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PREFACE

The general subject area of concern to this book is computational science and
engineering, with applications in potential theory and in solid mechanics (linear
elasticity). This field has undergone a revolution during the past several decades
along with the exponential growth of computational power and memory. Problems
that were too large for main frame computers 15 or 20 years ago can now be
routinely solved on desktop personal computers.

There are several popular computational methods for solving problems in po-
tential theory and linear elasticity. The most popular, versatile and most commonly
used is the finite element method (FEM). Many hundreds of books already exist
on the subject and new books get published frequently on a regular basis. Another
popular method is the boundary element method (BEM). Compared to the FEM,
we view the BEM as a niche method, in that it is particularly well suited, from the
point of view of accuracy as well as computational efficiency, for linear problems.
The principal advantage of the BEM, relative to the FEM, is its dimensionality
advantage. The FEM is a domain method that requires discretization of the entire
domain of a body while the BEM, for linear problems, only requires discretization
of its bounding surface.

The process of discretization (or meshing) of a three-dimensional (3-D) object of
complex shape is a popular research area in computational geometry. Even though
great strides have been made in recent years, meshing, for many applications, still
remains an arduous task. During the past decade, mesh-free (also called mesh-
less) methods have become a popular research area in computational mechanics.
The main purpose here is to substantially simplify the task of meshing of an object.
Advantages of mesh-free methods become more pronounced, for example, for prob-
lems involving optimal shape design or adaptive meshing, since many remeshings
must be typically carried out for such problems. One primary focus of this book
is a marriage of these two ideas, i.e. a discussion of a boundary-based mesh-free
method - the boundary node method (BNM) - which combines the dimensionality
advantage of the BEM with the ease of discretization of mesh-free methods.

Following an introductory chapter, this book consists of three parts related to
the boundary element, boundary contour and boundary node methods. The first
part is short, in order not to duplicate information on the BEM that is already
available in many books on the subject. Only some novel topics related to the
BEM are presented here. The second part is concerned with the boundary contour
method (BCM). This method is a novel variant of the BEM in that it further reduces
the dimensionality of a problem. Only one-dimensional line integrals need to be
numerically computed when solving three-dimensional problems in linear elasticity
by the BCM. The third part is concerned with the boundary node method (BNM).
The BNM combines the BEM with moving least-squares (MLS) approximants,
thus producing a mesh-free boundary-only method. In addition to the solution of
3-D problems, Part II of the book on the BCM presents shape sensitivity analysis,
shape optimization, and error estimation and adaptivity; while Part III on the BNM
includes error analysis and adaptivity.
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This book is written in the style of a research monograph. Each topic is clearly
introduced and developed. Numerical results for selected problems appear through-
out the book, as do references to related work (research publications and books).

This book should be of great interest to graduate students, researchers and
practicing engineers in the field of computational mechanics; and to others inter-
ested in the general areas of computational mathematics, science and engineering.
It should also be of value to advanced undergraduate students who are interested
in this field.

We wish to thank a number of people and organizations who have contributed
in various ways to making this book possible. Two of Subrata’s former graduate
students, Glaucio Paulino and Mandar Chati, as well as Yu’s associate Xiaolan Shi,
have made very significant contributions to the research that led to this book. Sin-
cere thanks are expressed to Subrata’s former graduate students Govind Menon and
Ramesh Gowrishankar, to one of his present graduate students, Srinivas Telukunta,
and to Vasanth Kothnur, for their contributions to the BNM. Earlin Lutz, Anan-
tharaman Nagarajan and Anh-Vu Phan have significantly contributed to the early
development of the BCM; while Subrata’s just-graduated student Zhongping Bao
has made excellent contributions to the research on micro-electro-mechanical sys-
tems (MEMS) by the BEM. Sincere thanks are expressed to our dear friend Ashim
Datta for his help and encouragement throughout the writing of this book.

Much of the research presented here has been financially supported by the Na-
tional Science Foundation and Ford Motor Company, and this support is gratefully
acknowledged. Most of the figures and tables in this book have been published
before in journals. They were all originally created by the authors of this book,
together with their coauthors. These items have been printed here by permission of
the original copyright owner (i.e. the publishers of the appropriate journal), and this
permission is very much appreciated. The original source has been acknowledged
in this book at the end of the caption for each item.

Subrata and Yu Mukherjee
Ithaca, New York
October 2004
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7.3.2 Example Two - the Lamé Problem for a Hollow Cylinder 130

III THE BOUNDARY NODE METHOD 133

8 SURFACE APPROXIMANTS 135
8.1 Moving Least Squares (MLS) Approximants . . . . . . . . . . . 135
8.2 Surface Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 139

© 2005 by Taylor & Francis Group, LLC



x CONTENTS

8.3 Weight Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.4 Use of Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . 142

8.4.1 Hermite Type Approximation . . . . . . . . . . . . . . . . 142
8.4.2 Variable Basis Approximation . . . . . . . . . . . . . . . . 143

9 POTENTIAL THEORY AND ELASTICITY 151
9.1 Potential Theory in Three Dimensions . . . . . . . . . . . . . . . 151

9.1.1 BNM: Coupling of BIE with MLS Approximants . . . . . 151
9.1.2 HBNM: Coupling of HBIE with MLS Approximants . . . 155
9.1.3 Numerical Results for Dirichlet Problems on a Sphere . . 156

9.2 Linear Elasticity in Three Dimensions . . . . . . . . . . . . . . . 165
9.2.1 BNM: Coupling of BIE with MLS Approximants . . . . . 165
9.2.2 HBNM: Coupling of HBIE with MLS Approximants . . . 167
9.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . 168

10 ADAPTIVITY FOR 3-D POTENTIAL THEORY 175
10.1 Hypersingular and Singular Residuals . . . . . . . . . . . . . . . 175

10.1.1 The Hypersingular Residual . . . . . . . . . . . . . . . . . 175
10.1.2 The Singular Residual . . . . . . . . . . . . . . . . . . . . 176

10.2 Error Estimation and Adaptive Strategy . . . . . . . . . . . . . . 177
10.2.1 Local Residuals and Errors - Hypersingular Residual Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.2.2 Local Residuals and Errors - Singular Residual Approach 178
10.2.3 Cell Refinement Criterion . . . . . . . . . . . . . . . . . . 179
10.2.4 Global Error Estimation and Stopping Criterion . . . . . 179

10.3 Progressively Adaptive Solutions: Cube
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.3.1 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . 181
10.3.2 Initial Cell Configuration # 1 (54 Surface Cells) . . . . . 181
10.3.3 Initial Cell Configuration # 2 (96 Surface Cells) . . . . . 182

10.4 One-Step Adaptive Cell Refinement . . . . . . . . . . . . . . . . 188
10.4.1 Initial Cell Configuration # 1 (54 Surface Cells) . . . . . 190
10.4.2 Initial Cell Configuration # 2 (96 Surface Cells) . . . . . 191

11 ADAPTIVITY FOR 3-D LINEAR ELASTICITY 193
11.1 Hypersingular and Singular Residuals . . . . . . . . . . . . . . . 193

11.1.1 The Hypersingular Residual . . . . . . . . . . . . . . . . . 193
11.1.2 The Singular Residual . . . . . . . . . . . . . . . . . . . . 194

11.2 Error Estimation and Adaptive Strategy . . . . . . . . . . . . . . 194
11.2.1 Local Residuals and Errors - Hypersingular Residual Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.2.2 Local Residuals and Errors - Singular Residual Approach 195
11.2.3 Cell Refinement Global Error Estimation and Stopping

Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.3 Progressively Adaptive Solutions: Pulling a Rod . . . . . . . . . 195

© 2005 by Taylor & Francis Group, LLC



CONTENTS xi

11.3.1 Initial Cell Configuration . . . . . . . . . . . . . . . . . . 197
11.3.2 Adaptivity Results . . . . . . . . . . . . . . . . . . . . . . 197

11.4 One-Step Adaptive Cell Refinement . . . . . . . . . . . . . . . . 198

Bibliography 203

© 2005 by Taylor & Francis Group, LLC



INTRODUCTION TO
BOUNDARY METHODS

This chapter provides a brief introduction to various topics that are of interest
in this book.

Boundary Element Method

Boundary integral equations (BIE), and the boundary element method (BEM),
based on BIEs, are mature methods for numerical analysis of a large variety of
problems in science and engineering. The standard BEM for linear problems
has the well-known dimensionality advantage in that only the two-dimensional
(2-D) bounding surface of a three-dimensional (3-D) body needs to be meshed
when this method is used. Examples of books on the subject, published dur-
ing the last 15 years, are Banerjee [4], Becker [9], Bonnet [14], Brebbia and
Dominguez [16], Chandra and Mukherjee [22], Gaul et al. [47], Hartmann [62],
Kane [68] and Paŕıs and Cañas [121]. BEM topics of interest in this book are
finite parts (FP) in Chapter 1, error estimation in Chapter 2 and thin features
(cracks and thin objects) in Chapter 3.

Hypersingular Boundary Integral Equations

Hypersingular boundary integral equations (HBIEs) are derived from a differ-
entiated version of the usual boundary integral equations (BIEs). HBIEs have
diverse important applications and are the subject of considerable current re-
search (see, for example, Krishnasamy et al. [76], Tanaka et al. [162], Paulino
[122] and Chen and Hong [30] for recent surveys of the field). HBIEs, for exam-
ple, have been employed for the evaluation of boundary stresses (e.g. Guiggiani
[60], Wilde and Aliabadi [173], Zhao and Lan [185], Chati and Mukherjee [24]),
in wave scattering (e.g. Krishnasamy et al. [75]), in fracture mechanics (e.g.
Cruse [38], Gray et al. [54], Lutz et al. [89], Paulino [122], Gray and Paulino
[58], Mukherjee et al. [110]), to obtain symmetric Galerkin boundary element
formulations (e.g. Bonnet [14], Gray et al. [55], Gray and Paulino ([56], [57]), to

xiii
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xiv INTRODUCTION TO BOUNDARY METHODS

evaluate nearly singular integrals (Mukherjee et al. [104]), to obtain the hyper-
singular boundary contour method (Phan et al. [131], Mukherjee and Mukherjee
[99]), to obtain the hypersingular boundary node method (Chati et al. [27]), and
for error analysis (Paulino et al. [123], Menon [95], Menon et al. [96], Chati et
al. [27], Paulino and Gray [125]) and adaptivity [28].

An elegant approach of regularizing singular and hypersingular integrals, us-
ing simple solutions, was first proposed by Rudolphi [143]. Several researchers
have used this idea to regularize hypersingular integrals before collocating an
HBIE at a regular boundary point. Examples are Cruse and Richardson [39],
Lutz et al. [89], Poon et al. [138], Mukherjee et al. [110] and Mukherjee [106].
The relationship between finite parts of strongly singular and hypersingular in-
tegrals, and the HBIE, is discussed in [168], [101] and [102]. A lively debate (e.g.
[92], [39]), on smoothness requirements on boundary variables for collocating
an HBIE on the boundary of a body, has apparently been concluded recently
[93]. An alternative way of satisfying this smoothness requirement is the use of
the hypersingular boundary node method (HBNM).

Mesh-Free Methods

Mesh-free (also called meshless) methods [82], that only require points rather
than elements to be specified in the physical domain, have tremendous potential
advantages over methods such as the finite element method (FEM) that require
discretization of a body into elements.

The idea of moving least squares (MLS) interpolants, for curve and surface
fitting, is described in a book by Lancaster and Salkauskas [78]. Nayroles et
al. [117] proposed a coupling of MLS interpolants with Galerkin procedures in
order to solve boundary value problems. They called their method the diffuse
element method (DEM) and applied it to two-dimensional (2-D) problems in
potential theory and linear elasticity.

During the relatively short span of less than a decade, great progress has
been made in solid mechanics applications of mesh-free methods. Mesh-free
methods proposed to date include the element-free Galerkin (EFG) method
[10, 11, 12, 13, 67, 174, 175, 176, 108], the reproducing-kernel particle method
(RKPM) [83, 84], h− p clouds [42, 43, 120], the meshless local Petrov-Galerkin
(MLPG) approach [3], the local boundary integral equation (LBIE) method
[152, 188], the meshless regular local boundary integral equation (MRLBIE)
method [189], the natural element method (NEM) [158, 160], the general-
ized finite element method (GFEM) [157], the extended finite element method
(X-FEM) [97, 41, 159], the method of finite spheres (MFS) [40], the finite
cloud method (FCM) [2], the boundary cloud method (BCLM) [79, 80], the
boundary point interpolation method (BPIM) [82], the boundary-only radial
basis function method (BRBFM) [32] and the boundary node method (BNM)
[107, 72, 25, 26, 27, 28, 52].
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Boundary Node Method

S. Mukherjee, together with his research collaborators, has recently pioneered
a new computational approach called the boundary node method (BNM) [26,
25, 27, 28, 72, 107]. Other examples of boundary-based meshless methods are
the boundary cloud method (BCLM) [79, 80], the boundary point interpolation
method (BPIM) [82], the boundary only radial basis function method (BRBFM)
[32] and the local BIE (LBIE) [188] approach. The LBIE, however, is not a
boundary method since it requires evaluation of integrals over certain surfaces
(called Ls in [188]) that can be regarded as “closure surfaces” of boundary
elements.

The BNM is a combination of the MLS interpolation scheme and the stan-
dard boundary integral equation (BIE) method. The method divorces the tra-
ditional coupling between spatial discretization (meshing) and interpolation (as
commonly practiced in the FEM or in the BEM). Instead, a “diffuse” interpo-
lation, based on MLS interpolants, is used to represent the unknown functions;
and surface cells, with a very flexible structure (e.g. any cell can be arbitrarily
subdivided without affecting its neighbors [27]) are used for integration. Thus,
the BNM retains the meshless attribute of the EFG method and the dimen-
sionality advantage of the BEM. As a consequence, the BNM only requires the
specification of points on the 2-D bounding surface of a 3-D body (including
crack faces in fracture mechanics problems), together with surface cells for in-
tegration, thereby practically eliminating the meshing problem (see Figures i
and ii). The required cell structure is analogous to (but not the same as) a
tiling [139]. The only requirements are that the intersection of any two surface
cells is the null set and that the union of all the cells is the bounding surface of
the body. In contrast, the FEM needs volume meshing, the BEM needs surface
meshing, and the EFG needs points throughout the domain of a body.

It is important to point out another important advantage of MLS inter-
polants. They can be easily designed to be sufficiently smooth to suit a given
purpose, e.g. they can be made C1 or higher [10] in order to collocate the HBNM
at a point on the boundary of a body.

The BNM is described in Chapters 8 and 9 of this book.

Figure i: BNM with nodes and cells
(from [28])

Figure ii: BEM with nodes and elements
(from [28])
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xvi INTRODUCTION TO BOUNDARY METHODS

Boundary Contour Method

The Method

The usual boundary element method (BEM), for three-dimensional (3-D) lin-
ear elasticity, requires numerical evaluations of surface integrals on boundary
elements on the surface of a body (see, for example, [98]). [115] (for 2-D linear
elasticity) and [116] (for 3-D linear elasticity) have recently proposed a novel
approach, called the boundary contour method (BCM), that achieves a further
reduction in dimension! The BCM, for 3-D linear elasticity problems, only re-
quires numerical evaluation of line integrals over the closed bounding contours
of the usual (surface) boundary elements.

The central idea of the BCM is the exploitation of the divergence-free prop-
erty of the usual BEM integrand and a very useful application of Stokes’ the-
orem, to analytically convert surface integrals on boundary elements to line
integrals on closed contours that bound these elements. [88] first proposed an
application of this idea for the Laplace equation and Nagarajan et al. gen-
eralized this idea to linear elasticity. Numerical results for two-dimensional
(2-D) problems, with linear boundary elements, are presented in [115], while
results with quadratic boundary elements appear in [129]. Three-dimensional
elasticity problems, with quadratic boundary elements, are the subject of [116]
and [109]. Hypersingular boundary contour formulations, for two-dimensional
[131] and three-dimensional [99] linear elasticity, have been proposed recently.
A symmetric Galerkin BCM for 2-D linear elasticity appears in [119]. Recent
work on the BCM is available in [31, 134, 135, 136, 186].

The BCM is described in Chapter 4 of this book.

Shape Sensitivity Analysis with the BCM and the HBCM

Design sensitivity coefficients (DSCs), which are defined as rates of change of
physical response quantities with respect to changes in design variables, are
useful for various applications such as in judging the robustness of a given
design, in reliability analysis and in solving inverse and design optimization
problems. There are three methods for design sensitivity analysis (e.g. [63]),
namely, the finite difference approach (FDA), the adjoint structure approach
(ASA) and the direct differentiation approach (DDA). The DDA is of interest
in this work.

The goal of obtaining BCM sensitivity equations can be achieved in two
equivalent ways. In the 2-D work by [130], design sensitivities are obtained
by first converting the discretized BIEs into their boundary contour version,
and then applying the DDA (using the concept of the material derivative) to
this BCM version. This approach, while relatively straightforward in principle,
becomes extremely algebraically intensive for 3-D elasticity problems. [100]
offers a novel alternative derivation, using the opposite process, in which the
DDA is first applied to the regularized BIE and then the resulting equations
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are converted to their boundary contour version. It is important to point out
that this process of converting the sensitivity BIE into a BCM form is quite
challenging. This new derivation, for sensitivities of surface variables [100], as
well as for internal variables [103], for 3-D elasticity problems, is presented in
Chapter 5 of this book. The reader is referred to [133] for a corresponding
derivation for 2-D elasticity

Shape Optimization with the BCM

Shape optimization refers to the optimal design of the shape of structural com-
ponents and is of great importance in mechanical engineering design. A typical
gradient-based shape optimization procedure is an iterative process in which
iterative improvements are carried out over successive designs until an optimal
design is accepted. A domain-based method such as the finite element method
(FEM) typically requires discretization of the entire domain of a body many
times during this iterative process. The BEM, however, only requires surface
discretization, so that mesh generation and remeshing procedures can be carried
out much more easily for the BEM than for the FEM. Also, surface stresses are
typically obtained very accurately in the BEM. As a result, the BEM has been
a popular method for shape optimization in linear mechanics. Some examples
are references [33], [145], [178], [144], [169], [177], [161] and the book [184].

In addition to having the same meshing advantages as the usual BEM, the
BCM, as explained above, offers a further reduction in dimension. Also, surface
stresses can be obtained very easily and accurately by the BCM without the
need for additional shape function differentiation as is commonly required with
the BEM. These properties make the BCM very attractive as the computational
engine for stress analysis for use in shape optimization. Shape optimization in
2-D linear elasticity, with the BCM, has been presented by [132]. The corre-
sponding 3-D problem is presented in [150] and is discussed in Chapter 6.

Error Estimation and Adaptivity

A particular strength of the finite element method (FEM) is the well-developed
theory of error estimation, and its use in adaptive methods (see, for example,
Ciarlet [34], Eriksson et al. [44]). In contrast, error estimation in the boundary
element method (BEM) is a subject that has attracted attention mainly over
the past decade, and much work remains to be done. For recent surveys on
error estimation and adaptivity in the BEM, see Sloan [155], Kita and Kamiya
[70], Liapis [81] and Paulino et al. [124].

Many error estimators in the BEM are essentially heuristic and, unlike for
the FEM, theoretical work in this field has been quite limited. Rank [140]
proposed error indicators and an adaptive algorithm for the BEM using tech-
niques similar to those used in the FEM. Most notable is the work of Yu and
Wendland [171, 172, 181, 182], who have presented local error estimates based
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on a linear error-residual relation that is very effective in the FEM. More re-
cently, Carstensen et al. [18, 21, 19, 20] have presented error estimates for
the BEM analogous to the approach of Eriksson [44] for the FEM. There are
numerous stumbling blocks in the development of a satisfactory theoretical
analysis of a generic boundary value problem (BVP). First, theoretical analy-
ses are easiest for Galerkin schemes, but most engineering codes, to date, use
collocation-based methods (see, for example, Banerjee [4]). Though one can
view collocation schemes as variants of Petrov-Galerkin methods, and, in fact,
numerous theoretical analyses exist for collocation methods (see, for example,
references in [155]), the mathematical analysis for this class of problems is
difficult. Theoretical analyses for mixed boundary conditions are limited and
involved (Wendland et al. [170]) and the presence of corners and cracks has
been a source of challenging problems for many years (Sloan [155], Costabel
and Stephan [35], Costabel et al. [36]). Of course, problems with corners and
mixed boundary conditions are the ones of most practical interest, and for such
situations one has to rely mostly on numerical experiments.

During the past few years, there has been a marked interest, among mathe-
maticians in the field, in extending analyses for the BEM with singular integrals
to hypersingular integrals ([21, 19, 156, 45]. For instance, Feistauer et al. [45]
have studied the solution of the exterior Neumann problem for the Helmholtz
equation formulated as an HBIE. Their paper contains a rigorous analysis of
hypersingular integral equations and addresses the problem of noncompatibil-
ity of the residual norm, where additional hypotheses are needed to design a
practical error estimate. These authors use residuals to estimate the error,
but they do not use the BIE and the HBIE simultaneously. Finally, Goldberg
and Bowman [51] have used superconvergence of the Sloan iterate [153, 154] to
show the asymptotic equivalence of the error and the residual. They have used
Galerkin methods, an iteration scheme that uses the same integral equation for
the approximation and for the iterates, and usual residuals in their work.

Paulino [122] and Paulino et al. [123] first proposed the idea of obtaining
a hypersingular residual by substituting the BEM solution of a problem into
the hypersingular BEM (HBEM) for the same problem; and then using this
residual as an element error estimator in the BEM. It has been proved that
([95], [96], [127]), under certain conditions, this residual is related to a measure
of the local error on a boundary element, and has been used to postulate local
error estimates on that element. This idea has been applied to the collocation
BEM ([123], [96], [127]) and to the symmetric Galerkin BEM ([125]). Recently,
residuals have been obtained in the context of the BNM [28] and used to obtain
local error estimates (at the element level) and then to drive an h-adaptive
mesh refinement process. An analogous approach for error estimation and h-
adaptivity, in the context of the BCM, is described in [111]. Ref. [91] has a
bibliography of work on mesh generation and refinement up to 1993.

Error analysis with the BEM is presented in Chapter 2, while error analysis
and adaptivity in the context of the BCM and the BNM are discussed in Chapter
7, and Chapters 10, 11, respectively, of this book.
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Chapter 1

BOUNDARY INTEGRAL
EQUATIONS

Integral equations, usual as well as hypersingular, for internal and boundary
points, for potential theory in three dimensions, are first presented in this chap-
ter. This is followed by their linear elasticity counterparts. The evaluation of
finite parts (FPs) of some of these equations, when the source point is an irreg-
ular boundary point (situated at a corner on a one-dimensional plane curve or
at a corner or edge on a two-dimensional surface), is described next.

1.1 Potential Theory in Three Dimensions

The starting point is Laplace’s equation in three dimensions (3-D) governing a
potential function u(x1, x2, x3) ∈ B, where B is a bounded region (also called
the body):

∇2u(x1, x2, x3) ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

= 0 (1.1)

along with prescribed boundary conditions on the bounding surface ∂B of B.

1.1.1 Singular Integral Equations

Referring to Figure 1.1, let ξ and η be (internal) source and field points ∈ B
and x and y be (boundary) source and field points ∈ ∂B, respectively. (Source
and field points are also referred to as p and q (for internal points) and as P
and Q (for boundary points), respectively, in this book).

The well-known integral representation for (1.1), at an internal point ξ ∈ B,
is:

u(ξ) =
∫
∂B

[G(ξ,y)τ(y) − F (ξ,y)u(y)]dS(y) (1.2)

3
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B

x(P)

y(Q)

ξ(p)

r(ξ
, y

)

η(q)

n(y)

n(x)

∂B

Figure 1.1: Notation used in integral equations (from [6])

An infinitesimal surface area on ∂B is dS = dSn, where n is the unit outward
normal to ∂B at a point on it and τ = ∂u/∂n. The kernels are written in terms
of source and field points ξ ∈ B and y ∈ ∂B. These are :

G(ξ,y) =
1

4πr(ξ,y)
(1.3)

F (ξ,y) =
∂G(ξ,y)
∂n(y)

=
(ξi − yi)ni(y)

4πr3(ξ,y)
(1.4)

in terms of r(ξ,y), the Euclidean distance between the source and field points
ξ and y. Unless specified otherwise, the range of indices in these and all other
equations in this chapter is 1,2,3.

An alternative form of equation (1.2) is:

u(ξ) =
∫
∂B

[G(ξ,y)u,k(y) −Hk(ξ,y)u(y)]ek · dS(y) (1.5)

where ek, k = 1, 2, 3, are the usual Cartesian unit vectors, ek · dS(y) =
nk(y)dS(y), and:

Hk(ξ,y) =
(ξk − yk)
4πr3(ξ,y)

(1.6)

The boundary integral equation (BIE) corresponding to (1.2) is obtained by
taking the limit ξ → x. A regularized form of the resulting equation is:

0 =
∫
∂B

[G(x,y)τ(y) − F (x,y){u(y) − u(x)}]dS(y) (1.7)
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with an alternate form (from (1.5)):

0 =
∫
∂B

[G(x,y)u,k(y) −Hk(x,y){u(y) − u(x)}]ek · dS(y) (1.8)

1.1.2 Hypersingular Integral Equations

Equation (1.2) can be differentiated at an internal source point ξ to obtain the
gradient ∂u

∂ξm
of the potential u. The result is:

∂u(ξ)
∂ξm

=
∫
∂B

[
∂G(ξ,y)
∂ξm

τ(y) − ∂F (ξ,y)
∂ξm

u(y)
]
dS(y) (1.9)

An interesting situation arises when one takes the limit ξ → x (x can even
be an irregular point on ∂B but one must have u(y) ∈ C1,α at y = x) in
equation (1.9). As discussed in detail in Section 1.4.2, one obtains:

∂u(x)
∂xm

=
∫
∂B

=
[
∂G(x,y)
∂xm

τ(y) − ∂F (x,y)
∂xm

u(y)
]
dS(y) (1.10)

where the symbol
∫
= denotes the finite part (FP) of the integral. Equation (1.10)

is best regularized before computations are carried out. The regularized version
given below is applicable even at an irregular boundary point x provided that
u(y) ∈ C1,α at y = x. This is:

0 =
∫
∂B

∂G(x,y)
∂xm

[
u,p(y) − u,p(x)

]
np(y)dS(y)

−
∫
∂B

∂F (x,y)
∂xm

[
u(y) − u(x) − u,p(x)(yp − xp)

]
dS(y) (1.11)

An alternative form of (1.11), valid at a regular boundary point x, [76] is:

0 =
∫
∂B

∂G(x,y)
∂xm

[
τ(y) − τ(x)

]
dS(y)

− u,k(x)
∫
B

∂G(x,y)
∂xm

[
nk(y) − nk(x)

]
dS(y)

−
∫
∂B

∂F (x,y)
∂xm

[
u(y) − u(x) − u,p(x)(yp − xp)

]
dS(y) (1.12)

Carrying out the inner product of (1.12) with the source point normal n(x),
one gets:

0 =
∫
∂B

∂G(x,y)
∂n(x)

[
τ(y) − τ(x)

]
dS(y)
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6 CHAPTER 1. BOUNDARY INTEGRAL EQUATIONS

− u,k(x)
∫
B

∂G(x,y)
∂n(x)

[
nk(y) − nk(x)

]
dS(y)

−
∫
∂B

∂F (x,y)
∂n(x)

[
u(y) − u(x) − u,p(x)(yp − xp)

]
dS(y) (1.13)

1.1.2.1 Potential gradient on the bounding surface

The gradient of the potential function is required in the regularized HBIEs (1.11
- 1.13). For potential problems, the gradient (at a regular boundary point) can
be written as,

∇u = τn +
∂u

∂s1
t1 +

∂u

∂s2
t2 (1.14)

where τ = ∂u/∂n is the flux, n is the unit normal, t1, t2 are the appropriately
chosen unit vectors in two orthogonal tangential directions on the surface of the
body, and ∂u/∂si, i = 1, 2 are the tangential derivatives of u (along t1 and t2)
on the surface of the body.

1.2 Linear Elasticity in Three Dimensions

The starting point is the Navier-Cauchy equation governing the displacement
u(x1, x2, x3) in a homogeneous, isotropic, linear elastic solid occupying the
bounded 3-D region B with boundary ∂B; in the absence of body forces:

0 = ui,jj +
1

1 − 2ν
uk,ki (1.15)

along with prescribed boundary conditions that involve the displacement and
the traction τ on ∂B. The components τi of the traction vector are:

τi = λuk,kni + µ(ui,j + uj,i)nj (1.16)

In equations (1.15) and (1.16), ν is Poisson’s ratio and λ and µ are Lamé
constants. As is well known, µ is the shear modulus of the material and is also
called G in this book. Finally, the Young’s modulus is denoted as E.

1.2.1 Singular Integral Equations

The well-known integral representation for (1.15), at an internal point ξ ∈ B
(Rizzo [141]) is:

uk(ξ) =
∫
∂B

[Uik(ξ,y)τi(y) − Tik(ξ,y)ui(y)] dS(y) (1.17)

where uk and τk are the components of the displacement and traction respec-
tively, and the well-known Kelvin kernels are:
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Uik =
1

16π(1 − ν)Gr
[(3 − 4ν)δik + r,ir,k] (1.18)

Tik = − 1
8π(1 − ν)r2

[
{(1 − 2ν)δik + 3r,ir,k}

∂r

∂n
+ (1 − 2ν)(r,ink − r,kni)

]
(1.19)

In the above, δik denotes the Kronecker delta and, as before, the normal n
is defined at the (boundary) field point y. A comma denotes a derivative with
respect to a field point, i.e.

r,i =
∂r

∂yi
=
yi − ξi
r

(1.20)

An alternative form of equation (1.17) is:

uk(ξ) =
∫
∂B

[Uik(ξ,y)σij(y) − Σijk(ξ,y)ui(y)] ej · dS(y) (1.21)

where σ is the stress tensor, τi = σijnj and Tik = Σijknj . (Please note that
ej · dS(y) = nj(y)dS(y)). The explicit form of the kernel Σ is:

Σijk = Eijmn
∂Ukm

∂yn

= − 1
8π(1 − ν)r2

[ (1 − 2ν)(r,iδjk + r,jδik − r,kδij) + 3r,ir,jr,k ] (1.22)

where E is the elasticity tensor (for isotropic elasticity):

Eijmn = λδijδmn + µ[δimδjn + δinδjm] (1.23)

The boundary integral equation (BIE) corresponding to (1.17) is obtained
by taking the limit ξ → x. The result is:

uk(x) = lim
ξ→x

∫
∂B

[Uik(ξ,y)τi(y) − Tik(ξ,y)ui(y)] dS(y)

=
∫
∂B

= [Uik(x,y)τi(y) − Tik(x,y)ui(y)] dS(y) (1.24)

where the symbol
∫

∂B
= denotes the finite part of the appropriate integral (see

Section 1.4).
A regularized form of equation (1.24) is:

0 =
∫
∂B

[Uik(x,y)τi(y) − Tik(x,y){ui(y) − ui(x)}]dS(y) (1.25)
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8 CHAPTER 1. BOUNDARY INTEGRAL EQUATIONS

with an alternate form (from (1.21)):

0 =
∫
∂B

[Uik(x,y)σij(y) − Σijk(x,y){ui(y) − ui(x)}]ej · dS(y) (1.26)

1.2.2 Hypersingular Integral Equations

Equation (1.17) can be differentiated at an internal source point ξ to obtain
the displacement gradient at this point:

∂uk(ξ)
∂ξm

=
∫
∂B

[
∂Uik

∂ξm
(ξ,y)τi(y) − ∂Tik

∂ξm
(ξ,y)ui(y)

]
dS(y) (1.27)

An alternative form of equation (1.27) is:

∂uk(ξ)
∂ξm

=
∫
∂B

[
∂Uik

∂ξm
(ξ,y)σij(y) − ∂Σijk

∂ξm
(ξ,y)ui(y)

]
ej · dS(y) (1.28)

Stress components at an internal point ξ can be obtained from either of
equations (1.27) or (1.28) by using Hooke’s law:

σij = λuk,kδij + µ(ui,j + uj,i) (1.29)

It is sometimes convenient, however, to write the internal stress directly.
This equation, corresponding (for example) to (1.27) is:

σij(ξ) =
∫
∂B

[Dijk(ξ,y)τk(y) − Sijk(ξ,y)uk(y)] dS(y) (1.30)

where the new kernels D and S are:

Dijk = Eijmn
∂Ukm

∂ξn
= λ

∂Ukm

∂ξm
δij + µ

(
∂Uki

∂ξj
+
∂Ukj

∂ξi

)
= −Σijk (1.31)

Sijk = Eijmn
∂Σkpm

∂ξn
np = λ

∂Σkpm

∂ξm
npδij + µ

(
∂Σkpi

∂ξj
+
∂Σkpj

∂ξi

)
np

=
G

4π(1 − ν)r3

[
3
∂r

∂n
[(1 − 2ν)δijr,k + ν(δikr,j + δjkr,i) − 5r,ir,jr,k]

]

+
G

4π(1 − ν)r3
[3ν(nir,jr,k + njr,ir,k)

+(1 − 2ν)(3nkr,ir,j + njδik + niδjk) − (1 − 4ν)nkδij ] (1.32)

Again, the normal n is defined at the (boundary) field point y. Also:
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∂Uik

∂ξm
(ξ,y) = −Uik,m ,

∂Σijk

∂ξm
(ξ,y) = −Σijk,m (1.33)

It is important to note that D becomes strongly singular, and S hypersin-
gular as a source point approaches a field point (i.e. as r → 0).

For future use in Chapter 4, it is useful to rewrite (1.28) using (1.33). This
equation is:

uk,m(ξ) = −
∫
∂B

[Uik,m(ξ,y)σij(y) − Σijk,m(ξ,y)ui(y)]nj(y)dS(y) (1.34)

Again, as one takes the limit ξ → x in any of the equations (1.27), (1.28) or
(1.30), one must take the finite part of the corresponding right hand side (see
Section 1.4.3). For example, (1.28) and (1.30) become, respectively:

∂uk(x)
∂xm

= lim
ξ→x

∫
∂B

[
∂Uik

∂ξm
(ξ,y)σij(y) − ∂Σijk

∂ξm
(ξ,y)ui(y)

]
nj(y)dS(y)

=
∫
∂B

=
[
∂Uik

∂xm
(x,y)σij(y) − ∂Σijk

∂xm
(x,y)ui(y)

]
nj(y)dS(y) (1.35)

σij(x) = lim
ξ→x

∫
∂B

[Dijk(ξ,y)τk(y) − Sijk(ξ,y)uk(y)] dS(y)

=
∫
∂B

= [Dijk(x,y)τk(y) − Sijk(x,y)uk(y)] dS(y) (1.36)

Also, for future reference, one notes that the traction at a boundary point
is:

τi(x) = nj(x) lim
ξ→x

∫
∂B

[Dijk(ξ,y)τk(y) − Sijk(ξ,y)uk(y)] dS(y) (1.37)

Fully regularized forms of equations (1.35) and (1.36), that only contain
weakly singular integrals, are available in the literature (see, for example, Cruse
and Richardson [39]). These equations, that can be collocated at an irregular
point x ∈ ∂B provided that the stress and displacement fields in (1.38, 1.39)
satisfy certain smoothness requirements (see Martin et al. [93] and, also, Section
1.4.4 of this chapter) are:

0 =
∫
∂B

Uik,m(x,y) [σij(y) − σij(x)]nj(y)dS(y)

−
∫
∂B

Σijk,m(x,y) [ui(y) − ui(x) − ui,�(x) (y� − x�)]nj(y)dS(y) (1.38)
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10 CHAPTER 1. BOUNDARY INTEGRAL EQUATIONS

0 =
∫
∂B

Dijk(x,y) [σkp(y) − σkp(x)]np(y)dS(y)

−
∫
∂B

Sijk(x,y) [uk(y) − uk(x) − uk,p(x)(yp − xp)] dS(y) (1.39)

An alternate version of (1.39) that can only be collocated at a regular point
x ∈ ∂B is:

0 =
∫
∂B

Dijk(x,y)[τk(y) − τk(x)]dS(y)

− σkm(x)
∫
∂B

Dijk(x,y)(nm(y) − nm(x))dS(y)

−
∫
∂B

Sijk(x,y) [uk(y) − uk(x) − uk,m(x)(ym − xm)] dS(y) (1.40)

Finally, taking the inner product of (1.40) with the normal at the source
point gives:

0 =
∫
∂B

Dijk(x,y)nj(x)[τk(y) − τk(x)]dS(y)

− σkm(x)
∫
∂B

Dijk(x,y)nj(x)[nm(y) − nm(x)]dS(y)

−
∫
∂B

Sijk(x,y)nj(x) [uk(y) − uk(x) − uk,m(x)(ym − xm)] dS(y) (1.41)

1.2.2.1 Displacement gradient on the bounding surface

The gradient of the displacement u is required for the regularized HBIEs (1.38
- 1.41). Lutz et al. [89] have proposed a scheme for carrying this out. Details
of this procedure are available in [27] and are given below.

The (right-handed) global Cartesian coordinates, as before, are (x1, x2, x3).
Consider (right-handed) local Cartesian coordinates (x′1, x

′
2, x

′
3) at a regular

point P on ∂B as shown in Figure 1.2. The local coordinate system is oriented
such that the x′1 and x′2 coordinates lie along the tangential unit vectors t1

and t2 while x′3 is measured along the outward normal unit vector n to ∂B as
defined in equation (1.14).

Therefore, one has:

x′ = Qx (1.42)

u′ = Qu (1.43)

where u′k, k = 1, 2, 3 are the components of the displacement vector u in the
local coordinate frame, and the orthogonal transformation matrix Q has the
components:
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Figure 1.2: Local coordinate system on the surface of a body (from [27])

Q =


 t11 t12 t13
t21 t22 t23
n1 n2 n3


 (1.44)

with tij the jth component of the ith unit tangent vector and (n1, n2, n3) the
components of the unit normal vector.

The tangential derivatives of the displacement, in local coordinates, are
u′i,k′ , i = 1, 2, 3; k = 1, 2. These quantities are obtained as follows:

u′i,k′ ≡ ∂u′i
∂sk

= Qij
∂uj
∂sk

(1.45)

where ∂u′i/∂sk are tangential derivatives of ui at P with s1 = x′1 and s2 = x′2.
The remaining components of ∇u in local coordinates are obtained from

Hooke’s law (see [89]) as:

∂u′1
∂x′3

=
τ ′1
G

− ∂u′3
∂x′1

∂u′2
∂x′3

=
τ ′2
G

− ∂u′3
∂x′2

∂u′3
∂x′3

=
(1 − 2ν)τ ′3
2G(1 − ν)

− ν

1 − ν

[
∂u′1
∂x′1

+
∂u′2
∂x′2

]
(1.46)

where τ ′k, k = 1, 2, 3, are the components of the traction vector in local coordi-
nates.

The components of the displacement gradient tensor, in the local coordinate
system, are now known. They can be written as:
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12 CHAPTER 1. BOUNDARY INTEGRAL EQUATIONS

(∇u)local ≡ A′ =


 u′1,1′ u′1,2′ u′1,3′

u′2,1′ u′2,2′ u′2,3′

u′3,1′ u′3,2′ u′3,3′


 (1.47)

Finally, the components of ∇u in the global coordinate frame are obtained
from those in the local coordinate frame by using the tensor transformation
rule:

(∇u)global ≡ A = QTA′Q =


 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3


 (1.48)

The gradient of the displacement field in global coordinates is now ready for
use in equations (1.38 - 1.41).

1.3 Nearly Singular Integrals in Linear Elastic-
ity

It is well known that the first step in the BEM is to solve the primary problem
on the bounding surface of a body (e.g. equation (1.25)) and obtain all the
displacements and tractions on this surface. The next steps are to obtain the
displacements and stresses at selected points inside a body, from equations
such as (1.17) and (1.30). It has been known in the BEM community for many
years, dating back to Cruse [37], that one experiences difficulties when trying
to numerically evaluate displacements and stresses at points inside a body that
are close to its bounding surface (the so-called near-singular or boundary layer
problem). Various authors have addressed this issue over the last 3 decades.
This section describes a new method recently proposed by Mukherjee et al.
[104].

1.3.1 Displacements at Internal Points Close to the Bound-
ary

The displacement at a point inside an elastic body can be determined from
either of the (equivalent) equations (1.17) or (1.21). A continuous version of
(1.21), from Cruse and Richardson [39] is:

uk(ξ) = uk ˆ(x)+
∫
∂B

[ Uik(ξ,y)σij(y) − Σijk(ξ,y){ui(y) − ui(x̂)} ]nj(y)dS(y)

(1.49)
where ξ ∈ B is an internal point close to ∂B and a target point x̂ ∈ ∂B is close
to the point ξ (see Fig. 1.3). An alternative form of (1.49) is:
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Figure 1.3: A body with source point ξ, field point y and target point x̂
(from [104])

uk(ξ) = uk(x̂)+
∫
∂B

[ Uik(ξ,y)τi(y) − Tik(ξ,y){ui(y) − ui(x̂)} ] dS(y) (1.50)

Equation (1.49) (or (1.50)) is called “continuous” since it has a continuous
limit to the boundary (LTB as ξ → x̂ ∈ ∂B) provided that ui(y) ∈ C0,α (i.e.
Hölder continuous). Taking this limit is the standard approach for obtaining
the well-known regularized form (1.26) (or (1.25)).

