApplicationRouterInfo” and
carries out a number of tasks. It first stores appropriate information returned by
the Application Router that will enable it to continue the application composition

Application Router 107

chain in the future. This includes storing the routing region and the state infor-
mation object. The container then looks at the string returned by the “Sip
ApplicationRouterInfo.getApplicationName” method, which would have
returned “App 1.” The container then dispatches the SIP request to “App 1,” (3).
The Application completes its processing and, acting as a SIP proxy entity, forwards
the message downstream, (5) and (6). On receiving the request back, the container
identifies that it has seen this request before and retrieves the previously stored
information. The container then populates the next interaction with Application
Router, using the “SipApplicationRouter.getNextApplication,” which would look
as follows:

* A read-only copy of the SIP request;

* The routing region (probably set to “TERMINATING_REGION” in
the example);

* The routing directive (would be set to “CONTINUE” for this subse-
quent request as application acted as a Proxy);

* Set to “null” because this is not a targeted request;

* State information, returned previously by the Application Router,
included because this is a continuation of a composition chain.

On receiving the request, (7) in the figure, the Application Router inspects
the supplied information and notices the “CONTINUE” routing directive, which
identifies that this is a continuation of a sequencing chain. By using the other appro-
priate information, including the proprietary state information object, the Appli-
cation Router is able select and dispatch to the appropriate application (“App 2”)
and return that back to the container, at (8), for further processing, (9) and (10).
The rest of the example follows the same pattern. This is a rather simplistic view
and provides good context of the interactions that take place among a SIP Servlet
container, an Application Router, and an application.

4.21 Subsequent Requests and Responses

The focus of this chapter so far has been on the composition of initial SIP requests
that arrive at a SIP Servlet container. Once a SIP request has been routed suc-
cessfully through a container, it has usually visited a number of applications. For
example, in Figure 4.5 the SIP request traverses three applications.

The traversal of applications creates what is known as an application path,
so in Figure 4.5, the application path equals Appl — App2 — App3. A conse-
quence of this path’s being created internally to the container is that SIP responses
associated with the original request should traverse the same applications but in
the opposite direction. In our previous example, a SIP response would follow the
application path App3 — App2 — Appl. This is illustrated in Figure 4.6.

108 Understanding SIP Servlets 1.1

APP1 App2 App3
Incoming request Outgoing request

AN NN

Figure 45 SIP request application path.

APP1 App2 App3
Outgoing response Incoming response

N ANAAAL

Figure 4.6 SIP response application path.

Dialog-creating requests in SIP, such as INVITE/REFER/SUBSCRIBE,
create a long-lived association between two endpoints (for more information on
SIP dialog-creating requests, see the core SIP specification [1] and Chapter 1).
As a result, subsequent, associated SIP messages can traverse in either direction,
and they should follow the same application path as the original request when a
container acts as either a User Agent or a record-routing proxy server. The order
in which the application path for subsequent requests is traversed is based entirely
on the directionality of the subsequent request. If the endpoint generating the
subsequent request destined for the container is the same as the originator of the
initial request, then the application path would be the same as the original request:
Appl — App2 — App3 for our earlier example. The application path is illustrated
in Figure 4.7.

If the originator of a subsequent request is on the receiving end of the orig-
inal request (the endpoint that previously generated the SIP response to the ini-
tial request), the application path is reversed in the same way as for the generated
SIP response, for example, App3 — App2 — Appl. The application path is illus-
trated in Figure 4.8.

Incoming APP1 App2 App3 Outgoing
subsequent request subsequent request

AN ANAA

Figure 4.7 SIP subsequent request application path from originator.

Application Router 109

Outgoing APP1 App2 App3 Incoming
subsequent request subsequent request

N AAAL

Figure 4.8 SIP subsequent request application path from receiver.

This chapter has provided a brief introduction to the logical role of an
Application Router and the glue that binds it with a SIP Servlet container and
SIP Servlet applications. The business logic behind an application is implemen-
tation specific and can be as simple or complex as required. The only requirement
is that the basic interactions that have just been covered are adhered to by the
applications, SIP Servlet containers, and Application Routers.

References

[1] Rosenberg,]., etal., “SIP: Session Initiation Protocol,” RFC 3261, Internet Engineering Task
Force, June 2002.

[2] Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in
the Session Initiation Protocol (SIP),” RFC 4474, Internet Engineering Task Force, August
2006.

Moving Forward

Voice-over IP technology has come a long way since its conception in the late 1990s.
New frontiers and boundaries are being pushed on a regular basis as industries con-
verge on new multimedia communications that take advantage of ever-improving
network infrastructure. To date, SIP Servlet technology has evolved from its con-
ception, SIP Servlet 1.0, to the latest release, SIP Servlet 1.1. This demonstrates
a commitment from the industry to ensure that the requirements that are being
spawned from ever-evolving technology are met. Failure to synchronize the tech-
nology with its main customers will result in a technology that depreciates in
value as time progresses. On building the requirements phase for SIP Servlet 1.1,
it was obvious that a number of topics were far too vast and complicated to be
included. For this reason, an extensive exercise was undertaken to determine, first,
what could adequately be covered in the short time scales available and, second,
what was appropriate to include in a minor release of the technology. This
process was then tempered by the fact that SIP Servlet technology needs to remain
aligned with the ever-evolving landscape of the communications industry. The
success of SIP Servlet technology is evident in the number of commercial products
available in the market place as well as high profile, publicly reported live deploy-
ments. This is especially impressive when you consider the usual trepidation that
such new technologies are greeted with in the industry. This widespread adoption
and implementation experience forms the basis for current and any future advance-
ments in SIP Servlet technology.

5.1 SIP Servlet Threading Model

The evolution of SIP Servlet 1.1 very much leads the technology toward integra-
tion with Java Enterprise Edition (JEE) and inclusion as part of larger, potentially

110

Moving Forward m

distributed applications. In such environments, multiple applications will require
access to SIP Servlet session objects at the same time (e.g., access to the “SipAp-
plicationSession” interface).

SIP Servlet 1.1 is silent on specifying a threading mechanism that should
be used by containers when dealing with multiple threads” access to objects such
as instances of the “SipApplicationSession” and “SipSession” interfaces. It rec-
ommends that the responsibility lie with the application developer to ensure syn-
chronization with these interfaces and their associated application data. It also
mentions that containers could provide a proprietary thread-safe mechanism that
ensures such session objects are accessed appropriately.

The SIP Servlet 1.1 expert group considered including an optional thread-
safe mechanism for containers to implement. The mechanism would have included
an API and associated listener to enable applications to schedule works to be car-
ried out by the container. It was the intention that the container would then sched-
ule and execute specified tasks without danger of competing for access to session
objects. The application would then use the associated listener interface to obtain
notifications on completion of the scheduled work.

It was decided by the SIP Servlet 1.1 expert group that introducing a thread-
safe mechanism would be a step too far for a relatively minor release of the speci-
fication. The next release of the technology, which more than likely will be a
major 2.0 release, will include an appropriate access mechanism “SipApplica-
tionSession” and “SipSession” objects.

5.2 Outstanding Issues

It is guaranteed that the implementation and deployment experience gained with
SIP Servlet 1.1 will lead to a new range of issues and changes to be addressed by
the next release of the technology. It should be mentioned that the list of new
requirements logged for the SIP Servlet 1.1 version was extensive, and due to time
constraints not all could be addressed. The list of remaining requirements will form
the basis for any future versions of SIP Servlet technology.

5.3 SIP Protocol Support

SIP Servlet technology obviously has a tight association with the core SIP protocol
and its main extensions that are defined by the Internet Engineering Task Force
(IETF). Some of the primary SIP extensions have been incorporated into the
technology to provide increased coverage of the protocol. Examples include SIP
Reliable Responses [1], SIP “Join” header [2], and SIP “Replaces” header [3]. It is
important that future releases also track important evolutions in the core SIP

112 Understanding SIP Servlets 1.1

protocol and provide support to aid application developers. Major topics such as
Network Address Translation (NAT) traversal (and its associated solutions), sup-
port for core protocol changes, and other important protocol evolutions should
be considered for inclusion.

5.4 JSR 309

A new and evolving Java Specification Request (JSR) that will provide a media
services API for controlling media servers is currently under development. As
illustrated in Figure 5.1 (taken from the JSR 309 documentation), the comple-
mentary relationship of the two technologies provides an extremely powerful
solution.

JSR 309 implementations are intended to take full advantage of SIP Servlet
technology depending on which of the underlying media server protocols they are
using. The options range from MSML [4] to MSCML [5] to MediaCtrl [6], and
so on. The exact integration and deployment models surrounding JSR 309 and
SIP Servlets are yet to be established and will become apparent as JSR 309 matures
and as more implementation experience is gained. SIP Servlet application devel-
opers should feed such experiences into the SIP Servlet process to ensure tight
technology associations for an optimal media services solution.

Typical JSR 309 context

Application Server

Applications

External
I Resources
VoiceXML

scripts,
Media files,

etc.

SIp Media Server Control
Call Control
Media Leg signaling
and operations
RTP

Media Server

Figure 5.1 JSR 309 context.

Moving Forward 113

References

Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses,” RFC 3262, Inter-
net Engineering Task Force, June 2002.

Mabhy, R., and D. Petrie, “The Session Initiation Protocol (SIP) ‘Join’ Header,” REC 3911,
Internet Engineering Task Force, October 2004.

Mahy, R., B. Biggs, and R. Dean, “The Session Initiation Protocol (SIP) ‘Replaces’ Header,”
RFC 3891, Internet Engineering Task Force, September 2004.

Saleem, A., Y. Yin, and G. Sharret, “Media Server Markup Language (MSML),” draft-
saleem-msml, Internet Engineering Task Force.

Van Dyke, J., E. Burger, and A. Spitzer, “Media Server Control Markup Language
(MSCML),” REC 4722, Internet Engineering Task Force, November 2006.

Media Server Control (MediaCtrl), www.ietf.org/html.charters/mediactrl-charter.heml.
Internet Engineering Task Force.

Part i
Developer and Deployment Environments

Relationship and Role Within IMS

The IP Multimedia Subsystem (IMS) is an architecture that provides a framework
for next-generation IP networks. It is defined by the Third Generation Partnership
Project (3GPP) in Europe and 3GPP2 in North America (and Japan and South
Korea). More recently, the Telecoms and Internet Converged Services and Proto-
cols for Advances Networks (TISPAN) group was spawned to ensure representa-
tion for fixed-line networks (i.e., signaling and media carried across a physical
communication technology) as well in mobile IMS (i.e., signaling and media car-
ried across an appropriate air interface). The design aims is for an access agnostic
architecture that allows for consistent service delivery for both wireless and wire-
line technologies, potentially running in parallel. It promotes strong principles like
security and quality of service while aiding convergence of fixed and wireless access
mechanisms. The IMS architecture is based primarily on IETF protocols (mainly
SIP for signaling), which enables interoperation of a wide variety of third-party
entities. 3GPP has defined some additional extensions through the IETF for IMS,
and although it does slightly tweak certain aspects of the protocol, the protocol
is mainly untouched.

A major focus of the IMS architecture is the ability to rapidly introduce new
services to a network based on a wide variety of Application Server types. Figure
6.1 provides a simple view representing a generic application server’s role in the
IMS architecture.

Without delving too much into the detail surrounding the IMS architecture
(there are dedicated resources describing this large technological area), one of
the primary entities involved is called the Serving Call Session Control Function
(S8-CSCF), which manages users and their applications. This is achieved by han-
dling SIP REGISTER transactions, which map the availability of an IMS user as

17

118 Understanding SIP Servlets 1.1

Application
server

ISC interface

Incoming SIP Outgoing SIP

Figure 6.1 ISC interface.

well as look up the appropriate applications (using appropriate interfaces to IMS
data storage) that should be invoked for a certain SIP request type. The requests
are then dispatched on the IP Multimedia Subsystem Service Control (ISC),
which is a SIP-based interface that must be implemented by Application Servers
wishing to integrate into the IMS architecture. Once an Application Server has
completed its service-related processing, the SIP request is returned back to the
S-CSCF for further downstream processing. This could either be routed onward
to the appropriate location as specified when using the SIP protocol, or it could be
dispatched to another Application Server instance hosting an application included
as part of the user’s profile. The action taken by the S-CSCF is dependent on the
information provided by the IMS network and its user profile information.

SIP Servlet technology provides an excellent open-standards platform for
taking advantage of the adoption of the SIP protocol by IMS and its requirements
for dynamic service deployment. The following diagrams are taken from the
3GPP specification titled “IP Multimedia (IM) Session Handling; IM Call Model”
[1] and represent the main roles an application can assume when deployed for serv-
ice in an IMS network.

Figure 6.2 illustrates an example in which the S-CSCEF receives a SIP request
on behalf of a user. The request is then sent to the Application Server using the
previously described ISC interface. In this particular example, the Application
Server is acting in the role of a terminating SIP entity. From a SIP signaling per-
spective, this role is known as a User Agent Server (UAS). You might remember
the introduction to the role of User Agent Server in Chapter 3 and how a SIP
Servlet-based application can act in this specific role. This role results in the appli-
cation’s generating the final SIP protocol response and sending it upstream. The
SIP request is not sent any farther downstream.

Relationship and Role Within IMS 119

Application
server

SIP dialog
From: X #1
To:Y
Call-1D: Z

SIP dialog #1

From: X
To: Y
Call-1D: Z

Figure 6.2 IMS terminating [1].

Figure 6.3 illustrates another role that was discussed in Chapter 3. In this
case, there is no incoming SIP signaling from the network to the S-CSCE and
the IMS application deployed on the SIP Application Server is responsible for
generating the initial SIP request. The trigger for generating the SIP request can
be anything from the result of a HTTP converged application to a JEE JavaBean

Application
server

. From: X
SIP dialog To: Y

#1 | call-ID: z

SIP dialog #1

“From: X
To: Y
Call-ID: Z

Figure 6.3 IMS originating [29].

120 Understanding SIP Servlets 1.1

(EJB) call to a Timer firing. (This role is known as a User Agent client UAC.) The
third and final primary role defined by IMS is that of SIP Proxy.

Figure 6.4 illustrates the role of a SIP proxy server in the IMS architecture.
A SIP request is received by the S-CSCF and is then passed to the Application
Server for further processing. Once the application has completed its processing,
it proxies the request onward to the S-CSCEF, which then determines further
downstream processing of the SIP request. Chapter 3 discusses how a SIP Servlet
application using the appropriate API calls can act in the role of a Proxy. There
is a fourth role covered in the IMS architecture that is also an important part of
the SIP Servlet API. The role of a B2BUA plays a vital role in IMS and can be
viewed as a concatenation of the roles depicted in Figures 6.2 and 6.3.

The suitability of the SIP Servlet API to fulfill the role of Application Server
in IMS is quite evident when you map the previous constructs (UAC, UAS, and
Proxy) defined in IMS to those that are exposed by the SIP Servlet API. The flex-
ibility of standardized API and life-cycle management provides supreme confi-
dence that applications not only will be developed appropriately but also will be
portable across compliant implementations. There are also specific API calls that
are included in the SIP Servlet API that allow for ease of integration into an IMS
environment. For example, a large number of IMS implementations use the top-
most SIP “Route” header to carry the name of an application that should be
invoked on an Application Server. The S-CSCF might push a SIP “Route” header
that looks like this:

Route: <sip:appi@application_server.com;1lr>

This is one of many examples in which the application name has been
included as part of the SIP URI in the “Route” header. The application name,
“appl,” appears in the user part of the SIP URI (before “@” symbol). Not only
could the Application Router that is part of the receiving SIP Servlet container
(as introduced in Chapter 4) select an appropriate application based on this infor-
mation, but the SIP Servlet API also provides the “SipServletRequest.getInitial
PoppedRoute” method call to allow applications to gain such important contex-
tual knowledge.

In Chapter 4, “Application Router,” we discussed the concept of routing
regions, which enable applications to be invoked based on the originating and ter-
minating status of the user. This concept also aligns perfectly with the IMS archi-
tecture, which bases application composition on servicing users in the same states.

The companies developing the IMS framework have a lot of input into the
development of SIP Servlet technology. While SIP Servlets is not wholly depend-
ent on IMS, it certainly includes appropriate levels of support for the architecture.

Finally, a logical entity known as the Service Capability Interaction Man-
ager (SCIM) has existed in IMS for a number of years. While it has never been fully

Relationship and Role Within IMS 121

Application
server

SIP dialog| From:X

SIP dialog #1 To:Y

From: X #1 Call-ID: Z

To:Y

Call-ID: Z v

SIP dialog #1 SIP dialog #1

From: X From: X
To: ¥ To:Y
Call-ID: Z Call-ID: Z

Figure 6.4 IMS proxy [29].

defined, its role has been greatly discussed in various industry forums, most
recently resulting in investigation work being carried out in 3GPP.

Figure 6.5 clearly illustrates the role that was intended for a SCIM: It was
intended to be a stand-alone entity that is deployed on the ISC interface between
the S-CSCF and an Application Server. SCIM was intended to provide service
coordination when a number of Application Servers are being used, to provide a
single complete service to the user. The multiple Application Servers making up
a single service are then hidden from the rest of the network by SCIM, which acts
as an integration point. Recently, 3GPP has done more investigation, documented
in TR 23.810 [2], into the role of Service Brokering (and SCIM) in its architec-
ture. While no clear standardization effort has defined a SCIM, the SIP Servlet
API provides an appropriate tool kit for creating service brokering functionality.
The introduction of the Application Router role (as discussed in Chapter 4) pro-
vides a blank canvas for specifying service brokering capabilities.

The dedicated Application Router API also has tools that enable the sequenc-
ing and coordination of applications using SIP that are potentially hosted on exter-
nal servers. For example, as introduced in Chapter 4, the “SipApplicationRouter.get
NextApplication” method call returns an instance of the “SipApplicationRouter
Info” class. As part of this returned information, the previously discussed “Sip
ApplicationRouterInfo.getRouteModifier” method returns context to the SIP
“Route” headers that are to be pushed into a SIP request (which can be obtained
using the “SipApplicationRouterInfo.getRoutes” method). The value of “ROUTE_

122 Understanding SIP Servlets 1.1

SIP application
server

4 Sh
T 1sc
' y 0SA service | 0SA
HSS 5 I S-CSCF f I capability server [I application
- | Cx - | ISC (Scs) server

0SA API

CAMEL service
environment

Figure 6.5 IMS SCIM.

BACK?” instructs the container not only to push the specified SIP “Route” head-
ers but also, as the last entry, to push a SIP header that will result in the SIP request’s
returning back to the container. A container can push as much state into this
returning SIP “Route” header as required so that a sequencing chain can be resumed
ata later time. This improves efficiency in the container, because state does not have
to be tracked. This allows an Application Router not only to dispatch requests to
applications that reside within the SIP Servlet container instance but also to include
as part of a sequencing chain applications hosted on independent servers. This
powerful utility, along with the rest of the SIP Servlet API, enables appropriate
service brokering (SCIM-like) functionality to be developed. What is also certain
is that future innovations and requirements in this area will be catered to by the

technology.

References

[1] TS 23.218, IP Multimedia (IM) Session Handling; IM Call Model; Stage 2, 3GPP.
[2] TR 23.810, Study on Architecture Impacts on Service Brokering, 3GPP.

SailFin 101

The SIP container used throughout the book is the SailFin open source SIP and
JEE 5 bundle. All the relevant source code is available for download for the curi-
ous reader. The server is based on the Sun Glassfish application server-code base
with the addition of the SIP components that are conformant to JSR 116 and JSR
289 standards.

To find the code for a compilation or a binary bundle, you can go to
https://sailfin.dev.java.net and download it from there. There are various other
resources, such as “how-tos,” samples, report issues, mailing lists, and architectural
documents in wikis that can be of interest to developers that like to delve a little
deeper. We recommend reading the next chapter on SailFin architecture to under-
stand how a container works behind the scenes. This will give you a better under-
standing of the architecture and help you find more information relating to the
SailFin server and its associated community.

A binary version is recommended for running the samples in this book,
but if youd like to build one from the source, that will work as well. The samples
have been verified with version “b53”; any newer version should also be (backward)
compatible.

123

124 Understanding SIP Servlets 1.1

If you prefer to use the source code, then check out the latest (or latest mile-
stone build from a stable branch): https://sailfin.dev.java.net/Build_Instructions_
for_SailFin.html. You can also download a promoted build from the list (see Fig-
ure 7.1). It should be pretty safe to pick the latest, since the promoted builds have
been run with an extensive set of tests to prove their quality. There are more than
400 tests that are executed, and if any major flaw is uncovered by the build sys-
tem, the system then prevents that build from being promoted.

To download a “jar” file, you can follow the instructions from the site,
which look something like this:

java -Xmx256m -jar sailfin-installer-vi-b53-darwin.jar

] saithin: Sadfn Project: o
@B_@ (35) () QT v 12 e Jrvn ot ot fderwmid_roat St T+) R e)
Mt Vinsed = A Inaida home Apple - Amasms olay Vahsst News =t jove = Private v Weiceme tn RVI- D disa A Mephivie - Reme A

Agearum Cars. AeoTer ety Mt WA Taom
[reppe—
<o q GlassFish » SailFin
-
Download SailFin Builds
| Cimmeroan Covnmanry
iamaran o3 pras
S Select Placform: (Mae]
Bl
Download SailFin Bullds for Mac

Eaale’l

oy

P]

iy iy

[Ny, The Snal rebnase of Saiifin 1.0 which i .1 Qaws EE AR L1 OSH 289, Ao, Cantrmden, Spaninh, Jagdnese, Sampiifnd Chinese,
nro ‘Trafiionsd Chinese, ard Karean

e]

e— = e it A ey . Mg, e 0

[

- arm bulidl Lok tears 1eIES 22 b8 rambser, & sus-set of CTS bty iesresestisie
e St enection of 144 [I1X 1.4 teies), S8Fin Quick Locks, and [SR 118 TCK 18 in number).

g * ntervl S gt sin TR

Chumty Por

[rv— gy et [

[el T]
Unbundie and Configurs SailFin
To fed inutruction b unbuendie and configers Salfin Chok Heey.
]

*F

Source bundle for bS5 Promoted Bulkd

W

Figure 7.1 SailFin community download page.

SailFin 101 125

(Don’t worry: This is the installer, which consumes that much memory only while
unpacking.)

* Now you should read the license and, in order to run the samples, accept
(see Figure 7.2).

* Scroll down, and push the accept button.
* Now jump into the SailFin directory.
The next step is to use “ant” to setup your server domain.

* Ifyoualready have Apache Ant Version 1.6.5 installed, you can skip this
step.

Otherwise, because Ant is bundled with the binary, first you must make sure
it is “runnable.”

®00 Terminal — java — 141x40
F}ristoffer—qromﬁkia-mm-orovz:hnk stoffed jova -Hex256m -jor soilfin-instal ler-vi-béBg-darwin. jar -

expressly included in the particular source file's header the words

“Sun designates this particular file as subject to the "Classpath” exception as provid
ed by Sun in the License file that accompanied this code.”

Linking this library statically or dy ically with other is making a combin
ed work based an this library. Thus, the terms and conditions of the GNU General Pu
blic License Version 2 cover the whole combination.

As a special exception, the copyright holders of this library give you permission to |
ink this library with independent modules to produce an executable, regardless of t
he license terms of these independent madules, and to copy and distribute the resull -
ting executable under terms of your choice, provided that you also meet, for each li
nked independent module, the terms and conditions of the license of that module.?
/An independent madule is a module which is not derived from or based on this libra
ry.7 If you modify this library, you may extend this exception to your version of the |
ibrary, but you are not obligated to do 0.7 If you do not wish to do so, delete this e
xception statement from your version. &
v
Product contains autoupdate feature which also collects some system data. For more i
formation on data collection see:
trp:/ fwiki.glassfish.java.net/gfwiki/Wiki jsptpage=UsageMetrics

Enable autoupdate

A

A E

Figure 7.2 License prompt dialog when installing.

126 Understanding SIP Servlets 1.1

Depending on the Operating System being used, a command could look
like this one, from a UNIX-based system:

chmod -R +x lib/ant/bin

Now it is time to configure a domain, and for this book we will focus on
the development profile in which there is only one instance of the application
server. The SailFin container also supports multiple domains, but it is beyond the
scope of this book to provide such examples. If you retrieved the source code
from the Concurrent Versions System (CVS) and built the system, the last step
creates the domain for you, so don’t execute this step but instead continue with
starting the server.

In the case of a CVS image, the SailFin install directory is under “publish/
glassfish.”

So now let’s simply create a default domain:

lib\ant\bin\ant -f setup.xml
Note 'This is the same as calling the default “all” target.

A directory, called “domain,” is created where all your applications will be
deployed and where the container is configured from and stores all the logging.
Another thing that the “ant” target is doing is populating the “bin” directory with
various useful scripts and binaries. The most important one is the “asadmin” com-
mand! This is the Command Line Interface (CLI) interface for the application
server and the primary point for starting it.

The server is started by the following command:

bin\asadmin start-domain

Note 1f you have more then one domain, then you have to let the server know which
domain. The default one is called “domainl,” and the command is equivalent to “asad-
min” start-domain domain]1.

Now you can follow the startup process by tailing the log:

domain/domaini/logs/server.log

Note 1fyou are running Windows, then no standard application will be provided, but
there are some nice utilities like the “BareTail” that do this.

The log should not contain any ERROR or FATAL level of messages, and
the last line should state that the server is ready to handle traffic.

SailFin 101 127

The next step is to verify that the standard SIP sockets 5060 udp, 5060 tcp,
and 5061 tcp Transport Layer Security (TLS) are ready to process traffic. Issue
the following command:

netstat —an | grep 506
The returned list should look like this:

wdhcp-158-69:~/Development/book/sailfin/bin stoffe$ netstat -an|grep 506

tcp46 0 0 *.5061 * L x LISTEN
tcp46 0 0 *.5060 *x LISTEN
udp46 0 0 *.5060 *Lx

wdhcp-158-69:~/Development/book/sailfin/bin stoffe$

1 If you have multiple network interfaces, there could be a potential clash.
In this case, please read about how to configure network interfaces in the in-
depth chapter on SailFin (Section 8.4).

Now the server is up and running, but there are no applications being
deployed. There are three ways to deploy applications. By far the easiest way is the
“autodeploy” function, in which the deployer simply copies a SIP Archive (.sar)
file to a specific directory.

Here we are going to use the name “examplel.sar”:

cp <path>/examplel.sar <sailfin dir>/domains/domaini/autodeploy

Inspect the log file: It should indicate that the application has been suc-
cessfully deployed.

If you want to update the “examplel.sar” just simply copy it over the old
file. The deployer scanner will notice the changed timestamp and redeploy it. In
the same manner, you can delete the file and the scanner will undeploy it.

The other alternative to deploy a “.sar” file is to use the “asadmin” command:

bin/asadmin deploy <path>/examplel.sar

Redeployment uses the same command, while for undeployment use the
“undeploy” command like this:

bin/asadmin undeploy examplei

Note that for undeployment only the file name is used. The path and the
“.sar” extension are not used. The “asadmin” command is probably the most pro-
fessional approach, since everything is navigated from it in a clustered system. It
would also allow you to deploy to a cluster and it is easily scriptable.

128 Understanding SIP Servlets 1.1

The last alternative to deploy an application is to use the “admin” applica-
tion. It is a simple “.war” file executing on port 4848 on the server.

Note You might want to restrict firewall access if putting up a system so that no one
can access and administrate the server from the Internet.

http://localhost:4848/ (see Figure 7.3)

ene Login (=]
- 2 < £ '@ hup:/flocalhost 4848 login jsf v |k (1Gl* Google Q) t
Getting Started Latest Headlines ® 5JS AS 8.1 Admin Co.. Inside home Apple¥ Amazon eBay Yahoo! News¥ Java¥ Private v

Sun GlassFish Communications Server
Admin Console

UserName: [admin

[Login |

e AN |

reserved. Sun Microsystems, inc. has intellectual property rights relating o

Inc. All rights
ambodiad in the product that is describad in this document. In particular, and without limitaion, thesa Intallectual property
ude ona of more of the U.S. patents listed at hipfwww Sun.compalonts and ona of mon mlt-arml patonts o

valoped by third partos. Porions may be dervad from Bork
, Java and GlassFish are rademarks or registered
rademaris o =;u>- Mu‘msmm* nc. u- 1‘5 subsidianies in the LS. and other countries.

Figure 7.3 Login.

SailFin 101 129

The default user name is “admin,” and the password “adminadmin.”

It can be quite nice to use a graphical tool like this to deploy and undeploy,
since it also provides graphical feedback on the success of the deployment.
Another benefit is that there is a list of other deployed applications that can be
visualized. It is also useful when deploying applications from another host: Sim-
ply open a browser on the host where the “.sar” file is located, and instead of the
local host URL, enter the IP of the host that runs the SailFin server (see Figure 7.4).

OK, so now there is an application server running and an application
deployed. Another interesting thing to do is to set the log level.

There are various logs that can be enabled, but for doing SIP Servlet devel-
opment, there is one that is most important:

SIP

The log is using the standard “java.util.logging” framework from Java SE,
and by default the log level is INFO. If you want to trace SIP signaling, the rec-
ommended level is FINE. For most logging, the FINEST level can be set, but then
various cleanup threads will dump out their output, so FINEST should be used
only in extreme situations.

.0_ a8 o Sun GlassFish Communications Server Admin Cansole o =)
S - & £} '@ hup:/ flocainost 4848/ v 16 (K" Comge @O 2
Cotting Started Latest Headlines . 5JS AS 0.1 Admin Co.. Inside home Apple¥ Amaron elay Yahoo! NewsY jJava¥ Private ¥ »
m * Services * | Mo linformation avallable

Home Version
User: admin Domain: domain! Server: locahost

Sun GlassFish Communications Server

Applications > Coevergod SIP Modules
Deploy Enterprise Applications/Modules Lok || Cancel |

Specily the location of an appication to deploy. Appications can bo in packaged fles such war, sar, jar. and rar

Location: & Packaged file 1o be uplosded 1o the server

| _Brouse.. |

¢ Local packaged file or directory that ks accessible from the Application Server

Browae Files...

Browse Folders..

General
Name: *
Contaxt Root:
Path relatve io servar's base URL
Status: [Enabled
Run Verifier: [~ Enabled
Description:
Makos & pasier io fird this session later
Lok | [cancel |
3
Done *

Figure 7.4 Deploy a SAR.

130 Understanding SIP Servlets 1.1

There are two ways to toggle between the different levels: One way is to use
the “admin” Web application to change the level (see Figure 7.5).

In the same way, there is also another logger that might be interesting for
a SIP Servlet developer, especially if you intend to develop or even deploy a third-
party Application Router: the Application Router “extended information.”

Application Router

The logger for the Application Router “ar” can be altered in the same man-
ner as the one for SIP to yield more information in the logs. Also note that the
SailFin server supports dynamic updates, so both ways of changing the logging
alters the level instantly: There is no need of a restart of the server. In the same
way, it is recommended not to leave a production system running on any of the
FINE levels, since they produce significant amounts of data; the logs can fill up
a partition, resulting in server crash. However, for development purposes, the more
information the better.

‘anA Sun GlassFish C Server Admin Console =i
- - @ /2% '@ hup:/ flocalhost 4848/ v i (K" Googee AR
Gotting Started Latest Hoadlines 5 S/ AS 9.1 Admin Co.. Inside home Appla¥ Amaron eBay Yahoo! News¥ Java¥ Privatev »

Home Verslon

Ussr adrie Domain: domaini Ssrver: bcahost

Sun GlassFish Communications Server

INFO x| { vax.entorprse.systom.corn. raming: | r

INFO jlm.mmm.wrmw
Javax erierprise. sysiom.container.cmes |

INFO x| {vax.ontorse: |

INFO | { vax.eriorpras.aystom wobsorvices seal |
INFO x| { lvaxentorprse system.core.securty;)

INFO 7| {avax entoraras.systom.cons. soliranagomant,
INFO 7 (pvaxenmprae system; |

INFO x| { pvax entorprse system utk |

INFO 7] { ava enterprise.system took. verler,)

INFO 2| {vax eniororse waky, o, e
g apache psper. |

Figure 7.5 Log setting in the Admin Web Console.

SailFin 101 131

It is also worth thinking about what happens if multiple applications (“.sar
files”) are deployed in a system. Then the attention goes to the installed Applica-
tion Router. SailFin comes preconfigured with a “zero config” Application Router
called “alphabetical AR.” You can pretty much guess what the router will do: It
will probe every application with the incoming message in alphabetical manner,
such that an “a.sar” file will be handed the SIP request first, then the “b.sar,” the
“c.sar,” and so on. This is quite nice, because you don’t have to read Chapter 4,
“Application Router,” before making your first “hello world”-style application.
However, eventually, when your skills evolve, there might be a reason to move to
a more complicated AR or even to write you own (for more information on writ-
ing a custom AR, look at the next chapter).

The JSR 289 standard specifies a Default Application Router (DAR) that is
also available with the SailFin bundle. However, the disadvantage of this DAR is that,
when an application archive is deployed, then it also has to be configured in the AR
configuration file according to the SIP Servlet 1.1 specification. This is a bigger
obstacle, and therefore the simpler alphabetical AR is better to enable by default.

If you don’t want to worry about multiple applications, here is a pretty
handy thing to do:

Make sure you followed all the steps and that the server is running fine.

Now undeploy all applications and stop the server. All the configuration
changes are backed up in a file celled “domain.xml” file.

Now make a backup copy of the file:

domains/domaini/config/domain.xml

Continue to deploy applications and test around.

Whenever the configuration is broken or you want to restart from a clean
sheet, then do the following:

Go back to the install directory and call the Ant setup again:

lib\ant\bin\ant -f setup.xml clean-runtime all

Copy over the backed-up “domain.xml” file.
Now start the server, and you are ready to go.

Note 1t will throw away your previous “domain1” folder with all the applications, logs,
and configurations you had!

Cleaning up the configuration with Ant build script is a powerful way, when exe-
cuting examples from this book, to ensure nothing is contaminating the execu-
tion from the previous example.

If you did some additional reading of the instructions available in SailFin,
then you might have noticed an additional “asadmin” command:

asadmin start-database

132 Understanding SIP Servlets 1.1

This starts the built-in Derby SQL database, which is needed for any exam-
ple and even for your own code that uses EJB3.

Since SailFin is a complete JEE 5 server, you can make @EJB and @Entity
Manager annotations within your SIP Servlets and bundled classes in the “.sar”
archives. Most examples do not need the database, but there is no harm in start-
ing it (except for some consumed RAM and CPU, that is).

The database should open up a TCP port on 1515, and you can make sure
it is operational by issuing a “netstat” command.

Other then this, there are also integration packages for NetBeans 6 (NB6) that
might be of interest and that make SIP Servlet development easier. You can down-
load NetBeans for your specific operating system from the site www.netbeans.org/.

Then in the SailFin install directory you can find additional plug-ins:

lib/tools/netbeans

Install all additional “.nbm” NetBeans module files. This can be done from
the online repository or from the local files in your SailFin bundle (see Figure 7.6).

ane N Plugins]
{"Updates (1) “Available Plugins (89) | Downloaded Installed (42) Settings | !
Reload Catalog Search: |
Install Name Category ¥ | Source |
1 GlassFish V3 JRuby Integra... Ruby g ~ SipAgent |
V| IsipAgent e B |
1 Sprint Mobility Extensions Sprint Mobill... @ @ NetBeans Beta Plugin
] User Tasks Task List LT]
1 Jemmy Module Testing Tools @ Version: 1.0.11 |
] soapl Web Service Testing Testing Tools I Author: Yvo Bogers, Vince Kraemer |
] Jeliytools Testing Tools B Date: 6/12/08 |
[1 XTestSamples Testing Tools B E;"“': Nex'a:an.s Beum
O] interactive Ul Gestures Coll... Testing Tools I || "omepage: R
{1 Accessibility Checker Testing Tools B
1 JemmySupport Testing Tools B Plugin Description
(=] i Testing T H
=1 ;::::‘;:I AREQICh T:::nr\: Tzll: % The SipAgent allows the user to create and transmit SIP request {
£} Missing Modules Resolver. Tools 'Y and response messages for testing a SIP application project at the
i. Startup Settings Tools i protocol level.
1 Jindent Tools & {
] RegExPlugin Tools w 1y
] Code Coverage Plugin Tools [] 14
T1__iranoctadasionar Trols aa T

(Install)} 6 plugins selected, 40MB

Came) (o) |

Figure 7.6 Installing SIP-related NetBeans modules.

SailFin 101 133

In this package, there is SIP Servlet support for NetBeans and also a sim-
ple SIP client that can be useful for testing purposes.
Under “Server:” you can choose the SailFin install directory (see Figures 7.7

and 7.8).

‘060 NetBeans IDE 6.1
(rEdS[x>a9e/l THIBROBBQ |
b [Files [Senvices =) () index.jsp x5 history jspx x| Start Page x) P8 |
> Databases
:: oA © NetBeans i
v [Servens .
» ¢ 5ailfin Booksample Welcome to NetBeans IDE 6.1

> 3 WeBrick (Built-in JRuby (1.1))

8ne B Add Server Instance |

Steps Choose Server
1. Choose Server 1
2 . Server: [HEA WebLogic Server

|GlassFish V1

GlassFish V2

1BM WebSphere Application Server V6.0 |
1BM WebSphere Applicaton Server V6.1 |
Boss Application Server
vi
Sun Java System Application Server
Tomcat 5.0
Tomcat 5.5
(Tomcat 6.0

<MNo View Availablé

Name: Sailfin V1

S -

(“Help) ((<Back) (@N@RES) (Finish) (Cancel)
&

Figure 7.7 Step one.

134 Understanding SIP Servlets 1.1

"o"oo0 IDE 6.1
PEESXra9el THIRGEED |
fProjects [Fites [senvices w) ({3 indexjsp x| i) history jspx x| Stant Page x} SO

» B Databases
» @ web Services
» @ Enterprise Beans (2.x)

1 NetBeans

¥ (5 Seners
» (&, Sailfin Booksample Welcome to NetBeans IDE 6.1 My NetBeans
» [l WEBrick (Built-in JRuby (1.13) n
Sas Ll — == lacont o acts Dl
Steps Platform Folder Location
1. Choose Server Specify the location of the platform folder associated with the domain being
2. Platform Folder registered.
Location T 1
3. m;naln Admin Login Platform Location: lrs!stcﬂerDmlopmenubook!sailﬂli__
m—
[history.jspx = N @ Register Local Default Domain
Domain: |) [domainl))
O Register Local Domain
<No View A) Register Remote Domain
O Create Personal Domain
Profile: [Default)
| Output
Eheas)

—
L

Figure 7.8 Step two.

This will enable the server to be started and stopped. It can be used for run-
ning the server in debug mode or in profiler mode. (NB6 has a pretty good pro-
filer add-on.) Applications can be deployed/undeployed, and because it is also a full
JavaEE 5 environment all of the enterprise edition application can be managed.

We talked about the EJB database support, and from NetBeans the data-
base could also be started. (Actually, NetBeans will start it automatically for you
when you add an EJB to your project. It is good to know what is happening
behind the scenes; without this knowledge, it might not work in the production
system, since you did not start the database yourself.) There are also tools that
are useful for looking at the created tables or to determine whether there was any
problem with the entity mapping.

Other than that, the primary benefit of NetBeans with the Sailfin SIP spe-
cific plug-ins is the Wizard for creating a SIP application. It will generate a proj-
ect file with a “.sar” archive as the target, and it can help you with the creation
of a SIP Servlet skeleton. At the same time, a “sip.xml” file will be generated
together with a “web.xml” file, which can be used if the application will be an
HTTP application converged with HTTP Servlets.

SailFin 101

Note Actually, the current plug-in creates the “sip.xml” and “web.xml,” but the archive
ends with a “.war.” It is still possible to deploy as a “.sar,” but if you want to change it,

you have to go to the properties manually (see Figure 7.9).

The “.war” file is in two places—“war.name” and a few lines down in
“war.ear.name,” both of which need to be edited and replaced with “.sar ...”

instead.

r

- s IDE 6.1

135

o

8686 SinplesiApplication . HeiSeans |DE
BEY XDl TEHIBOIEBQ

s [oroecidetni nguage) =

G'DJ
Lo

(Projects |[Files 4 = [Services | | &°

[Saiffin Feature Tests

il ySaifin S Stack

* g saifin SIP Stack implementation h ‘_';_“:"5"

: LL.:':.I::;?:MI javac.deprecation=false

v [} nbproject javadoc. nonavbarstalse

» [privae
> & ant-deploy.xml javac.targetsl.5

» & busd-impLxmi

es-@-aes@deeeaueasn

—

build.cest.results.dir=§{baild.dir}/test/results

Jtest.classpathes{javac.test.classpath)\:§{build, test.classes.dir}

j2ee.server.type=JavaEErlusslp

> extendRun.xmi client.urlPact=
display.browsersialss
> & genfiles properties javadoc.noindex=false
» ® projectproperties javadoc.additionalparan=
5 projectxmi web.docbase.direuet
e s source.root=arc
S v build.classes.dirss {bulld.web.dir} /WEB-IKF/classes
source.oncoding=UTE-§
=] javadoc alse
webin?.direvnh/NES-1HF
[View [Boeraipiy iy

¥ i SmplestServet = Spserviat
L")

[=T=T=1. [&]

7S

build.dir=build
resource.dir=s
War.ear.name=sizplestippl
build.test.cla: sdiz=54
platforn.activesdefanlt p
javac.compilerarga=
javadoc.use=true
Lib.dires{web . dochbase.dir} /MEB-INF/1ib

war
«dirp/test/classes
m

faTel

[Output

Figure 7.9 Changing the project properties from .war to .sar file extension.

136 Understanding SIP Servlets 1.1

Figure 7.10 is an example of what a simple application that sends a 200 OK

for an incoming SIP message would look like.
Now you just compile and deploy.
Now there is an application running,.

The next thing is to have some SIP message sent on the wire. Note that your

SIP application has an icon available for you. This one is the SIP test client.

For testing purposes, you can create a SIP message and send it to the run-

ning SailFin server.

If you did everything right, then the 200 OK for your message should be

received by the test client.

Message Creation Message History
ip:Baske balChal @155, 53.234.42 SIP[2.0 - 578)
From: 'Etnﬂ! <sip:Kristoffer @155.53.234.42>; tag = 123689 To: "Baskethall®
To: BasketbalChat™ <sp:BasketbalChat@155.53.234.42> esip:Backetball @155.53. 234,42 >; tag =fs 7yduia-3
MaxForwards: 70 Content-Length: 0
(Content-Length: 40 Cseq: 3 MESSAGE
(Contact: sip: 155. 53. 234, 42:6060; ranspor t =LIDP Mia: SIPf2.0/UDP
(Cseq: 42 MESSAGE |155.53.234. 42:6060;branch =75hG4bK- 123689312
Via: SIP/2.0LIDP 155.53. 234.42:6060;branch =2ShG4bk-123 593 Lreceived=127.0.0.1
(Content-Type: text/himl Call-1d: 1236893125978

(Call-id: 1236893125578

What do you think about Cobe last night?

R

sip:SoccerChati® 155, 53. 234,42 SIPf2.0Fr...
/2.0 200 OKFrom: "Bob" <sip:Bob@155.53.234....
Chat@155,53. 234,42 SIP/2.0Fr...
IP/2.0 200 OKFrom: "Chris™ <sip:Chris@155.53.23...

IMESSAGE Chat@®155.53. 234.42 SIP[2....

[SIP/2.0 200 OKFrom: “Stoffe” <sip:Kristoff

@155....

[E] Lt message history to [20 | entries

Figure 710 NetBeans SIP Test Agent GUI.

