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How to use this workbook

This workbook is designed to be used in conjunction with the author’s free online video
tutorials. Inside this workbook each chapter is divided into learning modules (subsections),
each having its own dedicated video tutorial.

View the online video via the hyperlink located at the top of the page of each learning
module, with workbook and paper / tablet at the ready. Or click on the Engineering Math-
ematics YouTube Workbook playlist where all the videos for the workbook are located in
chronological order:

Engineering Mathematics YouTube Workbook Playlist
http://www.youtube.com/playlist?list=PL13760D87FA88691D [1].

While watching each video, fill in the spaces provided after each example in the workbook
and annotate to the associated text. You can also access the above via the author’s YouTube
channel

Dr Chris Tisdell’s YouTube Channel
http://www.youtube.com/DrChrisTisdell

The delivery method for each learning module in the workbook is as follows:

e Briefly motivate the topic under consideration;

Carefully discuss a concrete example;

Mention how the ideas generalize;

Provide a few exercises (with answers) for the reader to try.

Incorporating YouTube as an educational tool means enhanced eLearning benefits, for
example, the student can easily control the delivery of learning by pausing, rewinding (or
fast—forwarding) the video as needed.

The subject material is based on the author’s lectures to engineering students at UNSW,
Sydney. The style is informal. It is anticipated that most readers will use this workbook
as a revision tool and have their own set of problems to solve — this is one reason why the
number of exercises herein are limited.

Two semesters of calculus is an essential prerequisite for anyone using this workbook.
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1.1 Partial derivatives & partial differential equations

View this lesson at http://www.youtube.com/watch?v=SV56UC31rbk, [2].

— Motivation. N

Partial differential equations (PDEs) are very important in modelling as their so-
lutions unlock the secrets to a range of important phenomena in engineering and
physics. The PDE known as the wave equation models sound waves, light waves
and water waves. It arises in fields such as acoustics, electromagnetics and fluid
dynamics.

\. J

—~ Example. \

Consider the wave equation

Pw  ,0%w , ot
— =c—, cis a constant.
ot? dx?’

Show that a solution is given by

w(t, z) 1= cos(2x + 2ct).
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,—[The bigger picture.} \

e When verifying solutions to PDEs, compute the necessary derivatives and
show that the PDE holds.

e In certain circumstances, the chain rule will be required to compute the partial
derivatives of interest.

\ J

—~ Exercises. \

Consider the wave equation

Pw 0w

92 = c 92 c 1s a constant.

Show that another solution is given by
w(t,z) = In(3x + 3ct).
Show that the wave equation has solutions of a more general form
w(t,x) = f(x + ct)

where f is a sufficiently smooth function. (Hint: use the chain rule.)
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1.2 Partial derivatives & chain rule

View this lesson at http://www.youtube.com/watch?v=H0zMR22HsiA, [3].

— Motivation. N

The chain rule is an important technique for computing derivatives and better—
understanding rates of change of functions. For functions of two (or more) variables,
the chain rule takes various forms.

\ J

~ Example. \

Let the function w := f(x,y) have continuous partial derivatives. If we make a
change of variables: x = rcosf; y = rsin € then show that
0 0 0
w_of 0+ —f sin 6.

E = %COS ay
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,—[The bigger picture.}

\

e [t is generally helpful to draw a simple diagram to understand which form of
the chain rule to apply.

e For functions of two (or more) variables, the chain rule takes a more profound
form than the one—variable case.

—~ Exercises.

Let the function w := f(z,y) have continuous partial derivatives. If we make a
change of variables: x = rcos#; y = rsinf then show that

ow
00

of .

_ of
= —axr81 0+ ayrcose.
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1.3 Taylor polynomial approximations: two variables

View this lesson at http://www.youtube.com/watch?v=ez_HZZ9H2ao, [4].

— Motivation. N

Taylor polynomials are a very simple and useful way of approximating complicated
functions. Taylor polynomials are desirable types of approximations as their poly-
nomial structure make them easy to work with.

\. J

—~ Example. \

Using an appropriate Taylor polynomial, compute an approximation to

V/(1.02)3 + (1.97)3.
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,—[The bigger picture.} \

e The Taylor polynomial up to and including linear terms is usually a good
starting approximation (unless a greater degree of accuracy is required)

T(z,y) := fa,0) + fula,b)(x — a) + fy(a, b)(y = b).

e The use of a linear Taylor polynomial approximation geometrically equates
to approximating surfaces by a suitable tangent plane.

\ J

~ Exercises. N

Using an appropriate Taylor polynomial, compute an approximation to

V/(0.98)3 + (2.03)3.

[Ans: 2.9].
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1.4 Error estimation

View this lesson at http://www.youtube.com/watch?v=wLrHCkes0A8, [5].

— Motivation. N

When taking measurements (say, some physical dimensions), errors in the recorded
measurements are a fact of life. In many cases we require measurements to be
within some prescribed degree of accuracy. We now look at the effects of small
variations in measurements and estimate the errors involved.

\. J

—~ Example. \

A cylindrical can has height h and radius . We measure the height and radius and
obtain 12cm and Hcm respectively, with errors in our measurements being no more
than 0.5mm. As a result of the errors in our measurements for i and r, obtain an
estimate on the percentage error in calculating the volume of the can.
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,—[The bigger picture.} \

e The main inequality used can be derived from the linear Taylor polynomial
approximation for the function involved.

e Don’t forget to unify the units involved!

\. J

— Exercises. N

e Re-examine the previous example by switching the recorded measurements
for height and radius and then estimate the percentage error in V. Compare
your estimate with the estimate of the previous example. [Ans 11/6%]

e We measure the length [ and width w of a plot of land to be 40m and 10m re-
spectively, with the errors in these measurements being no more than 0.5cm..
As a result of the errors in [ and w, obtain an estimate on the percentage
error in calculating the area of the plot. [Ans: 1/16%]
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1.5 Differentiate under integral signs: Leibniz rule

View this lesson at http://www.youtube.com/watch?v=cipIYpDu9YY, [6].

— Motivation. N

Leibniz rule:

b
I(x) ::/ f(t,x) dt
has derivative ,
of
/ — _
I'(x) = e (t,z) dt.

There are two important motivational points concerning Leibniz’ rule:

a

e If a function I defined by an integral is useful for modelling purposes, then
it would seem to make sense that the derivative I’ would also give us insight
into the problem under consideration;

e Leibniz’ rule can be applied to evaluate very challenging integrals.

\. J

—~ Example. \

If

then calculate F”(x).
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,—[The bigger pi(:ture.w

J

Let a = u(z) and b = v(z) be differentiable functions. If f and J0f/0x are continu-
ous on the region

then

has derivative

\

~ Exercises.

It

then calculate F'(z). [Ans: (sin3z —sin2z)/x.|
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2.1 How to determine & classify critical points

View this lesson at http://www.youtube.com/watch?v=LGF1LcLnSfE, [7].

— Motivation. N

Functions of two (or more) variables enable us to model complicated phenomena
in a more accurate way than, for example, by using functions of one variable. The
determination and classification of critical points of functions is very important in
engineering and the applied sciences as this information is sought in a wide range
of problems involving modelling.