In this work, however, equation (1.49) (or (1.50)) is put to a different, and
novel use. It is first observed that Tik in equation (1.50) is O(1/r2(ξ,y)) as
ξ → y, whereas {ui(y) − ui(x̂)} is O(r(x̂,y)) as y → x̂. Therefore, as y → x̂,
the product Tik(ξ,y){ui(y) − ui(x̂)}, which is O(r(x̂,y)/r2(ξ,y)), → 0 ! As a
result, equation (1.50) (or (1.49)) can be used to easily and accurately evaluate
the displacement components uk(ξ) for ξ ∈ B close to ∂B. This idea is the
main contribution of [104].

It is noted here that while it is usual to use (1.17) (or (1.21)) to evaluate
uk(ξ) when ξ is far from ∂B, equation (1.49) (or (1.50)) is also valid in this
case. (The target point x̂ can be chosen as any point on ∂B when ξ is far from
∂B). Therefore, it is advisable to use the continuous equation (1.49) (or (1.50))
universally for all points ξ ∈ B. This procedure would eliminate the need to
classify, a priori, whether ξ is near to, or far from ∂B.

1.3.2 Stresses at Internal Points Close to the Boundary

The displacement gradient at a point ξ ∈ B can be obtained from equation
(1.34) or the stress at this point from (1.30). Continuous versions of (1.34) and
(1.30) can be written as [39]:
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14 CHAPTER 1. BOUNDARY INTEGRAL EQUATIONS

uk,n(ξ) = uk,n(x̂) −
∫
∂B

Uik,n(ξ,y) [σij(y) − σij(x̂)]nj(y)dS(y)

+
∫
∂B

Σijk,n(ξ,y) [ui(y) − ui(x̂) − ui,�(x̂) (y� − x̂�)]nj(y)dS(y) (1.51)

σij(ξ) = σij(x̂) +
∫
∂B

Dijk(ξ,y)[τk(y) − σkm(x̂)nm(y)]dS(y)

−
∫
∂B

Sijk(ξ,y)[uk(y) − uk(x̂) − uk,�(x̂)(y� − x̂�)] dS(y) (1.52)

The integrands in equations (1.51) (or (1.52)) are O(r(x̂,y)/r2(ξ,y)) and
O(r2(x̂,y)/r3(ξ,y)) as y → x̂. Similar to the behavior of the continuous BIEs
in the previous subsection, the integrands in equations (1.51) and (1.52) → 0
as y → x̂. Either of these equations, therefore, is very useful for evaluating the
stresses at an internal point ξ that is close to ∂B. Of course (please see the
discussion regarding displacements in the previous section), they can also be
conveniently used to evaluate displacement gradients or stresses at any point
ξ ∈ B.

Henceforth, use of equations (1.17), (1.21), (1.30) or (1.34) will be referred
to as the standard method, while use of equations (1.49), (1.50), (1.51) or (1.52)
will be referred to as the new method.

1.4 Finite Parts of Hypersingular Equations

A discussion of finite parts (FPs) of hypersingular BIEs (see e.g. equations
(1.9 -1.11)) is the subject of this section. The general theory of finite parts
is presented first. This is followed by applications of the theory in potential
theory and in linear elasticity. Further details are available in Mukherjee [102].

1.4.1 Finite Part of a Hypersingular Integral Collocated
at an Irregular Boundary Point

1.4.1.1 Definition

Consider, for specificity, the space R3, and let S be a surface in R3. Let the
points x ∈ S and ξ /∈ S. Also, let Ŝ and S̄ ⊂ Ŝ be two neighborhoods (in S) of
x such that x ∈ S̄ (Figure 1.4). The point x can be an irregular point on S.

Let the function K(x,y) , y ∈ S, have its only singularity at x = y of
the form 1/r3 where r = |x − y |, and let φ(y) be a function that has no
singularity in S and is of class C1,α at y = x for some α > 0.

The finite part of the integral
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Figure 1.4: A surface S with regions Ŝ and S̄ and points ξ,x and y (from [102])

I(x) =
∫
S

K(x,y)φ(y)dS(y) (1.53)

is defined as:

∫
S

= K(x,y)φ(y)dS(y) =
∫
S\Ŝ

K(x,y)φ(y)dS(y)

+
∫
Ŝ

K(x,y)[φ(y) − φ(x) − φ,p(x)(yp − xp)]dS(y)

+ φ(x)A(Ŝ) + φ,p(x)Bp(Ŝ) (1.54)

where Ŝ is any arbitrary neighborhood (in S) of x and:

A(Ŝ) =
∫
Ŝ

= K(x,y)dS(y) (1.55)

Bp(Ŝ) =
∫
Ŝ

= K(x,y)(yp − xp)dS(y) (1.56)

The above FP definition can be easily extended to any number of physical
dimensions and any order of singularity of the kernel function K(x,y). Please
refer to Toh and Mukherjee [168] for further discussion of a previous closely re-
lated FP definition for the case when x is a regular point on S, and to Mukherjee
[101] for a discussion of the relationship of this FP to the CPV of an integral
when its CPV exists.
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16 CHAPTER 1. BOUNDARY INTEGRAL EQUATIONS

1.4.1.2 Evaluation of A and B

There are several equivalent ways for evaluating A and B.

Method one. Replace S by Ŝ and Ŝ by S̄ in equation (1.54). Now, setting
φ(y) = 1 in (1.54) and using (1.55), one gets:

A(Ŝ) −A(S̄) =
∫
Ŝ\S̄

K(x,y)dS(y) (1.57)

Next, setting φ(y) = (yp − xp) (note that, in this case, φ(x) = 0 and
φ,p(x) = 1) in (1.54), and using (1.56), one gets:

Bp(Ŝ) −Bp(S̄) =
∫
Ŝ\S̄

K(x,y)(yp − xp)dS(y) (1.58)

The formulae (1.57) and (1.58) are most useful for obtaining A and B when
Ŝ is an open surface and Stoke regularization is employed. An example is the
application of the FP definition (1.54) (for a regular collocation point) in Toh
and Mukherjee [168], to regularize a hypersingular integral that appears in the
HBIE formulation for the scattering of acoustic waves by a thin scatterer. The
resulting regularized equation is shown in [168] to be equivalent to the result of
Krishnasamy et al. [75]. Equations (1.57) and (1.58) are also used in Mukherjee
and Mukherjee [99] and in Section 3.2 of [102].

Method two. From equation (1.57):

A(Ŝ) −A(S̄) =
∫
Ŝ\S̄

K(x,y)dS(y) = lim
ξ→x

∫
Ŝ\S̄

K(ξ,y)dS(y) (1.59)

The second equality above holds since K(x,y) is regular for x ∈ S̄ and
y ∈ Ŝ\S̄. Assuming that the limits:

lim
ξ→x

∫
Ŝ

K(ξ,y)dS(y), lim
ξ→x

∫
S̄

K(ξ,y)dS(y)

exist, then:

A(Ŝ) = lim
ξ→x

∫
Ŝ

K(ξ,y)dS(y) (1.60)

Similarly:

Bp(Ŝ) = lim
ξ→x

∫
Ŝ

K(ξ,y)(yp − xp)dS(y) (1.61)

Equations (1.60) and (1.61) are most useful for evaluating A and B when
Ŝ = ∂B, a closed surface that is the entire boundary of a body B. Examples
appear in Sections 1.4.2 and 1.4.3 of this chapter.
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Method three. A third way for evaluation of A and B is to use an auxiliary
surface (or “tent”) as first proposed for fracture mechanics analysis by Lutz et
al. [89]. (see, also, Mukherjee et al. [110], Mukherjee [105] and Section 3.2.1 of
[102]. This method is useful if S is an open surface.

1.4.1.3 The FP and the LTB

There is a very simple connection between the FP, defined above, and the
LTB approach employed by Gray and his coauthors. With, as before, ξ /∈ S,
x ∈ S (x can be an irregular point on S),K(x,y) = O(|x − y|−3) as y → x
and φ(y) ∈ C1,α at y = x, this can be stated as:

lim
ξ→x

∫
S

K(ξ,y)φ(y)dS(y) =
∫
S

= K(x,y)φ(y)dS(y) (1.62)

Of course, ξ can approach x from either side of S.

Proof of equation (1.62). Consider the first and second terms on the right-
hand side of equation (1.54). Since these integrands are regular in their respec-
tive domains of integration, one has:∫

S\Ŝ
K(x,y)φ(y)dS(y) = lim

ξ→x

∫
S\Ŝ

K(ξ,y)φ(y)dS(y) (1.63)

and

∫
Ŝ

K(x,y)[φ(y) − φ(x) − φ,p(x) (yp − xp)]dS(y)

= lim
ξ→x

∫
Ŝ

K(ξ,y)[φ(y) − φ(ξ) − φ,p(ξ)(yp − ξp)]dS(y) (1.64)

Use of equations (1.60, 1.61, 1.63 and 1.64) in (1.54) proves equation (1.62).

1.4.2 Gradient BIE for 3-D Laplace’s Equation

This section is concerned with an application of equation (1.54) for collocation
of the HBIE (1.9), for the 3-D Laplace equation, at an irregular boundary point.
A complete exclusion zone, Ŝ = ∂B is used here. An application of a vanishing
exclusion zone, for collocation of the HBIE for the 2-D Laplace equation, at an
irregular boundary point, is presented in Mukherjee [102].

Using equations (1.4) and (1.6), equations (1.9) and (1.10) are first written
in the slightly different equivalent forms:

∂u(ξ)
∂ξi

=
∫
∂B

[Di(ξ,y)τ(y) − Si(ξ,y)u(y)] dS(y) (1.65)

∂u(x)
∂xi

=
∫
∂B

= [Di(x,y)τ(y) − Si(x,y)u(y)] dS(y) (1.66)

© 2005 by Taylor & Francis Group, LLC
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where:

Di(x,y) = −G,i(x,y) , Si = −Hk,i(x,y)nk(y) (1.67)

Use of (1.54) in (1.66), with S = Ŝ = ∂B, results in:

u,i(x) =
∫
∂B

Di(x,y)
[
u,p(y) − u,p(x)

]
np(y)dS(y)

−
∫
∂B

Si(x,y)
[
u(y) − u(x) − u,p(x)(yp − xp)

]
dS(y)

− Ai(∂B)u(x) + Cip(∂B)u,p(x) (1.68)

where, using method two in Section 1.4.1.2:

Ai(∂B) = lim
ξ→x

∫
∂B

Si(ξ,y)dS(y) (1.69)

Cip(∂B) = lim
ξ→x

∫
∂B

[Di(ξ,y)np(y) − Si(ξ,y)(yp − ξp)] dS(y) (1.70)

It is noted here that the (possibly irregular) boundary point x is approached
from ξ ∈ B, i.e. from inside the body B.

The quantities A and C can be easily evaluated using the imposition of
simple solutions. Following Rudolphi [143], use of the uniform solution u(y) = c
(c is a constant) in equation (1.65) gives:∫

∂B

Si(ξ,y)dS(y) = 0 (1.71)

while use of the linear solution:

u = u(ξ) + (yp − ξp)u,p(ξ)

τ(y) =
∂u

∂yk
nk(y) = u,p(ξ)np(y) (with p = 1, 2, 3) (1.72)

in equation (1.65) (together with (1.71)) gives:∫
∂B

[Di(ξ,y)np(y) − Si(ξ,y)(yp − ξp)] dS(y) = δip (1.73)

Therefore, (assuming continuity) Ai(∂B) = 0, Cip(∂B) = δip, and (1.68)
yields a simple, fully regularized form of (1.66) as:

0 =
∫
∂B

Di(x,y)[u,p(y) − u,p(x)]np(y)dS(y)

−
∫
∂B

Si(x,y)[u(y) − u(x) − u,p(x)(yp − xp)]dS(y) (1.74)
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which is equivalent to equation (1.11).
A few comments are in order. First, equation (1.74) is the same as Rudol-

phi’s [143] equation (20) with (his) κ = 1 and (his) S0 set equal to S and
renamed ∂B. (See, also, Kane [68], equation (17.34)). Second, this equation
can also be shown to be valid for the case ξ /∈ B, i.e. for an outside approach
to the boundary point x . Third, as noted before, x can be an edge or corner
point on ∂B (provided, of course, that u(y) ∈ C1,α at y = x - Rudolphi
had only considered a regular boundary collocation point in his excellent paper
that was published in 1991). Finally, as discussed in the Section 1.4.3, equation
(1.74) is analogous to the regularized stress BIE in linear elasticity - equation
(28) in Cruse and Richardson [39] .

1.4.3 Stress BIE for 3-D Elasticity

This section presents a proof of the fact that equation (1.39) is a regularized
version of (1.36), valid at an irregular point x ∈ ∂B, provided that the stress
and displacement fields in (1.39) satisfy certain smoothness requirements. These
smoothness requirements are discussed in Section 1.4.4. The approach is very
similar to that used in Section 1.4.2.

The first step is to apply the FP equation (1.54) to regularize (1.36). With
S = Ŝ = ∂B, the result is:

σij(x) =
∫
∂B

Dijk(x,y) [σkp(y) − σkp(x)]np(y)dS(y)

−
∫
∂B

Sijk(x,y) [uk(y) − uk(x) − uk,p(x)(yp − xp)] dS(y)

− Aijk(∂B)uk(x) + Cijkp(∂B)uk,p(x) (1.75)

where, using method two in Section 1.4.1.2:

Aijk(∂B) = lim
ξ→x

∫
∂B

Sijk(ξ,y)dS(y) (1.76)

Cijkp(∂B) = lim
ξ→x

∫
∂B

Em�kpDijm(ξ,y)n�(y)dS(y)

− lim
ξ→x

∫
∂B

Sijk(ξ,y)(yp − ξp)dS(y) (1.77)

with E the elasticity tensor (see (1.23)) which appears in Hooke’s law:

σm� = Em�kpuk,p (1.78)

Simple (rigid body and linear) solutions in linear elasticity (see, for example,
Lutz et al. [89], Cruse and Richardson [39]) are now used in order to determine
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the quantities A and C. Using the rigid body mode uk = ck (ck are arbitrary
constants) in (1.30), one has:

0 =
∫
∂B

Sijk(ξ,y)dS(y) (1.79)

while, using the linear solution:

uk(y) = (yp − ξp)uk,p(ξ), uk,m(y) = uk,m(ξ),
τk(y) = σkm(y)nm(y) = Ekmrsur,s(ξ)nm(y) (1.80)

in equation (1.30) gives:

σij(ξ) = uk,p(ξ)
∫
∂B

[Em�kpDijm(ξ,y)n�(y) − Sijk(ξ,y)(yp − ξp)] dS(y)

(1.81)
Taking the limit ξ → x of (1.79), using continuity of the integral and com-

paring with (1.76), gives A = 0. Taking the limit ξ → x of (1.81) and comparing
with (1.77), one has:

σij(x) = Cijkpuk,p(x) (1.82)

Comparing (1.82) with (1.78) yields C(∂B) = E.
Therefore, equation (1.75) reduces to the simple regularized equation (1.39).
Equation (1.39) is equation (28) of Cruse and Richardson [39] in the present

notation. As is the case in the present work, Cruse and Richardson [39] have
also proved that their equation (28) is valid at a corner point, provided that
the stress is continuous there.

It has been proved in this section that the regularized stress BIE (28) of
Cruse and Richardson [39] can also be obtained from the FP definition (1.54)
with a complete exclusion zone.

1.4.4 Solution Strategy for a HBIE Collocated at an Ir-
regular Boundary Point

Hypersingular BIEs for a body B with boundary ∂B are considered here. Regu-
larized HBIEs, obtained by using complete exclusion zones, e.g. equation (1.74)
for potential theory or (1.39) for linear elasticity, are recommended as starting
points.

An irregular collocation point x for 3-D problems is considered next. Let
∂Bn, (n = 1, 2, 3, ..., N) be smooth pieces of ∂B that meet at an irregular point
x ∈ ∂B. Also, as before, let a source point, with coordinates xk, be denoted by
P , and a field point, with coordinates yk, be denoted by Q.

Martin et al. [93] state the following requirements for collocating a regular-
ized HBIE, such as (1.39) at an irregular point P ∈ ∂B. These are:

© 2005 by Taylor & Francis Group, LLC



1.4. FINITE PARTS OF HYPERSINGULAR EQUATIONS 21

(i) The displacement u must satisfy the equilibrium equations in B.
(ii) (a) The stress σ must be continuous in B.

(b) The stress σ must be continuous on ∂B.
(iii) |ui(Qn) − ui

L(Qn;P )| = O(r(1+α)
n ) as rn → 0, for each n.

(iv) [σij(Qn) − σij(P )]nj(Qn) = O(rαn) as rn → 0, for each n.

Box 1.1 Requirements for collocation of a HBIE at an irregular point
(from [93]).

In the above, rn = |y(Qn) − x(P )|, Qn ∈ ∂Bn, and α > 0. Also,

uLi (Qn;P ) = ui(P ) + ui,j(P )[yj(Qn) − xj(P )] (1.83)

There are two important issues to consider here.
The first is that, if there is to be any hope for collocating (1.39) at an

irregular point P , the exact solution of a boundary value problem must satisfy
conditions (i-iv) in Box 1.1. Clearly, one should not attempt this collocation
if, for example, the stress is unbounded at P (this can easily happen - see an
exhaustive study on the subject in Glushkov et al. [50]), or is bounded but
discontinuous at P (e.g. at the tip of a wedge - see, for example, Zhang and
Mukherjee [183]). The discussion in the rest of this book is limited to the class
of problems, referred to as the admissible class, whose exact solutions satisfy
conditions (i - iv).

The second issue refers to smoothness requirements on the interpolation
functions for u, σ and the traction τ = n · σ in (1.39). It has proved very
difficult, in practice, to find BEM interpolation functions that satisfy, a priori,
(ii(b)-(iv)) in Box 1.1, for collocation at an irregular surface point on a 3-D
body [93]. It has recently been proved in Mukherjee and Mukherjee [111],
however, that interpolation functions used in the boundary contour method
(BCM - see, for example, Mukherjee et al. [109], Mukherjee and Mukherjee
[99]) satisfy these conditions a priori. Another important advantage of using
these interpolation functions is that ∇u can be directly computed from them
at an irregular boundary point [99], without the need to use the (undefined)
normal and tangent vectors at this point. In principle, these BCM interpolation
functions can also be used in the BEM.

The BCM and the hypersingular BCM (HBCM) are discussed in detail
in Chapter 4 of this book. Numerical results from the hypersingular BCM,
collocated on edges and at corners, from Mukherjee and Mukherjee [111], are
available in Chapter 4.
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Chapter 2

ERROR ESTIMATION

Pointwise (i.e. that the error is evaluated at selected points) residual-based error
estimates for Dirichlet, Neumann and mixed boundary value problems (BVPs)
in linear elasticity are presented first in this chapter. Interesting relationships
between the actual error and the hypersingular residuals are proved for the first
two classes of problems, while heuristic error estimators are presented for mixed
BVPs. Element-based error indicators, relying on the pointwise error measures
presented earlier, are proposed next. Numerical results for two mixed BVPs
in 2-D linear elasticity complete this chapter. Further details are available in
[127].

2.1 Linear Operators

Boundary integral equations can be analyzed by viewing them as linear equa-
tions in a Hilbert space. A very readable account of this topic is available in
Kress [73]. Following Sloan [155], it is assumed here that the boundary ∂B is
a C1 continuous closed Jordan curve given by the mapping:

z : [0, 1] → ∂B, z ∈ C1, |z′ | = 0

where z ∈ C, the space of complex numbers. The present analysis excludes
domains with corners. It is also assumed that any integrable function v on ∂B
may be represented in a Fourier series:

v ∼
∞∑

k=−∞
v̂(k)e2πikx1 = a0 +

∞∑
k=1

(ak cos(2πkx1) + bk sin(2πkx1) (2.1)

where i ≡
√
−1 and:

v̂(k) =
∫ 1

0

e−2πikx1v(x1)dx1, k ∈ Z (2.2)

23
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in which Z denotes the space of integers.

The following Lemma is very useful for the work presented in this chapter.

Lemma 1. If A : B1 → B2 is a continuous linear operator that has a
continuous inverse, and Ax = y, then there exist real positive constants C1 and
C2, such that:

C1‖y‖B2 ≤ ‖x‖B1 ≤ C2‖y‖B2

where ‖·‖Bi
denotes a suitable norm of the appropriate function (in the Banach

space Bi).
Proof: The linearity and continuity of A and A−1 imply that ‖A‖ and ‖A−1‖

are finite. From the Cauchy-Schwarz inequality, one has:

‖y‖ = ‖Ax‖ ≤ ‖A‖‖x‖

‖x‖ = ‖A−1y‖ ≤ ‖A−1‖‖y‖

The result now follows by choosing C1 = 1/‖A‖ and C2 = ‖A−1‖. �

Returning to the problem at hand, the following operators are defined as:

(Uij vj)(ξ) :=
∫
∂B

Uij(ξ,y)vj(y)dS(y) (2.3)

(Tij vj)(ξ) :=
∫
∂B

TT
ij (ξ,y)vj(y)dS(y) (2.4)

(Dijkvk)(ξ) :=
∫
∂B

Dijk(ξ,y)vk(y)ds(y) (2.5)

(Sijkvk)(ξ) :=
∫
∂B

Sijk(ξ,y)vk(y)ds(y) (2.6)

(D(N)
ik vk)(ξ,x) := nj(x)

∫
∂B

Dijk(ξ,y)vk(y)ds(y) (2.7)

(S(N)
ik vk)(ξ,x) := nj(x)

∫
∂B

Sijk(ξ,y)vk(y)ds(y) (2.8)

The operator Uij is continuous onto the boundary, whereas Tij and D(N)
ij are

not continuous (Tanaka et al. [162]) and give rise to additional bounded free
terms in the limit. The hypersingular operator S(N)

ij gives rise to unbounded
terms that vanish when the integral is considered, for example, in the LTB
sense. These terms depend on the smoothness of the boundary at the source
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point x. In this work, the HBIE is collocated only at regular boundary points
(where the boundary is locally smooth) inside boundary elements.

Using the operators defined above, the BIE (1.24) and HBIE (1.37) become,
respectively:

BIE : ui = Uijτj − Tijuj (2.9)

HBIE : τi = D(N)
ij τj − S(N)

ij uj (2.10)

As in the case of potential theory (Menon et al. [96]), the LTB of the above
integral operators has been used to obtain the singular integral equations (2.9)
and (2.10).

Remark 1 One should note, however, that key properties of the operators, such
as continuity and invertibility, assume a certain regularity of the boundary (for
instance no corners or cusps) [155]. These assumptions, of course, are too re-
strictive for the solution of practical engineering problems. Such assumptions
have, nevertheless, been made here in order to obtain some mathematical un-
derstanding of the error estimation process that is described in Section 2.2. The
numerical example problems do contain corners. The HBIE (2.10), however,
has only been collocated at regular points on the boundary of a body.

2.2 Iterated HBIE and Error Estimation

The heuristic idea that is at the heart of the pointwise error estimation proce-
dure described below (see also [122, 123, 96]) is simple : the amount by which
an approximate solution to the BIE fails to satisfy the HBIE is a measure of the
error in the approximation. The main result of this work is that this heuristic
idea, when stated formally, leads to a simple characterization of the error. In
essence, the method reduces to finding a second approximation to the solution
by iterating the first approximation with the HBIE. This idea is first illustrated
in the context of two basic cases : the interior Dirichlet and Neumann problems.
Mixed boundary conditions are considered thereafter.

2.2.1 Problem 1 : Displacement Boundary Conditions

Solve the Navier-Cauchy equations:

(λ+ µ)∇(∇ · u) + µ∇2u = 0 in B

subject to the boundary conditions:

u = f on ∂B

This problem is analogous to the Dirichlet problem of potential theory. Un-
der suitable restrictions on the domain, it is possible to prove existence and
uniqueness of a solution to this BVP [46].
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Either the displacement BIE (2.9) or the traction HBIE (2.10) may be used
to formulate a method of solution for the unknown traction on the boundary.
The displacement BIE leads to a system of singular integral equations of the
first kind for the (unknown) traction:

Uijτj = fi + Tijfj =: g1
i i = 1, 2 (2.11)

while the traction BIE gives rise to equations of the second kind (for the trac-
tion):

τi − D(N)
ij τj = −S(N)

ij fj =: g2
i i = 1, 2 (2.12)

Recall that Uij is log-singular, Tij and D(N)
ij are Cauchy singular, and S(N)

ij

is hypersingular. As in potential theory, since Uij has a logarithmic kernel, one
again encounters the problem of the transfinite diameter. For instance, one
may show that if the domain B is a circle of radius exp[(1/2)(3− 4ν)], then the
BIE (2.11) does not admit a unique solution.

2.2.1.1 Error estimate for the primary problem

Using the two BIEs (2.11) and (2.12), one can formulate an error estimation
process that is analogous to the Dirichlet problem in potential theory [96].

• Step 1: Solve the displacement BIE (2.11) for the traction τ
(1)
i :

Uijτ
(1)
j = (Iij + Tij)fj (2.13)

where I is the identity operator and Iijfj = δijfj = fi, with δij the
components of the Kronecker delta.

• Step 2: Use the traction HBIE (2.12) to iterate the traction and obtain a
second approximation τ

(2)
i :

τ
(2)
i = D(N)

ij τ
(1)
j − S(N)

ij fj (2.14)

This approximation, called the HBIE iterate, will be used for error estima-
tion.

Let the error (in traction) in the primary solution and iterate be:

e
τ(1)
i = τ

(1)
i − τi (2.15)

e
τ(2)
i = τ

(2)
i − τi (2.16)

respectively. Define the hypersingular residual to be:
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r
(τ)
i = τ

(1)
i − τ

(2)
i (2.17)

One can now show that:

r
(τ)
i

(2.17)
= τ

(1)
i − τ

(2)
i

(2.14)
= τ

(1)
i − (D(N)

ij τ
(1)
j − S(N)

ij fj)
(2.15)
= τi − (D(N)

ij τj − S(N)
ij fj) + e

τ(1)
i − D(N)

ij e
τ(1)
j

(2.10)
= (Iij − D(N)

ij )eτ(1)
j

so that:

r
(τ)
i = (Iij − D(N)

ij )eτ(1)
j (2.18)

Theorem 1 For a sufficiently smooth domain, and sufficiently smooth data
and solutions (as detailed above), if the solution to the integral equations (2.11)
and (2.12) is unique, then there exist real positive constants C1 and C2 such
that :

C1‖r(τ)
i ‖ ≤ ‖eτ(1)

i ‖ ≤ C2‖r(τ)
i ‖

Proof: The continuity of the operators is a manifestation of the elliptic
nature of the partial differential equation (PDE). Uniqueness of solutions to
the integral formulations implies that the operators (Iij − D(N)

ij ) and Uij have
continuous inverses [172]. Now use Lemma 1.�

2.2.1.2 Error estimate for the iterate

In a manner similar to the previous subsection, one can show that:

e
τ(2)
i

(2.16)
= τ

(2)
i − τi

(2.14)
= D(N)

ij τ
(1)
j − S(N)

ij fj − τi

(2.15)
= D(N)

ij (eτ(1)
j + τj) − S(N)

ij fj − τi

(2.10)
= D(N)

ij e
τ(1)
j

so that:

e
τ(2)
i = D(N)

ij e
τ(1)
j (2.19)
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2.2.2 Problem 2 : Traction Boundary Conditions

Solve the Navier-Cauchy equations:

(λ+ µ)∇(∇ · u) + µ∇2u = 0 in B

subject to the boundary conditions:

t = g on ∂B

where the tractions satisfy the consistency conditions of static equilibrium:

∫
∂B

t ds = 0

∫
∂B

(r × t) ds = 0

It is known that the solution to the above problem exists, and is unique up
to a rigid body motion (Fung [46]). The space of two-dimensional rigid body
motions may be characterized as (Chen and Zhou [29]):

R := r0 + ω × r (2.20)

where r0 ∈ R2 is a translation, and ω = ω k is an axial vector representing a
rotation.

The first integral equation formulation for the problem follows from the
displacement BIE (2.9). One has an integral equation of the second kind for
the (unknown) displacement:

ui + Tijuj = Uijgj =: h1
i (2.21)

and using the traction HBIE (2.10):

−S(N)
ij uj = gi − D(N)

ij gj =: h2
i (2.22)

one obtains an integral equation of the first kind for the displacement.
It is important to mention again that the solution of the traction prescribed

BVP is arbitrary within a rigid body motion, and, to eliminate this arbitrari-
ness, one must work in a restricted function space as has been done before [96]
for Neumann problems in potential theory. An elegant practical way to solve
traction prescribed problems in linear elasticity is outlined in a recent paper by
Lutz et al. [90] where the singular matrix from the BIE is suitably regularized
at the discretized level by eliminating rigid body modes.
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2.2.2.1 Error estimate for the primary problem

The error estimation technique is analogous to the Neumann problem investi-
gated previously by Menon et al. [96]. First, construct an approximation to
the displacement field, u(1)

i . Next find τ
(2)
i , an iterated approximation to the

traction, and use it to estimate the error in the primary solution.

• Step 1: Solve the displacement BIE (2.21) for the displacement u(1)
i :

(Iij + Tij)u(1)
j = Uijgj (2.23)

• Step 2: Use the traction HBIE (2.10) to obtain τ
(2)
i :

τ
(2)
i = D(N)

ij gj − S(N)
ij u

(1)
j (2.24)

Define the hypersingular residual:

r
(τ)
i = τ

(1)
i − τ

(2)
i = gi − τ

(2)
i (2.25)

Also, the error in the displacement is defined as:

e
u(1)
i = u

(1)
i − ui (2.26)

One can now show that:

r
(τ)
i

(2.25)
= gi − τ

(2)
i

(2.24)
= gi − (D(N)

ij gj − S(N)
ij u

(1)
j )

(2.26)
= gi − D(N)

ij gj + S(N)
ij (uj + e

u(1)
j )

(2.10)
= S(N)

ij e
u(1)
j

so that:

r
(τ)
i = S

(N)
ij e

u(1)
j (2.27)

Theorem 2 The hypersingular traction residual bounds the error in the dis-
placement globally :

C1‖r(τ)
i ‖ ≤ ‖eu(1)

i ‖ ≤ C2‖r(τ)
i ‖

Proof: The proof is quite analogous to that of Theorem 1. It follows from
using equation (2.27). �
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2.2.2.2 The displacement residual

In the traction boundary condition problem, the unknown is the displacement
but equation (2.27) relates the traction residual to the error in the displacement.
It is proved below, however, that the traction residual is also equal to a suitably
defined displacement residual for this problem.

The HBIE (2.10), with ui added to both sides of it, and upon rearrangement,
becomes:

ui = (Iij − S(N)
ij )uj − (Iij − D(N)

ij )gj (2.28)

Let u(1)
i be the solution of the BIE (2.9). Iterate (2.28) with this solution

and define:

u
(2)
i = (Iij − S(N)

ij )u(1)
j − (Iij − D(N)

ij )gj (2.29)

Define the displacement residual:

r
(u)
i ≡ u

(1)
i − u

(2)
i (2.30)

One can now show that:

r
(u)
i ≡ u

(1)
i − u

(2)
i

(2.29)
= u

(1)
i − (Iij − S(N)

ij )u(1)
j + (Iij − D(N)

ij )gj

= S(N)
ij u

(1)
j + gi − D(N)

ij gj

(2.10)
= S(N)

ij u
(1)
j − S(N)

ij uj

(2.26)
= SN

ij e
u(1)
j

(2.27)
= r

(τ)
i (2.31)

so that:

r
(u)
i = r

(τ)
i (2.32)

and r
(τ)
i can be replaced by r

(u)
i in Theorem 2 !

Remark 2 An analogous result in potential theory appears in Menon et al.
[96]

2.2.3 Problem 3 : Mixed Boundary Conditions

The general boundary value problem in linear elasticity is:

Solve the Navier-Cauchy equations:
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(λ+ µ)∇(∇ · u) + µ∇2u = 0 in B

subject to the boundary conditions:

Au + Bt = f on ∂B

where the matrices A and B and the vector f are prescribed quantities.

This class of problems is the most commonly encountered one in linear elas-
ticity. Indeed, the numerical examples presented in Section 2.4 of this chapter
all have mixed boundary conditions imposed upon them. In this case, however,
a heuristic approach to error estimation is adopted here.

2.2.3.1 Traction residual

One computes the traction components τ (1)
j on ∂B by solving the primary BIE

(2.9) and then obtains the HBIE iterate τ (2)
j from the HBIE (2.10). As before,

the traction residual is defined as:

r
(τ)
i = τ

(1)
i − τ

(2)
i (2.33)

The corresponding pointwise error measure is as follows. At a fixed bound-
ary point, if the traction is specified in one direction, and the displacement in
the other, then the error in the boundary data is the error in displacement in
the first direction, and the error in traction in the second direction. This issue
is discussed further in Section 2.3 of this chapter.

2.2.3.2 Stress residual

The stress residual is another important quantity in this work. The primary
BIE (2.9) is solved first. This yields the boundary tractions and displacements
τ

(1)
j and u

(1)
j . The boundary stresses σ(1)

ij are next obtained from the boundary
values of the tractions and the tangential derivatives of the displacements, to-
gether with Hooke’s law. This is a well-known procedure in the BIE literature
(see, for example, Mukherjee [98] or Sladek and Sladek [151]).

Next, the iterated boundary stress is obtained from the HBIE (1.36) as
follows:

σ
(2)
ij = Dijkτ

(1)
k − Sijku

(1)
k (2.34)

where the required operators are defined in equations (2.5) and (2.6) and the
LTB of the above operators are used in equation (2.34). Also, equation (2.34)
is collocated only at regular boundary points (where the boundary is locally
smooth) inside boundary elements.
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One now gets the error in stress, for the BIE and the HBIE iterate, respec-
tively, as:

e
s(1)
ij = σ

(1)
ij − σij (2.35)

e
s(2)
ij = σ

(2)
ij − σij (2.36)

and the stress residual is defined as:

r
(s)
ij = σ

(1)
ij − σ

(2)
ij (2.37)

Remark 3 The stress residual, defined above in equation (2.37), can also be
used for problems with displacement or traction boundary conditions, which are
special cases of problems with mixed boundary conditions.

2.3 Element-Based Error Indicators

The main objective of error estimation is the development of suitable element
error indicators, which are denoted by ηi. These indicators should satisfy the
following criteria:

C1ηi ≤ ‖e‖A(∂Bi) ≤ C2ηi (2.38)

D1

N∑
i=1

η2
i ≤ ‖e‖2

A ≤ D2

N∑
i=1

η2
i (2.39)

where A is a suitable norm, A(∂Bi) denotes the restriction of this norm to the
ith element, and C1, C2, D1 and D2 are appropriate constants. It is often
difficult to prove these properties analytically, and one usually takes recourse
to numerical experiments. As in the potential theory case [96], this method
leads to two natural error indicators. The first is based on the traction residual
defined in equation (2.17); the second is based on the stress residual defined in
equation (2.37).

These pointwise error measures may be used to define element error indica-
tors. The following are proposed : the first based on the traction residual and
the second on the stress residual:

η
(τ)
j := ‖r(τ)

i ‖L2(∂Bj) (2.40)

η
(s)
j := ‖r(s)k� ‖L2(∂Bj) (2.41)

Note that the subscript j refers to the jth element - the error indicator is a
scalar, not a vector. The L2 norm is used for convenience and other norms can
be used, if desired.
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The error estimates, as defined above, do not depend directly on the bound-
ary conditions on an element. The traction residual has been shown to be
related to the pointwise error in the boundary unknowns for Dirichlet and Neu-
mann problems in elasticity (Section 2.2, Theorems 1 and 2). Note that, even
though the traction residual uses the difference in the primary and iterated trac-
tions, but no explicit information about the displacement, it has been proved
in Section 2.2 that the traction residual is equal to the displacement residual
for a traction prescribed boundary value problem.

In general, at a local level, on a particular element, the actual error will
depend on the boundary conditions. In mixed boundary value problems, for
instance, the traction may be prescribed in the x1-direction and the displace-
ment in the x2-direction at a boundary point. The errors are, therefore, in
the displacement in the x1-direction, and in the traction in the x2-direction.
Ideally, the traction residual-based element error indicator will capture the L2

norm of these errors on an element, even for mixed boundary value problems.

The stress residual is also used as a measure of the error in stress on the
boundary. At any boundary point in a 2-D problem, at most two components
of the stress are known from the prescribed boundary conditions. Thus, there is
always some error in a computed stress tensor at a boundary point. Numerical
experiments presented below (Section 2.4) suggest that this error is effectively
tracked by the stress residual-based error indicator.

2.4 Numerical Examples

Two basic problems from the theory of planar elasticity are considered in this
section. The numerical implementation consists of two modules: a standard
code for two-dimensional elastostatics, and a set of routines that calculate the
hypersingular residual for error estimation. For the first part (i.e. the BIE), a
code due to Becker [9] is employed. This code uses collocation with quadratic
isoparametric elements. Numerical integration is done using Gaussian quadra-
ture, except on elements that contain the collocation point. Singular integration
is avoided using the rigid-body mode, i.e., diagonal terms are evaluated by sum-
ming the off-diagonal terms. For the second part of the code (i.e. the HBIE),
collocation is carried out at points on the boundary where it is locally smooth,
and which are inside boundary elements, in order to determine the components
of stress using the traction HBIE. The numerical method used for evaluation
of the necessary hypersingular integrals here is due to Guiggiani [60]. In the
following examples, the stress tensor at a boundary point is evaluated by using
the HBIE (1.36) at three boundary points inside a boundary element, and then
a quadratic polynomial is employed to approximate the stress components over
each element.
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2.4.1 Example 1: Lamé’s Problem of a Thick-Walled Cylin-
der under Internal Pressure

Consider an infinitely long hollow cylinder subjected to an internal pressure
p = 1. The inner radius ri = 3, and the outer radius ro = 6. Material properties
are also chosen of O(1), namely Young’s modulus, E = 1.0, and Poisson’s ratio
ν = 0.3. Consistent units are assumed throughout this paper.

Symmetry is employed and the problem is formulated as a mixed boundary
value problem on a quarter of the cylinder. The mesh used to solve this problem
is shown in Figure 2.1(a). Notice that the mesh is not biased a priori in the
sense that the element density is not increased on parts of the boundary where
the error is expected to be high.

* :  BIE collocation nodes

o :  HBIE collocation nodes

(a)

0 5 10 15 20 25 30 35 40
-1

-0.5
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0.5
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1.5

2

Collocation point

o:stress from HBIE
+:stress from BIE

 :exact solution
σ

11
__

(b)

Figure 2.1: (a) Discretized domain for the Lamé problem with 12 elements. (b)
Comparison of analytical and numerical solutions for σ11 (from [127])

Figure 2.1(b) presents a comparison of the computed and analytical solu-
tions for the stress component σ11 at the collocation points used for the HBIE.
Note that the continuous line for the exact solution is just used as a matter
of convenience and does not have any meaning except at discrete points, since
the x-axis is the collocation point number. The results for σ12 and σ22 display
similar accuracy and are not shown here.

More importantly, a pointwise comparison between the absolute value of the
error and pointwise measurements of the hypersingular residual is considered
next. Unlike the numerical examples in potential theory [96], the hypersingular
residual and error are often of opposite signs in this elasticity example. Also,
it is seen that the residual is not an upper bound as it underestimates the
error at some points. Since the stress residual is a symmetric tensor with three
independent components, a comparison between the pointwise error and stress
residual in each direction is carried out here. The error in stress, for the BIE
and the HBIE iterate, and the stress residual, are defined in (2.35 - 2.37).
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Figure 2.2: Absolute values of error in the BIE solution, error in the HBIE
iterate, and the hypersingular residual, for (a) σ11 and (b) σ12. All variables
are unscaled (from [127])

Now consider a comparison of absolute values of errors, and the residual
in σ11 in Figure 2.2(a), and in σ12 in Figure 2.2(b). It is seen that the stress
residual provides good pointwise tracking of the error on a relatively coarse
mesh.

Of most practical importance (e.g. in adaptivity) is the performance of ele-
ment error indicators. In particular, the performance of the two indicators η(τ)

j

and η
(s)
j defined in equations (2.40) and (2.41), respectively, is studied here.

The first is a traction residual-based error indicator, and the second uses the
stress residual.

The element error indicator based on the traction residual (η(τ)
j from equa-

tion (2.40)) is compared with the element-based L2 norm of the error in the
unspecified boundary data in Figure 2.3(a). On the other hand, the element
error indicator based on the stress residual (η(s)

j from equation (2.41)) is com-
pared to the element-based L2 norm of the error in stress, on all the boundary
elements, in Figure 2.3(b). The stress residuals are seen to capture the error
trends quite effectively.

Remark 4 The comparison between the traction residual and error in the dis-
placement is difficult unless one uses normalized values. A simple way to do
this is to use nondimensional quantities to begin with. This is the approach
followed in this work.
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Figure 2.3: Comparisons of element error indicators with actual errors, for (a)
traction residual-based error with error in the unspecified boundary data, and
(b) stress residual-based error with error in boundary stresses (from [127])

2.4.2 Example 2: Kirsch’s Problem of an Infinite Plate
with a Circular Cutout

Consider an infinite plate with a circular cutout of radius 1, subject to a traction
τ1 = 1 at infinity. Material properties are the same as in the previous example.

The displacement and stress fields for this problem may be found in Tim-
oshenko and Goodier [167]. In order to simulate this problem with a finite
geometry, the boundaries of a finite square domain are subjected to tractions
computed from the exact solution of an infinite plate subjected to traction at
infinity. Using symmetry, only a quarter of the plate is used in the computer
model. The mesh is shown in Figure 2.4.