E it

SailFin 101 137

The simplest possible Servlet that takes a SIP MESSAGE can be created in

just a few steps.

* Create the application named SimplestApplication (see Figure 7.11).

'?00 NetBeans IDE 6.1

(rEdSxe2a9el THIHGIEBO |
] {Sarvices 3 ((@ index o= [historyepe =S tegas) 9006
> & AsimpleRegistrar |

FQ aierar f NetBeans
B Welcome to NetBeans IDE 6.1 My NetBeans

Steps Name and Location
1. Choose Project Project Name: [Simplestpplication]

Project Location: | /Users/stoffe/Development/book (Browse...)

Project Folder: | jusers/stoffe/[

4 set as Main Project

CHelp) (<mack) (Next>) (@aD (Cancel)

Wl

Figure 711 Wizard creating a SIP Servlet Application.

138

Understanding SIP

Servlets 1.1

* Then create a Servlet (see Figure 7.12).

‘o006

SimplestApplication - NetBeans IDE 6.1

(PEd S X>ED e

Oonjmmmtiend Fles

» @ RegistrarRestserver
> @ RegisrarTwinierserver
» & Sailfin Feature Tests
» @ySailfin SIP Stack

TTBIBGIE8L]
=

» [d Configuration Files

@ Server Resources
» [# Source Packages
> (@ Ubraries

[— |

<No View

> gk Salin SP Suck Inplement{ @ £ @ NewSip Serviet "
» @,5mpleChat
v @ SimplestApplicition] | stwps Name and Location
¥ [Web Pages
» [WeB-INF i M.:'L‘W Class Name: |SimplestServiet |
@ mdexysp

Project: |SimplestApplication
Locati [Source Packages

Package:

net.sipserviet.sam)

Created File: |

1
H L .

(CHeip) (<Back) (Next>) (@RRD)

Figure 712 Wizard creating a SIP Servlet within the application.

SailFin 101 139

‘@ece - IDE6.1
(PEdS XDl THE PHB-GEBR [
(Proju_@x Files [sevices | (ERSimplestsevietjmans) OCIETE)
et BE-8-A°SBPeL aUoE L |

package net.sipservlet.sample; 2

» & Sailfin SP Stack Implementation
* gk Sailfin SP Stack Implementation
» @, SimpleChat
¥ @ simplestapplication
¥ 3 Web Pages
> 3 weB-INF
& index.jsp
> |4 Configuration Files

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.sip.SipServietRequest;
import javax.servlet.sip.SipServlietResponse;

T * Bauthor

[# Server Resources #javax.servliet.sip.annotation.SipServiet
¥ | Source Packages public class SimplestBervlet extends javax.servlet.sip.SipServiet {
=3 @ foverride
¥ B netsipserver.sample . P d void & {sipservl g req) throws ServletException,
3 IOException {
SipServietResponse resp = req.creat SipServlet SC_O0K): | .
| doMessage - Navigator ol resp.send();
] -
}
‘_ e
(0 ==0a]. (B 1613 INS
M“ . o ox)

Figure 7.13 Back in editor mode filling the gaps in the generated code.

* Then fill out the skeleton (see Figure 7.13).
Since it is annotated, you don’t need to worry about the “sip.xml” file.

Note The NetBeans environment can really mess up your “domain.xml” file and all the
associated configuration files, so you should really think about saving away a working set.
Also, it is good to start, stop, deploy, and carry out administration tasks using the “asad-
min” command or using NetBeans. Do not mix, because this also can create some incom-
patibilities. NetBeans is a really useful tool when writing a simple SIP Servlet application.
When your system becomes commercial grade, it is common to have “ant” scripts build-
ing the “.sar” files, and the deployment process for production systems is often more
strict than just having the development integrated development environment (IDE)
hooked to it.

These are the basic steps to get familiar with the SailFin Application Server
and be up and running. You will be able to deploy the examples in this book, but
we recommend having only one deployed at any specific time so not to cause inter-
ferences. Feel free to play around and create your own SIP Servlet applications.

140 Understanding SIP Servlets 1.1

If you want to know more about the SailFin server, you can get into more
detail in the next chapter, where the architecture is revealed in order to better show
how a SIP Servlet application server works and what it is really useful to know
when writing production-grade systems. Remember that it is not only your appli-
cation that matters but the sum of the collaboration between it and the SIP
Servlet container you are running. Both have to perform in tandem to have a
commercial-grade result.

SailFin Understanding

The inclusion of information relating to the SailFin SIP container is not in any
way an attempt to promote a specific technology for realizing the SIP Servlet
specification. It is primarily included because SailFin is an open source project
that provides a good showcase for exactly what is required. Since it is an open
source project, everything is visible, and there are no smoke and mirrors obscur-
ing some “.jar” file. Any reader can download the full source code and see how
any part of the JSR 289 specification is implemented. There is also a big differ-
ence between the developer-friendly SailFin container and the commercial prod-
uct from Sun Microsystems called Sun Java GlassFish Communications Server.
The source code is still open, and the commercial Communications Server uses
the exact same code base. The main difference between the two products is pric-
ing and performance. As there are no free lunches in the real world, this is also
true in the software world. When used for the purpose of education and creat-
ing proof of concepts, demos, and small-scale applications, then SailFin is the per-
fect choice. When doing professional services, then it’s all about the price and
what services you want to buy. This chapter is intended to highlight the more pro-
fessional aspects of a SIP Servlet container, illustrating SailFin functionality. It
should be possible to do similar things with a competing commercial container,
and if not, then you have a strong case in asking what is missing. Standards are
great, but everything cannot be standardized in time, and understanding the
implementation under the hood is essential when striving for performance, and
especially in cluster deployments.

41

142 Understanding SIP Servlets 1.1

8.1 History

SailFin originated from an Ericsson IMS SIP application Servlet container built
for hosting the company’s multimedia applications. The key concept was to build
a modular system that would scale well in a clustered environment. For that pur-
pose, SailFin had two main design goals. The first was an optimized SIP imple-
mentation specifically built to fit SIP Servlets and not to reuse a more traditional
SIP stack approach. The second objective was the scaling that led to hash-based
distribution in clusters and a small memory footprint for the session objects. We
will dig down much more into the architecture, but this might be handy to keep
in mind if you ever download the actual source code of the container and are
thinking about how this product evolved.

Initially, the SIP Servlet container did not include any JEE components
other than a standard Tomcat HTTP Servlet container. Using this combination,
Ericsson had deployed commercial-presence and group-list-management appli-
cations and “push-to-talk” (PTT) services based on the code. Other applications
have also been developed and deployed with the Service Development Studio
(SDS) (www.ericsson.com/mobilityworld/sub/open/technologies/ims_poc/tools/
sds_40). The SDS is an Eclipse-based environment with IMS emulation and the
SIP Servlet container bundled with some developer tools. The fact that Ericsson
is not a big player in the field of developer communities, and the fact that SailFin
was only really used to develop internal applications, led to partnership with a Java
Enterprise Edition (JEE) industry expert. JEE technology provides a lot of useful
services that can benefit a lot of coexisting in the same Java Virtual Machine
(JVM) as the Sip Servlet container is executing in and vice versa.

At the JavaOne conference in 2006, there were initial discussions between
Ericsson and Sun Microsystems on how such collaboration could take place. Dur-
ing the next year, there were several “proof of concept” projects, and finally, at the
JavaOne 2007, the project was announced, and all the code could be retrieved
by anyone from the open source CVS repository. Since that point, it has taken
more than a year to finalize a version that is JSR 289 SIP Servlet 1.1 compliant.
At the same time, the SIP Servlet 1.1 standard was not finalized, and according
to the JCP process, one has to wait for the Reference Implementation (RI) & Test
Compatibility Kit (TCK) before it is OK even to ship the product. So, these things
go hand in hand, and one has to keep a close eye on the standardization situation,
since it could pose IPR problems when property is released by the standard organ-
ization. This is one concept a freeware user has to think about, but if you buy a com-
mercial product, then you don’t have to anymore. If you have a limited budget
or are doing a hobby project, don’t worry: There is no point in chasing after you
if you don't have a lot of money. SailFin was intended to provide a best-in-class
JSR 289 container just like any of the competition but, with the development in
open source, allowing people who want to have more control and, above all, free-

SailFin Introduction 143

dom, a free reign to innovate. It is also quite a nice way to commoditize a mar-
ket to create an appropriate pricing model. A SIP Servlet container is not as
important as the actual service that one can make an actual product from but
allows for a common base that provides consistency within the industry.

Look on the actual architecture and what else there is that can be useful
beyond the SIP Servlet 1.1 specification.

8.2 Architecture

SIP code donated by Ericsson has been incorporated into the Sun GlassFish appli-
cation server. Areas like the bootstrapping, application deployment, logging, and
other container facilities are utilized from GlassFish. The SIP Servlet container
has a special relationship with the Web Servlet container. This relationship evolved
from the JSR 116, SIP Servlet 1.0 specification and the pure fact that both are built
on top of a Servlet container implementing the HT'TP and SIP protocol. The Web
container in GlassFish is based on the same initial code as Tomcat, but Sun has
made some significant performance and scalability improvements. It also makes use
of the popular nonblocking Input/Output sockets (I0) (NIO sockets) frame-
work called Grizzly (http://grizzly.dev.java.net). The Grizzly framework provides
TCP and TLS support as well as a thread pool and a buffer pool facility, which
are among its most important features. For project SailFin, this framework has
been incorporated in the lowest level of the SIP stack in order to reuse the same
benefits and align the source code. For this reason, Grizzly was extended with
UDP support, since datagram sockets are one of the main requirements for SIP
protocol support. Grizzly also provides some plugability when it comes to imple-
menting new filters or reusing existing ones as well as exchanging pooling tech-
niques where one example could be to deploy a real-time—capable thread pool in
order to get more scheduling control.

Note By using Grizzly, it is also possible to chain all supported protocols and have only
a single TCP and UDP socket visible externally. This is called port unification and in the
Web deployment world can be a simpler way for only exposing a single port through a fire-
wall. This approach has some drawbacks related to performance, since all the supported
protocols need to start parsing at a single entry point, which has a penalty. For SIP there
are good use cases in which this type of mechanism is an excellent idea. One such applica-
tion is to add STUN (RFC3489/bis2) capabilities. STUN can be used to maintain a
port mapping through a Network Address Translator (NAT) and firewall so it does not
time out and cause communication problems. STUN is a simple request/response pro-
tocol over UDP that should be sent on the same IP connection as the SIP messages. In
this way, a Grizzly-based STUN protocol filter could be hooked up just before the SIP pars-
ing. This allows NAT traversal support without having to modify any of the SIP code.

144 Understanding SIP Servlets 1.1

When it comes to the start-up sequence of the SailFin SIP Servlet server,
first a core service is bootstrapped. Then the “LifecycleListener” is invoked, boot-
strapping the actual SIP container component (https://glassfish.dev.java.net/
javaee5/docs/DG/beamc.html). Once this occurs, the SIP Servlet container regis-
ters for container events (e.g., the deployment for new SIP Servlet applications).
The SIP Servlet container also needs to indicate the support for new types of appli-
cation archives. The SIP Servlet archive, as it is defined by the SIP Servlet spec-
ification, needs to be recognized. The Java class files and libraries included in it
are loaded appropriately, and the sip.xml deployment descriptor file is parsed and
acted upon. The SIP Servlet container then needs to hook up with the annotation
scanning framework, and if any Web components are present, they need to be
delegated to the Web container so that they will be properly loaded.

Another important linking point is to set up the ServletContext for the
deployed application. This is a quite powerful feature that allows all HTTP and
SIP Servlets inside the same archive to access the same Servlet Context object. In
the boot-up sequence, the SIP container will also tie resources like the SIP Factory
and the supported methods to that actual Servlet Context as attributes, as specified
in the SIP Servlet standard. One thing that has been introduced with JSR 289 is
that an instance of the “SipFactory” interface and also the “SipSessionsUtil” inter-
face needs to be registered with the Java Naming and Directory Interface (JNDI)
framework so that it can also be annotated with the @Resource annotation. By
connecting this together, the SIP Servlet container will now receive all the life-
time information from the application server, such as undeployment of applica-
tions, reconfiguration, and halting the system.

Another component that is part of the integration is the ability to deploy
Application Routers as defined in SIP Servlet 1.1 (JSR 289). The Application
Router is packaged in a “.jar” file and uses the service provider framework from
the JAR specification. We will look further into how this framework is used in
writing a customized Application Router later on in this chapter.

Continuing on the integration, one key aspect of the SailFin server is its con-
figuration. It is all controlled from a file called “domain.xml” (<SailFin install dir>/
domains/domainl/conf/domain.xml). Now, the simplest case is one in which the
container is used in developer mode; then there is only one application server
configured. It is also possible, even if there is only one application server, to have
multiple domains defined, but for SIP, this would require the container to be con-
figured with nonconflicting listener ports for the incoming SIP traffic. The other
operation mode is when the application server is deployed as a cluster. Then the
SailFin configuration is more complex, but each member of the cluster always has
the same applications deployed. So, in this sense, the SailFin server is a homoge-
nous application server. (We will cover the more advanced clustered configuration
in more depth later when we discuss cluster deployment.) With this in mind, Sail-
Fin is designed in such a way that it has a Domain Admininstration Server (DAS)
that is the central point of administration and configuration. The DAS is respon-

SailFin Introduction 145

sible for maintaining the Document Object Model (DOM) tree configured by
the “domain.xml” file and distributing appropriately to all nodes in the cluster. For
this purpose, every physical server node (machine) has a helper process called the
Node Agent to synchronize the various commands. The commands can be things
like the deployment of a new application or the reconfiguration of a variable. In
every machine there can be multiple instances of an application server running.
If they are running on the same machine, then the same requirement applies as
for running two domains: that the network listener ports and other file descrip-
tor resources do not clash.

In a case in which the developer mode is chosen at installation time, all this
is collapsed to a single application server running both the DAS application and
the “real” application that the developer deploys. One of the DAS applications is
the Web-based “admin” console that can be found at http://localhost:4848 (as long
as the default values used are “user: admin” and “password: adminadmin”).

With this application, the administrator of a system can monitor, deploy
new applications, and change logging levels, as shown in Chapter 7, but also change
pretty much any of the capabilities in the “domain.xml” configuration file. Inter-
nal state information can be collected based on being retrieved from the running
container as MBeans. Of course, since this is a fully compliant JEE 5 server, the
framework also allows for JSR 77 and JSR 88 styles of administration.

In a more professional system, things are normally more scripted and auto-
mated. For that purpose, SailFin is shipped with a utility called “asadmin.” It resides
under the SailFin base directory in the “/bin” subdirectory. The “asadmin” com-
mand provides a scriptable interface to the DAS server. All of the “domain.xml “con-
figuration file information can be accessed as well for setting up a new domain and
adding application servers to a cluster. The “asadmin” uses a JMX remote connec-
tion, and once a value is entered, it is dispatched to the DAS for execution. The com-
mand will return with a success or a failure response. In the case of failure, more
information can be found in the logs of the application server. And this is where we
will go next, to obtain a better understanding on what happens during failures.

Note The “domain.xml” is a file that is backing up the current state of the DAS con-
figuration. The only safe time to modify the file is when the server is switched off. At all
other times, there is a risk that a change will be ignored and overwritten, and in the worst
case, the entire file can be corrupted. The preferred way of modifying the information is
to use either the “asadmin” command or the admin Web Graphical User Interface (GUI).

8.3 Logging

The logging in the SailFin application server facilitates the standard Java
“java.util.logging” package from the JVM. The default logging level is set to
“Level.INFO.” This has an impact, since when making logging calls from the devel-

oped applications, it is recommended to use by best practice advice the same

146 Understanding SIP Servlets 1.1

framework so that all the log messages end up in the same log file. Having them
delivered into a single log makes it much easier to trace errors and follow the
flow of the application being developed. It is also worth mentioning that the
“Servlet.log()” method will log at a sufficient level for the printed string to turn
up in the log. If the “Servlet.log()” would use the Level. FINE level internally in
its implementation then the printed string would not be written to the file by
default. The servlet developer would be confused as to where it ended up, and
this is a tricky thing with logging that the logging framework does not append
printouts depending on what is its current log level. As long as the log level is set
to Level.INFO everything that the Servlet logs gets, gets appended to the log file.

Note When logging, it is very important to have a good strategy for making a successful
deployment for a production system. It is also worth considering the level that should be
designated the default in a production system and the fact that doing large amounts of
logging can consume a massive amount of CPU and disk space and even, in the worst
case, grow out of control, bringing the entire machine down. Configuring a rotating log
and limiting the disk storage is a good strategy. Also, dividing the log so that serious
errors are logged in a severe enough level to be noticed, but then the actual stack pumps
are on a FINE level, only to be produced when there is someone analyzing and scoping
down for a particular error, is probably a good idea.

When it comes to SailFin, the logging can be configured at run time. The
application server supports dynamic configuration updates. This feature can also
be benefited by the application developer; however, note that not all configura-
tion variables will be noticed and could need a server restart before they come into
effect. When it comes to logging levels, they are dynamically updated and obeyed.
So the two methods recommended in Chapter 7 are to use the “asadmin” command
and, alternatively, the Web admin GUI. (The third alternative is to stop the server,
manually edit the “domain.xml” file, and then restart the server.)

The following is an example illustrating how the standard SIP logging level
is changed from the default value of “INFO” to print the “finest” information
(i.e., at the most detailed level available).

> asadmin set "server.log-service.module-log-levels.property.sip"
=FINEST

The output should confirm the change:

server.log-service.module-log-levels.property.sip = FINEST

Now, in the same way, if you want to have an application-specific log level,
it can be added like this:

In the Servlet:

Import java.util.logging.
Logger log = Logger.getLogger("MyAppLogger");

SailFin Introduction 147

And then there is the actual “asadmin” command to enable the more detailed,
application-specific logging”

> asadmin set "server.log-service.module-log-levels.property.MyApp
Logger"=FINE

asadmin set "server.log-service.module-log-levels

There are five SailFin specific logger categories: SIP Container (sip), Appli-
cation Router (ar), SIP Message Inspection (smi), Converged Load Balancer (clb),
and SIP Session Replication (sst):

<property name="clb” value="INFO”/>
<property name="sip” value="INFO”/>
<property name="ar” value="INFO”/>
<property name="sst” value="INFO”/>
<property name="smi” value="INFO”/>

The SIP Message Inspection shows an extensive trace for how a SIP mes-
sage is handled by a container thread, while the SIP Session Replication (SSR)
shows the synchronization activities in the cluster.

8.4 Network Configuration

Another part that is of an interest is how the network listening endpoints are
configured. By default, SailFin listens on the “IP ANY” interface 0.0.0.0 and TCP
and UDP port 5060, as specified in the SIP protocol. It opens up a TLS port on
port 5061, also according to the standard default ports. Even if the listeners are
opened up in a general way, so that a machine has multiple network interfaces,
there has to be some address that is inserted into the SIP headers stating its own
communication address. For that purpose, SailFin has a guessing algorithm that
trys to find the most appropriate address within the available interfaces. Some-
times, as in the case of using a hypervisor like VM Ware, the default-picked address
is wrong, but in most cases it is sufficient.

So, let’s take as an example one home server that is running as a SailFin
server connected to the internet while at the same time being a DHCP host and
a wireless access point to other devices. It would then have an address and IP from
the local ISP—let’s assume 212.145.54.56—and then also provide a home net-
work of 10.0.0.1. The guessing algorithm will pick 212.145.54.56 and use it when
it inserts information into the SIP “Via,” “Contact,” “Record-Route,” and other
such SIP headers indicating its own server address. So, in this example, a SIP
INVITE message originating from a SailFin server would have a contact as follows:

Contact: sip:212.145.54.56:5060

148 Understanding SIP Servlets 1.1

Now, imagine that you have multiple interfaces and the wrong one is used.
Another scenario is when there is a NAT or IP Sprayer Load Balancer that is the
interface to the network the SailFin server is deployed on. In that case, there might
be a need to insert the IP Sprayer address, or it may be even more useful to put
in a DNS name so that it is easier for people to remember.

In order to overwrite the default behavior, there are actually two different
mechanisms that allow a user to tweak the default configuration. SailFin has a
“sip-listener” element in the “domain.xml” in which a listener by default is con-

figured like this:

<sip-listener address="0.0.0.0" enabled="true" id="sip-listener-1"
port="5060" transport="udp_tcp"/>

Imagine that someone wants to build a SIP-firewall kind of application; it
would really matter on what physical interfaces the connections are established.
We can take the same home server example as before, but also remember the sce-
narios of multiple domains in the same server or of a machine with multiple appli-
cation server (AS) instances. This configuration would also have to be modified.
Here is the home server SIP-firewall example:

<sip-listener address="212.145.54.56 " enabled="true" id="sip-
listener-1" port="5060" transport="udp_tcp"/>

<sip-listener address="10.0.0.1" enabled="true" id="sip-listener-1"
port="5060" transport="udp_tcp"/>

Note 1t would be possible to support only TCP or UDP, but according to RFC 3261,
which is the specification defining SIP 2.0, a server must support both UDP and TCP.

This will make sure that the connection layers will be kept as two separate
IP listening points. In order to get the information what kind of socket and IP
protocol a SIP message actually arrived on the standard SIP Servlet method on a
“SipServletMessage,” “.getLocalHost()” and “getLocalPort()” can be used to find
out from within a SIP Servlet application. (It is also possible to look at “Via®
headers, but it is not recommended, because the API should be the preferred
way.) In the other direction, when messages are sent, the JSR 289 now allows for
the multihost support that can let the Servlet programmer choose an address and
in that way implement a SIP firewall.

Note The SIP Servlet 1.1 method “setOutboundInterface” should be used, but at the
time of this writing, it has not yet been implemented in SailFin.

The other configuration possibility is to decide what the address and port used
for identifying the SailFin server should be. The configuration element looks like
this:

<sip-container external-sip-port="5060" external-sips-port="5061">

SailFin Introduction 149

But there is another possible attribute that can be set like this:

<sip-container external-sip-address="sipservlet.net" external-sip-
port="9090" external-sips-port="9091">

A contact header from a message generated from a server would yield a

header like this:

Contact: sip:myService@sipservlet.net:9090

The follow-up question: What can be done with this? One possibility is that
a DNS entry can be provisioned in a way that would yield multiple server IP
addresses for a lookup. More on this is described in an example later in the chap-
ter, in which DNS and Service Record (SRV) are used in a clustered setup.

The last part of the configuration of the network listening points has to do
with TLS. The TLS listener is configured with these lines in the domain.xml:

<sip-listener address="192.16.149.111" enabled="true" id="sip-
listener-2" port="5061" transport="tls">

<ssl cert-nickname="s1as" client-auth-enabled="false" ssl2-
enabled="false" ssl3-enabled="false" tls-enabled="true" tls-rollback-
enabled="true"/>
</sip-listener>

It is very similar to the configuration of a UDP and the TCP listening point.
TLS is optional to support when coming to the SIP standard, but in SailFin it is
enabled by default, since there is no harm in accepting connections on TLS by
default on the standard port 5061. That said, if the security is taken for real, then
this is not enough. The most important thing for secure communication is that
a client that is connecting itself receive an identity certification from the server it is
trying to establish the connection with. For example, say a company like Ericsson
sets out a SIP server for all the traveling employees to use. Now, being on the road,
privacy might be a nice thing to have so that open Internet users can’t see where
a connecting client is setting up a SIP session. TLS will help you with that, but
since it is on the open Internet, someone might try to do a man-in-the-middle
attack and pretend they have the ericsson.com SIP server the user is trying to
access. This would destroy the entire idea of using TLS from the start, because
having an encrypted socket stream with the wrong person is as bad as having a
normal TCP connection with the same. For that reason a certificate identifying the
SIP host would be used. In the configuration, there is this “cert-nickname” attrib-
ute that by default points to the “slas.” This is a certificate that is generated by
default in the installation step of the SailFin server. This certificate is used both
for the SIP server and for the HT'TP server so that any HT'TPS browser accessing
the SailFin server would receive the very same certificate (“cert”). (Of course, they
can be separated by reconfiguration of the defaults.)

150 Understanding SIP Servlets 1.1

If you are in control of both the client and the server, then this certificate
might be enough. If you do not have full control over the clients or you do not
want to distribute your public certicate key and install it on every device, then it
needs to be signed by a Certificate Authority (CA).

This is a normal operation in the HT'TP world, and your browser will warn
you if this is not the case. After you generate your private and public keys, they
would be sent to a global CA (e.g., VeriSign), who will try to establish your real
identity. In the previous example, Ericsson would pay a CA to prove its identity.
All browsers and also the SIP stack should come with the public key of at least a
couple of the global CAs. Even if the Ericsson.com server says it is serving for the
domain Ericsson.com, you should not trust it unless there is a public key that
matches or it is signed by a CA and that resolution proves that the CA guarantees
that it really is Ericsson.com you are talking to.

The other thing that can be configured is whether clients should also
authenticate themselves. Now this is not as often used, but in some cases, one
would really want to be sure that the TLS identity that is trying to register and
the “From” SIP header user is one and the same. For this purpose, the “client-
auth-enable” attribute should be set to “true”; then, in the TLS (SSH) hand-
shake, the server will mandate a valid client cert. In the SIP Servlet standard, the
client cert would be put in a “SipServletMessage” attribute (“javax.servlet.request.
X509Certificate” or “javax.servlet.response.X509Certificate”) in X509 class
format.

Knowing both sides of a TLS connection can be really useful. The next step
that is often confused in SIP with the TLS is the SIPS protocol URI part. A “sips”
URI scheme indication specifies that, if it is found in a SIP URI then the next
hop to route should be handled in a secure manner. The secure (ref to RFC 3261),
mechanism could be TLS, or alternatively, it could be an Internet Protocol Secu-
rity (IPSec) specified connection. Since IPSec is not visible at the Java level, the
SIP container cannot know whether an underlying connection is using IPSec. For
that reason, the SailFin container will always attempt to set up a TLS connection
when it discovers a SIPS URI as the next point at which to route. A SIPS URI
could look something like this:

Contact: Stoffe <sips:kristoffer.gronowski@sipservlet.net>

<domain>
<configs>
<config dynamic-reconfiguration-enabled="true" name="server-config">
<sip-service>
<access-log format="%client.name% %auth-user-name% %datetime%
srequestSs %status%s Sresponse.length%" rotation-enabled="true"
rotation-interval-in-minutes="15" rotation-policy="time" rotation-
suffix="yyyy-MM-dd" />

SailFin Introduction 151

<sip-listener address="0.0.0.0" enabled="true
1" port="5060" transport="udp_tcp"/>
<sip-listener address="0.0.0.0" enabled="true" id="sip-listener-
2" port="5061" transport="tls">
<ssl cert-nickname="s1as" client-auth-enabled="false" ssl2-
enabled="false" ssl3-enabled="false" tls-enabled="true" tls-rollback-
enabled="true"/>
</sip-listener>
<sip-protocol default-tcp-transport="false" error-response-
enabled="false">
<sip-link connection-alive-timeout-in-seconds="120" max-queue-
length="50" write-timeout-in-millis="10" write-timeout-retries="25"/>
<sip-timers t1-in-millis="500" t2-in-millis="4000" t4-in-
millis="5000"/>
</sip-protocol>
<property name="accesslog" value="${com.sun.aas.instanceRoot}
/logs/sipaccess" />
</sip-service>

id="sip-listener-

<sip-container>
<session-config>
<session-manager>
<manager-properties/>
<store-properties/>
</session-manager>
<session-properties/>
</session-config>
</sip-container>
</config>

8.5 SIP Container Architecture

Since this is a book related to programming, you as the reader know that con-
figuration possibilities are always limiting. Since we are dealing with an open
source SIP container, we have the possibility to exploit all of its features. For that
purpose, we will be taking a closer look at the architecture. Most containers have
some hook mechanisms, but generally they are not all that flexible. The SailFin
SIP container is built in a layered architecture design pattern following the inter-
ceptor pattern principle. Since the interceptor was developed entirely for the pur-
pose of being in a SIP container as opposed to a normal SIP stack structure, the
common format for it is the “SipServletRequest” and the “SipServletResponse”
object class. The basic idea is that layers are stacked together, forming a complete
SIP stack and, at the same time, a JSR 289 SIP Servlet container.

152 Understanding SIP Servlets 1.1

Application 1

| Application 2

| Application Router

Application 3

| Servlet Dispatcher |

| Local Route Manager |

| Dialog Manager |

[Resolver Manager [

[Replication Manager |
| next() dispatch()

| Transaction Manager

[CLB BE |

| Converged Load Balancer |

| Overload Protection Manager |

| Network Manager |

Figure 8.1 Layer Architecture inside the Sailfin Sip Servlet Container.

Figure 8.1 is a depiction of the default layers providing the complete
container.

The entry point is the Network Manager layer. It parses and frames each
incoming SIP message on the network listening points previously specified until a
complete message is read. For this purpose the Grizzly, NIO layer is used by default
together with a thread pool (com.ericsson.ssa.container.NetworkManager).

Note There are two actual Network Manager implementations available: “com.ericsson.
ssa.container.GrizzlyNetworkManager” and “.ericsson.ssa.container.OldNetworkMan-
ager” which is the legacy implementation.

When one message is framed completely by the parser (com.ericsson.ssa.sip.Sip-
Parser), it is relayed to the next layer by the Grizzly filter (com.ericsson.ssa.Mes-
sageProcessorFilter).

Make a note that the Network Manager is only the first layer, so the result-
ing “SipServletRequest” or “SipServletResponse” is not a complete object that
would satisfy the SIP or the SIP Servlet specification. There are several fields that
would still yield null values, for example, an application requesting a related
“SipSession” object. Among other duties, the Network Manager sets the local and
remote endpoints for communication according to the JSR 289 specification. The
Network Manager also sets the TLS client cert if it was requested, and it makes

SailFin Introduction 153

sure to keep a reference about what IP stream a request arrived on so that a
response can be sent in the opposite direction.

Network Manager also implements parts of the IETF draft on outbound
proxy for connection reuse to deal with NATs and slow-establishing TLS client
sockets.

We will come back to the Converged Load Balancer layer in a bit, since it
is optional and not taking an active part in a developer single-node-instance con-
figuration. The next mandatory layer is the Transaction Manager. Its responsibility
is to keep the SIP transaction state machine specified in RFC 3261 and handle
retransmissions so that messages do not reach the Transaction User (as specified
in RFC 3261 [1]) layer (i.e., that two Servlet instances do not act on a resend of
the very same INVITE request). It keeps track of both the server transaction and
client transaction and timers related to them. In some cases when there is no answer,
it would generate a 408 response to unanswered requests after 64 T'1 (default 32
seconds), as specified in RFC 3261 [1]. This is a guarding mechanism in SIP, but
it is an important way of communicating for the SIP Servlet as well. In a case in
which a SIP Servlet is acting as a UAC, it would originate an INVITE request, and
for some reason the other side might have crashed. The container would then gen-
erate a 408 internally traversing all the Servlets in its path, and the Servlet devel-
oper could clean up any consumed resources. So, this layer is mandatory and
important for consistency.

The Replication Manager layer does pretty much as its name implies. If
SIP Session replication is enabled for high-availability purposes, then SIP dialog-
related data is propagated in the cluster. For this purpose, a replication framework
similar to that dealing with HT'TP Session replication has been designed to take
care of the SIP counterparts. It is based on Shoal/JXTA, and it serializes the data
objects. The cluster is formed in a ring topology in which every node replicates
all of its session data to its buddy (neighbor). Then, in failure events or when one
node is taken out of service, the new node handling the established SIP dialogs
is able to retrieve the dialog from the backup copy. SIP Servlet Timers are also
stored and replicated and require special attention, since someone needs to fire
them when the owning node exits the cluster.

The next layer is the Resolver Manager. It primarily acts on messages leav-
ing rather than entering the SIP Servlet container. When it comes to forming the
path into the container, the Resolver Manager examines the SIP “Via” header that
the communicating client has set and verifies whether it matches the credentials
received earlier by the Network Manager. In the SIP specification, the received
parameter and the rport “Via” parameter is set on the topmost “Via” header (if
the “rport” parameter is supported).

The Dialog Manager layer checks for the existence of a SIP “To” header tag
parameter. This indicates that this message is a part of an ongoing SIP dialog

that is created for SIP requests like INVITE, SUBSCRIBE, and REFER. Also,

154 Understanding SIP Servlets 1.1

note that other SIP messages like a MESSAGE can be sent in an established SIP
dialog. When a SIP dialog already exists, the same SIP Servlets that were traversed
in the initial composition should also be traversed for the subsequent flow. If the
dialog manager cannot find any previous information, it will return a SIP 481
session/dialog “does not exist” error response. If it is found, the Dialog Manager
needs to find the direction. When an initial call coming from A to B generates SIP
Servlet invocation S1,52,S3, any subsequent signaling from A should follow that
order. But when subsequent signaling, such as the SIP BYE message, coming from
B is an established dialog, the Dialog Manager needs to ensure that the reversed
chain is executed. In this case, $3,52,S1 would be the result. The container achieves
this by pushing the correct instances on the dispatcher stack, and then the §1,52,53
are executed and popped from the stack.

The last layer completing the required stack is the Application Dispatcher
layer. When the message reaches this layer, it is complete, taking into account the
SIP transactions, SIP dialog objects, and other aspects mandated by SIP. There
are two possible outcomes when coming to the Application Dispatcher. If it is an
initial request, then the Application Router would be consulted to decide which
application should receive the request next. For subsequent calls, this layer is not
reached and is taken care of by the Dialog Manager described previously. So the
AR is in charge of receiving the request and decides that it should be handled
by application A. Now the Application Dispatcher starts the layer chain in the
other direction by calling the dispatch method. It locates the Servlet Dispatcher
that represents application A and calls its dispatch method. The Servlet Dis-
patcher is consulted, as discussed in Section 2.1.3. It would either use the SIP
Servlet mapping rules to find a Servlet match, or it would relay to the main Servlet
for that application. The Servlet Dispatcher finds the correct Servlet instance and
calls its service method. For simplicity, we could imagine that the SIP Servlet is
a simple UAS with two lines returning just a 200 OK message. The other alter-
natives are the Proxy or a B2B, but for now we would just follow the response

back.

Public void doMessage(SipServletRequest req) {
SipServletResponse resp = req.createResponse(200);
resp.send();

Behind the scenes, the correct fields are copied from the request to the
response, and objects are linked in order to be able to find each other at a later point
in time. After completing the linking, the “send” method will eventually start the
trip down the layers in the reversed order. On the way up the layer architecture,
each layer can decide to push a Dispatcher interface class. Often it is the Layer class
itself, but in some circumstances it can be a delegated class, or a layer can even
ignore being part of the message going out. One example in which a layer is not

SailFin Introduction 155

the one that handles the outgoing message itself is that of the Transaction Man-
ager. The Transaction Manager pushes a server transaction that implements the
Dispatcher interface on every incoming message. In this case, there is no need to
search for matching transaction once the 200 OK message is being sent; just pop
it from the dispatcher stack. Another layer that uses this technique is the Network
Manager in the case of TCP and TLS. The same principle applies here in that if
a request arrives on TCP, then according to the specification, the response should
try to reuse the same socket on the reverse path. Actually the Grizzly Network
Manager pushes both the Stream Response Dispatcher class that represents a con-
nected TCP socket as well as the Network Manager. The reason for this is, if the
open connection has failed, then the Network Manager will establish a new TCP
connection.

The normal exit for a response is to first pop the topmost dispatcher, which
is the Dialog Manager for initial requests or the ResolverManager for subsequent
requests (after a visit to all the SIP Servlets by Application Dispatcher or Dialog
Manager). This ensures that the SIP dialog information, “SipSession” object, and
“SipApplicationSession” objects are consistent. Next in line is the Resolver Man-
ager, which inspects the next destination to route and determines whether there is
a tel URL with an ENUM phone number to translate or there is a DNS entry
address to look up. In both cases, it will try until it gets a SIP URI with an IP part
in the destination host field. This layer makes sure to implement the RFC 3261
and RFC 3263 lookup mechanism specified in SIP. After the Resolver Manager,
the next dispatcher layer to be called is the Replication Manager. In the case of ses-
sion replication, the data would be check-pointed by the Replication Manager and
replicated to a buddy node in case there should be any failures of the current node.

In the case of a single node, the next layer would be the transaction layer
and, as mentioned before, the actual server transaction if it is a response and,
if a request, there wouldn’t be any transaction yet, since it is an outgoing new
request, so the Transaction Manager would be invoked and a client transaction
associated. After the transaction layer, it is normally time to go out on the net-
work, and here the Network Manager or an already established TCP or TLS
connection is reused.

So this describes the core layers. You might be asking why it is useful to under-
stand this. First of all, every SIP container has to do this kind of functionality in
this order to comply with SIP RFC and the SIP Servlet standard. So, even if it’s not
well separated or made visible by an application server vendor toward the Servet
developer, this is what happens inside a SIP Container. By understanding the archi-
tecture, one layer can be enhanced and replaced. Another socket library can be
used, or a different thread pool or maybe session replication storage that uses some
Structured Query Language (SQL) database instead. There is also a good chance
that, if there are improvements with proven functionality, they could be donated
to the community and become part of the SailFin code base.

156 Understanding SIP Servlets 1.1

There are two more layers in the architecture worth knowing about. The
first one is the Overload Handler Manager. It tries to detect when the particular
hardware the SailFin server runs on is overloaded. It uses a sampling technique to
periodically monitor the CPU and memory consumption using a standard MBean
interface from JEE 5. There are different thresholds, up to the first of which
would be considered normal operations. When the first threshold is reached, then
all initial SIP messages would be rejected (the ones that do not have any to-tag
are part of an existing dialog). The idea is that every new initial request will poten-
tially trigger a SIP dialog, making all kind of objects, which requires the server
to keep consuming both CPU and memory. If the next threshold is reached, then
only responses will be accepted into the server but not any SIP requests. In this step,
the server has a lot to do and does not want to accept requests because they cre-
ate additional transactions; however, by allowing responses through, it hopes to
finalize an already existing transaction. Competing transactions would lead to the
fact that the Transaction Manager removes its reference to the transaction and
resources can be garbage collected. The last threshold is the critical mark where
the server will throw away all requests and responses in an attempt to stay alive
and to catch up on its processing tasks. This can happen for various reasons, such
as that the Garbage Collection is not well tuned and the server is doing a long
Garbage Collection pause. Other possible scenarios are that someone is doing a
denial-of-service (DOS) attack or that your system generates massive traffic flow
at the same time. This can also happen in voting applications and should be esti-
mated for.

Now you may think that this is not the correct behavior for my application.
Right! This is exactly why this chapter has been included in the book. There might
be a requirement to track some other resource, since that one might be the limit-
ing factor. It’s not uncommon for there to be a database tier with a fee involved
in the number of connections made or with some other counter in the database
that limits the system capacity. Instead of monitoring CPU or memory, the
updated version of the overload could look at the database usage.

There is another question that is important to think about. Parsing and fram-
ing a SIP message takes some time and effort, so if you decide that it should be
rejected in order to protect the system, then this has to be done pretty early in the
layer architecture for performance reasons. Here there is a big advantage, since mak-
ing a Servlet do the same job requires the full stack to have been traversed, and then
alot of objects are created. One can ask the question, how much then do you really
save by rejecting a SIP request? The next thing to figure out is what kind of response
code should be propagated back. In most cases, a 408 or 503 with or without a retry
after it should be used. This is one of the weak points of SIP, because the flow con-
trol is quite badly supported. Lets take a closer look at what happens:

If a destination receives a 503 SIP error response with a retry after “x” sec-
onds, then it would wait “x” seconds before it retries that SIP URI again. In the
other case, in which a 503 does not contain the SIP “Retry-After” header or send

SailFin Introduction 157

a 408 response, what would happen so that the current request rejected? It is up
to the other client to retry the request, when and if it wants. Often the other side
would just try again straight away. So why is this bad? If the other side is a client,
then this mechanism works very well. But in a case in which the sending side is
a SIP proxy server, where “x.com” sends to “y.com” and the “sip:y.com” server
responds with a 503 retry after 5 seconds, the result will be that the “x.com” server
has to buffer all its requests to y.com for 5 seconds. In turn, it can result in the
x.com server’s also getting congested and the entire network malfunctioning. It
would be far better if the “y.com” server could gradually ask the “x.com” server
to buffer more messages. Now it is “send me either all or nothing.” There are IETF
drafts addressing this issue, and a gradual percentage-based system is suggested
within the working groups expanding the new standards.

This is an important concept to understand when dimensioning larger com-
mercial systems. Even if there is now a standardized solution, a server can protect
itself with an Overload Manager approach. Another thing that can be done is to
use TCP-based transport, since in the TCP stack there is the sliding window. When
a remote SIP server has too much to do, it will not be able to parse a SIP request
from the TCP buffer fast enough, so this will result in a decreased sliding window.
In our previous example, the “x.com” server will not be able to write the bytes to
the socket because the underlying Operative System (OS) will tell him to wait.
This will throttle the system in a way. Another good thing to keep in mind is not
to send large chunks of body content within the SIP messages. For streaming
purposes or to send messages with pictures, there are other more suited protocols
(such as MSRP, RTDP, and so forth).

Another thing that is worth noting is that the Overload Manager is also
linked in on the HTTP path (org.jvnet.glassfish.comms.httplayers.HttpLayer).
One good thing that could be a best practice is to also restrict the deployed appli-
cations from being accessed in overload situations.

Since a Web Servlet is competing for the same resources, like CPU and mem-
ory, it makes sense to reject them as well. There is one exception that is worth men-
tioning, and that is the admin application. It could be a good idea to be able to log
in and administrate the system even if it’s extremely overloaded. (It would proba-
bly be a better idea to use the Command Line Interface (CLI) “asadmin” to decrease
alog level or undeploy a spinning application.) However, maybe your system is gen-
erating revenue. The administrator would go into conflict and consume resources,
so your system would make less money. Then it would be acceptable for the admin
application to be blocked too. But leave a window open if you need to access an
overloaded system.

The Local Route Manager layer is a good showcase for how extending the
SIP container can be made easy. It simply inspects the outgoing messages and
looks at the next hop. If someone has put 127.0.0.1 or any other IP address that
would end up in the very same instance of the SailFin container, then why take
the penalty of serializing and deserializing? This simple layer resets the state and

158 Understanding SIP Servlets 1.1

pushes the outgoing request back to the Application Dispatcher (AD). The AD
does not care if the message was sent out on the wire or not.

The last layer that is bundled with SailFin is perhaps the most interesting
one. It s called the Converged Load Balancing (CLB) layer. Use of the term con-
verged comes from the fact that it is in the both SIP and HTTP paths. This layer
is also one that should be intercepted as close to the parsing and framing of pro-
tocol messages as possible. What it does is act as a load balancer, distributing the
incoming traffic to a specific node in the cluster. In the case of SIP, it would hap-
pen before the transaction layer, and so it is to be seen as a stateless proxy SIP
server. For HT'TD, this happens before the HT'TP Session mechanism, so it would
be behaving as a normal HT'TP proxy. This layer uses a consistent hash algorithm
to make sure that requests for a specific SIP URI always ends up on a particular
SailFin server instance. Just to give a simple example, if a request is targeted to
“sip:voicmail@sipservlet.net” and the SailFin cluster is handling the SIP “servlet.net”
cluster, then it would use the user part of the URI, in this case the string “voice-
mail.” That would be taken as input to the algorithm, and the other part is the list
of available servers. The CLB layer is using Shoal to “heartbeat” the cluster, keep-
ing a list of servers that are alive and well. From that list, for every time the func-
tion is called, it would yield server X and the nice part is that, if server X is down,
then server Y will be returned. That limits the need to transfer any SIP transaction
and dialog state as well as any “SipSession” or “SipApplicationSession” data (other
than replication if High Availability (HA) is needed).