\. J

—~ Example. \

Determine and classify all the critical points of the function

f(z,y) =2 + 9y — 3oy + 15.
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,—[The bigger picture.} \

Assume that f is continuous and has continuous partial derivatives up to and
including all those of the second—order.

e Determine the critical points of f by solving the simultaneous equations:
f==0and f, =0.

e If (a,b) is a critical point determined from above and defining

D(a,b) := fr(a,b) fyy(a,b) = [fuy(a, b)]2

then the nature of the critical points can be then determined via the 2nd—
derivative test:

(i) If D(a,b) > 0 and f,.(a,b) < 0 then f has a local maximum at (a,b);

(ii) If D(a,b) > 0 and f,.(a,b) > 0 then f has a local minimum at (a,b);
(iii) If D(a,b) < 0 then f has a saddle point at (a,b);

(iv) If D(a, b) = 0 then the 2nd-derivative test cannot be used and some other
method or technique must be sought to classify our critical points.

\

~ Exercises. \

Determine and classify all the critical points of the function

f(z,y) :==2* + 2y + 3z + 2y + 5.

[Ans: This f has one critical point at (—2,1) with our f having a saddle point at

(_2’ 1)]
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2.2 More on determining & classifying critical points

View this lesson at http://www.youtube.com/watch?v=1q2kdnRY5h8, [8].

— Motivation. | N

The determination and classification of critical points of functions is very important
in engineering and the applied sciences as this information is sought in a wide range
of problems involving modelling. We now look at a more involved example.

. J

—~ Example. N

Let A > 0 be a constant. Determine and classify all the critical points of the
function

flz,y) i =a* — Azy + > + 7.
Hint — Discuss the cases: A=2;0< A<2; A> 2.
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,—[The bigger picture.} \

Assume that f is continuous and has continuous partial derivatives up to and
including all those of the second—order.

e Determine the critical points of f by solving the simultaneous equations:
f==0and f, =0.

e If (a,b) is a critical point determined from above and defining

D(a,b) := fr(a,b) fyy(a,b) = [fuy(a, b)]2

then the nature of the critical points can be then determined via the 2nd—
derivative test:

(i) If D(a,b) > 0 and f,.(a,b) < 0 then f has a local maximum at (a,b);

(ii) If D(a,b) > 0 and f,.(a,b) > 0 then f has a local minimum at (a,b);
(iii) If D(a,b) < 0 then f has a saddle point at (a,b);

(iv) If D(a, b) = 0 then the 2nd-derivative test cannot be used and some other
method or technique must be sought to classify our critical points.

\

~ Exercises. \

Determine and classify all the critical points of the functions:

(2)  flzy) =2 +ay+y" +3y+3;
(b)  flz,y)=—a"—1—y"
[Ans: (a) This f has one critical point at (1, —2) with f having a local minimum at

(1,—2). (b) This f has one critical point at (0,0) with f having a local maximum
at (0,0).]
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2.3 The method of Lagrange multipliers

View this lesson at http://www.youtube.com/watch?v=4E-uLaRhrcA, [9].

— Motivation. N

The method of Lagrange multipliers is a very powerful technique enabling us to
maximize or minimize a function that is subject to a constraint. Such kinds of
problems frequently arise in engineering and applied mathematics, eg, designing a
cylindrical silo to maximize its volume subject to a certain fixed amount of building
material.

\. J

—~ Example. \

Consider a thin, metal plate that occupies the region in the XY -plane

Q= {(z,y) : 2> + y* < 25}.

If f(x,y) := 42% — 4ay + y* denotes the temperature (in degrees C') at any point
(x,y) in € then determine the highest and lowest temperatures on the edge of the
plate.
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,—[The bigger picture.} \

Suppose f and g have continuous partial derivatives and: dg/0x # 0; dg/dy # 0;
when g = 0.

e If f is our function to maximize/minimize and g = 0 is our constraint then
the method of Lagrange multipliers involves calculating the critical points of
the Lagrangian function

L:=f—-M\g

where A is the Lagrange multiplier.

e To solve the resulting simultaneous equations, some creativity is often re-
quired.

e [f L has more than one crticial point then compare values of f at each critical
point to determine which gives max/min values of f.

\ J

~ Exercises. \

Determine the maximum value of f(z,y) := xy subject to the constraint g(z,y) :=
r+y—16=0. [Ans: At (8,8), f has a maximum value of 64.]
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2.4 Another example on Lagrange multipliers

View this lesson at http://www.youtube.com/watch?v=5w-blyU9hy4, [10].

— Motivation. N

The method of Lagrange multipliers is a very powerful technique enabling us to
maximize or minimize a function that is subject to a constraint. Such kinds of
problems frequently arise in engineering and applied mathematics.

\. J

—~ Example. \

The temperature at a point (x,y) on a metal plate in the XY -plane is given by

T(x,y) := 6xy.

Use the method of Lagrange to determine the maximum temperature on the circle
2., .2
Ty  =8.
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,—[The bigger picture.} \

Suppose f and g have continuous partial derivatives and: dg/0x # 0; dg/dy # 0;
when g = 0.

e If f is our function to maximize/minimize and g = 0 is our constraint then
the method of Lagrange multipliers involves calculating the critical points of

the Lagrangian function
L:=f—-M\g

where \ is the Lagrange multiplier.

e To solve the resulting simultaneous equations, some creativity is often re-
quired.

e [f L has more than one crticial point then compare values of f at each critical
point to determine which gives max/min values of f.

\ J

~ Exercises. \

Minimize f(z,v, z) := x?+y*+2% subject to the constraint g(z,y) := 22—y+2—1 =
0. [Ans: At (1/3,1/6,—1/6), f has a maximum value of 2/9.]
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2.5 More on Lagrange multipliers: 2 constraints

View this lesson at http://www.youtube.com/watch?v=7fRYd8PKeGY, [11].

r—| Motivation. |

and applied mathematics.

.

The method of Lagrange multipliers is a very powerful technique enabling us to
maximize or minimize a function that is subject to a constraint. Sometimes we have
two (or more) constraints. Such kinds of problems frequently arise in engineering

,—| Example.

g1(z,y,2) =22 —y = 0;

Maximize the function f(z,y,2) := 2* + 2y — 2% subject to the constraints:

ga(w,y,2) =y +2=0.
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,—[The bigger picture.} \

e If f is our function to maximize/minimize and g; = 0, go = 0 are our con-
straints then the method of Lagrange multipliers involves calculating and
comparing the critical points of the Lagrangian function

L= f—[Mg1+ Aol
where A\, Ay are the Lagrange multipliers.

e To solve the resulting simultaneous equations, some creativity is often re-
quired.

e [f L has more than one crticial point then compare values of f at each critical
point to determine which gives max/min values of f.

\ J

~ Exercises. \

Determine the minimum value of f(z,y, 2) := x?+y?*+ 2% subject to the constraints:

g(x,y,2) = +2y+32—6=0; ¢(x,y,2) =x+3y+92—9=0.

[Ans: Min value occurs at (1 +22/59,2 + 5/59,9/59).]
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3.1 Vector functions of one variable

View this lesson at http://www.youtube.com/watch?v=hmN1Duk08Yk, [12].

— Motivation. N

Vector—valued functions allow us more flexibility in the modelling of phenomena in
two and three dimensions, such as the orbits of planets. The most basic of vector—
valued functions are those involving one variable which can be used to describe and
analyze curves in space.

\. J

—~ Example. \

Consider the function r(¢) := (cost,sint,t) for t > 0.

1. Sketch and describe the curve associated with r.

2. If a particle travels along this curve (with ¢ representing time) then calculate
r’(t) and show that its speed is constant.