Pointwise comparisons between the errors (in the BIE solution and in the
HBIE iterate), and the residual, in some components of the stress, are presented
first. Figures 2.5(a) and 2.5(b) show the absolute values of these errors in two
stress components, together with the corresponding stress residuals. Of course,
the error in BIE stress component is zero at points where that particular stress
component is prescribed as a boundary condition.

The more important comparison is between the computed element error
indicators and the L2 norms of the error on each element (Figure 2.6). Figure
2.6(a) uses errors in the unspecified boundary data while Figure 2.6(b) uses
errors in stress components. It is seen that the traction-based error indicator
underestimates the error on some elements. The stress-based error indicator
performs better and accurately captures the error in stress on most of the
elements.

In conclusion, the error estimation method presented here has the advantage
of capturing errors in the stress field. On the other hand, the usual residual
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Figure 2.4: Discretized domain for the problem of a plate with a cutout with
10 elements. Plate side is 4 units and cutout radius is 1 unit of length (from
[127])
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Figure 2.5: Absolute values of error in the BIE solution, error in the HBIE
iterate, and the hypersingular residual for (a) σ12 and (b) σ22. All variables are
unscaled (from [127])
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Figure 2.6: Comparisons of element error indicators with actual errors, for (a)
traction residual-based error with error in the unspecified boundary data, and
(b) stress residual-based error with error in boundary stresses (from [127])

techniques may only be used to compute the error in displacements. On phys-
ical grounds, a measure of the error in stress is preferable to a measure of
displacement error. It may also be viewed as a stronger measure of convergence
- i.e. the approximate displacement field, and its gradient have converged to
the actual solution in this case.
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Chapter 3

THIN FEATURES

Many boundary value problems that are solved by the BEM involve thin fea-
tures. Common examples are cracks and thin plates and shells. This chapter
first presents BEM formulations for 3-D potential theory in a region exterior to
thin plates, for applications in micro-electro-mechanical systems (MEMS). This
is followed by a discussion of crack problems (linear elastic fracture mechanics
- LEFM) in 3-D linear elasticity.

3.1 Exterior BIE for Potential Theory: MEMS

Exterior BIEs for potential theory, suitable for applications in MEMS, are pre-
sented in this section. Numerical results for a simple system with two thin
conducting plates follow. Further details are available in [6].

3.1.1 Introduction to MEMS

The field of micro-electro-mechanical systems (MEMS) is a very broad one
that includes fixed or moving microstructures; encompassing micro-electro-
mechanical, microfluidic, micro-opto-electro-mechanical and micro-thermal-
mechanical devices and systems. MEMS usually consists of released microstruc-
tures that are suspended and anchored, or captured by a hub-cap structure and
set into motion by mechanical, electrical, thermal, acoustical or photonic energy
source(s).

Typical MEMS structures consist of arrays of thin beams with cross-sections
in the order of microns (µm) and lengths in the order of ten to hundreds of
microns. Sometimes, MEMS structural elements are plates. An example is a
small rectangular silicon plate with sides in the order of mm and thickness of
the order of microns, that deforms when subjected to electric fields. Owing
to its small size, significant forces and/or deformations can be obtained with
the application of low voltages (≈ 10 volts). Examples of devices that utilize
vibrations of such plates are synthetic microjets ([142, 8] - for mixing, cooling

39
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of electronic components, micropropulsion and flow control), microspeakers [71]
etc.

Numerical simulation of electrically actuated MEMS devices have been car-
ried out for around a decade or so by using the BEM to model the exterior
electric field and the FEM (see, e.g. [179, 190, 66]) to model deformation of
the structure. The commercial software package MEMCAD [147], for example,
uses the commercial FEM software package ABAQUS for mechanical analysis,
together with a BEM code FastCap [112] for the electric field analysis. Other
examples of such work are [49, 148, 1]; as well as [147, 149] for dynamic analysis
of MEMS.

The focus of this section is the BEM analysis of the electric field exterior to
very thin conducting plates. A convenient way to model such a problem is to
assume plates with vanishing thickness and solve for the sum of the charges on
the upper and lower surfaces of each plate [61]. The standard BIE with a weakly
singular kernel is used here and this approach works well for determining, for
example, the capacitance of a parallel plate capacitor. For MEMS calculations,
however, one must obtain the charge densities separately on the upper and lower
surfaces of a plate since the traction at a surface point on a plate depends on the
square of the charge density at that point. The gradient BIE is employed in the
present work to obtain these charge densities separately. Careful regularization
of the gradient equation, to take care of singular and nearly singular integrals
that arise, is the principal contribution of the present work. The work of Liu
[87], on thin shells, is of great value to the research reported here. Gray [53] and
Nishimura and his coworkers [118, 180] have considered the 3-D Laplace equa-
tion in a region exterior to a narrow slit or crack. Gray addresses applications
in electroplating problems. The research described in Refs. [118, 180] is quite
different from the problem under consideration here. Their primary interest
is in the crack opening displacement with zero normal displacement derivative
on the crack faces, while the separate charge densities (that are proportional
to the normal derivative of the potential) are of interest in this chapter. The
formulation given in the present work is a BEM scheme that is particularly well
suited for MEMS analysis of very thin plates - for h/L ≤ .001 - in terms of the
length L (of a side of a square plate) and its thickness h. A similar approach has
also been developed for MEMS and nano-electro-mechanical systems (NEMS)
with very thin beams [7], but this work is not presented in this book.

As a byproduct of the development of the thin plate BEM, an enhanced
BEM, suitable for MEMS analysis of moderately thick plates, has also been
developed in this work. It is shown that accurate evaluation of weakly singular
and nearly weakly singular integrals plays a key role here.

This section is organized as follows. The usual and gradient BIEs for po-
tential theory, in an infinite region exterior to a structure composed of thin
conducting plates, are first presented and regularized. Singular and nearly sin-
gular integrals, both weak and strong, are discussed next. Numerical results are
presented and discussed for a model problem (a parallel plate capacitor) from
three methods - the usual BEM, the enhanced BEM and the thin plate BEM.
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3.1.2 Electric Field BIEs in a Simply Connected Body

First consider the solution of Laplace’s equation in a three-dimensional (3-D)
simply connected body.

3.1.2.1 Usual BIE - indirect formulation

Referring to Figure 1.1, for a source point ξ ∈ B (with bounding surface ∂B),
one has the usual indirect BIE:

φ(ξ) =
∫
∂B

ν(y)
4πr(ξ,y)ε

ds(y) (3.1)

where φ is the potential, r(ξ,y) = y − ξ, r = |r|, ε is the dielectric constant of
the medium and ν is the (unknown) surface density function on ∂B.

3.1.2.2 Gradient BIE - indirect formulation

Taking the gradient of φ at the source point ξ results in:

∇ξφ(ξ) =
∫
∂B

ν(y)
4πε

∇ξ

(
1

r(ξ,y)

)
ds(y) =

∫
∂B

ν(y)r(ξ,y)
4πr3(ξ,y)ε

ds(y) (3.2)

Alternatively, one can write (3.2) as:

∂φ

∂ξk
(ξ) =

∫
∂B

ν(y)(yk − ξk)
4πr3(ξ,y)ε

ds(y) (3.3)

Note that, in general, the function ν(y) is not the charge density. It be-
comes equal to the charge density when B is the infinite region exterior to the
conductors. This is discussed in Section 3.1.3.

3.1.3 BIES in Infinite Region Containing Two Thin Con-
ducting Plates

Now consider the situation shown in Figure 3.1. Of interest is the solution of
the following Dirichlet problem for Laplace’s equation:

∇2φ(x) = 0, x ∈ B, φ(x) prescribed for x ∈ ∂B (3.4)

where B is now the region exterior to the two plates. The unit normal n to ∂B
is defined to point away from B (i.e. into a plate).
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+ŝ
2

---
---

---
---

Figure 3.1: Parallel plate capacitor with two plates (from [6])

3.1.3.1 Regular BIE - source point approaching a plate surface S+
1

Let Ŝ1
+ ⊂ S+

1 be a small neighborhood of x+. As ξ → x+ ∈ Ŝ1
+ ⊂ S+

1 (see
Figure 3.1), one has:

φ(x+) =
∫
S+

1 −Ŝ1
+

β(y)
4πr(x+,y)ε

dS(y) +
∫
Ŝ1

+

β(y)
4πr(x+,y)ε

dS(y)

+
∫
S+

2

β(y)
4πr(x+,y)ε

dS(y) (3.5)

Here β(y) = σ(y+) + σ(y−), where σ is now the charge density at a point
on a plate surface. The second integral above is weakly singular, while the rest
are usually regular. It should be noted, however, that the last integral above
becomes nearly weakly singular when both h and g are small.

A similar equation can be written for x+ ∈ S+
2 . For the case shown in

Figure 3.1, however, this is not necessary since β(y) is equal and opposite on
the two plates. Therefore, for this case, equation (3.5) is sufficient to solve for
β on both the plates !

3.1.3.2 Gradient BIE - source point approaching a plate surface S+
1

The governing equation. It is first noted that for x+ ∈ S+
k ∪ S−

k , k = 1, 2:

σ(x) = ε
∂φ

∂n
(x) = εn(x) · [∇ξφ(ξ)]ξ=x (3.6)
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Consider the limit ξ → x+ ∈ Ŝ1
+ ⊂ S+

1 . It is important to realize that
this limit is meaningless for a point x on the edge of a plate, since the charge
density is singular on its edges. One has:

σ(x+) =
∫
S+

1 −Ŝ1
+

β(y)r(x+,y) · n(x+)
4πr3(x+,y)

dS(y)

+
∫
Ŝ1

+

r(x+,y) · [β(y)n(x+) − β(x)n(y)]
4πr3(x+,y)

dS(y)

+
β(x)
4π

Ω(Ŝ1
+
,x+) +

∫
S+

2

β(y)r(x+,y) · n(x)
4πr3(x+,y)

dS(y) (3.7)

x

y

r(x , y)
+

+

+

+

θ

φ

n
ψ

Z axis

1s

ξ

L

Figure 3.2: Line integral for evaluation of solid angle (from [6])

In the above, the solid angle subtended by the surface element Ŝ1
+

at the
point x+ is (see [87, 105] and Figure 3.2):

Ω(Ŝ1
+
,x+) =

∫
Ŝ1

+
=

r(x+,y) · n(y)
r3(x+,y)

dS(y) =
∫ 2π

0

[1 − cos(ψ(θ))]dθ (3.8)

where the symbol
∫
= denotes the Finite Part (FP) of the integral in the sense of

Mukherjee [101, 102].
Equations (3.7) and (3.8) give the final equation:

1
2
[σ(x+) − σ(x−)] =

∫
S+

1 −Ŝ1
+

β(y)r(x+,y) · n(x+)
4πr3(x+,y)

dS(y)
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+
∫
Ŝ1

+

r(x+,y) · [β(y)n(x+) − β(x)n(y)]
4πr3(x+,y)

dS(y)

−β(x)
4π

∫ 2π

0

cos(ψ(θ))dθ +
∫
S+

2

β(y)r(x+,y) · n(x+)
4πr3(x+,y)

dS(y) (3.9)

Here (see Figure 3.2), a local coordinate system (x, y, z) is set up with the
origin at x+ such that the positive z axis intersects the surface Ŝ1

+
. Now, ψ

is the angle between the positive z axis and r(x+,y) with y ∈ L̂+, and θ the
angle between the positive x axis and the projection of r(x+,y) in the xy plane.

In the above, the second integral on the right-hand side is weakly singular,
while the rest are usually regular. The last integral above, however, becomes
nearly strongly singular if both the thickness h and the gap g are small. Once β
is known on both plates, (3.9) can be used, as a postprocessing step, to obtain
σ+ and σ− on both plates.

Equation (3.9) for flat plates. First, it should be emphasized that equa-
tions (3.5) and (3.9) are valid for thin curved shells as well as for flat plates.
For a pair of symmetric flat plates (see Figure 3.1), the first, second and third
integrals on the right-hand side of (3.9) vanish, and one is left with the simple
equation:

1
2 [σ(x+) − σ(x−)] =

∫
S+

2

β(y)r(x+,y) · n(x+)
4πr3(x+,y)

dS(y) (3.10)

Equation (3.10) implies that σ(x+) = σ(x−) if one has only one plate. This,
of course, is true. The existence of the second plate in Figure 3.1 is the reason
for (in general) σ(x+) = σ(x−).

3.1.3.3 Two plates very close together

For cases in which the gap g between the thin plates in Figure 3.1 is also of
the order of the (small) plate thickness, the last integral on the right-hand side
of equation (3.5) must be treated as nearly weakly singular. In this case, this
integral should be written as:

∫
S+

2

β(y)
4πr(x+,y)ε

dS(y) =
∫
S+

2 −Ŝ2
+

β(y)
4πr(x+,y)ε

dS(y)

+
∫
Ŝ2

+

β(y) − β(x̃)
4πr(x+,y)ε

dS(y) +
β(x̃)
4πε

∫
Ŝ2

+

1
r(x+,y)

dS(y) (3.11)

where x̃+ ∈ Ŝ2
+
, x̃− ∈ Ŝ2

−
and β(x̃) = σ(x̃+) + σ(x̃−). The first and second

integrals on the right-hand side of (3.11) are regular. (The second integral is
O(r̃/r) where r̃ = |y − x̃+|. As r̃ → 0, r → g + h, so that this integrand
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→ 0.) The last integral is nearly singular. A procedure for accurate evaluation
of nearly singular integrals is presented in Section 3.1.4.

Also, the last integral on the right-hand side of (3.9) now becomes nearly
strongly singular. This integral, called J , can be evaluated as follows. One can
write:

J =
∫
S+

2 −Ŝ2
+

β(y)r(x+,y) · n(x+)
4πr3(x+,y)

dS(y)

+
∫
Ŝ2

+

r(x+,y) · [β(y)n(x+) − β(x̃)n(y)]
4πr3(x+,y)

dS(y)

+
β(x̃)
4π

Ω(Ŝ2
+
,x+) (3.12)

where (see Figure 3.2):

Ω(Ŝ2
+
,x+) =

∫
Ŝ2

+

r(x+,y) · n(y)
r3(x+,y)

dS(y) =
∫ 2π

0

[1 − cos(ψ(θ))]dθ (3.13)

It is noted that, in this case, the point x+ is slightly above Ŝ2
+

and that
the second term in (3.13) denotes a “nearly FP” integral.

The idea of regularizing (3.12) with β(x̃) has been inspired by earlier work
on evaluation of nearly singular integrals [104].

x

x

~

+ +

+

x+n( )

x+n( )
~

s1

+s2

V=0

y..

.
ground plane

Figure 3.3: Symmetric deformation of two plates (from [6])

Let the integrals on the right-hand side of (3.12) be called J1, J2, J3. Each
of the three integrals is regular. The fact that the second integral J2 is regular
can be proved as follows.
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It is assumed that the two plates always remain symmetric with respect to
the ground plane, even after deformation (see Figure 3.3). Their equations,
therefore, are of the form x3 = ±f(x1, x2). One now has:

n(x+) ∝ −k + if,1 + jf,2, n(x̃+) ∝ −k − if,1 − jf,2 (3.14)

As y → x̃+,

[β(y)n(x+) − β(x̃)n(y)] ∝
k[β(x̃) − β(y)] + [ia+ jb][β(x̃) + β(y)] (3.15)

where i, j,k are Cartesian unit vectors and a and b are some numbers.
As y → x̃+, r(x+,y) ∝ −k, so that the integrand of J2 is O(r̃/r2) where

r̃ = |y− x̃+|. In this limit, r̃ → 0, r → g+ h, so that the integrand of J2 → 0.

3.1.3.4 Consistency check

It is interesting to examine the forms of equations (3.5) and (3.9) when col-
located at x− on S−

1 (see Figure 3.1). Equation (3.5) yields φ(x+) = φ(x−).
Referring to equation (3.7), its left-hand side becomes σ(x−), and the signs of
the first, second and fourth terms on its right-hand side change (since n(x−) =
−n(x+) and n(y) for y ∈ S+

1 equals −n(y) for y ∈ S−
1 ). The solid angle

expression (see (3.8)) now becomes:

Ω(Ŝ1
−
,x−) =

∫ 2π

0

[1 + cos(ψ(θ))]dθ (3.16)

Using these facts, it is easy to show that, as expected, equation (3.9) remains
unchanged when collocated at x−!

3.1.4 Singular and Nearly Singular Integrals

Certain BEM integrals require special care for thin plates and when thin plates
come close together. The usual BEM must deal with weakly and nearly weakly
singular integrals in such cases, while the thin plate BEM must deal with both
nearly weakly singular (the last integral on the right-hand side of (3.5)) and
nearly strongly singular (the last integral on the right-hand side of (3.9)) in-
tegrals; as well as weakly and strongly singular integrals. The weakly singular
case involving this kernel has been addressed before by many authors (see, e.g.
[114, 26]). The nearly (also called quasi) weakly singular case, along with other
nearly singular integrals of various orders, can be effectively evaluated by em-
ploying a cubic polynomial transformation due to Telles [165] and Telles and
Oliveira [166]. Several other authors have also considered similar problems (e.g.
[64, 104]) - many of these references are available in [165, 114, 166, 104] and
are not repeated here in the interest of brevity. A new simple approach for
evaluation of nearly weakly singular integrals is presented below.
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Figure 3.4: Nearly weakly singular integrals (from [6])

Proposed new method for evaluating nearly weakly singular integrals.
A typical situation where one encounters weakly and nearly weakly singular
integrals in the usual BEM is shown in Figure 3.4. Consider a source point x on
the top face of a plate and its image point x̂ on the bottom face in Figure 3.4(a).
Two kinds of singular (O(1/r)) integrals arise - a weakly singular integral on the
boundary element ∆ on the top face of the plate that contains x, and, since h is
small, a nearly weakly singular integral on the boundary element ∆̂ (the image
of ∆) on the bottom face of the plate that contains x̂. The weakly singular
integral is evaluated by employing the methods outlined in [114, 26]. A nearly
weakly singular integral (see above and also the last term on the right-hand
side of (3.11)) has the form:

I(x) =
∫

∆̂

σ(y)ds(y)
4πεr(x,y)

(3.17)

The integrand above is multiplied by r̂/r̂ with the result:

I(x) =
∫

∆̂

[σ(y)(r̂/r)]ds(y)
4πεr̂(x̂,y)

(3.18)

Since r̂/r is O(1) and → 0 as y → x̂ (i.e. as r̂ → 0), the integrand in (3.18)
is weakly singular, of O(1/r̂) as r̂ → 0. Therefore, the integral (3.18) can be
evaluated by employing the methods described in [114, 26].

The source point x may also lie on a side face of the plate (in the 3-D BEM)
as shown in Figure 3.4(b). The same idea (3.18) can be applied in this case as
well.

Performance of new method for nearly weakly singular integrals.
The performance of the new method is compared with that of standard Gauss
integration. Figure 3.5(a) shows the source point and region of integration (a
triangle). The triangle is purposely chosen to be fairly elongated. Numerical
results (for σ = 1 and ε = 1) appear in Figure 3.5(b). It is seen that for
h < 1/100, standard Gauss integration, even with 19 Gauss points, cannot re-
duce the error below around 4%. The new method is seen to take care of these
nearly weakly singular integrals very well, even for very small values of h.
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Nearly strongly singular integrals. When two plates get close together,
one encounters nearly strongly singular integrals of the form (see (3.13)):

I =
∫

∆

r(x,y) · n(y)
r3(x,y)

ds(y) =
∫

∆

h

r3(x,y)
ds(y) (3.19)

where the second expression above is the special version for the situation de-
picted in Figure 3.5(a). It is absolutely critical that this integral be evaluated
carefully. The pathetic result of applying standard Gauss integration (even with
19 Gauss points) appears in Figure 3.6. The correct results in this figure are
obtained from the symbolic computational code Maple [65]. A Stoke transfor-
mation to convert this nearly strongly singular surface integral to a line integral
[87] is recommended in this work (see (3.13)).

3.1.5 Numerical Results

3.1.5.1 Three BEM Models

Three BEM models, the usual, the enhanced and the thin plate, are of concern
to this work. These are briefly described below.

Usual BEM. The usual BEM is the standard version with weakly singular
integrals evaluated by the method outlined in [26]. For the sake of simplicity
and consistency between different BEM models, only uniform BEM meshes,
composed of T6 triangles, are used on the square faces of objects in this work.
It is well known that the charge density is singular on the edges of a plate.
Therefore, nonconforming boundary elements should be used and collocation
points should not be placed at plate edges. This procedure, however, makes
the BEM code somewhat cumbersome and expensive. For simplicity, regular
T6 elements are used on square plate faces, in all three types of BEM models,
with collocation points placed everywhere including on plate edges. Further, in
the interest of standardization, the usual BEM only uses T6 elements in this
work.

The usual BEM code is first verified by solving for the charge distribution on
the surface of a unit cube, subjected to unit surface potential. The capacitance
(the total charge on the cube surface divided by the voltage) (with ε = 1) from
the BEM is 8.28 while that from FastCap [113] is 8.3. The BEM mesh for this
problem has an 8 × 8 array of squares on each face, each divided into two T6
triangles, for a total of 768 boundary elements.

Enhanced BEM. The enhanced BEM is designed to solve problems with
moderately thick plates accurately and efficiently. Like the usual BEM, weakly
singular integrals are again evaluated by the methods outlined in [26]. The
enhanced BEM has two additional features:

• Nearly weakly singular integrals are evaluated by the method outlined in
Section 3.1.4 above.
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• Detailed modeling of side faces for small values of h/L is not desirable
for two reasons. One reason is that this would either lead to triangular
boundary elements (on these side faces) with very large aspect ratios,
or, alternatively, to a prohibitively large number of boundary elements.
The second reason is a matter of efficiency. In the enhanced BEM, T3
elements are used on the side faces. This assures linear interpolation
of the charge density across a side face with no new unknowns being
introduced on these faces (and, therefore, no additional nearly weakly
singular integrals). Obviously, this idea is good for moderate values of
h/L. It is not a good idea for cubelike conductors. Also, the usual as well
as the enhanced BEM breaks down for very small values of h/L. This
issue is discussed further in Section 3.1.6 below.

Thin plate BEM. This is the model that has been presented in detail in
Section 3.1.3 of this chapter. In this case, nearly singular integrals only arise
when plates are very close together (i.e. for small values of g/L). Again, weakly
singular and nearly weakly singular integrals (when they arise) are evaluated
by the method outlined in [26], and in Section 3.1.4, respectively. Strongly
singular integrals and nearly strongly singular integrals (when they arise) are
evaluated by Stoke regularization (see equations (3.8) and (3.13)). The value
of g/L = 0.2 in many examples below. The corresponding integrals are treated
as regular in these cases.

Collocation points. It is important to point out that, in general, the usual
BEM requires collocation points on the entire bounding surface of a plate, the
enhanced BEM on the upper and lower surfaces, and the thin plate BEM only
on the upper surface. Of course, symmetry can be used, whenever possible, to
further reduce the number of collocation points.

3.1.6 The Model Problem - a Parallel Plate Capacitor

Numerical results are obtained from three methods - the usual, enhanced and
thin plate BEM. The model problem is a parallel plate capacitor with two
square plates (Figure 3.1). The length L of the side of each plate is unity. The
gap between the plates is g. The dielectric constant of the external medium, ε,
is unity. The voltages on the upper and lower plates are V1 = 1 and V2 = −1,
respectively.

3.1.6.1 Capacitance evaluation from the thin plate BEM model

Results from the thin plate BEM model (with h/L = 10−6) are compared to
those from Harrington [61] in Figure 3.7. The capacitance C = Q/2V , where
Q is the total charge on the top plate and V is the potential on it. A = L2 is
the area of each plate. Calculation of the capacitance, of course, only requires
equation (3.5). Harrington’s approach is essentially the same as the present one.
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The differences are that the weakly singular integral in (3.5) is now evaluated
from the method outlined in [26], and that [61] uses constant while the present
work uses quadratic (T6) elements. The present results are believed to be more
accurate than the older ones.
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Thin plate BEM
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g/L

Cg

Aε
__

Figure 3.7: Normalized capacitance from the thin plate model compared with
numerical results from [61]. Ref. [61] uses 36 constant square elements while
the present work uses 16 × 16 × 2 T6 elements on the upper surface of each
plate (from [6])

3.1.6.2 Comparison of various methods

The performance of the three BEM models - the usual, the enhanced and the
thin plate - are compared for the parallel plate capacitor problem (Figure 3.1)
in Table 3.1. Different values of h/L are considered here while g/L is kept fixed
at 0.2. Each method has different regions where it excels - the enhanced BEM
being best suited for intermediate thicknesses and the thin plate BEM being
best for very thin plates.

Total charge. Table 3.1 is only concerned with the total charge on the plates
- therefore only with equation (3.5) of the thin plate BEM. It is first observed
that there is a significant discrepancy between the usual and enhanced BEM
results for h/L = 0.1. This is primarily due to the fact that the enhanced
BEM computes nearly weakly singular integrals by the method proposed in
Section 3.1.4 while the usual BEM employs standard Gaussian quadrature for
evaluating these integrals. With the given mesh, the enhanced BEM delivers
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Cg/Aε Computational effort
h/L Usual Enhanced Thin plate Usual Enhanced Thin plate

BEM BEM BEM BEM BEM BEM
1 2.3975 1053.9

0.1 3.3542 2.6631 1.2351 95.7 99.7 4.2
0.05 1.7405 1.3879 100.4 4.2
0.01 1.6899 1.5611 101.2 4.2
0.005 1.6652 1.5874 100.1 4.2
0.001 1.6221 1.6094 100.1 4.2
10−6 1.6200 4.2

Table 3.1: Summary of various cases for the parallel plate capacitor problem.
Mesh : All cases - on each (unit) square (top and bottom) plate face 8×8×2 T6
triangles. Usual BEM : for cube - each side face 8 × 8 × 2 T6 triangles; for
h/L = 0.1, each side face 8 × 2 T6 triangles. Enhanced BEM : each side face
16 × 2 T3 triangles. g/L = 0.2. Computational effort in cpu seconds (from [6])

Cg/Aε = 2.6631. The same approach, with the same mesh, but with Gaussian
quadrature used to evaluate nearly weakly singular integrals, yields a value of
1.9785 - a difference of over 25% ! The usual BEM model with 16 T6 triangles
on each side face has an additional 16 midside nodes on each side face that
generate additional nearly weakly singular integrals (see Figure 3.4(b)). When
all these nearly weakly singular integrals are evaluated with standard Gaussian
quadrature, the usual BEM yields Cg/Aε = 3.3542. (In fact, many of the
values of charge on the midside nodes on the side faces come out wrong - they
are negative !) The idea here is not to deliberately downgrade the usual BEM.
Rather, it is to emphasize that significant errors can arise from the evaluation
of nearly weakly singular integrals by standard Gaussian quadrature. One tries,
of course, to compensate for the use of Gaussian quadrature for the evaluation
of nearly weakly singular integrals by using a fine mesh, or a large number of
Gauss points, or both. As seen from Figure 3.5(b), however, just using a large
number of Gauss points may not help very much.

The enhanced and the thin plate BEM show best agreement for h/L = 0.001.
It is noted that even though the thin plate equations have no explicit dependence
on the plate thickness h, the final results from it do depend on h because the
distance from S+

1 to S+
2 is g + h (see Figure 3.1) and the gap g is kept fixed

here.

Separate charges. Perhaps even more interesting is Table 3.2, which com-
pares how the separate charges σ+ and σ− (on the top plate) are calculated by
the enhanced BEM and the thin plate BEM. Of course, equation (3.10) now
comes into play in the thin plate BEM. As is well known, accurate determi-
nation of σ+ and σ− is critical for MEMS applications since the traction on a
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Enhanced BEM Thin plate BEM
h/L = 0.01 h/L = 0.001 h/L = 0.01 h/L = 0.001

σ+ at plate center 1.9972 4.5300 1.4539 1.4500
σ− at plate center 9.8761 12.150 9.4399 9.8600∫

s+1
σ+ds 0.3183 0.7904 0.4303 0.4348∫

s−1
σ−ds 1.2622 0.8182 1.1308 1.1746

Table 3.2: Comparison of enhanced BEM and thin plate BEM for the parallel
plate capacitor problem. Mesh : Both cases - on each (unit) square (top and
bottom) plate face 8 × 8 × 2 T6 triangles. Enhanced BEM : each side face
16 × 2 T3 triangles. g/L = 0.2 (from [6])

plate, at a surface point, depends on the square of the charge density at that
point. Agreement between the two methods is tolerable for h/L = 0.01. The
enhanced BEM, however, breaks down when determining the charges separately
for h/L = 0.001 (even though it successfully calculates the capacitance for this
value of h/L). The reason for this failure is that the usual (and enhanced) BIEs,
collocated at x+ and x− in Figure 3.1, become nearly identical as h/L → 0.
This is analogous to the well-known failure of the usual elasticity BIE for frac-
ture mechanics problems (see, e.g. [87, 105]), and, of course, gets worse as h/L
gets smaller. The thin plate BEM performs well for h/L = 0.001 (and for a
much lower value of h/L, see Table 3.3). This is because equation (3.5) is now
only used for obtaining the sum of the charges on each plate, and (3.10) is used
for obtaining the separate charges. The bottom line is that equation (3.10) is
crucial for obtaining the charges separately.

mesh on unit square σ+ at plate center σ− at plate center Cg/Aε
8 × 8 × 2 1.455 9.913 1.615

12 × 12 × 2 1.465 9.908 1.593
16 × 16 × 2 1.470 9.907 1.583

Table 3.3: Convergence of the thin plate BEM model for the parallel plate
capacitor problem for various meshes. h/L = 10−6, g/L = 0.2 (from [6])

The convergence characteristics for the thin plate BEM are investigated
for a super thin plate (h/L = 10−6) in Table 3.3. It is found that the mesh
dependence of the results is minimal.

Computational efficiency. Finally, Table 3.1 demonstrates huge savings in
computational effort for the thin plate BEM - around a factor of 25 compared
to the enhanced BEM.
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Figure 3.8: Geometry of the crack problem (from [105])

3.2 BIE for Elasticity: Cracks and Thin Shells

Regularized BIEs for linear elasticity, suitable for applications in linear elastic
fracture mechanics (LEFM), are presented in this section. This is followed by a
discussion of BIEs suitable for the analysis of thin elastic shells. Further details
are available in [105].

3.2.1 BIES in LEFM

This section is concerned with regularization of BIEs in linear elastic fracture
mechanics. The starting point is FP integrals that involve traction sums and
crack opening displacements when the collocation point approaches a crack
surface in the limit to the boundary (LTB) sense. The appropriate FP integrals
are regularized by an addition-subtraction procedure followed by applications
of Stokes’ theorem to convert singular or hypersingular integrals on surfaces
into regular line integrals on the bounding contours of these surfaces.

The geometry of the problem appears in Figure 3.8. The total surface of a
cracked body B is ∂B = ∂B0 ∪S+ ∪S−, where S+ and S− are the (coincident)
upper and lower surfaces of a crack in the body. These surfaces are geometrically
identical and have opposite normals at any pair of twin points x+ and x−. A
singular element containing x+ is Ŝ+ and similarly one containing x− is Ŝ−.

It is well known (e.g. Cruse [38]), that both the displacement and stress
BIEs must be used appropriately in order to solve this problem by the BEM.
A discussion of this, and related issues, follows.
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3.2.1.1 Source point approaching the outer surface

Let an internal point ξ approach a point x on the outer surface ∂B0 of the body
(see Figure 3.8).

Regularized displacement BIE. The usual rigid body mode is used to
regularize the integral on ∂B0 in the displacement BIE (1.24). With ∂B =
∂B0 ∪ S+ ∪ S−, a regularized form of equation (1.24) is:

0 =
∫
∂B0

[Uik(x,y)τi(y) − Tik(x,y)(ui(y) − ui(x)]dS(y)

+
∫
S+

[Uik(x,y)qi(y) − Tik(x,y)vi(y)dS(y) (3.20)

where the sum of the tractions across a crack, q, and the crack opening dis-
placement, v, are defined as:

qi(y) = τi(y+) + τi(y−) (3.21)

vi(y) = ui(y+) − ui(y−) (3.22)

for twin points y+ and y− across a crack.

Regularized stress BIE Use of both rigid body and linear displacement
modes (see Lutz et al. [89] and Mukherjee et al. [99]) leads to a regularized
form of the stress BIE (1.36). This is:

0 =
∫
∂B0

{
Dijk(x,y)

[
σkh(y) − σkh(x)

]
nh(y)

− Sijk(x,y)
[
uk(y) − uk(x) − uk,�(x)(y� − x�)

]}
dS(y)

+
∫
S+

[Dijk(x,y)qk(y) − Sijk(x,y)vk(y)] dS(y) (3.23)

Either of the equations (3.20) or (3.23) can be collocated at x ∈ ∂B0 when
solving a LEFM problem. The simpler (3.20) is preferable and is recommended.

3.2.1.2 Source point approaching a crack surface

Let an internal point ξ approach a point x+ on the crack surface S+ (see Figure
3.8).
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The displacement BIE. An FP representation of the displacement BIE
(1.24) with x → x+ ∈ S+ is:

uk(x+) =
∫
∂B0

[
Uik(x+,y)τi(y) − Tik(x+,y)ui(y)

]
dS(y)

+
∫
S+

=
[
Uik(x+,y) qi(y) − Tik(x+,y)vi(y)

]
dS(y) (3.24)

With x+ ∈ Ŝ+, equation (3.24) can be written as:

uk(x+) =
∫
∂B0

[
Uik(x+,y) τi(y) − Tik(x+,y)ui(y)

]
dS(y)

+
∫
S+−Ŝ+

[
Uik(x+,y)qi(y) − Tik(x+,y)vi(y)

]
dS(y)

+
∫
Ŝ+

Uik(x+,y)qi(y) dS(y)

−
∫
Ŝ+

Tik(x+,y)[vi(y) − vi(x)]dS(y)

−vi(x)
∫
Ŝ+

= Tik(x+,y)dS(y) (3.25)

It is first noted that (see below (1.21)) Σijk(x,y)nj(y) = Tik(x,y). Follow-
ing [116, 99] (see, also, [87] and Figure 3.2):

∫
Ŝ+

= Tik(x+,y)dS(y) = −gik(x+) − Ω(Ŝ+,x+)
4π

δik (3.26)

where:

gik(x+) =
1 − 2ν

8π(1 − ν)
εik�

∮
L̂+

1
r(x+,y)

dz�

+
εk�m

8π(1 − ν)

∮
L̂+

r,i(x+,y)r,�(x+,y)
r(x+,y)

dzm (3.27)

and the solid angle Ω(Ŝ+,x+), subtended by Ŝ+ at x+, is given by equation
(3.8).

In equations (3.26 - 3.27), z = y − x and , i ≡ ∂/∂yi. Also, ε is the
alternating tensor, δ is the Kronecker delta and the line integrals in (3.27) are
evaluated in a clockwise sense when viewed from above (see Figure 3.2).

Using equations (3.26 - 3.27) and (3.8) in (3.25), a regularized form of (3.25)
is obtained as:
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1
2
(uk(x+) + uk(x−)) =

∫
∂B0

[
Uik(x+,y)τi(y) − Tik(x+,y)ui(y)

]
dS(y)

+
∫
S+−Ŝ+

[
Uik(x+,y)qi(y) − Tik(x+,y)vi(y)

]
dS(y)

+
∫
Ŝ+

Uik(x+,y)qi(y)dS(y)

−
∫
Ŝ+

Tik(x+,y)[vi(y) − vi(x)]dS(y)

+gik(x+)vi(x) − vk(x)
4π

∫ 2π

0

cos(ψ(θ))dθ (3.28)

The stress BIE. An FP representation of the stress BIE with ξ → x+ ∈ S+

is:

σij(x+) =
∫
∂B0

[
Dijk(x+,y)τk(y) − Sijk(x+,y)uk(y)

]
dS(y)

+
∫
S+

=
[
Dijk(x+,y)qk(y) − Sijk(x+,y)vk(y)

]
dS(y) (3.29)

With x+ ∈ Ŝ+, equation (3.29) can be written as:

σij(x+) =
∫
∂B0

[
Dijk(x+,y)τk(y) − Sijk(x+,y)uk(y)

]
dS(y)

+
∫
S+−Ŝ+

[
Dijk(x+,y)qk(y) − Sijk(x+,y)vk(y)

]
dS(y)

+
∫
Ŝ+

Dijk(x+,y)[sk�(y) − sk�(x)]n�(y)dS(y)

−
∫
Ŝ+

Sijk(x+,y)[vk(y) − vk(x) − dkn(x)(yn − x+
n )]dS(y)

−vk(x)
∫
Ŝ+

= Sijk(x+,y)dS(y)

+dmn(x)
∫
Ŝ+

=
[
Ek�mnDijk(x+,y)n�(y) − Sijm(x+,y)(yn − x+

n )
]
dS(y)

(3.30)

where the newly defined quantities are:

sij(x) = σij(x+) − σij(x−) (3.31)

dij(x) = ui,j(x+) − ui,j(x−) (3.32)
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Of course, s is related to d by Hooke’s law in the same manner as σ is
related to ∇u, i.e.:

sij = Eijmndmn (3.33)

The last two terms on the right-hand side of equation (3.30) involve FP
integrals. These are now regularized by applying Stokes’ theorem.

Using the definition of Sijk from (1.32), one gets:

∫
Ŝ+

= Sijk(x+,y)dS(y) = −
∫
Ŝ+

= EijmnΣk�m,n(x+,y)n�(y)dS(y) (3.34)

The hypersingular integral on the right-hand side of (3.34) can be trans-
formed into a line integral. A careful derivation is provided in Mukherjee and
Mukherjee [99], Appendix D. Applying Stokes’ theorem, one has:∫

Ŝ+
= Σk�m,nn�dS =

∮
L̂+

Σk�mε�ntdzt (3.35)

Finally, the desired result is:∫
Ŝ+

= Sijk(x+,y)dS(y) = −Eijmn

∮
L̂+

Σk�m(x+,y)ε�ntdzt (3.36)

where, as before, the line integral in (3.36) is evaluated in a clockwise sense
when viewed from above (see Figure 3.2). This result also appears in Liu et al.
[86].

The final task is to convert the last term in the right-hand side of equation
(3.30) into line integrals. In order to succeed in this task, the entire term must
be converted together. Otherwise, some surface integrals will survive, as in Liu
et al. [86].

First define:

Jijmn =
∫
Ŝ+

=
[
Ek�mnDijk(x+,y)n�(y) − Sijm(x+,y)(yn − x+

n )
]
dS(y) (3.37)

Using equation (3.34) and the definition of the kernel D in terms of U from
equation (1.31), one can write:

Jijmn = EijpqImnpq (3.38)

where:

Imnpq = −
∫
Ŝ+

=
[
Ek�mnUpk,q(x+,y) − Σm�p,q(x+,y)(yn − x+

n )
]
n�(y)dS(y)

(3.39)
Integrating by parts:
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Imnpq = −
∫
Ŝ+

=
[
Ek�mnUpk(x+,y) − Σm�p(x+,y)(yn − x+

n )
]
,q
n�(y)dS(y)

−
∫
Ŝ+

= Σm�pδnqn�(y)dS(y) ≡ I(1)
mnpq + I(2)

mnpq (3.40)

Once again, the hypersingular integrals in equation (3.40) need careful treat-
ment. The ideas presented in Mukherjee and Mukherjee [99], Appendix D, need
to be employed here. (An alternative proof, using Lutz et al.’s ([89]) “tent” in-
tegrals, is available in [105]).

Define

F�mnp(x+,y) = Ek�mnUpk(x+,y) − Σm�p(x+,y)(yn − x+
n ) (3.41)

Using Stokes’ theorem in the form:∫
S

[F�mnp,qn� − F�mnp,�nq] ds =
∮
L

F�mnpεt�qdzt (3.42)

(where S = Ŝ+ − S̃ is a punctured surface with x+ ∈ S̃ and L = L̂+ − L̃ the
bounding contour of S), and the fact that F�mnp,� = 0 for x+ /∈ S, one finally
gets:

I(1)
mnpq(x

+) = −hmnpq(x+) (3.43)

where:

hmnpq(x+) =
∮
L̂+

[
Ek�mnUpk(x+,y) − Σm�p(x+,y)(yn − x+

n )
]
ε�qtdzt (3.44)

Also, using equation (3.26) in (3.40):

I(2)
mnpq(x

+) = −
∫
Ŝ+

Tmp(x+,y)δnqds(y)

= gmp(x+)δnq +
Ω(Ŝ+,x+)

4π
δmpδnq (3.45)

Finally, use of equations (3.33, 3.36- 3.38, 3.40, 3.43 and 3.45) in (3.30)
yields a fully regularized version of (3.30). This is:

(1/2)[σij(x+) + σij(x−)] =∫
∂B0

[
Dijk(x+,y)τk(y) − Sijk(x+,y)uk(y)

]
dS(y)
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+
∫
S+−Ŝ+

[
Dijk(x+,y)qk(y) − Sijk(x+,y)vk(y)

]
dS(y)

+
∫
Ŝ+

Dijk(x+,y)[sk�(y) − sk�(x)]n�(y)dS(y)

−
∫
Ŝ+

Sijk(x+,y)[vk(y) − vk(x) − dkn(x)(yn − x+
n )]dS(y)

+ Eijmnvk(x)
∮
L̂+

Σk�m(x+,y)ε�ntdzt − Eijpqdmn(x) hmnpq(x+)

+ Eijpndmn(x)gmp(x+) − sij(x)
4π

∫ 2π

0

cos(ψ(θ))dθ (3.46)

3.2.2 Numerical Implementation of BIES in LEFM

Of interest here are the regularized equations (3.20), (3.23), (3.28) and (3.46).
The first step in the implementation is to choose shape functions for u and τ
on ∂B0 and q and v on s+. A dot product of equation (3.46) must be taken
with n(x+).