There are other mechanisms detailing how high availability and load bal-
ancing could be achieved, and we will talk more about it in the cluster section at
the end of this chapter. For now, it is important to understand how SailFin does
it, that it allows you to change the algorithm or the actual place in a SIP or HTTP
message where it looks for the input string for the algorithm. In the cluster section,
we will discuss what other alternatives there are, and of course, nothing prevents
you from replacing this layer or using a high-end IP Sprayer hardware that already
understands SIP and pretty much does the same thing. There is also the “SipLoad
BalancerManagerBackEnd,” which is the receiving part, so when a SIP message
has already been load balanced, this makes sure that on the way out it is routed over
the same front-end server that it originally came in on. This is of course so that
responses arriving on TCP can reuse the same socket or, in the case of connection
reuse, this would also be able to navigate to the right flow.

Now that you know what layers there are, we are going to talk about why
and how to write your own layers.

8.6 Writing Your Own Interceptor Layer

We touched upon some aspects of when one would want to write his or her own
layer. Here is a list:

SailFin Introduction 159

* Replace or enhance an existing one.
* Add more logging in a place for debug purposes.

* Add a strict syntax check layer for development but remove it for
production.

¢ Add statistics.

* Add license manager layer (e.g., my customer paid for only 10 simulta-
neous calls).

A SIP client that many users have not behaving correctly when it comes
to the SIP standard.

* Implement a non—JSR 289 compatible User Agent that only has one
application, so it does not need AR, mapping rules, and so forth (could
be to decrease footprint).

* Implement an Internet draft or a not supported by SailFin RFC.

The process involved in making your own layer requires the following steps:
Create a class that extends the “Layer” interface. Then implement the methods and
build a “.jar” file with the class.

This class should be put into the “<SailFin inst dir>/lib” or any other place
in the Java class path. Then the “domain.xml” configuration file needs to be mod-
ified to be included in the correct location in the chain.

We start by extending the right interfaces.

Now let’s look at the Layer interface:

next (SipServletRequest req)
next(SipServletResponse resp)
registerNext (Layer 1)

And then we have the Dispatch interface that the Layer inherits from:

dispatch(SipServletRequest req)
dispatch(SipServletResponse resp)

Other than that, all the layers are also scanned for lifetime methods:

public void start()
public void stop()

There is also a need of making the Layer instance so that a static call to the
“getInstance” method is performed in the effort to access a pointer to each layer.
(This is not the nicest pattern, and one has to remember to implement this method
in order for the bootstrap to be correct. This will more than likely be redesigned
in next version and could use the same pattern that the AR is using.)

160 Understanding SIP Servlets 1.1

public static Layer getInstance()

There is also a “LayerHelper” class in the “com.ericsson.ssa.container” pack-
age, which can be used to keep track and call the next layer.

Here is the example code that pretty much performs a dummy logging layer.
It will intercept each message and print out its presence to the log.

public class PatchupLayer implements Layer {
Layer nextLayer = null;=
static Logger log = Logger.getlLogger("PatchupLayer");

private static final PatchuplLayer singletonInstance = new Patchup
Layer();

// Enforce Singleton pattern
private PatchupLayer () {

}

public static PatchupLayer getInstance() {
return singletonInstance;

}

public void next(SipServletRequestImpl req) {
log.severe("Do the useful code here on the way in to stack");
req.pushTransactionDispatcher(this);
req.pushApplicationDispatcher(this);
LayerHelper.next(req, this, nextLayer);

public void next(SipServletResponseImpl resp) {
log.severe("Do the useful code here on the way in to stack");
LayerHelper.next(resp, this, nextLayer);

}

public void registerNext(Layer next) {
log.severe("Register layer after the patchup.
"+next.getClass().getName());
nextLayer = next;

}

public void dispatch(SipServletRequestImpl req) {
log.severe("Do the useful code here on the way out of stack");
Dispatcher d = req.popDispatcher();
if(d != null) d.dispatch(req);

}

SailFin Introduction 161

public void dispatch(SipServletResponseImpl resp) {
log.severe("Do the useful code here on the way out of stack");
Dispatcher d = resp.popDispatcher();
if(d != null) d.dispatch(resp);

}

One thing that was not mentioned before was that, in the next method,
there are two calls for pushing a “TransactionDispatcher” and a “RequestDis-
patcher.” This is in order if the layer wants to be part of the chaining going out.
The reason for why there are two is that the Transaction Dispatcher is used for
responses going out, while the Request Dispatcher is used for requests that are
generated because of an incoming request. For example, the SIP 200 OK on an
invite could consume the transaction stack, the SIP INVITE request could have
first been proxied, resulting in a new INVITE SIP message leaving the container.
It would then consume the request stack the dispatcher pushed previously. Even-
tually, the proxied destination would return a 200 OK. That one would enter the
stack with the next call, but after reaching the proxy, it would dispatch the 200
OK back to the originator of the call, consuming up the transaction dispatcher
stack.

Now, understanding this mechanism, one has to decide whether both cases
are interesting for intercepting and whether the layer stacks should be given a
pointer to this layer or to a delegating one, as in the example of the Transaction
Manager handing off to the Server Transaction.

Note The transaction stack would push a Server Transaction (ST), while for the request
stack it is better to put a reference to the Transaction Manager, since creating a Client
Transaction (CT) without knowing whether the application will ever be a Proxy or B2B
could waste valuable resources.

When the code is complete, the following log lines will have been added to trace
the progress. Note that SEVERE level is used so that there is no need to go into
the configuration and to enable it in order for it to appear in the log file. There
should be no other severe message,s so they should be easy to spot.

A NetBeans “.jar” project could be compiled, or if it is preferred, another
Integrated Development Environment (IDE) or even an Ant “build.xml” is
simple enough in this case. In this example, a “PatchupLayer.jar” is produced
and copied to the library directory of SailFin.

Now it is time to go in and alter the “domin.xml,” so the new layer will be
instantiated. Here is what the configuration would look like:

<sip-container external-sip-port="5060" external-sips-port="5061">
<session-config>
<session-manager>

162 Understanding SIP Servlets 1.1

<manager-properties/>
<store-properties/>
</session-manager>
<session-properties/>
</session-config>
<stack-config layer-order="NetworkManager, PatchuplLayer,
ConvergedLoadBalancerFactory, SipLoadBalancerManagerBackEnd,
TransactionManager, ReplicationManager, ResolverManager, DialogMan-
ager, LocalRouteManager, ApplicationDispatcher">
<stack-layer class-name="com.ericsson.ssa.container.Network
Manager" id="NetworkManager">
<property name="reporters" value="CallflowReporter,
SipMessageReporter" />
</stack-layer>
<stack-layer class-name="net.sipservlet.sample.layer.-
PatchupLayer" id="PatchupLayer">
</stack-layer>
<stack-layer class-name="com.ericsson.ssa.container.Overload
ProtectionManager" id="OverloadProtectionManager">
<property name="httpLayer" value="true"/>
</stack-layer>
<stack-layer class-name="org.jvnet.glassfish.comms.clb.core.
ConvergedLoadBalancerFactory" id="ConvergedLoadBalancerFactory">
<property name="httpLayer" value="true"/>
</stack-layer>
<stack-layer class-
name="org.jvnet.glassfish.comms.clb.core.sip.SipLoadBalancerManager-
BackEnd" id="SipLoadBalancerManagerBackEnd">
</stack-layer>
<stack-layer class-name="com.ericsson.ssa.sip.transaction.-
TransactionManager" id="TransactionManager">
</stack-layer>
<stack-layer class-name="com.ericsson.ssa.sip.persistence.-
ReplicationManager" id="ReplicationManager">
</stack-layer>
<stack-layer class-name="com.ericsson.ssa.sip.dns.Resolver
Manager" id="ResolverManager">
</stack-layer>
<stack-layer class-name="com.ericsson.ssa.sip.DialogManager"
id="DialogManager">
<property name="FactoryClassName"
value="com.ericsson.ssa.sip.DialogManager" />
</stack-layer>
<stack-layer class-name="com.ericsson.ssa.sip.LocalRouteManager"
id="LocalRouteManager">
</stack-layer>
<stack-layer class-
name="com.ericsson.ssa.container.sim.ApplicationDispatcher" id="
ApplicationDispatcher">

SailFin Introduction 163

<property name="applicationRouterClass" value="com.ericsson.
ssa.router.AlphabeticalRouter"/>
</stack-layer>
</stack-config>
</sip-container>

Note that, in the “stack-config layer-order” element, we have added the
“PatchupLayer.” The other place is a new “stack-layer” element, which also spec-
ifies the full class name with the page prefix. There is also a property set that it
should be an “httpLayer.” We will come back to that in a bit.

Now let’s start the server and look in the log file for the lines coming into
action. We can reuse the “SimplestApplication” Servlet shown in Chapter 7,
which, basically, sends a SIP 200 OK response to a message. For this purpose we
can use the NetBeans built-in SIP test agent. The log printout in SailFin yields
this:

[#|SEVERE|sun-glassfish-comms-serveri.0|PatchupLayer|_ThreadID=15;
ThreadName=SipContainer-serversWorkerThread-5060-8; RequestID=
0b03e784-d297-438d-b195-15a730c8709¢c; |Do the useful code here on the
way in to stack|#]
[#|SEVERE|sun-glassfish-comms-serveri.0|PatchupLayer|_ThreadID=16;
_ThreadName=SipContainer-serversWorkerThread-5060-9; RequestID=d2dea1
62-acel1-4001-9c1d-4932cc71ca77;|Do the useful code here on the way
out of stack|#]

Note One interesting thing that can be noted is that the request is handled by worker
thread 8, while the response, by thread 9. This is due to the asynchronicity of SIP, in which
one request can yield multiple other requests and responses. For an HTTP Servlet pro-

grammer, this is a new experience.

From the log above you can see that it is intercepted both on the call-to-next
and dispatch.

We are now returning back to intercepting HTTP traffic in addition to
SIP traffic. The property “httpLayer” has special meaning for the container. It
enables a hook to the Web container in SailFin. Other than that, properties can
be added using a JavaBean style of declaration. If you look at the properties of
the Network Manager, you'll see it declares a reporter’s property. That one could
be picked up in our “PatchupLayer” simply by adding a “getReporters()” and a
“setReporters()” public function declaration.

For the HTTP bootstrapping, the “PatchupLayer” needs to implement the
“HttpLayer” interface and an additional factory method,

public class PatchupLayer implements Layer, HttpLayer {

164 Understanding SIP Servlets 1.1

as well as the following three methods:

public static HttpLayer getHttpLayerInstance() {
return singletonInstance;

}

public boolean invoke(Request request, Response response) throws
Exception {
log.severe("Do the useful code here on the way it to http");
return true; //Return false if not wanting to continue

}

public void onDestroy() {
log.severe("Do the useful code here on http destroy");

}

Now, in order to execute the code, we can use the automatically generated
JSP file from the “SimplestApplication,” which simply prints “Hello World” in

the browser.

http://localhost:8080/SimplestApplication/

The log result after loading the page would yield the following:

[#]|SEVERE|sun-glassfish-comms-serveri.0|PatchupLayer|_ThreadID=17;
_ThreadName=httpSSLWorkerThread-8080-1; RequestID=0f9514d4-7a07-4a09-
aa4b-24565390e3fa; |Do the useful code here on the way it to http|#]

So what else could you do with this?

A more advanced responsibility for it would be to count concurrent calls.
To achieve this, there would have to be a counter; then, for every ACK response
for an INVITE SIP message, it would be incremented, and for every 200 OK for
a BYE, decremented. It is not much of a jump to say that, if the counter reaches
X, the layer starts to reject the initial SIP INVITEs—and there you have a licens-
ing layer throttling on concurrent calls. Basically, the sky is the limit, but if you
invent a really cool layer, it is polite to donate good design back to the commu-
nity (unless one is making a tremendous amount of money on it).

8.6.1 Writing Custom Application Router

The JSR 289 specification allows for writing of customized Application Routers
(AR). Until now, we have been using the default “Alphabetical ApplicationRouter”
in SailFin. It simply chooses and sorts the deployed applications based on their
names in alphabetical order. “a.sar” will be called before the “b.sar” application no
matter when they were deployed or undeployed. This is quite convenient, since

SailFin Introduction 165

most architectures deploy only a single application, and they do not need to
worry about any AR configuration. In a deployment with multiple “.sar” files, it
might be required to write a custom AR component. This happens only when
two “.sar” files are triggered for the same kinds of messages and they cannot be
separated by mapping rules. If it is the same person writing the SIP applications,
there is an option to put them into the same “.sar” file and to use the previously
described main Servlet approach instead. If you prefer to write small, independ-
ent SIP applications that can be reusable, then it might be better to write a cus-
tom AR. We will come back to other reasons why one would want to write a
custom AR after the example.

The custom AR uses the “.jar” Service Provider Interface (SPI), so we need
to package our custom router accordingly, in a “.jar” file. Then we need to create
a META-INF/services directory according to the service provider SPI requirements.
In the services directory there needs to be a “javax.servlet.sip.ar.spi.SipApplication
RouterProvider” file. This file should point to our custom “SipApplication
RouterProvider.”

In the file we specify the name of our factory class:

net.sipservlet.sample.ar.CustomRouterProvider

Then we need to implement the “CustomRouterProvider” interface and
override the factory function.

public class CustomRouterProvider extends SipApplicationRouter-
Provider {

private final CustomApplicationRouter ar = new CustomApplication-
Router();

public CustomRouterProvider(){}

@Override

public SipApplicationRouter getSipApplicationRouter() {
return ar;

}

}

The provider class needs to have a public, no-argument constructor, and it
needs to implement the abstract method “getSipApplicationRouter.” Here we
instantiate our custom AR class and return it. When this is done, then the
“CustomApplicationRouter” class has to be implemented.

public class CustomApplicationRouter implements SipApplicationRouter {
private Logger log = Logger.getLogger("CustomAR");
List<String> deployed = new ArraylList<String>();

166 Understanding SIP Servlets 1.1

public void init() {
log.info("Init AR called");
}

public void init(Properties prop) {
log.info("Init AR called");
for(Object o:prop.keySet()) {
log.info("Property = "+o.toString()+" : value = "+prop.getProp-
erty(o.toString()));
}
}

public void destroy() {
log.info("Destroy AR called");

}

public void applicationDeployed(List<String> apps) {
deployed.addAll (apps);
for(String app:apps) {
log.info("AR deployed app = "+app);
}
}

public void applicationUndeployed(List<String> apps) {
deployed.removeAll (apps);
for(String app:apps) {
log.info("AR undeployed app = "+app);
}
}

public SipApplicationRouterInfo getNextApplication(SipServletRequest
req,

SipApplicationRoutingRegion region, SipApplicationRoutingDirective
directive,

SipTargetedRequestInfo info, Serializable stateInfo) {

log.info("AR getNextApplication returns -> "+deployed.get(0));
SipApplicationRouterInfo result = new
SipApplicationRouterInfo(deployed.get(0), region, null,
new String[0], SipRouteModifier.NO_ROUTE, statelInfo);
return result;

}
}

The class needs to implement the “SipApplicationRouter” interface, where
the different life-cycle methods will be called on the custom router. We also define
a proprietary “Logger” so that we can easily trace our AR. Then a list with the deployed
applications needs to be stored. On “init” and “destroy” function calls to the AR,

SailFin Introduction 167

we simply log them. When we get a callback to “applicationDeployed” and
“applicationUndeployed,” we simply add the applications to our list, or remove
the entries in the case of undeployment. Then we also add some logging to the
deployment events to see when they are called.

The most important function is the “getNextApplication.” This function
gets called for every initial “SipServletRequest” object being passed to the SIP con-
tainer. After returning the first application that should handle the request, if the
first application did not act in the role of UAS but instead acted as a Proxy on the
request (or acted as a B2BUA), then the modified request would trigger our cus-
tom AR again. For this sample, we do not inspect the request or do any advanced
analysis. Instead, the first deployed application in our list would be returned.

When all the code is in place, then we need to build the “.jar” file contain-
ing our custom AR. Then we need to copy it to the SailFin “lib” directory (actu-
ally, it could be any directory on the Java path). When that is done, we should
start the SailFin server:

bin/asadmin start-domain

Looking at the log “domains/domain1/log/server.log,” we should now see
a new entry using our “CustomAR” log level.

[#]| | INFO|sun-glassfish-comms-serveri.0|CustomAR|_ThreadID=10;_ Thread
Name=main; |Init AR called|#]

Here we can see that the container has instantiated our custom AR. When
the container is up and running, we need an application to test our custom AR.
For this purpose, we can reuse the “SimplestApplication” we wrote in Chapter 7.

bin/asadmin deploy SimplestApplication.sar

In the log we should find the following entry:

[#] | INFO|sun-glassfish-comms-serveri.0|CustomAR|_ThreadID=14;_Thread
Name=httpWorkerThread-4848-1; |AR deployed app = /SimplestApplication|#]

Now that we have deployed the application, we need to generate some SIP
requests to try it out. Once more, the NetBeans SIP Test Agent can be used to
generate a SIP MESSAGE request.

[#] | INFO|sun-glassfish-comms-serveri.0|CustomAR| ThreadID=16; Thread
Name=SipContainer-serversWorkerThread-5060-0; |AR getNextApplication
returns -> /SimplestApplication|#]

So the invocation works fine. If we undeploy the application, then the
“applicationUndeployed” function should get called.

168 Understanding SIP Servlets 1.1

bin/asadmin undeploy SimplestApplication

[#] | INFO|sun-glassfish-comms-serveri.0|CustomAR|_ThreadID=17;_Thread
Name=httpWorkerThread-4848-0; |AR undeployed app = /Simplest
Application|#]

The last callback is the “destroy” method, and for that we need to shut down
the SailFin server.

bin/asadmin stop-domain

[#]| | INFO|sun-glassfish-comms-serveri.0|CustomAR|_ThreadID=18; Thread
Name=RMI TCP Connection(13)-127.0.0.1;|Destroy AR called|#]

That concludes the simple sample, but certainly much more advanced appli-
cation routers can be written: one such example is the “echarts.org” community,
in which an entire framework for application composition is provided. The hub
of the Echarts framework is an Application Router that can be programmed as a
state machine.

There are other potential use cases: There could be an application that was
developed independently and now needs to be run in an IMS network. The IMS
specific selection can be adopted in the AR layer (like finding the IMS session
case and mapping it to a routing region). Another example might be that the SIP
container is used as an outbound Proxy. We might only want to do outbound serv-
ices to our own users: If a user from another domain is bouncing over our server,
then we could choose to send it to an application that would reject it, or we could
proxy it on according to the next hop SIP rules, if we want to be nice. One sce-
nario that the Application Router framework can help us with would be a case in
which we have been running some application on our server and then want to
break out to another server but also to get it back later and continue to execute
some services before we are done. Imagine that we have run a call-screening appli-
cation and then we want to forward the incoming INVITE SIP request to
National Security Agency (NSA) SIP server. Maybe they want to monitor all SIP
traffic so that they can wiretap. They would not trust us in running the service,
so it would be hosted in their server park. With the AR framework, we can spec-
ify in the “SipApplicationRouterInfo” an external route pointing to the NSA SIP
server. Then, for indicating that we want to resume the control, we can then use
the “SipRouteModifie. ROUTE_BACK.” The SIP container would then push
two SIP “Route” headers on to the outgoing request.

Route: <sip:wiretap@nsa.gov>;1lr
Route: <sip:oursailfin@sipservlet.net>;1lr

The different scenarios can be many, so it is up to the application deployer
to choose the tools and algorithms. The application router should be able to be

SailFin Introduction 169

totally stateless, and for that purpose we have the “statelnfo” serialized object that
we can ask the container to store for us. Other than that, a simple properties file
can be included in the AR “jar” file so that the AR can retrieve the initial con-
figuration. There is nothing preventing the AR from having its own database
Back End (BE) or some other repository. It is a simple component that lives inside
the application server, having its own class loader. It could have a GUI to be run
time configurable or use JMX to communicate to some other entity. One thing
to respect is not to modify the “SipServletRequest” object, because this could
have serious consequences. Any modifications needed to the SIP request should
be delegated to a helper application working on behalf of the deployed AR. This
is a quite powerful pattern in which guards can be written. For example, if the
AR wants to allow only authenticated users to execute its service chain, then
when an unauthorized request is spotted, then the next application should be the
“AuthApp,” which is a mandated pattern in this use case. In this way only authen-
ticated calls to service can be enforced by the AR and the helper “AuthApp.”

8.7 Cluster Deployment

So far we have been dealing with single instance development, but what happens
if your service gets popular and you want to add more servers? Configuring Sail-
Fin in cluster mode is a bit more complicated, but the actual tasks you need to
perform are quite straightforward. First of all, there is some architectural back-
ground information that should be mentioned in order for the practical steps to
make sense.

We have already touched upon the central controlling entity in a SailFin
deployment, the Domain Administration Server (DAS). So far, running on the
single instance, the DAS has been used as “the” server. Now in a cluster setup, it
is still possible to deploy applications, but there is a strong encouragement to avoid
it by the responsible architect designers. The reason for this is that you really
want to avoid overloading your administrative server. Deploying other adminis-
trative applications is good, but do not deploy the ones that take heavy SIP or
HTTP traffic.

For every physical machine (e.g., a PC or a server blade), you need to con-
figure at least one Node Agent. The Node Agent is a stand-alone process whose
main task is to listen for commands from the DAS and keep the configuration
synchronized between the DAS and its server instances. At same time, the Node
Agent will keep track of server instances. If one instance should fail, it will then try
to restart it. The Node Agent also provides a log file, where the success or any fail-
ures of its monitored server instances are reported. Then, in each machine han-
dled by the Node Agent, there can be multiple server instances. As noted before,
they need to have unique IP ports or run on different interfaces so that they do not

170 Understanding SIP Servlets 1.1

clash in the OS. The server instances do not necessarily need to belong to the same
cluster domain. Then the node agent needs to keep track of what “domain.xml”
configuration file updates should be relayed to which server instance. For exam-
ple, a system could look like DAS, Node Agent, and “cluster-a” and “cluster-b.”
Now, server instance “i1” is part of “cluster-a,” while “i2” is part of the “cluster-
b” domain. Even if it can appear funny to run like this on one machine, it makes
perfect sense, because every SailFin domain is symmetric. What that means is that
all applications need to be deployed on all server instances in a domain cluster.
So, if you want two different applications but still want the high-availability func-
tionality, this is how you need to configure your system.

So let’s look at how a simple cluster running on one machine would look.
For simplicity, we will define only one cluster, with two server instances. There
is the single machine cluster deployment, as shown in Figure 8.2.

Figure 8.3 shows the same cluster, now on three machines.

In order to set this up, we need to do the following:

* Create a clustered configuration of a domain. (This would create the DAS.)
¢ Start the domain.

* Create a Node Agent.

* Start the Node Agent.

¢ Create the cluster (cluster-a).

¢ Create the server instance il in cluster-a.

¢ Create the server instance i2 in cluster-a.

¢ Start the cluster (cluster-a).

Cluster A

Machine 1

AS instance 1

Node Agent

AS instance 2

DAS

Figure 8.2 Cluster of one physical machine containing two server instances.

SailFin Introduction 1m

Cluster A
Machine 1 Machine 2 Machine 3
Node Agent Node Agent
DAS AS instance 1 AS instance 2

Figure 8.3 Cluster of three physical machines containing one server instance each.

* Change the log level for SIP.
* Deploy a SIP Servlet archive application.

Preferably, this is scripted, and we will provide a simple script doing this.
The first step is to create a domain that runs in the clustered mode.

lib/ant/bin/ant -f setup-cluster.xml

The setup Ant script does the same thing as the “setup.xml” file but with the
distinction that a clustered domain is created with all the possibilities that HA
brings. The DAS is created and given the same ports as in the single node scenario.

bin/asadmin start-domain —terse=false —-passwordfile passfile domaini

This time the “start-domain” command takes additional parameters. That
the statement terse equals “false” means that we do want a more extensive log-
ging for the operation for a human reader. Setting it to “true” would produce min-
imal logging of the progress. Another parameter is given with the password file
as input. This file needs to have three different passwords specified:

AS_ADMIN_PASSWORD-=verysecret
AS_ADMIN_ADMINPASSWORD-=verysecret
AS_ADMIN_MASTERPASSWORD-=changeit

These are the ones we are going to use for our setup.
The next step is to create the node agent and start it.

172 Understanding SIP Servlets 1.1

bin/asadmin create-node-agent -—terse=false -—host 10.0.0.5
—-passwordfile passfile a-ni

bin/asadmin start-node-agent -—terse=false —-passwordfile passfile a-ni

The new variables here are the host, which simply is the IP address of our
machine. Then, at the end of the command, we specify the Node Agent name to
be “a-n1” (Agent—Node 1: This way, if we should have multiple machines, the
second would be “a-n2,” but the naming convention has to be meaningful only
for the system administrator). Beware of picking too-long names for the Node
Agent’s and server instances, since they are later concatenated into file directory
structures. Shorter names make it easier to navigate later on.

Now for the creation of the cluster, which we name here “cluster-a.” (So,
following this notion, the next cluster we create would be “cluster-b.”)

bin/asadmin create-cluster -—terse=false -—host 10.0.0.5 —-password-
file passfile cluster-a

Next step is to create the two instances “i1” and “i2.”

bin/asadmin create-instance -—terse=false -—host 10.0.0.5 —-password-
file passfile —-nodeagent a-n1 -—cluster cluster-a server-a-ni-it

bin/asadmin create-instance -—terse=false -—host 10.0.0.5 —-password-
file passfile —-nodeagent a-n1 -—cluster cluster-a server-a-ni-i2

The last parameter specifies the instance name. For simplifying and mak-
ing the orientation better, we append server “a,” which is our cluster postfix, with
“nl,” which indicates what node agent is responsible, and finally “i1” or “i2” for
identifying the instance. The reasoning behind this is the same as before: to sim-
plify for the administrator of the system.

The next step is to start the cluster:

bin/asadmin start-cluster -—terse=false -—host 10.0.0.5 —-password-
file passfile cluster-a

Now the cluster should be up and running. In some cases, there could be some
warning-level logging while performing these operations, so to verify that every-
thing is up and running, we could simply type a “netstat” system command. We
never specified the ports to be used, and the “asadmin” command would default
to the very first SIP post to be 35060 for UDP and TCP SIP connectivity. It sim-
ply prefixes the standard SIP 5060 port with the number 3. The TLS SIP server
socket would be found on 35061. For some strange reason, the next instance
“i1” has the ports in reverse order, so the TLS port is on 35062 and the UDP and

SailFin Introduction 173

TCP on 35063. The logic behind it is hard to understand, but it is also possible
to control the definition of the ports by properties in the “create-instance” com-
mand. However, by doing the “netstat,” it is quite simple to figure this out, since

according to RFC 3261, a SIP server always needs to listen on the same port for
both UDP and TCP, while the TLS cannot share a port with any UDP service.

~ stoffe$ netstat -an|grep 350

tcp46 0 0 *.35060 *Lx LISTEN
tcp46 0 0 *.35061 *,x LISTEN
tcp46 0 0 *.35063 *,x LISTEN
tcp46 0 0 *.35062 *,* LISTEN
udp46 0 0 *.35060 *Lx
udp46 0 0 *.35063 *Lx

Here, in print, it is easy to spot the UDP ports: “i1” runs on 35060 and
“i2” on 35063. Now let’s try this out, but first we need to adjust the SIP logging.

In a clusterd domain configuration, the actual cluster name needs to be
provided, so the setting of FINE logging looks something like this:

asadmin set "cluster-a-config.log-service.module-log-levels.prop-
erty.sip"=FINE

Now we need to look at the log for both “i1” and “i2.”

The best way of running this on a UNIX system is to tail the two files.

If you have followed the previous instruction then the logs would be located
at

sailfin/nodeagents/a-n1/server-a-n1-ii1/logs/server.log

and

sailfin/nodeagents/a-n1/server-a-n1-i2/logs/server.log

As an alternative, the logging level can be changed with the Web admin GUI
as shown in Figure 8.4.

Note that the GUI menus look different for a clustered domain!

Now let’s deploy the “SimplestApplication” again:

bin/asadmin deploy --target cluster-a SimplestApplication.sar

Now we need to generate some SIP traffic. Once more, we can utilize the SIP
Test Agent in NetBeans. This time we need to change the port that we are target-
ing traffic at to 35060. Create a SIP message and send it. The SIP 200 OK should
be received, and the log of “server-a-n1-i1” should show the trace that the SIP
MESSAGE went in and the 200 OK was sent back.

174 Understanding SIP Servlets 1.1

r

[-XsX:] Sun GlassFish C Server Admin Console £
-« = @ ’}‘ @ hup:/ fiocalhosra 848 v | KE] * Google Q
Cetting Started Latest Headlines 7)5 AS 8.1 Admin Co. Inside home Appla¥ Amazon eflay Yahoo! News™ Java® Private ¥ -

Home Version

User. sdmin Domain: comen | Server; bcahos!

Sun GlassFish Communications Server

INFO | | vt enterprise. system container. b mad; |
INFO | [lavax.entarprise.systom.core.raming:)
INFO =] | javax.o0. snierprise.sysiom.rodeagent.)

INFO 7| [crncio toplek c3aentiols; jovax orserprise rosouree e
[vaz enterprise system.cortainer. cmp: |

INFO | [javax.enterprisa; |

INFO = [javax entarprie. systom wobservicos. saa)

INFO x| | lsvax antarprinn systom core sacurey. |

INFO =] [javax.ontarprise. systom core.sofmanagement; |
INFO x| [javax antarprinn systom:)

INFO | [javax 100 5y 3]

INFO =] Ljvax entarprine systom ust)
INFO =] v enbavprise. system ool verifior,) Py

INFO ;I [M.mﬂ."lmtw”.m: crgm:m; mu“m
org.apache gsper, |

m SIP Container i

* gt Jova Mossage Service T s N0

* Q) Securty ™ [sip FINE

G Avaiabiy Sorvice I [ssr INFO

ot Tramsacton Service ™ lar INFO
> @ HTTP Service < ™ [smi INFO g
> @ sPsevee : &
— T

Figure 8.4 Admin Console now looks slightly different when in cluster mode.

The next step is to go back to the SIP Test Agent and change the destination
port to 35063. Now we will send again, and this time the SIP MESSAGE should
apear in “server-a-nl-i2 log.”

Note So far this has been pretty straightforward administration that is in line with
what GlassFish provides. One good blog entry on this topic was made by Kedar, who is
the admin lead at Sun [2]. This also links to the official GlassFish version 2 (GFv2) admin
pages, where you can find more information on how to configure SailFin. The only Sail-
Fin specific part is that the SIP container is brought up together with the JEE 5 Glass-
Fish server.

Also, it is possible for the Web admin GUI to transform a single instance domain cre-
ated by the “setup.xml” file and into a cluster domain setup. Since the steps in creating
a new cluster domain are quite simple and give much better control, we encourage you
to follow the described procedure.

SailFin Introduction 175

8.7.1 Load Balancing and IP Sprayers

As you saw in the previous example on how to deploy a cluster domain, the result
is that you have multiple instances running on the same or different IP addresses
and port combinations.

To have a common understanding, let us set the definitions on what is
a load balancer and what is an IP Sprayer. The IP Sprayer,works on the IP
address level, as the name implies. Once an IP address or a domain name is
provided, it would then keep track of the server instance in the server park and
forward the traffic. A common algorithm is to use round robin so that every
new request is sent to one of the hosts. The next request is sent to the next on
the list. So, in our previous example, we would have one address that would
be first-time forwarded to port 35060, and the second time around, to 35063.
Then the algorithm would start over with port 35060. This is probably a nor-
mal router or a Network Address Translater (NAT) device, or we could use a
module like “netfilter/iptables” on UNIX.

As for the load balancer, this is a more advanced extension of the IP Sprayer
and also inspects the protocol layer. In our case, it should be capable of under-
standing SIP and HTTP protocols. These products are often much more expen-
sive, but at the end of the day they are quite easy to set up. The drawback is that
they are not part of the SailFin cluster, so they need to discover the availability
and the current cluster shape of the AS running behind it. The two systems, the
load balancer and the SailFin cluster, could have different opinions on who really
is up and running. So, a misbehaving cluster could cause some pain. The other
drawback it has is that all the SIP and HTTP protocol extensions now need to
be implemented in both places. If the load balancer does not support Comet for
HTTP or the SIP REFER method, then its inspection and balancing will be
taken on false grounds. Examples of popular load balancers include Big IP F5 and
Cisco PIX among others. The functionality of inspecting protocols is sometimes
referred to as an Application Level Gateway (ALG).

So for a full-scale deployment, we would like to provide only one address
where the provided service can be found. Basically, there are three options we can
exploit:

* ALG Load Balancer + SailFin no Converged Load Balancer;
* [P Sprayer + SailFin Converged Load Balancer;
* DNS (NAPTR+SRV) + SailFin Converged Load Balancer.

The ALG deployment scenario when no CLB support is enabled as shown
in Figure 8.5.

176 Understanding SIP Servlets 1.1

SailFin

Yo no CLB

. . /' SailFin

Client ” ALGLB |2 no CLB
£ < SailFin

no CLB

Figure 8.5 SailFin cluster behind ALG load balancer.

The CLB deployment where the IP Sprayer is randomly sending request to
the various SailFin instances as shown in Figure 8.6.

The DNS load balancer deployment where each SailFin CLB FE is regis-
tered in the DNS, as shown in Figure 8.7.

The ALG deployment is quite traditional and straightforward. The ALG
will make sure to which all SIP dialog-related information ends up on the same
SailFin instance which the initial signaling was sent to. In more complex cases,
such as a presence application in which all the subscriptions for a user can be
spread out all over the cluster, there can be a significant performance hit. Espe-

SailFin
with CLB
SailFin

/
"T‘ » | IPSprayer | 7 ¥ with CLB
i SailFin

with CLB

Figure 8.6 SailFin cluster behind simple IP Sprayer, load balancer in SailFin Cluster.

DNS
SailFin
——— 2 with CLB
Client . IP Router S_aiIFin
i < with CLB
SailFin
with CLB

Figure 8.7 SailFin cluster behind DNS IP Sprayer, load balancer in SailFin Cluster.

SailFin Introduction 177

cially when the cluster grows, the performance will drastically decrease. In some
cases, the vendor provides hooks so that a more advanced load-balancing algo-
rithm can be written and deployed. As mentioned earlier, this can be a quick
way to deploy a service and as long as the traffic scenario is supported by the
ALG—then it is all fine.

The next possible deployment is to use a much simpler and less expensive
IP Sprayer. Then the ALG and load balancing will be taken care of by the CLB
component in SailFin. There we have two possibilities. The default algorithm is
called user centric and it will take the user part of the SIP Request URI to load
the balance on. If that one is missing, then it will use the user part of the SIP URI
in the SIP “To” header. There is also a notion for the “Originating” (as defined in
JSR 289 [3]) call region, used especially for IMS deployments where this is spec-
ified in a lot more detail. In the originating case, it would first look at the user
part of the SIP URI for the “P-Asserted-Identity” header, and if that one were
missing, then the user part of the SIP URI in the SIP “From” header would be
used. Since it is falling back to the SIP “From” header, this could also be used for
a standard SIP deployment. The only criterion is that the SIP “Route” header that
got the message to SailFin contain a URI parameter equal to “call=orig.” In this
case, the SailFin cluster has the knowledge of which servers are currently part of
the cluster and can redirect traffic without delay.

If this is not the load balancing that is required for a particular service, then
the first option is to change the actual string that is used for the load balancing.
Instead of taking the user part, some other part of the message can be inspected
and another string used. The other alternative is to replace the entire user (data)-
centric algorithm with a custom-made one. It could look at the day-in-week or
the actual load on the servers to accommodate the result. This is not much dif-
ferent than having to write ALG load-balancing rules. In this case, the develop-
ment environment is in Java and is a matter of preference. Of course, all the other
pros and cons mentioned previously still apply to separate the different solutions.

To change the string that the CLB uses for inspection, an XML file accord-
ing to the Document Type Definition (DTD) can be located under the following:

SailFin/lib/dtds/sun-data-centric-rule_1_0.dtd

A sample of the file can be found in the “SJS Communications Application
Server HA Guide” at [4] (look under the CLB chapter, “The Data Centric Rules
File”).

To deploy a new rules file, either the “asadmin” command or the Web admin
GUI can be used:

bin/asadmin set domaini.converged-lb-configs.myclbcfg.converged-1b-
policy.dcr-file=dcr.xml

178 Understanding SIP Servlets 1.1

As for a total remake of the algorithm, there is no Service Provider Interface
(SPI), but the CLB code is in the SailFin CVS, so careful modification can be
easy or quite hard depending on what the new algorithm looks like. The code can
be used as inspiration, and since both the CLB front end and back end are layers,
they can be replaced as described above.

The last option available is to use DNS as the load balancer. The assumption
is that the SIP clients consuming the service are compliant with RFC 3263 [4].
The SailFin SIP container is also compliant with RFC 3263 when it acts asa UAC,
but in this scenario for load balancing, it would be acting as a UAS, B2BUA, or
Proxy. Just to explain what this RFC is all about and what kinds of DNS queries
would be sent, we will describe a full location scenario. There are multiple levels
of load balancing, since the first choice when a SIP UAC wants to send a SIP mes-
sage is to pick the transport. For this reason, the Name Authority Pointer (NAPTR)
DNS record format RFC-2915 [6]) was defined. From the Request URI of the
SIP message that is being sent the domain is extracted.

MESSAGE sip:stoffe@sipservlet.net SIP/2.0

Now the imaginary service we try to access is located in the “sipservlet.net”
domain. To find out what SIP protocols are supported, the client needs to post

a DNS NAPTR query.

OPCODE=SQUERY
QNAME=sipservlet.net,QCLASS=IN,QTYPE=NAPTR

The response from the server for a SailFin cluster could look like this:

IN O NAPTR 10 10 "s" "SIP+D2T" "" _sip._tcp.sipservlet.net
IN O NAPTR 20 10 "s" "SIPS+D2T" "" _sips._tcp.sipservlet.net
IN O NAPTR 30 10 "s" "SIP+D2U" "" _sip._ udp.sipservlet.net

The fields for each row are defined in according classes from the REC-2915
listed here:

Domain Class Preference Service Replacement
TTL Type Flags Regexp

The client received three entries that state the preferences for the
“sipservlet.net” domain. It is easy to spot that the domain supports SIP over UDP,
SIP over TCP, and SIPS over TLS.

The most interesting part is the “Order” field. According to the RFC, the
one with the lowest value should be chosen. In this example, the first line has a
value of 10 in the order field, while the other two lines have 20 and 30.

SailFin Introduction 179

The “Preference” field is not significant, because it comes into play only
when there are two rows with the same number in the “Order” field. By config-
uring our DNS like this, we state that, if the client does not know what protocol
to use, then we mandate it to use TCP. This is the first step where load balanc-
ing is done. There is additional information contained in the NAPTR record. The
flag states “s,” which indicates that the “Replacement” field contains a pointer to
a Service (SRV) DNS record.

SRV is defined in RFC-2782 [7] and specifies the format of the service
records. Now the client needs to take the result from the NAPTR lookup and do
an SRV DNS lookup. As an alternative, if the client knows that it must use SIPS
over TLS, it can then skip the NAPTR lookup and do the SRV straightaway.

OPCODE=SQUERY
QNAME=_sip._tcp.sipservlet.net,QCLASS=IN,QTYPE=SRV

The SRV query looks quite similar to the NAPTR one, and it is quite
straightforward. Now let’s look at the answer.

_sip._tcp.sipservlet.net 0 IN SRV 1 1 35060 mysailfin.sipservlet.net
0 IN SRV 1 1 35063 mysailfin.sipservlet.net

mysailfin.sipservlet.net 0 IN A 10.0.0.5

The fields for each row are defined in according classes from the RFC 2782,
listed here:

_Service._Proto.Name TTL Class SRV Priority Weight Port Target

So now to the answer: there are two SRV record rows received. Note that
they are reflecting the SailFin cluster that was built in the previous section. Both
have the same “Priority,” so the client should first use one, and then, for the next
time, it will have done a DNS query and should use the alternate one. Both rows
also have the same “Weight” factor, and that indicates only that both should be
loaded. If the first one has a weight of 3, then the client should send three times
as much SIP traffic there as to the second entry. Normally, this is done when one
piece of hardware is much more powerful than the other, but in reality, most server
parks have equal hardware, making this feature redundant. In our case, it is the
same machine, so the values of 1 and 1 make perfect sense. The SRV “Target” is
pointing to “mysailfin.sipservlet.net,” and the client needs to get an IP Address.
To minimize the amount of DNS queries, the provider has chosen to put the DNS
record for the “mysailfin.sipservlet.net” into the SRV answer. This is perfectly
legal, but if it were not there, then the client would be forced to do one additional
lookup to finally receive the IP to use. It already knows the port from the SRV
query. In this example, the client gets back the IP address of 10.0.0.5.

180 Understanding SIP Servlets 1.1

As you can see, the client now has a lot of information. The SIP request
should be sent over TCP to IP 10.0.0.5 and port 35060. A side effect is that, if
the server should happen to go down, it also knows that it could try TCP to IP
10.0.0.5 and port 35063, which runs the same service that it wants to access.

The result is that DNS NAPTR and SRV can both give load balancing and
high availability. It does not cost any investment in load balancing hardware, but
it requires that your DNS provider allows for provisioning of its DNS with the
required records. In a larger setup, the system would most probably contain a spe-
cific DNS subdomain and could host that zone in a service-specific DNS. A more
likely scenario is that only one SRV record would be returned, since all the Sail-
Fin instances would run on port 5060, and then the “mysailfin.sipservlet.net.” A
record answer would contain multiple entries. One row per specific SailFin clus-
ter member IP address would be returned. This list can be rotated so that the top-
most one is different for every new query until the list wraps around.

The catch with this solution is that all the IP addresses returned have to be
routable. In this example, we used IPv4 addresses, and that can be a limitation.
Don't forget there might be need of a firewall and some denial-of-service detection
and exclusion of misbehaving clients. One possible solution for the IPv4 limita-
tion would be to use IPv6, since it doesn’t have the address range as a limiting fac-
tor. As for the firewall, it all depends on the service that is being provided, so it is
hard to make recommendations.

872 ENUM
Even if the DNS NAPTR and SRV is not the chosen location mechanism of your

deployment, it is still extremely important to understand how it works. As men-
tioned previously, the SailFin SIP container will try to do this automatically if an
Address of Record (AOR) is provided for the next SIP hop after SailFin. There
is one more use case in which a DNS server would be queried automatically by
SailFin. This case occurs when the next route contains a TEL URL. This is only
interesting when building Plain Old Telephony System (POTS) replacement with
a SIP Voice over IP (VoIP) solution.

Let’s assume that I used to have a telephone number +1 555 1234 567.
Now, the TEL URL in the SIP request header would look like this:

INVITE tel:+15551234567 SIP/2.0

Note 1t could also be indicated in the following way: sip:+15551234567@

sipservlet.net;user=phone.

This request going out from SailFin is quite hard to route, because we have
lictle knowledge of the target destination. For this reason, the ENUM standard

SailFin Introduction 181

was specified (RFC 3761) [8]. The RFC also defines a mechanism for the client
to find the ENUM service with NAPTR and explains how the phone number
should be stripped to form the query address record that should be used in the
DNS ENUM query. First, all nondigit characters are removed, and then the num-
ber is reversed with a “.” sublimiter between every digit.