/0 "rt) d.

3. Calculate
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e Differentiation, integration and limits of vector—valued functions of one vari-
able involve differentiation, integration and limits of each component function.

e For smooth curves, r'(t) is a tangent vector to the curve and points in the
direction of motion r'(t)/||r'(¢)]|.

\. J

— Exercises. N

Consider the function r(t) := (2cost,3sint) for t > 0.

1. Sketch and describe the curve associated with r.

2. If a particle travels along this curve (with ¢ representing time) then calculate
r'(t). Is the speed constant?
/ r(t) dt.

[Ans: 1. The curve is the ellipse 2?/4 + y*/9 = 1; 2. 1/(t) = (—2sint, 3 cost). No.;
3. (0,0).]

3. Calculate
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3.2 The gradient field of a function

View this lesson at http://www.youtube.com/watch?v=Xw5wusWDt1Cg, [13].

— Motivation. N

The gradient field of a function is one of the basic concepts of vector calculus. It
can be used to construct normal vectors to curves and surfaces, it can be applied to
calculate slopes of tangent lines to surfaces in any direction, and can be very useful
when integrating over curves (line integrals) to compute work done.

\. J

—~ Example. \

Consider the function f(x,y) := x® + 4y>.

1. Compute V f.
2. Show that V f is normal to the level curve f(x,y) = 16.

3. Calculate the rate of change (directional derivative) of f at (1,1) in the di-
rection u = (1,1).
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,—[The bigger picture.} \

e The gradient readily generalizes to equations involving three or more vari-

ables, Vf - (fxyfy>f2)'

e For differentiable functions f the vector Vf will always be normal to level
curves / level surfaces of f.

e For differentiable functions of two variables the directional derivative of f
at P(xo,%0) in the direction of u is just the slope of the tangent line to the
surface of f with the tangent line lying in the vertical plane that contains

(1}'0, Yo, f(l’(), yO)) and u.

e Directional derivatives are generalizations of partial derivatives.

\ J

—~ Exercises. N

Consider the function f(x,y,2) := z* + y* — 22

1. Compute V f.
2. Compute a normal vector to the surface f(z,y,2) = —7 at (1, 1, 3).

3. Calculate the rate of change (directional derivative) of f at (1,1,1) in the
direction u = (1,1, 1).

[Ans: 1. (22,2y, —22); 2. (2,2, —6); 3. 2/V/3]]
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3.3 The divergence of a vector field

View this lesson at http://www.youtube.com/watch?v=quZlfp59iJg, [14].

— Motivation. N

The divergence of a vector field is one of the basic concepts of vector calculus. It
measures expansion and compression of a vector field and can be very useful when
integrating over curves (line integrals) and surfaces to compute flux.

\. J

—~ Example. \

(a) If F(z,y,2) := (2> —y,y + 2,22 — 1) then compute V o F at (1,2, 3).
(b) If G(x,y) := (0,z) then compute V o G. Sketch G and show that there is a
zero net outflow over each rectangle.
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e The divergence measures net outflow of a vector field.

e If the divergence is positive everywhere, then there is a net outflow over every
closed curve / surface.

e If the divergence is negative everywhere, then there is a net inflow over every
closed curve / surface.

e A vector field with zero divergence everywhere is called “incompressible” with
zero net outflow over every closed curve / surface.

\ J

— Exercises. \

Consider F(z,y, z) := (zcosy,ysinz, 22 — 1) and G(z,y) := (z,y).

1. Compute Vo F and V e G.
2. Sketch G and show that there is a net outflow over each circle in the plane.

[Ans: 1. cosy +sinz + 2z, 2; 2. Sketch G and graphically show the net outflow is
positive.]
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3.4 The curl of a vector field

A glimpse at vector calculus

View this lesson at http://www.youtube.com/watch?v=qe0TOYufpSY, [15].

— Motivation.

integrals) and surfaces.

\.

The curl of a vector field is one of the basic concepts of vector calculus. It measures
rotation in a vector field and can be very useful when integrating over curves (line

—~ Example.

the rotation in G.

(a) If F(z,y,2) := (2> —y,y + 2,22 — x) then compute V x F at (1,2, 3).
(b) If G(x,y) := (y,0) then compute the scalar curl of G. Sketch G and discuss
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,—[The bigger picture.} \

e The curl measures rotation in a vector field.

e If the scalar curl is positive everywhere in the plane, then there is an anti-
clockwise rotation of a paddlewheel in the plane about its axis.

e [f the scalar curl is negative everywhere in the plane, then there is clockwise
rotation of a paddlewheel in the plane about its axis.

e A vector field with zero curl everywhere is called “irrotational”. In the plane
this means a paddlewheel in the vector field not spinning about its axis.

\ J

— Exercises. \

Consider F(z,y, z) := (zcosy, zsinz, 22 — y3) and G(z,y) := (z,y).

1. Compute V x F and the scalar curl of G.
2. Sketch G and graphically show that G is irrotational.

[Ans: 1. (=3y* —sinx,cosy, zcosx + zsiny), 0; 2. Sketch G and graphically show
a paddlewheel cannot rotate about its axis.]
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3.5 Introduction to line integrals

View this lesson at http://www.youtube.com/watch?v=6YuyBnXBFXg, [16].

— Motivation. N

A line integral involves the integration of functions over curves. Applications in-
clude: calculating work done; determining the total mass and center of mass of thin
wires; and also finding flux over curves.

\. J

—~ Example. \

(a) If f(x,y) := x + y and C is the unit circle with center at (0,0) then compute

the line integral
/ f ds.
C

(b) If F(z,y) := (—y+1)i+ zj and C is oriented via an anticlockwise rotation then
compute the line integral
/ Foedr.
c
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e For a smooth curve C with parametrization r = r(t), a <t <b
b
[ £as= [ el
C a

e For an oriented smooth curve C with parametrization r = r(t), a <t <b

/Fo dr:/FonS
C C

where T is the unit tangent vector in the direction of motion.

\. J

— Exercises. N

Let C be part of a parabola y = x? parametrized by r(t) = ti +2j, 0 < ¢t < 2.

1. If f(z,y) := 2* — y + = then compute

| ras

2. If C is oriented in the direction from (0,0) to (1,1) and if F(z,y) := 221 + yj

then compute
/ Fedr.
c

What answer would we obtain if we reversed the orientation of C?

[Ans: 1. 27/12; 2. 3/2, while reversing the orientation would give —3/2.]
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3.6 More on line integrals

View this lesson at http://www.youtube.com/watch?v=82rT2zK2bdo, [17].

— Motivation. N

A line integral involves the integration of functions over curves. Applications in-
clude: calculating work done; determining the total mass and center of mass of
thin wires; and also finding flux over curves. An important part of the integration
process is to appropriately describe the curve of integration by “parametrization”.

\ J

~ Example. \

For the vector field

F = 8¢ "i + cosh zj — y’k

calculate:
(i) Ve F (i.e. div F) and V x F (i.e. curl F);
(ii) The line integral of F along the straight line from A(0, 1,0) to B(In(2), 1, 2).
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,—[The bigger picture.} \

e For a smooth curve C with parametrization r = r(t), a <t <b
b
[ ras= [ ranie
C a

e For an oriented smooth curve C with parametrization r = r(t), a <t <b

/Fo dr:/Fons
c c

where T is the unit tangent vector in the direction of motion.