Next, it is necessary to obtain uk,�(x) (x ∈ ∂B0) in (3.23) and dk�(x) (x ∈
s+) in (3.46). The former is obtained as suggested by Lutz et al. [89]. For 3-D
problems, local coordinates αk(k = 1, 2, 3), are chosen at x ∈ ∂B0 such that
the α3 axis is normal and the α1 and α2 axes are tangential to ∂B0 at x .
Now, tangential differentiation of the displacement shape functions provides
the quantities uk,δ, k = 1, 2, 3; δ = 1, 2. The remaining displacement gradients
at x are obtained from the formulae:

u1,3 = τ1
G − u3,1

u2,3 = τ2
G − u3,2

u3,3 = (1−2ν)τ3
2(1−ν)G − ν

1−ν (u1,1 + u2,2)


 (3.47)

The quantities dk�(x) with (x ∈ s+) require application of the above idea
on both surfaces of a crack (Figure 3.9). First, in the αk coordinate frame, one
has:

dkγ = vk,γ , k = 1, 2, 3 : γ = 1, 2 (3.48)

The remaining components of d are obtained as follows:

On S+, in the αk frame : u1,3(x+) = τ+
1 /G− (u+

3 ),1

On S−, in the βk frame : u1,3(x−) = τ−1 /G− (u−3 ),1

On S−, in the αk frame : −u1,3(x−) = τ−1 /G+ (u−3 ),1


 (3.49)

Adding the first and last of equations (3.49), one has:
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Figure 3.9: Local coordinates on crack surfaces (from [105])

At x+ in the αk frame : d13 =
q1
G

− d31 (3.50)

Similarly:

d23 =
q2
G

− d32 (3.51)

d33 =
(1 − 2ν)q3
2(1 − ν)G

− ν

1 − ν
(d11 + d22) (3.52)

It should be noted that in equations (3.49), u+
k ≡ uk(x+), τ+

k ≡ τk(x+),
and similarly at x−.

Finally, s is related to d by Hooke’s law (3.33).
It is interesting to point out that if the surface (tangential) gradient of the

displacement field (rather than its total gradient) is used to regularize the rel-
evant HBIE, as is done, for example, in [85] - [86], then the procedure outlined
in this section is no longer required. The surface gradient regularization proce-
dure, however, leads to some extra terms in a regularized HBIE such as equation
(3.23) in this chapter.

3.2.3 Some Comments on BIEs in LEFM

As has been mentioned before, equation (3.20) is the most convenient one for
collocation on ∂B0. On S+, both the regularized displacement BIE (3.28) and
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the stress BIE (3.46) are, in some sense, “defective.” Equation (3.28) contains
u+ and u− on the crack surfaces, but only q (not the individual tractions) on
S+ and on S−. Thus, it can be used to solve for q given u+ and u−, but not
for the important practical case of solving for the crack surface displacements
given the tractions. “Overcollocation” on crack surfaces does not help since
q alone does not specify a problem. For example, both a traction-free and a
pressurized crack have q = 0 but very different solutions. This failure of the
displacement BIE for fracture mechanics problems, is, of course, well known
(e.g. Cruse [38]) and has led to the search for a remedy in the form of a stress
BIE, as early as at least 1975 ([17], [59]).

When one takes a dot product of the stress BIE (3.46) with n+, it contains
the tractions τ+, τ−, and the crack opening displacement (COD) v. This
equation would fail if one wished to calculate the individual tractions on the
crack surfaces given the COD. Fortunately, however, it is perfectly suited for
the practical case of solving for v given τ+ and τ−. (As mentioned in the
previous subsection, the components of the tensor d can be easily calculated
from the tractions and the tangential derivatives of the COD (3.48, 3.50- 3.52),
and s is related to d by Hooke’s law (3.33)).

In summary, therefore, it is most convenient to collocate equation (3.20) on
∂B0 and (3.46) (i.e. its dot product with n+) on S+. (Lutz et al. [89] used
u and τ on crack surfaces as primary variables and collocated the regular BIE
on one crack face and the HBIE on the other). The individual crack surface
displacements u+ and u− can then be calculated, if desired, at a postprocessing
step, from (3.28) on S+.

3.2.4 BIEs for Thin Shells

This section is concerned with BIEs and HBIEs for thin shells, especially in the
limit as the thickness of a shell → 0. The question of what constitutes a thin
plate or shell, in the limit as the thickness → 0, is an interesting one that has
been discussed extensively in the literature, from both a mathematical as well
as an engineering perspective.

3.2.4.1 Mathematical formulation

Regularized BIEs and HBIEs for thin shells are presented next. The geometry
of the problem is shown in Figure 3.10. Again, the “tent” is chosen such that
the unit outward normal to the body at x+ is also the outward normal to the
“tent” at that point.

The situation here is quite analogous to the crack problem with the outer
surface ∂B0 in Figure 3.8 replaced by the “edge surface” SE of the shell. It is
important to retain the integral over SE because even when the shell thickness
h → 0 and SE degenerates from a surface to a curve, this integral can remain
nonzero with finite applied tractions per unit length along this curve.

It has been proved in [105] that, in this case:
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Figure 3.10: Geometry of the thin shell problem (from [105])

vi(x) = ui(x+) − ui(x−) = 0 (3.53)

sij(x) = σij(x+) − σij(x−) = 0 (3.54)

Equations (3.53 - 3.54) simply state that, starting with a continuous dis-
placement and stress field in a shell of finite thickness, the displacements and
stresses on the upper and lower surfaces of the shell must approach each other
as the shell thickness h → 0.

Unfortunately, however, equation (3.54) implies, (in the limit h → 0), a
strong restriction on the applied tractions on S+ and S−, namely that:

qk(x) = τk(x+) + τk(x−) = 0 (3.55)

Strictly speaking, (3.55) appears to limit the class of thin shell problems that
can be solved by this BIE approach, or, for that matter, by any other approach,
since equations (3.53 - 3.55) are always true in the thin shell limit h → 0.
Nevertheless, it is well known, of course, that finite element shell formulations,
for example, work well in practice.

There are interesting situations that satisfy (3.53 -3.54) approximately. One
of these cases appears in Liu [87] and is discussed in the next subsection.

3.2.4.2 Some comments on thin shell problems

First, it is useful to examine equations (11-13) in Liu [87]. These equations are
valid for h → 0 in the absence of the edge integrals on SE . Subtracting (12)
from (11) immediately gives ∆u = 0 which implies that (since the matrix B+

in [87] is nonsingular) Σt = 0, i.e. equations (3.53) and (3.55) of the present
chapter. Therefore, equation (13) of Liu [87] (which is a restatement of his
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equations (11-12) in terms of displacements and tractions on the upper and
lower surfaces of the shell) only admits the solutions v = q = 0 - no other
solutions are possible in the thin shell limit !

One is, of course, primarily interested in solving problems for shells of small
but finite thickness, i.e. application of equations (4-5) of Liu [87] (including, in
general, the integral on SE) to thin shells. (Note that (13) of [87] is the limiting
form of (4-5) of [87] as h → 0.) Difficulties might arise when applying equations
(4-5) of [87] to shells of small but finite thickness h if the applied tractions do
not satisfy (3.55), since one would then have a contradiction as h → 0. Liu [87],
however, has demonstrated the usefulness of his equations (4-5) for the case of
a thin spherical shell under internal pressure with radius to thickness ratios of
up to about 200. One reason for his success is that in his spherically symmetric
numerical example the only nonzero displacement component, the radial one, is
nearly uniform as a function of the radius, so that (3.53) is satisfied in the thin
shell limit. Also, (3.54) is satisfied by the tangential stress components (in the
thin shell limit) while the radial stress component, that violates (3.54), is small
compared to the tangential ones. The shearing stress components are zero in
a spherical coordinate system. Finally, the only nonzero applied traction, the
radial one, violates (3.55) but its magnitude is small compared to the tangential
stress components.

In view of the above discussion, the authors of this book feel that the effect
of the asymptotic requirement (3.55) on the numerical performance of the stan-
dard BIE, collocated at twin points on opposite surfaces of a shell, for general
thin shell problems, remains an open question that needs further investigation.
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Chapter 4

LINEAR ELASTICITY

Derivations of the BCM and HBCM, for 3-D linear elasticity, together with
representative numerical results for selected problems, are presented in this
chapter.

4.1 Surface and Boundary Contour Equations

4.1.1 Basic Equations

A regularized form of the standard boundary integral equation (Rizzo [141]),
for 3-D linear elasticity (see equation (1.26) in Chapter 1), is:

0 =
∫
∂B

[Uik(x,y)σij(y) − Σijk(x,y){ui(y) − ui(x)}] ej · dS(y)

≡
∫
∂B

Fk · dS(y) (4.1)

Here, as before, ∂B is the bounding surface of a body B (B is an open set)
with infinitesimal surface area dS = dSn, where n is the unit outward normal
to ∂B at a point on it. The stress tensor is σ, the displacement vector is u
and ej(j = 1, 2, 3) are global Cartesian unit vectors. The BEM Kelvin kernels
are written in terms of (boundary) source and field points. These are given in
Chapter 1 as equations (1.22) and (1.18), respectively.

The first task is to show that the integrand vector Fk in equation (4.1) is
divergence free (except at the point of singularity x= y). Writing in component
form:

Fk = Fjkej = (σijUik − Σijkui)ej + Σijkui(x)ej (4.2)

Taking the divergence of the above at a field point y, one gets:
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∇y · Fk = Fjk,j = (σijEijk − Eijkεij)
+ (σij,jUik − Σijk,jui) + Σijk,jui(x) (4.3)

where the Kelvin strain tensor E and the strain field e are:

Eijk = (1/2)(Uik,j + Ujk,i), εij = (1/2)(ui,j + uj,i) (4.4)

Let (u,σ) correspond to a body force free electrostatic state with the same
elastic constants as the Kelvin solution. The stress and strain tensors, σij and
εij , respectively, are related to each other through the usual Hooke’s law. The
corresponding Kelvin stress and strain tensors Σijk and Eijk, respectively, are
related by Hooke’s law in exactly the same manner (see, e.g. Mukherjee [98]).
As a consequence, the first expression on the right-hand side (RHS) of equation
(4.3) vanishes. Also, equilibrium in the absence of body forces demands that
σij be divergence free. The corresponding Kelvin stress tensor Σijk is also
divergence free, except at the point of singularity. Therefore, the second and
third expressions on the RHS of (4.3) also vanish everywhere, except at the
point of singularity. Thus, Fk in equation (4.3) is divergence free.

The above property demonstrates the existence of vector potential functions
Vk such that:

Fk = ∇ × Vk (4.5)

As a consequence of equation (4.5), the surface integral in equation (4.1)
over any open surface patch S ∈ ∂B, can be converted to a contour integral
around the bounding curve C of S, by applying Stokes’ theorem, i.e.:∫

S

Fk · dS =
∮
C

Vk · dr (4.6)

Stokes’ theorem is valid under very general conditions. The closed curve
C and the open surface S need not be flat - they only need to be piecewise
smooth.

4.1.2 Interpolation Functions

Since the vectors Fk contain the unknown fields u and σ, interpolation functions
must be chosen for these variables, and potential functions derived for each lin-
early independent interpolation function, in order to determine the vectors Vk.
Also, since the kernels in equation (4.1) are functions only of zk = yk −xk (and
not of the source and field coordinates separately), these interpolation functions
must also be written in the coordinates zk in order to determine the potential
vectors Vk. Finally, these interpolation functions are global in nature and are
chosen to satisfy, a priori, the Navier-Cauchy equations of equilibrium. (Such
functions are called Trefftz functions). The weights, in linear combinations
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ūαi 1 2 3 4 5 6 7
i = 1 1 0 0 y1 0 0 y2

i = 2 0 1 0 0 y1 0 0
i = 3 0 0 1 0 0 y1 0
ūαi 8 9 10 11 12 13 14
i = 1 0 0 y3 0 0 y2

1 y2
2

i = 2 y2 0 0 y3 0 k1y1y2 k2y1y2

i = 3 0 y2 0 0 y3 0 0
ūαi 15 16 17 18 19 20 21
i = 1 k2y1y2 k1y1y2 k1y1y3 k2y1y3 y2

3 y2
1 0

i = 2 y2
1 y2

2 0 0 0 0 y2
2

i = 3 0 0 y2
3 y2

1 k2y1y3 k1y1y3 k1y2y3

ūαi 22 23 24 25 26 27
i = 1 0 0 0 y2y3 0 0
i = 2 y2

3 k2y2y3 k1y2y3 0 y1y3 0
i = 3 k2y2y3 y2

2 y2
3 0 0 y1y2

Table 4.1: Trefftz functions for interpolating displacements. α = 1, 2, 3 are
constant, α = 4, 5, ..., 12 are linear and α = 13, 14, ..., 27 are quadratic. k1 =
−4(1 − ν), k2 = −2(1 − 2ν), k3 = k1 − 4

of these interpolation functions, however, are defined piecewise on boundary
elements.

Quadratic interpolation functions are used in this work. With :

zk = yk − xk (4.7)

one has, on a boundary element :

ui =
27∑

α=1

βαuαi(y1, y2, y3) =
27∑

α=1

β̂α(x1, x2, x3)uαi(z1, z2, z3) (4.8)

σij =
27∑

α=1

βασαij(y1, y2, y3) =
27∑

α=1

β̂α(x1, x2, x3)σαij(z1, z2, z3) (4.9)

where uαi , σαij (with i = 1, 2, 3 and α = 1, 2, .., 27) are the interpolation func-
tions and βα are the weights in the linear combinations of the shape functions.
Each boundary element has, associated with it, 27 constants βα that will be re-
lated to physical variables on that element. This set β differs from one element
to the next.

The displacement interpolation functions for α = 1, 2, 3 are constants, those
for α = 4, ..., 12 are of first degree and those for α = 13, ..., 27 are of second
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degree. There are a total of 27 linearly independent (vector) interpolation
functions uα. The interpolation functions for the stresses are obtained from
those for the displacements through the use of Hooke’s law. The interpolation
functions uαi and σαij are given in Tables 4.1 and 4.2, respectively.

σ̄αij/G 1 2 3 4 5 6 7
i, j = 1, 1 0 0 0 k1/k2 0 0 0
i, j = 1, 2 0 0 0 0 1 0 1
i, j = 1, 3 0 0 0 0 0 1 0
i, j = 2, 2 0 0 0 λ/G 0 0 0
i, j = 2, 3 0 0 0 0 0 0 0
i, j = 3, 3 0 0 0 λ/G 0 0 0
σ̄αij/G 8 9 10 11 12 13 14

i, j = 1, 1 λ/G 0 0 0 λ/G −k1y1 −4νy1

i, j = 1, 2 0 0 0 0 0 k1y2 4νy2

i, j = 1, 3 0 0 1 0 0 0 0
i, j = 2, 2 k1/k2 0 0 0 λ/G k3y1 k1y1

i, j = 2, 3 0 1 0 1 0 0 0
i, j = 3, 3 λ/G 0 0 0 k1/k2 −4νy1 −4νy1

σ̄αij/G 15 16 17 18 19 20 21
i, j = 1, 1 k1y2 k3y2 k3y3 k1y3 −4νy1 −k1y1 −4νy2

i, j = 1, 2 4νy1 k1y1 0 0 0 0 0
i, j = 1, 3 0 0 k1y1 4νy1 4νy3 k1y3 0
i, j = 2, 2 −4νy2 −k1y2 −4νy3 −4νy3 −4νy1 −4νy1 −k1y2

i, j = 2, 3 0 0 0 0 0 0 k1y3

i, j = 3, 3 −4νy2 −4νy2 −k1y3 −4νy3 k1y1 k3y1 k3y2

σ̄αij/G 22 23 24 25 26 27
i, j = 1, 1 −4νy2 −4νy3 −4νy3 0 0 0
i, j = 1, 2 0 0 0 y3 y3 0
i, j = 1, 3 0 0 0 y2 0 y2

i, j = 2, 2 −4νy2 k1y3 k3y3 0 0 0
i, j = 2, 3 4νy3 4νy2 k1y2 0 y1 y1

i, j = 3, 3 k1y2 −4νy3 −k1y3 0 0 0

Table 4.2: Trefftz functions for interpolating stresses. α = 1, 2, 3 are zero,
α = 4, 5, ..., 12 are constant and α = 13, 14, ..., 27 are linear. k1 = −4(1 −
ν), k2 = −2(1 − 2ν), k3 = k1 − 4

It is easy to show that the coordinate transformation (4.7) results in the
constants β̂j being related to the constants βα as follows :

β̂i =
27∑

α=1

Siα(x1, x2, x3)βα , i = 1, 2, 3 (4.10)
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β̂k =
27∑

α=1

Rnα(x1, x2, x3)βα , k = 4, 5, ...12, n = k − 3 (4.11)

β̂α = βα , α = 13, 14, .., 27 (4.12)

where

Siα = uαi(x1, x2, x3) , i = 1, 2, 3, α = 1, 2, ..., 27

Rkα =
∂uα�(y1, y2, y3)

∂yj

∣∣∣∣
(x1,x2,x3)

, k = 1, 2, .., 9, α = 1, 2, ..., 27

with j = 1 +  k−1
3 ! and E = k − 3j + 3. Here, the symbol  n!, called the

floor of n, denotes the largest integer less than or equal to n.
It is useful to note that the matrices S and R are functions of only the

source point coordinates (x1, x2, x3).

4.1.3 Boundary Elements

The BCM is a perfectly general approach that can be used to solve any well-
posed problem in linear elasticity. A departure from the usual BEM, however,
is that a set of primary physical variables ak are first chosen at appropriate
points on a boundary element. Some of these would be specified as boundary
conditions and the rest would be unknown in a given problem. The first step in
the BCM solution procedure is to determine the unspecified primary physical
variables in terms of those that are prescribed as boundary conditions. Once
all the primary physical variables are known, the rest of the physical variables
(the secondary ones) are obtained at a simple postprocessing step. Also, unlike
in the standard BEM, it is particularly easy to obtain surface variables, such as
stresses and curvatures, in the BCM. Surface stresses are discussed in Section
4.1.7.

The number of primary physical variables on a boundary element must
match the number of artificial variables βk associated with it, in order that the
transformation matrix T relating the vectors a and β on element m is square.
This relationship is expressed as:

m
a =

m

T
m

β (4.13)

Of course, the matrix T must be invertible. The issue of invertibility is
discussed in Nagarajan et al. [116].

The CIM9 boundary element, shown in Figure 4.1(a), is used in the present
work. The displacement u is the primary physical variable at the three corner
nodes Ci and the three midside nodes Mi, while tractions are primary variables
at the internal nodes Ii. Thus, there are a total of 27 primary physical variables.
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*

*

*

C1

C2 C3

M1

M2

M3I1

I2
I3

(a)

(-1,0) (1,0)

1

2 3

4

5

6

η

ξ

(0,  3)

(b)

Figure 4.1: (a) The CIM9 boundary element. (b) Intrinsic coordinates (from
[109])

The BCM equations are collocated at the six peripheral nodes as well as at
the centroid of the element. In a typical discretization procedure, some of
the peripheral nodes may lie on corners or edges, while the internal nodes are
always located at regular points where the boundary ∂B is locally smooth. It is
of obvious advantage to have to deal only with displacement components, that
are always continuous, on edges and corners, while having traction components
only at regular boundary points. This approach eliminates the well-known
problems associated with modeling of corners and edges in the usual BEM.

The boundary elements, in general, are curved (quadratic) with their shapes
defined by the six points Ck,Mk, k = 1, 2, 3. (see Figure 4.1). The relative
coordinates zi (see equation (4.7)) of a point on one of the sides of a triangle
are written as:

zi = Nk(ξ, η)zki , i = 1, 2, 3; k = 1, 2, ..., 6 (4.14)

where zki are the relative coordinates of the peripheral nodes 1, 2, .., 6 on the
CIM9 element (see Figure 4.1), and ξ and η are intrinsic coordinates. The shape
functions are:

Nk = (2Lk − 1)Lk, k = 1, 2, 3; no sum over k
N4 = 4L1L2, N5 = 4L2L3, N6 = 4L1L3 (4.15)

with:
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L1 = η/
√

3

L2 = (1/2)(1 − ξ) − η/(2
√

3)

L3 = (1/2)(1 + ξ) − η/(2
√

3) (4.16)

The reference triangle in intrinsic coordinates is shown in Figure 4.1(b).
The unit outward normal to a boundary element, at a point on it, is given

by:

n =
(
∂r
∂ξ

× ∂r
∂η

)
/

∣∣∣∣∂r∂ξ × ∂r
∂η

∣∣∣∣ (4.17)

where r = ziei. It is important to point out that the elements of the transfor-
mation matrix T in equation (4.13) contain the components of the normal n at
the points I1, I2, I3 of the CIM9 element shown in Figure 4.1(a).

4.1.4 Vector Potentials

The homogeneous nature of the Kelvin kernels is exploited in deriving the po-
tential functions. From equations (1.22) and (1.18), it is clear that both Σijk

and Uik are ratios of homogeneous polynomials and are, therefore, homoge-
neous. Here, Σ is of degree −2 and u is of degree −1. If an interpolation
function is of degree n, then the resulting force vector Fαk (which is Fk corre-
sponding to the α-th interpolation function) is of degree n − 2. In this work,
interpolation functions with n = 0, 1, 2 are used (see Tables 4.1 and 4.2).

4.1.4.1 The nonsingular case : n = 0

The homogeneous nature of the Kelvin kernels greatly facilitates the use of an
inversion integral to calculate the inverse curl of a given vector field of zero
divergence (see, e.g. [69]). Thus:

Fαk = ∇ × Vαk ⇒ Vαk(z1, z2, z3) =
[∫ 1

0

tFαk(tz1, tz2, tz3)dt
]
× r

(4.18)

where r = ziei.
Because of the homogeneous nature of Fαk:

Fαk(tz1, tz2, tz3) = tn−2Fαk(z1, z2, z3) (4.19)

Therefore, for the nonsingular case n = 0 equations (4.18, 4.19) yield:

Vαk(z1, z2, z3) = (1/n)Fαk(z1, z2, z3) × r (4.20)
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4.1.4.2 The singular case : n=0

The singular case (n = 0) corresponds to constant displacement interpolation
functions ūαi = δαi, α = 1, 2, 3; i = 1, 2, 3, (where δ is the Kronecker delta -
see Table 4.1). Referring to equation (4.1), one must now deal with the term
Σαjk given in equation (1.22). The expression for Σijkej can be partitioned
into three terms, each of which are divergence free [116]. One writes:

−Σαjkej =
1

8π(1 − ν)r2

[
3r,αr,jr,k − r,jδαk

]
ej

+
1 − 2ν

8π(1 − ν)r2

[
r,αδjk − r,kδαj

]
ej +

r,jδαk
4πr2

ej (4.21)

Each of the above three terms on the right-hand side of equation (4.21) are
divergence free and can be written as the curl of a potential function. Corre-
sponding to the first two terms, one has [116]:

1
r2

[
3r,αr,jr,k − r,jδαk

]
ej = ∇ ×

[
εkmj

r,αr,m
r

ej
]

(4.22)

1
r2

[
r,αδjk − r,kδαj

]
ej = ∇ ×

[εαkm
r

em
]

(4.23)

where ε is the alternating tensor.
It is well known that the solid angle Ω subtended at the source point x by

the open surface S has the expression:

Ω =
∫
S

r,j
r2

ej · dS =
∫
S

r.dS
r3

(4.24)

Therefore, the surface integral of the third term on the right-hand side of
(4.21) over S equals (Ω/4π)δαk. While it is possible to convert the surface inte-
gral in (4.24) to a line integral [116], use of this line integral has proved to lack
robustness in general numerical computations involving 3-D bodies of complex
shape. Therefore, the solid angle Ω is computed as a surface integral according
to equation (4.24). This is the only surface integral that is ever computed in the
BCM. Fortunately, the solid angle is a purely geometrical quantity that can be
computed easily as a surface integral in a robust fashion. It is also noted here
that algebraic expressions exist for the solid angle for the special case when S
is a plane.

4.1.5 Final BCM Equations

Use of the interpolating functions for displacement and stress from Tables 4.1
and 4.2 respectively, together with equations (4.7 - 4.13) and (4.20 - 4.24) trans-
forms the regularized BIE (4.1) into a regularized boundary contour equation
(BCE) that can be collocated (as in the usual BEM) at any boundary (surface)
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point - including those on edges and corners, as long as the displacement is
continuous there. This equation is:

0 =
1
2

M∑
m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

] [
R

m

T−1ma

]
α−3

+
M∑

m=1
m/∈S

3∑
α=1

[∮
Lm

Dαjkdzj

] [
S

(
m

T−1ma −
P

T−1Pa

)]
α

(4.25)

with

∮
Lm

Dαjkdzj = −
∫
Sm

Σαjkej · dS

=
1

8π(1 − ν)

∮
Lm

εkij
r,αr,i
r

dzj

+
1 − 2ν

8π(1 − ν)

∮
Lm

εαkj
1
r
dzj +

Ω
4π

δαk (4.26)

Here Lm is the bounding contour of the surface element Sm. Also,
m

T and
m
a

are the transformation matrix and primary physical variable vectors on element

m,
P

T and
P
a are the same quantities evaluated on any element that belongs to

the set S of elements that contain the source point x, and εijk is the usual
alternating symbol.

This method of integrating Σijk has been presented before, using spherical
coordinates, by Ghosh and Mukherjee [48]. Also, Mantic̆ [94] has independently
derived the result in equation (4.26) with the use of the tangential differential
operator:

Dij(f(y)) ≡ ni(y)f,j(y) − nj(y)f,i(y) (4.27)

The equations are assembled by making use of the fact that displacements
are continuous across elements. The final result is:

Ka = 0 (4.28)

which is written as:

Ax = By (4.29)

where x contains the unknown and y the known (from the boundary conditions)
values of the primary physical variables on the surface of the body. Once these
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equations are solved, the vector a is completely known. Now, at a postprocess-

ing step,
m

βα can be easily obtained on each boundary element from equation
(4.13).

4.1.6 Global Equations and Unknowns

The global system equation (4.29) generally leads to a rectangular matrix A.
The system of linear equations is usually overdetermined but always consistent.
A count of equations and unknowns is given below.

For any general polyhedron, Euler’s theorem states that:

F + V = E + 2 (4.30)

where F is the number of faces (here the number of elements), V is the number
of vertices (here the number of corner nodes) and E is the number of edges
(here 1.5F for triangular elements). Thus, one has:

Number of corner nodes =
1
2

Number of elements + 2 (4.31)

Also, a CIM9 element has 1.5 midside nodes.
One is now in a position to count the number of (vector) equations and

unknowns in the global system (4.29). In a CIM9 element, the BCM equations
are enforced at all the peripheral nodes and also at the centroid of the element.
Thus, for M boundary elements, one has M equations at the centroids, 1.5M
equations at the midside nodes and 0.5M + 2 at the corner nodes, for a total
of 3M + 2 equations. For a Dirichlet problem, in which all the displacements
are prescribed on ∂B, there are a total of 3M vector unknowns - the tractions
at the nodes interior to the elements. One therefore has two extra vector (six
extra scalar) equations. This is the worst-case scenario in the sense that for
mixed boundary value problems the number of equations remain the same while
the number of unknowns decreases. For example, for a Neumann problem in
which all the tractions are prescribed on ∂B, one only has 2M + 2 (vector)
unknowns (displacements at the peripheral nodes of the elements). Of course,
a Neumann problem is ill-posed since rigid body displacements of the body are
not constrained.

In summary, use of the CIM9 element results in overdetermined, consistent
linear systems for well-posed problems in linear elasticity.

4.1.7 Surface Displacements, Stresses, and Curvatures

A very useful consequence of using global shape functions is that, once the
standard BCM is solved, it is very easy to obtain the displacements, stresses and
curvatures at a regular off-contour boundary point (ROCBP) on the bounding
surface of a body. Here, a point at an edge or corner is called an irregular
point while at a regular point the boundary is locally smooth. Also, a regular
boundary point can lie on or away from a boundary contour. The former is
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called a regular contour point (RCP), the latter a regular off-contour boundary
point. A point inside a body is called an internal point.

First, one obtains
m

βα from equation (4.13), then uses equations (4.10 and
4.11) to get β̂m

α , α = 1, 2, .., 12. The curvatures, which are piecewise constant
on each boundary element, are obtained by direct differentiation of equation
(4.8). Finally, one has the following results.

4.1.7.1 Surface displacements

[ui(x)] =


 β̂1

β̂2

β̂3




x

(4.32)

4.1.7.2 Surface stresses

[ui,j(x)] =


 β̂4 β̂7 β̂10

β̂5 β̂8 β̂11

β̂6 β̂9 β̂12




x

(4.33)

4.1.7.3 Surface curvatures

[
∂2u1

∂xi∂xj

]
=




2(β13 + β20) k2β15 + k1β16 k1β17 + k2β18

2β14 β25

symmetric 2β19


 (4.34)

[
∂2u2

∂xi∂xj

]
=




2β15 k1β13 + k2β14 β26

2(β16 + β21) k2β23 + k1β24

symmetric 2β22


 (4.35)

[
∂2u3

∂xi∂xj

]
=




2β18 β27 k2β19 + k1β20

2β23 k1β21 + k2β22

symmetric 2(β17 + β24)


 (4.36)

with k1 = −4(1 − ν) and k2 = −2(1 − 2ν)

Equation (4.33) can be used to find the displacement gradients at x. Hooke’s
law would then give the stress σij(x). An alternative approach is to use equation
(4.9) together with all the βα on an element.

It should be noted that the simple approach, described above, cannot be

used to find internal stresses since the constants
m

βα are only meaningful on
the boundary of a body. Therefore, an internal point representation of the
differentiated BCE, for the internal displacement gradients ui,j(p), is necessary
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(see Section 4.3). It is also of interest to examine the limiting process of a
differentiated BCE as an internal point ξ (also denoted as p) approaches a
boundary point x (also denoted as P ). This issue is of great current interest
in the BEM community in the context of the standard and hypersingular BIE
(HBIE - see, for example, [92], [39], [93], [111]). Further, the hypersingular BCE
(HBCE) must be understood if one wishes to collocate the HBCE as the primary
integral equation, as may be necessary, for example, in applications such as
fracture mechanics, symmetric Galerkin formulations or adaptive analysis. This
topic is the subject of Section 4.2 of this chapter.

4.2 Hypersingular Boundary Integral Equations

4.2.1 Regularized Hypersingular BIE

A hypersingular boundary integral equation (HBIE) can be obtained by differ-
entiating the standard BIE at an internal point, with respect to the coordinates
of this internal source point. A regularized version of this equation, containing,
at most, weakly singular integrals (see equation (1.38) in Chapter 1) is:

0 =
∫
∂B

Uik,n(x,y) [σij(y) − σij(x)]nj(y)dS(y)

−
∫
∂B

Σijk,n(x,y) [ui(y) − ui(x) − ui,�(x) (y� − x�)]nj(y)dS(y)

x,y ∈ ∂B (4.37)

Martin et al. [93] - Appendix II2, p. 905, (see, also, [111]) have proved that
(4.37) can be collocated even at an edge or corner point x on the surface of
a 3-D body, provided that the displacement and stress fields in (4.37) satisfy
certain smoothness requirements. These smoothness requirements are discussed
in Section 1.4.4 in Chapter 1. Please note that in (4.37) above, , n ≡ ∂yn, not
the normal derivative.

4.2.2 Regularized Hypersingular BCE

The regularized HBIE (4.37) can be converted to a regularized hypersingular
boundary contour equation (HBCE). Details are available in [99] and are given
below.

The first task at hand is to transform equation (4.37) into a boundary con-
tour form. The integrands in equation (4.37), without nj(y)dS(y), are first
evaluated at an internal field point q very near Q (i.e. on a surface ∂B̂ inside
the body, very near and parallel to ∂B), the derivatives are transferred from
the kernels to the quantities inside the square brackets by the product rule,
and then the limit q → Q is taken again. This is possible since the integrals in
equation (4.37) are regular. The result is:
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0 =
∫
∂B

[
Uik(x,y) [σij(y) − σij(x)] − Σijk(x,y)

(
ui(y) − u

(L)
i

)]
,n
nj(y)dS(y)

−
∫
∂B

[Uik(x,y)σij,n(y) − Σijk(x,y) [ui,n(y) − ui,n(x)]]nj(y)dS(y)

x,y ∈ ∂B (4.38)

where

u
(L)
i = ui(x) + ui,�(x)(y� − x�)

Note also that:
u

(L)
i,n = ui,n(x)

Therefore, the linear displacement field u
(L)
i gives the stress field σij(x), so

that the stress field σij(y) − σij(x) is obtained from the displacement field
ui(y) − u

(L)
i .

Using the identity [116]

v,n = ∇ × (v × en) (4.39)

(which is valid if the vector field v is divergence-free) and Stokes’ theorem, the
first integral in equation (4.38), over Sm, is converted to the contour integral:

I1 =
∮
Lm

[
Uik(x,y) [σij(y) − σij(x)] − Σijk(x,y)

[
ui(y) − u

(L)
i

]]
εjntdzt

(4.40)
An explicit form of equation (4.40) is derived in Appendix A of this chapter.
Next, it is noted from equations (4.32 and 4.10) that:

ui,n(x) =
[
S,N

P

β

]
i

(4.41)

where , N ≡ ∂/∂xn.

Further, as proved in Appendix B of this chapter:

ui,n(y) =
[
S,N

m

β

]
i

+
12∑

α=4

[
R,N

m

β

]
α−3

uαi(z1, z2, z3) (4.42)

Now, the second integral (called I2) in equation (4.38) is written as:

I2 = −
∫
∂B

[Uik(x,y)σij,n(y) − Σijk(x,y)ui,n(y)]nj(y)dS(y)

−ui,n(x)
∫
∂B

Σijk(x,y)nj(y)dS(y) (4.43)
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The next steps involve writing ∂B ≡ ∪Sm , separating the constant and
linear parts of ui,n in the first integrand above, and using equation (4.42). This
sets the stage for converting I2 into two contour integrals. Details are given in
Appendix C of this chapter.

The final result is a contour integral form (HBCE) of the regularized HBIE
(4.37). This equation is valid at any point on the boundary ∂B as long as the
stress is continuous there. This includes edge, corner and regular points, that
lie on or off contours.

The regularized hypersingular boundary contour equation (HBCE) is:

0 = −
M∑

m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjntdzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjstzsdzt

] [
R,N

m

T−1ma

]
α−3

−
M∑

m=1
m/∈S

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjntdzt

][
R

(
m

T−1ma −
P

T−1Pa

)]
α−3

+
M∑

m=1
m/∈S

3∑
α=1

[∮
Lm

Dαjkdzj

] [
S,N

(
m

T−1ma −
P

T−1Pa

)]
α

+
M∑

m=1
m/∈S

3∑
α=1

[∮
Lm

Σαjkεjntdzt

] [
S

(
m

T−1ma −
P

T−1Pa

)]
α

(4.44)

where, as before, S is the set of boundary elements that contains the source
point x . The derivatives R,N and S,N in (4.44) are taken with respect to the
source point coordinates xn. In equation (4.44), the integrands in the first two
terms are regular (O(1)). The third and fourth (potentially strongly singular,
O(1/r)) as well as the fifth (potentially hypersingular, O(1/r2)) need to be
evaluated only on nonsingular elements.

4.2.3 Collocation of the HBCE at an Irregular Surface
Point

Martin et al. [93] have stated the requirements for collocating a regularized
HBIE at an irregular point on ∂B. This matter is discussed in Section 1.4.4 in
Chapter 1 of this book. It has been proved in Mukherjee and Mukherjee [111]
that the BCE interpolation functions given in equations (4.8) and (4.9) satisfy,
a priori, all these smoothness requirements for collocation of the HBCE (4.44)
at an irregular surface point. This proof is repeated below.

It is first noted that the interpolation functions in (4.8 - 4.9) have both a
global (they are initially defined as functions of y) as well as a local (the weights
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βk are only defined piecewise on the boundary elements) character. Consider
a singular boundary element containing the source and field points P and Q,
with P an irregular point on ∂B. Let this element be any one of the smooth
pieces of ∂B that meet at P (see Section 1.4.4 in Chapter 1). From equations
(4.8 - 4.9), it is easy to show that :

ui(Q) − uLi (Q;P ) = ui(Q) − ui(P ) − ui,j(P )[yj(Q) − xj(P )]

=
27∑

α=13

βαūαi(z) = O(r2) (4.45)

σij(Q) − σij(P ) =
27∑

α=13

βασ̄αij(z) = O(r) (4.46)

where r = |y(Q) − x(P )| = |z|. The last equalities in the above equations are
true in view of the fact that the shape functions ūαi and σ̄αij are quadratic and
linear, respectively, in zk, for α = 13, 14, ..., 27 (see Tables 4.1 and 4.2). Note
that these weights βα belong to the element containing P and Q and are unique
on that element (see below equation (4.9)).

As an aside, it is interesting to connect with Toh and Mukherjee ([168]-
p.2304) where, for the same problem, the requirement |∇u(Q) − ∇u(P )| =
O(rα) is prescribed as r → 0. It is easy to show that (Mukherjee and Mukherjee
[99]), for the BCM shape functions on a singular element:

ui,j(Q) − ui,j(P ) =
12∑

α=4

[R,J(x) β]α−3ūαi(z) = O(r) (4.47)

since ūαi(z) is linear in z for α = 4, 5, ..., 12.
In view of equations (4.45 - 4.46), conditions (iii-iv) in Box 1.1 (in Section

1.4.4 in Chapter 1) are satisfied a priori by the BCM shape functions defined
by equations (4.8 - 4.9). Satisfaction of condition (ii(b)) on ∂B follows from
equation (4.46). The conditions inside B ((i) and (ii(a))), of course, have noth-
ing to do with BEM shape functions that are only defined on the bounding
surface ∂B, but rather with the boundary element method itself. The BCM
is derived from the BEM and it satisfies these internal point conditions in the
same way as does the BEM. (As a bonus, the BCM shape functions satisfy the
Navier-Cauchy equilibrium equations of linear elasticity a priori (see Section
4.1.2)), although weights are not defined at points p ∈ B). Please note that the
above arguments have been made for the “worst-case scenario” of the colloca-
tion point P ∈ ∂B being an irregular point. Of course, these arguments also
go through for regular points (on or off contour) on ∂B.

In view of the above, all the conditions (i-iv) in Box 1.1 are satisfied a priori
by the BCM, and there is no need to consider “relaxed smoothness requirements”
in this method. It is worth repeating again that it is extremely difficult to
find, in general, BEM shape functions (for 3-D elasticity problems) that satisfy
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conditions (ii(b)-iv) a priori. The primary reason for this is that BEM shape
functions are defined only on the bounding surface of a body, while the BCM
ones are defined in B (although the weights are defined only on ∂B).

4.3 Internal Displacements and Stresses

At this stage, it is a simple matter to derive equations for displacements and
stresses at a point inside a body. The general equations are derived in [103]
and equations for internal points close to the bounding surface are derived in
[104]. They are given below.

4.3.1 Internal Displacements

One has to compare the regularized BIE (4.1), the regularized BCE (4.25) and
the usual BIE at an internal point p = ξ (equation (1.21) in Chapter 1). The
result is:

uk(ξ) =

1
2

M∑
m=1

27∑
α=13

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjstzsdzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjstzsdzt

] [
R(ξ)

m

T−1ma

]
α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Dαjk(z)dzj

] [
S(ξ)

m

T−1ma

]
α

(4.48)

where z = y − ξ.

4.3.2 Displacements at Internal Points Close to the Bound-
ing Surface

This section is concerned with evaluation of displacements at internal points
that are close to the bounding surface of a body. Section 4.3.4 concerns internal
stresses also at points close to the bounding surface. Please refer to Section 1.3
of this book for a similar discussion related to the BEM. (See, also, [104]).

The first step is to choose the target point x̂ at or close to the centroid
of a boundary element (see Figure 1.3). Since all other terms in equation
(4.48), except the solid angle, are evaluated as contour integrals, these terms
are already regularized. There are at least two ways of regularizing the solid
angle term in equation (4.48). The first is to evaluate the solid angle Ω (see
equation (4.24)) as a line integral by employing equation (16) in Liu [87]. The
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second is to use a boundary contour version of equation (1.49) and still evaluate
Ω as a surface integral. The latter approach is adopted in this work.

The boundary contour version of equation (1.49) can be obtained easily.
This equation is:

uk(ξ) = uk(x̂)

+
1
2

M∑
m=1

27∑
α=13

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjstzsdzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjstzsdzt

] [
R(ξ)

m

T−1ma

]
α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Dαjk(z)dzj

] [
S(ξ)

m

T−1ma −S(x̂)βP̂
]
α

(4.49)

where:

uk(x̂) = β̂P̂k =
27∑

α=1

Skα(x̂)βP̂α (4.50)

Note that the point P̂ has coordinates x̂.
It is important to note that, on a singular element (i.e. when integration is

being carried out on an element that contains the point x̂), one has:

m

T−1ma=
m

β= βP̂ (4.51)

In this case, the numerator of the last integrand in equation (4.49) is O(r(ξ, x̂))
while the denominator in the solid angle term is O(r2(ξ, x̂)) as y → x̂, so that
equation (4.49) is “nearly weakly singular” as y → x̂. It is useful to remember
that the integral of Dαjk in equation (4.49) contains the solid angle term which
is evaluated as a surface integral.