+15551234567 becomes 7.6.5.4.3.2.1.5.5.5.1.e164.arpa

The domain “el64.arpa” is included only for the purpose of facilitating
telephony number translations. Since it is used as my number but then I chose
to migrate to a VOIP account, there would be a corresponding SIP address point-
ing to me.

A result of the ENUM query could look like this:

NAPTR 10 100 "u" "E2U+sip" "!~.*$lsip:stoffe@sipservlet.net!"”

All the friends that have my old POTS number would be able to still use
it, while to any new friends I would hand out the SIP URI of “sip:stoffe@
sipservlet.net” instead.

Note OK, maybe not Grandma, since she would not know what to do with a SIP
URL

Not only does this happen automatically for the next SIP hop in SailFin,
but the SIP container also provides a proprietary interface for looking up a TEL
URL and mapping it to a SIP URI. Under the hood, this uses the same DNS
ENUM client, but the TEL URL could be delivered in any other SIP header, or
it might be provisioned and looked up from a Structured Query Language (SQL)
database.

The class “org.glassfish.comms.api.telurl. TelUrlResolver” is the proprietary
extension, and it contains two methods:

public SipURI lookupSipURI(URI uri) throws IOException,
TelUrlResolverException;

boolean isTelephoneNumber (URI uri);

The “isTelephoneNumber” takes a “javax.servlet.sip.URI” object and
checks whether it’s a TEL URL that is syntactically correct or a SIP URI with a
“user=phone parameter” that has a numeric user URI part. The “lookupSipURI”
method has the same input, but if the URI were to apply to all the rules, it
would then result in a ENUM DNS query, and the answer would be returned
as javax.servlet.sip.SipURI interface instance. Note that the ENUM query could
also return e-mail record lines or H323 (former signaling standard competing/

182 Understanding SIP Servlets 1.1

being replaced by SIP) records (as shown in the examples of REC 3761 [8]). Sail-
Fin would return the first valid SIP entry encountered by a call to this function.
So how to get a reference to this interface?
The simplest way is probably to do this in the “init()” of the SIP Servlet that
wants to do ENUM lookups.

@Resource SipFactory sf;

@Override
public void init(ServletConfig config) throws ServletException {
super.init(config);
ServletContext ctx = config.getServletContext();
TelUrlResolver telResolver = (TelUrlResolver)
ctx.getAttribute(TelUrlResolver.CONTEXT_ATTRIBUTE_NAME) ;
TelURL tel = (TelURL) sf.createURI("tel:+1-555-1234 567");
SipURI sip = telResolver.lookupSipURI(tel);
log("Result of ENUM ="+sip.toString());
}

If everything was set up correctly, it should log “Result of ENUM = sip:stoffe
@sipservlet.net.” The provisioning of the ENUM records is outside of the scope
of this book, but there are some publically available ENUM servers that can be
used for testing this out. One important configuration aspect of the SailFin DNS
client that probably needs to be configured is specifying what DNS servers to post
queries to. It is a JVM-D flag, then it can be edited in the “domain.xml” con-
figuration file with the admin Web GUI or by “asadmin” command when the
server is stopped.

-Ddns.server10.0.0.5

With that JVM flag setting, the host 10.0.0.5 would be queried on the
standard DNS UDP port 53.

All these procedures are in line with the administration procedures shown

in Chapter 7.

References
[1] Rosenberg, J., etal., “SIP: Session Initiation Protocol,” RFC 3261, Internet Engineering Task
Force, June 2002.

[2] Kedar’s blog on GlassFish administration, http://blogs.sun.com/bloggerkedar/entry/how_
das_communicates_with_node.

[3] SIP Servlet Specification, Version 1.1, JSR 289, Java Community Process, August 2008.

SailFin Introduction 183

SailFin Cluster Admin Guide, http://docs.sun.com/app/docs/coll/1343.8.

Rosenberg, J., and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Servers,”
RFC 3263, Internet Engineering Task Force, June 2002.

Mealling, M., and R. Daniel, “The Naming Authority Pointer (NAPTR) DNS Resource
Record,” RFC 2915, Internet Engineering Task Force, September 2000.

Gulbrandsen, A., P. Vixie, and L. Esibov, “A DNS RR for Specifying the Location of Ser-
vices (DNS SRV),” RFC 2782, Internet Engineering Task Force, February 2000.

Faltstrom, P, and M. Mealling, “The E.164 to Uniform Resource Identifiers (URI)
Dynamic Delegation Discovery System (DDDS) Application (ENUM),” RFC 3761, Inter-
net Engineering Task Force, April 2004.

SIP Serviet Client Programming

The majority of SIP Servlet development and deployment occurs in the network
while the SIP Container is acting as an application server. Even then, the trend is
toward micro containers, but the technology is not there yet. Today it is hard to
find a SIP Servlet container that can run on a mobile phone or any other limited
footprint device. The SailFin SIP Servlet container, which has been used through-
out this book, is based on the Sun GlassFish Version 2 (V2) JEE container. The
GlassFish V3 is being built with a microcontainer core, which will allow com-
ponents to have a much smaller memory footprint. Such a concept is probably
two to three years away. JBoss is also developing a similar microcontainer archi-
tecture, so it is likely that it will be possible in the future to program SIP Servlets
even on a limited footprint device.

Today, it is possible to take a fatter JSR 289 SIP container and build appli-
cations for a PC with graphical interface fronting the end user, in which the SIP
container is used as a SIP message stack. Since the footprint would end up close to
100 Mbyrtes, it does not provide a good production solution. There are other SIP
stacks, such as the NIST Jain SIP, that are more adapted to be embedded for client
development. Programming Jain SIP is a totally different paradigm, and it requires
a little more SIP knowledge of the programmer.

What is a more likely deployment, and that which follows the current trend
of web clients, is to use a browser-based client approach. A browser is the user
Interface, and then on the server side, there is interaction with the Web server for
a classic Model—View—Control (MVC) pattern. Since most of the JSR 289 con-
tainers in the industry are bundled with JEE, the natural choice is to use JavaScript
and AJAX on the browser while using HTTP Servlets and higher level packages
like JSP and JSF (Java Server Faces). Since the core of JSP/JSF is HT TP Servlets,
the converged container capabilities of the JSR 289 can be exploited.

184

SIP Serviet Client Programming 185

Another alternative for writing HTTP-based clients is to use the Repre-
sentational State Transfer (REST) [1]. There is an ongoing JSR in JCP (JSR 311)
where JAX-RS is being defined. SIP Servlets can be used to implement a SIP UA
client where all of its state data, such as a buddy list, conference state, initiation
of a call/message, and presence information, could be accessed using the REST pat-
terns. The browser-based client can then use JavaScript to access the REST objects
over HT'TP and when the object is received in an “HttpResponse” that the
JavaScript can then render within the browser.

For this purpose, the “XMLHttpRequest” object in JavaScript is used to
send GET/POST/DELETE commands to change the state of the SIP UA running
on the SIP container. The biggest disadvantage that HT'TP and a browser-based
approach have is that HTTP is request/response-based protocol while in SIP the
User Agent is a client (UAC) and a server (UAS) at the same time.

The problem can be illustrated in a simple chat application: Say the client
wants to send a message to the person he is chatting with; we just simply wrap the
text that he wants to send in a “HttpRequest.” On the converged server side, the
body is simply picked up and a new SIP MESSAGE request is created. This all runs
smoothly. The problem occurs when the person we are chatting with wants to
respond. The message arrives at the same SIP Servlet, but now, since HTTP is a
request/response-based protocol, there is no way for the SIP container to send this
message in a “HttpRequest” targeted for the browser. For this purpose, the most
common programming pattern is that the browser regularly polls for new messages
intended for it. This consumes a lot of resources at the client, in the network, and
especially at the server. How often the connection is polled is difficult to deter-
mine and depends on how many clients a converged SIP and HTTP server is able
to handle at any one time.

There are nonstandard techniques called asynchronous AJAX or COMET
that keep one HT'TP connection open at all times. The HT'TP Servlet container
simply does not answer on the “HttpRequest” until it has something for the client.
At the same time, if the client wants to send something, it simply opens a new
HTTP connection and, from then on, behaves as a standard entity, sending an
“HttpResponse” without blocking. One example of such an application that is
using this pattern is Google Mail. When an e-mail is received, it is instantaneously
received in the browser and rendered by JavaScript. This gives far better respon-
siveness but also requires a proprietary extension on the server side. Changing the
application server vendor is also harder, because this part is not standard.

Another alternative that might be interesting for developing mobile clients
is to use Java Micro Edition (Java ME) and JSR 180. When using JSR 180, the Java
ME Mobile Information Device Profile (MIDP) connector architecture can be
used to generate and receive a SIP message. This is quite low level, but it allows
for any kind of message to be generated or consumed. At the same time, the Java
ME GUI classes can be used to make the user interface.

186 Understanding SIP Servlets 1.1

Why would one choose to program SIP all the way to the terminal when
there are browser-based solutions? At the time of this writing, it is about pene-
tration into the marketplace. JSR 180 is out there prebundled on many mobile
phones because it is part of the JSR 248 MSA (Mobile Service Architecture). At
the same time, the more limited mobile browsers do not support asynchronous
AJAX/COMET, so there would be a lot of polling, and depending on the mobile
subscription, it could be very slow and costly for the end user of such a client.

There is no silver bullet, but one has to evaluate and pick the architecture
that suits the intended deployment. This chapter will provide an overview explain-
ing what this kind of programming is all about. It could very well be that you will
never need to make a client because softphone clients, hardware SIP phones, or
terminal adapters are used in your deployment. However, if you really want to do
innovative client applications, there is a fair chance that you will have to do client
programming too.

9.1 Writing HTTP Servlet-Based Client

Even if you are not going to do an HT'TP Servlet-based client, do not skip this sec-
tion. There is a fair chance that you will have to build one for administrative pur-
poses. First of all, because of convergence, this is a very efficient way to build a
client, since both the SIP parts and the HT'TP parts execute in the same JEE appli-
cation server.

To create a simple example, we could write a Web-based chat client. The
client could have a simple HTML page, JSP page, or even a JSF page where we
can enter a text message, a SIP target URI, and a send button. Inserting JSF tags
updates the objects and makes them accessible on the server side, where we would
use the SIP Servlet “SipFactory” helper interface to create a new SIP message.
Since the “.sar” file format allows for HT'TP components, we simply need to
include a “web.xml” file and the required “faces-config.xml.” At the same time,
the JSF “.jar” files need to be bundled in the WEB-INF “lib” directory so that
the dependencies are satisfied.

Let’s start with the simplest case, in which we interact with an HTML page.

9.2 Using Asynchronous HTTP

To write a client using asynchronous HTTP requires a choice of server in which
the technology is available. Since we have been using the SailFin open source SIP
container, the example will use the Grizzly COMET support, which is available in
the HT'TP container. First, we will do the same example with the chat application,
but there are also “add-on” frameworks to hide more of the details. One of the
frameworks that works fine with SailFin and COMET is ICEfaces (www.ice-

SIP Serviet Client Programming 187

faces.org). The ICEfaces team is attempting to keep the framework portable over
multiple applications servers, so if you want more portability, ICEfaces is an
option.

First, the COMET support needs to be enabled in the SailFin HTTP con-

tainer as follows:

<SailfinDir>/domains/domaini/config/domain.xml
<http-listener acceptor-threads="1" address="0.0.0.0" blocking-
enabled="false" default-virtual-server="server" enabled="true"
family="inet" id="http-listener-1" port="8080" security-
enabled="false" server-name="" xpowered-by="true">

<property name="accesslog"value="${com.sun.aas.instanceRoot}
/logs/access" />

<property name=”cometSupport” value="true”/>
</http-listener>

The line in bold text “<property name="cometSupport” value="true”/>” is added
to the default domain.xml file.

Basically, the container will allow an “HttpRequest” to be blocked and stored
away in a “HashTable.” In normal operations, when an “HttpServlet” does not
answer on a request, then the container would automatically respond with a 500
error code. This is all that has to be done when it comes to configuration.

Let’s create a HTML page for collecting the appropriate chat information.
We want to have an input field specifying who we want to chat with, a larger text
field containing the chat history, and a field where input can be collected for the
latest message to submit. We also want a send button.

To get the traditional chat client look, the HTML code would look some-
thing like this:

<html>
<head>
<title></title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-
8">
<script>
var hist = new Array();
var to = "";
var cometReq;

doGet();

</script>
</head>
<body>

188 Understanding SIP Servlets 1.1

<form name="sendForm">
Target SipURI : <input type="text" name="target"
value="sip:localhost:5070" size="46" />

History : <textarea name="history" readonly="true" cols="40"
rows="10">

</textarea>

Message : <input type="text" name="message" on
onkeypress="return submitOnReturn(event);" value="" size="52" />

<input type="button" onclick="sendMessage();" value="Send"
name="sendButton" />
</form>
</body>
</html>

The HTML rendered in Firefox will result in a nice GUI as in Figure 9.1.
If you look carefully, you'll notice there are some JavaScript methods executed
in the HTML code above. The “onkeypress” event that calls the “submitOn-
Return(event)” is simply a convenience method that monitors characters that are
inserted into the message input text field when the return key is pressed and the
message would be submitted. What happens behind the scenes is that the second
JavaScript method “sendMessage()” is called. Here is how the method looks:

'®@0 6 Mozilla Firefox o
a3 v - 2 ™™ 4 v # - o
L] f) @137.5e:8080/Cometsample/ ¥ | > |G|~ Google Q
Getting Started Latest Headlines ® SJS AS 9.1 Admin Co.. Inside home AppleY Amazon b

kRO New Site Rank: 1105558 Site Report B [SE] Telefonaktiebolaget

‘ﬂ.ﬂlﬂ" v Services v
Target SipURI : }sip:loca!host:SO?O

History :
Message : | Send

*ﬁ

http:/ /toolbar.netcraft.com/netblock?q=ERICSSON, 192.16.149.0,192.16.149.255

Figure 9.1 HTML Form based client interface.

SIP Serviet Client Programming 189

function sendMessage() {
var req = new createXMLHttpRequest();
var target = document.forms[0].elements["target"].value;
var text = document.forms[0].elements|["message"].value;
var msg = "target="+target+"&message="+text;

reqg.open("POST", "CometServlet", false);

req.setRequestHeader("Content-type", "application/x-www-
form-urlencoded");

req.setRequestHeader("Content-length", msg.length);

reg.send(msg);

addToHistory("me: "+text);

var start = target.indexOf(‘:’);

var end = target.indexOf(‘@’);

to = target.substring(start+1,end);
document.forms[0].elements["message"].value = ""; //Clear it

b

First of all, we create a “XMLHttpRequest,” and that is done in a helper
method because older Microsoft browsers instantiate the object differently. The
majority of the newer browsers simply let you call a new “XMLHttpRequest().”
The next important part is to call open on the request; in this example, we are using
the “POST” method. Then the second argument is the Servlet path, and the last
parameter is whether the call should be asynchronous. The reason for stating the
Servlet path to “CometServlet” is simply that the HTML page will be packaged
in the same archive as the Servlets, so there is no need to provide full paths. Since
posting a message is a synchronous activity, the third parameter to open is “false.”
Some HTTP headers are set to inform the server that it is the form data format
(HTML Form) and also the length of the entire string. Finally, the data is sent
using the “send(msg)” command. Note that the message contains the target and the
text to be submitted. The remainder of the “sendMessage” function stores the sent
message in the history and clears the input box so that a new message can be entered.

We have covered the sending part of the example. You might have noted
that in the beginning of the HTML declaration, when the script diction was
declared, there is a call to “doGet().” This is another JavaScript function that enables
the COMET long polling HTTP connection to become established. The “doGet”
method is called the first time the browser reads the page.

function doGet() {
cometReq = new createXMLHttpRequest();
cometReq.onreadystatechange = changed;
cometReq.open("GET", "CometServlet", true);
cometReq.send(null);

s

190 Understanding SIP Servlets 1.1

function changed() {
if (cometReq.readyState==4)
{// 4 = "loaded"
if (cometReq.status==200)
{// 200 = OK
receiveMessage (cometReq.responseText);
doGet();
}

else
{

alert("Problem retrieving XML data");
}
}

The “doGet” also creates a “XMLHttpRequest,” but this time it isan HTTP
“GET” that is targeted toward the same Servlet path. The big difference is that this
time the third parameter to the open method is “true,” enabling asynchronous
HTTP. The other interesting part is that a callback for the “onreadystatechange”
is set to call the changed function. The “changed” function is declared, and it waits
to receive a 200 response that would call “receiveMessage()” method. Part of the
processing of receiving a message is to extract the text from the HT'TP response body
and simply add as the latest entry to the history window, and then the “doGet()”
function to keep an active HTTP connection. Remember that the GET is parked
at the server side, so we need at all time to have an ongoing GET request, since
we never know when the other chatting part will send something to us.

Let’s now look at the server side to see how this POST and GET are received.
To make it simpler, there is a JavaBean object holding information about our
client and how SIP should be sent.

public class SipUser {

protected String SipIdentity;
protected String user;
protected String password;
protected String outboundproxy;
protected String realm;

These are the associated bean fields with their corresponding “getter” and
“setter” methods. In the example archive, these are bootstrapped from the
“web.xml” file init parameters. If one would like to make better use of this exam-
ple, probably there could be an initial configuration and authentication page on
which a user would log in, instead of statically setting the parameters using the
“web.xml” file. Here we will just omit that to focus on the important parts of the
COMET communication. Here is the class declaration and the init function:

SIP Serviet Client Programming 191

public class CometServlet extends HttpServlet {

@Resource SipFactory sf;
static String contextPath = "CometServlet";
ServletContext ctx = null;

@Override
public void init(ServletConfig config) throws ServletException {
super.init(config);
CometEngine e = CometEngine.getEngine();
CometContext ¢ = e.register(contextPath);
c.setExpirationDelay(3600*1000);
ctx = config.getServletContext();
//For now lets store the user sip id in the ctx
//This is picked up by StartupListener
String sipld = config.getInitParameter("siplIdentity");
String authUser = config.getInitParameter("authUser");
String password = config.getInitParameter("password");
String realm = config.getInitParameter("realm");
String outboundProxy = config.getInitParameter("outboundProxy");

ctx.setAttribute("sipuser",
new SipUser(sipId,authUser,password,realm,outbound
Proxy));
}

In the Grizzy framework, there is a singleton class where the bootstrapping
is done.

CometEngine engine = CometEngine.getEngine();

The engine provides the entry point for the COMET support. In order to
tell the HTTP container that this application isa COMET application, the URL
that the client will identify itself with has to be registered.

CometContext cometContext = engine.register("CometServlet");

Now, when the “CometContext” receives a timeout, it can be set, since we
do not want to wait forever. If there is nothing to send from the server to the
client, it is a good programming practice to release the request. The server can then
send a 200 response to the blocked “HttpRequest,” and the client can determine
whether another attempt to maintain a COMET connection should be performed.

cometContext.setExpirationDelay (3600 * 1000);

This statement would hold the COMET connection up for an hour before
timing out.

192 Understanding SIP Servlets 1.1

The last thing in the init is to create the “SipUser” JavaBean, populate it, and
store it in the Servlet context so that both HTTP Servlets and SIP Servlets can
access it.

Now let’s look at how the POST with the message that we want to send is

handled:

@Override
protected void doPost(HttpServletRequest request, HttpServlet
Response response)
throws ServletException, IOException {
SipUser user = (SipUser) ctx.getAttribute("sipuser");

String target = request.getParameterValues("target")[0];
String msg = request.getParameterValues("message")[0];

SipApplicationSession sas = sf.createApplicationSession();

SipServletRequest req = sf.createRequest(sas, "MESSAGE",
user.getSipIdentity(), target);

req.setContent(msg, "text/plain;charset=UTF-8");

req.pushRoute(sf.createAddress(user.getOutboundproxy()));

req.getSession().setHandler("authServlet"); //In case of 407

req.send();

First, we decode the target that we want to send the message to and also the
actual text message to send. Then, from within the HTTP Servlet, we use the
injected “SipFactory” helper interface instance to first create a “SipApplication
Session” interface instance and then to create a new SIP MESSAGE request. We
pick our identity from the JavaBean configured in “init(),” and for the SIP “To”
header part of the new message, we use the target decoded from the posted data.
Now we set the message received and set the content type to “text/plain.” Pushing
the outbound proxy URI is due to the fact that often SIP service providers use
that deployment model, but also it is easier to use a fake domain that you might
not be in control of but want to “borrow.” Let’s say that you have two users,
“sip:alice@ericsson.com” and “sip:bob@ericsson.com,” but in reality you want to
send them to “sip:127.0.0.1:5060.” The “setHandler” statement is just putting a
UAC authentication Servlet (see Chapter 2, Section 2.3, “Security”) that was
described earlier. If a SIP proxy server requires authentication, then the Servlet
would create the digest challenge in an appropriate manner based on the values
from the “SipUser” bean. Finally, we send the message using the “send” method.

Now that the sending is completed, let’s look at the receiving end that han-
dles the incoming messages. For that purpose, another SIP Servlet is created that,
on init, would register itself and also receive any incoming SIP MESSAGES based
on that registration.

SIP Serviet Client Programming 193

@Override
public void init(javax.servlet.ServletConfig config) throws
javax.servlet.ServletException {
super.init(config);
ctx = config.getServletContext();
try {
List<SipURI> o0i = (List<SipURI>)
ctx.getAttribute("javax.servlet.sip.outbound
Interfaces");
for (SipURI uri : oi) {
if("udp".equalsIgnoreCase(uri.getTransportParam())) {
myContact = uri;
}
}

sendRegister();

} catch (Exception ex) {
log("Error", ex);
}
}

protected void sendRegister() throws IOException, ServletException {
SipUser user = (SipUser) ctx.getAttribute("sipuser");

//Register the user

SipApplicationSession sas = sf.createApplicationSession();

SipServletRequest req = sf.createRequest(sas, "REGISTER",
user.getSipIdentity(), user.getSipIdentity());

req.pushRoute(sf.createAddress(user.getOutboundproxy()));

req.setHeader("Contact", "<"+myContact.toString()+">");

req.setExpires(3600);

req.getSession().setHandler("authServlet");

req.send();

In the init method, this Servlet simply picks one of the SIP container inter-
faces that uses UDP and stores it away. Then, in the register method, a registra-
tion is made, also setting the auth Servlet in case a 401 is returned.

When a registration is completed, the other part that we chat with can send
a message.

@0override

public void doMessage(SipServletRequest req) throws IOException {
SipServletResponse resp = req.createResponse(200);
resp.send();

CometEngine e = CometEngine.getEngine();
CometContext ¢ = e.getCometContext(CometServlet.contextPath);

194 Understanding SIP Servlets 1.1

if(req.getContentType().equals("text/plain"))
c.notify(reqg.getContent().toString().trim());

First of all, a 200 response is sent to signify that we have received the message.
Then the “CometContext” is retrieved. In this example, we have only one COMET
context, but if we were to build a fully fledged client, we would have one context
per browser and user, making it a multiuser service. Then, if we indeed receive a plain-
text message, we would notify the COMET context of the message arrival.

To complete the sample, we need to look at what has happened to the HTTP
GET message in the “HttpCometServlet” and how the notify() method call is
propagated.

@Override
protected void doGet(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
CometEngine e = CometEngine.getEngine();
CometContext ¢ = e.getCometContext(contextPath);
ChatHandler h = new ChatHandler();
h.attach(response);
c.addCometHandler(h);

The next task is to register a “CometHandler” object to be triggered that will
handle events for this “CometContext.”

context.addCometHandler (handler);

The Handler interface defines the following methods:

public interface CometHandler<E> {

/**

* Attach an instance of E to this class.
*/

public void attach(E attachment);

/**

* Receive <code>CometEvent</code> notification.

*/

public void onEvent(CometEvent event) throws IOException;

/**

* Receive <code>CometEvent</code> notification when the underlying
* tcp communication is started by the client

*/
public void onlInitialize(CometEvent event) throws IOException;

SIP Serviet Client Programming 195

/**

* Receive <code>CometEvent</code> notification when the underlying
* tcp communication is closed by the <code>CometHandler</code>

*/

public void onTerminate(CometEvent event) throws IOException;

/*

* Receive <code>CometEvent</code> notification when the underlying
* tcp communication is resumed by the Grizzly ARP.

*/

public void onInterrupt(CometEvent event) throws IOException;

The most important method is the “onEvent().” There are six types of events
that the “onEvent()” will be triggered on: INTERRUPT, NOTIFY, INITIALIZE,
TERMINATE, READ, and WRITE. The one we are interested in is the NOTIFY
event, which gets triggered when the client performs an HTTP POST to a
“CometContext.” It is simply intercepted, and a new SIP request is created with
the help of the SIP Servlet “SipFactory” Helper interface.

public void onEvent(CometEvent ce) throws IOException {
if(ce.getType() == CometEvent.NOTIFY) {
PrintWriter pw = resp.getWriter();
pw.write(ce.attachment().toString());
pw.flush();
ce.getCometContext().resumeCometHandler(this);

Finally, the last line calls “resume” “CometHandler.” It basically allows the
client to send an additional message when the user chooses to GET a new chat
message.

Now the code is completed, and since the SIP Servlets are annotated, there
is no need for any updates of the “sip.xml” configuration file. Just for reference, the
“web.xml” file contains the bootstraping of the “SipUser” bean and also the dec-
laration of the HTTP “CometServlet,” together with the default “index.html” page
that contains the form and JavaScripts. The “CometSample.sar” file can now be
deployed, and for another communicating part, the X-Lite client has been used
together with a free Internet SIP account.

A nice task for exploiting this technology further, but which is outside of the
scope of this book, would be to introduce presence to this sample, making it even
better.

Note A majority of the COMET SailFin supports are implemented in the Java pack-

age “com.sun.enterprise.web.connector.grizzly.comet.”

196 Understanding SIP Servlets 1.1

9.3 Using ICEfaces

As mentioned previously, the ICEfaces framework (www.icefaces.org) could be
used as an alternative to make an interaction similar to the one using COMET
just described. The ICEfaces framework can be included as transparent glue
between the JSF pages and the asynchronous HTTP COMET support. ICEfaces
supports a majority of JEE servers and frameworks, and it provides a higher level
of abstraction than asynchronous HTTP. It also provides tag libraries and JavaScript
libraries so that the client side development of rich Internet applications is eas-
ier and faster.

In the following sample, we will exploit only the JSF COMET integration
as a comparison to the previous COMET example. The simplicity is in the fact
that a standard JSF bean can be developed without any knowledge of the asyn-
chronous Web model. The only glue code that needs to be added is on the JSF
bean when loading the page, an instance of the ICEfaces session renderer gets
instantiated. When the JSF bean is updated, a call to render the session needs to
be issued using the ICEfaces framework. Everything else in the code is standard
JSF framework programming.

Note The actual “SessionRenderer” interface in ICEfaces is still considered experimen-
tal and can change in the near future, but the concept will remain.

When a “ConvergedSipProject” is created in NetBeans, JSF framework also
should be added. It then generates a “faces-config.xml” and includes the necessary
libraries. Some “.jar”s from ICEfaces (1.7.2 was used) need to be added and put
under WEB-INF library:

* Icefaces.jar;

* Icefaces-facelets.jar;

* Commons-fileupload.jar;
* Commons-logging.jar;

* Backport-util-concurrent.jar.

The SIP code is accepting SIP MESSAGES (also registrations), and it is
enough just to send a message to join it. The user field in the SIP Request URI is
used to choose what chat forum a message is sent on. The SIP “From” header will
be stored, and for any posted message, all participants that have sent a message will
receive the incoming messages.

Instead of doing another client, we will now do a Chat History monitor that
is updated in real time (with the help of COMET). So, as soon as the chat server

receives the message, it will be updated on browsers monitoring the chat.

SIP Serviet Client Programming 197

For this purpose a JSF bean and a JSP page are created.

public class HistoryBean {
private Vector<HistoryEntry> history = new Vector<HistoryEntry> ();
private int maxSize = 15;

public int getMaxSize() {
return maxSize;

}

public void setMaxSize(int maxSize) {
this.maxSize = maxSize;

}
public HistoryBean() {}

public Collection<HistoryEntry> getItems() {
SessionRenderer.addCurrentSession("chat");
return history;

}

public void appendEntry(String id, String text) {
HistoryEntry he = new HistoryEntry();
he.setUid(id);
he.setText (text);
history.add(he);
if(history.size() > maxSize) history.remove(0);
//Trigger ICEFaces
SessionRenderer.render("chat");

The code holds a history of the last 15 entries. When the history items are
retrieved with the “getltems()” method call, the ICEfaces “SessionRenderer” is
added with the label “chat.” Then, when a new history entry is appended at the
end of the “appendEntry()” function, the “SessionRenderer” is invoked again, this
time with a call to render. That in turn would start the asynchronous update event.
These are the only two lines of code that need to be added to the Java source
code. The rest of the ICEfaces framework is configuration, with some altering in
the main JSP page.

<?xml version="1.0" encoding="UTF-8"7?>
<f:subview id="history" xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>JSP Page</title>

198 Understanding SIP Servlets 1.1

</head>
<body>
<h2>Chat History</h2>
<f:subview id="historytable">
<h:dataTable id="history" value="#{HistoryBean.items}" var="msg">
<h:column>
<f:facet name="header">
<h:outputText value="Identity"/>
</f:facet>
<h:outputText value="#{msg.uid}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Message"/>
</f:facet>
<h:outputText value="#{msg.text}"/>
</h:column>
</h:dataTable>
</f:subview>
</body>
</html>
</f:subview>

Here the “history.jspx” file is defined. Note that this is all standard JSF syn-
tax without any additions. The only place where the ICEfaces framework needs
to intercept is in the “index.jsp” page.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JSP Page</title>
</head>
<body>

<h1>JSP Page</h1>
<jsp:forward page="history.iface" />
</body>
</html>

Instead of forwarding the main page to “history.jspx,” it does a forward to
“history.iface.” The interception is done by a special ICEfaces Servlet, so we need
to look at the “web.xml” file.

<?xml version="1.0" encoding="UTF-8"7?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schema
Location="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/
ns/javaee/web-app_2 5.xsd">

SIP Serviet Client Programming 199

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>server</param-value>

</context-param>

<context-param>
<param-name>com.sun.faces.validateXml</param-name>
<param-value>true</param-value>

</context-param>

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.jspx</param-value>

</context-param>

<listener>
<listener-class>
com.icesoft.faces.util.event.servlet.ContextEventRepeater
</listener-class>
</listener>

<servlet>

<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!— — Persistent Faces Servlet —>

<servlet>

<servlet-name>Persistent Faces Servlet</servlet-name>
<servlet-class>com.icesoft.faces.webapp.xmlhttp.PersistentFacesServlet
</servlet-class>

<load-on-startup> 1 </load-on-startup>

</servlet>

<!— Blocking Servlet —>

<servlet>

<servlet-name>Blocking Servlet</servlet-name>
<servlet-class>com.icesoft.faces.webapp.xmlhttp.BlockingServlet
</servlet-class>

<load-on-startup> 1 </load-on-startup>

</servlet>

<!— Persistent Faces Servlet Mappings —>
<servlet-mapping>

<servlet-name>Persistent Faces Servlet</servlet-name>
<url-pattern>/xmlhttp/*</url-pattern>
</servlet-mapping>

<servlet-mapping>

<servlet-name>Persistent Faces Servlet</servlet-name>
<url-pattern>*.iface</url-pattern>

</servlet-mapping>

200 Understanding SIP Servlets 1.1

<!— — Blocking Servlet Mapping —>
<servlet-mapping>

<servlet-name>Blocking Servlet</servlet-name>
<url-pattern>/block/*</url-pattern>
</servlet-mapping>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*,jsf</url-pattern>
</servlet-mapping>

<session-config>
<session-timeout>30</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
</welcome-file-list>
</web-app>

The “web.xml” file is quite large, so if you ever wondered why annotations
were introduced in JEE 5, this is your answer. First of all, ICEfaces sets up a
couple of context parameters, the most important one of which is “DEFAULT _
SUFFIX,” which specifies what we are dealing with in the “jspx” files. This is due
to the fact that we mapped the “history.jspx” to “history.iface.” The next specific
declaration is the “ContextEventListener,” which the ICEfaces framework needs
to set up. Then there is a standard Faces Servlet declaration, and after it come two
ICEfaces specific Servlets. One is for blocking the COMET connection, and the
other maps the “*.iface” where our “history.iface” would be intercepted. The rest
of the “web.xml” file is standard configuration.

The last configuration file to be modified is the “faces-config.xml”:

<faces-config xmlns="http://java.sun.com/JSF/Configuration">

<application>
<view-handler>
com.icesoft.faces.facelets.D2DFaceletViewHandler
</view-handler>

</application>

<managed-bean>
<managed-bean-name>HistoryBean</managed-bean-name>
<managed-bean-class>net.sipservlet.sample.chatserver.HistoryBean
</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
</managed-bean>
</faces-config>

SIP Serviet Client Programming 201

At the application scoping level, the “D2DFacletViewHandler” from the
ICEfaces framework gets initialized, and we declare the History Bean according
to standard JSF, also in application-wide scope.

As well as making the History Bean available in the SIP Servlet scope, we
need to add it to the “ServletContext.” There is a special listener in “javax.servlet”
that gets called when a Servlet context is created (as an effect of deploying the
“.sar” file). Now everything is in place, but the “SipChatServlet” code is not
described; however, after coming this far in the book, these details easily could
be gleaned by studying the sample code.

Now it is time to build the “.sar” file and to deploy it. For testing purposes,
we can utilize the X-Lite and the “SipCommunicator” SIP clients. One is set up
to host user “sip:chris@sipservlet.net,” while the other has “sip:stoffe@sipservlet
.net.” In both clients, a contact representing the forum “sip:DefaultForum@
sipservlet.net” should be added. It will be used to submit messages to the forum.

It is time to open up a browser and access the ICEfaces enabled page.

Note This time the application is deployed at the root, and this is a trick that can be done
in the “sun-web.xml” file deployment descriptor by setting “<context-root>/</context-
root>.”

http://localhost:8080 will open up an empty chat history page.
After sending some messages between Chris and the forum and Stoffe and
the forum, the page would look like Figure 9.2.

YV TR JSP Page o
@ (o) 2 @ hup://localhost:8080/ v | > ([Glv Google Q
Chat History

Identity M

sip:stoffe @sipservlet.net [stoffe] : Who is on the chat?
sip:chris@sipservlet.net [chris] : Chris here!
sip:stoffe@sipservlet.net [stoffe] : What are you up to?
sip:chris@sipservlet.net [chris] : Nothing much!

Figure 9.2 Java Server Faces with ICEFaces chat Web GUI.

202 Understanding SIP Servlets 1.1

No, the screenshot does not say much: The interactivity should be experi-
enced live!

This shows the potential of the ICEfaces framework, and what is really nice
is that a skilled JSF developer can create a site, while a skilled SIP Servlet developer
can add the communications part and the COMET asynchronous updates.

9.4 REST and JAX-RS

Representational State Transfer, commonly abbreviated REST, is an architectural
concept that was first presented by Roy Fielding. It describes how to represent
objects over HT'TP protocol using the standard methods like GET, POST, PUT,
and DELETE. The actual object is specified by an HTTP URL. (See Dr. Field-
ing’s dissertation at www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.)

Many services built on top of HTTP apply the REST pattern. One such
service that is used in conjunction with SIP is the XCAP protocol, in which the
buddy list of a chat and presence application retrieves, stores, updates, and deletes
its entries.

To give a realistic example in the context of SIP Servlets, we could imagine
that a registrar Servlet state could be made available. Going to the base URL of the
resource, we would be able to retrieve a list of all currently registered users and their
user agent contacts. Then, by further navigating down per each registered user, it
would be possible to retrieve a specific user data object. The data retrieval would
be done with an HTTP GET method. At the same time, it should be possible to
add a new contact entry for a user by utilizing the HT'TP POST method.

Since REST is only a concept, there is need of an implementation for real-
izing the concept. The history from HTTP makes an HTTP Servlet container a
good place to implement such a concept. But even with the support of HTTP
Servlets, there is a lot of code that would have to be rewritten that is pretty sim-
ilar every single time. For this purpose, a new JSR was started to give the devel-
opers of REST services a higher level of abstraction. JAX-RS that is defined in
JSR 311 is specified to make REST services easier and quicker to implement.
When it comes to the JCP process that defines how a JSR should be conducted,
there is also a requirement of providing a RI (Reference Implementation). The
JAX-RS Rl is called Jersey and, lucky for us, it is built on top of GlassFish, which
in turn happens to be the on same platform as SailFin.

By taking an ordinary SailFin distribution, we can easily add the Jersey RI to
be cohosted on a SailFin instance. First, the SailFin server should be stopped. It is
good then to start out fresh with a new domain, as described in Chapter 7. Then,
the easiest way to add the Jersey implementation, is to use the “updatecenter” tool
that comes with SailFin.

SIP Serviet Client Programming 203

sailfin/updatecenter/bin/updatetool

A graphical tool (see Figure 9.3) should pop up on the screen.

In the list, the Jersey server should be checked, then press Install. The license
GUI pops up and, after accepting the Jersey component, is installed on to the Sail-
Fin server instance. Note that the version of Jersey is 0.8, so it is not yet finalized.
Its quality is quite good, so it should be no major obstacle. However, the imple-
mentation might change, since it is quite a new component, so for this reason the
update center also provides an upgrade functionality. After Jersey is installed, it
should appear under the Installed Software tab (see Figure 9.4). Here we are able
to see whether an update is released, and also we would be able to get the update.

This is all that needs to be done to install JSR 311 JAX-RS support. Under
the SailFin directory, there should now be a Jersey folder. The folder contains the
necessary libraries but also the documentation and some samples. Now the SailFin
server can be started again with the “asadmin” “start-domain” command. The next
step is to develop the registration SIP Servlet that we want to expose with REST.

ane GlassFish Update Center
(Check for Updates) (Help)
{ a TRy I.mﬂ Y Had Cnfi . Dok o 1
Select the software component desired to update the installation.
i . Name Date Published Version Size
4+ [Composite Applications
0 Open ESE Blueprints Jul 15, 2008 1.0 711K8
o % 0O Open ESB V2 Jul 15, 2008 2.0 12M8
¥ | Web Technologies
o ™ Jersey (RESTful Web Services) Jun 20, 2008 08 e
8 Maki Apr 30, 2008 180 M8
0 Project k Example jan 2, 2008 41 11m8
¢ H Phobos Sep 18, 2007 0.5.11 IMe
4+ [ClassFish Support For Gralls Framework May 13, 2008 01 20M8
& 4+ [spring Framework and GlassFish May 3, 2008 1.0 11MB I
4 [JRubyon GlassFish May 1, 2008 io 26M8
1 Social Sofware ¥
D Restart will be required. - New (Selectall) (Install
~Details -
lo | TechSpecs Support |
Jersey
£ Version: 0.8
- = Source: Sun Microsystems Inc.
Homepage: https:/fersey.dev.java.net
Overview

Jersey is the open source (under the CDDL License) JAX-RS (JSR 311) Reference Implementation for building RESTful Web Services. It
is also more than the Reference Implementation. Jersey provides additional APls and extension points (SPls) so that developers may
extend Jersey to suite their needs, This module contains Jersey libraries, docs and examples.

Post Installation

alel

Figure 9.3 Update Center choosing Jersey component to install.

204 Understanding SIP Servlets 1.1

‘anA ClassFish Update Center
(Register) (Check for Updates) (Help)
- o | k Updates lled Soft '] | f F L -

Identifies the saftware installed on your system.

v Name Date Published Version Size
L5 [Wweb Technologies
obm Jersey (RESTful Web Services) Jun 20, 2008 0.8 ELT)
iF New ("Select All) | Uninstall
Details
[Overview | Tech Specs Support |
Jersey
Version: 08
“"u Source: Sun Microsystems Inc.
Homepage: hitps:/jersey dev.java.net

Overview

Jersey is the open source (under the CDDL Jicense) JAX-RS (JSR 111) Reference Implementation for building RESTful Web Services. It
is also more than the Reference Implementation. Jersey provides additional APls and extension points (SPIs) so that developers may
extend Jersey to suite their needs. This module contains Jersey libraries, docs and examples.

Post Installation

i

Figure 9.4 After successful installation of Jersey.

public class RegistrarServlet extends SipServlet {
@Override
protected void doRegister(SipServletRequest req)
throws ServletException, IOException {

SipServletResponse resp = req.createResponse(200);
Address contact = req.getAddressHeader("Contact");
resp.setAddressHeader("Contact", contact);

// Use the ServletContext attributes as a shared db resource
ServletContext sc = getServletConfig().getServletContext();
Map<String, Collection<String> registrations = (Map<String,
Collection<String>) sc.getAttribute("REGISTERED");
if (registrations == null) {
registrations = new HashMap<String, Collection<String>();
sc.setAttribute ("REGISTERED", registrations);
I

storeContact(registrations, req.getTo(), contact);
resp.send();

}

SIP Serviet Client Programming 205

public static void storeContact(Map<String, Collection<String>
registrations, Address to, Address contact) {
Collection<String> contacts =
registrations.get(to.getURI().toString());
if (contacts == null) {
contacts = new ArrayList<String>();

}
contacts.add(contact.getURI().toString());

//Use only URI form the from header as key
registrations.put(to.getURI().toString(), contacts);

The “doRegister()” method is quite straightforward. It looks for the SIP
“Contact” header; it creates a SIP 200 response and appends the “Contact” header
to it. Then the Servlet stores away the “Contact” header into a collection, which
you in turn save as an attribute in “ServletContext.” This is probably the easiest
way to store away things; since the REST framework is built on top of HTTP
Servlets, it is quite easy to access the registration state in the Servlet Context.

Note The registrar Servlet is by far not complete. A real one should check more on the
SIP “Expires” header, and the 200 should contain the full list of contacts registered for a
SIP user. Itis a good idea to persist registration information. A common pattern that is often
used is to utilize EJB 3 and the Entity Manager for storing the data in a database. To min-
imize the code and show the REST concept, the Registrar Servlet is kept to a minimum.

@Path("/")
public class RegistrarResource {

@Context ServletContext sc;
public RegistrarResource() {}

@GET
@Produces("application/xml")
public String getRegistered() {
Map<String, Collection<String> registered = (Map<String,
Collection<String>) sc.getAttribute("REGISTERED");
StringBuilder output = new StringBuilder();
output.append("<registrations>\r\n");
for (String id : registered.keySet()) {
appendUser (output,id,registered.get(id));
}
output.append("</registrations>\r\n");
return output.toString();

206 Understanding SIP Servlets 1.1

@GET

@Produces("application/xml")

@Path("users/{userid}/")

public String getContact(@PathParam("userid") String id) throws
ServletParseException {

Map<String, Collection<String> registered = (Map<String,

Collection<String>) sc.getAttribute("REGISTERED");

StringBuilder output = new StringBuilder();
output.append("<registrations>\r\n");

appendUser (output,id,registered.get(id));
output.append("</registrations>\r\n");

return output.toString();

@POST
@Consumes ("application/x-www-form-urlencoded")
@Path("users/{userid}/")
public void postContact(@PathParam("userid") String id, String form)
throws

ServletParseException, IOException {

Hashtable table = HttpUtils.parseQueryString(form);

String contact = ((String[]) table.get("contact"))[O0];

Map<String, Collection<String> registered = (Map<String,
Collection<String>) sc.getAttribute("REGISTERED");

SipFactory sf = (SipFactory) sc.getAttribute(SipServlet.SIP_FACTORY);

RegistrarServlet.storeContact(registered, sf.createAddress(id),
sf.createAddress(contact));

private void appendUser(StringBuilder sb, String uid,
Collection<String>
contacts) {
sb.append("<user id=\"");
sb.append(uid);
sb.append("\">\r\n");
for (String contact : contacts) {
sb.append("<contact>");
sb.append(contact);
sb.append("</contact>\r\n");
}
sb.append("</user>\r\n");
}
}

The @Path annotation states that this is a root JAX-RS resource. It is manda-
tory for there to be one top path resource when using JAX-RS. The next interest-
ing line is the @Context injections. JAX-RS allows for the injection of the “Servlet

SIP Serviet Client Programming 207

Context” that we are going to use for retrieving the saved registration information
by the “RegistrarServlet.”