\ J

— Exercises. \

Let C be the curve parametrized by r(t) = t%i + v/1j + vtk , from t = 2 to t = 4.
If F(x,y,2) := 2%i — zj + 2zyk then compute

/Fodr.
C

[Ans: 49013/3.]
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3.7 Fundamental theorem of line integrals

View this lesson at http://www.youtube.com/watch?v=nH5KCrEuvyA, [18].

~ Motivation. N

A line integral involves the integration of functions over curves. In certain cases the
value of the line integral is independent of the curve between two points. In such a
case we may apply a “fundamental theorem of line integrals”.

\ J

~ Example. \

Consider the vector field

F := (2zyz + cos z)i + 2°2j + (2°y + €*)k.

i) Show that V x F = curl F = 0.
ii) Find a scalar field ¢ such that V¢ = grad ¢ = F.
iii) Hence or otherwise evaluate f o F e dr where the path C is parametrized by

r(t) := (sint,cost,t), fromt¢=0 tot=2m.
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e If there is a scalar—valued function ¢ such that V¢ = F then the line integral

/Fodr
c

is independent of the path C from starting point A to ending point B. Fur-
thermore,

[ edr=o(5) - o)

c

e If curl F = 0 then a ¢ will exist such that V¢ = F.

. J

— Exercises. <

Consider the vector field

F = yzi + z2j + zyk.
Evaluate [, F e dr where C is any path from (0,0,0) to (2, 1,3). [Ans: 3]
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3.8 Flux in the plane + line integrals

View this lesson at http://www.youtube.com/watch?v=YHiTuLNu3Sc, [19].

— Motivation. N

We show how line integrals can be used to calculate the outward flux (flow rate) of a
vector field over a closed curve in the plane. Such ideas have important applications
to fluid flow.

\. J

—~ Example. \

Let C be the ellipse 22/4 + y* = 1.
(a) Compute an outward—pointing normal vector n to C.
(b) If F(x,y) := 4xi + yj then compute the outward flux over C.
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e For a closed, smooth curve C with parametrization r = r(t), a <
normal vector to C may be produced by calculating ' x k (or k x r

t <

).

e For a smooth curve C with parametrization r = r(t), a < t < b and with
outward pointing unit normal vector n we can compute the outward flux over

C via
j{F en ds.
c

\ J

— Exercises. \

Let C be the circle with centre (0,0) and radius 2.

1. Compute an outward—pointing normal vector n to C.

2. If F(z,y) :== (v + 1)i + yj the compute the outward flux over C.

// VeF dA

where () is the disc (bounded by C). Compare your answer with (b).

3. Compute

[Ans: 1. If r(t) = (2cost,2sint), 0 < ¢ < 27 then n = (cost,sint); 2. 8, 3. 8x.]
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4.1 How to integrate over rectangles

View this lesson at http://www.youtube.com/watch?v=My6sdEekbHM, [20].

— Motivation. N

Double integrals are a generalisation of the basic single integral seen in high—school.
Double integrals enable us to work with more complicated problems in higher di-
mensions and find many engineering applications, for example, in calculating centre
of mass and moments of inertia of thin plates.

\ J

~ Example. \

Evaluate

3 3
I:= / / (z% — 22y + 2y°) dy dz.
1 J2
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e When evaluating a given double integral, perform the “inside” integral first
and then move to the outside integral.

e Fubini’s Theorem (simple version): If f = f(z,y) is continuous on the rect-
angle
R:={(z,y):a<z<b c<y<d}

//Rf(:c,y) dA:/cd/abf(:c,y) dazdy:/ab/cdf(x7y) dy d.

e It is generally a good idea to sketch the region of integration so as to better—
understand the geometry of the problem.

then

\ J

~ Exercises. \

Evaluate:

[Ans: (a) 5/6; (b) 10/3.]

Download free ebooks at bookboon.com


http://bookboon.com/

Please click the advert

Engineering Mathematics: YouTube Workbook Double integrals and applications

4.2 Double integrals over general regions
View this lesson at http://www.youtube.com/watch?v=9cAVY9niDnI, [21].

— Motivation. N

We now learn how to integrate over more general two-dimensional regions than just
rectangles.

—~ Example. \

Evaluate
I:= //(x2y+y3) dy dx
Q

Q= {(r,y): 2’ +y* <1, >0, y > 0}.

where
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e To form a integral over more general two-dimensional regions we appropriately
describe its boundary (or edges).

e When evaluating a given double integral, perform the “inside” integral first
and then move to the outside integral.

e [t is generally a good idea to sketch the region of integration so as to better—
understand the geometry of the problem.

\. J

—~ Exercises. N

Evaluate:

(z° — 22 +y) dy dz;

S— S~
S— S—

Yy
(2° + y*) dx dy.
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4.3 How to reverse the order of integration

View this lesson at http://www.youtube.com/watch?v=zxyx73HAtfQ, [22].

— Motivation. N

The order of integration in double integrals can sometimes be reversed and can lead
to a greatly simplied (but equivalent) double integral that is easier to evaluate than
the original one. This “order reversion” technique can be used when performing
calculations involving the applications associated with double integrals.

\ J

~ Example. \

Evalute the following integral by reversing the order of integration

1 1
]::// V1+y? dy dx.
0 Jvz
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,—[The bigger picture. |

J
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Exercises.

Evalute the following integral by reversing the order of integration

4 12
I::/ / sin(y?) dy da.
0 3x

[Ans: (1 — cos144)/6.]

[ ] (]

Are you considering a N
[ ] g age

European business degree? e
LEARN BUSINESS at university level,
We mix cases with cutting edge
research working individually or in
teams and everyone speaks English.

Bring back valuable knowledge and
experience to boost your career.

MEET a culture of new foods, music
and traditions and a new way of
studying business in a safe, clean
environment - in the middle of
Copenhagen, Denmark.

ENGAGE in extra-curricular activities
such as case competitions, sports,
etc. — make new friends among cBs’

18,000 students from more than 80
countries.

@ ;x‘mednegb{_ C/ CEMS
SSOCiatil
EQUIS of MBAs " P oIM

and how we work on cbs.dk

See what we look like °

Download free ebooks at bookboon.com



http://bookboon.com/
http://bookboon.com/count/advert/2f6fa854-3867-4bb6-892a-9fb800b9d043

4.4 How to determine area of 2D shapes

View this lesson at http://www.youtube.com/watch?v=wiFUGKHTmQO, [23].

— Motivation. N

Double integrals are a generalisation of the basic single integral seen in high—school.
They can be used to determine the area of two—dimensional shapes, which can be
an important part of, for example, determining the centroid.

\. J

—~ Example. \

Using double integrals, calculate the area of the region bounded by the curves:

y=vVr; y=z y=uz/2
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e Assume that f is continuous on a two—dimensional region 2. We can calculate

the area of {2 by evaluating
/ / dA.
Q

e If 2 is not a simple region then it may be possible to deconstruct €2 into
simple parts in order to calculate the integral(s) involved.

e It is generally a good idea to sketch the region of integration so as to better—
understand the geometry of the problem.

\ J

—~ Exercises. \

(a) Use double integrals to determine the area of the region bounded by the lines:

y=2a% y=2a"
(b) If you are familiar with double integrals in polar coordinates, then prove that
the area of a circle with radius R > 0 is 7R? using double integration.