4.3.3 Internal Stresses

This time, one has to compare the regularized HBIE (4.37), the regularized
HBCE (4.44) and the usual integral expression for the displacement gradient
at an internal point p = ξ (equation (1.34) in Chapter 1). The result is:

uk,n(ξ) = −
M∑

m=1

27∑
α=13

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjntdzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjstzsdzt

] [
R,n(ξ)

m

T−1ma

]
α−3

© 2005 by Taylor & Francis Group, LLC



84 CHAPTER 4. LINEAR ELASTICITY

−
M∑

m=1

12∑
α=4

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjntdzt

] [
R(ξ)

m

T−1ma

]
α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Dαjk(z)dzj

] [
S,n(ξ)

m

T−1ma

]
α

+
M∑

m=1

3∑
α=1

[∮
Lm

Σαjk(z)εjntdzt

] [
S(ξ)

m

T−1ma

]
α

(4.52)

Hooke’s law is now used to obtain the internal stress from the internal displace-
ment gradient.

Curvatures at an internal point are given in equations (4.34 - 4.36).

4.3.4 Stresses at Internal Points Close to the Bounding
Surface

As before for the case of displacement evaluation at an internal point close to
the boundary of a body (see start of section 4.3.2), one has two choices with
respect to the strategy for evaluation of the solid angle. Again, for the sake of
uniformity, a boundary contour version of equation (1.51) is used here, together
with evaluation of the solid angle as a surface integral.

A boundary contour version of equation (1.51) is obtained in a manner that
is quite analogous to the approach discussed in Section 4.2.2 (see, also, [99]).
The first step is to use the product rule to transform equation (1.51) to the
form:

uk,n(ξ) = uk,n(x̂)

−
∫
∂B

[
Uik(ξ,y) [σij(y) − σij(x̂)] − Σijk(ξ,y)

[
ui(y) − u

(L)
i

]]
,n
nj(y)dS(y)

+
∫
∂B

[Uik(ξ,y)σij,n(y) − Σijk(ξ,y) [ui,n(y) − ui,n(x̂)]]nj(y)dS(y) (4.53)

where (see Figure 1.3):

u
(L)
i = ui(x̂) − ui,�(x̂)ẑ� (4.54)

with:

ẑ� = y� − x̂� (4.55)

The BCM version of equation (1.51) is:

uk,n(ξ) = uk,n(x̂)
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−
M∑

m=1

27∑
α=13

[∮
Lm

(σαij(ẑ)Uik(z) − uαi(ẑ)Σijk(z)) εjntdzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαij(z)Uik(z) − uαi(z)Σijk(z)) εjstzsdzt

] [
R,n(ξ)

m

T−1ma

]
α−3

−
M∑

m=1
m/∈S

12∑
α=4

[∮
Lm

(σαij(ẑ)Uik(z) − uαi(ẑ)Σijk(z)) εjntdzt

]
×

[
R(x̂)

( m

T−1ma −βP̂
)]

α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Dαjk(z)dzj

] [
S,n(ξ)

m

T−1ma −S,n(x̂)βP̂
]
α

+
M∑

m=1
m/∈S

3∑
α=1

[∮
Lm

Σαjk(z)εjntdzt

] [
S(x̂)

( m

T−1ma −βP̂
)]

α

(4.56)

where ẑ = y − x̂ (see Figure 1.3).
It should be noted that the first, third and fifth terms, with summations

and integrals, on the right-hand side of equation (4.56), arise from the first
integral in equation (4.53); while the second and fourth arise from the second
integral in equation (4.53). Again, as in the case of equation (4.49), the last but
one term on the right-hand side of equation (4.56) is “nearly weakly singular”
(O(1/r(ξ, x̂)) as y → x̂).

4.4 Numerical Results

Numerical results from the BCM, for selected 3-D examples, are available in
[116], [109] and, from the HBCM, in [99]. Typical results, for a thick hollow
sphere under internal pressure, are given below. For the results in Sections 4.4.1
- 4.4.3, the inner and outer radii of the sphere are 1 and 2 units, respectively,
the shear modulus G = 1, the Poisson’s ratio ν = 0.3, and the internal pressure
is 1. For the results in Section 4.4.4, the inner and outer radii of the sphere
are 1 and 4 units, respectively, the Young’s modulus E = 1, the Poisson’s ratio
ν = 0.25, and the internal pressure is 1. A generic surface mesh on a one-eighth
sphere is shown in Figure 4.2. Two levels of discretization - medium and fine,
are used in this work. Mesh statistics are shown in Table 4.3.

4.4.1 Surface Displacements from the BCM and the
HBCM

First, please note that (4.44) has two free indices, k and n, so that it repre-
sents nine equations. These equations arise from uk,n. Different strategies are
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X1

X2

X3

Figure 4.2: A typical mesh on the surface of a one-eighth sphere (from [100])

mesh number of elements
on each flat plane on each curved surface total

coarse 12 9 54
medium 36 36 180

fine 64 64 320

Table 4.3: Mesh statistics on a one-eighth sphere (from [100])

possible for collocating (4.44) at a boundary point. The first is to use all nine
equations. The second is to use six corresponding to εkn = (1/2)(uk,n + un,k).
The six-equation strategy amounts to replacing Ekn, the right-hand side of
(4.44), by (1/2)(Ekn+Enk). Both the nine-equation and six-equation strategies
lead to overdetermined systems, but are convenient for collocating at irregular
boundary points since the source point normal is not involved in these cases.
A third, the three-equation strategy, suitable for collocation at regular points,
corresponds to the traction components τn. In this case, the right-hand side
(Ekn) of (4.44) is replaced by [λEmmδkn + µ(Ekn + Enk)]nk(P ), where λ and
µ are Lamé constants, δij are components of the Kronecker delta and Hooke’s
law is used. The three-equation strategy involving the traction components is
not convenient for collocating the HBCE at a point on an edge or a corner of a
body where the normal to the body surface has a jump discontinuity. In view
of the assumed continuity of the stress tensor at such a point, this situation
leads to a jump in traction at that point, unless the stress tensor is zero there.
One would, therefore, need to use multiple source points, each belonging to
a smooth surface meeting at that irregular point, and collocate separately at
these points. Since the primary purpose here is to demonstrate collocation of
(4.37) at irregular boundary points, only the nine-equation and six-equation
strategies are used below.

It should be mentioned here that, for the HBCM in 2-D elasticity, a strategy
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Figure 4.3: Hollow sphere under internal pressure. Radial displacement as a
function of radius along the x1 axis. Numerical solutions are obtained from the
medium mesh. Exact solution: —, BCM solution: ◦ ◦ ◦◦, six-equation HBCM
solution: ∗ ∗ ∗∗, nine-equation HBCM solution: ++++ (from [111])

corresponding to the first one above has been successfully employed by [131]
and a strategy corresponding to the third one above has been implemented by
[187].

The overdetermined system of linear algebraic equations, resulting from the
nine-equation and six-equation strategies mentioned above, have been solved
by using a subroutine based on QR decomposition of the system matrix. This
subroutine has been obtained from the IMSL software package.

It is seen from Figure 4.2 that many of the collocation points lie on edges
and six of them lie on corners of the surface of the one-eighth sphere. These
results, displayed in Figure 4.3, show a comparison of the BCM (from equation
(4.25)) and HBCM (from equation (4.44)) results with the exact solution of the
problem [167]. The first and last points along the axis lie on corners, the rest
lie along an edge. The agreement between the exact, BCM and nine-equation
HBCM solution is seen to be excellent.

4.4.2 Surface Stresses

Stresses on the inner (R = a) and on the outer (R = b) surface of the sphere,
obtained from equation (4.33) and Hooke’s law, are shown in Figure 4.4. The
nodes are chosen at the centroids of the boundary elements. The agreement
between the numerical and analytical solutions is seen to be excellent.
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Figure 4.4: Hollow sphere under internal pressure. Stresses (a) on the inner
surface R = a and (b) on the outer surface R = b. Exact solutions —. Numer-
ical solutions from the medium mesh: σθθ = σφφ ∗ ∗ ∗ ∗, σRR ◦ ◦ ◦ ◦ (from
[100])
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Figure 4.5: Hollow sphere under internal pressure. Stresses as functions of
radius along the line x1 = x2 = x3. Exact solutions —. Numerical solutions
from the fine mesh: σθθ = σφφ ∗ ∗ ∗ ∗, σRR ◦ ◦ ◦ ◦ (from [103])
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Figure 4.6: Hollow sphere under internal pressure. Radial and circumferential
stresses (σrr and σθθ) as functions of radial distance from the center of the
sphere. The new and standard BCM solutions from the fine mesh, together
with exact solutions, for points very close to the inner surface of the sphere
(from [104])
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Figure 4.7: Hollow sphere under internal pressure. Radial and circumferential
stresses as functions of the radial distance from the center of the sphere. Results
from the new BCM (fine mesh) together with the exact solution (from [104])
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4.4.3 Internal Stresses Relatively Far from the Bounding
Surface

Internal stresses along the line x1 = x2 = x3, obtained from equation (4.52) and
Hooke’s law, appear in Figure 4.5. Excellent agreement is observed between the
numerical and analytical solutions.

4.4.4 Internal Stresses Very Close to the Bounding Sur-
face

Numerical results for stress components, from the standard (equation (4.52))
and the new (equation (4.56)) BCM, are shown in Figures 4.6 (a) and (b),
respectively. The results from the standard BCM exhibit large errors whereas
results from the new BCM faithfully track the exact solutions in both cases.
Finally, Figure 4.7 gives the global picture for stresses throughout the sphere.
The new BCM performs beautifully, even at points that are very close to the
surfaces of the hollow sphere.

Appendix A

An Explicit Form of Equation (4.40)

Using the equations :

ui(y) =
27∑

α=1

β̂mα uαi(z1, z2, z3)

ui(x) =
3∑

α=1

β̂Pα uαi(z1, z2, z3)

ui,�(x)[y� − x�] =
12∑

α=4

β̂Pα uαi(z1, z2, z3)

(the last equation above can be proved from equation (4.33)), the integral in
equation (4.40) can be written as:

I1 =
∮
Lm

Uik(x,y)

[
12∑

α=4

(β̂mα − β̂Pα )σαij +
27∑

α=13

β̂mα σαij

]
εjntdzt

−
∮
Lm

Σijk(x,y)

[
12∑

α=1

(β̂mα − β̂Pα )uαi +
27∑

α=13

β̂mα uαi

]
εjntdzt

where the fact that σαij = 0 for α = 1, 2, 3 has been used.
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Appendix B

Proof of Equation (4.42)

ui(y) =
27∑

α=1

β̂mα uαi(z1, z2, z3)

ui,n(y) =
27∑

α=4

β̂mα uαi,n(z1, z2, z3)

since uαi , α = 1, 2, 3, are constant.

Now,

ui,n(y)constant ≡
12∑

α=4

β̂mα uαi,n =
[
S,N

m

β

]
i

where the last equality is obtained by observing equation (4.41).

Let

ui,n(y)linear ≡
27∑

α=13

β̂mα uαi,n(z1, z2, z3) =
27∑

α=13

m

βα uαi,n(z1, z2, z3)

Now, with n = 1,

27∑
α=13

m

βα uα,1 = 2
(

m

β13 +
m

β20

)
u4 + 2

m

β15 u5 + 2
m

β18 u6

+, ......,+
(
k2

m

β19 +k1

m

β20

)
u12

=
12∑

α=4

[
R,1

m

β

]
α−3

uα(z1, z2, z3)

Similar expressions can be obtained for n = 2,3.

In the above, a vector displacement shape function is defined as:

uα = [uα1, uα2, uα3]
T

(where T denotes the transpose of the vector), and the constants k1 and k2 are
defined in Table 4.1
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Appendix C

Conversion of Equation (4.43)

m

I 2= −
12∑

α=4

[∫
Sm

[Uik(x,y)σαij − Σijk(x,y)uαi]njdS
] [
R,N

m

β

]
α−3

+
3∑

α=1

[∫
Sm

Σαjk(x,y)njdS
] [
S,N

m

β

]
α

−
3∑

α=1

uα,n(x)
∫
Sm

Σαjk(x,y)njdS

Applying Kaplan [69]’s formula (see [116], [109]), to the first term above (its
integrand is O(1/r)), one gets the contour integral:

m

I 21= −
12∑

α=4

[∮
Lm

(σαijUik − uαiΣijk) εjstzsdzt

] [
R,N

m

β

]
α−3

The remaining terms cancel on a singular element (see equation (4.41)),
while, on a nonsingular element, one gets (see equation (4.26)):

m

I 22= −
3∑

α=1

[∮
Lm

Dαjkdzj

] [
S,N

(
m

β −
P

β

)]
α
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Chapter 5

SHAPE SENSITIVITY
ANALYSIS

Shape sensitivity analysis of surface and internal displacements and stresses,
obtained from the BCM for 3-D linear elasticity, is the subject of this chapter.
Further details are available in [100, 103].

5.1 Sensitivities of Boundary Variables

The starting point in this chapter is the standard BIE (1.26) collocated at an
internal point ξ . (This regularized BIE is valid both at an internal point ξ ∈ B
as well as at a boundary point x ∈ ∂B.) The sensitivity (total or material
derivative) of this equation is taken with respect to a design variable b. The
resulting sensitivity BIE is split into three parts. The first part vanishes and
the surface integrals in the second and third parts are systematically converted
into contour integrals by using Stokes’ theorem.

5.1.1 Sensitivity of the BIE

Equation (4.1), at an internal point ξ ∈ ∂B is rewritten as:

0 =
∫
∂B

[Uik(ξ,y)σij(y, b) − Σijk(ξ,y)[ui(y, b) − ui(ξ, b)]]nj(y)dS(y)

≡
∫
∂B

Fjk(ξ,y, b)nj(y)dS(y) (5.1)

As mentioned above, b is a shape design variable and the spatial coordinates of
the source and field points depend on b , i.e. ξ(b),y(b).

From equation (5.1), one has:

93
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94 CHAPTER 5. SHAPE SENSITIVITY ANALYSIS

Fjk(ξ,y, b) = Uik(ξ,y)σij(y, b) − Σijk(ξ,y)[ui(y, b) − ui(ξ, b)] (5.2)

Now the (total) sensitivity of a function f(ξ(b),y(b), b), in a materials derivative
sense, is defined as :

∗
f≡ df

db
=

∂f

∂ξk

∗
ξk +

∂f

∂yk

∗
yk +

∂f

∂b
(5.3)

while its partial sensitivity is defined as :

�
f≡ ∂f

∂b
(5.4)

It should be noted that, for ui(y, b):

�
ui =

∗
ui −ui,k

∗
yk ,

�
σij =

∗
σij −σij,k

∗
yk (5.5)

where , k ≡ ∂
∂yk

; and similarly for ui(ξ, b).
Taking the sensitivity (total derivative) of equation (5.1) with respect to b,

one gets:

0 =
∗
ξr

∫
∂B

∂Fjk(ξ,y, b)
∂ξr

nj(y)dS(y)

+
∫
∂B

∂Fjk(ξ,y, b)
∂yr

∗
yr nj(y)dS(y) +

∫
∂B

Fjk(ξ,y, b)
d

db
[nj(y)dS(y)]

+
∫
∂B

[
Uik(x,y)

�
σij (y, b) − Σijk(ξ,y)(

�
ui (y, b)− �

ui (ξ, b))
]
nj(y)dS(y)

(5.6)

It should be noted that the last integrand above is ∂Fjk(ξ,y,b)
∂b .

The first integral on the right-hand side of equation (5.6) is zero because
the integral in equation (5.1) vanishes for all values of ξ ∈ B. Let the second
and third integrals together be called Ik and the last integral Jk. Thus:

Ik + Jk = 0 (5.7)

Each of these surface integrals will be converted to line integrals in the next
two sections.

5.1.2 The Integral Ik

The surface integral Ik is converted to a sum of contour integrals in this section.
As mentioned before, a point ξ, inside the body, is considered first. From
Bonnet and Xiao [15] (see also Petryk and Mróz [128]):

∗
nj= −

∗
yr,j nr+

∗
yr,m nrnmnj (5.8)
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∗
dS

dS
=

∗
yr,r −

∗
yr,m nrnm (5.9)

so that:

d

db
[njdS] =

[∗
yr,r nj−

∗
yr,j nr

]
dS (5.10)

Using equation (5.10) in (5.6), one has:

Ik =
∫
∂B

[
Fjk,r

∗
yr nj + Fjk

∗
yr,r nj − Fjk

∗
yr,j nr

]
dS (5.11)

Since Fjk,j = 0 (except at a point of singularity - here ξ is an internal point),
the above expression can be written as:

Ik =
∫
∂B

[(
Fjk

∗
yr

)
,r
nj −

(
Fjk

∗
yr

)
,j
nr

]
dS (5.12)

Let ∂B = ∪Sm and let Lm be the bounding contour of the boundary element
Sm. Using Stokes’ theorem in the form (see Toh and Mukherjee [168]):∫

Sm

(F,rnj − F,jnr) dS(y) =
∮
Lm

εqjrFdyq (5.13)

with F ≡ Fjk

∗
yr, one gets:

Ik =
M∑

m=1

∮
Lm

εqjrFjk

∗
yr dyq (5.14)

It is useful to state here that formula (5.14) is a general one, in the sense
that, a surface integral I (over a closed surface ∂B) of any divergence-free vector
function F(y) , of the form:

I =
∫
∂B

Fj(y) nj(y) dS(y) (5.15)

has the sensitivity expression :

∗
I=

M∑
m=1

∮
Lm

εjntFj(y)
∗
yn dyt (5.16)

Of course, from Gauss’ theorem, I = 0. Therefore,
∗
I= 0.

One can show that:

M∑
m=1

∮
Lm

εqjrFjkdyq =
∫
∂B

Fjk,rnjdS = 0 ⇒
M∑

m=1

∗
ξr

∮
Lm

εqjrFjkdyq = 0

(5.17)
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Since
∗
yr=

∗
ξr +

∗
zr, one can replace

∗
yr with

∗
zr in equation (5.14). Also, dyq = dzq

since dxq = 0 at a fixed source point.
Substituting equation (5.2) into (5.14) (with y replaced by z) , one gets:

Ik(ξ) =
M∑

m=1

∮
Lm

[Uik(ξ,y)σij(y, b) − Σijk(ξ,y)(ui(y, b) − ui(ξ, b))] εjnt
∗
zn dzt

(5.18)
Since

∗
zn is O(r) as r =‖ y − x ‖→ 0, the above expression is completely

regular. Therefore, it remains valid at a boundary point x ∈ ∂B.

5.1.3 The Integral Jk

The surface integral Jk is converted to a sum of contour integrals in this section.

5.1.3.1 Shape functions for partial sensitivities - a simple example

Series expressions for the partial sensitivities of displacements and stresses, in
terms of global BCM shape functions, are derived next.

It is useful to start with a very simple example. Let:

f(y) = a0 + a1y + a2y
2 (5.19)

With the change of variables:

y = x+ z (5.20)

one can write:

f(x, z) = â0(x) + â1(x)z + â2(x)z2 (5.21)

where:

â0 = a0 + a1x+ a2x
2 = f(x)

â1 = a1 + 2a2x =
d

dx
f(x)

â2 = a2 (5.22)

It is easy to show that taking sensitivities of the above equations results in:

∗
f (y) =

∗
a0 +

∗
a1 y+

∗
a2 y

2 + a1

∗
y +2a2y

∗
y (5.23)

�
f (y) =

∗
f (y) − f,y

∗
y

=
∗
a0 +

∗
a1 y+

∗
a2 y

2 (5.24)
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As expected, the partial sensitivity of f(x) is its sensitivity at a fixed point
in space.

Now, with the change of variables (5.20), one has:

�
f (x, z) =

�
a0 (x)+

�
a1 (x)z+

�
a2 (x)z2 (5.25)

where
�
ak, k = 0, 1, 2, are related to

∗
ak in the same manner as âk are related

to ak in equation (5.22).

5.1.3.2 BCM interpolation functions

The displacement and stress interpolation functions for the BCM are considered
next.

One starts with equation (4.8) for the displacements. Following the proce-
dure outlined above for the simple example, it is easy to show that:

�
ui =

27∑
α=1

∗
βα uαi(y1, y2, y3) =

27∑
α=1

�
βα (x1, x2, x3)uαi(z1, z2, z3) (5.26)

where,
�
βα, α = 1, 2, ...27, are related to

∗
βα in the same manner as β̂α are related

to βα (see equations 4.10, 4.11 and 4.12), i.e.:

�
βi =

27∑
α=1

Siα(x1, x2, x3)
∗
βα , i = 1, 2, 3 (5.27)

�
βk =

27∑
α=1

Rnα(x1, x2, x3)
∗
βα , k = 4, 5, ...12, n = k − 3 (5.28)

�
βα =

∗
βα , α = 13, 14, .., 27 (5.29)

Of course, the partial sensitivities for the stresses can now be expressed as:

�
σij =

27∑
α=1

∗
βα σαij(y1, y2, y3) =

27∑
α=1

�
βα (x1, x2, x3)σαij(z1, z2, z3) (5.30)

5.1.3.3 The final form of Jk

The conversion procedure is entirely analogous to the derivation of the primary
BCM equation presented in Chapter 4. Series expansions (5.26) and (5.30) are
first substituted into the last integral on the right-hand side of the sensitivity
BIE (5.6). The potential functions are the same as before. Finally, the surface
integral Jk is converted into a sum of contour integrals. The result is:
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Jk(x) =
1
2

M∑
m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

] �
β
m

α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

] �
β
m

α

+
M∑

m=1
m/∈S

3∑
α=1

[∮
Lm

Dαjkdzj

] [ �
β
m

α −
�
β
P

α

]
(5.31)

It is interesting to comment on the physical meaning of the quantities
�
β
P

α

for the case when the surface source point P is a regular off-contour boundary
point (ROCBP). Comparing equations (4.10 - 4.12) with (5.27 - 5.29), it is clear

that
�

β̂k=
�
βk, k = 1, 2, 3, .., 27. Now, the quantities

�
β
P

α can be easily interpreted
in terms of the partial sensitivities of displacements and their derivatives from

equations (4.32 - 4.36). For example,
�
β
P

k =
�
uk (P ), k = 1, 2, 3, etc.

5.1.4 The BCM Sensitivity Equation

An explicit form of the BCM sensitivity equation is now derived.
On any boundary element:

∗
β= T−1 ∗

a +(T−1)∗a (5.32)

in which it is convenient to evaluate the sensitivity of T−1 from the formula:

(T−1)∗ = −T−1
∗
T T−1 (5.33)

Expressions (5.27 - 5.29) for
�
βα are substituted into (5.31), and (5.32) is

used to write
∗
β in explicit form. Next, an explicit expression for Ik is obtained

by substituting the series expressions (4.8) for ui and (4.9) for σij into (5.18).
Finally, the explicit expression for Ik (obtained from (5.18)) and the explicit
expression for Jk (obtained from (5.31)) are input into the BIE sensitivity equa-
tion (5.6) (see also 5.7) evaluated at a general boundary point x ∈ ∂B. The
result is:

0 =
M∑

m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjnt
∗
zn dzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjnt
∗
zn dzt

] [
R

m

T−1ma

]
α−3
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−
M∑

m=1
m/∈S

3∑
α=1

[∮
Lm

Σαjkεjnt
∗
zn dzt

][
S

(
m

T−1ma −
P

T−1Pa

)]
α

+
1
2

M∑
m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

]
×

[ m

T−1∗
a
m

+
( m

T−1

)∗
m
a

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

]
×

[
R

( m

T−1∗
a
m

+
( m

T−1

)∗
m
a

)]
α−3

+
M∑

m=1
m/∈S

3∑
α=1

[∮
Lm

Dαjkdzj

]
×

[
S

(
m

T−1∗
a
m

−
P

T−1∗
a
P

+
( m

T−1

)∗
m
a −

(
P

T−1

)∗
P
a

)]
α

(5.34)

Comparison of the above sensitivity equation (5.34) with the standard BCE
(4.25) reveals that the integrals in its last three terms are identical to those in
the standard BCE. Therefore, its discretized form can be written with the same
coefficient matrix A as for the standard BCM, i.e. :

K
∗
a= h (5.35)

where the right-hand side vector h = −
∗
K a can be computed from equation

(5.34) by using the boundary values of the primary variables a that are known
at this stage.

Finally, the usual switching of columns leads to:

A
∗
x= B

∗
y +h (5.36)

where
∗
x contains the unknown and

∗
y the known values of boundary sensitivities.

In many applications,
∗
y= 0

5.2 Sensitivities of Surface Stresses

The first step is to use equation (5.32) to find
∗
β on each element.

There are at least four ways to find stress sensitivities on the surface of a
body.

© 2005 by Taylor & Francis Group, LLC



100 CHAPTER 5. SHAPE SENSITIVITY ANALYSIS

5.2.1 Method One

Equation (4.9) is differentiated to give:

∗
σij=

27∑
α=1

∗
βα σαij(y1, y2, y3) +

27∑
α=1

βα
∗
σαij (

∗
y1,

∗
y2,

∗
y3) (5.37)

Note that
∗
σαij (

∗
y1,

∗
y2,

∗
y3) involves sensitivities of the field point coordinates

(y1, y2, y3).

5.2.2 Method Two

Sensitivities of displacement gradients vij ≡ ui,j are computed by differentiating
equation (4.33). The result is:

[∗
vij (x)

]
=




∗
β̂4

∗
β̂7

∗
β̂10

∗
β̂5

∗
β̂8

∗
β̂11

∗
β̂6

∗
β̂9

∗
β̂12




x

(5.38)

where, by differentiating equation (4.11), one has:

∗
β̂k =

27∑
α=1

Rnα(x1, x2, x3)
∗
βα +

27∑
α=1

∗
Rnα (

∗
x1,

∗
x2,

∗
x3)βα

k = 4, 5, ...12, n = k − 3 (5.39)

Note that
∗
Rnα (

∗
x1,

∗
x2,

∗
x3) involves sensitivities of the source point coordinates

(x1, x2, x3)
Finally, Hooke’s law is used to determine the stress sensitivities from the

sensitivities of the displacement gradients.

5.2.3 Method Three

One writes:

∗
vij=

�
vij +vij,k

∗
xk (5.40)

Now:

vij,k = ui,jk (5.41)

Also, from equation (4.33):
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[
�
vij (x)

]
=




�

β̂4

�

β̂7

�

β̂10

�

β̂5

�

β̂8

�

β̂11

�

β̂6

�

β̂9

�

β̂12




x

(5.42)

with, from equations (4.11) and (5.28):

�

β̂k =
�
βk =

27∑
α=1

Rnα(x1, x2, x3)
∗
βα

k = 4, 5, ..., 12, n = k − 3 (5.43)

The curvature expressions needed in equation (5.40) are available in terms
of βα , α = 13, 14, ...27, from equations (4.34 - 4.36).

5.2.4 Method Four

The starting point is, again, equation (5.40). The term vij,k on the right-hand
side of equation (5.40) is treated in the same fashion as in Section 5.2.3 . The
other term,

�
vij , is treated differently. It is first observed that the operators , k

and � commute and that
�
ui (P ) =

�
β
P

i for i = 1, 2, 3. Therefore, one has:

�
vij= (ui,j)

� = (
�
ui),j = (

�
β
P

i ),j (5.44)

It follows from equation (5.27) that:

�
vij= (

�
β
P

i ),j =
27∑

α=1

Siα,j(x1, x2, x3)
∗
βα, i, j = 1, 2, 3 (5.45)

5.3 Sensitivities of Variables at Internal Points

Boundary contour integral equations of the sensitivities of internal displace-
ments and stresses are derived in this section. Further details are available
[103].

5.3.1 Sensitivities of Displacements

The starting point is equation (1.21), the displacement BIE at an internal point
ξ. This equation is written as:
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uk(ξ, b) =
∫
∂B

[Uik(ξ,y)σij(y, b) − Σijk(ξ,y)ui(y, b)]nj(y)dS(y) (5.46)

Define:

Gjk(ξ,y, b) = Uik(ξ,y)σij(y, b) − Σijk(ξ,y)ui(y, b) (5.47)

Taking the sensitivity of equation (5.46), one gets:

∗
uk (ξ, b) =

∗
ξr

∫
∂B

∂Gjk(ξ,y, b)
∂ξr

nj(y)dS(y)

+
∫
∂B

∂Gjk(ξ,y, b)
∂yr

∗
yr nj(y)dS(y)

+
∫
∂B

Gjk(ξ,y, b)
d

db
[nj(y)dS(y)]

+
∫
∂B

[
Uik(ξ,y)

�
σij (y, b) − Σijk(ξ,y)

�
ui (y, b)

]
nj(y)dS(y)

(5.48)

Let the first term on the right-hand side of equation (5.48) be called J1k ,
the second and third integrals together be called J2k and the last integral be
J3k. Therefore, one has:

∗
uk (ξ, b) = J1k + J2k + J3k (5.49)

It is obvious that:

J1k = uk,r(ξ)
∗
ξr (5.50)

Using exactly the same procedure described in Section 5.1.2, one gets:

J2k =
M∑

m=1

∮
Lm

εjntGjk
∗
zn dzt (5.51)

Finally,

J3k =
�
uk (5.52)

Substituting equations (5.50, 5.51, 5.52 and 5.47) into (5.49), one obtains
the expression:

∗
uk (ξ, b) = uk,p(ξ)

∗
ξp

+
M∑

m=1

∮
Lm

[Uik(ξ,y)σij(y, b) − Σijk(ξ,y)ui(y, b)] εjnt
∗
zn dzt +

�
uk

(5.53)
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An explicit form of equation (5.53) is obtained by writing the displacements
and stresses in terms of their interpolation functions from equations (4.8 and
4.9). Please refer to Section 5.1.3 for details of the treatment of the partial
sensitivity

�
uk . Finally, the boundary contour integral form of the displacement

sensitivity equation is:

∗
uk (ξ, b) = uk,r(ξ)

∗
ξr

+
M∑

m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjnt
∗
zn dzt

] [ m

T−1ma

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjnt
∗
zn dzt

] [
R

m

T−1ma

]
α−3

−
M∑

m=1

3∑
α=1

[∮
Lm

Σαjkεjnt
∗
zn dzt

] [
S

m

T−1ma

]
α

+
1
2

M∑
m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

]
×

[ m

T−1∗
a
m

+
( m

T−1

)∗
m
a

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

]
×

[
R

( m

T−1∗
a
m

+
( m

T−1

)∗
m
a

)]
α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Dαjkdzj

] [
S

( m

T−1∗
a
m

+
( m

T−1

)∗
m
a

)]
α

(5.54)

5.3.2 Sensitivities of Displacement Gradients and Stresses

This time, the starting point is the displacement gradient BIE (1.28), which is
written as:

vkr(ξ, b) ≡ uk,r(ξ, b)

= −
∫
∂B

[Uik,r(ξ,y)σij(y, b) − Σijk,r(ξ,y)ui(y, b)]nj(y)dS(y)

(5.55)

Now, one defines:
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Hjkr(ξ,y) = Uik,r(ξ,y)σij(y, b) − Σijk,r(ξ,y)ui(y, b) (5.56)

One has Hjkr,j = 0 at an internal point since:

Hjkr(ξ,y) = −∂Gjk(ξ,y)
∂ξr

(5.57)

and Gjk,j = 0.

The exact same reasoning as in the previous section 5.3.1 leads to an equa-
tion for the sensitivities of displacement gradients at an internal point. This
is:

∗
vkr (ξ, b) = uk,rp(ξ)

∗
ξp

−
M∑

m=1

∮
Lm

[Uik,r(ξ,y)σij(y, b) − Σijk,r(ξ,y)ui(y, b)] εjnt
∗
zn dzt

−
∫
∂B

[
Uik,r(ξ,y)

�
σij (y, b) − Σijk,r(ξ,y)

�
ui (y, b)

]
nj(y)dS(y)

(5.58)

It is very interesting to verify (5.58) from another point of view. Differenti-
ating equation (5.53) with respect to ξr, one gets:

(
∗
uk),r(ξ) = uk,rp(ξ)

∗
ξp +uk,p(ξ)(

∗
ξp),r

−
M∑

m=1

∮
Lm

[Uik,r(ξ,y)σij(y, b) − Σijk,r(ξ,y)ui(y, b)] εjnt
∗
zn dzt

−
∫
∂B

[
Uik,r(ξ,y)

�
σij (y, b) − Σijk,r(ξ,y)

�
ui (y, b)

]
nj(y)dS(y)

(5.59)

Normally, one would expect another term on the right-hand side of the above
equation, namely:

M∑
m=1

∮
Lm

[Uik(ξ,y)σij(y, b) − Σijk(ξ,y)ui(y, b)] εjnt(
∗
zn),rdzt (5.60)

However, (see Section 5.1.2)
∗
zn=

∗
yn −

∗
ξn, (

∗
zn),r = −(

∗
ξn),r and:

M∑
m=1

(
∗
ξn),r

∮
Lm

Gjk(ξ,y, b)εjntdzt = 0 (5.61)
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since Gjk is divergence free (see (5.17)). Therefore, the expression in (5.60)
vanishes.

Now, using the well-known formula (which is valid for any sufficiently smooth
function φ - see, for example, Haug et al. [63]):

(φ,r)∗ = (
∗
φ),r − φ,p(

∗
xp),r (5.62)

with φ = uk, it is easy to show that equations (5.58) and (5.59) are consistent.
Finally, one writes the displacements and stresses in terms of their inter-

polation functions in order to obtain an explicit form of equation (5.58). It
should be noted that the second term in the right-hand side of equation (5.58)
is analogous to the integral on the right-hand side of equation (5.53) (with G
replaced by H), while the last term in equation (5.58),

�
vkr, is analogous to an

expression for the displacement gradient at an internal point. The displacement
gradient BCE (4.52) is very useful for obtaining an explicit expression for this
integral. The final result is:

∗
vkr (ξ, b) = uk,rp(ξ)

∗
ξp

−
M∑

m=1

27∑
α=13

[∮
Lm

(σαijUik,r − uαiΣijk,r) εjnt
∗
zn dzt

] [ m

T−1ma

]
α

−
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik,r − uαiΣijk,r) εjnt
∗
zn dzt

]
×

[
R

m

T−1ma

]
α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Σαjk,rεjnt
∗
zn dzt

] [
S

m

T−1ma

]
α

−
M∑

m=1

27∑
α=13

[∮
Lm

(σαijUik − uαiΣijk) εjrtdzt

]
×

[ m

T−1∗
a
m

+
( m

T−1

)∗
m
a

]
α

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjntzndzt

]
×

[
R,r

( m

T−1∗
a
m

+
( m

T−1

)∗
m
a

)]
α−3

−
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjrtdzt

]
×
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[
R

( m

T−1∗
a
m

+
( m

T−1

)∗
m
a

)]
α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Dαjkdzj

] [
S,r

( m

T−1∗
a
m

+
( m

T−1

)∗
m
a

)]
α

+
M∑

m=1

3∑
α=1

[∮
Lm

Σαjkεjrtdzt

] [
S

( m

T−1∗
a
m

+
( m

T−1

)∗
m
a

)]
α

(5.63)

The curvatures uk,rp in the above equation can be obtained from (see [103]):

uk,rp(ξ) =
M∑

m=1

27∑
α=13

[∮
Lm

(σαijUik,r − uαiΣijk,r) εjptdzt

] [ m

T−1ma

]
α

−
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik − uαiΣijk) εjrtdzt

] [
R,p

m

T−1ma

]
α−3

+
M∑

m=1

12∑
α=4

[∮
Lm

(σαijUik,r − uαiΣijk,r) εjptdzt

] [
R

m

T−1ma

]
α−3

+
M∑

m=1

3∑
α=1

[∮
Lm

Σαjkεjrtdzt

] [
S,p

m

T−1ma

]
α

−
M∑

m=1

3∑
α=1

[∮
Lm

Σαjk,rεjptdzt

] [
S

m

T−1ma

]
α

+
M∑

m=1

3∑
α=1

[∮
Lm

Dαjkdzj

] [
S,rp

m

T−1ma

]
α

(5.64)

Finally, stress sensitivities can be easily obtained from
∗
vkr by using Hooke’s

law.

5.4 Numerical Results: Hollow Sphere

Sensitivity results are presented in this section for a thick hollow sphere under
internal pressure (see Section 4.4). As before, the inner and outer radii of the
sphere are 1 and 2 units, respectively, the shear modulus G = 1, the Poisson’s
ratio ν = 0.3 and the internal pressure is 1 unit. The design variable is the
inner radius a of the sphere.

A generic surface mesh on a one-eighth sphere is given in Figure 4.2. Three
levels of discretization, coarse, medium and fine, are used in this work. Mesh
statistics are shown in Table 4.3.
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Figure 5.1: Sensitivity of radial displacement along (a) the x3 axis and (b) along
the line x1 = 0, x2 = x3. Exact solution —. Numerical solutions: coarse mesh
◦ ◦ ◦◦, medium mesh ∗ ∗ ∗∗, fine mesh ++++ (from [100])

5.4.1 Sensitivities on Sphere Surface

5.4.1.1 Displacement sensitivities

Displacement sensitivities (from equation (5.34)), along various lines on the
sphere surface, for different discretizations, appear in Figure 5.1. (A typical
displacement profile for this example appears in Figure 4.3.) A linear design
velocity profile:

∗
R =

b−R

b− a
(5.65)

is used here. It is seen that the numerical results for the coarse mesh exhibit
large errors. The reason for this is under investigation. However, they do
appear to converge to the exact solution with increasing mesh density. Please
see Chandra and Mukherjee [22] for a discussion of analytical solutions for
design sensitivities for various examples.

5.4.1.2 Stress sensitivities

Stress sensitivities on the surface of the sphere are calculated from equations
(5.38 - 5.39). (Stress profiles for this example appear in Figure 4.4). Numerical
solutions from the medium mesh, for stress sensitivities on the outer surface
R = b, agree well with the exact solution (Figure 5.2).

The situation, however, is somewhat tricky on the inner surface R = a.
Here, one has:
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Figure 5.2: Stress sensitivities on the outer surface R = b. Exact solutions —.
Numerical solutions from the medium mesh:

∗
σRR + + + +,

∗
σθθ ◦◦◦◦, ∗

σφφ ∗∗∗∗
(from [100])

∗
σθθ =

�
σθθ +

∂σθθ
∂R

∗
R (5.66)

(and similarly for the other components of stress). The exact solution for
�
σθθ=

�
σφφ is 120/49, which is positive, while the convected term in equation

(5.66) is −12/7, which is negative. As can be seen from Figures (5.3-5.4), this
situation makes it quite difficult to calculate

∗
σθθ and

∗
σφφ accurately, especially

when accuracy is measured in terms of percentage errors, because one must
calculate the difference between two numbers that are reasonably close.

Table 5.1 shows percentage root mean square errors in
∗
σθθ and

∗
σφφ, respec-

tively. These are defined as:

ε =
100
fexact

√√√√ 1
n

n∑
i=1

(fexact − fi numer)2 (5.67)

It is seen that while the errors on the outer surface are very low, those on the
inner surface, even with the fine mesh, are quite high. Perhaps further work on
this problem, including the development of a different algorithm for calculation
of surface stress sensitivities, needs to be carried out.

5.4.2 Sensitivities at Internal Points

5.4.2.1 Sensitivity of radial displacement

Figure 5.5(a) shows the sensitivity of radial displacement along the line x1 =
x2 = x3. These results are obtained from equation (5.54) which is used after first
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medium mesh fine mesh
∗
σθθ 1.99 1.62

R = b ∗
σφφ 1.77 2.01
∗
σθθ 25.45 15.15

R = a ∗
σφφ 26.49 14.88

Table 5.1: Percentage root mean square errors in sensitivities of stress compo-
nents (from [100])
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Figure 5.3: Stress sensitivities on the inner surface R = a. Exact solutions:
—. Numerical solutions from (a) the medium mesh and (b) the fine mesh:

�
σθθ

◦ ◦ ◦◦, ∂σθθ

∂R

∗
R + + + +,

∗
σθθ ∗ ∗ ∗∗ (from [100])
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Figure 5.4: Stress sensitivities on the inner surface R = a. Exact solutions:
—. Numerical solutions from (a) the medium mesh and (b) the fine mesh:

�
σφφ

◦ ◦ ◦◦, ∂σφφ

∂R

∗
R + + + +,

∗
σφφ ∗ ∗ ∗∗ (from [100])

solving the sensitivity boundary value problem (5.34). Again, the linear velocity
profile (5.65) is used here. It is seen from Figure 5.5(a) that the agreement
between the numerical and analytical solutions is very good.

5.4.2.2 Sensitivities of stresses

Sensitivities of the stress components σθθ and σRR, along the line x1 = x2 = x3,
are presented in Figure 5.5(b). Again, very good agreement is observed between
the numerical and analytical solutions.

5.5 Numerical Results: Block with a Hole

5.5.1 Geometry and Mesh

This example is concerned with a rectangular block with a cylindrical hole of
circular cross-section, loaded in uniform remote tension. The BCM model is
fully three-dimensional but the imposed boundary conditions are chosen such
that a state of plane strain prevails in the block and the numerical results
obtained from the BCM can be compared with Kirsch’s analytical solution for
the corresponding 2-D plane strain problem. Of course, the analytical solution
is only available for an infinitesimal hole in a slab and this is referred to as the
“exact” solution in this section of this chapter.