For registering what method should be triggered when various HTTP calls
are made, each resource function needs to be annotated with a proper HTTP
method annotation. The first method in our resource “getRegistered() “is annotated
by a @GET annotation. It does not contain any @Path annotation, so it will be
used as the root. The method is also annotated with @Produces. In this exam-
ple, the returned MIME will be XML formatted. The actual XML schema is
made up in order to be easily read in a browser. The code inside the function
“getRegistered” simply gets the registered collection and formats a XML document
with the help of the “appendUser(),” which is iteratively called for every user reg-
istered in our registrar. The produced XML string will be appended to the 200
“HttpServletResponse” that Jersey will generate for the incoming HTTP GET.

Looking at the second method, “getContact(),” notice that the @GET
and @Produces annotations are the same. The difference from the “get
Registered()” method is the @Path annotation. It defines a path of users, but the
element after the slash shows how dynamic path parameters are declared in the
JAX-RS framework. In brackets {userid}, the dynamic “userid” parameter gets
declared. Because it is dynamic, the Servlet code knows what it is set to. For this
purpose, there is a @PathParameter defined in JAX-RS. In this example, the frame-
work is injecting it to the method input parameter ID by calling:

(e@PathParam("userid") String id

Soon, when we look at a real executed scenario, it will be clear, but first, a
short example illustrating what is happening:

Accessing pathroot“/” would yield a complete list of all registered resources.
A call to “/users/stoffe” would inject the String “stoffe” into the ID parameter,
while “/users/chris” would inject “chris” into the ID parameter. The rest of the
method “getContact()” does the same thing as the “getRegistered(),” except it only
produces XML output for one user.

The third JAX-RS resource method is quite different. It is annotated with
@POST, and it consumes an HT'TP form mime type (@Consumes). Since it con-
sumes a MIME type object, it is intended to be used for inserting or updating an
entry rather than for getting operations like the previous examples methods
demonstrated. The “postContact()” method also utilizes the dynamic path param-
eter syntax as the “getContacts()” does. It will also get a string that represents the
form string. “HtepUtils” is used to parse the contact parameter that is submitted
in the form. Then the registration collection is searched to find the user specified
by the dynamic path parameter ID. When the right user is found, the contact is
then appended so that the user’s available contacts are returned.

208 Understanding SIP Servlets 1.1

This is all that needs to be done codewise. The next step is to look at the
“web.xml” file.

<?xml version="1.0" encoding="UTF-8"7?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLoca-
tion="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2 5.xsd">
<servlet>
<servlet-name>ServletAdaptor</servlet-name>
<servlet-class> com.sun.jersey.spi.container.servlet.Servlet
Container
</servlet-class>
<load-on-startup>i1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>ServletAdaptor</servlet-name>
<url-pattern>/resources/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
</welcome-file-1list>
</web-app>

The JAX-RS is hooked into the application by defining the
“ServletContainer” Jersey Servlet. It is named to “ServletAdapror,” and it is mapped
in the converged application under “/resources.”

Note 1t is easiest to use NetBeans to produce both the SIP Servlet code and “sip.xml”
file. Then REST support can be added, generating the Resource class and “web.xml” file
together with inclusion of the needed JAX-RS libraries.

Right-click on the Converged SIP Servlet project, and choose “RESTful
Web Services from Patterns” (see Figures 9.5 and 9.6).

Pick the singleton pattern.

Name the resource and path and click finish (see Figure 9.7).

The next step is to build the application and then deploy it. We will need
to register some clients in one of two possible ways. The SIP Test Agent from Net-
Beans could generate the SIP registration. Another alternative is to use real SIP
clients. The screenshot in Figure 9.8 is an X-Lite client that was used to register
Chris and a “SipCommunicator” to register Stoffe. Browsing to the root URL of

SIP Serviet Client Programming 209
ICIEEE) - IDE 6.1
FEESXrEDelTE PB-OEED |
Pl o (180 Regsuariesoucejaad) 08

> & CuckTobial
* i@ CometSample
* @ ContainerTrantactionTest

EB-8-0 2 FRB ¢ e % Ay ed L

package net.sipserviet.sample;

TOExeaption;
1.Collectiony
1.Hashtable;
1.Map;

1ot . ServietContext;

ara.Path;
GET,

b i
LS. POST)
-7a.Producanine;

Lra.PathParas;

Fice

| &

e
"= 1
» 0 duild & HTML.
o g Clean and Build Java Package
1 e 2 Java Class...
"8 F Generate javadoc @ jse...
g & j5F Managed Bean...
> @5 Run & Visual Web JSF Page...
» g | Undeploy and Deploy 2 java Interface...
* & L Debug & Sip Servier...
» & & profie & Sip Ustener...
* & P e RESTIUIWeb Services | &) Visual Web JSF Page
ro | & Entity Class...
-2 2 : ;" “:‘"" ":’:“ : & Entty Classes from Database...
E Dpen Required Projects F P
.:'! Chose | ;5 'ages from Entity Classes
> oS | Bother...
> & § Rename.. e
> g Move.. .

v n Find.. xF
{ Versioning
& Local History
§ SIP Test Agent
Properties
sl 2
(L Owpur | | Loaded Classes |

g s, Colecron< Sy
.

VFRERT T~
pablic class Reglatrarmessurcs |

_
Copy... e

H tContant
Delete Delete E Serviscontext scy

#Contaxt
. BripServietRequest servistRequesty

] public Iﬂlnnmmn.ﬂl (.
]

s LG

Figure 9.5 NetBeans Wizard creating a REST Web service.

806

New RESTful Web Services from Patterns

ey

Steps

1. Choose File Type

2. Select Pattern

3. Specify Resource
Classes

Select Pattern

Select a RESTful web service design pattern:

o Singleton
O Container-Item

() Client-Controlled Container-Item

Description:

Create a singleton RESTful resource class with GET and PUT methods
\using Java API for RESTful Web Service (JSR-311). This pattern is useful
for creating a simple HelloWorld service and wrapper services for

invoking WSDL-based web services.

On the next page you will be specifying class name, URI, and

representation type of the resource.

(" Help) (<Back) @Next>) (Finish) (‘Cancel)

Figure 9.6 Choosing the singleton REST pattern.

V.

210 Understanding SIP Servlets 1.1

ene =~ New RESTful Web Services from Patterns
silgi M Resource Classes
1. Choose File Type Project: DummyApplication
2. Select Pattern
3. Specify Resource Location: Source Packages T‘
Classes
Resource Package: neLsipserviet.sample B

Resource Name: Dummy

Class Name: DummyResource

Path: /

MIME Type: [“application/xmi =
Representation Class: java.lang.String (Select...)

(help) (<Back) (Next>) (@FinsR®) (Cancel)
g

Figure 9.7 Naming the REST Resource and setting its path.

Calls & Contacts B Detach
|l £ Always Available

| Set global status
'Fﬂn"i * Online
*Chris| & Free for chat
“ Away
' Offline

4 Contacts ¥ |

Q
Name &
o Friends
Stoffe

O Home

s stoffe@sipserviet.net (SIP) »

) MSinnovation
Work
£ (No Group)

[sssmoig @ | syea 0| siewog by

Figure 9.8 Chris on the X-Lite client and Stoffe on the SIPCommunicator client.

SIP Serviet Client Programming 21

the application yields a JSP page http://loaclhost:8080/RegistrarRestServer. This
is done so that a standard Web application can be deployed. To reach the root
path of the REST resources, append “/resources” to the URL (according to the
mapping from “web.xml”).

Figure 9.9 is how the registrations from X-Lite and “SipCommunicator”
would look like.

Now, looking at a particular user, “/users/sip:chris@sipservlet.net is
appended” (see Figure 9.10).

We could also look at “/users/sip:stoffe@sipservlet.net/,” which would result
in the other registration for user Stoffe. This shows the @GET annotations of
resources at work. In order to test the @POST annotation, we could use the com-

mand line UNIX utility curl.

curl -d contact=sip:voicemail@sipservlet.net
http://localhost:8080/RegistrarRestServer/resources/users/sip:stoffe@
sipservlet.net/

The result of running curl would look like Figure 9.11 in the browser.

Under the user Stoffe, the new voicemail contact has been appended. This
example showed the basics, but a more common usage of JAX-RS is to produce
JSON-formatted documents. The benefit of formatting the MIME in JSON is
that it produces compliant JavaScript code. Then the registrar service can be easily
mashed up by HTML developers. There is an excellent example of how to produce

ene Mozilla Firefox [=)
- Qj "'.‘ '@ hup:/ /localhost 8080 /RegistrarRestServer/resources/ ¥ b | |Gl ® Google Q

This XML file does not appear to have any style information associated with it. The document tree is shown below.

- <registrations>
- <user id="sip:chris@sipserviet.net">
- <contact>
sip:chris@ 192.36.158.69:23742;rinstance=653f1c68fc2e39da
</contact>
- <contact>
sip:chris@192.36.158.69:23742 rinstance=653f1c68fc2e39da
</contact>
- <contact>
sip:chris@127.0.0.1:23742;rinstance=c842acde0952d3fa
</contact>
</user>
- <user id="sip:stoffe@sipserviet.net">
<contact>sip:stoffe@ 127.0.0.1:4534;ransport=tcp</contact>
</user>
</registrations>

Figure 9.9 Top level listing all REST registration resources.

212 Understanding SIP Servlets 1.1

GXaNG) Mozilla Firefox o
l‘d' v e ’I‘ @ rRestServer/resources fusers/sip:chris@sipserviet.net, v | > lC]' Google Q) ¢

This XML file does not appear to have any style information associated with it. The document tree is shown below.

| - <user id="sip:chris@sipserviet.net">

- <contact>
sip:chris@ 192.36.158.69:23742;rinstance=653f1c68fc2e39da
</contact>

| - <contact>
sip:chris@ 192.36.158.69:23742;rinstance=653f1c68fc2e39da
</contact>
| - <contact>
sip:chris@ 127.0.0.1:23742 rinstance=c84 2aede0952d3fa
</contact>
</user>

</registrations>

Figure 9.10 Listing only “Chris” registration by specifying user’s path.

JSON-formatted documents installed under “sailfin/jersey/examples/JsonFrom
Jaxb”: As the name implies, JAXB is used to make a Java object to XML mapping,
and then the “com.sun.jersey.api.json.JSONJAXBContext” class allows for serial-
ization and deserialization of JAXB beans into the JSON format and vice versa.
More resource and discussions can also be found at https://jersey.dev.java.net/.

In order to make the created REST services easier to consume, there is a
description language that services can utilize, called Web Application Description
Language (WADL), a standardization attempt to format the service description
so that development tools can be utilized to autogenerate code stubs for various
different languages and frameworks. Since the service is in the end an HTTP serv-

ansa Mozilla Firefox o
L - @ D @ 8080 /Regi 15 1 v ik (G- Coogle Q) g
This XML file does not appear 1o have any style information {ated with it. The d wee is shown below.

- <registrations>
- <user id="sip:chris@sipservicLnet">
niact-
sipichris@192.36.158.69:23742 sinstance=6531c68c2e39da
</contact>

- <contacts
sipochris@ 192.36.158.69:23742 rinstance=053f1c68fc2e39da
</contact>
- ntact-
sip:chris@ 127.0.0.1:23742:5 842acde0952d3fa
</contact-
<fuser>
- <nser id="sip:stoffe @ sipservietnet">
<contact-sip:stoffe@127.0.0.1:4534;ranspon=tcp</contact>
<fuser> o
</registrations>

Figure 9.11 Listing after running “curl.” User “Stoffe” has a new contact field.

SIP Serviet Client Programming 213

ice, it does not matter if one side is written in Java while the other uses Perl or
some other framework. The idea behind it is to make a counterpart to Web Ser-
vices (JAX-WS) and the Web Services Description Language (WSDL). WS is
perceived by some as very complicated and also, in some cases, too powerful and
too hard to understand for reaching a broad industry market. This is by no means
an attempt to favor one or the other here. Many HTTP-based Web 2.0 services
have managed to become very popular in “mashups,” and by describing them in
WADL, the chances of getting them used in even more “mashups” increases.

Note There is an interesting project at https://wadl.dev.java.net/ that provides a
“wadl2java” tool. There are also links on the site to the WADL specifications.

9.41 Consuming a REST Service

Now that we have produced a REST service, we might also be interested in a clean
way of consuming a REST service. When packaged in a nice way, a REST serv-
ice should be easily consumed. In NetBeans, there is a Services tab, where some
REST and WS services are collected. To continue the spin on the registrar appli-
cation, a nice, simple showcase would be to mash it up with the Twitter service.

The first step is to expand the services tag under the Twitter service (see Fig-
ure 9.12).

For this sample, the “updateStatus” method would be implemented. It is
also possible to view the entire Twitter WADL by right-clicking on “What Are
You Doing Service” (see Figure 9.13).

By selecting “updateStatus” and dragging it to the place in the SIP Servlet
code, NetBeans will be triggered to generate code stubs and include the needed
libraries into the project. The generated code for the Twitter “updateStatus”
method is as follows:

try {
String status = "";
String format = "xml";

RestResponse result = TwitterWhatAreYouDoingService.updateStatus
(status,format);

twitter.whatareyoudoingservice.twitterresponse.StatusType resultObj =
result.getDataAsObject(
twitter.whatareyoudoingservice.twitterresponse.StatusType.class);

//TODO - Uncomment the print Statement below to print result.
//System.out.println("The SaasService returned: "+result.getDataAs
String());
} catch (Exception ex) {
ex.printStackTrace();

}

214 Understanding SIP Servlets 1.1

806
PEES Xl TH PRBRGEBD

[Files ax)

» 8 Databases
v 8@ web Services
» [} Amazon
» [} Delicious
» [Facebook
» [d Flickr
» [Google
» | Sswikelron
¥ [Twiner
¥ @ What Are You Doing Service
v & [statuses]
» & [public_timeline.{format}]
> & [friends_timeline.{format]]
» & (friends_timeline]
» & [user_timeline.{formatj]
» & [user_timeline]
> & [show]
> & [destroy]
> & [replies.iformat]]
¥ & (update.|format])
@ updateSatus.

» & [friends.{format)]
> & ([friends)
» & [followers.|format)]
> & (featured.{formatl]
> & (users)
» & [direcmessages.{format)]
» & [direct_messages)
> & (friendships]
» & [account]
> & [favorites.{format}]
» & [favorites]
> & [notifications]
» [J WeatherBug
» |3 vahoo
> [Zilow
> [zvents
» @ Enterprise Beans (2.%)
> B servers

Figure 9.12 Choosing Twitter “updateStatus” function to auto generate code stub.

v [Twitter
v T e
v @ View APl Documentation
»| Delete

» | Refresh
T —
& Tiser melie format]

> :

» & [user_timeline)

> & [show]

» & [destroy]

» &5 [replies.{format}]

v & [update.{format)]
@ updateStatus

> & [friends.{format))

Figure 9.13 Right click to view the WADL definition for the Twitter service.

SIP Serviet Client Programming 215

So after slight restructuring and adding it to the registrar servlet code the
result looks like this:

@javax.servlet.sip.annotation.SipServlet
public class RegistrarServlet extends SipServlet {

protected void doRegister(SipServletRequest req)
throws ServletException, IOException {

SipServletResponse resp = req.createResponse(200);
Address contact = req.getAddressHeader("Contact");

resp.setAddressHeader("Contact", contact);
setTwitterStatus("Could now be contacted on : " + contact.getURI());
resp.send();

private void setTwitterStatus(String status) {

try {
RestResponse result = TwitterWhatAreYouDoingService.updateStatus
(status,"xml");

StatusType resultObj = result.getDataAsObject(
twitter.whatareyoudoingservice.twitterresponse.Status
Type.class);

log("The SaasService returned: " + result.getDataAsString());
} catch (Exception ex) {
log("Failed update Twitter",ex);
}
}
}

The code is now complete, but there is one more thing that needs to be
done. For executing the update command, we need to specify the Twitter account
that is going to be updated. Not only that, but the “updateStatus” also requires
authentication information, so we also need the password for the corresponding
Twitter account (see Figure 9.14).

As can been seen in Figure 9.14, we can include in the inserted classes
using NetBeans. They are prefixed by “org.netbeans.saas” and “org.netbeans.saas.
twitter.” In the second of these packages is a properties file that requires the pro-
grammer to enter the user name and password. When this is done and all files
are saved, it is time to compile the “.sar” file. Then we need to deploy it and
make a SIP registration. To demonstate this, we can once more register Stoffe with
the help of the “SipCommunicator” client. Now, going to www.twitter.com and
logging in to the same account where we entered in the properties, we can see the
result in Figure 9.15.

216

Understanding SIP Servlets 1.1

CTDSIYIT] B et
= et

ve lwwanmsum
> (3 web Pages :
W‘wm USernARe® Lol fog
i g Server nﬂ.z-: | passwordsverysecret]|
¥ [source Packages .
¥ [netsipserietsample |
& Registrarservietjava |
*] org.netbeans.saas I
BB org.netbeans.sans.google
¥ B orp.netbeans. saas. twitter
[TwitterWhatAreYouDoingService java
[Twiterwhatare' tor java |
—li i Ig
P
¥ @ RegistrarServiet :: SipServiet F.!
1 reql 4|

IHHIIE = |~ 25—

Figure 9.14 Specifying developer specific properties for the Twitter service.

@ o @ L 4} T v winer.com/nome B e (" cooge Q)£

Home Profile Find Pecple Semings Help Signout EDB =~ |

Latest: Could now be contacted on - g
27.0.0.1:5993 D e than s Rl G&mmm
opo
Home
stoffeg Could now be contacted o
sip:stoffe@127.0.0.1: 59931mnswn-m less than 10 seconds aga
from web @Replies
stoffeg Signing in with contact : sip:10.0.2.2:6060 1155 A Direct Messages o
1 Auguest 08, 2008 from web |
Favorites
. stoffeg Testing the APl with curl. s10s AM Asgust 08, 2008 from et Everyone
Following aod I
. stoffeg writing a jersey SIP mashup 11ooe AM Augesr 08, so08 from
weh i
Device Updates
St e SMS mpdaes
What to do now:
1. Felrurwhatyou're-doing-imthe-box-above
2. Find some friends and follow what they're doing
3. Turn on your mobile phone to update your friends on the go
RSS Did

Figure 9.15 Viewing the resultin a browser on the Internet.

SIP Serviet Client Programming 217

That concludes this simple sample. One thing that is worth pointing out is
that the scenario is probably not the best. It was chosen for its simplicity and align-
ment with the previous ones. Instead, it would make more sense to use the SIP
PUBLISH method that reports presence updates for a user. This in turn involves
parsing presence XML documents, and there are various formats of the XML as
well. Another use case could be to update the Twitter status on an incoming call,
and then on the BYE SIP message, update again when the user is off the call.

There is also a client-side REST implementation in the Jersey classes. It tends
to be used internally for testing services, but it could also be exploited to do
server-side “mashups” in a “.sar” or “.war” application.

9.5 Java ME JSR 180

JSR 180 is a specification defined for Java Micro Edition (Java ME). Java ME has
two different base configurations, Connected Device Configuration (CDC) and
the Connected Limited Device Configuration (CLDC 1.1—JSR 139). Most smart
phones, IP gateways, and TV setup boxes implement the CDC configuration.
The majority of the mobile phones in the market support the CLDC configura-
tion with the Mobile Information Device Profile (MIDP 2.x—JSR 118).

Java ME programming is an altogether different kind of paradigm. There
are basically two options. One is to use a phone that already has the JSR 180 sup-
port built in. The other alternative is to use a library that implements the SIP sup-
port using the raw socket support in MIDP. The support for JSR 180 was increased
in deployment since the umbrella JSR 248 Mobile Service Architecture (MSA)
promotes its implementation. The fact that mobile phone vendors want to be MSA
compliant has resulted in many devices on the market supporting SIP in their Java
ME environment (see Figure 9.16).

As is often the case with Java ME JSRs, the API can behave a little differently
between the different phone vendors. At the same time, it is not too uncommon
for the real mobile phone and the emulated development environment to have
slightly different behaviors. To complicate things further, there can be two modes
of operations of the JSR 180 stack. The specification talks about a dedicated mode

JSR-135
JSR-179
JSR-180 JSR-82
MIDP 2.x [
CLDC 1.1
Java ME

Figure 9.16 JSR 180 as part of Mobile Service Architecture in the Java ME API stack.

218 Understanding SIP Servlets 1.1

in which the Midlet (Mobile applet and code entry point) is the only client using
the underlying SIP stack. The other mode is the shared mode, in which the SIP
stack is shared among other Midlets and native phone applications. Usually, the pro-
grammer is responsible for opening the stack and configuring it while in the ded-
icated mode. There will be no clashes as long as there is no other Midlet or native
application using the same socket port for incoming signaling. If you choose port
5060 for incoming SIP traffic, there might be a possible clash, and thus the con-
nection would fail.

When a shared mode stack is used, normally the phone comes with a con-
figuration GUI, in which SIP connectivity is configured. It is then up to the
phone software to send SIP REGISTER messages and initialize the stack before
any Midlet opens up the connection.

For the people who are new to Java ME MIDP programming, the main class,
and the entry point to your software, is a class that extends “javax.microedition.
midlet.Midlet.”

The initialization of the code normally happens in the “startApp() callback.”

Public class ChatMidlet extends Midlet {
Public void startApp {
//Init the SipConnection
//Init and render the GUI components

In normal cases, the GUI components would render a text input box, a des-
tination SIP address text box, and a send button in just the same way as one cre-
ates the client using HTML.

Then, pushing the send button produces a SIP message to be sent.

The initialization of the SipConnecion Notifier can be done like the fol-
lowing sample code:

SipConnectionNotifier scn;

//Dedicated Mode init
scn = Connector.open("sip:5060;transport=tcp");

// Shared Mode init
scn = Connector.open("sip:*;type=text/chat-sample");

In the dedicated mode, initialization of the client will act as a UAS on TCP
port 5060. All the received messages arriving on that port will be delivered to the
“SipConnectionNotifier.”

While in the shared mode the socket is predefined by the phone. For that
reason no port information is specified but instead a type = text/chat-sample.

SIP Serviet Client Programming 219

First of all the phone needs to be registered in order for the stack to operate. Then
all messages that contain a SIP request header of:

Accept-Contact: *;type=application/chat-sample

This will cause an incoming SIP message to be routed to the very same
instance that was initialized in the shared mode open command. Of course, two
applications cannot register the same type pattern, or else the second one open-
ing will fail. Basically, this is branching on a particular port or “Accept-Contact”

header.

Note For the sample, Sun Wireless Toolkit 2.5.2, which uses the shared mode, was used,
but for real execution a Sony Ericsson JP-8 (W890), which supports only the dedicated
mode, was used. So, a developer really needs to test depending on the intended real plat-
form to verify against.

The “ChatMidlet” class also defines some basic MIDP classes for input and
output, but it is to be considered more as a minimalistic GUI approach. A lot of
time can be spent on designing a proper commercial-grade GUI.

public class ChatMidlet extends MIDlet implements CommandListener {
Display d = null;

Form f = new Form("ChatForumClient");

Command messageCmd = new Command("Send", Command.ITEM, 1);
Command exitCmd = new Command("Exit", Command.EXIT, 1);

TextField messageField = new TextField("Message to send", "", 40,
TextField.ANY);

TextField addressField = new TextField("Target IP",
"sipservlet.net", 40, TextField.ANY);

TextField userField = new TextField("User", "bob", 40,
TextField.ANY);

TextField portField = new TextField("Port", "5060", 5,
TextField.DECIMAL);

TextField chatForumField = new TextField("Chat forum to send",
"DefaultForum", 40, TextField.ANY);

The Display class is the main entry point for the graphic screen. The Form
is a container component in which other items can be added. In this example,
only two controls are used. The first is a Command that will be tied to menu but-
tons to interact with the user. The other is the “TextField,” in which a Midlet user
is able to read and update various fields. The class declaration also contains a
“CommandListener” interface that specifies the “commandAction” callback func-
tion to be called when the user presses one of the command buttons.

One of the Midlet class callbacks is the “startApp” function, by which all
the commands and text fields would be initialized.

220 Understanding SIP Servlets 1.1

protected void startApp() throws MIDletStateChangeException {
d = Display.getDisplay(this);
.addCommand (messageCmd) ;
.addCommand (exitCmd) ;
.append(messageField);
.append(chatForumField);
.append(addressField);
.append(userField);
.append(portField);
.setCommandListener(this);
.setCurrent(f);
try {
initConnectionNotifier();
ReceiverThread rt = new ReceiverThread();
new Thread(rt).start();
} catch (IOException e) {
e.printStackTrace();
}
}

Q —h —h —h —h —h —h —h —h

The commands and text fields are added to the form, and then the form is
set in the Display class. This is a quite standard Java ME programming pattern.
In a larger application, normally there would be multiple forms, and only the one
currently displayed would be set. After the graphics initialization, the connection
notifier is also called. This function sets up the shared or dedicated mode “Sip
ConnectionNotifier.” Next is the creation of a new thread called “ReceiverThread.”
Since SIP is asynchronous, SIP messages can arrive independently. For this purpose,
the Midlets has a thread that constantly monitors for new incoming SIP messages.
There is an alternative to this design pattern. The “SipConnectionNotifier” also
has a callback interface that can be called when a new message has arrived.

In this sample, we use two thread design patterns. One thread is receiving
the messages while the other thread is sending new SIP messages. It is more related
to how the application should behave. If messages are sent and received in the same
thread that graphics are, then it is not possible to navigate when dealing with a SIP
message. This can be either good or bad depending on how the developer wants
the GUI to behave.

Let’s look at the “CommandListener” callback function to see what happens
when a message is sent.

public void commandAction(Command cmd, Displayable disp) {
if (cmd == messageCmd) {
sendSipMessage(prot + ":" + chatForumField.getString() + "@’+
addressField.getString() + ";transport=" + transport,
messageField.getString())
} else if (cmd == exitCmd) {
try {

3

SIP Serviet Client Programming 221

destroyApp(false);

notifyDestroyed();

} catch (MIDletStateChangeException ignore) {}
}
}

The first command is issued when the Send button is invoked. That calls the
“sendSipMessage” function. The input to the function is the target SIP URI in
string format. In this case, when defaults are used, it will produce “sip:Default
Forum@sipservlet.net;transport=udp.” The second argument is also a string, and
it will have to be entered in the “messageField” from the GUIL The third command
is the exit command that is present in most Java ME applications. It is good prac-
tice to let the user exit a Java ME application from the root menu. On some phones
it might actually be quite hard to find another way of killing a running application.

Look at the code sending the SIP message to the chat forum:

public void sendSipMessage(String uri, String msg) {
SenderThread st = new SenderThread(uri, msg);

new Thread(st).start();

}

class SenderThread implements Runnable {
String uri;

String encoding;

String contentType = "text/plain";
byte[] content;

// Constructor for text messages
public SenderThread(String uri, String msg) {
this.uri = uri;
if (msg != null) {

encoding = "UTF-8";

try {

content = msg.getBytes(encoding);

} catch (UnsupportedEncodingException ignore) {}
}
}

public void run() {

SipClientConnection sc = null;

try {
sc = (SipClientConnection) Connector.open(uri);
sc.initRequest("MESSAGE", scn);
sc.setHeader("From", prot + ":" + userField.getString() + "@" +

addressField.getString());

if (content != null) {
sc.setHeader("Content-Type", contentType);
sc.setHeader("Content-Length", Integer.toString(content.length));

222 Understanding SIP Servlets 1.1

sc.setHeader("Contact", "sip:" + userField.getString() + "@" +
scn.getLocalAddress() + ":"
+ scn.getLocalPort() + ";transport=" + transport);
if (encoding != null) sc.setHeader("Character-Encoding", encoding);
OutputStream os = sc.openContentOutputStream();
os.write(content);
os.close(); // close stream and send the message

}

// wait maximum 35 seconds for response
boolean ok = sc.receive(35000);

sc.close();
pauseApp () ;
} catch (Exception ex) {
ex.printStackTrace();
}
}
}

From the source code, we can see that the “sendSipMessage” function sim-
ply creates a new “SenderThread” and starts it. The constructor of the thread stores
away the target SIP URI and the message to be sent. In the “run” function triggered
by the start of the thread, first a “SipClientConnection” is opened toward the tar-
get URL The call to “initRequest” specifies that it is a SIP MESSAGE method we
are going to use. Then, based on the content, both the “Content-Length” and
“Content-Type” SIP headers are added. The next header added is the SIP “Con-
tact” header, and this is a little bit of a hack, since normally the SIP MESSAGE
would not contain such header. This is only to save us some programming; in nor-
mal operations, responses should be sent on the “From” header in the chat server.
In order to minimize, we never did send any SIP register, so that lookup would
fail; thus, we provide the path back in the “Contact” header (this could be any
header name, really, since we will also write the chat server part). The last header
specifies the character encoding, and it uses the UTF-8 encoding from the thread
constructor.

Some basic headers, such as “To,” “CSeq,” “Call-ID,” and “Via” are set
by the framework together with the Request URI. When all the headers are in
place, the body needs to be appended. For this reason, an “OutputStream” can be
fetched from the “SipClientConnection.” Calling the “write” function with the
content for the body will append it to the message. The next call is to the “Output
Stream” function “close.” This will actually flush the stream and send away the SIP
message. When this is done, we then call the “receive” function on the client con-
nection and also specify the amount of time it should block. In this example, we
specify 35 seconds: A SIP transaction is normally T1*64, which is 32 seconds. This
should give us plenty of time to receive a final response. The return type of the
“receive” function is a Boolean, but we do not care to do anything with the result.

SIP Serviet Client Programming 223

If we would receive a 2xx success SIP response, then the Boolean would evaluate
to “true.”

Now that we have shown how to send a message, let’s continue with the
code for receiving a message. As was shown previously, a “ReceiverThread” has
already been started in the “startApp” Midlet function.

class ReceiverThread implements Runnable {
public void run() {
while (true) {
try {
SipServerConnection conn = scn.acceptAndOpen();

String cl = conn.getHeader("Content-Length");
String ct = conn.getHeader("Content-Type");

int len = Integer.parselnt(cl);

InputStream is = conn.openContentInputStream();
byte[] msg = new byte[len];

int offset = 0;

int bytesRead = 0;

while ((bytesRead = is.read(msg, offset, len - offset)) != -1) {
offset += bytesRead;
if (offset >= len) break;

}

if (ct.startsWith("text/")) {

f.append(new String(msg) + "\n");

Alert alert = new Alert("Message");
alert.setString("Received : " + new String(msg));
alert.setTimeout (5000); // 5 seconds
d.setCurrent(alert, d.getCurrent());

}

is.close();

conn.initResponse(200);
conn.send();
conn.close();
} catch (SipException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} catch (Throwable t) {
t.printStackTrace();
}
}
}
}

This thread is implemented in a busy loop that would call the “acceptAnd
Open” function on the “SipConnectionNotifier.” It would block on it until a SIP

224 Understanding SIP Servlets 1.1

message arrives. When a message is available, we would then get a handle on it in
the form of a “SipServerConnection” object. On the incoming message, we can
read any SIP header, and in this case, we are interested the “Content—Length” and
the “Content—Type” SIP headers. Knowing the length, then we can read the body
of the chat forum message. Since SIP messages can contain different content types,
we also make sure that we have got a text message before we display it.

Note The X-Lite SIP client, to name one such client, is sending the application/imis-
composing+xml MIME SIP message body content. The messages are sent to indicate
that the other part in the communication is in the process of typing. It is better to filter
out these messages if they are not significant, but they could also be graphically indicated
to the end user.

If the message is text MIME, then we would use two different techniques to
show it to the user. First, we append it to the main form of the display. The next
lines will show how to use the Alert component in Java ME. It will temporarily
take over the display, showing the received message. After a configurable time-
out, the control will be handed back to the main form. In this case, the message
is displayed in 5 seconds. If other messages arrive within the 5 seconds, they will
only be appended to the form, because the Alert component still has the main
control. But, after the main form gets the control back, all messages are then vis-
ible. Maybe it is not the nicest chat forum GUI, but it should simply demon-
strate the basics.

After the message is processed, it is time to send a 200 OK SIP message
back. On the “SipServerConnection” we call “initResponse(200)” and then call
“send.” A more robust client would also send error responses back. We close the
connection, and then we go back in the busy loop to accept the one next in line.

This is all the code that has to be written on the client side. Then a Java
ME Midlet is usually stored in a “.jar” file. In the archive, the class files would
be included, as well as a Manifest file with some basic configuration. The same
entries as in the Manifest are usually copied to a stand-alone file called “.jad.” The
Java Archive Description (JAD) file is usually shipped together with the corre-
sponding “.jar” file, which is used for installing it on a mobile phone. Except for
the configuration entries, it is a good practice to sign the “.jad” file with a cer-
tificate. This in turn makes the application more trusted in the mobile phone,
which is a good idea, since trusted applications can be configured so that security
question does not pop up all the time while running a Midlet.

MIDlet-1: ChatClient,,net.sipservlet.sample.mechat.ChatMidlet
MIDlet-Jar-URL: MeChat.jar

MicroEdition-Configuration: CLDC-1.1

MIDlet-Version: 1.0.0

MIDlet-Name: ME SIP Chat

SIP Serviet Client Programming 225

MIDlet-Description: Sample jsr180 and SailFin on server side
MIDlet-Vendor: Ericsson

MicroEdition-Profile: MIDP-2.0

MIDlet-Permissions: javax.microedition.io.Connector.sip

Here the name of the main Midlet is specified together with the various ver-
sions of the API used. The name of the corresponding “.jar” file is stated with a
textual description. The last line indicates that this Midlet is using the SIP JSR 180
support. Signing it is enough to indicate that this application is trusted to send
SIP messages; then the Midlet user will not be queried anymore.

To build the “.jar” and “.jad,” it is quite convenient to use a development
environment. Both NetBeans and Eclipse have special Java ME plug-ins in which
the path to the Wireless Toolkit can be specified. In the projects, a reference to a
certificates file can be pointed out. When developing and testing the application
in the WTK, it might be a good idea to reconfigure it slightly. One thing that is
convenient is to disable the security checks. This can be done by changing the
default level of security in the WTK configuration. The other convenient thing is
to enable network monitoring. The monitoring will start a separate GUI show-
ing all the SIP messages going in and out to the emulator.

When the code is in place and the “.jar” and “.jad” files are produced, we
can run the sample. We will reuse the SIP chat server that we used for the ICEfaces
example, but first we need to do two adoptions. The first is due to the fact that we
have a shared mode SIP stack in the WTK. The outgoing SIP messages from the
chat should contain the “Accept SIP” header.

req.setHeader("Accept-Contact", "*;type=\"application/chat-sample\"");

This will be set on all the “SipServletRequest” instances going out of the
“SipContainer.” The “Contact” header patch described earlier is shown below.
This is an optimization that does not require a SIP re-registration. The “Contact”
header is not mandatory in a SIP MESSAGE but if it is present, the server can
use the header as the remote target to which to send messages back.

String contact = req.getHeader("Contact");
if(contact != null && contact.length() > 0) remote = contact;

Let’s start the modified chat server and try once more with Chris on the
X-Lite, Stoffe on the “SipCommunicator,” and now Bob on a Java ME client!

Figure 9.17 is the view of the WTK emulator where the main form can be
seen with the five text fields. In the bottom, the two Command actions have
been put on two of the phone’s action buttons. In the lower part of the screen,
the “f.append()” result of incoming messages can be seen in the lower part of the
phone screen. One such printout is the: “(stoffe) what's up this weekend?”

226 Understanding SIP Servlets 1.1

Port 5060

[stotte] What's up this weekend?
[chriz] : P fraat

[bob) : Me toot
[stofte]: Lets shoot some hoops?

. | -

\ -

& 4
1 2 anc Joir
L T T
7 rass 8w Quixz
*_- - 0 I_#;" "

Figure 9.17 WTK Java ME test client running chat application.

Here is the view we saw previously in the ICEfaces COMET-based GUI.
The only difference is that we can see Bob sending some messages from his mobile
(see Figure 9.18).

And Figure 9.19 is Chris’s view as he sees it on the X-Lite SIP client.

06 sprage o
@ o @ L £ @nmisriocainostsoso/ v | > [Googe Q) ¥
Chat History

Identity Message
sip:bob@sipserviet.net [bob] : I'm joining from the mobile.
sip:stoffe @ sipserviet.net [stoffe] : What's up this weekend?
sip:chris@ sipserviet.net [chris] : I'm free!
sip:bob@sipservietnet [bob] : Me too!
sip:stoffe@ sipserviet.net [stoffe] : Lets shoot some hoops?

8

Figure 9.18 Browser-based chat client.

SIP Serviet Client Programming

227

Chat (DefaultForum@sipserviet.net) See |
T —

Chat: [stoffe] : clean

chris: very so!

Chat: [chris] : very so!

Chat: [bob] : nice!

Chat: [stoffe] : you bet

Chat: [bob] : Me too!
Chat: [slofle] : Lets shoot some hoops?

-

, 1

Y S |

©-8 s uQ [adal 2 73)

(2l 1)

Last message received: [2008-10-11 18:34:54]

Figure 9.19 X-Lite client chat window.

(1]

Reference

REST introduction on Wikipedia, http://en.wikipedia.org/wiki/REST.

10

The SIP Serviet Application
Programming Interface (API)

The topic of SIP Servlet containers and SIP Servlet—based applications has been
discussed at great length in this book. The delimitation of roles and responsibil-
ities in the SIP Servlet architecture has become quite clear, with applications
being hosted on a compliant container. Some of the major principles of the SIP
Servlet architecture are adopted from JEE in general and, more specifically, the
HTTP Servlet specification from which SIP Servlets were derived. The ability to
create applications that are not only portable across different deployment envi-
ronments but also portable across differing vendors who comply with the speci-
fication is a key objective. At the core of this principle, as with the HTTP Servlet
architecture, is a common Application Programming Interface (API). The com-
monality provided by a containers compliant SIP Servlet API implementation
provides the glue that integrates any application with a container. Figure 10.1 pro-
vides a high-level illustration of the APT layer’s role.

Some of the major constructs of the SIP Servlet API have been covered already
in other sections of the book, and this chapter aims to be a more complete ref-
erence to the workings of the API. Some of the API parts have been left out for
clarity, so the reader is encouraged to take a good look at the official API docu-
mentation that is provided with the SIP Servlet Specification. The remaining sec-
tions of this chapter will provide a high-level guide to primary SIP Servlet API
interfaces and their role in successful application creation and deployment.

The main programming interface is defined in the Java package “javax.servlet
.sip,” which uses the base Servlet 2.5 API as its foundation. The main interfaces
have been grouped appropriately to provide more contextual information in rela-
tion to roles within the SIP Servlet architecture.

228

The SIP Serviet Application Programming Interface (API) 229

App 1 App 2 App 3 App 4
A A A A SIP Serviet API
v v v ¥ interaction

SIP Servlet API

SIP Servlet container

Figure 10.1 SIP Servlet API role.

10.1 Container Utilities

A SIP Servlet container provides a number of utilities that abstract certain com-
plexities away from applications and also allow for integration into larger applica-
tions such as JEE. The following are important container-level interfaces that
provide such utilities. Some have already been discussed in other sections of the
book, which should be referred to if more detail is required.

10.1.1 SipFactory

The “SipFactory” interface can be considered one of the most important in the
entire API and provides an application developer with the ability to create a num-
ber of other main interface instances (hence “factory”). This includes objects such
as “Address,” “ApplicationSession,” “AuthInfo,” “Parameterable,” “SipServlet
Request,” “SipURI,” and “URI.” All of these objects are covered in the remaining
sections of this chapter. A compliant container must make an instance of the SIP
Factory available to applications through a “ServletContext” attribute called
“javax.servlet.sip.SipFactory.” An instance of a SIP Factory can also be injected into
an application using the @Resource Java annotation from either within a SIP Servlet
or as part of a larger JEE application. More detail on the SIP Factory and on how
to utilize it in this way is provided in Chapter 2.

The SIP Factory has the following methods that are used for the creation
of other objects used extensively within the SIP Servlet API:

createAddress—“SipFactory.createAddress” method is used to create an
“Address” interface instance, which will be covered later in this chapter. An
“Address” instance is a representation of an abstracted SIP protocol address

230 Understanding SIP Servlets 1.1

that has a common form found in a number of mandatory SIP headers,
such as “To” and “From.” There are three variations on this method, each
of which takes a different input parameter:

* A string as an input parameter to be converted to the “Address” object;

* A “URI” interface instance as an input parameter to be converted to
the “Address” object;

* A “URI” interface instance as an input parameter to be converted to
the “Address” object, as well as a string to be used as display name in
a SIP header such as “To” or “From.”

createApplicationSession—"SipFactory.createApplicationSession” method is
used to create an Application Session object within an application. Appli-
cation Sessions represent an instance of the application and are used to asso-
ciate any number of SIP signaling interactions with users as well as to store
application data. SIP Application Sessions were covered in detail in Chap-
ter 3, and the specific API detail is covered later in this chapter. A variant
on this method, called “createApplicationSessionByKey,” was introduced in
the latest version of the SIP Servlet architecture (Version 1.1) and enables
applications to create an Application Session that is associated with a spe-
cific, unique key. This enables ease of management and lookup at a later
stage.

createAuthInfo—"SipFactory.createAuthInfo” method is used to create an
“AuthInfo” interface instance. An “AuthInfo” instance is a convenience
object provided by the container for associating security properties related
to SIP messaging exchanges such as SIP digests, as covered in the core SIP
specification [1]. The “AuthInfo” object is covered later in this chapter.

createParameterable—"“SipFactory.createParameterable” method is used to
create a “Parameterable” object; this is covered later in this chapter. A num-
ber of common SIP headers are of the same form as defined by the core SIP
specification, which is defined as follows:

field-name: field-value *(;parameter-name[=parameter-value])

The “createParameterable” method takes a string in the above form as input
and creates the appropriate “Parameterable” object.

createRequest—"SipFactory.createRequest” method is used to create a
“SipServletRequest” interface instance; this is covered later in this chap-
ter. A “SipServletRequest” object represents a SIP protocol request message
that either has been received as an incoming request or, as in the case that
this method is mostly used, is acting as a User Agent Client (UAC) appli-
cation. To see how this method is used as part of a UAC or B2BUA appli-
cation, the reader should take a look back at Chapter 3, which discusses

The SIP Serviet Application Programming Interface (API) 231

these application roles. There are three variations on this method, each of
which takes a different input parameter, which is relevant for differing
usages. All three methods take in the SIP Application Session to be asso-
ciated to the request (as defined by the “SipApplicationSession” interface)
and a string that represents the type of SIP method to be created (e.g.,
INVITE). The variations occur in how the originator (SIP “From” header)
and receiver (SIP “To” header) of the request are specified:

* The first variation takes two “Address” objects to represent the SIP
<« » « »
To” and “From” headers.

* The second variation takes two “URI” objects to represent the SIP
“To” and “From” headers.