[Ans: (a) 1/12 u? where u? means “square units”.]
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4.5 Double integrals in polar co—ordinates

View this lesson at http://www.youtube.com/watch?v=2zknGq9CvZTQ, [24].

— Motivation. N

We know from basic calculus that sometimes a change of variables can greatly
simplify very complicated integrals. We now explore this idea in the more general
setting of double integrals under a specific change of variables known as polar co—
ordinates.

\ J

—~ Example. N

Consider the double integral

IVE I
/ / 3y dx dy.
0 y

(i) Sketch of the region of integration.
(ii) Evaluate the double integral by applying polar coordinates.
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When transfering double integrals from Cartesian co-ordinates to polar co—
ordinates, the three essential substitutions are:

x=rcosf; y=rsinf; dA=rdrdb.

It is generally a good idea to sketch the region of integration so as to better—
understand the geometry of the problem.

\ J

—~ Exercises. \

Describe, in polar co—ordinates, the set of points of the unit disc €2 that has centre
(0,0) and that lie in the first quadrant (z > 0, y > 0). Hence, evaluate

I:://\/xz—i—y? dA.
Q

[Ans: 7/6].

Download free ebooks at bookboon.com


http://bookboon.com/

4.6 More on integration & polar co—ordinates

View this lesson at http://www.youtube.com/watch?v=T0a3hgRT7iA, [25].

— Motivation. N

We know from basic calculus that sometimes a change of variables can greatly
simplify very complicated integrals. We now explore this idea in the more general
setting of double integrals under a specific change of variables known as polar co—
ordinates.

\ J

—~ Example. N

Evaluate by using polar co—ordinates

2/ 2y—y?
I::/ / Va2 +y? do dy.
0 J—y/2y—y?
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,—[The bigger picture.}

\

e When transfering double integrals from Cartesian co-ordinates to polar co—
ordinates, the three essential substitutions are:

x=rcosf; y=rsinf; dA=rdrdb.

e [t is generally a good idea to sketch the region of integration so as to better—
understand the geometry of the problem.

~ Exercises.

Evaluate by using polar co—ordinates

2 rVa—x2
1 ::/ / 2?y? dy du.
0 JoviaZ

[Ans: 47/3].
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4.7 Calculation of the centroid

View this lesson at http://www.youtube.com/watch?v=rIVB-0sNJvY, [26].

— Motivation. N

In engineering, the word centroid means the geometric center of an object’s shape.
If a physical object (for example, a thin plate) has uniform density, then its center
of mass is the same as the centroid of its shape. Double integrals can be used to
calculate the centroid of simple two—dimensional regions.

\ J

~ Example. \

Calulate the centroid of the region that lies in the first quadrant of the XY —plane,
bounded by the circle

v? +y? = a?, a > 0.
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e The co-ordinates (Z,y) of the centroid of a two—-dimensional region €2 can be
calculated by the use of double integrals via:

fo$dA 7_ff9ydA
Ty dar T, dA

e [t is generally a good idea to sketch the region of integration so as to better—
understand the geometry of the problem. Look for symmetry.

T =

\.

— Exercises.

Calculate the centroid of the region lying in the first quadrant which is bounded by
the curves:

y=0; y*=2z z+y=A41
[Ans: (Z,y) = (64/35,5/7).]
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4.8 How to calculate the mass of thin plates

View this lesson at http://www.youtube.com/watch?v=oty3f7wHY_M, [27].

— Motivation. N

A common and important challenge in engineering is that of calculating the mass
of a given object. Double integrals can be used to calculate the mass of simple
two—dimensional objects, such as thin plates or sheets, if the object has a known
density function.

\ J

~ Example. \

A thin plate occupies the region bounded by the curves:
y=+va®>—12% w==xa y=-—a.

If we associate the density function

p(z,y) =y +a

with each point in the plate, then calculate the total mass of the plate.
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,—[The bigger picture.} \

e [f a thin plate occupies a simple region in the XY -plane and has a known
density function p = p(x,y) then the mass of the plate may be calculated by

using double integrals via
mass = // p(x,y) dA.
Q

e [t is generally a good idea to sketch the region of integration 2 so as to
better—understand the geometry of the problem.

\. J

— Exercises. N

If we change the density function in the previous example to

p(z,y) =z +a

then recalculate the total mass of the thin plate. [Ans: a®(2 + 7/2)].
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5.1 Separable differential equations

View this lesson at http://www.youtube.com/watch?v=uQuBVa5PPy4, [28].

— Motivation. N

Ordinary differential equations (ODEs) are used to mathematically model a range
of phenomena from science and engineering. ODEs naturally arise when making
simple physical assumptions about the model under consideration. By computing
a solution to an ODE we can make precise predictions about future and past states
of the model of interest.

Separable ODEs are a special type of ODE and have the form

Y~ aty)

\. J

—~ Example. \

(a) Solve the separable ODE

dy  «x

dr 2y
(b) If we have the extra information y(0) = 1 then determine the constant in the
solution in (a).
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,—[The bigger picture.} \

e To solve a separable ODE simply: separate the variables (via divsion and /
or multiplication) and then integrate both sides.

e Sometimes some algebraic manipulation is required to identify a separable

ODE.

e If an initial condition is known, then the arbitrary constant from the general
solution can be determined.

\. J

— Exercises. N

Solve the following separable ODEs:

dy 2x

) T =312

dy
b) — =2 0) =1
(b) = = 2zy. y(0)
[Ans: (a) y(z) = —1 + (22 4 ¢)'/3; (b) y(x) = Ae*” is the general solution (where
A is a constant); and y(x) = € is the particular solution yielded from the initial
condition.]
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5.2 Linear, first—order differential equations

View this lesson at http://www.youtube.com/watch?v=hIsLGmrpoPo, [29].

— Motivation. N

Ordinary differential equations (ODEs) are used to mathematically model a range
of phenomena from science and engineering. ODEs naturally arise when making
simple physical assumptions about the model under consideration. By computing
a solution to an ODE we can make precise predictions about future and past states
of the model of interest.

Linear ODEs are a special type of ODE and have the form

\. J

—~ Example. N

(a) Solve the linear ODE

for the solution y(z) for > 0.
(b) If we have the extra information y(1) = 0 then determine the constant in the
solution in (a).
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,—[The bigger picture.}

e Construct the integrating factor u(z) := e/ (@) d=

Multiply both sides of the ODE by u and collapse the left-hand-side to the
derivative of y - u(z), ie L (y - u(x)).

Integrate both sides and solve for y.

If an initial condition is known, then the constant from the general solution
can be determined.

\

—~ Exercises.

Solve the following separable ODEs:

(a) Z—Z —2zy =¢", y(0)=1. (b) Z—i + 22y = 2.
[Ans: (a) y(z) = €’ (z + ¢) is the general solution and the initial condition yields
y(a) =" (z+1); (b) y(z) =1+ ce™ ]

His @book 1s Probucep with iText®

Download free ebooks at bookboon.com


http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

5.3 Homogeneous, first—order ODEs

View this lesson at http://www.youtube.com/watch?v=UpLQUGBznE4, [30].

— Motivation. N

Ordinary differential equations (ODEs) are used to mathematically model a range
of phenomena from science and engineering. By computing a solution to an ODE we
can make precise predictions about future and past states of the model of interest.
A homogenous, first order ODE is of the form

1)

\ J

~ Example. \

Solve the homogeneous, first-order ODE

,:y—ZL‘
Yy+x

Y

for y = y(z) with z > 0.
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,—[The bigger picture.}

To solve a first-order, homogeneous ODE:

e Make the substitution

_ Y
u = =
T

e compute the derivative 3 in terms of o/

e obtain a separable ODE in u

e solve for v and then backsubstitute for to obtain y.