The side of a square face of the full block is 20 units, the hole diameter is 2
units and the thickness (in the x3 direction) is 6 units. One-eighth of the block
is modeled in order to take advantage of symmetry. The mesh on the front and
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Figure 5.5: (a) Sensitivity of radial displacement along the line x1 = x2 = x3.
Exact solution —. Numerical solution from the fine mesh: ◦◦◦◦. (b) Sensitivity
of stresses along the line x1 = x2 = x3. Exact solutions —. Numerical solutions
from the fine mesh:

∗
σθθ ∗ ∗ ∗∗ ∗

σRR ◦ ◦ ◦◦ (from [103])
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Figure 5.6: (a) Mesh on a quarter of the front and back faces of a rectangular
block with a circular cylindrical hole. (b) Design velocities for this example
(from [103])
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back faces (x3 = 3 and x3 = 0, respectively) of the one-eighth block is shown in
Figure 5.6(a). Four layers of triangles (in the thickness direction) constitute the
mesh on the remaining surfaces of the one-eighth block. The complete block
is loaded by uniform remote tensions in the x1 and x2 directions while u3 = 0
on the faces normal to the x3 axis in order to simulate plane strain conditions.
Of course, boundary conditions on the symmetry planes are applied in the
computer model of the one-eighth block in the usual way.

The design variable in this example is the hole radius a. The chosen design
velocity distribution in the slab is linear along any radial direction in any square
section normal to the x3 axis and is independent of the x3 coordinate. In other
words, referring to Figure 5.6(b), one has:

∗
R=

L/ cosφ−R

L/ cosφ− a
for φ < π/4 (5.68)

and

∗
R=

L/ sinφ−R

L/ sinφ− a
for φ ≥ π/4 (5.69)

5.5.2 Internal Stresses

Comparisons of numerical and analytical solutions for internal stresses in the
block are presented in Figures 5.7(a) and (b). Two cases are considered: stresses
along the line x1 = x2, x3 = 1.5 for uniaxial remote loading in the x1 direc-
tion, and along the line x1 =

√
3x2, x3 = 1.5 for equal biaxial loading. The

agreement between the analytical and numerical results is again seen to be very
good.

5.5.3 Sensitivities of Internal Stresses

This last example is a difficult one. It is concerned with stress sensitivities for
the situation depicted in Figure 5.7(a).

The numerical and analytical results for this problem are shown in Figure
5.8. The internal point numerical results, which are obtained from independent
calculations, show acceptable agreement with the analytical solutions for the
stress sensitivities, even though the analytical solutions vary rapidly near the
hole.
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Figure 5.7: Stresses (a) along the line x1 = x2, x3 = 1.5 for uniaxial loading in
the x1 direction and (b) along the line x1 =

√
3x2, x3 = 1.5 for equal biaxial

loading. Exact solutions —. Numerical solutions: σ11 ◦ ◦ ◦ ◦, σ22 ∗ ∗ ∗ ∗ (from
[103])
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Figure 5.8: Stress sensitivities along the line x1 = x2, x3 = 1.5 for uniaxial
loading in the x1 direction. Exact solutions:

∗
σ11 — ,

∗
σ22 − − −. Numerical

solutions:
∗
σ11 ◦ ◦ ◦◦, ∗

σ22 ∗ ∗ ∗∗ (from [103])
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Chapter 6

SHAPE OPTIMIZATION

Shape optimization of 3-D elasticity problems, with the BCM, is the subject of
this chapter. Further details are available in Shi and Mukherjee [150].

6.1 Shape Optimization Problems

An optimal shape design problem can be stated as a minimization problem
under certain constraints. Its general form can be stated as follows:

Minimize f(b) (6.1)

Subject to gi(b) ≥ 0, i = 1, ..., Ng (6.2)

hj(b) = 0, j = 1, ..., Nh (6.3)

b
(�)
k ≤ bk ≤ b

(u)
k , k = 1, ..., N (6.4)

in which b = 〈b1, b2, ..., bN 〉T are the design variables, f(b) is the objective
function, and gi(b) and hj(b) are the inequality and equality constraints, re-
spectively. Equation (6.4) gives side constraints that are used to limit the search
region of an optimization problem. Here, the parameters b(�)k and b

(u)
k denote

the lower and upper bounds, respectively, of the design variable bk.
The most common mathematical programming approaches, used in gradient-

based optimization algorithms, are the successive linear programming (SLP)
and successive quadratic programming (SQP) methods. In the SQP method,
the optimization problem is approximated by expanding the objective function
in a second order Taylor series about the current values of the design variables,
while the constraints are expanded in a first order Taylor series.

115
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The subroutine DNCONF from the IMSL library is coupled with a 3-D BCM
code for elastic stress analysis in order to carry out the shape optimization ex-
amples that are described in this chapter. This subroutine, that uses the SQP
method, is based on the FORTRAN subroutine NLPQL developed by Schit-
tkowski [146]. The required gradients of the objective functions, constraints
etc. are calculated internally by the optimization subroutine by the finite dif-
ference method. Of course, these sensitivities could also have been obtained by
the direct differentiation approach described in Chapter 5.

6.2 Numerical Results

Two illustrative shape optimization examples, in 3-D linear elasticity, are solved
using the BCM coupled with the IMSL optimization subroutine mentioned
above. The first example is that of optimizing the shape of a fillet in a tension
bar whose volume is selected as the optimization function. An optimal shape
is sought that minimizes the volume (and therefore the weight when the bar
material has constant density) without causing yielding anywhere in the bar.
This is the axisymmetric version of the planar problem described in Phan et al.
[132] - Section 5.3. Of course, the full 3-D BCM code is used here.

The second problem is concerned with a cube with an ellipsoidal cavity
loaded in remote triaxial tension. An interesting result in 2-D [5, 132], for an
infinite elastic plate with an elliptical cutout, loaded in remote biaxial tension, is
as follows. Let the semimajor and semiminor axes of the elliptical hole be a1 and
a2, respectively, and the coordinate axes be centered at the center of the ellipse
with the x1 and x2 directions along the major and minor axes, respectively.
Also, let S1 and S2 be the remote tensile loadings in the coordinate directions.
Now, if a2/a1 = S2/S1, then the tangential stress around the elliptical cutout
is uniform ! This problem has been solved in 2-D by the BCM in [132] and an
elastic-plastic version of this 2-D problem has been solved in [169] (see, also,
[22]) with the BEM. The 3-D elasticity problem is described in this chapter and
some interesting results are obtained.

6.2.1 Shape Optimization of a Fillet

The initial cross-section of the axisymmetric bar is shown in Figure 6.1. The
Young’s modulus, Poisson’s ratio and allowable von Mises stress are taken as
E = 107psi, ν = 0.3 and σ̂(VM) = 120 psi, respectively. The bar is loaded by
a uniform axial tensile traction of 100 psi . The design surface is the surface
of revolution (initially a cone) obtained by revolving the curve ED about the
symmetry axis AB. The end circles of this surface of revolution are kept fixed.
The variable boundary ED is modeled as a cubic spline (using the IMSL sub-
routine DCSDEC) which is defined by the fixed end points E and D and by the
variable points Ck, k = 1, 2, 3. The points E, Ck, k = 1, 2, 3 and D have equally
spaced projections on the axis of symmetry while the radii rk, k = 1, 2, 3 are
the design variables.
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Figure 6.1: Modeling of a bar with a fillet (from [150])

Quadratic CIM9 elements (see Figure 4.1) are used in both the numerical
examples described in this chapter. A total of 160 elements are used to discretize
the surface of the bar. These are distributed as follows. There are 16 elements
on each of the end circles (on the planes z = 0 and z = 20, respectively) of the
bar. The surface of revolution described by the edge FE has 32 elements, the
one described by DC has 32 elements, and the design surface has 64 elements,
respectively.

The objective function is the volume of the axisymmetric object bounded
by the plane z = 9, the cylindrical surface r = 4.5 and the design surface. This
is:

φ(r1, r2, r3) =
∫ zD

zG

π
[
r2(r1, r2, r3, z) − (4.5)2

]
dz (6.5)

The axisymmetric shape of the body is maintained during the optimization
process and the design nodes Ck, k = 1, 2, 3 are constrained to lie within the
triangle EGD. In addition, one has:

σ(V M)
i /σ̂(V M) ≤ 1.0, 1 ≤ i ≤ ns (6.6)

where σ(V M)
i are the values of the von Mises stress at the centroids of certain

elements on the curved surface of the bar. Here, since the physical problem
is axisymmetric, the elements chosen are the ones whose centroids lie along
FEDC, so that ns = 16.

The usual definition of the von Mises stress is used. This is:

[σ(V M)]2 = (3/2)sijsij (6.7)

in terms of sij , the deviatoric components of the stress σij .
The final converged solution, which is obtained after just 1 iteration, is

shown in Figure 6.2(a) while Figure 6.2(b) shows the objective function as a
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Figure 6.2: (a) Optimal shape of the fillet (b) Objective function φ as a function
of iteration number (from [150])

function of iteration number. The initial value of the objective function is 551.35
with one stress constraint being violated. The final (converged) value is 150.39
when two stress constraints are active. Thus, the final volume of the design
portion of the bar is about 27.28 % of its initial value. In the corresponding
2-D problem [132], the design area reduces to 49.85% of its initial value.

6.2.2 Optimal Shapes of Ellipsoidal Cavities Inside Cubes

A cube with a centrally located ellipsoidal cavity, loaded in remote triaxial
tension, is shown in Figure 6.3. Of course, the faces of the cube, which are not
shown in this figure, are suitably restrained. Consistent units are used. This
time the shear modulus is taken as G = 105 and the Poisson’s ratio ν = 0.3.
The cube is of size 30×30×30. The cavity surface is the design surface with the
ellipsoid semi axes a1 and a2 as the design variables (a3 = 1). The cube surface
is fixed. Three cases of remote loadings (cases (1), (2) and (3)) are considered
: S1 : S2 : S3 = 1 : 1 : 1; 2 : 2 : 1 and 2 : 1.5 : 1, respectively, with S3 = 105 in
all cases.

The mesh consists of 8 identical CIM9 elements on each surface of the cube
and 72 CIM9 elements on the surface of the cavity. The cavity mesh evolves
with the changing shape of the cavity during the optimization process.

As stated at the start of this section, the objective here is to find, if possible,
the shape of an ellipsoidal cavity that would have uniform stress (i.e. some
suitable measure of stress) on its surface for a given remote loading. As a test
case, the first case of remote loading, i.e. S1 : S2 : S3 = 1 : 1 : 1, is applied.
Starting with an ellipsoidal cavity with axis ratios a1 : a2 : a3 = 3 : 2 : 1,
the cavity shape is sought that would make all the stress components on it
uniform. This, of course, is a spherically symmetric problem, and, as expected,

© 2005 by Taylor & Francis Group, LLC



6.2. NUMERICAL RESULTS 119

S3

S1

S2

x1

x2

x3

a1 a2

a3

Figure 6.3: A cube with an ellipsoidal cavity under remote loading (from [150])

the optimal shape of the cavity is found to be a sphere.
The more interesting cases, of course, are loading cases (2) and (3). This

time, two different scalar measures of stress on the cavity surface are considered.
The first is σkk, the trace of the stress tensor, and the second is the von Mises
stress. Uniform σkk on a surface means that σnn +σss +σtt (where n is normal
and s and t are any two orthogonal directions, tangential to the surface at a
point on it) is also uniform on the surface. Since the cavity surface is unloaded,
this implies that σss + σtt is uniform for all points on the cavity surface. The
criterion σkk is uniform on a cavity surface is treated as a generalization of the
2-D case in which the tangential stress on a cutout surface was made uniform
[132].

The corresponding objective functions to be minimized are defined as:

φ1(a1, a2) =
1
ns

ns∑
i=1

[
σ

(i)
kk − σkk

]2

(6.8)

φ2(a1, a2) =
1
ns

ns∑
i=1

[(
σ(V M)
i

)2 − (σ(V M))2
]2

(6.9)

In the above equations, ns is the number of elements on the design surface,
a superscript (i) denotes evaluation of the appropriate quantity at the centroid
of the ith element on the design surface, and an overbar denotes the mean value
of the appropriate quantity over the design surface.
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Load case Loads Ellipse semiaxes Objective function
Uniform σkk on cavity surface

(2) 2, 2, 1 Start 2, 2, 1 u.b. 3,3,1 1.044
Optimal 2.654, 2.654, 1 0.0027

(3) 2, 1.5, 1 Start 2, 1.5, 1 u.b. 7,7,1 0.11057
Optimal 3.8022, 1.5608, 1 0.002286

Uniform σ(VM) on cavity surface
(2) 2, 2, 1 Start 2, 2, 1 u.b. 9,9,1 3.4086

Optimal 3.4105, 3.4105, 1 0.0489

Table 6.1: Results for cube with ellipsoidal cavity under remote loading. Upper
bound is denoted as u.b. Lower bounds for ellipse semiaxes are 1,1,1. The loads
are normalized with S3 = 1 (from [150])

6.2.2.1 Uniform trace of the stress tensor over the cavity surface

The load cases (2) and (3) are tried for the first objective function φ1. In each
case, inspired by the 2-D case, the starting geometry of the ellipsoid is taken to
be compatible with the loads. The results appear in Table 6.1 in which the side
constraints on the design variables, as well as the initial and optimal values of
the design variables and the objective function, are shown.

Details are shown in Figures 6.4 - 6.5. Figure 6.4(a) shows the stress σkk,
and its mean value, initially and at the end of the optimization process. It is
seen that the initial distribution of σkk (dots) is quite widespread while the
optimal distribution (asterisks) is concentrated within a band around its mean
value σkk. The corresponding objective function, as a function of iteration
number, is shown in Figure 6.4(b). It can be seen from Table 6.1 that, while
the optimal values of a1 and a2 are equal (i.e. the cross-section of the optimal
shaped cavity in the x3 = 0 plane is a circle), the loading and geometry are not
compatible as in the 2-D case (i.e. the optimal a1 : a2 : a3 does not match the
load ratios).

The more difficult case is load case (3). The stress σkk and the objective
function for this case appear in Figures 6.5(a) and 6.5(b), respectively. Again, it
can be seen from Figure 6.5(a) that the initial distribution of σkk (dots) is quite
widespread while the optimal distribution (asterisks) is concentrated within a
band around its mean value σkk. It is seen from Figure 6.5(b) that in this case
the behavior of the objective function is initially oscillatory. It does, however,
eventually settle down to about 2.07% of its initial value. Examination of Table
6.1 again shows that the optimal cavity geometry is not compatible with the
loading in this case.
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Figure 6.4: (a) The stresses σkk and σkk for load case (2). Initial : σkk ...,
σkk −−− Optimal : σkk ∗ ∗∗, σkk — (b) Objective function φ1 as a function of
iteration number for load case (2) (from [150])
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Figure 6.5: (a) The stresses σkk and σkk for load case (3). Initial : σkk ...,
σkk −−− Optimal : σkk ∗ ∗∗, σkk — (b) Objective function φ1 as a function of
iteration number for load case (3) (from [150])
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Figure 6.6: (a) The stresses (σ(V M))2 and (σ(V M))2 for load case (2). Initial :
(σ(V M))2 ..., (σ(V M))2−−− Optimal : (σ(V M))2 ∗ ∗∗, (σ(V M))2 — (b) Objective
function φ2 as a function of iteration number for load case (2) (from [150])

6.2.2.2 Uniform von Mises stress over the cavity surface

The final example considers the load case (2) with the second objective function
φ2. The results are summarized in Table 6.1 and details are shown in Figures
6.6(a) and 6.6(b). This time the converged value of the objective function is
1.43% of its initial value. Figure 6.6(a) shows a significant difference between
the initial and final values of the mean value of (σ(V M))2. Also, the optimal
distribution of (σ(V M))2 (asterisks) lies in a wider band around its mean value
compared to the situations in Figures 6.4(a) and 6.5(a) . As expected, the
optimal cavity shape has a circle in the x3 = 0 plane.

The case of φ2 with the load case (3) (2:1.5:1) did not converge. It is
conjectured that a more general cavity shape, rather than an ellipsoidal one,
needs to be considered for this difficult problem.

6.2.3 Remarks

The optimal shape of a fillet in an axially loaded bar is obtained quickly within
just one iteration ! The size of the design region reduces to nearly a quarter of its
initial value in this 3-D problem, compared to about half in the corresponding
2-D problem.

The next example considered is the optimal shape of an ellipsoidal cavity
in a cube loaded by remote tensions. The sought after cavity shape is the
one that makes some measure of the stress uniform on it. It is known that
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in the corresponding 2-D problem, for an elliptical cutout in an infinite plate,
the tangential stress on the cutout surface is uniform when the loading and
geometry are compatible. (The precise meaning of compatibility is explained
in the body of this chapter). It is found that such is not the case in the 3-D
problem. Also, optimization of this class of problems is often more difficult
than for the previous bar with a fillet example. This is true if either no two
of the remote tractions are equal, and/or if one tries to make the von Mises
stress uniform on the cutout surface. Sometimes (Figure 6.5(b)) one sees initial
oscillations of the objective function as a function of iteration number.
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Chapter 7

ERROR ESTIMATION
AND ADAPTIVITY

The subject of this chapter is error analysis and adaptivity with the BCM. The
idea of using hypersingular residuals, to obtain local error estimates for the
BIE, was first proposed by Paulino [122] and Paulino et al. [123]. This idea has
been applied to the collocation BEM (Paulino et al. [123], Menon et al. [96]
and Paulino et al. [127]); and has been discussed in detail in Chapter 2 of this
book. The main idea, applied to the BCM, has appeared in Mukherjee and
Mukherjee [111], and is presented in this chapter.

7.1 Hypersingular Residuals as Local Error Es-
timators

The usual BCM equation (4.25) is solved first for the boundary variables (trac-
tions and displacements) a. Next, this value of a is input into the right-hand
side of equation (4.44) in order to obtain the hypersingular residuals vkn in
the displacement gradients uk,n. Next, the stress residuals are obtained from
Hooke’s law:

skn = λvmmδkn + µ(vkn + vnk) (7.1)

Finally, a scalar measure r of the residual, evaluated at the centroid of a
triangular surface element, is postulated based on the idea of energy. This is:

r = sknvkn (7.2)

It has been proved in [96] and [127] for the BIE that, under certain favorable
conditions, real positive constants c1 and c2 exist such that:

c1r ≤ ε ≤ c2r (7.3)
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Figure 7.1: Flow chart for adaptive meshing (from [111])

where r is some scalar measure of a hypersingular residual and ε is a scalar
measure of the exact local error. Thus, a hypersingular residual is expected to
provide a good estimate of the local error on a boundary element. It should be
mentioned here that the definitions of the residuals used in [96] and [127] are
analogous to, but different in detail from, the ones proposed in this chapter.

In the rest of this chapter, e = r, where r, defined in equation (7.2) (and
evaluated at an element centroid), is the hypersingular residual, and e is the
local element error estimator that is used to drive an h-adaptive procedure with
the BCM.

7.2 Adaptive Meshing Strategy

The flow chart for adaptive meshing is shown in Figure 7.1.
The remeshing strategy is based on the values of the error estimator e at

each element centroid. This strategy is shown in Figure 7.2 in which ē is the
average value of the error estimator e over all the boundary elements.

A possible criterion for stopping cell refinement can be:

ē ≤ eglobal (7.4)

where eglobal has a preset value that depends on the level of overall desired
accuracy.
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Figure 7.2: Remeshing strategy (from [111])

7.3 Numerical Results

7.3.1 Example One - Short Clamped Cylinder under Ten-
sion

This first example is concerned with a short cylinder which is clamped at the
bottom and subjected to unit tensile traction on the top surface (Figure 7.3(a)).
The radius and length of the cylinder are each 2 units, the shear modulus of the
cylinder material is 1.0 and the Poisson’s ratio is 0.3 (in consistent units). The
initial mesh on the top (loaded) and bottom (clamped) faces of the cylinder are
identical and are shown in Figure 7.3 (b) while the initial uniform mesh on its
curved surface is shown in Figure 7.4 (b).

It is known ([37], [137]) that, for this problem, the normal stress component
σ33 varies slowly over much of the clamped face, but exhibits sharp gradients
near its boundary. This stress component becomes singular on the boundary
of the clamped face. The behavior of the shearing stress component σzr (here
r, θ, z ≡ 3 are the usual polar coordinates) on the clamped face is qualitatively
similar to that of σ33. The stresses are uniform on the loaded face.

It is seen from Figures 7.3 and 7.4 that this behavior is captured well by
the adaptive scheme. Element error estimators are obtained from equations
(4.44), (7.1) and (7.2) after first averaging the traction results from (4.25) within
each element and then using these averaged traction values. Figure 7.3 (b)
shows that these element error estimators (denoted by vertical bars at element
centroids) are largest on the elements near the boundary of the clamped face.
As a consequence (Figures 7.3 (b), (c), (d)) the region near the boundary of the
clamped face is refined most while the mesh on the loaded face of the cylinder
is left unaltered. Also, Figures 7.4 (c), (d) show that some mesh refinement

© 2005 by Taylor & Francis Group, LLC



128 CHAPTER 7. ERROR ESTIMATION AND ADAPTIVITY

4

2

p = 1

(a)

-2 -1 0 1 2
-2

-1

0

1

2
0

0.5

1

1.5

2

2.5

X2

X3

X1

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1

0

1

2
0

0.5

1

1.5

2

X2

X3

X1

(c)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1

0

1

2
0

0.5

1

1.5

2

X2

X3

X1

(d)

Figure 7.3: Adaptive meshing of the top and bottom faces of a clamped cylinder
under tension: (a) geometry and loading (b) initial mesh with element error
estimators (c) mesh at the end of the first adaptive step (d) mesh at the end
of the second adaptive step (from [111])
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Figure 7.4: Adaptive meshing of the curved surface of a clamped cylinder under
tension: (a) geometry and loading (b) initial uniform mesh (c) mesh at the
end of the first adaptive step (d) mesh at the end of the second adaptive step
(from [111])
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mesh # of elements # of nodes ē
initial 144 290 0.0086799

after 1st adaptive step 192 386 0.0048994
after 2nd adaptive step 246 494 0.0042723

Table 7.1: Mesh statistics and ē for the clamped cylinder under tension (from
[111])

takes place on the bottom layer of the curved surface of the cylinder, which is
nearest to the clamped face, while the rest of the mesh on it remains unaltered.

Finally, the mesh statistics, together with ē, the average value of the error
estimator e over the entire surface of the cylinder, appear in Table 7.1. As
expected, ē is seen to decrease with mesh refinement.

7.3.2 Example Two - the Lamé Problem for a Hollow
Cylinder

This example is concerned with a thick hollow cylinder, in plane strain, sub-
jected to external radial tensile loading. The inner and outer radii of the hollow
cylinder are 1 and 3 units, respectively. The shear modulus of the material is
1.0, the Poisson’s ratio is 0.3 and the external radial traction is 3 (in consistent
units). A quarter of the cylinder is modeled and the initial mesh on the quarter
cylinder is shown in Figure 7.5. The bars in Figure 7.5 are the error estimators
evaluated at the centroids of the boundary elements. As expected ([124], also,
please see the discussion in the following paragraph), the error estimators are
largest on the surface of the hole and on the elements on the upper and lower
surfaces (EBAF and HCDG) of the cylinder that lie near the hole. (The visible
elements are shown in Figure 7.5 and the hidden ones are not).

The next (and final) mesh, obtained from the adaptive strategy outlined in
Section 7.2 above, is shown in Figure 7.6. It is seen that mesh refinement is
carried out vigorously on the upper and lower surfaces EBAF and HCDG of
the cylinder (the hidden elements are not shown in Figure 7.6), as well as on
the surface FADG of the hole, while the symmetry planes ABCD and EFGH,
on which the stresses are independent of the x3 coordinate, are only slightly
refined in order to maintain mesh compatibility. Of course, refinement of the
surfaces EBAF and HCDG is expected in view of the presence of radial stress
gradients on these surfaces. The situation on the curved surface FADG is
particularly interesting. In this axisymmetric problem, the tangential gradients
of the stress fields in the θ direction are, of course, always zero. It is important
to note, however, that the radial stress gradients are large at points on the hole
surface, and this fact leads to large error estimators and significant refinement
of the boundary elements on the surface FADG. The corresponding 2-D case is
discussed, in some detail, in Paulino et al. [124].

It is important to check the behavior of the actual errors, when the exact
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Figure 7.5: Lamé problem - initial mesh on quarter cylinder together with
element error estimators (from [111])
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Figure 7.6: Lamé problem - final mesh on quarter cylinder (from [111])
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solution is available, in adaptive meshing problems such as this example. The
tangential stress σθθ, as a function of the radial distance r from the center
of the cylinder, is shown in Figure 7.7. The solid line in Figure 7.7 is the
exact solution (from, e.g. [167]) while the numerical results, from the initial
and the final mesh, are designated by open circles and plus signs, respectively.
The numerical results for the tangential stress are obtained from the calculated
tractions at the traction nodes Ii (see Figure 4.1) on the boundary elements on
the symmetry face ABCD in Figures 7.5 and 7.6. The inaccurate results from
the initial coarse mesh is a consequence of the chosen mesh, not the method
itself. This can be seen, for example, by observing the BCM results for the Lamé
problem for a hollow sphere under internal pressure in Figure 4.3 (open circles),
obtained from a reasonably fine mesh; as well as by examining other numerical
results from the BCM, in, for example, Chapter 4 (see, also, Mukherjee et al.
[109]).
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Figure 7.7: Lamé problem for a hollow cylinder. Tangential stress σθθ as a
function of radial distance r. Exact solution: —, BCM solution from initial
mesh: ◦ ◦ ◦◦, BCM solution from final mesh: ++++ (from [111])

The L2 error in a numerical solution in Figure 7.7 is defined as:

ε =
100
σ̄θθ

√∑n
i=1(εi)2

n
(7.5)

where the pointwise error εi = (σθθ)
(i)
numerical − (σθθ)

(i)
exact at node i, n is the

number of nodes and σ̄θθ is the average value of the exact solution for σθθ (here
4.5). The resulting values of the L2 errors are 9.83% and 3.83% for the initial
and final mesh, respectively. The adaptive meshing procedure is seen to reduce
the error significantly in one step.
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Chapter 8

SURFACE
APPROXIMANTS

A moving least squares (MLS) approximation scheme, using curvilinear coor-
dinates on the 1-D bounding surface of a 2-D body, or on the 2-D bounding
surface of a 3-D body, is suitable for the BNM. The 2-D problem, which uses
the curvilinear coordinate s on the boundary of a body, is discussed in detail
in Mukherjee and Mukherjee [107] (potential theory) and in Kothnur et al. [72]
(elasticity) (see, also, [108, 52, 77]). The 3-D problem requires the curvilinear
surface coordinate s with components (s1, s2). (Chati and Mukherjee [26], po-
tential theory; Chati et al. [25], elasticity). This procedure is described below.
A brief discussion, of ongoing work on the BNM with Cartesian coordinates
[79, 80, 163, 164], is presented as well.

8.1 Moving Least Squares (MLS) Approximants

It is assumed that, for 3-D problems, the bounding surface ∂B of a solid body
is the union of piecewise smooth segments called panels. On each panel, one
defines surface curvilinear coordinates (s1, s2). For problems in potential theory,
let u be the unknown potential function and τ ≡ ∂u/∂n (where n is a unit
outward normal to ∂B at a point on it). For 3-D linear elasticity, let u denote a
component of the displacement vector u and τ be a component of the traction
vector τ on ∂B. One defines :

u(s) =
m∑
i=1

pi(s − sE)ai = pT (s − sE)a

τ(s) =
m∑
i=1

pi(s − sE)bi = pT (s − sE)b (8.1)
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The monomials pi (see below) are evaluated in local coordinates (s1 − sE1 , s2 −
sE2 ) where (sE1 , s

E
2 ) are the global coordinates of an evaluation point E. It is

important to state here that ai and bi are not constants. Their functional
dependencies are determined later. (The name “moving least squares” arises
from the fact that the quantities ai and bi are not constants). The integer m is
the number of monomials in the basis used for u and τ . Quadratic interpolants,
for example, are of the form:

pT (s̃1, s̃2) = [1, s̃1, s̃2, s̃21, s̃
2
2, s̃1s̃2], m = 6, s̃i = si − sEi ; i = 1, 2 (8.2)

The coefficients ai and bi are obtained by minimizing the weighted discrete
L2 norms:

Ru =
n∑

I=1

wI(d)
[
pT (sI − sE)a − ûI

]2

Rτ =
n∑

I=1

wI(d)
[
pT (sI − sE)b − τ̂I

]2
(8.3)
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Figure 8.1: Domain of dependence and range of influence. (a) The nodes 1,
2 and 3 lie within the domain of dependence of the evaluation point E. The
ranges of influence of nodes 1, 2, 3, 4 and 5 are shown as gray regions. In the
standard BNM, the range of influence of a node near an edge, e.g. node 4, is
truncated at the edges of a panel. In the EBNM, the range of influence can
reach over to neighboring panels and contain edges and/or corners - see, e.g.
node 5 (b) Gaussian weight function defined on the range of influence of a node
(from [163])

where the summation is carried out over the n boundary nodes for which the
weight function wI(d) �= 0 (Weight functions are defined in Section 8.3). The
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quantity d = g(s, sI) is the length of the geodesic on ∂B between s and sI .
These n nodes are said to be within the domain of dependence of a point s
(evaluation point E in Figure 8.1(a)). Also, (sI1 − sE1 , s

I
2 − sE2 ) are the local

surface coordinates of the boundary nodes with respect to the evaluation point
sE = (sE1 , s

E
2 ) and ûI and τ̂I are the approximations to the nodal values uI and

τI . These equations above can be rewritten in compact form as:

Ru = [P(sI − sE)a − û]TW(s, sI)[P(sI − sE)a − û] (8.4)

Rτ = [P(sI − sE)b − τ̂ ]TW(s, sI)[P(sI − sE)b − τ̂ ] (8.5)

where ûT = (û1, û2, · · · , ûn), τ̂T = (τ̂1, τ̂2, · · · , τ̂n), P(sI) is an n×m matrix
whose kth row is:

[1, p2(s
(k)
1 , s

(k)
2 ), ...., pm(s(k)

1 , s
(k)
2 )]

and W(s, sI) is an n× n diagonal matrix with wkk = wk(d) (no sum over k).

The stationarity of Ru and Rτ , with respect to a and b, respectively, leads
to the equations:

a(s) = A−1(s)B(s)û , b(s) = A−1(s)B(s)τ̂ (8.6)

where

A(s) = PT (sI − sE)W(s, sI)P(sI − sE)
B(s) = PT (sI − sE)W(s, sI) (8.7)

It is noted from above that the coefficients ai and bi turn out to be functions
of s. Substituting equations (8.6) into equations (8.1), leads to:

u(s) =
n∑

I=1

ΦI(s)ûI , τ(s) =
n∑

I=1

ΦI(s)τ̂I (8.8)

where the approximating functions ΦI are:

ΦI(s) =
m∑
j=1

pj(s − sE)(A−1B)jI(s) (8.9)

An alternative form of (8.9) is:

Φ(s) = pT (s − sE)(A−1B)(s) (8.10)

where Φ(s) is 1 × n.
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As mentioned previously, û and τ̂ are approximations to their real values u
and τ . Matrix versions of (8.8) can be written as:

[H]{û} = {u} , [H]{τ̂} = {τ} (8.11)

Equations (8.11) relate the nodal approximations of u and τ to their nodal
values.

Remarks

• Remark 1: Invertibility of A
The matrix A is an m ×m matrix, composed of the matrices P and W
(equation 8.7). It needs to be invertible for the construction of the shape
functions. It is also desirable that A be well conditioned. From a well-
known fact in linear algebra about ranks of products of matrices, it is
necessary that the rank of matrix P be m. However, if n < m i.e. the
number of nodes n in the domain of dependence of an evaluation point
is less than the order of the polynomial basis m, then matrix A would
be rank deficient and would become noninvertible. So, it is essential to
choose the parameter which controls the range of influence of a node,
namely d̂, such that n ≥ m. However, even if the condition n ≥ m is
satisfied, but the n nodes in the domain of dependence of the evaluation
point E lie on a straight line on the surface, then the matrix A becomes
singular. Also, it has been observed that choosing n ∼ m may lead to an
unacceptably large condition number of the matrix A.

• Remark 2: Matrix H
As noted above, the matrix H relates the actual nodal values to their nodal
approximations. It is observed through numerical experiments that the
matrix H has m eigenvalues equal to unity. The associated m eigenvectors
are described by the monomials used in the bases for constructing the
approximation. Thus, when looking for solutions that cannot be spanned
by the monomials used in the bases, the matrix H plays a significant role
in the success of the method.

• Remark 3: Boundary conditions
The H matrix plays a crucial role in the satisfaction of essential boundary
conditions in the EFG method [108] and in the satisfaction of all boundary
conditions in the BNM [107].

• Remark 4: Definition of a panel
Curvilinear coordinates (s1, s2) are used to measure distances over curved
surfaces. However, real life objects consist of piecewise smooth surfaces,
referred to as panels in this work, and defining curvilinear coordinates
across edges and corners is a formidable task. In this work, collocation
nodes are placed inside panels, and, in order to circumvent the problem
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of “reaching over edges,” it was decided that the range of influence (ROI)
of each node would be truncated at an edge or corner (Figure 8.1(a)). It
will be seen through numerical experiments that restricting the range of
influence of a node to the panel to which it belongs still yields acceptable
results. An alternative to truncation of ROIs at edges is to use Cartesian
coordinates (see Figure 8.1(a) and Section 8.4).

• Remark 5: The nature of s1, s2
The coordinates (s1, s2) are the curvilinear coordinates measured along
the bounding surface ∂B. These coordinates are local and not global. In
other words, these are constructed with the origin at the evaluation point
E i.e. these curvilinear coordinates will always be (0,0) at the evaluation
point E. This simplifies the computation of the shape functions to some
extent. Since, (s1 = 0, s2 = 0), one has p1 = 1 and pi = 0 for i = 2, · · · ,m.
This further implies that the shape function is just the first row of the
matrix C.

8.2 Surface Derivatives

Surface derivatives of the potential (or displacement) field u are required for
the HBIE. These are computed as follows. With

C = A−1B

equations (8.8) and (8.9) give:

u(s) =
n∑

I=1

m∑
j=1

pj(s − sE)CjI(s)ûI (8.12)

and the tangential derivatives of u can be written as:

∂u(s)
∂sk

=
n∑

I=1

m∑
j=1

[
∂pj
∂sk

(s − sE)CjI(s) + pj(s − sE)
∂CjI(s)
∂sk

]
ûI

k = 1, 2 (8.13)

The derivatives of the monomials pj can be easily computed. These are:

∂pT

∂s1
(s1 − sE1 , s2 − sE2 ) = [0, 1, 0, 2(s1 − sE1 ), 0, (s2 − sE2 )] (8.14)

∂pT

∂s2
(s1 − sE1 , s2 − sE2 ) = [0, 0, 1, 0, 2(s2 − sE2 ), (s1 − sE1 )] (8.15)

After some simple algebra (Chati [23]), the derivatives of the matrix C with
respect to sk take the form:
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∂C(s)
∂sk

= −A−1(s)
∂B(s)
∂sk

P(sI − sE)A−1(s)B(s) + A−1(s)
∂B(s)
∂sk

k = 1, 2 (8.16)

with

∂B(s)
∂sk

= PT (sI − sE)
∂W(s, sI)

∂sk
(8.17)

In deriving equation (8.16), the following identity has been used:

∂A−1(s)
∂sk

= −A−1(s)
∂A(s)
∂sk

A−1(s) , k = 1, 2 (8.18)

Tangential derivatives of the weight functions (described in Section 8.3) are
easily computed (Chati [23]). The final form of the tangential derivatives of the
potential (or displacement) u, at an evaluation point E, takes the form:

∂u

∂sk
(sE) =

n∑
I=1

m∑
j=1

[
∂pj
∂sk

(0, 0)CjI(sE)
]
ûI

+
n∑

I=1

m∑
j=1

[
pj(0, 0)

[
A−1(sE)

∂B
∂sk

(sE)
(
I − P(sI − sE)A−1(sE)B(sE)

)]
jI

]
ûI

(8.19)

with k = 1, 2. In the above equation, I is the identity matrix.
One also needs the spatial gradient of the function u in order to solve the

HBIE. For problems in potential theory, this is easily obtained from its tangen-
tial and normal derivatives, i.e. ∂u/∂sk and ∂u/∂n (see (1.14)). For elasticity
problems, however, one must also use Hooke’s law at a point on the surface ∂B.
Details of this procedure are given in Chati et al. [27] and in Chapter 1 of this
book.

Equation (8.19) can be rewritten in compact form as:

∂u

∂sk
(sE) =

n∑
I=1

Ψ(k)
I (sE)ûI ; k = 1, 2 (8.20)

where the approximating functions Ψ(k)
I are:

Ψ(k)
I (sE) =

m∑
j=1

[
∂pj
∂sk

(0, 0)CjI(sE)
]
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+
m∑
j=1

[
pj(0, 0)

[
A−1(sE)

∂B
∂sk

(sE)
(
I − P(sI − sE)A−1(sE)B(sE)

)]
jI

]

(8.21)

8.3 Weight Functions

The basic idea behind the choice of a weight function is that its value should
decrease with distance from a node and that it should have compact support so
that the region of influence of a node is of finite extent (Figure 8.1(b)). Possible
choices of weight functions [26] are:

• Gaussian (referred to as - WFA) :

wI(d) =

{
e−(d/dI)2 for d ≤ dI

0 for d > dI
(8.22)

• Exponential (referred to as - WFB) :

wI(d) =




e−(d/c)2−e(dI /c)2

1−e(dI /c)2 for d ≤ dI

0 for d > dI
(8.23)

• Cubic Spline (referred to as - WFC) :

wI(d) =




2/3 − 4(d̂)
2

+ 4(d̂)
3

for d̂ ≤ 1/2

4/3 − 4(d̂) + 4(d̂)
2 − (4/3)(d̂)

3
for 1/2 < d̂ ≤ 1

0 for d > 1

(8.24)

• Quartic Spline (referred to as - WFD) :

wI(d) =


 1 − 6(d̂)

2
+ 8(d̂)

3 − 3(d̂)
4

for d̂ ≤ 1

0 for d̂ > 1
(8.25)

where d̂ = d/dI and c is a constant.
Here d = g(s, sI) is the minimum distance, measured on the surface ∂B,

(i.e. the geodesic) between a point s and the collocation node I. In the research
performed to date, the region of influence of a node has been truncated at
the edge of a panel (Figure 8.1(a)) so that geodesics, and their derivatives (for
use in equation (8.17)), need only be computed on piecewise smooth surfaces.
Finally, the quantities dI determine the extent of the region of influence (the
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compact support) of node I. They can be made globally uniform, or can be
adjusted such that approximately the same number of nodes get included in
the region of influence of any given node I or in the domain of dependence of
a given evaluation point E. Such ideas have been successfully implemented in
Chati and Mukherjee [26] and Chati et al. [25].

8.4 Use of Cartesian Coordinates

One of the drawbacks of using curvilinear surface coordinates as described above
in Section 8.1 is the need to truncate the range of influence of a node at an
edge or corner (see Remark 4 in Section 8.1). Another is the need to compute
geodesics on general surfaces. The more straightforward approach, namely the
use of Cartesian coordinates, suffers from the disadvantage that the matrix A
defined in equation (8.7) becomes singular if all the nodes in the domain of
dependence of an evaluation point lie on a plane (see [117, 79]). Li and Aluru
have suggested, in two recent papers [79, 80], ways to use Cartesian coordinates
in a modified version of the BNM which they call the boundary cloud method.
(The acronym BCLM is used for the boundary cloud method in this book). Nice
results for 2-D problems in potential theory are given in [79, 80]. This idea is
discussed below for 3-D problems in potential theory with linear approximants.
Extension to 3-D elasticity is relatively straightforward.

8.4.1 Hermite Type Approximation

For the 3-D Laplace equation (see [79] for the 2-D case), one writes:

u(x) = pT (x)a, τ(x) =
∂pT

∂n
(x)a (8.26)

Collocation is not allowed at a point on an edge or a corner. For a linear
approximation:

pT (x) = [1, x1, x2, x3]
∂pT

∂n
(x) =

[
0,
∂x1

∂n
,
∂x2

∂n
,
∂x3

∂n

]
= [0, n1, n2, n3] (8.27)

where n is the unit outward normal at a boundary point.
The coefficients ai are obtained by minimizing the weighted discrete L2

norm:

J =
n∑

I=1

wI(xt,xI)
[
pT (xI)a − ûI

]2
+

n∑
I=1

wI(xt,xI)
[
∂pT

∂n
(xI)a − τ̂I

]2

(8.28)

In [79], where a fixed least squares approach is adopted, xt are the coor-
dinates of a fixed point inside a cloud (chosen to be the center of a cloud),
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and xI , as before, are the coordinates of node I. This time, the Euclidean dis-
tance between xt and xI is used in the weight function. The weight functions
are piecewise constant, i.e. they are constant within each cloud but vary from
cloud to cloud.

The stationarity of J with respect to a leads to the equations:

u(x) =
n∑

I=1

MI(x)ûI +
n∑

I=1

NI(x)τ̂I (8.29)

τ(x) =
n∑

I=1

SI(x)ûI +
n∑

I=1

TI(x)τ̂I (8.30)

where:

M(x) = pT (x)(A−1B), N = pT (x)(A−1D) (8.31)

S(x) =
∂pT

∂n
(x)(A−1B), T(x) =

∂pT

∂n
(x)(A−1D) (8.32)

with:

A(x) = PT (xI)W(xt,xI)P(xI) +
∂PT

∂n
(xI)W(xt,xI)

∂P
∂n

(xI) (8.33)

B(x) = PT (xI)W(xt,xI) (8.34)

D(x) =
∂PT

∂n
(xI)W(xt,xI) (8.35)

It is proved in [79] that the matrix A in (8.33) is nonsingular.