* The third variation takes two strings to represent the SIP “To” and
“From” headers.

createSip URI—“SipFactory.createSipURI” method is used to create a
“SipURI” interface instance, which will be covered later in this chapter. A
“SipURI” instance represents a SIP URI as used extensively in the protocol
that appears in numerous SIP headers and is generally of the form
“sip:user_part@domain_part;parameters.” This method takes two string
parameters, which represent the “user” part (lefthand side of SIP URI—before
“@”) and the “host” part (righthand side of SIP URI—after “@”) of a SIP
URL

createURI—“SipFactory.createURI” method is used to create a URI inter-
face instance, which will be covered later in this chapter. It can be seen as
similar to the previous example, with the exception that it is for a wider
range of URI types as well as SIP, such as the “tel” URI scheme. This method
takes a string as a parameter and determines the appropriate scheme by
looking at the start of the input string.

Example:

@Resource SipFactory sipFactory;

SipApplicationSession sas = sipFactory.createApplicationSession();
SipServletRequest req =

sipFactory.createRequest(sas, "INVITE","sip:stoffe@sipservlet.net",
"sip:chris@sipservlet.net");

10.1.2 Authinfo

The “AuthInfo” interface allows applications to set common authentication infor-
mation in SIP requests that are generated when acting as a User Agent Client

(UAC). The type of information included in a SIP request when challenged by

232 Understanding SIP Servlets 1.1

a SIP 401 or 407 response code is described in detail in RFC 3261 [1]. The
“AuthInfo” interface has a single method:

addAuthInfo— Authlnfo.addAuthInfo” method enables an application to
configure appropriate authentication information to a SIP request when
acting in the role of a User Agent Client (UAC). Once configured, the
instance of the “AuthInfo” interface can be added to a SIP request using other
API methods such as “SipServletRequest.addAuthHeader.” The method
has the following four parameters, which are used to specify the authenti-
cation credentials:

* The first parameter is of type “integer” and represents the status code
of the challenge response, either a 401 or 407 SIP response code.

* The second parameter is a string representing the realm to which the
authentication challenge/response belongs.

* The third parameter is a string specifying the user name to be used in
the challenge response.

* The fourth parameter is a string specifying the password to be used
in the challenge response.

Example:

AuthInfo info = sipFactory.createAuthInfo();

info.addAuthInfo (401, "sipservlet.net", "stoffe", "verysecret");
SipServletRequest req = resp.getSession().createRequest("PUBLISH");
req.addAuthHeader (401, info);

req.send();

10.1.3 SipSessionsUtil

The “SipSessionsUtil” interface was introduced in the latest version of the SIP
Servlet architecture (Version 1.1). It provides a utility for converged applications
(meaning both SIP Servlet/ HTTP and SIP Servlet/JEE convergence, as discussed
in Chapter 2) to obtain an existing SIP Application Session using a number of
index mechanisms. The utility can be obtained by an application either from the
Servlet Context attribute named “javax.servlet.sip.SipSessionsUtil” or can be
injected using the Java @Resource annotation. Examples and details of both tech-
niques were included in Chapter 2, which looked into usage of this utility. The
“SipSessionsUtil” interface has the following methods that are available to con-
verged applications:

getApplicationSessionByld—“SipSessionUtil.getApplicationSessionByld”
method is used by an application to retrieve a specific SIP Application
Session object. A SIP Application Session inherently has a unique identifier

The SIP Serviet Application Programming Interface (API) 233

within an application instance. The identifier can be retrieved using the
“SipApplicationSession.getld” method in the SIP Servlet API. This method
takes a string as a parameter that represents the same unique identifier of a
SIP Application Session as an index. For example, the application might
have been given the unique identifier using third-party techniques, which
resulted in it looking up the particular application instance using the unique
identifier and the “SipSessionsUtil.getApplicationByld” method.

getApplicationSessionByKey—SipSessionUtil.getApplicationSessionByKey”
method functionality is almost exactly the same as the previous method in
that it retrieves a SIP Application Session instance for a converged appli-
cation. The major difference is the key used for retrieval. This method also
takes a string parameter, except this time it represents a key as generated by
the @SipApplicationKey annotation. This method takes an additional
Boolean value that provides semantics if the specified SIP Application Ses-
sion does not exist. If set to the value “true,” the SIP Application Session is
automatically created; if not found and if set to “false,” the SIP Application
Session is not created.

gerCorrespondingSipSession—"SipSessionUtil.getCorrespondingSipSession”
convenience method is used to obtain a SIP protocol session that has spe-
cific semantics within a SIP Application Session. Two optionally supported
SIP extensions are supported in the latest version of the SIP Servlet archi-
tecture (Version 1.1): Join [3] and Replaces [4]. Both contain SIP headers
that correspond to semantic information that links to existing SIP protocol
sessions. This method allows for the two SIP Sessions to be easily associated
by looking at the appropriate SIP header and then finding the correspon-
ding SIP Session. The method takes two parameters. The first is a SIP Ses-
sion representing one of the SIP protocol sessions to be correlated. The
second is the SIP header that the container should inspect when looking to
select the corresponding SIP Session. If the application wishes to find a SIP
Session based on a SIP “Join” header operation, the parameter has the value
“Join.” If the application wishes to find a SIP Session based on a SIP
“Replaces” header operation, the parameter has the value “Replaces.”

Example:
@Resource SipSessionsUtil util;

sipFactory.createApplicationSessionByKey("fo00");

SipApplicationSession sas =
util.getApplicationSessionByKey("foo",true);

234 Understanding SIP Servlets 1.1

10.1.4 ConvergedHttpSession

The “ConvergedHttpSession” interface is also new to the latest version of the SIP
Servlet architecture (Version 1.1). Its intention is to provide convenience functions
to developers who are working purely in a SIP Servlet/HT TP converged container.
A HTTP Servlet container has the concept of a HT'TP Session, which represents
a protocol interaction using the HT'TP protocol in a way similar to how the SIP
Session represents a SIP interaction in a SIP Servlet container. The interface actu-
ally extends “HttpSession” (javax.servlet.http.HttpSession) from the HTTP
Servlet specification. Using this interface allows an application to gain access to
“HttpSession” functionality from a converged container. As well as the methods
that are automatically made available to the application through the casting of a
“HttpSession” to a “ConvergedHttpSession” (see HTTP Servlet specification for
more details), the following methods are defined:

encode URL—"“ConvergedHttpSession.encodeURL” method is used by
applications to create an encoded URL that is returned as a string value. The
method has two variations that appear in the API, which take difference
parameters for encoding the URL:

* The first instance of the method takes a string as a parameter that rep-
resents the HT'TP URL to be encoded. The container encodes the
HTTP URL with the unique HTTP session identifier.

* The second instance of the method takes a string object representing
the relative path to the current Web-based application as well as a string
representing the scheme (either “http” or “https”). This information
is then used in the encoding process.

getApplicationSession—*“ConvergedHrttpSession.getApplicationSession”
method is used in the context of the HTTP Session to obtain the related
SIP Application Session for the application instance within the converged
container. If no SIP Application Session exists, then one is created and asso-
ciated to the HT'TP Session in the context of the converged container. Sub-
sequent calls to this method would then return the existing SIP Application
Session.

10.1.5 SipServletListener

In Chapter 3, a number of core concepts for application development and life-
cycle were discussed in detail. One such concept was the mandatory inclusion of
an “init” method in a compliant SIP Servlet application. The “init” method is
invoked by the container on deployment of an application and can contain impor-
tant logic that needs to be invoked before processing can take place. An applica-
tion needs to know when this initialization period has been completed so that it

The SIP Serviet Application Programming Interface (API) 235

can carry on functioning normally, for example, if it is one of multiple SIP Servlet
classes in an application. SIP Servlet classes should implement the “SipServlet
Listener” to learn when initialization has taken place. The listener interface has
a single method:

servletinitialized—The “SipServletListener.servletlnitialized” method is
invoked by a container when a SIP Servlet class initialize method has com-
pleted. The method passes a parameter of type “SipServletConextEvent.” A
“SipServletContextEvent” class returned by this listener method has a sin-
gle method call:

o gerSipServlet—Returns the SIP Servlet that has just completed the ini-
tialization phase of application deployment.

Example:

Public void doGet (HttpServletRequest req, HttpServletResponse resp) {
HttpSession hs = req.getSession();
if(hs.instanceof ConvergedHttpSession) {

//We are in a JSR 289 converged container

ConvergedHttpSession chs = (ConvergedHttpSession) hs;
SipApplicationSession sas = chs.getApplicationSession();
Iterator<SipSession> ssList = getSessions("sip"); //Find the ongoing
conf

} else {

//We cannot utilize SIP

}

10.2 Application Constructs

A SIP Servlet container, through its common API, provides clear boundaries and
patterns for successful application development and interoperation. The constructs
defined in this section are common across SIP Servlet-based applications and
provide the foundation for the design pattern. Some of the main principles such
as a SIP Application Session (“SipApplicationSession” interface) and a SIP Session
(“SipSession” interface) have already been discussed in more detail in Chapter 3.

They will be briefly covered again in this section to provide more depth in the
context of the SIP Servlet API.

10.2.1 SipApplicationSession

The “SipApplicationSession” interface is a single representation of an application
instance. It provides a container used for associating related SIP protocol sessions

236 Understanding SIP Servlets 1.1

(see “SipSession” interface later in this section) and storing application-related
data. You might recall that the book has discussed numerous mechanisms in
varying deployments for creating new and retrieving existing SIP Application
Session instances (e.g., using “SipFactory,” “SipSessionsUstil,” and “Converged
HttpSession”). The “SipApplicationSession” interface has the following interface
methods that can be used in an application:

encode URL—“SipApplicationSession.encodeURL” method is used by
applications to encode a specific URL with the unique application session
identifier. The resulting URL can then be distributed using third-party mech-
anisms, and when it is received again by the container in the form of an
HTTP request, it is able to decode the URL and associate the new HTTP
Session (“HttpSession”) with the existing SIP Application Session that was
used to encode in the first place.

getApplicationName—“SipApplicationSession.getApplicationName”
method returns the name of the SIP Application (“.sar” file) to which this
specific SIP Application Session belongs. As discussed in Chapter 3, the lat-
est version of the SIP Servlet architecture (Version 1.1) requires applications
specify a name for an application archive using either the “application-name”
element in the deployment descriptor or the “name” element from the @Sip
Application Java annotation.

getCreation Time—"SipApplicationSession.getCreation Time” method returns
the time when the SIP Application Session was created.

getExpiration Time—“SipApplicationSession.getExpirationTime” method
returns the time when the SIP Application Session is due to expire. As dis-
cussed Chapter 3, it is possible to set a SIP Application Session to be long lived
and never expire. If this occurs, the “getExpirationTime” method returns 0.

getld—“SipApplicationSession.getld” method returns the unique indexing
value that is created for every SIP Application Session. This unique identi-
fier can be used in the future to reference a SIP Application Session instance,
for example, using the “SipSessionsUtil” interface discussed in this section

and described in Chapter 3.

getLastAccessed Time—“SipApplicationSession.getLastAccessed Time”
method returns the time that the last SIP signaling interaction took place.

getSession—"SipApplicationSession.getSession” method returns a specific
SIP protocol session as specified by the parameters of the request. This
method has two parameters. The first specifies the unique identifier that is
used to represent an instance of the SIP protocol session (an instance of the
“SipSession” interface). As with instances of the “SipApplicationSession”
interface, instances of the “SipSession” interface have a unique identifier value.

The SIP Serviet Application Programming Interface (API) 237

The second parameter indicates the type of protocol session that is to be
retrieved. The possible values are “http” when in use with a converged SIP
Servlet/HTTP container and “sip” for other types of container.

getSessions—“SipApplicationSession.getSessions” method returns a list of
all protocol sessions associated with the SIP Application Session. They can
be both SIP and HTTP depending on the string value passed in as the
methods only parameter.

getSipSession—"“SipApplicationSession.getSipSession” method returns an
instance of a SIP protocol session (‘SipSession interface instance) depend-
ing on the unique SIP Session identifier specified as a string in the only input
parameter.

getTimer—“SipApplicationSession.getTimer” method returns a specific
timer task. As with instances of both the “SipApplicationSession” and “Sip
Session” interfaces, a timer task (represented by the “ServletTimer” inter-
face detailed in this section) is represented by a unique identifier. The iden-
tifier, represented as a string value, is used as the only parameter to this
method to obtain a specific timer task. Timer tasks are discussed in more

detail in Chapter 2.

getTimers—“SipApplicationSession.get Timers” method returns all timer
tasks (as represented by an instance of the “ServletTimer” interface) asso-
ciated with the associated SIP Application Session.

invalidate—"SipApplicationSession.invalidate” method terminates the exis-
tence of a SIP Application Session. The instance of the “SipApplicationSes-
sion” interface can no longer be used or referenced by an application, and
all associated application data is destroyed. Explicit invalidation was dis-
cussed in Chapter 3.

getInvalidateWhenReady—"“SipApplicationSession.getInvalidateWhen-
Ready” method is used by the container to indicate the “ready-to-invalidate”
status. For a more detailed explanation of the “ready-to-invalidate” concept,
take a look at Chapter 3. This method returns a Boolean value with the value
of “true” indicates that the container is monitoring the “ready-to-invalidate”
status of the specific “SipApplicationSession” interface instance, and a value
of “false” indicates that the container is not monitoring the “ready-to-
invalidate” status of the specific “SipApplicationSession” interface instance.

isReadyTolnvalidate—“SipApplicationSession.isReadyTolnvalidate”
method returns a Boolean value indicating whether the “SipApplication
Session” interface instance is in the “ready-to-invalidate” state. A value of
“true” indicates that the “SipApplicationSession” interface instance is in the
“ready-to-invalidate” state, and a value of “false” indicates that the “Sip

238

Understanding SIP Servlets 1.1

ApplicationSession” interface instance is not in the “ready-to-invalidate” state.
For more information on the “ready-to-invalidate” state, see Chapter 3.

setInvalidateWhenReady—“SipApplicationSession.setInvalidateWhen
Ready” method enables an application to set the “ready-to-invalidate” status
of the container. The method has a single Boolean value parameter with a
value of “true” indicating that container should monitor “ready-to-invalidate”
status of a “SipApplicationSession” interface instance and a value of “false”
indicating that the container should not monitor “ready-to-invalidate” sta-
tus of a “SipApplicationSession” interface instance.

isValid—"SipApplicationSession.isValid” method returns a Boolean value
indicating whether a SIP Application Session is still currently active. A
returned value of “true” means that the SIP Application Session instance is
still available, while a value of “false” means it has been invalidated.

getAttribute—*SipApplicationSession.getAttribute” method returns a Java
object representation of application-level data that has previously been
stored (e.g., using the “setAttribute” method covered later in this section).
This book discussed storage of application data using the “SipApplica-
tionSession” interface in Chapter 3. When storing application data, a
unique name must be specified as an index for later referral. The “get-
Attribute” method has a single parameter of type string that indicates the
unique index name of the application data to be retrieved and returned
in Java object type.

setAttribute—“SipApplicationSession.setAttribute” method inserts an appli-
cation data object in association with the “SipApplicationSession” interface
instance. The unique indexing string is used in conjunction with the stor-
age of the application data object so that it can be referenced in the future
with related methods, such as “getAttribute” and “removeAttribute,” which
appear on the “SipApplicationSession” interface. The unique string identi-
fier is passed as the only parameter in this method call.

getAttributeNames—"“SipApplicationSession.getAttributeNames” method
returns a list of strings indicating the names (as discussed in the “getAttribute”
method) of the application data stored against a “SipApplicationSession”
interface instance.

removeAttribute—"SipApplicationSession.removeAttribute” method removes
an application data object that has previously been stored within a
“SipApplicationSession” interface instance. As mentioned regarding the
“getAttribute” method, application data is uniquely indexed using a string
value. The unique identifier is passed as the only parameter to indicate which
application data object should be removed from the “SipApplicationSession”
interface instance.

The SIP Serviet Application Programming Interface (API) 239

setExpires—“SipApplicationSession.setExpires” method allows an applica-
tion to extend the lifetime of a SIP Application Session. The method has
a single parameter that takes an integer value representing the number of
minutes to extend the lifetime. The method call also has a return value
of the number of minutes that the SIP Application Session has been
extended by, maybe due to container policy. An application can request
that a SIP Application Session never expire by passing the value of “0” as
the parameter. The topic of session expiry is discussed in more detail in

Chapter 3.

Example:

SipApplicationSession sas = sipFactory.createApplicationSession();
URL myHttpServlet = sas.encodeURL(new URL("http://sipservlet.net/
myServlet"));

// When a HttpSession is created using the URL it will be connected
to our SAS

10.2.2 SipApplicationSessionActivationListener

Application data objects stored in a SIP Application Session can use this listener
interface to be notified by the container when the “SipApplicationSession” inter-
face instance will be “passivated” or “activated.” The interface has two methods:

sessionDidActivate—“SipApplicationSessionActivationListener.session
DidActivate” method is invoked on the listener interface when an instance
of the “SipApplicationSession” interface is activated, for example,after it
has been migrated to another Java Virtual Machine or replicated for failover.
The method provides a single class as a parameter, called “SipApplication
SessionEvent.” The “SipApplicationSessionEvent” class has a single method:

o getApplicationSession—"SipApplicationSessionEvent.getApplication
Session” method returns the “SipApplicationSession” interface instance
that has been activated.

sessionWillPassivate—“SipApplicationSessionActivationListener.session
DidActivate” method is invoked on the listener interface when an instance
of the “SipApplicationSession” interface is passivated, for example, after it
has been migrated to another Java Virtual Machine or replicated for failover.
The method provides a single class as a parameter called “SipApplication
SessionEvent.” The “SipApplicationSessionEvent” class has a single method:

o getApplicationSession—"SipApplicationSessionEvent.getApplication
Session” method returns the “SipApplicationSession” interface instance
that has been passivated.

240 Understanding SIP Servlets 1.1

10.2.3 SipApplicationSessionAttributeListener

This listener interface can be used to monitor when changes to application data
objects are made that are associated with an instance of a “SipApplicationSession”
interface. The listener interface has three methods that can be invoked on a change
in application data:

attributeRemoved—"“SipApplicationSessionAttributeListener.attribute
Removed” method is invoked on the listener interface when an application
data object is removed from a SIP Application Session (e.g., the “SipAppli-
cationSession.removeAttribute” method could have been used). The invoca-
tion will pass in a parameter of type “SipApplicationSessionBindingEvent”
class, which itself has a two methods:

o getApplicationSession—"“SipApplicationSessionBindingEvent.get
ApplicationSession” returns an instance of the “SipApplicationSession”
interface from which the data object was removed.

getName—“SipApplicationSessionBindingEvent.getName” returns
the unique string index value used to identify application-level data.

attributeAdded—"SipApplicationSessionAttributeListener.attributeAdded”
method is invoked on the listener interface when an application data object
is added to a SIP Application Session (e.g., the “SipApplicationSession.set
Attribute” method could have been used). The invocation will pass in a
parameter of type “SipApplicationSessionBindingEvent” class, which itself has
two methods:

o getApplicationSession—"“SipApplicationSessionBindingEvent.get
ApplicationSession” returns an instance of the “SipApplicationSession”
interface to which the data object was added.

* getName—“SipApplicationSessionBindingEvent.getName” returns
the unique string index value used to identify application-level data.

attributeReplaced—“SipApplicationSessionAttributeListener.attribute
Replaced” method is invoked on the listener interface when an application
data object is replaced from a SIP Application Session (e.g., the “Sip
ApplicationSession.setAttribute” method could have been used). The invo-
cation will pass in a parameter of type “SipApplicationSessionBindingEvent”
class, which itself has a two methods:

 getApplicationSession—“SipApplicationSessionBindingEvent.get
ApplicationSession” returns an instance of the “SipApplicationSession”
interface of which the data object was replaced.

o getName—“SipApplicationSessionBindingEvent.getName” returns
the unique string index value used to identify application-level data.

The SIP Serviet Application Programming Interface (API) 241

Example:

@SipListener

public class SniffServlet extends SipServlet implements
SipApplicationSessionAttributelListener {
public void attributeAdded(SipApplicationSessionBindingEvent ev){

log("Attribute added to SAS : "+ev.getName()+" =

"+ev.getApplicationSession().getAttribute(ev.getName()));

}
}

10.2.4 SipApplicationSessionBindingListener

This listener interface is used to notify application data objects when they have
been bound and unbound to an instance of the “SipApplicationSession” inter-
face either programmatically or as a by-product of “SipApplicationSession” inval-
idation. The listener interface has the following two methods:

valueBound—*SipApplicationSessionBindingListener.valueBound” method
is invoked when an application data object is bound to an instance of the
“SipApplicationSession” interface (e.g., the “SipApplicationSession.set
Attribute” method could have been used). The invocation will pass in a
parameter of type “SipApplicationSessionBindingEvent” class, which itself
has two methods:

 getApplicationSession—“SipApplicationSessionBindingEvent.get
ApplicationSession” returns an instance of the “SipApplicationSession”
interface to which the data object was bound.

* getName—“SipApplicationSessionBindingEvent.getName” returns
the unique string index value used to identify application-level data.

valueUnbound—*“SipApplicationSessionBindingListener.valueUnbound”
method is invoked when an application data object is unbound from an
instance of the “SipApplicationSession” interface (e.g., the “SipApplication
Session.removeAttribute” method could have been used). The invocation will
pass in a parameter of type “SipApplicationSessionBindingEvent” class, which
itself has two methods:

o getApplicationSession—“SipApplicationSessionBindingEvent.get
ApplicationSession” returns an instance of the “SipApplicationSession”
interface from which the data object was unbound.

* getName—“SipApplicationSessionBindingEvent.getName” returns
the unique string index value used to identify application-level data.

242

Understanding SIP Servlets 1.1

Example:

@SipListener

public class SniffServlet extends SipServlet implements
SipApplicationSessionBindingListener {
public void valueUnbound(SipApplicationSessionBindingEvent event) {
log("Attribute unbound : "+event.getName());

}
}

10.2.5 SipApplicationSessionListener

The “SipApplicationSessionListener” interface provides the ability to receive noti-
fications on the state of the underlying instance of the “SipApplicationSession”
interface. The interface has the following methods that can be implemented:

sessionCreated—"SipApplicationSessionListener.sessionCreated” method is
invoked when an instance of the “SipApplicationSession” interface is created.
The invocation will pass in a parameter of type “SipApplicationSession
Event,” which has a single method:

o getApplicationSession—"SipApplicationSessionEvent.getApplication
Session” returns an instance of the “SipApplicationSession” interface
that was created within the application.

sessionDestroyed—“SipApplicationSessionListener.sessionDestroyed” method
is invoked when an instance of the “SipApplicationSession” interface is
destroyed. The invocation will pass in a parameter of type “SipApplication
SessionEvent,” which has a single method:

o getApplicationSession—"SipApplicationSessionEvent.getApplication
Session” returns an instance of the “SipApplicationSession” interface
that was destroyed within the application.

sessionExpired—*“SipApplicationSessionListener.sessionExpired” method is
invoked when an instance of a the “SipApplicationSession” interface expires.
The invocation will pass in a parameter of type “SipApplicationSession
Event,” which has a single method:

o getApplicationSession—"SipApplicationSessionEvent.getApplication
Session” returns an instance of the “SipApplicationSession” interface
that has expired within the application.

sessionReadyToInvalidate—*“SipApplicationSessionListener.sessionReady
Tolnvalidate” method is invoked when an instance of the “SipApplication
Session” interface moves to the “ready-to-invalidate” state (as introduced

The SIP Serviet Application Programming Interface (API) 243

earlier in this section and discussed in more detail in Chapter 3). The invo-
cation will pass in a parameter of type “SipApplicationSessionEvent,” which
has a single method:

o getApplicationSession—"SipApplicationSessionEvent.getApplication
Session” returns an instance of the “SipApplicationSession” inter-
face that transitioned to the “ready-to-invalidate” state within the
application.

Example:

@SipListener

public class ExtServlet extends SipServlet implements
SipApplicationSessionListener {
public void sessionExpired(SipApplicationSessionEvent ev) {

}
}

ev.getApplicationSession().setExpires(5); //Extend 5 min

10.2.6 SipSession

The “SipSession” interface is a representation of a SIP signaling interaction between
users and is almost an identical state replication of a SIP dialog as defined in the
core SIP specification [1]. In Chapter 3, we looked in more detail at the “Sip
Session” interface construct and its association with the SIP protocol. This section

will take a closer look at the interface and its associated methods:

createRequest—“SipSession.createRequest” method is used to create a new
SIP protocol request as a SIP user agent within the context of a protocol inter-
action. For example, creating a subsequent re-INVITE or an UPDATE
request in SIP within a SIP dialog would be achieved by calling this method.
This method should not be confused with the sending of requests that have
no prior signaling interaction and no SIP dialog (and therefore no instance
of the “SipSession” interface). For such new interactions, such as initiating a
call as a User Agent Client (UAC) application, the “SipFactory.createRequest”
should be used. This method has a single string parameter that specifies the
SIP method that is being created. The method returns an instance of the
“SipServletRequest” interface, with the majority of SIP header fields auto-
populated with legal mandatory values. The application can still manipulate
the “SipServletRequest” object as required and then invoke the “SipServlet
Request.send” method to dispatch the message. See the “SipServletRequest”
section for more information on specific manipulation that can take place.

244

Understanding SIP Servlets 1.1

getApplicationSession—*“SipSession.getApplicationSession” method call
returns the associated SIP Application Session. The method takes no param-
eters and returns the appropriate instance of the “SipApplicationSession”
interface.

getCallld—*SipSession.getCallld” method returns the SIP “Call-ID” header
as defined in the core SIP specification [1]. The “Call-Id” header is used as
part of the dialog identification process and is retuned in string form.

getLocalParty—“SipSession.getLocalParty” method call returns an “Address”
interface instance taken from the SIP “From” header as defined in the core
SIP specification [1] for locally generated requests. The SIP “From” header
indicates the originator of the request.

getRemoteParty—"SipSession.getRemoteParty” method call returns an
“Address” interface instance taken from the SIP “To” header as defined in the
core SIP specification [1] for locally generated requests. The SIP “To” header
indicates the destination of the request.

getCreationTime—"SipSession.getCreationTime” method returns the time
when this particular instance of the “SipSession” interface was created.
getld—“SipSession.getld” method returns a string value representing the
unique identifier for the instance of the “SipSession” interface. Earlier in this
section, we introduced a unique identifier that was used to index instances
of the “SipApplicationSession” interface. The “SipSession” interface has a
similar concept whereby every instance of the “SipSession” interface has a
unique identifier that can be used to explicitly reference at any time. This
method call provides a string representation of the unique identifier.
getLastAccessed Time—*“SipSession.getLastAccessed Time” method returns
the last time that a client sent a request using this particular instance of the
“SipSession” interface.

getRegion—"SipSession.getRegion” interface method is used to obtain the
SIP routing region in which this instance of the “SipSession” interface is
operating. The method returns an instance of the “SipApplicationRouting
Region” class. The “SipApplicationroutingRegion” object will indicate a
value of either “NEUTRAL_REGION,” “ORIGINATING_REGION,”
or “TERMINATING_REGION.” These values represent the region that
the application is acting in for the SIP protocol interaction. For more infor-
mation, take a look at Chapter 4.

getServletContext—"SipSession.getServletcontext” method returns the Servlet
Context instance associated with the application. As discussed in the chap-
ter “The SIP Servlet Container,” the Servlet Context is associated with an
application instance and is used to pass configuration values and offer util-
ity instances such as SIP Factory and SIP Sessions utilities.

The SIP Serviet Application Programming Interface (API) 245

getState—"SipSession.getState” method returns the current SIP protocol
state of the SIP dialog associated with the “SipSession” interface instance.
A value of “INITIAL,” “EARLY,” “CONFIRMED,” or “TERMINATED”
is returned to the application. Apart from the INITIAL state, which rep-
resents a specific SIP Servlet architecture state and which is discussed in
Chapter 3, the remainder are all mapped directly from the core SIP speci-
fication [1].

getSubscriber URI—“SipSession.getSubscriberURI” method returns an
instance of the “URI” interface representing the subscriber that is being
represented in the current invocation of an application. This is dependent
on the region being serviced at the current time.

invalidate—"SipSession.invalidate” method is used to explicitly destroy the
instance of the “SipSession” interface, including all application data objects
stored. For more information on explicit invalidation, see Chapter 3.

isValid—*“SipSession.isValid” method returns a Boolean value indicating
whether the current instance of the “SipSession” interface has been invali-
dated; otherwise, the “SipSession” instance is considered valid. The value
of “true” is returned when the instance of the “SipSession” interface is valid,
and a value of “false” is returned when the instance of the “SipSession” inter-
face has been invalidated.

getAttribute—"SipSession.getAttribute” method returns a Java object rep-
resentation of application-level data that has previously been stored (e.g.,
using the “setAttribute” method to be covered later in this section). We dis-
cussed storage of application data using the “SipSession” interface in Chap-
ter 3. When storing application data, a unique name must be specified as
an index for later referral. The “getAttribute” method has a single parameter
of type string that indicates the unique index name of the application data
to be retrieved and returned in Java object type.

getAttributeNames—“SipSession.getAttributeNames” method returns a list
of strings indicating the names (as discussed in the “getAttribute” method)
of the application data stored against a “SipSession” interface instance.

removeAttribute—"SipSession.removeAttribute” method removes an appli-
cation data object that has previously been stored within the “SipSession”
interface instance. As mentioned in the “getAttribute” method, application
data is uniquely indexed using a string value. The unique identifier is passed
as the only parameter to indicate which application data object should be
removed from the “SipSession” interface instance.

setAttribute—“SipSession.setAttribute” method inserts an application data
object in association with the “SipSession” interface instance. The unique

246

Understanding SIP Servlets 1.1

indexing string is again used in conjunction with the storage of the applica-
tion data object so that it can be referenced in the future with related meth-
ods such as “getAttribute” and “removeAttribute,” which appear on the
“SipSession” interface. The unique string identifier is passed as the only
parameter in this method call.

setHandler—“SipSession.setHandler” method allows an application to con-
figure which SIP Servlet class should receive subsequent SIP protocol signal-
ing for the “SipSession” interface instance (for the same SIP dialog). As we
have discussed previously, an application (“.sar”) can consist of multiple SIP
Servlets, and this enables an application to programmatically select which
one should service an instance of the “SipSession” interface. The method has
a single parameter of type string that specifies the name of the SIP Servlet class
that will be invoked for incoming SIP messages for the “SipSession” interface
instance.

getInvalidate WhenReady—“SipSession.getInvalidateWhenReady” method is
used by the container to indicate the “ready-to-invalidate” status. For a more
detailed explanation of the “ready-to-invalidate” concept, take a look at
Chapter 3. This method returns a Boolean value whereby the value of “true”
indicates that the container is monitoring the “ready-to-invalidate” status of
the specific “SipApplicationSession” interface instance, and a value of “false”
indicates that the container is not monitoring the “ready-to-invalidate” sta-
tus of the specific “SipApplicationSession” interface instance.

isReadyToInvalidate—“SipSession.isReadyTolnvalidate” method returns a
Boolean value indicated if the “SipSession” interface instance is in the “ready-
to-invalidate” state. A value of “true” indicates that the “SipSession” interface
instance is in the “ready-to-invalidate” state, and a value of “false” indicates
that the “SipSession” interface instance is not in the “ready-to-invalidate”
state. For more information on the “ready-to-invalidate” state, see Chapter 3.

setInvalidateWhenReady—"SipSession.setInvalidateWhenReady” method
enables an application to set the “ready-to-invalidate” status of the container.
The method has a single Boolean parameter, with a value of “true” indicat-
ing the container should monitor “ready-to-invalidate” status of a “SipSession”
interface instance and a value of “false” indicating that the container should
not monitor “ready-to-invalidate” status of a “SipSession” interface instance.

setOutboundinterface—“SipSession.setOutboundInterface” method can be
used in an environment in which multiple interfaces exist (multihomed).
An application is able to select an interface for outgoing requests sent in
association with a “SipSession” interface instance. The set of interfaces avail-
able to an application can be retrieved from the Servlet Context attribute
“javax.servlet.sip.outboundInterfaces.” On selecting an interface to use for
outgoing requests, the container will automatically populate all the relevant

The SIP Serviet Application Programming Interface (API) 247

SIP headers with the appropriate, selected interface information (e.g., the SIP
“Via” header). The method call accepts a single parameter of either type
“java.net.InetSocketAddress” or “java.net.InetAddress.”

Example:

SipSession ss = req.getSession();
if(ss.isReadyTolInvalidate) {
ss.invalidate();
} else {
ss.setInvalidateWhenReady(true);
//The SS will be invalidated when SIP dialog is terminated
automatically.

}

10.2.7 SipSessionActivationListener

Application data objects stored in an instance of the “SipSession” interface can
use this listener interface to be notified by the container when the “SipSession”
instance will be “passivated” or “activated.” The interface has two methods:

sessionDidActivate—“SipSessionActivationListener.sessionDidActivate”
method is invoked on the listener interface when an instance of the “Sip
Session” interface is activated, such as after it has been migrated to another
Java Virtual Machine or replicated for failover. The method provides a sin-
gle class as a parameter called “SipSessionEvent.” The “SipSessionEvent” class
has a single method:

o getSession—"“SipSessionEvent.getSession” method returns the “Sip
Session” interface instance that has been activated.

session WillPassivate—“SipSessionActivationListener.sessionDidActivate”
method is invoked on the listener interface when an instance of the “Sip
Session” interface is passivated, such as after it has been migrated to another
Java Virtual Machine or replicated for failover. The method provides a single
class as a parameter called “SipSessionEvent.” The “SipSessionEvent” class
has a single method:

o gerSession—"SipSessionEvent.getSession” method returns the “SipSes-
sion” interface instance that has been passivated.

Example:
@SipListener

public class SniffServlet extends SipServlet implements
SipSessionActivationListener {

248

Understanding SIP Servlets 1.1

public void sessionWillPassivate(SipSessionEvent se) {
//Clean up resources and store away non serializable properties

}
}

10.2.8 SipSessionAttributeListener

This listener interface can be used when changes to application data objects are
made that are associated with an instance of a “SipSession” interface. The lis-
tener interface has three methods that can be invoked on a change in applica-
tion data:

attributeRemoved—"“SipSessionAttributeListener.attributeRemoved” method
is invoked on the listener interface when an application data object is
removed from a “SipApplicationSession” interface instance (e.g., the
“SipApplicationSession.removeAttribute” method could have been used).
The invocation will pass in a parameter of type “SipSessionBindingEvent”
class, which itself has a two methods:

o gerSession—"SipSessionBindingEvent.getSession” returns an instance
of the “SipSession” interface in which the data object was removed.

* getName—“SipSessionBindingEvent.getName” returns the unique
string index value used to identify application-level data.

attributeAdded—SipAttributeListener.attributeAdded” method is invoked
on the listener interface when an application data object is added to a
“SipSession” interface instance (e.g., the “SipSession.setAttribute” method
could have been used). The invocation will pass in a parameter of type
“SipSessionBindingEvent” class, which itself has a two methods:

o gerSession—"SipSessionBindingEvent.getSession” returns an instance
of the “SipSession” interface in which the data object was added.

* getName—“SipSessionBindingEvent.getName” returns the unique
string index value used to identify application-level data.

attributeReplaced—“SipSessionAttributeListener.attributeReplaced” method
is invoked on the listener interface when an application data object is replaced
from a “SipApplicationSession” interface instance (e.g., the “SipSession.set
Attribute” method could have been used). The invocation will pass in a
parameter of type “SipSessionBindingEvent” class, which itself has a two
methods:

o getApplicationSession—"SipSessionBindingEvent.getSession” returns
an instance of the “SipSession” interface in which the data object was
replaced.

The SIP Serviet Application Programming Interface (API) 249

getName—*“SipSessionBindingEvent.getName” method returns the unique
string index value used to identify application-level data.

Example:

@SipListener

public class SniffServlet extends SipServlet implements
SipSessionAttributelListener {
public void attributeReplaced(SipSessionBindingEvent event) {

log("Attribute changed : "+event.getName()+" =

"+event.getSession().getAttribute(event.getName()));

}
}

10.2.9 SipSessionBindingListener

This listener interface is used to notify application data objects when they have
been bound and unbound to an instance of the “SipSession” interface either pro-
grammatically or as a by-product of “SipSession” invalidation. The listener inter-
face has the following two methods:

valueBound—*SipSessionBindingListener.valueBound” method is invoked
when an application data object is bound to an instance of the “SipSession”
interface (e.g., the “SipSession.setAttribute” method could have been used).
The invocation will pass in a parameter of type “SipSessionBindingEvent”
class which itself has a two methods:

o getApplicationSession—"SipSessionBindingEvent.getSession” returns
an instance of the “SipSession” interface in which the data object was

bound.

o getName—“SipSessionBindingEvent.getName” returns the unique
string index value used to identify application-level data.

valueUnbound—*SipSessionBindingListener.valueUnbound” method is
invoked when an application data object is unbound from an instance of
the “SipSession” interface (e.g., the “SipSession.removeAttribute” method
could have been used). The invocation will pass in a parameter of type
“SipSessionBindingEvent” class, which itself has a two methods:

o getApplicationSession—"SipSessionBindingEvent.getSession” returns
an instance of the “SipSession” interface in which the data object was
unbound.

o getName—“SipSessionBindingEvent.getName” returns the unique
string index value used to identify application-level data.

250 Understanding SIP Servlets 1.1

Example:
@SipListener

public class SniffServlet extends SipServlet implements
SipSessionBindingListener {
public void valueBound(SipSessionBindingEvent event) {
log("New attribute bound : "+event.getName()+" =
"+event.getSession().getAttribute(event.getName()));
}
}

10.2.10 SipSessionListener

The “SipSessionListener” interface provides the ability to receive notifications on
the state of the underlying instance of the “SipSession” interface. The interface
has the following methods that can be implemented:

sessionCreated—"SipSessionListener.sessionCreated” method is invoked when
an instance of the “SipSession” instance is created. The invocation will pass
in a parameter of type “SipSessionEvent,” which has a single method:

o gerSession—"SipSessionEvent.getSession” returns an instance of the
<« . M »
SipSession” interface that was created within the application.

sessionDestroyed—*“SipSessionListener.sessionDestroyed” method is invoked
when an instance of the “SipSession” instance is destroyed. The invocation
will pass in a parameter of type “SipSessionEvent,” which has a single
method:

o getApplicationSession—"SipSessionEvent.getSession” method returns
an instance of the “SipSession” interface that was destroyed within
the application.

sessionReady ToInvalidate—“SipSessionListener.sessionReadyTolnvalidate”
method is invoked when an instance of the “SipSession” instance moves to
the “ready-to-invalidate” state (as introduced earlier in this section and dis-
cussed in more detail in Chapter 3). The invocation will pass in a parame-
ter of type “SipSessionEvent,” which has a single method:

o getApplicationSession—"“SipSessionEvent.getSession” returns an instance
& g
of the “SipSession” interface that transitioned to the “ready-to-
invalidate” state within the application.

Example:
@SipListener

public class ConfServlet extends SipServlet implements
SipSessionListener {

The SIP Serviet Application Programming Interface (API) 251

public void sessionReadyToInvalidate(SipApplicationSessionEvent ev) {
ev.getApplicationSession().setInvalidateWhenReady(false);
//preventing the session to invalidate

}
}

10.3 SIP Message Routing

A large subset of SIP Servlet-based applications are used for routing SIP protocol
messages in the role of a proxy server or as a B2BUA. The SIP Servlet API provides
a number of abstracted interfaces that simplify such operations and automatically
manage the underlying interactions with the associated SIP stack. The primary
interfaces for such message routing are covered in the remainder of this section.

10.3.1 Proxy

A SIP proxy server is one of the most used constructs available in SIP networks,
and operations associated with such a role are covered by the “Proxy” interface. The
topic of using the “Proxy” interface was covered extensively Chapter 3. This sec-
tion is intended to complement the explanation and examples provided to give
more detail surrounding the associated method calls. The “Proxy” interface has the
following methods:

cancel—"“Proxy.cancel” method call cancels the current proxy transaction and
any child branches that have been created due to a forking operation. This
results in a SIP CANCEL operation’s being sent out on the appropriate
branches, with the intention of a SIP final response being generated (SIP
4xx class response code). It should be noted that issuing this method call is
only a request to cancel, and due to race conditions, an application should
still expect to receive a success (SIP 2xx response code) final response. An
overload version of the “Proxy.cancel” method also exists, which allows an
application to indicate to the receiving endpoint the reason why it is can-
celing the request, as per RFC 3326 [5]. The overloaded “Proxy.cancel”
method has three parameters. The first is a string parameter named “pro-
tocol,” which is used to populate the source of the “cause” field in the SIP
“Reason” header. The second parameter, named “reasonCode,” is an integer
value that is used to populate “cause” field in the SIP “Reason” header. Finally,
a string parameter named “reasonText” is used to describe the reasoning for
canceling the proxy operation. The following example demonstrates a SIP
“Reason” header that would have been populated using this overloaded
method call and associated parameters:

252

Understanding SIP Servlets 1.1

Reason: SIP ;cause=200 ;text="Call completed elsewhere"

The first parameter maps to the value “SIB” the second value maps to the
value “200,” and the third value maps to the value “Call completed
elsewhere.”

createProxyBranches— Proxy.createProxyBranches” method creates a list
(java.util.List) of the type “proxyBranch” interface from a provided set of
SIP addresses. The “ProxyBranch” interface objects returned are then indi-
vidually configurable, as opposed to a configuration change’s impacting the
whole proxy operation. The “ProxyBranch” interface is discussed later in this
section. This method takes a list of “URI” interface objects, which is also
covered in this chapter. The concept of being able to create and manipulate
individual legs of a proxy operation was included in the latest version of the
SIP Servlet architecture (Version 1.1). The topic is covered extensively in

Chapter 3.

getProxyBranch—Proxy.getProxyBranch” method enables an application to
obtain an individual instance of the “ProxyBranch” interface. It can then
apply individual branch-level configuration using the methods supplied on
the “ProxyBranch” interface (which will be covered later in this chapter).
The method has a parameter that is a “URI” interface instance that acts as
a unique key for obtaining a “ProxyBranch” instance. The method returns the
appropriate “ProxyBranch” interface instance to the requesting application.

getProxyBranches— Proxy.getProxyBranches” method enables an application
to obtain the list of “ProxyBranch” interface instances that are associated
with a proxy operation (as in an instance of the “Proxy” interface). This
method takes no parameters and returns a list of appropriate “ProxyBranch”
interface objects.

startProxy—“Proxy.startProxy” method initiates the SIP protocol-level
signaling associated with destinations previously added to the proxy list
using the “Proxy.createBranches” method discussed in this section. As the
“Proxy.createBranches” method can be called multiple times, the “Proxy.start
Proxy” method can also be called to initiate any new SIP signaling branches
that have been added to the set since the last time the method was called.

getAddToPath— Proxy.getAddToPath” method indicates whether subse-
quent calls to the “Proxy.proxyTo” or “Proxy.startProxy” methods will result
in a SIP “Path” header being inserted in the request as per RFC 3327 [6]. It
should be noted that a SIP “Path” header will only be added to a request of
type SIP REGISTER.

setAdd1oPath— Proxy.setAdd ToPath” method indicates that, if a SIP REG-
ISTER request is proxied, then it can add a SIP “Path” header, as specified

The SIP Serviet Application Programming Interface (API) 253

in RFC 3327, to represent the container. The method has a single Boolean
parameter, with a value of “true” indicating that a SIP “Path” header should
be added to all SIP REGISTER proxy operations associated with this instance
of the “Proxy” interface, and “false” indicating the “Path” header should
not be added.

getPathURI—“Proxy.getPathURI” method provides the application with
the “SipURI” interface instance that will be inserted on SIP REGISTER
requests when configured using the “Proxy.setAddToPath” method. The
method has no parameters and returns a “SipURI” interface object repre-
senting the SIP “Path” header from RFC 3327 [6].

getNoCancel—“Proxy.getNoCancel” method provides the container action
that will be taken on receiving a SIP 2xx class response when multiple, alter-
native branches exist. The default SIP container behavior is to cancel the
remaining branches. RFC 3841 allows for the default behavior to be over-
ridden and remaining branches not to be canceled. This method returns a
Boolean value, with “true” indicating the container will not cancel out-
standing branches on receiving a SIP 2xx class response, and the value “false”
indicating the container will cancel outstanding branches. This configura-
tion is set using the “Proxy.setNoCancel” method.

setNoCancel—“Proxy.setNoCancel” method allows an application to over-
ride default SIP operation on receiving a SIP 2xx class response when mul-
tiple alternate branches exist. Default SIP container behavior on receiving
a 2xx class response to a proxy operation is to automatically issue SIP CAN-
CEL requests on the remaining branches. The “setNoCancel” method has
a single Boolean parameter. If a value of “true” is specified, the container
will not cancel remaining branches on receiving a SIP 2xx class response.
If a value of “false” is specified, the container will cancel remaining branches
on receiving a 2xx class response (the default is “false”).

getOriginalRequest— " Proxy.getOriginalRequest” method allows the applica-
tion to retrieve the original request that was received before it was manip-
ulated and forwarded upstream. The method has no parameters and returns
an instance of the “SipServletRequest” interface that represents a SIP request
that was initially received from upstream of the container.

getParallel—“Proxy.getParallel” method provides the application with infor-
mation on how the instance of the “Proxy” interface will handle multiple
destinations—either forking in parallel (at the same time) or sequentially
(one after another). The method will return a Boolean value, with “true” indi-
cating that the instance of the “Proxy” interface is set to fork in parallel and
“false” indicating that the instance of the “Proxy” interface is set to fork
sequentially.