\.

~ Exercises.

Solve
Y =2z+y)/z, >0

[Ans: y =2z Inz + Cx]
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5.4 2nd-order linear ordinary differential equations

View this lesson at http://www.youtube.com/watch?v=2symahFSBd8, [31].

— Motivation. N

Ordinary differential equations (ODEs) are used to mathematically model a range
of phenomena from science and engineering. ODEs naturally arise when making
simple physical assumptions about the model under consideration. By computing
a solution to an ODE we can make precise predictions about future and past states
of the model of interest.

We shall discuss “the method of undetermined coefficients” for the case

ay’ +by +cy=0

where a, b and ¢ are given constants. These kinds of problems arise in the study of
vibrating systems.

\. J

—~ Example.

Solve the ODEs:
(@) y"+4y +3y=0; (b)y" +4y +4y=0; (c)y" +2y + 5y =0.
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,—[The bigger picture.} \

To solve the ODE ay” + by’ + cy =0

e Solve the corresponding quadratic (characteristic) equation aA? + b\ + ¢ =0
for A.

e If the solutions A\, Ay are real and unequal then
y(x) = AeM® + Bet2®,
e If the solutions are equal, ie \; = Ay = A then
y(z) = Ae’ 4 Bxel”.
o If the solutions A\, Ay are complex conjugate pairs, ie \y = a+ (i, Ay = a— i

then
y(x) = e**(Acos fx + Bsin fz).

\ J

— Exercises. \

Solve the following ODEs:

(a) " +3y +2y=0; (b)y" +2 +y=0; (c)y"+4y +5y=0.

[Ans: (a) y(x) = Ae "+ Be™2%; (b) y(z) = Ae ™+ Bxe™; (¢) y(z) = e 2*(Acosx+
Bsinz).|
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5.5 Nonhomogeneous differential equations

\.

— Motivation. ) N

View this lesson at http://www.youtube.com/watch?v=haAvV- 6R5VU , [32].

Ordinary differential equations (ODEs) are used to mathematically model a range
of phenomena from science and engineering. ODEs naturally arise when making
simple physical assumptions about the model under consideration. By computing
a solution to an ODE we can make precise predictions about future and past states
of the model of interest.
We shall discuss the case

ay” + by +cy = f(x)

where a, b and ¢ are given constants and f is a reasonably simple type of function.
These kinds of problems arise in the study of vibrating systems with f representing
an external forcing function.

—~ Example. \

Solve the ODEs:
(a) " — 5y + 6y =2x+3; (b)y" —5y +6y=12; (c)y” — 5y + 6y = 10e*.
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,—[The bigger picture.} \

To solve the ODE ay” + by’ + cy = f(z)

e Solve the corresponding homogeneous problem ay” + by’ + cy = 0 for yz.

e Construct a particular solution yp to the nonhomogeneous ODE, based on

the form of f(x)

e The general solution is then y = yp + yg.

\ J

—~ Exercises. \

Solve the following ODEs:

(a) v +3y +2y=e*; b))y +2y +y=2z (c)y" +4y +5y=3.

[Ans: (a) y(x) = Ae™® + Be ™2 + ¢%/6; (b) y(z) = Ae™® + Bre ™™ + 2x — 4; (c)
y(xr) = e **(Acosz + Bsinz) + 3/5.]]
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5.6 Variation of constants / parameters

View this lesson at http://www.youtube.com/watch?v=rhKoNLjOhJg, [33].

— Motivation. N

The method of variation of constants is a very powerful technique for solving 2nd—
order, linear ODEs. It is useful when the method of undetermined coefficents does
not apply.

We shall discuss the case

ay’" + by +cy = f(x)

where a, b and ¢ are given constants and f is a given function. These kinds of
problems arise in the study of vibrating systems.

Solve the ODE
y" + 4y = cosec 2.
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,—[The bigger picture.} \

To solve the ODE ay” + by’ + cy = f(z)

e Formulate the general solution yz to the homogeneous ODE ay”+by'+cy = 0,
that is, yg = Ayi(z) + Byz(x) with y; and y» being linearly independent.

e Construct a particular solution y, to the inhomogeneous ODE ay” +by'+cy =
f(x) by using the y; and y, in

= -un(o) [ ) [P o

where W (z) := y1()ys(x) — y2()y; (x).

e The final (general) solution with have the form y = yu + y,.

\ J

—~ Exercises. \

Solve:

y" +y = secuw.

[Ans: y(z) = Acosz + Bsinx + (cosz)In| cos x| + xsin .|
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6.1 Quadratic forms

View this lesson at http://www.youtube.com/watch?v=ATd3FzR4wpI, [34].

— Motivation. N

Many complicated equations of two and three variables can be simplified via a
change of variables / co-ordinate axes. Our investigation involves quadratic forms
and symmetric matrices.

\. J

—~ Example. \

Consider the quadratic form

S = {(x,y): 2* —4day +y* = 6}.

Determine the point(s) that lie on .S which are closest to the origin.
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,—[The bigger picture.} \

e Eigenvalues and eigenvectors play a major role in our method.

e If A is a symmetric matrix with eigenvalues A, Ay then the Principal Axes
Theorem says that we may write our quadratic form as

Myt + Aoy
where (y1,y9) are the new set of axes, which lie along the eigenvectors of A.

e If P is an orthogonal matrix formed from normalized eigenvectors of A as
columns, then the relationship between co—ordinates is

x=PY
where x = (z,y)T and Y = (y1,10)7.

e The ideas readily generalize to surfaces in 3-dimensional space.

\ J

— Exercises. \

Calculate the point(s) on the curve

2? + 8xy + Ty* = 36

that lie closest to the origin. [Ans: (y1,y2) = (£2,0), that is, (z,y) =

+(2/v/5,4/V5)].
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7.1 Introduction to the Laplace transform

View this lesson at http://www.youtube.com/watch?v=a7BzF01JtKw, [35].

— Motivation. N

Laplace transforms are used in solving initial value problems that involve linear,
ordinary differential equations with constant coefficients. These types of problems
usually arise in modelling of phenomena. Laplace transforms offer an advantage
over other solution methods to initial value problems as they streamline the process
and can easily deal with discontinuous forcing functions.

\ J

—~ Example. N

Define and denote the Laplace transform of a function f = f(¢) by

L{f(t)} = / e " f(t) dt = F(s). (7.1.1)
0
(i) From the above definition, calculate
L{e '}, for all s> —2.

(ii) If @ is a constant then use (i) to make a conjecture concerning

L{e "}, for all s> —a.
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,—[The bigger picture.} \

e While it is possible to directly use the definition of the Laplace transform to
perform calculations, it is standard practice to use a table of Laplace trans-
forms. This can save a lot of time!

e The inverse of the Laplace transform is denoted by £7!. Roughly speaking,
it “undoes” the Laplace transform and vice—versa. From (ii) we deduce

['_l{sj—?)} =

\ J

— Exercises. \

(a) From the above definition (7.1.1), calculate

L{5t + 3}, for all s> 0.
(b) If ¢ and d are constants, then use (a) to make a conjecture about what

L{ct+ d}, for all s> 0.

o)

[Ans: (a) 5/s* 4+ 3/s; (b) ¢/s* +d/s; (c) t.]

should be.
(c) Use (b) to calculate
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7.2 Laplace transforms + the first shifting theorem
View this lesson at http://www.youtube.com/watch?v=WpUbbsULIds, [36].