8.4.2 Variable Basis Approximation

Li and Aluru [80] present a variable basis approach for solving the 2-D Laplace’s
equation with the boundary cloud method (BCLM). This is an elegant approach
in which reduced bases are appropriately employed in order to avoid singularity
of the matrix A = PTWP. A disadvantage of this approach, as well as that
of the standard BNM, is that discontinuities in the normal derivative of the
potential function, across edges and corners, are not addressed properly - nor-
mal derivatives are modeled with continuous approximants, even across edges
and corners. Very recently, Telukunta and Mukherjee [163, 164] have combined
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the advantages of the variable basis approach [80], together with allowing dis-
continuities in τ = ∂u

∂n , in a new approach called the extended boundary node
method (EBNM). The EBNM, for 2-D and 3-D potential theory, is described
next.

It is important to mention here that the fixed least squares approach has
been adopted by Li and Aluru in [79, 80] while the variable basis approach
adopted in [163, 164] uses moving least squares for both the BCLM and the
EBNM. The title “BCM” used in figures depicting numerical results in [163]
refer to a variable basis BCLM with moving least squares. These results have
been obtained from a fresh implementation of the equations presented in [80],
adapted to the moving least squares formulation. The quantity d in the ar-
gument of a weight function wI in Section 8.3 is, in general, still the geodesic
between x and xI in the EBNM. As mentioned before, d is taken as the Eu-
clidean distance between xt (a fixed point inside a cloud) and xI in the work
of Li and Aluru [79, 80] that adopts a fixed least squares approach.

The first step is to distinguish between singular and nonsingular clouds
(DODs and ROIs are sometimes called clouds in this work - the term is taken
from the work of Li and Aluru [79, 80]). A straight cloud (for 2-D problems)
is one in which the nodes lie on a straight line. Similarly, a flat cloud (for
3-D problems) is one in which the nodes lie on a plane. A curved cloud is a
smooth curve in 2-D and a smooth surface in 3-D problems. Finally, a broken
cloud contains at least one corner in 2-D and at least one edge or corner in 3-D
problems. The approximants for u are identical in the variable basis BCLM [80]
and in the EBNM [163]. They are, however, different for τ - the approximants
for τ are continuous (same as those for u) in [80] but allow for jumps in τ
across corners and edges in the EBNM [163]. The specific approximants for the
EBNM are given below .

The starting point is to write the approximations (8.1) in terms of Cartesian
coordinates x:

u(x) = pT (x)a , τ(x) = qT (x)b (8.36)

A basis (i.e. the functions in p or q in (8.36)) for a cloud must satisfy two
competing requirements - it must be broad enough to include all cases, yet it
must be narrow enough such that the matrices A = PTWP and C = QTWQ
(see (8.46 - 8.47)) are nonsingular.

It is noted here that the smoothness of the final approximating functions
for u and τ (see equation (8.44)), at a regular point on the bounding surface of
a body, depends on the choice of the weight function wI [10].

8.4.2.1 Two-dimensional problems

Bases for u and τ . The following bases are used for the various cases listed
below.

Straight cloud: x1 = c1 Basis [1, x2] for u and τ
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All other straight clouds: Basis [1, x1] for u and τ
All curved clouds: Basis [1, x1, x2] for u and τ

Broken cloud: Basis




[1, x1, x2] for u

[n1, n1x2, n2, n2x1] for τ with both segments
straight

[n1, n1x1, n1x2, n2, n2x1, n2x2] for τ with at least
one segment curved

Explanation for choice of basis for u on a broken cloud. It is assumed
that u(x1, x2) ∈ C∞ in B. Let a corner C on ∂B have coordinates (x10, x20)
which, for simplicity, is written as (x0, y0). A Taylor series expansion for u
about (x0, y0) is of the form:

u(x, y) = u(x0, y0) + ux(x0, y0)(x− x0) + uy(x0, y0)(y − y0) + h.o.t. (8.37)

The linear approximation of u about C is of the form:

l(x, y) = a0 + a1x+ a2y (8.38)

which justifies the chosen basis.

Explanation for choice of basis for τ on a broken cloud. A general
curved cloud segment has the equation f(x1, x2) = 0. Assuming ∇u ∈ C∞ in
B, one has:

τ = u,1(x1, x2)n1 + u,2(x1, x2)n2 (8.39)

One can, therefore, use the basis n1[1, x1, x2] ∪ n2[1, x1, x2] on a general
curved cloud segment.

Special cases of straight segments of a broken cloud are as follows.

Straight line: n1x1 = c1 Basis n1[1, x2]

Straight line: n2x2 = c2 Basis n2[1, x1]

Straight line: n1x1 +n2x2 = c3 Basis n1[1, x1 or x2] ∪ n2[1, x1 or x2].

It is clear that the recommended reduced basis for τ covers all these cases.

Invertibility of C = QTWQ for τ on a broken cloud.
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Figure 8.2: Boundary segments of 2-D regions with corners (from [163])

Straight segments with reduced basis. Let (x1, x2) → (x, y) and [n1, n2] →
[p, q]. Referring to Figure 8.2(a) (the worst case scenario), it is easy to show
that:

x1 = x2 = 0, y3 = y4 = 0
q1 = q2 = 0, p1 = p2 = −1
p3 = p4 = 0, q3 = q4 = −1 (8.40)

With the reduced basis [p, py, q, qx], one has:

[C] =




∑
L1
wi

∑
L1
wiyi 0 0∑

L1
wiyi

∑
L1
wiy

2
i 0 0

0 0
∑

L2
wi

∑
L2
wixi

0 0
∑

L2
wixi

∑
L2
wix

2
i


 (8.41)

This matrix is nonsingular provided that each cloud segment contains at
least two nodes. Clouds must be chosen to fulfill this requirement.

Straight and curved segments with full basis. Figure 8.2(b) shows a
broken cloud with one straight and one curved segment. (Without loss of gen-
erality, L1 is chosen to be part of the y axis). For this case, using the full basis
[p, px, py, q, qx, qy], one gets the matrix [C] that is displayed on the next page.

This matrix is nonsingular if the segment L2 is curved. If, however, L2 is
straight, one has qi = βpi for all nodes on L2, with β a constant. In this case,
row 5 = β × row 2 and the matrix becomes singular!
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Σ

Σ
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Σ Σ

Σ

Σ

Σ

ΣΣ Σ

Σ

Σ

Σ

Σ

ΣL 1 i + L 2
p2

i wi L 2
p2

i wi xi L 1
wi yi + L 2

p2
i wi yi L 2

pi qiwi L 2
pi qiwi xi L 2

pi qiwi yi

L 2
p2

i wi x2
i L 2

p2
i wi xi yi L 2

pi qiwi xi L 2
pi qiwi x2

i L 2
pi qiwi xi yi

L 1
wi y2

i + L 2
p2wi y2

i L 2
pi qiwi yi L 2

pi qiwi xi yi L 2
pi qiwi y2

i

symmetric L 2
q2

i wi L 2
q2

i wi xi L 2
q2

i wi yi

L 2
q2

i wi x2
i L 2

q2
i wi xi yi

L 2
q2

i wi y2
i

The matrix [C]

i

w
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8.4.2.2 Three-dimensional problems

First, a word of caution. In order for the matrices A and C (see (8.46 - 8.47))
to be invertible, a flat cloud (or a flat segment of a broken cloud) must always
contain three or more points, and all the points on it must not lie on a straight
line [164].

Bases for u and τ . The following bases are used for the various cases listed
below.

Flat cloud:
{

x1 = c1 or n1x1 + n2x2 = c4 Basis [1, x2, x3] for u and τ
x2 = c2 or n2x2 + n3x3 = c5 Basis [1, x3, x1] for u and τ

All other flat clouds: Basis [1, x1, x2] for u and τ
All curved clouds: Basis [1, x1, x2, x3] for u and τ

Broken cloud: Basis
{

[1, x1, x2, x3] for u
see below for τ

Explanation for choice of basis for u on a broken cloud. The arguments
given for the 2-D case can be easily extended to the 3-D case as well.

Choice of basis for τ on a broken cloud. A general curved cloud segment
has the equation f(x1, x2, x3) = 0. Assuming ∇u ∈ C∞ in B, one has:

τ = u,1(x1, x2, x3)n1 + u,2(x1, x2, x3)n2 + u,3(x1, x2, x3)n3 (8.42)

One can, therefore, use the basis n1[1, x1, x2, x3] ∪ n2[1, x1, x2, x3] ∪
n3[1, x1, x2, x3] on a general curved cloud segment.

Special cases of flat segments in a broken cloud

Plane P1: n1x1 = c1 Basis n1[1, x2, x3]

Plane P2: n2x2 = c2 Basis n2[1, x3, x1]

Plane P3: n3x3 = c3 Basis n3[1, x1, x2]

Plane P4: n1x1+n2x2 = c4 Basis n1[1, x1 or x2, x3] ∪ n2[1, x1 or x2, x3]

Plane P5: n2x2+n3x3 = c5 Basis n2[1, x1, x2 or x3] ∪ n3[1, x1, x2 or x3]

Plane P6: n3x3+n1x1 = c6 Basis n3[1, x1 or x3, x2] ∪ n1[1, x1 or x3, x2]
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Plane P7: n1x1 + n2x2 + n3x3 = c7 Basis n1[1, two of (x1, x2, x3)] ∪
n2[1, two of (x1, x2, x3)] ∪ n3[1, two of (x1, x2, x3)]

On a broken cloud, one must use a basis that is a union of the bases for its
segments.

For a union of two flat segments, one has, for example:

P1 ∪ P2: Basis [n1, n1x2, n1x3, n2, n2x3, n2x1]

P1 ∪ P4: Basis [n1, n1x2, n1x3, n2, n2x3, n2x1]

P1 ∪ P5: Basis [n1, n1x2, n1x3, n2, n2x3, n2x1, n3, n3x1, n3x2]

P1 ∪ P7: Basis [n1, n1x2, n1x3, n2, n2x3, n2x1, n3, n3x1, n3x2]

For a union of three flat segments, one has, for example:

P1 ∪ P2 ∪ P3: Basis [n1, n1x2, n1x3, n2, n2x3, n2x1, n3, n3x1, n3x2]

Special cases of curved segments in a broken cloud

S1: f1(x1, x2) = 0 Basis [n1, n1x1, n1x2, n1x3, n2, n2x1, n2x2, n2x3]

S2: f2(x2, x3) = 0 Basis [n2, n2x1, n2x2, n2x3, n3, n3x1, n3x2, n3x3]

S3: f3(x3, x1) = 0 Basis [n1, n1x1, n1x2, n1x3, n3, n3x1, n3x2, n3x3]

S4: f4(x1, x2, x3) = 0
Basis [n1, n1x1, n1x2, n1x3, n2, n2x1, n2x2, n2x3, n3, n3x1, n3x2, n3x3]

In the above, fk, k = 1, 2, 3, 4, are nonlinear functions of their arguments.

On a broken cloud, one must use a basis that is a union of the bases for its
segments.

For example:

P1 ∪ S1: Basis [n1, n1x1, n1x2, n1x3, n2, n2x1, n2x2, n2x3]

P1∪S2: Basis [n1, n1x2, n1x3, n2, n2x1, n2x2, n2x3, n3, n3x1, n3x2, n3x3]

Note that the case P1 ∪ S1 is a 3-D version of the 2-D example in Figure
8.2(b).
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Invertibility of C = QTWQ for τ on a broken cloud with flat segments.
The matrix C becomes singular if and only if all the points on any flat cloud
segment are colinear. A proof of this fact is available in [164].

8.4.2.3 Determination of approximating functions for u and τ

Next, analogous to (8.3), let:

Su =
n∑

I=1

wI(d)
[
pT (xI)a − ûI

]2
, Sτ =

n∑
I=1

wI(d)
[
qT (xI)b − τ̂I

]2
(8.43)

Following the same steps as in Section 8.1, one finally gets:

u(x) =
n∑

I=1

αI(x)ûI , τ(x) =
n∑

I=1

βI(x)τ̂I (8.44)

where:

α(x) = pT (x)(A−1B)(x), β(x) = qT (x)(C−1D)(x) (8.45)

with:

A(x) = PT (xI)W(x,xI)P(xI), B(x) = PT (xI)W(x,xI) (8.46)

C(x) = QT (xI)W(x,xI)Q(xI), D(x) = QT (xI)W(x,xI) (8.47)

In the above, P(xI) is an n×m matrix whose kth row is:

[p1(xk), p2(xk), ...., pm(xk)]

similarly for Q(xI); and W(x,xI) is an n×n diagonal matrix with wkk = wk(d)
(no sum over k).

Numerical results from the EBNM, for 2-D and 3-D problems in potential
theory [163, 164], are most encouraging.

It is important to mention here that the rest of this part of this book presents
the boundary node method with curvilinear surface coordinates (s1, s2). Use of
Cartesian coordinates in the 3-D BNM is an interesting subject of continuing
research.
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Chapter 9

POTENTIAL THEORY
AND ELASTICITY

This chapter presents a procedure for coupling of 3-D singular and hypersin-
gular integral equations (BIE and HBIE - see Chapter 1), with moving least
squares (MLS) interpolants (see Chapter 8), to obtain the singular and hy-
persingular boundary node method (BNM and HBNM) equations. Numerical
results for selected examples follow. Potential theory is presented first; then
linear elasticity.

9.1 Potential Theory in Three Dimensions

9.1.1 BNM: Coupling of BIE with MLS Approximants

9.1.1.1 Coupled equations

The bounding surface ∂B of a body B is partitioned into Nc cells ∂Bk and
MLS approximations for the functions u and τ (8.8) are used in the usual BIE
for 3-D potential theory (1.7). The result is:

0 =
Nc∑
k=1

∫
∂Bk

[
G(x,y)

ny∑
I=1

ΦI(y)τ̂I − F (x,y)

{
ny∑
I=1

ΦI(y)ûI −
nx∑
I=1

ΦI(x)ûI

}]
dS(y)

(9.1)

where ΦI(x) and ΦI(y) are the contributions from the Ith node to the colloca-
tion point x and field point y respectively. Also, ny nodes lie in the domain of
dependence of the field point y and nx nodes lie in the domain of dependence
of the source point x. When x and y belong to the same cell, the cell is treated
as a singular cell and the special techniques described in the next subsection
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Figure 9.1: Mapping scheme for weakly singular integrals (from [26])

are used to carry out the integrations. Otherwise, regular Gaussian integration
is used.

9.1.1.2 Weakly singular integration scheme

As mentioned above, regular Gaussian integration can be used as long as the
source and field points are on different cells. However, the kernels become
singular as the source and collocation points approach each other, i.e. as y → x.
The kernel F (x,y) is strongly singular (O(1/r2)) while the kernel G(x,y) is
weakly singular (O(1/r)) as r → 0 (here r is the Euclidean distance between x
and y). The strongly singular integral in (9.1) is regularized in the usual way
by multiplying the kernel F (x,y) by the O(r) function u(y) − u(x). Various
methods have been proposed in the literature to handle weakly singular integrals
arising in the BEM. The method suggested by Nagarajan and Mukherjee [114]
has been used to carry out the weakly singular integration in the BNM. The
details follow.

Consider evaluating the integral with G(x,y) in (9.1) over a (in general
curved) surface cell as shown in Figure 9.1(a). This integral can be represented

© 2005 by Taylor & Francis Group, LLC



9.1. POTENTIAL THEORY IN THREE DIMENSIONS 153

as:

I =
∫
∂B

O(1/r) dSQ (9.2)

The cell shown contains the source point x, so that the field point y could
coincide with the collocation point x. In this example, Quadratic (T6) trian-
gles are used to describe the geometry of the bounding surface. The method
described here, however, can be easily extended for various other kinds of ge-
ometric interpolations. First, the cell is mapped into the parent space (Figure
9.1(b)) using the well-known shape functions for T6 triangles. This involves a
Jacobian and the integral I takes the form:

I =
∫ t=1

t=0

∫ s=1−t

s=0

O(1/r)J1 ds dt (9.3)

Now, in the parent space the triangle is divided into six pieces. Each indi-
vidual triangle is mapped into the parametric (η1 − η2) space (Figure 9.1(c))
using the mapping for linear (T3) triangles. The integral I can now be written
as:

I =
6∑

i=1

∫ η2=1

η2=0

∫ η1=1−η2

η1=0

O(1/r)J1J
(i)
2 dη1 dη2 (9.4)

where J (i)
2 is the Jacobian for each triangle. Now, consider the mapping [114]:

η1 = ρ cos2 θ , η2 = ρ sin2 θ (9.5)

which maps the flat triangle from the η1−η2 coordinate system into a rectangle
in the ρ− θ space (Figure 9.1(d)). The integral I now takes the form:

I =
6∑

i=1

∫ θ=π/2

θ=0

∫ ρ=1

ρ=0

O(1/r)J1J
(i)
2 ρ sin θ dρ dθ (9.6)

As ρ is a measure of the distance between the source point and the field
point, the integral I is now regularized. In other words, the ρ in the numerator
cancels the O(1/r) singularity. Now, to evaluate the integral I in equation (9.6),
regular Gaussian integration can be used. The final mapping involves the use
of quadratic (Q4) shape functions to map the rectangle from the ρ − θ space
into the standard square in ξ1 − ξ2 space (Figure 9.1(e)). The final form of the
integral I is:

I =
6∑

i=1

∫ ξ2=1

ξ2=−1

∫ ξ1=1

ξ1=−1

O(1/r)J1J
(i)
2 J3ρ sin θ dξ1 dξ2 (9.7)

where J3 is the Jacobian of the final transformation. Finally, regular Gaussian
integration can be used to evaluate the above integral I.
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9.1.1.3 Discretized equations and boundary conditions

The discretized assembled form of equation (9.1) becomes:

[K1]{û} + [K2]{τ̂} = {0}, NB equations (9.8)

where {û} and {τ̂} contain the approximations to the nodal values of u and τ
at the NB boundary nodes.

Satisfaction of boundary conditions is carried out next. A special procedure
is needed here since, due to the lack of the delta function property of MLS
approximants, (9.1) contains approximations to the nodal values of the primary
variables rather than the variables themselves [107, 108]. It is assumed that in
a general mixed boundary value problem, either u or τ is prescribed at each
boundary node. Let the vector {ȳ} contain the prescribed boundary conditions
and {x} contain the rest. Each of these vectors is of length NB . Also let {ŷ}
and {x̂} be their corresponding approximations. Finally, let {ẑ} = ({û}∪{τ̂}).

Equation (9.8) is now written as:

[M]{ẑ} = {0}, NB equations (9.9)

Referring to equations (8.11), the nodes with prescribed quantities are con-
sidered first. This gives rise to a system of equations of the form:

[H1]{ẑ} = {ȳ}, NB equations (9.10)

Equations (9.9) and (9.10) are now solved together for 2NB unknowns ẑk.
Finally, (as a postprocessing step) consideration of the rest of the boundary
nodes (those without prescribed boundary conditions) results in the equations:

{x} = [H2]{ẑ}, NB equations (9.11)

which yield the required boundary values xk.

9.1.1.4 Potential and potential gradient at internal points

The potential at a point ξ inside the body B is obtained from equation (1.2)
while the potential gradient is obtained from (1.9); together with (8.8) in each
case. It is well known that direct use of these equations can yield poor results for
the potential and terrible results for the potential gradient at internal points
that are close to the boundary of the body. This phenomenon, sometimes
referred to as the boundary layer effect, is a consequence of the fact that the
kernels G(ξ,y) and F (ξ,y) become nearly singular and nearly hypersingular,
respectively, as ξ → y. A possible remedy for the BEM for elasticity problems
is discussed in Section 1.3, and for the BCM in Section 4.3 of this book (see,
also, [104]). An analogous procedure is used here for problems in potential
theory. The explicit equations for potential theory are available, for example,
in Kane [68] (equations (17.25) and (17.34)). It should be noted here that
the above mentioned equations in [68] were used to regularize the BIE and
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HBIE, respectively, while use of these equations to obtain the primary variable
and its derivative, at internal points close to the boundary of a body, is a new
application of these equations. This approach, for the BNM for linear elasticity,
is discussed later in Section 9.2.1.3 of this chapter.

9.1.2 HBNM: Coupling of HBIE with MLS Approximants

9.1.2.1 Coupled equations

This time, MLS approximations for the functions τ and ∂u/∂s (8.8, 8.20) are
used in the HBIEs for 3-D potential theory (1.12, 1.13). The resulting HBNM
equations are:

0 =
Nc∑
i=1

{ ∫
∂Bi

∂G(x,y)
∂xm

[
ny∑
I=1

ΦI(y)τ̂I −
nx∑
I=1

ΦI(x)τ̂I

]
dS(y)

− u,k(x)
∫
∂Bi

∂G(x,y)
∂xm

[
nk(y) − nk(x)

]
dS(y)

−
∫
∂Bi

∂F (x,y)
∂xm

[
ny∑
I=1

ΦI(y)ûI −
nx∑
I=1

ΦI(x)ûI − u,k(x)(yk − xk)

]
dS(y)

}

(9.12)

0 =
Nc∑
i=1

{ ∫
∂Bi

∂G(x,y)
∂n(x)

[
ny∑
I=1

ΦI(y)τ̂I −
nx∑
I=1

ΦI(x)τ̂I

]
dS(y)

− u,k(x)
∫
∂Bi

∂G(x,y)
∂n(x)

[
nk(y) − n(x)

]
dS(y)

−
∫
∂Bi

∂F (x,y)
∂n(x)

[
ny∑
I=1

ΦI(y)ûI −
nx∑
I=1

ΦI(x)ûI − u,k(x)(yk − xk)

]
dS(y)

}

(9.13)

respectively, where ΦI(x) and ΦI(y) are the contributions from the Ith node
to the collocation point (x) and field point (y), respectively, with nx and ny
nodes in their respective domains of dependence.

The discretized form of the potential gradient equation (1.14) at a source
point x is:

∇u(x) = n(x)
nx∑
I=1

ΦI(x)τ̂I + t1(x)
nx∑
I=1

Ψ(1)
I (x)ûI + t2(x)

nx∑
I=1

Ψ(2)
I (x)ûI

(9.14)

The gradient of u from equation (9.14), in global coordinates, is used in
equations (9.12) and (9.13).

© 2005 by Taylor & Francis Group, LLC



156 CHAPTER 9. POTENTIAL THEORY AND ELASTICITY

9.1.2.2 Discretized equations

Equation (9.13) is used to solve boundary value problems in potential theory. As
described above in Section 9.1.1.2, nonsingular integrals in (9.13) are evaluated
by Gaussian quadrature while weakly singular integrals are evaluated by the
procedure outlined in Section 9.1.1.2. The discretized version of equation (9.13)
has the same form as (9.8) and boundary conditions are imposed in the manner
described above in Section 9.1.1.3.

9.1.3 Numerical Results for Dirichlet Problems on a Sphere

The BNM [26] and the HBNM [27] are used to solve Dirichlet problems on
a sphere. (Results for example problems on cubes are available in Chati and
Mukherjee [26]). The exact solutions presented below have been used to eval-
uate the performance of the various parameters of the BNM and the HBNM.
Dirichlet problems are posed with these solutions imposed (in turn) on the sur-
face of a solid sphere, and the normal derivatives of the potential are computed
on the sphere surface. Potential gradients at internal points are also computed
in some cases. The complete sphere is modeled in all cases.

Exact solutions.

• Linear solution

u = x1 + x2 + x3 (9.15)

• Quadratic solution-one

u = x1x2 + x2x3 + x3x1 (9.16)

• Quadratic solution-two

u = −2(x1)2 + (x2)2 + (x3)2 (9.17)

• Cubic solution

u = x3
1 + x3

2 + x3
3 − 3x2

1x2 − 3x2
2x3 − 3x2

3x1 (9.18)

• Trigonometric solution

u =
2r2

R2
cos2 φ− 2r2

3R2
− 1

3
(9.19)

where R is the radius of the sphere, φ is the angle measured from the x3

axis and r2 = x2
1 + x2

2 + x2
3.

© 2005 by Taylor & Francis Group, LLC



9.1. POTENTIAL THEORY IN THREE DIMENSIONS 157

Error measures. Several error measures have been employed in order to
assess the accuracy of the numerical solutions. These are given below.

• Local

εlocal =
φ

(num)
i − φ

(exact)
i

φ
(exact)
i

× 100 % (9.20)

• Global One (node-based global percentage L2 error - used for BNM re-
sults)

εglobal =
1

|φi|max

√√√√ 1
NB

NB∑
i=1

(φ(num)
i − φ

(exact)
i )2 % (9.21)

• Global Two (integrated L2 error - used for HBNM results)

ε(φ) =

∫
A
(φ(num) − φ(exact))2dA∫

A
(φ(exact))2dA

× 100 % (9.22)

In the above, φ is a generic function, φi is its nodal value at node i and
φ(num) is its numerical value.

Position of collocation nodes. One node per cell has been used for all the
numerical examples presented in this section. It has been shown (from numeri-
cal experiments) in [26, 27] that, as expected, placement of the collocation node
at the centroid of the triangle in the parent space yields excellent results. This
nodal placement has been used in all the examples presented below.

9.1.3.1 Results from the BNM

A variety of problems have been solved on a sphere. The usual curvilinear co-
ordinates θ and φ are used. As mentioned above, Dirichlet boundary conditions
corresponding to the exact solution have been imposed on the surface of the
sphere. Numerical results have been obtained using linear (T3) triangles and
quadratic (T6) triangles for interpolating the geometry. To carry out the inte-
gration, each of these triangles are mapped into a unit triangle in the parent
space (see Figure 9.2). The results have been obtained for four different meshes.
The crude mesh contains 72 and the fine mesh 288 cells (over the surface of the
sphere). Each of the meshes has two versions - using linear (T3) and quadratic
(T6) triangles, respectively. These results are taken from [26].
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Figure 9.2: Mapping of linear (T3) and quadratic (T6) triangles onto the parent
space (from [26])

Choice of compact support of weight function. The parameter dI (the
compact support of a weight function) needs to be chosen such that a ‘reason-
able’ number of nodes lie in the domain of dependence of an evaluation point E.
In Figure 9.3, the global one error (global percentage L2 error from (9.21)) in
τ has been recorded for increasing dI . It is observed that choosing the smallest
possible dI yields the lowest L2 error. For the optimum choice of dI , there
are about 12 − 14 nodes in the range of influence of each node, which is about
2m− 3m for a quadratic polynomial basis m = 6.

Choice of weight function and polynomial basis. Various weight func-
tions, proposed in the literature, are given in equations (8.22 -8.25). Tables 9.1,
9.2 and 9.3 present a convergence study that has been carried out for imposed
linear, quadratic-one and cubic solutions, respectively (see (9.15 - 9.18)), for
various weight functions proposed in the literature. It can be seen that a crude
mesh with 72 quadratic (T6) cells already yields acceptable results. Also, the
Gaussian weight function seems to have an edge over the other weight functions
used. The results for the linear and quadratic-one solutions have been obtained
using a polynomial basis m = 6, while, for the cubic solution, polynomial bases
m = 6 and m = 10 have been used. It can be seen from Table 9.3 that using
a higher order basis has only a marginal effect on the solution, except for the
case with the fine mesh with T6 triangles. In fact, various researchers feel that
it is best to use lower order polynomial bases in mesh-free methods.
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Figure 9.3: Effect of changing dI on the global L2 error in τ for a prescribed
linear solution (from [26])

Weight Crude Mesh Fine Mesh Crude Mesh Fine Mesh
Functions (T3) (T3) (T6) (T6)

WFA 4.237 2.083 1.067 0.497
WFB 4.237 2.086 1.069 0.539
WFC 5.029 2.104 1.031 0.584
WFD 4.057 2.253 1.246 0.757

Table 9.1: L2 error in τ for the linear Dirichlet problem (from [26])

Weight Crude Mesh Fine Mesh Crude Mesh Fine Mesh
Functions (T3) (T3) (T6) (T6)

WFA 4.022 1.788 1.696 0.886
WFB 4.022 1.789 1.697 1.011
WFC 5.314 1.785 1.722 1.199
WFD 5.391 1.893 2.103 1.942

Table 9.2: L2 error in τ for the quadratic-one Dirichlet problem (from [26])
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Weight Crude Mesh (T3) Fine Mesh (T3)
Functions m = 6 m = 10 m = 6 m = 10

WFA 5.641 5.944 2.284 2.319
WFB 5.641 5.944 2.285 2.318
WFC 6.007 5.525 2.298 2.301
WFD 7.896 5.674 2.345 2.318

Weight Crude Mesh (T6) Fine Mesh (T6)
Functions m = 6 m = 10 m = 6 m = 10

WFA 2.018 2.962 0.909 0.485
WFB 2.019 2.963 1.002 0.485
WFC 2.254 3.003 1.120 0.574
WFD 2.456 3.570 1.733 0.796

Table 9.3: L2 error in τ for the cubic Dirichlet problem (from [26])

Coordinates τnum τexact Local Error
(2.0,0.0,0.0) 0.0 0.0 -

(1.5,0.866,1.0) 3.650 3.665 -0.413
(0.5,0.866,1.732) 2.852 2.799 1.897
(1.0,1.0,1.414) 3.847 3.828 0.475
(1.732,1.0,0.0) 1.689 1.732 -2.484

(1.414,1.414,0.0) 1.998 2.000 -0.118
(0.707,0.707,1.732) 3.053 2.949 3.513
(1.225,1.225,1.0) 3.912 3.949 -0.954

Table 9.4: Local error in τ at boundary points for the quadratic-one Dirichlet
problem (from [26])

Results at boundary points other than at nodes. Upon solving a Dirich-
let boundary value problem using the BNM, the value of τ is known at the NB

boundary nodes. However, to compute τ at any boundary location other than
the collocation nodes, the MLS approximants, equation (8.8), need to be used.
Table 9.4 presents the results for τ at a few points on the boundary that are not
the collocation nodes. The results are obtained upon imposing a quadratic-1
solution on a crude mesh (72 T6 cells) with the Gaussian weight function. It
can be seen that the accuracy of the numerical solution is well within acceptable
limits.

Results at internal points. Figures 9.4 (a) and (b) show variation in the
potential and its directional derivative at points inside the sphere. The Dirichlet
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boundary value problem is solved upon imposing the cubic solution on a crude
mesh (72 T6 cells) with the Gaussian weight function and a quadratic basis
(m = 6). The gradient is dotted with the diagonal (x1 = x2 = x3) in order to
get the directional derivative along this line. Values of u and ∇u, at internal
points that are close to the surface of the body, are obtained with the usual
BNM (without modification) and by a new application of equations (17.25) and
(17.34) in Kane [68] (with modification). It is clear that this modification is
essential for success of this method at computing derivatives of the potential
function at internal points that are close to the boundary of a body. This issue,
for the BEM for elasticity problems, is discussed in detail in Section 1.3 of this
book, and for the BNM for elasticity in Section 9.2.1.3 later in this chapter.
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Figure 9.4: Variation of the potential u and tangential derivative of u, along
the line x1 = x2 = x3, with a prescribed cubic solution (from [26])

Comparison of BEM and BNM. The results obtained by the BNM have
also been compared with those from the conventional BEM for a Dirichlet prob-
lem on a sphere with the exact trigonometric solution as given in equation
(9.19). Table 9.5 compares the wall-clock times from a serial BEM code with a
serial and a parallel version of the BNM code. The parallel version is an early
one in which only the assembly phase of the BNM matrices, not the solution
phase, has been parallelized. The parallel BNM code is run on 4, 16, and 32
processors using the message passing interface (MPI) standard on the IBM SP2
(R6000 architecture, 120 MHz P2SC Processor). Certainly, the serial BNM is
considerably slower than the serial BEM and this is because the approxima-
tion functions in the BNM need to be generated at each point unlike in the
BEM. (Similar observations have been made by other researchers regarding the
performance of the EFG compared to the FEM). One possible remedy is an ac-
celerated BNM (Kulkarni et al. [77]). Also, the BNM is very easy to parallelize,
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Meshes Serial Serial Parallel BNM
BEM BNM 4 Procs 16 Procs 32 Procs

72 T6 cells 3.3 secs 29.5 secs 10.0 secs 2.4 secs 1.3 secs
128 T6 cells 9.3 secs 106.3 secs 35.5 secs 7.6 secs 4.4 secs
288 T6 cells 47.5 secs 690.7 secs 249.0 secs 53.0 secs 27.3 secs

Table 9.5: Comparison of wall-clock times for the BNM and BEM for a Dirichlet
problem on a sphere (from [26])

and, as shown in Table 9.5, parallel versions drastically reduce wall-clock times.
Figure 9.5 shows a comparison of the L2 error for the BEM and the BNM as a
function of the number of boundary nodes. The L2 error in τ is defined here
as:

e(τ) =
∑NB

i=1(τ
(num)
i − τ

(exact)
i )2∑NB

i=1(τ
(exact)
i )2

(9.23)

It can be clearly seen that the two methods yield comparable results and
have almost identical rates of convergence.
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Figure 9.5: Convergence of the BNM and the BEM with a prescribed trigono-
metric solution (from [26])

9.1.3.2 Results from the HBNM

This section follows the layout of Section 9.1.3.1 above. Once again, Dirichlet
problems have been solved with various forms of the potential function (from
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Collocation point : P (x1P , x2P , x3P ) ≡ (R, θP , φP )
Field point : Q (x1Q, x2Q, x3Q) ≡ (R, θQ, φQ)
Curvilinear coordinates between P and Q :
s̃1 = R(φQ − φP ) ; s̃2 = R(θQ − θP )
Exact geodesic Approximate geodesic
Ψ : Angle between P & Q d =

√
(s̃21 + s̃22)

Ψ = arccos(r̄P · r̄Q/R2)
d = RΨ

Table 9.6: Exact versus approximate geodesics on the surface of a sphere (from
[27])

equations (9.15 - 9.19)) prescribed on the surface of a sphere. The Gaussian
weight function (8.22) is used in all cases. Also, for all the numerical examples
presented in this section, 72 T6 triangular cells have been used on the surface
of a sphere, with one node per cell placed at the centroid of each triangle in the
parent space (Figure 9.2). Overall, this arrangement yields the best numerical
results. These results are taken from [27].

Geodesics. In order to construct the interpolating functions using MLS ap-
proximants, it is necessary to compute the geodesic on the bounding surface of a
body. Computation of geodesics can get quite cumbersome on a general curved
surface described by splines. For the sphere, the exact geodesic between two
points x (collocation node) and y (field point) is the length of the arc between
these points on the great circle containing them. However, a very simple ap-
proximation to the geodesic would be to use the “Euclidean” distance between
points x and y. Table 9.6 summarizes the procedure for computing the exact
and approximate geodesic on a sphere, while Table 9.7 presents a comparison
in the (global two) L2 errors for linear, quadratic, cubic and trigonometric solu-
tions imposed on the sphere. For this specific example, with idealized geometry
and boundary conditions, it can be seen that the errors remain reasonably small
even if the approximate geodesic is used to replace the exact one. Thus, it is
expected that the computation of geodesics on complicated shapes will not be
a hindrance towards using the present methodology.

Range of influence of nodes. Another important feature of the MLS ap-
proximants is the range of influence associated with each node. The parameter
which controls the so-called “compact support” associated with each node is
dI . In this work the parameter dI is chosen to be nonhomogeneous in the sense
that each evaluation point has an identical number of nodes in its domain of
dependence. Now, for a given polynomial basis (e.g. Linear/Quadratic/Cubic),
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Exact solution Exact geodesic Approximate geodesic
Linear 0.0717 % 0.109 %

Quadratic 0.313 % 0.715 %
Cubic 1.665 % 4.059 %

Trigonometric 0.172 % 0.279 %

Table 9.7: Global two L2 error in τ for Dirichlet problems on a sphere with the
exact and an approximate computation of geodesics (from [27])

the number of nodes n in the domain of dependence of each evaluation point
becomes the parameter of interest.

The parameters dI are chosen as follows. For a given n, let S be the set
of nodes in the domain of dependence of a particular evaluation point E. The
values of dI for all nodes in S are set equal to dmax, where dmax is the distance
from E, along the geodesic, of the node in S which is farthest from E.

Figures 9.6 (a) and (b) show the effect of varying the number of nodes n for
a linear basis (m = 3) and a quadratic basis (m = 6), respectively, for the cubic
and trigonometric solutions. It is observed that the lowest value of L2 errors is
obtained for n ∈ (2m, 3m). This fact has also been observed for the BNM.
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Figure 9.6: Global two L2 error in τ for varying number of points in the domain
of dependence of an evaluation point E: (a) linear polynomial basis (m = 3);
(b) quadratic polynomial basis (m = 6) (72 T6 cells with one node per cell)
(from [27])

Results at internal points. Figures 9.7 (a) and (b) show variation in the
potential and its x1 derivative, respectively, for points along the x1 axis inside
the sphere. The Dirichlet boundary value problem is solved upon imposing the
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Figure 9.7: Variation of (a) potential and (b) ∂u/∂x1 along the x1 axis for a
sphere with the prescribed trigonometric solution (from [27])

trigonometric solution on a cell configuration consisting of 72 T6 cells with one
node per cell and a quadratic basis (m = 6). It is seen from these figures that
the HBNM solutions match the exact solutions within plotting accuracy for
both u and ∂u/∂x1. Once again, the reader is reminded that a technique for
dealing with nearly singular integrals in linear elasticity is described in detail
in Section 1.3 (for the BEM), and in Section 9.2.1.3 (for the BNM) later in this
chapter. An analogous method for potential theory has been employed in order
to get accurate results at internal points that are close to the surface of the
sphere in Figure 9.7.

Comparison of BEM and HBNM. The results obtained by the HBNM
have also been compared with those from the conventional BEM for a Dirichlet
problem on a sphere with the trigonometric solution (equation (9.19)). Figure
9.8 presents a comparison in the L2 error in τ (as defined in (9.23)) for the
HBNM and BEM, as functions of the (global) number of nodes. This figure
shows that the two methods yield comparable results and have similar rates of
convergence. The HBNM solution, however, is more accurate than the BEM
solution for this example.

9.2 Linear Elasticity in Three Dimensions

9.2.1 BNM: Coupling of BIE with MLS Approximants

9.2.1.1 Coupled equations

As before for the case of potential theory (Section 9.1.1.1), the bounding surface
∂B of a body B is partitioned into Nc cells ∂Bk and MLS approximations for
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Figure 9.8: Comparison of e(τ) (L2 error in ∂u/∂n) for the HBNM and the
conventional BEM for a Dirichlet problem on a sphere (from [27])

the functions ui and τi (8.8) are used in the usual BIE for 3-D linear elasticity
(1.25). The result is:

0 =
Nc∑
m=1

∫
∂Bm

[
Uik(x,y)

ny∑
I=1

ΦI(y)τ̂iI

− Tik(x,y)

{
ny∑
I=1

ΦI(y)ûiI −
nx∑
I=1

ΦI(x)ûiI

}]
dS(y) (9.24)

where ΦI(x) and ΦI(y) are the contributions from the Ith node to the collo-
cation point x and field point y respectively. Also, as before, ny nodes lie in
the domain of dependence of the field point y and nx nodes lie in the domain
of dependence of the source point x. When x and y belong to the same cell,
the cell is treated as a singular cell and the special techniques described in Sec-
tion 9.1.1.2 are used to carry out the integrations. Otherwise, regular Gaussian
integration is used.

9.2.1.2 Discretized equations and boundary conditions

This discussion closely follows that on potential theory in Section 9.1.1.3. The
discretized form of (9.24) has the same form as (9.8), but this time with 3NB

equations for the 6NB quantities ûi, τ̂i, i = 1, 2, 3, at NB boundary nodes. The
other 6NB quantities of interest are ui, τi, i = 1, 2, 3, at NB boundary nodes;
3NB of which are prescribed by the boundary conditions. The remaining 6NB

equations, that relate the nodal approximations of ui and τi to their nodal
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values, have the same form as (8.11). The complete system of equations is
solved in a manner that is very similar to that described in Section 9.1.1.3 for
potential theory.

9.2.1.3 Displacements and stresses at internal points

The displacement at a point ξ ∈ B is obtained from (1.17) or (1.21), the dis-
placement gradient from (1.27) or (1.28), and the stress (directly) from (1.30).
In each case, of course, (8.8) must be used.

As mentioned several times before (see Sections 1.3, 4.3), evaluation of dis-
placements and stresses at internal points, that are very close to the bounding
surface of a body, requires special care. For this purpose, the BNM versions of
continuous equations such as (1.50) and (1.52) are needed. These are [104]:

uk(ξ) = uk(x̂)

+
Nc∑
m=1

∫
∂Bm

[
Uik(ξ,y)

ny∑
I=1

ΦI(y)τ̂iI − Tik(ξ,y)

{
ny∑
I=1

ΦI(y)ûiI−ui(x̂)

}]
dS(y)

(9.25)

σij(ξ) = σij(x̂) +
∫
∂B

Dijk(ξ,y)

[
ny∑
I=1

ΦI(y)τ̂kI − σkm(x̂)nm(y)

]
dS(y)

−
∫
∂B

Sijk(ξ,y)

[
ny∑
I=1

ΦI(y)ûkI − uk(x̂) − uk,�(x̂)(y� − x̂�)

]
dS(y)

(9.26)

Equation (9.26)) requires the displacement gradients and stresses at the
target point x̂ (in addition to the usual displacements and tractions at field
points y). Displacement gradients on the surface of the body are obtained
as part of the BNM solution of the original boundary value problem. This
procedure, adapted from Lutz et al. [89] for the BEM, is described in detail in
Section 1.2.2.1 of this book (see, also, [27]).