254

Understanding SIP Servlets 1.1

setParallel—Proxy.setParallel” method enables an application to set whether
multiple destinations should be forked either in parallel or sequentially.
The method has a single Boolean parameter, with “true” indicating that the
instance of the “Proxy” interface will proxy in parallel, while a value of “false”
indicates that the instance of the “Proxy” interface will proxy sequentially.

setProxy Timeour—“Proxy.setProxy Timeout” method allows an application to
specify a value for timeout of a proxy operation. The method has a single
parameter that takes an integer value to indicate the number of seconds.

getProxy Timeour—"“Proxy.getProxyTimeout” method returns an integer
value representing the overall timeout of a proxy operation in seconds.

getRecordRoute—Proxy.getRecordRoute” method indicates whether future
SIP requests that are to be proxied will contain a SIP “Record-Route” header.
The method returns a Boolean value, with “true” indicating that a SIP

“Record-Route” header will be added to future proxied requests and “false”
indicating that a SIP “Record-Route” header will not be added.

setRecordRoute—"Proxy.setRecordRoute” method instructs the container to
add a SIP “Record-Route” header to an outgoing SIP request from an
instance of the “Proxy” interface.

getRecordRouteURI—“Proxy.getRecordRouteURI” method returns the value
that will be included in an outgoing SIP request in the SIP “Record-Route”
header. The method returns an instance of the “SipURI” interface that rep-
resents the value that would be added to a request that is set to add a SIP
“Record-Route” header using the “Proxy.setRecordRoute” method.

setRecurse—“Proxy.setRecurse” method specifies whether a container imple-
mentation will automatically recursively create new requests on receiving a
SIP 3xx class response. The “setRecurse” method has a single parameter of
Boolean value. A value of “true” indicates that the SIP Servlet container will recurse
on receiving a 3xx class SIP response, while a value of “false indicates that
the container will not recurse on receiving a 3xx class SIP response. In the
case of “false,” the 3xx class response is passed to the application by the con-
tainer for further processing.

getRecurse—“Proxy.getRecurse” method indicates whether the instance of

the “Proxy” interface is set to recurse on receiving a SIP 3xx class response.

The method returns a Boolean value, with “true” indicating that “Proxy”

interface instance is set to recurse on receiving a SIP 3xx class response and
<« » . M . « » . . .

a value of “false” indicating that the “Proxy” interface instance is not set to

recurse on receiving a SIP 3xx class response.

setSupervised—"“Proxy.setSupervised” method specifies whether an instance of
the “Proxy” interface is configured to receive SIP protocol responses related

The SIP Serviet Application Programming Interface (API) 255

to the proxy operation. The method has a single parameter of Boolean value.
A value of “true” indicates that SIP protocol responses should be passed to
the application for further processing, and a value of “false” indicates that
SIP protocol responses should not be passed to the application for further
processing.

getSupervised—"Proxy.getSupervised” method indicates whether the instance
of the “Proxy” interface is set to consume new SIP protocol responses. The
method returns a Boolean value, with “true” indicating that “Proxy” inter-
face instance is set to receive SIP protocol responses and a value of “false”
indicating that the “Proxy” interface instance is not set to receive SIP pro-
tocol responses.

proxyTo—"Proxy.proxyTo” method is used to proxy a SIP request to the
specified destination. The method has a single parameter value that indicates
the location for the proxy request. The parameter either can be of interface
type “URI” or can be a list of interface type “URIL.” The method can be
invoked any number of times before a final SIP protocol response is passed
upstream to add to the list of destinations.

setOutboundinterface— Proxy.setOutboundInterface” method allows an
instance of the “Proxy” interface to specify, from a list, a selected interface
to use on multihomed machines. The use of this method will not only
instruct the container to send from an interface but also impact the values
a container places in key SIP headers such as “Record-Route” and “Via.”
The method call takes a single parameter that can be either of type
“java.net.InetAddress” or can be of type “java.net.InetSocketAddress.” A
list of interfaces available to use by the application can be obtained from
the Servlet Context attribute “javax.servlet.sip.outboundInterfaces.”

Example:

Proxy p = reqg.getProxy();

p.setRecurse(true);

p.setRecordRoute(true);

p.proxyTo(req.getRequestURI());

//Now the proxy is in for the duration of the dialog.

10.3.2 ProxyBranch

An instance of the “ProxyBranch” interface represents an individual branch in a
proxy operation. It differs from the use of the “proxy” interface in that it allows more
flexibility for applications specifically wanting to configure branches differently

256 Understanding SIP Servlets 1.1

for a proxy operation. The following methods are defined on the “ProxyBranch”
interface for individual branch configuration:

cancel—“ProxyBranch.cancel” method allows an application to cancel a spe-
cific branch of the proxy operation. Using “Proxy.cancel” will result in all
branches being canceled, so this method provides a more specific level of
branch control.

setAddToPath— ProxyBranch.setAdd ToPath” method indicates that, if a
SIP REGISTER request is proxied on the branch, then it will add a SIP
“Path” header, as specified in RFC 3327, to represent the container. The
method has a single Boolean parameter, with a value of “true” indicating that
a SIP “Path” header should be added to the SIP REGISTER requests asso-
ciated with this instance of the “ProxyBranch” interface and “false” indicat-

ing the “Path” header should not be added.

getAddToPath—ProxyBranch.getAdd ToPath” method indicates whether a
SIP “Path” header is being inserted in the request, as per REC 3327 [6], on
a specific “ProxyBranch” interface instance. It should be noted that a SIP
“Path” header will be added only to a request of type SIP REGISTER.

getPath URI—"“ProxyBranch.getPathURI” method provides the application
with the “SipURI” interface instance that will be inserted on SIP REGISTER
requests when configured using the “ProxyBranch.setAddToPath” method.
The method has no parameters and returns a “SipURI” interface object
representing the SIP “Path” header from RFC 3327 [6].

getProxy—“ProxyBranch.getProxy” method returns the “Proxy” interface
instance associated with the “ProxyBranch” interface instance.

setProxyBranch Timeour— " ProxyBranch.setProxyBranchTimeout” method
allows an application to specify a value for timeout of a specific proxy branch
operation. The method has a single parameter that takes an integer value to
indicate the number of seconds.

getProxyBranchTimeout—"“ProxyBranch.getProxyBranchTimeout” method
returns an integer value representing the timeout of a proxy branch opera-
tion in seconds.

setRecordRoute—“ProxyBranch.setRecordRoute” method instructs the con-
tainer to add a SIP “Record-Route” header to an outgoing SIP request for
an instance of the “ProxyBranch” interface.

getRecordRoute—The “ProxyBranch.getRecordRoute” method indicates
whether future SIP requests that are to be proxied on the specific branch will
contain a SIP “Record-Route” header. The method returns a Boolean value,
with “true” indicating that a SIP “Record-Route” header will be added to
proxied request and “false” indicating that a SIP “Record-Route” header will

not be added.

The SIP Serviet Application Programming Interface (API) 257

getRecordRouteURI—“ProxyBranch.getRecordRouteURI” method returns
the value that will be included in an outgoing SIP request in the SIP
“Record-Route” header for the specific branch. The method returns an
instance of the “SipURI” interface that represents the value that would be
added to a request proxied on the specific branch.

setRecurse—“ProxyBranch.setRecurse” method specifies whether a container
implementation will automatically recursively create new requests on receiv-
ing a SIP 3xx class response. The “setRecurse” method has a single parame-
ter of Boolean value. A value of “true” indicates that the SIP Servlet container
will recurse on receiving a 3xx class SIP response, while a value of “false”
indicates that the container will not recurse on receiving a 3xx class SIP
response. In the case of “false,” the 3xx class response would be passed to
the application by the container for further processing.

getRecurse—“ProxyBranch.getRecurse” method indicates whether the
instance of the “ProxyBranch” interface is set to recurse on receiving a SIP
3xx class response. The method returns a Boolean value, with “true” indi-
cating that “ProxyBranch” interface instance is set to recurse on receiving a
SIP 3xx class response and a value of “false indicating that the “Proxy
Branch” interface instance is not set to recurse on receiving a SIP 3xx class
response.

getRecursedProxyBranches—“ProxyBranch.getRecursedProxyBranches”
method returns a list of instances of the “ProxyBranch” interface that have
resulted from a “ProxyBranch” interface instance’s receiving a SIP 3xx class
response.

getRequest—ProxyBranch.getRequest” method returns the instance of the
“SipServletRequest” interface associated with the “ProxyBranch” instance.
P q Y

getResponse—“ProxyBranch.getResponse” method returns the last SIP
response received on a branch, as represented by the instance of the
“SipServletResponse” interface.

isStarted—"“ProxyBranch.isStarted” method is used by an application to
identify whether an instance of the “ProxyBranch” interface has been started
(the “Proxy.startProxy” has been called). The method returns a Boolean value,
with a value of “true” indicating that the instance of the “ProxyBranch” inter-
face has been started and “false” indicating that the instance of the “Proxy
Branch” interface has not been started.

setOutboundnterface—“ProxyBranch.setOutboundInterface” method allows
an instance of the “ProxyBranch” interface to specify, from a list, a selected
interface to use on multihomed machines. The use of this method will not
only instruct the container to send from an interface but also impact the
values a container places in key SIP headers such as “Record-Route” and

258 Understanding SIP Servlets 1.1

“Via.” The method call takes a single parameter that can be of either type
“java.net.InetAddress” or type “java.net.InetSocketAddress.” A list of inter-
faces available for use by the application can be obtained from the Servlet
Context attribute “javax.servlet.sip.outboundInterfaces.”

Example:

List<SipURI> forks = new ArrayList<SipURI>();

forks.add(sipFactory.createSipURI("stoffe","sipservlet.net"));
forks.add(sipFactory.createSipURI("chris","sipservlet.net"));
List<ProxyBranch> branches = req.getProxy().createProxyBranches(forks);
branches.get(0).setRecordRoute(true); //Only Stoffe branch is Record-
Routed

req.getProxy().startProxy();

10.3.3 B2BuaHelper

Early versions of the SIP Servlet architecture soon identified many common types
of roles that a typical application might assume. As discussed in Chapter 3, one of
the most implemented was the Back-to-Back User Agent, or B2BUA. In the latest
version of the SIP Servlet architecture (Version 1.1), a B2BUA helper class was
introduced to abstract some of the common operations that occur in a B2BUA
function. An instance of the B2BUA helper class can be obtained using the
incoming SIP request to a container. The application would call the “SipServlet
Request.getB2BuaHelper” method to gain an instance of the “B2BuaHelper”
interface. Obtaining an instance of the “B2BuaHelper” interface signifies to the
container that an application is going to act in the role of a B2BUA for this
request (in the same way calling “SipServletRequest.getProxy” tells the SIP Servlet
container that it will be acting as a proxy server). The following methods can
then be used for B2BUA operations:

createCancel—“B2BuaHelper.createCancel” method allows an application
to issue a SIP CANCEL request on outgoing legs of a B2BUA. The method
has one parameter, which is the instance of the “SipSession” interface to be
canceled.

createRequest—"B2BuaHelper.createRequest” method provides the ability for
applications to generate and send requests acting as a B2BUA. There are
three variations on the request, which all have differing roles to play.

* The first variation of this method is to be used for creating a new request
as part of a B2BUA application. It takes in three parameters and returns
an instance of the “SipServletRequest” interface. The first parameter
specifies an instance of the “SipServletRequest” interface that is to be

The SIP Serviet Application Programming Interface (API) 259

used for creating the outgoing leg. This involves maintaining appro-
priate SIP header values such as “To” and “From.” The second param-
eter is a Boolean value that informs the container whether the two
instances of the “SipSession” interface are linked. A value of “true”
specifies that the new instance of the “SipSession” interface should be
linked, and a value of “false” indicates it should not be linked. The
term “linked” is a convenience that lets an application move between
the two instances of the “SipSession” interface using the method call
“B2BuaHelper.getLinkedSession,” which is covered in this section.
The third parameter is an optional “headerMap,” which is a Java Map
representing headers that should be copied from the original request
to the new outgoing leg.

* The second variation of this method has only a single parameter,
which specifies the instance of the “SipServletRequest” interface that
is to be used for creating the outgoing leg.

* The third variation is used to create subsequent B2BUA requests
based on the existing instance of the “SipSession” interface. It takes
in three parameters and returns an instance of the “SipServletRequest”
to be used for the subsequent B2BUA request. The first parameter is
an instance of the “SipSession” interface to be used for sending the
subsequent SIP request. The second parameter is an instance of the
“SipServletRequest” interface representing the original request on which
the new request should be based. The third parameter is an optional
header map, which is a Java Map representing headers that should be
copied from the original request to the new, subsequent request.

createResponse ToOriginalRequest—“B2BuaHelper.createResponse ToOriginal
Request” method allows an application to generate multiple SIP response
messages as a B2BUA to an incoming request, all of which have an individual
instance of the “SipSession” interface. The method has three parameters
and returns an instance of the “SipServletResponse” interface that is used
to represent the new SIP response message that is to be sent. The first
parameter is an instance of the “SipSession” interface that represents the
original SIP request that is being responded to by the application. The sec-
ond parameter is an integer representing the SIP status code that is to be
included in the response message. The third parameter is a string value that
allows an application to specify the reason phrase that can be included in
the SIP response message.

getLinkedSession—"“B2BuaHelper.getLinkedSession” method returns to an
application the instance of the “SipSession” interface that was “linked” by
the “B2BuaHelper” on using the “B2BuaHelper.createRequest” or the explicit
“B2BuaHelper.linkSipSession” method. The method has a single parameter,

260 Understanding SIP Servlets 1.1

which is the “SipSession” interface instance that is the known half of the
two linked sessions.

getLinkedSipServletRequest—“B2BuaHelper.getLinkedSipServletRequest”
method returns to an application the instance of the “SipServletRequest”
interface that was “linked” by the “B2BuaHelper” on using the “B2Bua
Helper.createRequest” method. The method has a single parameter, which
is the “SipServletRequest” interface instance that is the known half of the
two linked requests.

getPendingMessages—“B2BuaHelper.getPendingMessages” method returns a
list of “SipServletMessage” instances that are considered uncommitted. The
method takes two parameters. The first is the instance of the “SipSession”
interface in question. The second is an ENUM value of either “UAC” or
“UAS,” signifying the type of role that the query is associated with.

linkSipSession—"“B2BuaHelper.linkSipSession” method is the explicit mech-
anism that enables an application to link two instances of the “SipSession”
interface for B2BUA functionality (it can also be achieved implicitly using
the “B2BuaHelper.createRequest” method). The method takes two param-
eters, which represent the two “SipSession” instances that are being linked.

unlinkSipSession—“B2BuaHelper.unlinkSipSession” method is the explicit
mechanism that enables an application to unlink two instances of the “Sip
Session” interface that have been linked for B2BUA functionality. The
method takes a single parameter that represents the “SipSession” instance
that is to be unlinked.

Example:

SipServletRequest legA = req;

B2buaHelper b2b = req.getB2buaHelper();

SipServletRequest legB = b2b.createRequest(legA);
legB.setContent(legA.getContent(), legA.getContentType());
legB.send();

10.3.4 SipErrorListener

The “SipErrorListener” is used to inform applications when specific SIP trans-
actional behavior has not been completed properly. The listener interface has the
following two methods that are invoked appropriately:

noAckReceived—“SipErrorListener.noAckReceived” listener method is
invoked when an application in the role of a UAS does not receive a SIP
ACK method after it has forwarded a final response to a SIP INVITE
upstream. The method returns a parameter of type “SipErrorEvent.” The
“SipErrorEvent” class returned has two methods:

The SIP Serviet Application Programming Interface (API) 261

e getRequest—“SipErrorEvent.getRequest” method returns the “Si
getikeq p g q p
ServletRequest” (the original request that generated the SIP response)
interface instance associated with the error event.

* getResponse—"SipErrorEvent.getResponse” method returns the
“SipServletResponse” (the SIP response) interface instance associated
with the error event.

noPrackReceived—“SipErrorListener.noPrackRecevied” listener method is
invoked when an application in the role of a UAS does not receive a SIP
PRACK method after it has forwarded a reliable provisional response
upstream. The method returns a parameter of type “SipErrorEvent.” The
“SipErrorEvent” class returned has two methods:

* getRequest—"“SipErrorEvent.getRequest” method returns the “Sip
ServletRequest” (the original request that generated the SIP reliable
provisional response) interface instance associated with the error event.

o getResponse—"SipErrorEvent.getResponse” method returns the “Sip
ServletResponse” (the SIP response) interface instance associated with
the error event.

Example:
@SipListener

public class ErrorSipServlet extends SipServlet implements
SipErrorListener{
public void noAckReceived(SipErrorkEvent ee) {
SipSession ss = ee.getResponse().getSession();
SipServletRequest bye = ss.createRequest("BYE");
bye.send();
}

10.4 SIP Messaging Constructs

Underneath the entire higher level role constructs and related routing operations
that were discussed in the previous section lie the actual SIP-level representations.
These are the objects that are used to carry the SIP semantic detail, such as requests,
responses, and SIP URIs. The remainder of this section will take a closer look at
the interfaces that allow an application to gain access to the low-level SIP protocol
machinery.

1041 SipServietMessage

The “SipServletMessage” interface represents a SIP protocol message. The inter-
face defines a number of common operations that are common across both SIP

262 Understanding SIP Servlets 1.1

protocol requests (represented by the “SipServletRequest” interface) and SIP pro-
tocol responses (represented by the “SipServletResponse” interface). This allows
a common interface for SIP Servlet applications to operate on both types of SIP
interactions at the message level. The following methods are defined on the
“SipServletMessage” interface for common SIP message manipulation:

addAcceptLanguage—"“SipServletMessage.addAcceptLanguage” method will
insert a SIP “Accept-Language” header to the message. It takes a single
parameter of type “java.util.locale.”

addAddressHeader—SipServletMessage.addAddressHeader” method enables
an application to add a SIP header that complies with the “Address” inter-
face format (as specified in this section). The method has three parameters.
The first is a string representation of the SIP header that is to be inserted.
The second is the “Address” interface instance, which will make up the
value of the SIP header. The third parameter is a Boolean value that speci-
fies whether the “Address” interface instance is added as the first or last
value of the specified SIP header field. A value of “true” specifies that the
“Address” interface instance is added as the first value of the specified SIP
header, while a value of “false” specifies that it will be last.

addHeader—“SipServletMessage.addHeader” method adds a SIP header
and associated value to the SIP message. The method has two parameters.
The first parameter is a string value representing the name of the SIP header
to be added. The second parameter is a string value representing the value

of the SIP header.

addParameterableHeader—“SipServletMessage.addParameterable” method
adds a SIP header to a message of the format specified by the “Parameterable”
interface (which is covered in this section). The method has three parameters.
The first parameter is a string representing the name of the SIP header to be
added. The second parameter is the value to be inserted into the SIP header
and is of interface type “Parameterable” (which is covered in this section). The
third parameter is a Boolean value that specifies whether the “Parameterable”
interface instance is added as the first or last value of the specified SIP header
field. A value of “true” specifies that the “Parameterable” interface instance is
added as the first value of the specified SIP header, while a value of “false” spec-
ifies that it will be last.

getAcceptLanguage—"SipServletMessage.getAcceptLanguage” method returns
the locale of the SIP user agent that generated the “SipServletMessage” inter-
face instance, as represented by the SIP “Accept-Language” header. The
locale is returned in the form “java.util.Locale.”

getAcceptLanguages—“SipServletMessage.getAcceptLanguages” method
returns a list of the SIP user agents locales that generated the “SipServlet

The SIP Serviet Application Programming Interface (API) 263

Message” interface instance, as represented by the SIP “Accept-Language”
header. The list of locales is returned in the form “java.util.Locale.”

getAddressHeader—“SipServletMessage.getAddressHeader” method returns
an instance of the “Address” interface associated with a SIP header. The
method has a single string parameter that specifies the name of the SIP
header whose value is being extracted.

getAddressHeaders—SipServletMessage.getAddressHeaders” method returns
a list containing instances of the “Address” interface associated with a SIP
header. The method has a single string parameter that specifies the name
of the SIP header whose value is being extracted.

getApplicationSession—SipServletMessage.getApplicationSession” method
returns the instance of the “SipApplicationSession” interface associated
with this particular SIP message. The method has an optional variation that
takes a Boolean parameter indicating whether a new instance of the “Sip
ApplicationSession” interface should be created if it doesn’t already exist. A
value of “true” specifies that the container should create a new instance of the
“SipApplicationSession” interface if it doesn’t already exist, while a value of
“false” specifies that it shouldn’t be created.

setArtribute—“SipServletMessage.setAttribute” method, as with both the
“SipApplicationSession” and “SipSession” interfaces, allows application data
to be stored as attributes. Each piece of application data is stored as a Java
object and is referenced using a unique index key of type string. This
method has two parameters. The first parameter is the unique string index
name for referencing the application data. The second parameter is the Java
object representation of the application data. It should be noted that reusing
the same index key for storing application data objects results in an over-
write operation.

getAntribute—“SipServletMessage.getAttribute” method allows an application
to retrieve an application data object that has been stored in the “SipServlet
Message” interface. A single parameter of type string representing the
unique index name of the application data object is used to obtain the Java
object representation of the application data.

getAttributeNames—“SipServletMessage.getAttributeNames” method allows
an application to retrieve a list of the unique application data keys associ-
ated with the associated “SipServletMessage” interface instance.

removeAttribute—*SipServletMessage.removeAttribute” method enables an
application to delete data stored in the “SipServletMessage” interface
instance. The method has a single parameter of type string that specifies the
unique index name of the application data that is to be removed.

264

Understanding SIP Servlets 1.1

gerCallld—*SipServletMessage.getCallld” method returns the SIP “Call-
ID” header from the SIP message. The value is returned in a string
representation.

getCharacterEncoding—"“SipServletMessage.getCharacterEncoding” method
returns the name of the charset (system for encoding a sequence of charac-
ters) used for the MIME body of the SIP message. The encoding type is
returned in a string representation.

getContent—*“SipServletMessage.getContent” method returns an object rep-
resentation of the payload of the “SipServletMessage” interface instance.

getRawContent—"“SipServletMessage.getRawContent” method returns a
byte array representation of the payload of the “SipServletMessage” inter-
face instance.

getContentLanguage—"SipServletMessage.getContentLanguage” returns the
locale of the SIP message as represented by the SIP “Content-Language” SIP
header (or a value of null if the SIP “Content-Langauge” header is not pres-
ent). The locale is returned as type “java.util.Locale.”

getContentLength—"SipServletMessage.getContentLength” method returns
an integer representing the number of bytes making up the SIP message pay-
load. This value is represented in the SIP “Content-Length” SIP header.

gerContent Type—“SipServletMessage.getContent Type” method returns a
string representation of the payload type of the “SipServletMessage” inter-
face instance. The value is taken from the SIP “Content-Type” header.

getExpires—“SipServletMessage.getExpires” header method returns an inte-
ger value representing the SIP “Expires” header. A value of “~1” is returned
if the header does not exist in the SIP Message.

getFrom—“SipServletMessage.getFrom” method returns the value of the
SIP “From” header. The value is returned as an instance of the SIP “Address”
interface.

getHeader—“SipServletMessage.getHeader” method returns a string repre-
sentation of the value of a SIP header. The method has a single string param-
eter, which specifies the SIP header to be returned by the method.

getHeaderNames—“SipServletMessage.getHeaderNames™ method returns
to the application a list containing all of the SIP headers that appear in the
“SipServletMessage” interface instance.

getHeaders—"SipServletMessage.getHeaders” method returns a list of SIP
header values in string format. Some SIP headers are allowed to appear mul-
tiple times within a SIP message or can have comma-separated values. Using
this method allows an application to retrieve the multiple values of a SIP

The SIP Serviet Application Programming Interface (API) 265

header in a single call. The method has a single string parameter, which is
a string representation of the SIP header name.

getInitialRemoteAddr—*SipServletMessage.getInitialRemoteAddr” method
returns a string representation of the IP address relating to the upstream or
downstream physical entity that routed the SIP message to the container
regardless of container application routing.

getInitialRemotePort—"“SipServletMessage.getInitialRemotePort” method
returns a string representation of the port relating to the upstream or down-
stream physical entity that routed the SIP message to the container regard-
less of container application routing.

getInitial Transport—"SipServletMessage.getInitialRemote Transport” method
returns a string representation of the transport type relating to the upstream
or downstream physical entity that routed the SIP message to the container
regardless of container application routing.

getRemoteAddr—“SipServletMessage.getRemoteAddr” method returns a
string representation of the IP address from which the SIP message was
received. If the message was routed internally due to application composi-
tion, then the container will return the local IP address of the containers
interface. To always retrieve the original physical remote address, the appli-
cation should use the “SipServletMessage.getlnitialRemoteAddr” method.

getRemotePor—"SipServletMessage.getRemotePort” method returns an inte-
ger representation of the port from which the SIP message was received. If
the message was routed internally due to application composition, then the
container will return a valid local port on the “Containers” interface. To
always retrieve the original physical remote port, the application should use
the “SipServletMessage.getInitial RemotePort method.”

getRemoteUser—“SipServletMessage.getRemoteUser” method returns a string
representation of the user attempting to send the SIP message represented by
the “SipServletMessage” instance. If the user has not been authenticated,
then null is returned.

get Transport—"SipServletMessage.get Transport” method returns a string rep-
resentation of the protocol on which the SIP message was received. If the
message was routed internally due to application composition, then the con-
tainer will return null. To always retrieve the original physical transport, the
application should use the “SipServletMessage.getInitial Transport method.”

getLocalAddr—“SipServletMessage.getLocalAddr” method returns a string
representation of the IP address relating to the upstream or downstream sig-
naling entity that routed the SIP message. If the message was routed due
to application composition, the value returned will equal an internal
representation.

266

Understanding SIP Servlets 1.1

getLocalPor—*SipServletMessage.getLocalPort” method returns a string rep-
resentation of the port relating to the upstream or downstream signaling
entity that routed the SIP message. If the message was routed due to appli-
cation composition, the value returned will equal an internal representation.

getMethod—*SipServletMessage.getMethod” method returns a string rep-
resentation of the SIP protocol messages type, such as “INVITE.”

setParameterableHeader—“SipServletMessage.setParameterableHeader”
method allows an application to specify a SIP header of the form defined
by the “Parameterable” interface. The method takes two parameters. The first
parameter is a string representation of the SIP header name. The second
parameter is an instance of the “Parameterable” interface (which is also
defined in this section).

getParameterableHeader—“SipServletMessage.getParameterableHeader”
method returns the instance of the “Parameterable” interface associated
with a SIP header. The method takes a single string parameter, which spec-
ifies the SIP header to be returned in a “Parameterable” interface instance.

getParameterableHeaders—“SipServletMessage.getParameterableHeaders”
method returns a list of instances of the “Parameterable” interface for a
given SIP header. The method has a single parameter, which is a string rep-
resentation of the header that is to be returned in a list of instances of the
“Parameterable” interface.

getProtocol—"SipServletMessage.getProtocol” method returns the name and
version of the protocol used in the “SipServletMessage” interface instance.
This method will always return a string of the form “SIP/2.0.”

getSession—"“SipServletMessage.getSession” method returns the instance of
the “SipSession” interface associated with the SIP protocol message inter-
action. The method has an optional Boolean parameter, which indicates
whether an instance of the “SipSession” interface should be created if it
doesn’t already exist. A value of “true” specifies that the instance of the
“SipSession” should be created if it doesn’t exist and a value of “false” if it
shouldn’t be created.

getTo—"SipServletMessage.get To” method returns an instance of the “Address”
interface representing the SIP “To” header from the SIP protocol message.

getUserPrincipal—*SipServletMessage.getUserPrincipal” method returns an
object of type “java.security.Principal” indicating the principal user. Take a
look at the appropriate Java documentation for more information of the role
of this object in the Java security framework.

isCommitted—"SipServletMessage.isCommitted” method returns a Boolean
value indicating whether the instance of the “SipServletMessage” interface
is committed. A value of “true” indicates the instance is committed, while

The SIP Serviet Application Programming Interface (API) 267

a value of “false” indicates that it is not. If an instance of the “SipServlet
Message” interface is deemed to be in the committed state, then it can no
longer be modified. SIP Servlet 1.1 [7] specifies the states that indicate that
an instance of the “SipServletMessage” interface should transition to a com-
mitted state:

* This message is an incoming request for which a final response has
already been generated.

* This message is an outgoing request that has already been sent.

* This message is an incoming nonreliable provisional response received

by a Servlet acting as a UAC.

* This message is an incoming reliable provisional response for which
PRACK has already been generated. (Note that this scenario applies
to containers that support the 100rel extension.)

* This message is an incoming final response received by a Servlet act-

ing as a UAC for a nonINVITE transaction.
* This message is a response that has been forwarded upstream.

* This message is an incoming final response to an INVITE transaction,
and an ACK has been generated.

* This message is an outgoing request, the client transaction has timed
out, no response was received from the UAS, and the container gen-
erates a 408 response locally.

isSecure—“SipServletMessage.isSecure” method returns a Boolean value
indicating whether the SIP protocol message received in creating the instance
of the “SipServletMessage” interface was received over a secure transport
protocol, such as TLS. A value of “true” indicates that the SIP protocol
message was received over a reliable transport protocol, and a value of “false”
conveys that the SIP protocol message was not.

isUserInRole—"“SipServletMessage.isUserInRole” method returns a Boolean
value indicating whether an authenticated user is authorized to assume a
specific role within the application as defined in the deployment descriptor.
The method has a single parameter of type string that indicates the role
name being checked. A value of “true” indicates that the authenticated user
does belong to a given role while a value of “false” indicates the user does not

belong.

removeHeader—*SipServletMessage.removeHeader” method removes a SIP
header from the SIP protocol message that the instance of the “SipServlet
Message” interface represents. The method has a single parameter of type
string that represents the name of the SIP protocol header to be removed.

send—*“SipServletMessage.send” method is used to initiate the SIP protocol
sending (dispatch of protocol packet to the SIPStack and network) of the

268

Understanding SIP Servlets 1.1

“SipServletMessage” instance when acting as either a User Agent Client

(UAC) or a User Agent Server (UAS).

setAcceprLanguage—“SipServletMessage.setAcceptLanguage” method defines
the preferred locale that this user is operating in. This helps with language-
specific constructs such as reason phrases in SIP protocol responses and SIP
“Warning” headers. The result of setting this method is that the SIP
“Accept-Language” header is set to the appropriate language. The method
has a single parameter of type “java.util.locale,” which is explained in more
detail in appropriate Java language documentation.

setAddressHeader—SipServletMessage.setAddressHeader” method sets the
appropriate SIP header to a value represented by the “Address” interface defined
later in this chapter and discussed earlier in the book. The method has two
parameters. The first parameter is of type string and represents the SIP header
that is to be set. The second value is an instance of the “Address” interface, rep-
resenting the value to be inserted into the previously specified SIP header.

setCharacterEncoding—“SipServletMessage.setCharacterEncoding” method
sets the encoding to be used when converting the body of a “SipServlet
Message” interface instance. The method has a single value of type string that
specifies the character encoding to be used. Setting this method has impact
when attempting to manipulate the body of a “SipServletMessage” interface
instance using methods such as “SipServletMessage.setContent” and
“SipServletMessage.getContent” (which are also described in this section).

setContent—"“SipServletMessage.setContent” method is used to set the body
of a SIP protocol message, which is represented by an instance of the
“SipServletMessage” interface. The method has two parameters. The first
is of type “java.lang.Object,” which is simply a Java object representing the
SIP message body. The second parameter is of string and specifies the MIME
type of the SIP message body.

setContentLanguage—"SipServletMessage.setContentLanguage” method sets
the locale of a SIP protocol message that is represented by an instance of
the “SipServletMessage” interface. This method setting impacts SIP head-
ers such as “Content-Language” and “Content-Type.” It takes a single
parameter of type “java.util.Locale,” which is defined in the relevant Java
documentation.

serContentLength—"SipServletMessage.setContentLength” method sets a
value to the SIP “Content-Length” header as represented by the instance of
the “SipServletMessage” interface. Manually setting this header is not rec-
ommended, as using the “SipServletMessage.setContent” method ensures
that the correct value is set to represent the SIP message body. The method

has a single parameter of type integer that specifies the value to be used in the
SIP “Content-Length” header.

The SIP Serviet Application Programming Interface (API) 269

setContent Type—"“SipServletMessage.setContentType” method sets the con-
tent type of a SIP protocol message represented by the “SipServletMessage”
interface. The method has a single parameter of type string that represents
the MIME type of the content contained in the SIP protocol message.

setExpires—“SipServletMessage.setExpires” method is used to set the value
in an instance of the “SipServletMessage” interface of the “Expires” header.
The method has a single parameter of type integer that represents the num-
ber of seconds to be inserted into the SIP “Expires” header.

setHeader—“SipServletMessage.setHeader” method allows an application
to set a SIP protocol header that is represented in an instance of the
“SipServletMessage” interface. The method has two parameters. The first
is of type string and represents the name of the SIP header to be set. The
second parameter is also of type string and sets the value for the SIP header
represented by the first parameter in this method call.

getHeaderForm—*“SipServletMessage.getHeaderForm” method returns the
form that the SIP headers in a message would be rendered once out on the
network. SIP 2.0 [1] allows some headers to have a short format. An exam-
ple of one such header is the “From” SIP header, which can have the short
form representation “f.”

setHeaderForm—*“SipServletMessage.setHeaderForm” method can be used
to specify whether the long header format or the short header format should
be used. (according to SIP 2.0 [1]). If the short format is set, then all head-
ers that have a short format defined in an RFC would use that, while
unknown headers or headers without a short format specified would use the
long format.

Example:

//Nice helper function
public void copyBody(SipServletMessage source, SipServletMessage dest)

{

dest.setContent(source.getContent(), source.getContentType);
dest.setContentLanguage(source.getContentLanguage());
dest.setCharacterEncoding(source.getCharacterEncoding());

}

1042 SipServietRequest

The “SipServletRequest” interface represents a SIP request message (as opposed
to a SIP response message). The “SipServletRequest” interface extends the
“javax.servlet” interface to provide SIP specific methods and also implements the
“SipServletMessage” interface to provide common methods across both “Sip

270 Understanding SIP Servlets 1.1

ServletRequest” and “SipServletResponse” interfaces. The following methods are
defined for specific manipulations on a “SipServletRequest” interface instance:

addAuth Header—“SipServletRequest.addAuthHeader” provides a conven-
ience method for applications acting as a User Agent Client that are chal-
lenged for authentication using a SIP 401 or 407 response code (see RFC
3261 [1] for more detail on the call flow and headers). There are two vari-
ations of the method:

* The first variation of the “SipServletRequest.addAuthHeader” has
two parameters. The first parameter is the instance of the “SipServlet
Response” interface instance that triggered the action. The second
parameter is an instance of the “AuthInfo” interface that acts as a con-
tainer for appropriate authentication credentials (e.g., user name and
password). Detailed information describing the “AuthInfo” interface
is included in this chapter.

* The second variation of the “SipServletRequest.addAuthHeader” has
three parameters that enable an application acting as a UAC to cre-
ate appropriate authentication headers in a request without using the
“AuthInfo” interface instance. The first parameter is the instance of
the “SipServletResponse” interface instance that triggered the action.
The second parameter is of type string and represents the user name
for the authentication operation. The third parameter is also of type
string and represents the password for the authentication operation.

createCancel—“SipServletRequest.createCancel” method returns an instance
of the “SipServletRequest” interface for canceling a SIP INVITE request
when acting as a User Agent Client. An application acting as a User Agent
Client can then invoke the “SipServletRequest.send” method on the returned
instance to cancel.

createResponse—“SipServletRequest.createResponse” method can be used
by an application on receiving a SIP request. Calling this method allows the
application to generate a SIP response, which can then be sent using the
“SipServletRequest.send” method. Generating and sending such a response
is an indication to the container that the application is acting in the User
Agent Server role. There are two variations of this method:

* The first variation has only a single parameter of type integer. The
integer value passed in represents the status code of the SIP response
message (e.g., “200” would create a SIP “200 OK” response).

* The second variation has two parameters. The first parameter is equal
to the parameter introduced in the first variation of this method and
is of type integer to represent the SIP status code response that is to
be generated. The second parameter is of type string and specifies the

The SIP Serviet Application Programming Interface (API) mn

textual reason phrase, which is included in first line of the SIP response
along with the status code.

getB2buaHelper—“SipServletRequest.getB2buaHelper” method returns an
instance of the “B2buaHelper” interface. Using this method indicates to the
SIP Servlet container that the application wishes to act in the role of a
B2BUA. Details of the functionality provided by the “B2buaHelper” inter-

face are included in this section.

getInitialPoppedRoute—"SipServletRequest.getlnitial PoppedRoute” method
returns the original SIP “Route” header that was popped before being pre-
sented to applications. Sometimes the contents of the SIP “Route” header are
used to provide contextual information, so it’s important that the contents
be made available to applications [e.g., some implementations of the IP
Multimedia Subsystem (IMS) use the SIP “Route” header to carry appro-
priate information]. The method returns an instance of the “Address” inter-
face, which is described in detail in this section. If no SIP “Route” header has
been popped for the request, then null is returned.

getMaxForwards—*SipServletRequest.getMaxForwards” method returns an
integer value representing the SIP protocol “Max-forwards” header. This
value is used by forwarding entities to guard against messages looping. Each
forwarding entity should decrement the value of this header by one, and if
it reaches zero, the appropriate SIP error response (483) will be generated
instead of forwarding.

getPoppedRoute—"SipServletRequest.getPoppedRoute” method returns the
top header removed by the container before being dispatched to a SIP servlet
application. This differs from the “SipServletRequest.getInitialPoppedRoute”
method, which preserves the SIP “Route” header that was present when
the SIP request entered the container from the network. The instance of the
“Address” interface that is retuned by this method represents the SIP
“Route” header popped as a result of potentially multiple application invo-
cations with popped headers (e.g., the Application Router can push headers
that result in invocation).

getProxy—"SipServletRequest.getProxy” method returns an instance of the
“Proxy” interface that is used when an application wishes to act in the role of
a SIP proxy server. See the information provided in this section on the “Proxy”
interface for various proxy server configurations that are provided.

getRegion—"SipServletRequest.getRegion” method provides the region in
which a SIP request has been invoked. An Application Router will gen-
erally dispatch requests to applications while acting in a specific region.
This method returns an instance of the “SipApplicationRoutingRegion”
class. The “SipApplicationRoutingRegion” object will indicate a value of
either “NEUTRAL_REGION,” “ORIGINATING_REGION,” or

272

Understanding SIP Servlets 1.1

“TERMINATING_REGION.” These values represent the region that
the application is acting in for the SIP protocol interaction. For more
information, take a look at Chapter 4.

getRequestURI—*SipServletRequest.getRequestURI” method returns an
instance of the “URI” interface representing the SIP Request URI that
appears in the first line of a SIP request. The “URI” interface instance rep-
resents the current destination of the SIP request.

getRoutingDirective—“SipServletRequest.getRoutingDirective” method
returns the ENUM “SipApplicationRoutingDirective,” which indicates the
routing directive of a request. A request is processed and sequenced based
on the routing directive, which has the following values:

* NEW—Indicates that the request is new and should be treated as if
it has never been seen before, from an application sequencing
perspective.

* CONTINUE—Indicates that the request is not new and is being

processed in an existing application sequence.

* REVERSE—Indicates that the request is being processed in the reverse
direction of an existing application sequence.

An application can obtain the value of the Routing Directive from the
“SipApplicationRoutingDirective” ENUM by invoking the “SipApplication
RoutingDirective.valueOf” method, which returns the appropriate string
representation.

setRoutingDirective—“SipServletRequest.setRoutingDirective” method
enables an application to set the previously introduced Routing Directive
for an outgoing request. The method takes two parameters. The first param-
eter is an instance of the “SipApplicationRoutingDirective,” which was intro-
duced in the definition of the “SipServletRequest.getRoutingDirective”
method. It will contain a value of either “NEW,” “CONTINUE,” or
“REVERSE.” The second parameter is the instance of the “SipServlet
Request” interface that the Routing Directive is being set for. Setting the
Routing Directive impacts sequencing behavior of the outgoing request.
The Routing Directive has default values that depend on the role in which
the application is acting. An application uses this method to override default
behavior.

getSubscriberURI—"SipServletRequest.getSubscriberURI” method returns
an instance of the “URI” interface representing the user that is currently
being serviced by the container.

isInitial—"SipServletRequest.isInitial” method informs applications whether
the incoming request is an initial or a subsequent SIP request. This method

The SIP Serviet Application Programming Interface (API) 273

is of type Boolean, with a value of “true” indicating that a request is initial
and a value of “false” indicating that it is a subsequent request.

pushParh—SipServletRequest.pushPath” method includes a “Path” header
in a SIP REGISTER request when acting in the role of a User Agent Client
or a Proxy. The SIP “Path” header is defined in [6]. The method has a single
parameter of type “Address” interface that specifies the SIP URI to be used
when routing subsequent requests based on the SIP registration.

pushRoute—"SipServletRequest.pushRoute” method includes a SIP “Route”
header in the outgoing SIP request when acting as a User Agent Client or
proxy server. This then determines the next hop that the SIP request should
visit. There are two variations of this method:

* The first variation takes a single parameter that is an of the “SipURI”
interface, specifying the SIP URI that should be pushed into the SIP
request as a “Route” header.

* The second variation takes a single parameter that is an instance of
the “Address” interface, specifying the SIP URI and associated “Address”
parameters that should be pushed into the SIP request as a “Route”
header.

send—*“SipServletRequest.send” method, when invoked, causes the SIP pro-
tocol request that has been constructed to be sent to the network. This
method is used only by User Agent Client applications.

setMaxForwards—“SipServletRequest.setMaxForwards” method is used by
applications to configure the SIP “Max-Forwards” header. The SIP “Max-
Forwards” header restricts the number of hops that a request will travel
before a loop is detected. Each entity traversed subtracts one from the value
of this SIP header. The method takes a single integer value indicating the
number of hops to be traversed before reporting a looped request.

setRequest URI—“SipServletRequest.SetRequestURI” method allows appli-
cations to set the Request URI of the SIP message. The Request URI of a
SIP request indicates the true destination of the request. The method takes
a single parameter of type “URL.”