— Motivation. N

The first shifting theorem provides a convenient way of calculating the Laplace
transform of functions that are of the form

f(t) = e "g(t)

where a is a constant and ¢ is a given function.

\. J

—~ Example. \

Consider the first shifting theorem

L{e "g(t)} = G(s + a) where G(s) = L{g(t)}.
Apply the result to calculate:

(a) ‘
E{thtd};

<o)

(b)
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,—(The bigger picture. } \

e For the Laplace transform via the first shifting theorem, calculate G(s) from
g(t) and then shift it by a units in an appropriate manner.

e For the inverse Laplace transform via the first shifting theorem, identify «a
and G(s) from G(s+a). Then calculate g(t) from G(s) and multiply by e~

\. J

—~ Exercises. N

Calculate

(a)

L{e'sint};

<o)

[Ans: (a) 1/[1+ (s —1)?]; (b) te=?]

(b)
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7.3 Laplace transforms 4 the 2nd shifting theorem

View this lesson at http://www.youtube.com/watch?v=Uyoxbr03eFU, [37].

— Motivation.

Laplace transforms offer an advantage over other solution methods to initial value
problems as they streamline the process and can easily deal with discontinuous
forcing functions.

The second shifting theorem gives us a way of computing the Laplace transform of
certain types of discontinuous functions.

\

—~ Example.

Consider the second shifting theorem

L{u(t —c)g(t —c)} = e *G(s) where G(s) = L{g(t)}
and u(t — ¢) is the Heaviside step function.

Apply the result to calculate:

(a)
L{u(t = 1)(t - 1)°};

26—45
-1

(b)
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,—[The bigger picture.} \

e For the Laplace transform via the second shifting theorem, identify ¢ and g(¢)
and then calculate G(s).

e For the inverse Laplace transform via the second shifting theorem, identify ¢
and G(s). Then calculate ¢(t) from G(s) and shift it to form g(t — ¢).

\.

—~ Exercises.

Apply the second shifting theorem to calculate:

(a)

L{u(t —2)(t —2)°};
(b)

[Ans: (a) 6e72 /s (b) u(t — 2)(t — 2)1/24].
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7.4 Laplace transforms + differential equations

View this lesson at http://www.youtube.com/watch?v=SNVfyQ4_avy, [38].

r—| Motivation. | N

Laplace transforms offer an advantage over other solution methods to initial value
problems as they streamline the process and can easily deal with discontinuous
forcing functions.

. J

,—| Example. N

Consider the transform of derivatives identities

L{y(t)} = sY(s) —y(0), whereY(s) = L{y(t)}
L")} = $Y(s)—sy(0) =y (0),

Apply the result to solve the initial value problem:

y' +y=u(t—1), y0)=1, v (0)=0.
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,—[The bigger picture.}

When applying Laplace transforms to solve initial value problems:
1. take the Laplace transform of both sides of the differential equation
2. apply the transform of derivatives identities
3. incorporate the initial conditions
4. solve for Y (s)

5. use inverse Laplace transforms to produce the solution y(t).

\

—~ Exercises.

Apply the transform of derivatives identities to solve:
y'+y=2u(t—-1), y(0)=0, y(0)=L

[Ans: y(t) = sint + 2u(t — 1)[1 — cos(t — 1)].]
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LAPLACE TRANSFORMS

L{f(O)} = [ e f(t)dt = F(s)
/() F(s)
1 1/s
t 1/s?
tm, m!/sm 1
t, (v>-1) I(v+1)/s"tt
e 1/(s +a)
sin bt b/(s* + b?)
cos bt s/(s* +b?)
sinh bt b/(s? — b?)
cosh bt s/(s* —b%)
sin bt — bt cos bt 20%/(s* + b*)?
sin bt + bt cos bt 20s%/(s* + b*)?
t sin bt 20s/(s* + b*)?
te—at 1/(s+ a)?
u(t — c) e /s
e "g(t) G(s+a)
tg(t) —G'(s
u(t —c)g(t —c) e “G(s)
¢ () 5G(s) - 9(0)
g"(t) s?G(s) — s9(0) — ¢'(0)
g"(t) s°G(s) — s°g(0) — s4'(0) — ¢"(0)
o g(r)dr G(s)/s.

In this table, a and b are any real numbers, ¢ is any non-negative real number, m is any
non-negative integer, v is any real number larger than —1, T'(v + 1) fo e "z¥dx and u(t)
is defined by u(t) =0, for t < 0, u(0) = 1/2; u()—lfort>0
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Chapter 8

Fourier series

The Fourier series of a function f = f(¢) with period 2L is defined by

Sf( —a0+2[ancos + b, sin —

where

L
g = i/_ F(t) dt

t
ay = /f cosnldt

b, = /f smn—ﬂdt

and f and f" are piecewise continuous on (—L, L).

nnt
L
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8.1 Introduction to Fourier series

View this lesson at http://www.youtube.com/watch?v=3A13dKVPLcQ, [39].

— Motivation. N

Fourier series are used in solving differential equations that arise in the study of heat
flow and vibrations. Fourier series provide a means of approximating discontinuous
periodic functions over intervals (rather than just near certain points).

\.

—~ Example. \

Calculate the Fourier series of

1, for 0 <t <,
f(t) = 0, for t = 0, £; (8.1.1)
—1 for —m <t <O0;

Y

with f(t) = f(t + 2m) for all t.
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Maple has been used to plot the 10th partial sum of Fourier series of f.

,—[The bigger picture.}

e Integration is required to compute the Fourier coefficients ag, a,, and b, and
the calculations will simplify when f is odd or even.

e If f is continuous at a point ¢ then Sf(c) = f(c).

e If f has a jump discontinuity at ¢ then Sf(c) = [f(c") + f(c7)]/2.

\.

— Exercises.

Calculate the Fourier series of

1, for 0 <t <1,
f(8) = { 0, for —1<t<0; (8.1.2)

with f(t) = f(t+2) for all &. [Ans: Sf(t) =5+ > o) ﬁ sin(2k — 1)7t. Note

that f is neither even nor odd, but can you see how to write it in terms of an odd
function plus a constant? This can help to simplify the calculations!]
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8.2 0Odd + even functions + Fourier series
View this lesson at http://www.youtube.com/watch?v=1Bj0vv6G3dA, [40].

— Motivation. N

Simplifications occur in the construction of Fourier series when dealing with odd or
even functions.

\. J

—~ Example. \

Let

flz):=2z, O0<az<Ll.

Extend f as an odd (even) function f, (f.) with period 2 and sketch their graphs
on [—3,3]. Find Sf. and Sf,. Show
~(2k—1) 8

1

Download free ebooks at bookboon.com


http://bookboon.com/

Please click the advert

,—[The bigger picture.} \

e Integration is required to compute the Fourier coefficients aq, a, and b, and
the calculations will simplify when f is odd or even.

e Simplifications occur when dealing with odd or even functions.
e If f is continuous at a point ¢ then Sf(c) = f(c).

e If f has a jump discontinuity at ¢ then Sf(c) = [f(c¢") + f(c7)]/2.