Example:
SipServletRequest cancel = initialInviteRequest.createCancel();

cancel.send();

1043 SipServietResponse

The “SipServletResponse” interface represents a SIP response message (as
opposed to a SIP request message). The “SipServletResponse” interface extends

274 Understanding SIP Servlets 1.1

the “javax.servlet” interface to provide SIP specific methods and also implements
the “SipServletMessage” interface to provide common methods across both
“SipServletResponse” and “SipServletRequest” interfaces. The following methods
are defined for specific manipulations on a “SipServletResponse” interface instance:

createAck—“SipServletResponse.createAck” method returns an instance of
the “SipServletRequest” interface representing a SIP ACK request that is
based on the 2xx class response that has been received to a SIP INVITE
request. An application can then manipulate the “SipServletRequest” inter-
face instance as a request and then use the “SipServletRequest.send” to dis-
patch to the network.

createPrack—"“SipServletResponse.createPrack” method returns an instance of
the “SipServletRequest” interface representing a SIP PRACK request that
is based on the SIP reliable provisional (1xx class response) received. An appli-
cation can then manipulate the “SipServletRequest” interface instance as a
request and then use the “SipServletRequest.send” to dispatch to the net-
work.

getChallengeRealms—“SipServletResponse.getChallengeRealms” method
returns a string “Iterator” (java.util.Iterator<java.lang.string>) containing a
list of all the authentication realms that appeared in the “SipServlet
Response” instance. The realm is extracted from the appropriate SIP proto-
col header that is included as part of the challenge—see [1] for more details
on SIP authentication.

getProxy—“SipServletResponse.getProxy” method returns an instance of
“Proxy” interface associated with the SIP response message. Using the “Proxy”
interface signifies that the application is acting as a SIP proxy server. See the
description for the “Proxy” interface in this chapter for more details on
functions provided when acting as a SIP proxy server.

getProxyBranch—“SipServletResponse.getProxyBranch” method returns an
instance of the “ProxyBranch” interface. The “ProxyBranch” interface is
detailed elsewhere in this chapter, and the mechanics behind the branch
concept are described in Chapter 3.

getReasonPhrase—“SipServletResponse.getReasonPhrase” returns a string
representation of the reason phrase that was included in the “SipServlet
Response.” For example, in the following 487 SIP response, the reason phrase

is in bold type.

SIP/2.0 487 Request Terminated

Via: SIP/2.0/UDP
sipservlet_example.com;branch=z9hG483JKSJ8ew9;received=192.
0.2.222

To: Stoffe <kristoffer@sipservlet_example.com > tag=890092834

The SIP Serviet Application Programming Interface (API) 275

From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj84931ijf984ulw94@sipservlet_example.com
CSeq: 1 INVITE

getStatus—"“SipServletResponse.getStatus” method returns an integer value
representing the SIP response code of the message. For example, in the fol-
lowing 487 SIP response, the reason phrase is in bold type.

SIP/2.0 487 Request Terminated

Via: SIP/2.0/UDP
sipservlet_example.com;branch=z9hG483JKSJ8ew9;received=192.0.2.222
To: Stoffe < kristoffer@sipservlet_example.com > tag=890092834
From: Chris <chris@sipservlet_example.com >;tag=8327489874
Call-ID: fj8493ijf984ulw94@sipservlet_example.com

CSeq: 1 INVITE

setStarus—*SipServletResponse.setStatus” method allows an application to
set the status code that is present in a SIP response. There are two variations
of this method:

* The first variation has a single integer parameter that sets the status
code for the SIP response.

* The second variation has two parameters. The first parameter is an
integer that sets the status code for the SIP response. The second is a
string which sets the reason phrase for the SIP response.

getReques—“SipServletResponse.getRequest” method returns an instance of
the “SipServletRequest” object that was used to generate the original request
that resulted in the SIP response being processed.

isBranchResponse—“SipServletResponse.getRequest” returns a Boolean rep-
resenting whether a SIP response arrived on the recently introduced Proxy
Branch mechanism. A value of “true” is returned if the response arrived on
a Proxy Branch, while “false” is returned if it did not arrive on a Proxy
Branch. More details on the Proxy Branch mechanism are contained in this
section and in Chapter 3.

send—“SipServletResponse.send” method is used to dispatch a SIP response
message once the application is ready. Using this method signifies that the
application is acting in the role of a SIP User Agent Server (UAS).

sendReliably—"SipServletResponse.sendReliably” method allows an appli-
cation to send a SIP provisional response in the range of 101 to 199 reliably,
as specified in RFC 3262 [8]. An application should only really use this
method if it is certain that the upstream User Agent Client (UAC) supports
this extension. An application can obtain the list of SIP extensions sup-
ported by the container from the Servlet Context attribute “javax.servlet.sip
.supported” using the “getAttribute” method. Version 1.0 of the SIP Servlet

276 Understanding SIP Servlets 1.1

API provided the “javax.servlet.sip.100rel” Servlet Context attribute to
determine support, but this is no longer the favored mechanism.

Example:

if (resp.getStatus() == SipServletResponse.SC_OK) {
if("INVITE".equals(resp.getMthod()) {
SipServletRequest ack = resp.createAck();
ack.send();
} else {
// We are done, but lookout for SUBSCRIBE & REFER :-)
}

10.44 Address

The “Address” interface is used to conveniently represent a common construct
that is used in multiple SIP headers (e.g., the SIP “To,” “From,” and “Contact”
headers). The common construct consists of a URI, an optional display name,
and a set of associated header parameters (note that is header parameters and not
URI parameters that appear within “<” and “>.”

For example:

Contact: "Stoffe" < sip:123456@sipservlet_example.com;user=phone >;
f00=890092834

In this example, SIP “Contact” header, the “user=phone” parameter is a
SIP URI parameter, while the “f00=890092834” parameter is considered a “Con-
tact” header parameter. The address object is defined in the specification as hav-
ing the following form:

Address = (name-addr | addr-spec) *(SEMI generic-param)

So, the object includes the SIP URI part and display name as defined by RFC
3261 [1], using the “name-addr” and “addr-spec” constructs as well as the associ-
ated header parameters, as defined by the “generic-param” inclusion.

The “Address” interface defines the following methods:

clone—“Address.clone” method returns an object representation of the
“Address” interface instance containing all the components previously men-
tioned (display name, URI, and header) parameters. The only exception
is the “Tag” parameter, defined in RFC 3261 [1], which is not cloned,
because it violates the SIP protocol to reuse.

equals—“Address.equals” method returns a Boolean value indicating whether
two “Address” interface instances are equal. A value of “true” indicates that

The SIP Serviet Application Programming Interface (API) 277

the two “Address” interface instances are equal, while “false” means they
are not. The URI and its parameters are compared as specified in RFC 3261
[1]. The header parameters are also compared the same way that URI
parameter comparison is, as specified in RFC 3261 [1]. The optional dis-
play name is not used in the comparison. The method takes a single param-
eter of type “javalang’ Object,” which represents the “Address” instance that
is to be compared.

getDisplayName—“Address.getDisplayName” returns an object of type
string representing the display name extracted from the “Address” interface
instance. Here, for example, is an instance of an “Address” interface that
would return the value “Stoffe” on calling this method:

"Stoffe" < sip:123456@sipservlet_example.com;user=phone >;
f00=890092834.

setDisplayName—"Address.setDisplayName” method allows the application to
set the display name part of an “Address” interface instance. The method has
a single string parameter that is used to specify the display name.

getExpires—“Address.getExpires” method returns the value of the SIP
“Expires” header parameter when present. A value of “~1” is returned if the
p p p
header is not present in the “Address” interface instance.
p

setExpires— “Address.setExpires” method allows an application to explicitly
set the “Expires” header parameter on an “Address” interface instance. The
method has a single parameter of type integer that is used to represent the
number of seconds that are to be set in the SIP “Expires” header.

getQ—“Address.getQ” method returns an object of type float representing
the value of the “q” header parameter defined in RFC 3261 [1]. The “q”
value parameter is used to set preference when multiple locations are pres-
ent in SIP REGISTER requests.

setQ—“Address.setQ” method allows an application to explicitly set the
value of the “q” parameter specified in RFC 3261 [1]. The method has a
single value of type float, which is then used to populate the “q” header
parameter in the “Address” instance.

isWildCard—"Address.isWildCard” method allows an application to check
for a special “*” wild card that may appear in a SIP “Contact header” as
defined in RFC 3261 [1]. The use of the “*” wild card in a SIP REGIS-
TER request acts as a “remove all” current bindings operation. This
method allows an application to check for this special case in an “Address”
interface instance. The method returns a Boolean value, with a value of
“true” indicating that this is the special “*” case, while “false” indicates that
it is not.

278 Understanding SIP Servlets 1.1

getURI—“Address.getURI” method provides the application with only the
URI part of an “Address” instance. The method returns an instance of the
“URI” interface introduced in this chapter.

setURI—“Address.setURI” method allows an application to set the URI
part of an “Address” instance. The method has a single parameter that is an
instance of the “URI” interface containing the chosen value.

t0String— “Address.toString” method provides an application with the abil-
ity to convert an instance of the “Address” interface into a string object.

Example:

Address addr = sipFactory.createAddress("\"Kristoffer
Gronowski\"<sip:stoffe@sipservlet.net>");
addr.setExpires(3600);

req.addAddressHeader ("m",addr);

10.45 Parameterable

The “Parameterable” interface is a newly introduced convenience method that
allows easy manipulation of a SIP header field with optional parameters. This SIP
Servlet specification defines a parameterable as follows:

field-name: field-value * (;parameter-name[=parameter-value])

An example of a parameterable would be the following SIP “Via” header:

Via: SIP/2.0/UDP
sipservlet_example.com;branch=z9hG483JKSJ8ew9;received=192.0.2.222

In this example, the “field-name” is equal to “Via.” The “field-value” is
equal to “SIP/2.0/UDP sipservlet_example.com.” The “parameter-name” and
“parameter-value” of the parameterables equal “branch=29hG483]JKSJ8ew9” and
“received=192.0.2.222.”

The “Parameterable” interface has the following methods:

clone—"“Parameterable.clone” method returns a “java.lang.Object” instance
containing a copy of the “Parameterable” interface instance.

equals—“Parameterable.equals” method compares two instances of the
“Parameterable” interface to identity if they are the same. The method
returns a Boolean value. The value of “true” indicates that the instances of
the “Parameterable” interface are the same, while “false” indicates they are
not the same.

The SIP Serviet Application Programming Interface (API) 2719

getParameter—“Parameterable.getParameter” method allows an application
to specify and retrieve the value of a parameter that is present in a “Para-
meterable” interface instance. The method has a single string parameter
that specifies the name of the parameter to be returned. The method returns
the parameter value as a string.

getParameterNames—“Parameterable.getParameterNames” method returns
a “java.util.Iterator<java.lang.String>" object containing a list of all param-
eter names that are present in a “Parameterable” instance.

getParameters— Parameterable.getParameters” method returns a “java.util.Set
<java.util. Map.Entry<java.lang.String, java.lang.String>" object containing
a view of the name-value parameter mappings contained in the “Para-
metable” interface instance.

getValue—“Parameterable.getValue” method returns the field value of a
“Parameterable” interface instance as a string object.

setValue—"Parameterable.setValue” method allows an application to set the
field value of a “Parameterable” interface instance. The method has a single
parameter of type string that represents the value that the field should be set.

removelParameter—Parameterable.removeParameter” method allows an
application to remove a specified parameter from a “Parameterable” inter-
face instance. The method has a single string parameter that specifies the
parameter that is to be removed.

setParameter—“Parameterable.setParameter” method allows an application
to set the value of a parameter contained in an instance of the “Parameter-
able” interface. The method has two parameters. The first parameter is a
string representing the name of the parameter to be set. The second param-
eter is also a string parameter representing the value of the parameter being
set. If the parameter already exists with the “Parameterable” instance, then
it is replaced; otherwise, it is added.

Example:

Parameterable p = sipFactory.createParameterable("*;audio");
p.setParameter("explicit","");

p.setParameter("q","1.0");

req.setParameterableHeader ("Accept-Contact",p);

1046 SipURI

The “SipURI” interface is used to represent both “sip:” and “sips”: URIs used in
the SIP protocol. The SIP URI scheme is used extensively in the protocol in a

280 Understanding SIP Servlets 1.1

number of places for various routing and signaling purposes. It is for this reason
that this convenience interface allows for ease of manipulation. The construct can
be closely compared to e-mail in that an identifier consists of a user part and a
host part, for example, chris@example.com. The user part is equal to “chris,” and
the host part is equal to “example.com.” A SIP URI additionally has parameters
that are separated using “;” followed by headers that are separated by “?”. The
SipURI interface consists of the following methods:

equals—“SipURI.equals” method provides the ability to compare two
instances of the “SipURI” interface. It has a single parameter of type
“java.lang.object” that represents the SIP URI to be compared. The method
returns a Boolean value of “true” if the two SIP URIs are equal and “false”
if they are not. The rules for comparing two SIP URIs are described in RFC
3261 [1].

toString—“SipURI.toString” method converts an instance of the “SipURI”
interface into a string.

getHeader—“SipURI.getHeader” method provides the value of a specified
header. A SIP URI can contain header parameters that are included using
a “?”. For example, “sip:chris@example.com?Subject=Conference” illustrates
a SIP URI with a “Subject” header equal to “Conference.” If in the future a
SIP request is constructed based on this URI, the header will also be included.
The method has a single string parameter specifying the name of the header.
A string is then returned, conveying the value of the header. From our pre-
vious example, “header_value.getHeader(“Subject”)” would return the value
“Conference.”

setHeader—“SipURI.setHeader” method allows an application to set the
value of a header in a SIP URI. The method has two parameters. The first
parameter is a string representing the name of the header to be set in the
“SipURI” instance. The second parameter is a string representing the value
of the header. For example, “SipURI_instance.setHeader(“Subject”, “Con-
ference”)” would result in a “Subject” header being added to the “SipURI”
instance with a value of “Conference.”

removeHeader—“SipURI.removeHeader” method enables an application to
remove a header from an instance of “SipURI” interface. The method has
a single parameter of type string that specifies the header that is to be
removed. For example, “SipURI_instance.removeHeader(“Subject”)” would
result in the “Subject” header being removed from the “SipURI” instance.

getHeaderNames—“SipURI.getHeaderNames” method returns an Iterator
“java.util.Iterator<java.lang.String>" listing all the header names that are
present in an instance of the “SipURI” interface.

The SIP Serviet Application Programming Interface (API) 281

getHost—“SipURI.getHost” method provides an application with the host
part of a “SipURI” instance (i.e., the domain part that appears after the “@”
symbol). The method returns a string of the host part.

setHost—“SipURI.setHost” method allows an application to set the host
part of a “SipURI” interface instance. The method has a single parameter
of type string that specifies the host part of a SIP URI.

getLrParam—“SipURI.getLrParam” method informs an application whether
the “Ir” parameter is set on a “SipURI” interface instance. The “Ir” parame-
ter was introduced in a revision of the SIP protocol to determine a new mech-
anism called “loose route.” For more information on the “loose route”
mechanism and the “It” parameter, take a look at RFC 3261 [1]. This
method returns a Boolean indicating whether the “Ir” parameter is present
in the “SipURI” instance. A value of “true” means the “It” parameter is pres-
ent, and “false,” that it is not.

setLrParam—"SipURI.setLrParam” method enables an application to set the
presence of the “Ir” parameter in an instance of the “SipURI” interface. The
method has a single parameter of type Boolean. A value of “true” sets the “It”
parameter to be present, while a value of “false” sets the “It” parameter to be
not present.

getMAddrParam—*SipURI.getMAddrParam” method returns the value of
the “maddr” parameter. The “maddr” parameter is defined in RFC 3261 [1].
The method returns a string representation of the “maddr” parameter.

setMAddyParam—"“SipURIL.setMAddrParam” method enables an applica-
tion to set the value of the “maddr” parameter in a “SipURI” interface
instance. The method has a single parameter of type string that specifies the
value to be used.

getMethodParam—SipURI.getMethodParam” method returns the value of
the “method” parameter. The “method” parameter is defined in RFC 3261
[1]. This method returns a string containing the value of the “method”
parameter from the “SipURI” instance.

setMethodParam—"SipURI.setMethodParam” method enables an applica-
tion to set the value of the “method” parameter in a “SipURI” instance. The
method has a single string parameter that specifies the value to be used for
the “method” parameter.

getPor—"SipURI.getPort” method provides the network port associated with
the “SipURI” instance. A “SipURI” instance has an optional port configura-
tion, which can be seen in more detail in RFC 3261 [1]. The method returns
an integer representing the port value for the “SipURI” interface instance.

282

Understanding SIP Servlets 1.1

setPor—"“SipURLsetPort” method allows an application to configure the
port of a “SipURI” instance. The method has a single parameter of type
integer that specifies the value of the port.

getTransportParam—“SipURI.getTransportParam” method provides the
contents of the “transport” parameter, which is defined as part of a SIP URI
in RFC 3261 [1]. The method returns a string representation of the “trans-
port” parameter.

set TransportParam—*SipURL.set TransportParam” method enables an appli-
cation to set the value of the “transport” parameter for a “SipURI” inter-
face instance. The method has a single string parameter specifying the value
for the “transport” parameter.

get TTLParam—"“SipURI.get T TLParam” method provides the contents of
the “tt]” parameter, which is defined as part of a SIP URI in RFC 3261 [1].
The method returns an integer representation of the “tt]” parameter.

set TTLParam—"“SipURIL.setTTLParam” method enables an application to
set the value of the “ttl” parameter for a “SipURI” interface instance. The
method has a single integer parameter specifying the value for the “ctl”
parameter.

getUser—SipURI.getUser” method extracts the user part of a SIP URI
(before the “@” symbol) as defined in RFC 3261 [1]. The method returns

a string representation of the user part of a “SipURI” instance.

setUser—“SipURLsetUser” method enables an application to set the user
part of a SIP URI (before the “@” symbol) as defined in RFC 3261 [1]. The
method has a single string parameter specifying the value of the user part
of a “SipURI” interface instance.

getUserPassword—"“SipURI.getUserPassword” method provides the pass-
word of the SIP URI if it is set (null if it is not set) The method returns a
string representation of the password part of a “SipURI” instance.

setUserPassword—“SipURI.setUserPassword” method enables an applica-
tion to set the value of the password part for a SIP URI. The method has
a single parameter of type string specifying the password part of a “SipURI”

instance.

getUserParam—“SipURI.getUserParam” method provides the contents of
the “user” parameter that is defined as part of a SIP URI in RFC 3261 [1].

The method returns a string representation of the “user” parameter.

setUserParam—*“SipURI.setUserParam” method enables an application to
set the value of the “user” parameter for a “SipURI” interface instance. The
method has a single string parameter specifying the value for the “user”
parameter.

The SIP Serviet Application Programming Interface (API) 283

isSecure—“SipURLisSecure” method informs the application whether the
instance of the “SipURI” interface is secure (by definition, if it is of type
“sips,” it is secure, and if of type “sip,” it is not). The method returns a
Boolean, with a value of “true” indicating it is secure and “false indicating”
it is not.

setSecure—“SipURlI.setSecure” method enables an application to set whether
an instance of the “SipURI” interface is secure (by definition, this sets the
scheme to either “sip” or “sips”). The method has a single Boolean param-
eter whereby the value of “true” specifies that it should be secure (sips), and
“false,” that it should not (sip).

Example:

SipURI uri = sipFactory.createSipURI("stoffe", "sipservlet.net");
uri.setSecure(true);

uri.setPort(35061);

//Would produce "sips:stoffe@sipservlet.net:35061’

10.4.7 TelURL
This book has already looked at the “SipURI” interface for representing the SIP

protocol. For legacy reasons, it is also desired within the SIP protocol to be
able to represent traditional PSTN telephone numbers. While it can be envi-
sioned that, in the future, a person would be located using an e-mail-style SIP URI
format, the use of traditional phone numbers will be around for a long time to
come, and so they need representation in the SIP protocol and SIP Servlet APIL.
For this reason, the “tel:” URI scheme was defined in RFC 3966 [2]. For more
information on valid use of the “tel:” URI scheme in the SIP protocol, see REC
3261 [1]. The following methods are defined for the “TelURL” interface.

equals—“TelURL.equals” method enables an application to compare an
instance of the “TelURL” interface with another instance. The method has
a single parameter of type “java.lang.Object,” which represents the other Tel
URL that is being compared. The method returns a Boolean value indicat-
ing whether the two instances of the “TelURL” interface are equal.

getPhoneContext—“TelURL.getPhoneContext” method returns the value
of the “Phone-Context” parameter for the instance of the “TelURL” inter-
face or returns null if it’s a global number. The method returns a string rep-
resentation of the value from the “Phone-Context” parameter.

getPhoneNumber—“TelURL.getPhoneNumber” method returns the value of
the phone number associated with a “TelURL” interface instance. The
method returns a string value representing the telephone number.

284 Understanding SIP Servlets 1.1

setPhoneNumber—“TelURL.setPhoneNumber” method enables an appli-
cation to set the telephone number for an instance of the “TelURL” inter-
face. The method has two variations:

* The first instance has a single parameter. The parameter is of type
string and represents the phone number to be set for the “TelURL”
interface instance: for example, “TelURL_instance.setPhoneNumber

(“1234567).”

* The second instance has two parameters. The first parameter is of type
string and represents the phone number to be set for the “TelURL”
interface instance. The second parameter is of type string and repre-
sents the phone-context of the telephone number: for example,
“TelURL _instance.setPhoneNumber(“123456,” “example.com”).”

isGlobal—“TelURL.isGlobal” method informs an application whether a
telephone number is global. It returns a Boolean, with a value of “true”
indicating that the telephone number is global and a value of “false” that it
is not global.

t0String—“TelURL.toString” method returns a string representation of the
“TelURL” instance.

Example:

TelURL tel = (TelURL) sipFactory.createURI("tel:+1-555-1234-567");
if(tel.isGlobal()) {
log("We should end up here since the number started with +1");

}

10.4.8 URI

The “URI” interface provides a base for all URI manipulations that span both
the “sip:,” “sips,” and “tel” schemes. The generic definition for a URI is provided
in RFC 2396 [9]. The “URI” interface has the following method:

clone—“URlI.clone” method enables an application to produce an exact
replica of a “URI” instance. The method returns a new instance of the “URI”
interface.

equals—“URI.equals” method compares two instances of the “URI” inter-
face. It has a single parameter of type “java.lang.Object,” which represents
the second “URI” instance to be compared. The method returns a Boolean
indicating whether the two “URI” interface instances are the same.

getParameter—“URI.getParameter” method returns the value of a specified
URI parameter. The method has a single string parameter specifying the

The SIP Serviet Application Programming Interface (API) 285

parameter that is to be retrieved. The method returns a string containing
the value of the specified parameter. For example, using the URI “chris@
example.com;uri-param=1234" as an example and calling the URI_instance
.getParameter(“uri-param”) would return the value “1234.”

setParameter—“URI.setParameter” method enables an application to con-
figure a URI parameter. The method has two parameters. The first param-
eter is of type string and represents the name of the parameter to be set. The
second parameter is also a string specifying the value of the parameter.

removeParameter— “URI.removeParameter” method enables an application
to remove a parameter from a “URI” interface instance. The method has a
single string parameter that indicates the parameter to be removed.

getParameterNames— URI.getParameterNames” method returns a “java.util
Jterator<java.lang.String>” listing the names of all the parameters for the
“URI” interface instance.

getScheme—“URI.getScheme” method provides the scheme for the “URI”
interface instance. The method returns a string with a value of “sip,” “sips,”
or “tel.”

isSipURI—“URLisSipURI” method enables an application to determine
whether an instance of the “URI” interface is SIP based. The method returns
a Boolean whereby a value of “true” means that it is SIP based (the scheme
was either “sip:” or “sips:”) and a value of “false” means that is was some other
scheme.

toString—“URI.toString” method enables an application to convert a
instance of the “URI” interface into a string representation.

Example:

SipServletRequest req;
URI aUri = req.getRequestURI() ;
if(aUri.isSipURI()) {

}

SipURI aSipUri = (SipURI) aUri ; //a safer cast

10.5 Timer Service

A SIP Servlet container also provides a basic timer service that applications can
use and receive notification events when a specific timer expires. The timer service
provided by the container allows for data to be stored with a timer that can then
be retrieved at a later period. The timer service also allows for varying levels of gran-
ularity of timer configuration to incorporate multiple occurrences. The overall timer

286 Understanding SIP Servlets 1.1

service consists of three interfaces, which will be discussed in the remainder of
this chapter.

10.5.1 TimerService

The “TimerService” interface is the primary entry point for applications wishing
to use the SIP Servlet timer functionality. This interface allows for the setting
of timers and will at some later time be notified of expiration (using the “Timer
Listener” interface described later in this section). The “TimerService” interface
should be offered by containers using the “javax.servlet.sip. TimerService” Servlet
Context attribute. The “TimerService” interface has the following method:

create Timer—TimerService.create Timer” method is the mechanism used
to configure a timer in a SIP Servlet container. The method returns an
instance of the “ServletTimer” interface that represents a timer that has been
installed in the container. The “ServletTimer” interface is described in more
detail later in the section. The method has two variations:

* The first variation has four parameters that are configured when
installing new timer:

° The first parameter is the instance of the “SipApplicationSession”
interface that is to be associated with the timer.

° The second parameter is of type long and represents the delay
in milliseconds before the timer expires.

° The third parameter is of type Boolean and signifies whether the
timer is to be persistent during a SIP Servlet container failure
or to shut down. If set to “true,” then the timer is persistent and
is reinstalled on a restart. If set to “false,” the timer is not rein-
stalled on a restart.

° The fourth parameter is of type “java.io.Serializable” and represents
any information that the application would like to be delivered
when the timer fires and a notification is sent to the “Timer
Listener” interface (which is discussed later in this chapter).

* The second instance has six parameters that are configured when
installing a new timer:

° The first parameter is the instance of the “SipApplicationSession”
interface that is to be associated with the timer.

° The second parameter is of type long and represents the delay
in milliseconds before the timer expires.

° The third parameter is of type long and represents the time mil-
liseconds between successive timer expirations.

The SIP Serviet Application Programming Interface (API) 287

° The fourth parameter is a Boolean that when “true” specifies
that the timer is scheduled in a fixed-delay mode. When
“false,” the timer is scheduled in fixed-rate mode. Fixed-rate
mode is defined in the SIP Servlet specification as follows: “In
fixed-rate execution, each execution is scheduled relative to the
scheduled execution time of the initial execution. If an execution
is delayed for any reason (such as garbage collection or other back-
ground activity), two or more executions will occur in rapid suc-
cession to ‘catch up.” In the long run, the frequency of execution
will be exactly the reciprocal of the specified period (assuming
the system clock underlying Object.wait(long) is accurate)” [1].
Fixed-delay mode is defined in the SIP Servlet specification as
follows: “In fixed-delay execution, each execution is scheduled
relative to the actual execution time of the previous execution.
If an execution is delayed for any reason (such as garbage collec-
tion or other background activity), subsequent executions will
be delayed as well. In the long run, the frequency of execution
will generally be slightly lower than the reciprocal of the specified
period (assuming the system clock underlying Object.wait(long)
is accurate)” [1].

° The fifth parameter is of type Boolean and signifies whether the
timer is to be persistent during a SIP Servlet container failure
or shut down. If set to “true,” then the timer is persistent and
is reinstalled on a restart. If set to “false,” the timer is not rein-
stalled on a restart.

° The sixth parameter is of type “java.io.Serializable” and represents
any information that the application would like to be delivered
when the timer fires and a notification is sent to the “Timer
Listener” interface (which is discussed later in this chapter).

10.5.2 ServletTimer

The “ServletTimer” interface is the result of a timer being created using the
“TimerService” interface and contains specific timer information previously cre-
ated. The “ServletTimer” interface has the following methods:

cancel—“ServletTimer.cancel” method cancels the timer regardless of
whether it’s a repeating or one-occurrence timer.

getApplicationSession—"“ServletTimer.getApplicationSession” method returns
the instance of the “SipApplicationSession” associated with the timer.

288

Understanding SIP Servlets 1.1

getld—“ServletTimer.getld” method returns a string containing the iden-
tifier assigned to the specific timer task.

getInfo—"ServletTimer.getInfo” method enables the application to retrieve
application-specific data it has stored in association with the timer on cre-
ation. The method returns the information as a “java.io.Serializable” object.

getTimeRemaining—"“ServletTimer.get TimerRemaining” returns the amount
of time in milliseconds remaining before the timer fires. The method returns
the timer as a long.

scheduleExecution Time—"“Servlet Timer.scheduleExecutionTime” provides
the most recent execution of the timer. It is typically used with the previ-
ously described fixed-delay mode, which allows execution times to drift
over time. The result is returned a long.

Example:

public class TimingServlet extends javax.servlet.sip.SipServlet {

@Resource
TimerService ts;

ServletTimer st;

st = ts.createTimer(sas, 3600, false, "Something for the
TimerListener");

/// We changed our mind and don’t need the timer anymore

st.cancel();

10.5.3 TimerListener

The “TimerListener” is a listener interface that is implemented by applications
wanting to be notified when a timer fires. The “TimerListener” interface has the
following method:

timeout—"TimerListener.timeout” method is called by the container when
a timer expires to notify the application. The method provides the applica-
tion with a single parameter of type “ServletTimer,” which contains all the
appropriate information relating to the timer that has fired.

Example:
@SipListener

public class TimedSipServlet extends SipServlet implements
TimerListener{

The SIP Serviet Application Programming Interface (API) 289

public void timeout(ServletTimer st) {

}

//Write code that should happen when timer is fired.

References

Rosenberg, J. et al., “SIP: Session Initiation Protocol,” RFC 3261, Internet Engineering
Task Force, June 2002.

Schulzrinne, H., “The Tel URI for Telephone Numbers,” RFC 3966, Internet Engineering
Task Force, December 2004.

Mahy, R., and D. Petrie, “The Session Initiation Protocol (SIP) Join’ Header,” RFC 3911,
Internet Engineering Task Force, October 2004.

Mahy, R., B. Biggs, and R. Dean, “The Session Initiation Protocol (SIP) ‘Replaces’ Header,”
RFC 3891, Internet Engineering Task Force, September 2004.

Schulzrinne, H., D. Oran, and G. Camarillo, “The Reason Header Field for the Session Ini-
tiation Protocol (SIP),” RFC 3326, Internet Engineering Task Force, December 2002.

Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for
Registering Non-Adjacent Contacts,” RFC 3327, Internet Engineering Task Force, Decem-
ber 2002.

SIP Servlet Specification, Version 1.1, JSR 289, Java Community Process, August 2008.

Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses,” RFC 3262, Inter-
net Engineering Task Force, June 2002.

Berners-Lee, T., R. Fielding, and L. Masinter, “Uniform Resource Identifiers (URI): Generic
Syntax,” RFC 2396, Internet Engineering Task Force, August 1998.

About the Authors

Chris Boulton is the chief technology officer (CTO) for NS-Technologies and
was formerly a technical research specialist working on next-generation solutions
for Avaya. He has been an active participant in the Internet Engineering Task
Force (IETF) for more than six years. Dr. Boulton has authored and participated
in numerous specifications related to the Session Initiation Protocol (SIP) and its
related extensions. This includes work on Network Address Translator (NAT)
traversal of SIP, Media Server Control using SIP, and VoIP conferencing. He rep-
resented Avaya (and Ubiquity Software Corporation before it was purchased by
Avaya) on the SIP Servlet 1.1 expert group and has worked closely with the tech-
nology since its conception (SIP Servlet 1.0).

Dr. Boulton is also a member of the JSR 309 Media Server API expert
group in the Java Community Process (JCP), is on the Technical Board of Advi-
sors for the VoIP Security Alliance (VOIPSA), and has published numerous white
papers related to VoIP and related technologies.

Kristoffer Gronowski is a senior software architect at Ericsson Research focus-
ing on empowering development and evolution of communication services. He
has worked most of his career in product development, and most recently he has
been driving the architecture of the open source SailFin SIP container project
from Ericsson. The initial donation of code made by Ericsson originated from
the platform product Ericsson Application Server, of which he was one of the
three founders and the architect. At the same time, Dr. Gronowski has been con-
tributing to the JSR 289 standard as member of the JCP expert group, where he
met Dr. Boulton, and thus the requirement for this particular book was formed
between them. Before joining Ericsson, Dr. Gronowki was working for a startup

291

292 Understanding SIP Servlets 1.1

and was a pioneer in the SIP field at Hotsip. There the foundation of multime-
dia services such as presence, VoIP, and messaging were not only standardized but
also proven in solid implementation; this was where Dr. Gronowski gained most
of his experience and identified the need to simplify the environment in order to
make the technology developer-friendly.

Index

3GPP, 3, 4, 117, 121

3GPP2, 117

Annotations, 19, 88-91, 132, 144, 180,
191-192, 205-207

AOR, 11, 180

API, 15

Comet, 185-187, 189-191, 193-196, 200,
202

Convergence, 47-56, 119, 196, 232, 234

DNS, 4, 148-149, 155, 175-176, 178-182

EJB, 15, 19-21, 41-42, 67, 119-120, 132,
134, 205

ENUM, 155, 180-182

GlassFish, 123, 141, 143, 184, 202

HSS, 104

HTML, 186-189

HTTP, 5, 15, 59, 61, 76, 158, 163-164, 185,
189-192, 195, 202, 207-208

HTTP Servlet, 15, 17-18, 59, 61, 62, 76,
92, 128, 134, 184-187, 192, 194, 205

HTTP Servlet Container, 15-16, 62

ICEfaces, 186-187, 196-202

IETE 111, 117

IMS, 3, 4, 104, 117, 118, 119, 142, 177

ISC, 118

Jar, 24, 144, 165, 224-225

Java Micro Edition, 185-186, 217-227

JavaScript, 184-185, 188-190

Java Server Pages (JSP)/ Java Server Faces
(JSF), 184, 186, 196-202

293

Java SE Service Provider Framework, 99, 165
JEE, 15, 17, 41, 67, 91, 105, 123, 132, 228,
229, 134, 142, 145, 184, 200

JMX, 145, 156, 169
JNDI, 41, 42, 144
MIME, 207, 224
NAT, 112, 148, 153
PSTN, 4
REST, 185, 202, 204-213
RI, 25
RTP, 157
SailFin, 123-217
Admin GUI webapp, 128-129, 145
Alphabetical Application Router, 131, 164
asadmin command, 126-127, 130-131,
145-147, 157, 167, 171-173, 177
Cluster, 142, 153, 169-180
Command Line Interface (CLI), See
asadmin command
Converged Load Balancer (CLB), 147,
152, 158, 175-178
Domain Admin Server (DAS), 144—145,
148-151, 169-170
domain.xml, 131, 139, 144-145,
147-151, 159-163, 180, 187
Download, 123-124
Deploy/Undeploy of applications, 127,
129, 167
Grizzly, 143, 152
Install, 124-126, 131, 171, 203204

294 Understanding SIP Servlets 1.1

SailFin (cont.)
Layers, 151-164
Logging, 126, 129-130, 145-147,
173-174
NetBeans development, 132-139,
208-210, 213-216
Overload handling, 156-157
SCIM, 120-122
S-CSCE 104, 117, 118, 119-120
SDP,
Security, 51-56
Servlet Specification, 17-18, 90-91, 92, 131,
228, 141
SIP, 3, 4, 6
INVITE, 6, 10, 11, 28, 63—64, 68, 70,
80, 93, 95, 108, 153
180 Ringing, 12
200 OK, 13, 136, 154-155
ACK, 6, 13, 14
B2BUA, 62, 71-76, 120, 230, 258
BYE, 7, 14, 154
Call-1D, 10
CANCEL, 6, 66, 251, 253, 256, 258
Contact, 10, 147, 149
Content-Length, 10
Content-Type, 10
CSeq, 10
From, 10, 68, 230, 231
Join, 38-40, 111, 233
Max-Forwards, 10
MESSAGE, 80, 136-137, 154, 193,
221-222
OPTIONS, 7
Path, 66, 252-253, 256
Proxy, 11,
Proxy, 62-66, 51-255
Reason, 251
Record-Route, 147, 254
REFER, 108, 153
REGISTER, 7, 117, 193, 218
Replaces, 3840, 111, 233
Route, 66, 104—-105, 120, 122
R-UR], 10, 31, 64, 65
SIP Dialog, 78, 79-81, 154
SIP URI, 25, 63, 64, 120, 150, 155, 177,
181, 279-283
SUBSCRIBE, 28, 93, 95, 108, 153
Tel URL, 180-181, 283284
To, 10, 69, 230, 231

UAC, 62, 66-69, 96, 120, 153, 230, 243

UAS, 62, 69-71, 96, 118, 120, 154, 218

UPDATE, 243

Via, 10, 12, 147-148, 153

SIP Servlet, 15, 59

Address, 276-278

Application Router, 25, 92-109, 120,
130-131, 144, 152, 154, 164-169

B2BUA Helper, 72-76, 258-260

Container Responsibilities, 23—47

DAR, 25, 131

doAck, 30

doBranchResponse, 33

doBye, 30

doCancel, 30

doErrorResponse, 33

dolnfo, 31

dolnvite, 30, 70

doMessage, 31, 154, 193

doNotify, 31

doOptions, 30

doPrack, 30

doProvisionalResponse, 32

doPublish, 31

doRedirectResponse, 33

doRefer, 31

doRegister, 30, 204-205, 215

doSubscribe, 30

doSuccessResponse, 32

doUpdate, 31

Encode URI, 34, 35, 40, 236

Explicit Invalidation, 84, 86

Invalidate When Ready, 85, 86

Life Cycle Management, 23-24

Main Servlet, 26-27

Parameterable, 278-79

Protocol Compliance, 25

Proxy Branches, 65-66, 252, 255-258

Routing Directive, 101-102, 104

Routing Region, 100, 104, 105, 244

Sar, 24, 60, 81, 127, 129, 131-132,
134-135, 165, 201

Servlet Context, 42, 67, 144, 205, 229

Servlet Mappings, 28-29, 92-96

Session Invalidation, 83—-88

Session Key, 34, 35-38

Session Targeted, 35, 38—40, 103

SIP Application Session, 42-43, 68, 76,
77-78, 81, 83-86, 155, 192-193, 231

Index 295

Sip Factory, 41, 43-45, 67, 88, 102, 144,
186, 192-193, 206, 229-231

SIP Servlet API, 25, 34, 62, 69, 81, 83,
84, 120, 122, 228-290

SIP Servlet Message, 148, 261-269

SIP Servlet Request, 151-152, 192,
269-273

SIP Servlet Response, 151-152, 273-276

SIP Session, 76, 78-81, 86—88, 155,
192-193, 243-247

SIP Session Uetilities, 41, 88, 144,
232-233

Timer Service, 41, 45-47, 88, 153,
285-289

WEB-INE 58, 59, 60, 186

SIP Servlet Container, 15-16, 23-57, 66, 67,
93, 109, 123, 141, 228

TCK, 25, 142

TCP, 6, 126-127, 143, 147-149, 155, 157,
172-173, 178-179

TISPAN, 117

TLS, 126, 143, 147-153, 155, 172-173,
178-179

UDP, 6, 126-127, 143, 147-149, 172-173,
178, 193

URLI, 4, 230, 284-285

XML, 26, 28, 97

	Understanding SIP Servlets 1.1
	Contents
	Foreword
	Preface
	Part I Introduction to SIP Servlet Technology
	1 Introduction to SIP Servlets
	1.1 Session Initiation Protocol
	1.2 SIP Servlets and the SIP Servlet Vision
	1.3 Java Enterprise Edition
	1.3.1 Servlet Specification
	1.3.2 Annotations
	1.3.3 Enterprise JavaBeans (EJB)

	References

	2 The SIP Servlet Container
	2.1 Container Responsibilities
	2.1.1 Life-Cycle Management
	2.1.2 Protocol Compliance
	2.1.3 Mapping Requests to Servlets
	2.1.4 Receiving SIP Requests
	2.1.5 Receiving SIP Responses
	2.1.6 Session Targeting
	2.1.7 Session Utilities
	2.1.8 SIP Factory
	2.1.9 Timer Service

	2.2 Container Convergence
	2.2.1 HTTP Container Convergence
	2.2.2 JEE Container Convergence

	2.3 Security
	References

	3 The SIP Servlet Application
	3.1 SIP Servlet Packaging
	3.1.1 Deployment Descriptor

	3.2 Application Roles
	3.2.1 Proxy
	3.2.2 User Agent Client
	3.2.3 User Agent Server
	3.2.4 Back-to-Back User Agent

	3.3 Application Constructs
	3.3.1 SIP Application Session
	3.3.2 SIP Session
	3.3.3 Application Data Storage
	3.3.4 Session Lifetime and Invalidation
	3.3.5 Annotations

	References

	4 Application Router
	4.1 SIP Servlet 1.1 Composition Model
	4.2 Application Router, Container, and Application Interaction
	4.2.1 Subsequent Requests and Responses

	References

	5 Moving Forward
	5.1 SIP Servlet Threading Model
	5.2 Outstanding Issues
	5.3 SIP Protocol Support
	5.4 JSR 309
	References

	Part II Developer and Deployment Environments
	6 Relationship and Role Within IMS
	References

	7 SailFin 101
	8 SailFin Understanding
	8.1 History
	8.2 Architecture
	8.3 Logging
	8.4 Network Configuration
	8.5 SIP Container Architecture
	8.6 Writing Your Own Interceptor Laye
	8.6.1 Writing Custom Application Router

	8.7 Cluster Deployment
	8.7.1 Load Balancing and IP Sprayers
	8.7.2 ENUM

	References

	9
SIP Servlet Client Programming
	9.1 Writing HTTP Servlet-Based Client
	9.2 Using Asynchronous HTTP
	9.3 Using ICEfaces
	9.4 REST and JAX-RS
	9.4.1 Consuming a REST Service

	9.5 Java ME JSR 180
	Reference

	10 The SIP Servlet Application Programming Interface (API)
	10.1 Container Utilities
	10.1.1 SipFactory
	10.1.2 AuthInfo
	10.1.3 SipSessionsUtil
	10.1.4 ConvergedHttpSession
	10.1.5 SipServletListener

	10.2 Application Constructs
	10.2.1 SipApplicationSession
	10.2.2 SipApplicationSessionActivationListener
	10.2.3 SipApplicationSessionAttributeListener
	10.2.4 SipApplicationSessionBindingListener
	10.2.5 SipApplicationSessionListener
	10.2.6 SipSession
	10.2.7 SipSessionActivationListener
	10.2.8 SipSessionAttributeListener
	10.2.9 SipSessionBindingListener
	10.2.10 SipSessionListener

	10.3 SIP Message Routing
	10.3.1 Proxy
	10.3.2 ProxyBranch
	10.3.3 B2BuaHelper
	10.3.4 SipErrorListener

	10.4 SIP Messaging Constructs
	10.4.1 SipServletMessage
	10.4.2 SipServletRequest
	10.4.3 SipServletResponse
	10.4.4 Address
	10.4.5 Parameterable
	10.4.6 SipURI
	10.4.7 TelURL
	10.4.8 URI

	10.5 Timer Service
	10.5.1 TimerService
	10.5.2 ServletTimer
	10.5.3 TimerListener

	References

	About the Authors