\ J

—~ Exercises. \

Calculate the Fourier series of

o) = 3, for0<z<l,
Tl =3, for —1<2<0,

where f(z) = f(x + 2). What is the value of Sf(0) and Sf(1/2)? [Ans: Sf(z) =
S mss sin(2k — 1)7t; SF(0) = 0; SfF(1/2) = 3]

(2k—1)m

360°
thinking
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8.3 More on Fourier series

View this lesson at http://www.youtube.com/watch?v=toBJWQGPRB4, [41].

— Motivation. N

Fourier series are used in solving differential equations that arise in the study of heat
flow and vibrations. Fourier series provide a means of approximating discontinuous
periodic functions over intervals (rather than just near certain points).

\. J

—~ Example. \

Let f(z) = |z| for z € [—m, 7] with f(z + 27) = f(x).
i) Make a sketch of f on the interval [—3m, 37].

ii) Calculate the Fourier series of f.

iii) Let

(2) = I, O<zxz<m
I\E) = -1, —m<z<0,

with g(z + 27) = g(x). By differentiating the Fourier series in b) ii) (or otherwise)
obtain the Fourier series of g.

iv) What does the Fourier series of g converge to at x = 7?7

v) Use the Fourier series for g to obtain a series representation for /4.
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,—[The bigger picture.w \

\

J

e Integration is required to compute the Fourier coefficients aq, a, and b, and
the calculations will simplify when f is odd or even.

e If f is continuous at a point ¢ then Sf(c) = f(c).
e If f has a jump discontinuity at ¢ then Sf(c) = [f(c") + f(c7)]/2.

e Simplifications occur when dealing with odd or even functions.

— Exercises. \

Calculate the Fourier series of
f(z) =3 +1), —2<x<?2

where f(z) = f(x +4).
[Ans: Sf(z) =3 1230 CD gy nmz |

nm
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8.4 Applications of Fourier series to ODEs

View this lesson at http://www.youtube.com/watch?v=70KZhL7eVN8, [42].

— Motivation. N

Fourier series can be useful in solving differential equations that arise in the study of
vibrations. They provide a means of approximating discontinuous periodic “forcing”
functions over intervals (rather than just near certain points).

\. J

—~ Example. \

Calculate the solution of the initial value problem

2" 4+ 50x = f(¢), z(0)=0, 2(0)=0

where
1, for 0 <t <,
f(t):=«¢ 0, for t =0, m,2m; (8.4.3)
-1, for m <t < 2m;

with f(t) = f(t + 2m) for all . Hint: the Fourier sine series of f is

S ﬁ sin(2k — 1)t.

00
k=1
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Maple has been used to plot the solution.

,—[The bigger picture.] \

When applying Fourier series to solve initial value problems:

e If it is not already given, then calculate the Fourier series of the forcing
function.

e Apply the basic theory of differential equations to calculate yz and y,,.
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9.1 Deriving the heat equation

View this lesson at http://www.youtube.com/watch?v=K-CI61wV6JQ, [43].

— Motivation. N

In the early 1800s, J. Fourier began a mathematical study of heat. A deeper un-
derstanding of heat flow had significant applications in science and within industry.
A basic version of Fourier’s efforts is the problem

Uye = u; u(0,t) =0 =wu(L,t); u(z,0) = f(z)

where: u(x,t) is the temperature at position x at time ¢; o is a constant; and f is
a given function.

\ J

~ Example. \

Derive the heat equation

U = gy (9.1.1)

where o := k/pc called the thermal diffusivity (in (length)?/time) and x, p and ¢
are positive constants that depend on the material of the bar.
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,—(The bigger picture. } \

Our assumptions and method may be summarized as:

e The total amount of heat H = H(t) in D (say, in calories) is

H(t) = /m1 cpu(x,t) d.

o

e Fourier’s law of heat flow says that heat flows from hotter regions to colder
regions and the flow rate is proportional to u,

dH
E = —I{U;,;(l'o,t) — (—/ﬁux(l’l,t))-

e Differentiation then gives us two expressions for dH /dt which can be equated
to form the heat equation.

o
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9.2 Heat equation & separation of variables

View this lesson at http://www.youtube.com/watch?v=Jfn6A1jZF5g, [44].

— Motivation. N

The method of “separation of variables” is a powerful technique that enables us
to solve linear partial differential equations that arise in the modelling of various
physical processes. In some problems, Fourier series are an important element of
the approach.

\ J

~ Example. \

Solve
AUy = Uy, O<zx<m, t>0; (9.2.2)
u(0,t) =0, t>0; (9.2.3)
u(m,t) =0, t>0; (9.2.4)
u(z,0) = f(x), 0<z<m. (9.2.5)

with f(x) = sinz — 2sin 2z.
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,—[The bigger picture.} \

Our method may be summarized as:
e Assume a solution is in the form u(z,t) = X (z)7T'(¢).

e Formulate and solve two ODEs for X and T determining which values of the
separation constant v are relevant.

e If required incorporate Fourier series.

\ J

—~ Exercises. \

Solve (9.2.2) - (9.2.5) but with f(x) = —sin 2z + 3 sin 5z as the initial temperature.
[Ans: (u(z,t) = —e 1% sin 2z + 372 sin 5]
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9.3 Heat equation & Fourier series

View this lesson at http://www.youtube.com/watch?v=4jYgpHLP6xs, [45].

— Motivation. N

The method of “separation of variables” is a powerful technique that enables us
to solve linear partial differential equations that arise in the modelling of various
physical processes. In many problems Fourier series are an important element of
the solution method.

\ J

—~ Example. N

Solve
Aigy = Uy, O<zx<m t>0; (9.3.6)
w(0,8) =0,  t>0; (9.3.7)
u(m,t) =0, t > 0; (9.3.8)
w(z,0) = z, 0<zxz<m. (9.3.9)

In previous lectures, we have applied the method of separation of variables to the
above problem, obtaining

0
_4An2 .
u(x, t) = be " tsinnr.
bl n
n=1

where b,, are constants to be determined. In particular, (9.2.5) yields

o0
u(z,0) =z = ansinnx, 0<z<m.
n=1
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,—[The bigger picture.} \

Our method may be summarized as:
e Assume a solution is in the form u(z,t) = X (z)7T'(¢).

e Formulate and solve two ODEs for X and T determining which values of the
separation constant v are relevant from the associated boundary conditions.

e If required incorporate Fourier series.
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9.4 Wave equation and Fourier series

View this lesson at http://www.youtube.com/watch?v=4UtGyd86FjI, [46].

— Motivation. N

The method of “separation of variables” is a powerful technique that enables us
to solve linear partial differential equations that arise in the modelling of various
physical processes. In some problems, Fourier series are an important element of
the approach. We now apply these ideas to solve the wave equation.

\ J

~ Example. \

Solve
Ny = Uy, O<zx<m, >0 (9.4.10)
u(0,t) =0, wu(mt)=0, t>0; (9.4.11)
u(z,0) = f(z), w(z,0)=0, 0<z<m. (9.4.12)
where
| =, for 0 < <m/2;
f(i)'_{ﬂ—x, for m/2 <z <.
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,—[The bigger picture.} \

Our method may be summarized as:
e Assume a solution is in the form u(z,t) = X (z)7T'(¢).

e Formulate and solve two ODEs for X and 7' determining which values of ~y
are relevant from the associated boundary conditions.

e If required incorporate Fourier series.
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