9.2.2 HBNM: Coupling of HBIE with MLS Approximants

9.2.2.1 Coupled equations

The starting point here are the HBIEs (1.40) and (1.41). The HBNM equations
are:

0 =
Nc∑
l=1

∫
∂Bl

Dijk(x,y)

[
ny∑
I=1

ΦI(y)τ̂kI −
nx∑
I=1

ΦI(x)τ̂kI

]
dS(y)
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− σkm(x)
∫
∂Bl

Dijk(x,y)(nm(y) − nm(x)) dS(y)

−
∫
∂Bl

Sijk(x,y)

[
ny∑
I=1

ΦI(y)ûkI −
nx∑
I=1

ΦI(x)ûkI − uk,m(x)(ym − xm)

]
dS(y)

(9.27)

and

0 =
Nc∑
l=1

∫
∂Bl

Dijk(x,y)nj(x)

[
ny∑
I=1

ΦI(y)τ̂kI −
nx∑
I=1

ΦI(x)τ̂kI

]
dS(y)

− σkm(x)
∫
∂Bl

Dijk(x,y)nj(x)(nm(y) − nm(x)) dS(y)

−
∫
∂Bl

Sijk(x,y)nj(x)

[
ny∑
I=1

ΦI(y)ûkI −
nx∑
I=1

ΦI(x)ûkI − uk,m(x)(ym − xm)

]
dS(y)

(9.28)

Note that, as expected, taking the limit x̂ ∈ ∂B → x ∈ ∂B in the contin-
uous equation (9.26) yields a corresponding regularized HBNM. The resulting
equation is an alternate version of (9.27) (see (1.39) and (1.40)).

9.2.2.2 Discretization

Equations (9.27) and (9.28) are the HBNM equations for linear elasticity.
The procedure followed for discretization of (9.28) is quite analogous to the

BNM case described before in Section 9.2.1.2. These equations are fully regular-
ized and only contain nonsingular or weakly singular integrands. Nonsingular
integrals are evaluated using the usual Gauss quadrature over surface cells,
while the weakly singular integrals are evaluated using the procedure outlined
in Section 9.1.1.2). Displacement gradients at a boundary point x are obtained
by applying the procedure outlined in Section 1.2.2.1 and the stress components
at this point are then obtained from Hooke’s law. The discretized version of
equation (9.28) has the generic form shown in (9.8).

9.2.3 Numerical Results

Numerical results from the standard and the new BNM, as well as from the
HBNM, are presented in this section. The standard BNM results are obtained
from (the BNM versions of) equations (1.17) and (1.30) while the new BNM
results are obtained from equations (9.25) and (9.26). Three illustrative exam-
ples are considered in this section : a hollow sphere under internal pressure,
a bimaterial sphere and a cube with a spherical cavity under tension (the 3-D
Kirsch problem). These numerical results are taken from [25], [104] and [27].
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Figure 9.9: Radial displacement as a function of the radial coordinate in a
hollow sphere: (a) from the standard and the new BNM (b) from the HBNM,
together with the exact solution (from [104] and [27])

9.2.3.1 Hollow sphere under internal pressure

The inner and outer radii of the sphere are 1 and 4 units, respectively, the
internal pressure is 1, E = 1 and ν = 0.25. 72 quadratic T6 triangular cells
(with one node at the centroid of each cell) are used on each surface of the
hollow sphere. The entire surface of the sphere is modeled here, with tractions
prescribed over both the inner and outer surfaces of the sphere. The resulting
singular matrices are regularized using the procedure described in [25] (see, also,
[90]).

Internal displacements. The radial displacement, as a function of the radial
coordinate, from the standard as well as the new BNM, are shown in Figure 9.9
(a) while corresponding results from the HBNM appear in Figure 9.9 (b). The
exact solution from [167] is also included in these figures. It is observed that the
results from the standard BNM and HBNM are excellent as long as an internal
point is not very close to one of the surfaces of the sphere; while those from the
new BNM are very accurate everywhere, including at internal points that are
close to the bounding surfaces of the sphere.

Internal stresses. The radial and circumferential stresses from the new BNM
and from the HBNM, together with the exact solutions from [167], appear in
Figures 9.10 (a) and (b), respectively. The agreement between the exact and
numerical solutions are observed to be excellent.

Finally, the stress solutions from the standard BNM are shown in Figure
9.11, together with details near the inner surface of the sphere in Table 9.8. It
is observed that the stress solutions from the standard BNM are meaningless at
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Figure 9.10: Radial and circumferential stresses as functions of the radial coor-
dinate in a hollow sphere: (a) from the new BNM (b) from the HBNM, together
with the exact solutions (from [104] and [27])

1 1.5 2 2.5 3 3.5 4
-2

-1

0

1

2

3

4

5

BNM solution for σ
θ θ

  (standard method)
BNM solution for σ

rr
    (standard method)         

BNM solution for σ
θ θ

  (new method)   
BNM solution for σ

rr
    (new method)              

Exact σ
θ θ 

                               
Exact σ

rr
                                           

Radial coordinate

St
re

ss
 c

om
po

ne
nt

s
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σrr σθθ

r standard new exact standard new exact
1.01 4.99057 -0.98020 -0.97012 3.68714 0.51168 0.50887
1.03 5.43126 -0.92753 -0.91379 1.08215 0.49365 0.48071
1.05 3.76287 -0.85789 -0.86168 -0.35304 0.46201 0.45465
1.07 1.39290 -0.79589 -0.81338 -0.36737 0.42834 0.43050
1.09 -0.18719 -0.74915 -0.76857 -0.01546 0.40084 0.40809
1.11 -0.90056 -0.71229 -0.72693 0.24717 0.37928 0.38727

Table 9.8: Radial and circumferential stresses as functions of the radial coor-
dinate in a hollow sphere, from the new and standard BNM, together with the
exact solutions, at points very close to the inner surface (from [104])

internal points very near the inner surface of the sphere, and an algorithm for
improving these results, such as that presented in Section 9.2.1.3, is absolutely
essential in this case.

9.2.3.2 Bimaterial sphere

The BNM has been extended to solve problems involving material discontinu-
ities. Figure 9.12 (a) shows a schematic of two perfectly bonded spheres of
two different materials. Numerical results for this model have been obtained by
prescribing displacements on the outer boundary. One could also prescribe trac-
tions over the entire outer surface and then appropriately modify the scheme
presented in [25] for solving traction prescribed problems. This is planned for
the future.

Upon prescribing a radial displacement u0 on the outer surface of the sphere,
the exact solution for the radial displacement and stresses in each material is
given below. For material 1:

u(1)
r = A1r

1 − 2ν1
E1

(9.29)

σ(1)
rr = σ

(1)
tt = A1 (9.30)

where the constant A1 is defined below. For material 2:

u(2)
r =

r

E2

[
A2(1 − 2ν2) −

B2

2r3
(1 + ν2)

]
(9.31)

σ(2)
rr = A2 +

B2

r3
; σ

(2)
tt = A2 −

B2

2r3
(9.32)

The constants are:

A1 = A2 +
B2

R3
1

(9.33)
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Figure 9.12: Bimaterial sphere subjected to uniform external radial displace-
ment : (a) configuration (b) radial displacement along the x1 axis from the new
BNM together with the exact solution (from [25])

α =
E1(1 − 2ν2)
E2(1 − 2ν1)

; β =
E1(1 + ν2)

2E2(1 − 2ν1)
(9.34)

A2 =
u0E2

R2R3
1

1 + β

C(1 + α)
; B2 = −u0E2

R2C
(9.35)

C =
(1 − 2ν2)(1 + β)

R3
1(1 − α)

+
1 + ν2
2R3

2

(9.36)

The material and geometric parameters chosen for the two materials are :

• for material 1, E1 = 1.0, ν1 = 0.28, R1 = 1.0

• for material 2, E2 = 2.0, ν2 = 0.33, R2 = 4.0.

A constant radial displacement is prescribed on the outer boundary of mate-
rial 2 (u0 = 1.0). Figure 9.12 (b) shows a comparison of the numerical solution
and the exact solution for the radial displacement within the two materials. Fig-
ures 9.13 (a) and (b) show the radial and circumferential stress, respectively,
along the line x1 axis. It can be seen that the jump in the circumferential stress
at the bimaterial interface is very well captured by the new BNM.

9.2.3.3 3-D Kirsch problem

The 3-D Kirsch’s problem consists of a cube with a small spherical cavity sub-
jected to far field uniform tension (Figure 9.14 (a)). The material and geomet-
ric parameters are : E = 1.0, ν = 0.25, cutout radius a = 1.0, side of cube
2b = 20.0. Again, the loading is applied without restraining any rigid body
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Figure 9.13: Bimaterial sphere subjected to uniform external radial displace-
ment : (a) radial stress σrr (b) circumferential stress σθθ along the x1 axis from
the new BNM, together with the exact solutions (from [25])

modes and the scheme presented in [25] is used to obtain meaningful numerical
results.

The exact solution for the normal stress σ33, for points in the plane x3 = 0,
is given as [167]:

σ33 = σ0

[
1 +

4 − 5ν
2(7 − 5ν)

(a
r

)3

+
9

2(7 − 5ν)

(a
r

)5
]

(9.37)

Figure 9.14 (b) shows a comparison between the new BNM, HBNM and
the exact solution for the (normalized) normal stress σ33/σ0 along the x1-axis.
Again, it can be clearly seen that the BNM and HBNM solutions are in excellent
agreement with the analytical solution. The cell structure consists of 96 Q4 cells
modeling the cube and 72 T6 cells modeling the spherical cavity, again with
one node per cell. It should be noted that the algorithm presented in Section
9.2.1.3 is essential for obtaining accurate values of stresses near the surface of
the cavity.

© 2005 by Taylor & Francis Group, LLC



174 CHAPTER 9. POTENTIAL THEORY AND ELASTICITY

X

X

X

1

2

3

(a)

0 1 2 3 4 5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

x

σ
/σ 0

BNM solution  
HBNM solution 
Exact solution

33

1

(b)

Figure 9.14: 3-D Kirsch problem : (a) configuration (b) σ33/σ0 along the x1

axis from the new BNM and the HBNM, together with the exact solution (from
[25, 27])
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Chapter 10

ADAPTIVITY FOR 3-D
POTENTIAL THEORY

The subject of this chapter is error analysis and adaptivity with the BNM, as
applied to problems in 3-D potential theory. The idea of using hypersingular
residuals, to obtain local error estimates for the BIE, was first proposed by
Paulino [122] and Paulino et al. [123]. This idea has been applied to the collo-
cation BEM (Paulino et al. [123], Menon et al. [96] and Paulino et al. [127]);
and has been discussed in detail in Chapter 2 of this book. This idea, applied
to the BCM, has appeared in Mukherjee and Mukherjee [111], and is presented
in Chapter 7 of this book. This idea has also been applied to the BNM, for
problems in 3-D potential theory and linear elasticity [28]. Applications in
3-D potential theory is the subject of this chapter, while applications in 3-D
elasticity are discussed in the next chapter - the last one in this book.

10.1 Hypersingular and Singular Residuals

10.1.1 The Hypersingular Residual

Let the BNM (equation (9.1)) for potential theory be written in operator form
as:

LBNM (u, τ) = 0 (10.1)

and its numerical solution be (u∗, τ∗). Also, the HBNM (equation (9.12)) is
written in operator form as:

LHBNM (u, τ) = 0 (10.2)

The hypersingular residual in the potential gradient u,j is defined as,

rj ≡ residual(u,j) = LHBNM (u∗, τ∗) (10.3)
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Solution Solution

BIE

BIEHBIE

HBIE

Error estimate Error estimate

BVP BVP

(a) (b)

Residual Residual

Figure 10.1: Interchange of BIE and HBIE (a) hypersingular residual (b) sin-
gular residual (from [28])

and is calculated from equation (9.12).
This idea is illustrated in Figure 10.1(a)
It has been proved in [96] and [127] for the BIE that, under certain favorable

conditions, real positive constants c1 and c2 exist such that:

c1r ≤ ε ≤ c2r (10.4)

where r is some scalar measure of a hypersingular residual and ε is a scalar
measure of the exact local error. Thus, a hypersingular residual is expected to
provide a good estimate of the local error on a boundary element. It should be
mentioned here that the definitions of the residuals used in [96] and [127] are
analogous to, but different in detail from, the ones proposed in this chapter.

10.1.2 The Singular Residual

The argument for using the residuals as error estimates is symmetric (see
Paulino [122], Paulino et al. [123]). Therefore, one can reverse the above pro-
cedure to define singular residuals by first solving the HBIE and then iterating
with the BIE.

In this case, for potential theory, one gets from equation (9.13):

LHBNM (uo, τo) = 0 (10.5)

and from equation (9.1):
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Initial cell
configuration

BNM
simulation

HBNM
residuals

Local error
estimates

Global error
estimates

Redefinition of cells,
nodes and regions
of influence

Final
configuration

Convergence

No

Yes

Start

Iterative Cell Design Cycle

Figure 10.2: Typical self-adaptive iterative BNM algorithm (h−version) accord-
ing to the scheme of Figure 10.1(a). The BNM equation used for solving the
BVP is (9.1), and the HBNM equation used for residual computation is (9.12)
(from ([28])

r ≡ residual(u) = |LBNM (uo, τo)| (10.6)

This idea is illustrated in Figure 10.1(b).
The above formulation for singular and hypersingular residuals is a gener-

alization of the earlier work by Menon et al. [96] in the sense that Dirichlet,
Neumann and mixed problems require separate prescriptions in [96], while the
current work presents a unified residual formulation.

10.2 Error Estimation and Adaptive Strategy

There are similarities between adaptive techniques (e.g. h-version) for mesh-
based methods (see Paulino et al. [126, 124]) and meshless methods. How-
ever, the latter set of methods provides substantially more flexibility in the
(re-)discretization process than the former ones.

The h−version iterative self-adaptive procedure employed in this work is
presented in the flowchart - Figure 10.2. The goal is to efficiently develop a
final cell configuration which leads to a reliable numerical solution, in as simple
a manner as possible.
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10.2.1 Local Residuals and Errors - Hypersingular Resid-
ual Approach

From equation (10.3):

rj = residual(u,j) (10.7)

A scalar residual measure is defined as:

r = rjrj (10.8)

The exact local error in the gradient, u,j , is defined as:

εj = u
(exact)
,j − u

(numerical)
,j (10.9)

and the corresponding scalar measure is defined as:

ε = εjεj (10.10)

Equations (10.8) and (10.10) are used to calculate the hypersingular residual
and exact error, respectively, in the gradient u,j, at each node, for problems in
potential theory.

10.2.2 Local Residuals and Errors - Singular Residual Ap-
proach

The singular residual is defined in an analogous fashion. From equation (10.6):

r = residual(u) (10.11)

and the exact local error in u is defined as,

e = |u(exact) − u(numerical)| (10.12)

Here, r and ε are themselves scalar measures of the residual and exact er-
ror, respectively. Equations (10.6) and (10.12) are used to obtain the singular
residual and exact error, respectively, in the potential u, at each node, for prob-
lems in potential theory. These equations are presented here for the sake of
completeness.

The local error measure (equation (10.12)) is also used for ∂u/∂n at points
on the surface of a cube (see examples of Section 10.3). This quantity is defined
as:

e

(
∂u

∂n

)
=

∣∣∣∣∣∂u∂n
(exact)

− ∂u

∂n

(numerical)
∣∣∣∣∣ (10.13)

This error measure is only used in Figure 10.8.
The scalar residual measures, defined above, evaluated at nodes, are used

as error estimators. In all the adaptivity examples presented in this chapter,
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one node is used for each cell and is placed at its centroid. The scalar residual
measure at this centroidal node is used as an error estimator for that cell. A
comparison of the residual r and exact error ε demonstrates the effectiveness of
residuals as error estimates.

10.2.3 Cell Refinement Criterion

A simple criterion for cell refinement consists of subdividing the cells for which
the error indicator is larger than a certain reference value. In this work, the
reference quantity is taken as the average value of the error indicator (here the
average residual) given by:

r̄ =
1
Nn

Nn∑
i=1

r(i) (10.14)

where Nn is the total number of nodes. If the inequality:

r > γ r̄ (10.15)

is satisfied, then the cell is subdivided into four pieces (see Figure 10.3). The
parameter γ in equation (10.15) is a weighting coefficient that controls the “cell
refinement velocity.” The standard procedure consists of using γ = 1.0. If
γ > 1.0, then the number of cells to be refined is less than with γ = 1.0.
According to Figure 10.2, the numerical solution of the next iterative step
is expected to be more accurate than that of the current step; however, the
increase on the total number of cells is comparatively small when γ > 1.0.

If γ < 1.0, then the number of cells to be refined is larger than that with
γ = 1.0. The advantage in this case is that the refinement rate increases, how-
ever, the computational efficiency may decrease owing to likely generation of an
excessive number of cells. An alternative procedure, for a ONE-step refinement,
is presented in Section 10.4 of this chapter.

10.2.4 Global Error Estimation and Stopping Criterion

Global L2 error. A global L2 error, on a panel, or over the whole boundary
∂B, is defined as

ε̄(φ) =

∫
A
(φ(exact) − φ(numerical))2 dA∫

A
(φ(exact))2 dA

100% (10.16)

where φ is a variable of interest and A is the area of a panel or of the whole
surface ∂B. These global errors are used in many of the tables that are presented
later in this paper.

An indication of overall convergence may be obtained by evaluating either
r̄ (equation (10.14)) or ε̄ from equation (10.16). Of course, equation (10.16) is
only useful for test examples in which the exact solution is known.
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Figure 10.3: Cell refinement for quadrilateral and triangular cells with one node
per cell (from ([28])

Stopping criterion. For generic problems where the exact solution is not
available (e.g. most engineering problems), cell refinement (see Figure 10.3)
can be stopped when:

r̄ ≤ rglobal (10.17)

where rglobal has a preset value, which depends on the overall level of accu-
racy desired. The goal of the adaptive procedure is to obtain well-distributed
(i.e. near optimal) cell configurations. Ideally, as the iterative cell refinement
progresses, the error estimates should decrease both locally and globally.

10.3 Progressively Adaptive Solutions: Cube
Problem

The adaptive process illustrated by Figure 10.2 is applied to the representative
example of a Dirichlet problem on a cube. Laplace’s equation is solved using
the BNM, and the (hypersingular) residuals are obtained using the HBNM,
according to Figure 10.1(a).

This example, together with an elasticity example discussed in Chapter 11,
permits assessment of various parameters of the adaptive strategy for meshless
methods based on BIE techniques. Several aspects are investigated such as the
quality of the adaptive solution obtained for scalar (potential theory) and vector
field (elasticity theory) problems, performance of the method on problems with
either pure or mixed boundary conditions, evaluation of the quality of error
estimates obtained by means of hypersingular or singular residuals, sensitivity
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of the “final” solution with respect to the starting cell configuration (initial
condition of the self-adaptive problem), and convergence properties.

10.3.1 Exact Solution

The following exact solution, which satisfies the 3-D Laplace’s equation, is used
in this example :

u = sinh
(πx1

2

)
sin

(
πx2

2
√

2

)
sin

(
πx3

2
√

2

)
(10.18)

Note that the solution (10.18) is symmetric with respect to y and z but that
its dependence on x is different from its dependence on y or z. The appropriate
value of u is prescribed on ∂B (Dirichlet problem) and ∂u/∂n is computed on
∂B. Because the exact solution cannot be represented in terms of polynomials,
this is a proper test of the meshless method and the adaptivity procedure. A
quadratic basis is used for the construction of the MLS interpolating functions,
i.e. m = 6 (see equation (8.2)). The idea behind the adaptive procedure is to
start with a rather crude cell configuration and carry out cell refinement in the
region where the residual is large according to a certain criterion. Hence, the
adaptivity results in this section have been obtained starting with two different
relatively coarse initial cell configurations. This comparative procedure tests
the sensitivity of the adaptive scheme with respect to the initial conditions.

10.3.2 Initial Cell Configuration # 1 (54 Surface Cells)

Figure 10.4(a) shows a discretization consisting of 54 rectangular cells with
one (centroidal) node per cell. The boundary value problem is solved using
the BNM (equation (9.1)). Then the results are used in the HBNM (equation
(9.12)) to obtain the hypersingular residual. Figure 10.5 shows a comparison
between the hypersingular residual (from equations (10.3) and (10.8)) and the
exact local error ε in u,j (from equations (10.9) and (10.10)) computed for the
initial configuration # 1 (Figure 10.4(a)) at each node on the surface. It can
be clearly seen that the hypersingular residual tracks the exact error perfectly.

Cell refinement is carried out using γ = 1.0 in equation (10.15), and the
resulting refined cell configuration consisting of 126 cells is shown in Figure
10.4(b). It can be seen from Figure 10.4(b) that the cell refinement occurs only
at the corners where the exact error is the largest. This is an indication that the
procedure for error estimation and adaptivity is moving in the right direction.
Now, the boundary value problem is solved again using the BNM. Table 10.1
summarizes the various output parameters of the adaptivity procedure. It can
be seen from Table 10.1 that excellent numerical results are obtained in a single
step of the adaptivity process and hence the adaptive procedure is not continued
further.
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Figure 10.4: Cell configurations on the surface of a cube. (a) Initial configu-
ration # 1: 54 surface cells. (b) First adapted step : 126 cells, obtained with
γ = 1 (from ([28])

Output parameters Initial Final
Number of cells 54 126

x = ±1 1.4209 % 0.0238 %
y = ±1 7.6911 % 0.2773 %
z = ±1 7.6911 % 0.2578 %
All faces 2.1450 % 0.0519 %

Average residual (r̄) 0.2366E-01 0.7605E-02
Maximum residual rmax 0.5197E-01 0.3068E-01

Table 10.1: ε̄(∂u/∂n) (see (10.16)) and residuals r̄, rmax for the initial cell
configuration (Figure 10.4(a)) and the configuration obtained at the end of the
first step of the adaptivity process using γ = 1.0 (Figure 10.4(b)) (from [28])

10.3.3 Initial Cell Configuration # 2 (96 Surface Cells)

The initial configuration # 2 is for the same physical cube with 16 uniform cells
on each face (Figure 10.7(a)) with, as always, one node at the centroid of each
cell. As before, the boundary value problem is solved using the BNM (equa-
tion (9.1)), and the results obtained are used in the HBNM (equation (9.12)).
Figure 10.6 shows a comparison between the hypersingular residual (from equa-
tions (10.3) and (10.8)) and the exact local error ε in u,j (from equations (10.9)
and (10.10)), computed for the initial configuration # 2 (Figure 10.7(a)). It
can be clearly seen that the hypersingular residual tracks the exact error very
accurately. In fact, the results for the finer cell configuration #2 are very sim-
ilar to those shown in Figure 10.5 for the coarser initial cell configuration #
1.
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Figure 10.5: Comparison of hypersingular residual and exact local error ε
in u,j for the initial configuration # 1 (54 cells, one node per cell). These
quantities have been normalized by their respective maximum values, where
rmax = 0.5197 × 10−1 and εmax = 0.2051 (from ([28])
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Figure 10.6: Comparison between hypersingular residual and exact local error
ε in u,j for the initial configuration # 2 (96 cells, one node per cell). These
quantities have been normalized by their respective maximum values, where
rmax = 0.1829 × 10−1 and εmax = 0.6223 × 10−1 (from ([28])
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Figure 10.7: Cell configurations on the surface of a cube (a) initial configuration
# 2 (96 surface cells), (b) first adapted step (168 cells), (c) second step (456
cells), (d) third step (1164 cells) (from ([28])
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Adaptivity results. In order to obtain a better understanding of the adap-
tivity procedure, the local error e in ∂u/∂n (from equation (10.13)) is calculated
on each of the faces of the cube. The iterative cell design cycle of Figure 10.2
is repeated three times using γ = 0.5 in equation (10.15) and starting from
the initial configuration # 2 given in Figure 10.7(a). The resulting refined
cell configurations are shown in Figures 10.7(b), (c) and (d), respectively. It is
noted that the cell refinement should begin at the corners of the cube where
the error in ∂u/∂n is the largest.

Figure 10.8 shows contour plots of the exact local error e in ∂u/∂n on the
y = −1 face of the cube. The underlying cell structure on the face is also
shown in the color plots. The resolution of these and subsequent contour plots
is much finer than the corresponding cell discretization because the error is
actually evaluated at a large number of points on the boundary (panels) of the
body. These results confirm the observation made at the end of the previous
paragraph regarding regions of large errors which demand a finer discretization.
Thus, refinement occurs close to the edges and corners where the error in ∂u/∂n
is largest.

Other relevant comments are in order. For the first step of the adaptive pro-
cedure (see Figure 10.7(b)), selected results are shown in Figure 10.9, which pro-
vides a comparison between the hypersingular residual (from equations (10.3)
and (10.8)) and the exact local error ε (from equations (10.9) and (10.10)). The
results are shown on the x = −1 and z = 1 faces as a representative sample
of the results over the 168 nodes. It can be seen from Figure 10.9 that the
hypersingular residual tracks the exact error reasonably well.

Figure 10.8(b) shows a contour plot for the exact local error e in ∂u/∂n on
the y = −1 face of the cube for adapted cell configuration of Figure 10.7(b).
Note that, due to the refinement procedure, the error in ∂u/∂n has reduced
substantially, especially at the corners (cf Figures 10.8(a) and (b)).

Figures 10.8(c) and (d) show the exact local error e in ∂u/∂n on the y = −1
face of the cube for the adapted cell configurations consisting of 456 cells and
1164 cells, respectively (see Figures 10.9 (c) and (d)). Comparing the contour
plots of Figures 10.8(a)-(d), one can readily verify that the error in ∂u/∂n
decreases substantially during the adaptive process. It is interesting to note
that the absolute value of the exact solution (equation (10.18)) has the same
functional dependence on the y = −1 and z = 1 faces and different on the
x = −1 face of the cube. Step 1 (Figure 10.7(b)) is not sensitive to this
fact, however, Steps 2 (Figure 10.7(c)) and 3 (Figure 10.7(d)) of the adaptive
procedure are. This is a tribute to the quality of residuals as error estimates.

Table 10.2 summarizes the results of the adaptive process for the cube prob-
lem starting with the initial cell configuration consisting of 96 cells (Figure
10.7(a)). Note that, on the faces x = ±1, ε̄(∂u/∂n) (from equation (10.16))
increases from the initial configuration to Step 1, and from Step 1 to Step 2.
However, ε̄(∂u/∂n) finally decreases from Step 2 to Step 3 and reaches its lowest
value at this step, which has the sophisticated cell pattern of Figure 10.7(d). On
the faces y = ±1 and z = ±1, ε̄(∂u/∂n) monotonically decreases as the number
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Figure 10.8: Error in ∂u/∂n (e(∂u/∂n)) on the face y = −1 of the cube (a)
initial configuration # 2 (96 surface cells), (b) first adapted step (168 cells), (c)
second step (456 cells), (d) third step (1164 cells) (from ([28])
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Figure 10.9: Comparison of hypersingular residual and exact local error ε in u,j

on the faces x = −1 and z = 1 of the cube of Figure 10.7(b) (first step of the
adaptive procedure). The quantities have been normalized by their respective
maximum values, where rmax = 0.1567 × 10−1 and εmax = 0.3645 × 10−1

(from ([28])
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Output parameters Initial Step 1 Step 2 Step 3
Number of cells 96 168 456 1164

x = ±1 0.0759 % 0.1062 % 0.1135 % 0.0438 %
y = ±1 1.0654 % 0.2785 % 0.2089 % 0.0551 %
z = ±1 1.0696 % 0.2781 % 0.2091 % 0.0551 %
All faces 0.1899 % 0.1269 % 0.1247 % 0.0451 %

Average residual r̄ 0.4963E-02 0.3661E-02 0.5643E-03 0.1811E-03
Max. residual rmax 0.1829E-01 0.1567E-01 0.3579E-02 0.2537E-02

Table 10.2: L2 error in ∂u/∂n (ε̄(∂u/∂n)) and residuals r̄, rmax for the various
steps of the adaptivity process starting with the initial cell configuration con-
sisting of 96 cells with one node per cell (Figure 10.7(a)). Here γ = 0.5 is used
for the cell refinement of the cube (from [28])

of adaptive cycles increases. Moreover, as expected, the global ε̄(∂u/∂n) for “all
faces,” as well as the average and maximum residuals, decrease as the adaptive
process progresses.

10.4 One-Step Adaptive Cell Refinement

The previous section has dealt with an iterative adaptive technique for cell
refinement (h−version). Here the interest is on developing a simple ONE-step
algorithm for cell refinement in the meshless BNM setting. The flowchart of
Figure 10.10 illustrates this idea which is based on the concept of refinement
level (RL) employed by Krishnamoorthy and Umesh [74].

Refinement strategy. Figures 10.11(a) and (b) show that different degrees
of refinement are carried out for different values of the refinement level. From
these figures, the expression relating the final cell size hf to the refinement level
RL is:

hf =
hi

2RL
(10.19)

where hi denotes the initial cell size. Assuming that the rate of convergence of
the error is O(hp), where h is a characteristic cell size in the area covered by the
cells, which are of order p, and setting the error estimate equal to η = r/(γr̄)
(see equations (10.14) and (10.15)), one obtains:

hf =
hi

η1/p
(10.20)

From equations (10.19) and (10.20), the RL is given by:
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Figure 10.10: ONE-step adaptive BEM algorithm based on multilevel cell re-
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Figure 10.11: Refinement level RL using (a) rectangular and (b) triangular
cells. The bold lines illustrate the idea of cell structure embedding (from ([28])
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RL =

{
log η

p log 2 for η ≥ 1

0 for η < 1
(10.21)

where p is order of the interpolating function. For the interpolation procedure
used in this work, p = m. The second condition in equation (10.21) is enforced
because cell structure coarsening is not considered in this work.

This idea of ONE-step refinement is applied below to the cube problem of
Section 10.3. Errors are again estimated by means of hypersingular residuals.

10.4.1 Initial Cell Configuration # 1 (54 Surface Cells)

The ONE-step multilevel strategy is implemented on the cube of Figure 10.12(a),
which consists of 54 cells with one node per cell. The boundary value problem
is solved using the BNM (equation (9.1)) by imposing the exact solution in
equation (10.18) as Dirichlet boundary conditions. The hypersingular residual
(from equations (9.12 and (10.8)) is obtained and then the multilevel refine-
ment procedure is carried out using γ = 0.15. The cell structure obtained in
ONE-step is shown in Figure 10.12(b), which consists of 438 cells with one
node per cell. Table 10.3 shows a comparison of the results from the ONE-step
multilevel refinement scheme starting with the configuration of Figure 10.12(a)
and ending with the configuration of Figure 10.12(b). This table shows that
ε̄(∂u/∂n) and the residual consistently decrease with refinement.
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Figure 10.12: ONE-step multilevel cell refinement for the cube problem. (a)
Initial configuration # 1 with 54 cells. (b) Adapted configuration with 438 cells
using γ = 0.15 (from ([28])
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Output parameters Initial Final
Number of cells 54 438

x = ±1 1.4209 % 0.0411 %
y = ±1 7.6911 % 0.0339 %
z = ±1 7.6911 % 0.0343 %
All faces 2.1450 % 0.0403 %

Average residual r̄ 0.2366E-01 0.4615E-03
Maximum residual rmax 0.5197E-01 0.2618E-01

Table 10.3: ε̄(∂u/∂n) and residuals r̄, rmax for the initial configuration (Fig-
ure 10.12(a)), and the final configuration (Figure 10.12(b)) obtained by the
multilevel refinement strategy with γ = 0.15 (from [28])

10.4.2 Initial Cell Configuration # 2 (96 Surface Cells)

The BNM (equation (9.1)) is used to solve the boundary value problem using
equation (10.18) as the exact solution, and the hypersingular residual is ob-
tained by means of equations (9.12) and (10.8). Multilevel refinement is carried
out using γ = 0.15. The cell structure obtained in ONE-step is shown in Figure
10.13(b), which consists of 1764 cells with one node per cell.
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Figure 10.13: ONE-step multilevel cell refinement for the cube problem (a)
initial configuration # 2 with 96 cells (b) adapted configuration with 1764 cells
using γ = 0.15 (from ([28])

Table 10.4 summarizes the results for ε̄(∂u/∂n) and the residual for the mul-
tilevel refinement strategy starting from the initial configuration # 2 of 96 cells
(see Figure 10.13(a)). Qualitatively, these results are analogous to those of Ta-
ble 10.2 for the progressive adaptive refinement, which includes the peculiarity
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Output parameters Initial Final
Number of cells 96 1764

x = ±1 0.0759 % 0.1034 %
y = ±1 1.0654 % 0.2400 %
z = ±1 1.0696 % 0.2400 %
All faces 0.1899 % 0.1169 %

Average residual (r̄) 0.4963E-02 0.3370E-03
Maximum residual (rmax) 0.1829E-01 0.1535E-01

Table 10.4: ε̄(∂u/∂n) and residual for the initial configuration (Figure 10.13(a)),
and the final configuration (Figure 10.13(b)) obtained by the multilevel refine-
ment strategy with γ = 0.15 (from [28])

observed on the x = ±1 faces of the cube. Moreover, the remarks concerning
Table 10.2 also hold for explaining the results of Table 10.4. Therefore, for
further explanations, the reader is referred to Section 10.3.
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Chapter 11

ADAPTIVITY FOR 3-D
LINEAR ELASTICITY

The subject of this chapter is error analysis and adaptivity with the BNM, as
applied to 3-D linear elasticity. Please see the introduction to Chapter 10.

11.1 Hypersingular and Singular Residuals

11.1.1 The Hypersingular Residual

Let the BNM (equation (9.24)) for elasticity be written in operator form as:

LBNM (uk, τk) = 0 ; k = 1, 2, 3 (11.1)

with the numerical solution (u∗k, τ
∗
k ). Also, the HBNM (equation (9.27)) is

written in operator form as:

LHBNM (uk, τk) = 0 ; k = 1, 2, 3 (11.2)

This time, the stress residual is defined from the stress HBNM (equation
(9.27)) as,

rij ≡ residual(σij) = LHBNM (u∗k, τ
∗
k ) ; k = 1, 2, 3 (11.3)

This idea is illustrated in Figure 10.1(a).
It has been proved in [96] and [127] for the BIE that, under certain favorable

conditions, real positive constants c1 and c2 exist such that:

c1r ≤ ε ≤ c2r (11.4)

where r is some scalar measure of a hypersingular residual and ε is a scalar
measure of the exact local error. Thus, a hypersingular residual is expected to
provide a good estimate of the local error on a boundary element. It should be
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mentioned here that the definitions of the residuals used in [96] and [127] are
analogous to, but different in detail from, the ones proposed in this chapter.

11.1.2 The Singular Residual

From equation (9.28):

LHBNM (uo
k, τ

o
k ) = 0 ; k = 1, 2, 3 (11.5)

and from equation (9.24)

ri ≡ residual(ui) = LBNM (uo
k, τ

o
k ) ; k = 1, 2, 3 (11.6)

This idea is illustrated in Figure 10.1(b).
The above formulation for singular and hypersingular residuals is a gener-

alization of the earlier work by Menon et al. [96] in the sense that Dirichlet,
Neumann and mixed problems require separate prescriptions in [96], while the
current work presents a unified residual formulation.

11.2 Error Estimation and Adaptive Strategy

The h−version iterative self-adaptive procedure employed in this work is pre-
sented in the flowchart - Figure 10.2. The goal is to efficiently develop a final
cell configuration which leads to a reliable numerical solution, in as simple a
manner as possible.

11.2.1 Local Residuals and Errors - Hypersingular Resid-
ual Approach

From equation (11.3) :

rij = residual(σij) (11.7)

A scalar residual measure is defined as:

r = rijrij (11.8)

The exact local error in stress is defined as:

εij = σ
(exact)
ij − σ(numerical)

ij (11.9)

and the corresponding scalar measure is defined as:

ε = εijεij (11.10)

Equations (11.8) and (11.10) are used to compute the hypersingular residual
and exact error, respectively, in the stress σij, at each node, for problems in
linear elasticity.
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11.2.2 Local Residuals and Errors - Singular Residual Ap-
proach

From equation (11.6):

ri = residual(ui) (11.11)

so that a scalar residual measure is:

r = riri (11.12)

The exact local error in ui is defined as:

εi = u
(exact)
i − u(numerical)

i (11.13)

with a corresponding scalar measure:

ε = εiεi (11.14)

Equations (11.12) and (11.14) are used to obtain the singular residual and
exact error, respectively, in the displacement ui, at each node, for elasticity
problems.

The scalar residual measures, defined above, evaluated at nodes, are used
as error estimators. In all the adaptivity examples presented in this chapter,
one node is used for each cell and is placed at its centroid. The scalar residual
measure at this centroidal node is used as an error estimator for that cell. A
comparison of the residual r and exact error ε demonstrates the effectiveness of
residuals as error estimates.

11.2.3 Cell Refinement Global Error Estimation and Stop-
ping Criterion

The algorithms used here are the same as those described in Sections 10.2.3
and 10.2.4 in Chapter 10.

11.3 Progressively Adaptive Solutions: Pulling
a Rod

The problem under consideration here is the stretching of a cylindrical elastic
rod clamped at one end (see Figure 11.1(a)). This time, the roles of the BNM
and HBNM are reversed, i.e. the HBNM (9.28) is used to solve the boundary
value problem while the singular residuals are obtained from the standard BNM
(9.24) (see Figure 10.1(b)). This same problem has been addressed with the
BCM in Section 7.3.1 of Chapter 7.
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Figure 11.1: Stretching of a short clamped cylindrical rod by a uniform tensile
load (a) physical situation : L = 2.0, D = 4.0, ν = 0.25, E = 1.0, σ0 = 1.0 (b)
and (c) initial cell configuration with 144 cells (one node per cell) - (b) clamped
and loaded faces (c) curved surface of the cylindrical rod mapped onto the (z, θ)
plane (from [28])
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Figure 11.2: Singular residual for the initial configuration of 144 cells on the
cylindrical rod of Figure 11.1 (b) and (c). The residual has been normalized
with respect to its maximum value, rmax = 0.2419 × 10−2 (from [28])

11.3.1 Initial Cell Configuration

The geometric and material parameters chosen are: E = 1.0, ν = 0.25, σ0 = 1.0,
L = 2.0, and D = 4.0. Figures 11.1(b) and (c) show the initial cell configuration
on the clamped and loaded faces and on the curved surface of the rod. The
boundary value problem is solved by prescribing tractions on the top face of the
cylinder, with the bottom surface completely clamped, and the curved surface
traction free. Upon obtaining the solution to the boundary value problem,
the singular residual is obtained at each node. Figure 11.2 shows the singular
residual (from equations (9.28), (11.6), and (11.12)) obtained for the initial cell
configuration (144 cells). It can be seen that the residual is considerably higher
on the clamped face and on the curved surface near the clamped face, than on
the loaded face. This is to be expected considering the physical nature of the
problem at hand which has a singularity on the bounding circle of the clamped
face [37, 137].

11.3.2 Adaptivity Results

The adaptive strategy is carried out according to the flow chart of Figure 10.2.
However, the boxes for the “BNM simulation” and “HBNM residuals” are re-
placed by “HBNM simulation” and “BNM residuals,” according to the scheme
of Figure 10.1(b). Since the singular residual is higher on the clamped and
curved faces, most of the subdivision of cells occurs on those faces. The curved
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surface of the cylinder near the clamped surface is refined due to the singularity
at the edge of the clamped face. However, the top face (the loaded face) is NOT
refined at all and so the cell structure on that face remains as shown in Figure
11.1(b).

Three steps of adaptivity are pursued using γ = 1.25 in equation (10.15) and
starting from the initial configuration of Figures 11.1(b) and (c). The resulting
refined cell configurations are shown in Figures 11.3 - 11.5. As expected, Figures
11.3(a), 11.4(a) and 11.5(a) show that the loaded face is not refined at all and
remains as in the initial configuration (Figure 11.1(b)). On the clamped face, a
comparison of Figures 11.1(b), 11.3(b), 11.4(b), and 11.5(b) indicates that cell
refinement only takes place near the edge of the face, which is the region where
gradients in stresses are largest.

Figures 11.1(c), 11.3(c), 11.4(c), and 11.5(c) show the progressive refinement
on the curved surface of the cylinder. One can observe that refinement primarily
occurs along the curved surface near the clamped edge of the cylindrical rod.
Note that, for the initial configuration (Figure 11.1 (b) and (c)), the number
of subdivisions along the edge of the top and bottom faces is the same as the
number of subdivisions along the edge of the curved surface (12 subdivisions).
However, when adaptivity is carried out, a significant mismatch in the number
of subdivisions is created at every adaptive step. This does not present any
problem for the meshless method, and such freedom in modeling is expected to
be especially advantageous in analyzing problems with complicated geometry.

11.4 One-Step Adaptive Cell Refinement

The ONE-step procedure outlined in Section 10.4 is demonstrated here for the
same problem as above (Section 11.3). The initial configuration is the same
as that of Figure 11.1(b) and (c). The present study also employs singular
residuals (equation (9.24)) for error estimation (see Section 11.3) rather than
hypersingular residuals (equation (9.27)). This is similar to the study carried
out for the same problem by means of iterative adaptive cell refinement. The
results for the multilevel refinement for the original problem of Figure 11.1(a)
and (b) are given in Figure 11.6. Comparing these results with the ones of
Section 11.3 (Figures 11.3-11.5), one verifies that the overall trends are quite
similar in both situations. However, two main differences are noticeable. First,
the loaded face is refined (a little) here (see Figures 11.1(b) and 11.6(a)), while
it is not refined at all in the adapted configurations shown in Figures 11.3(a),
11.4(a) and 11.5(a). Second, as expected, the multilevel cell refinement does
not allow the smooth cell gradation which occurs in progressively adapted cell
configurations (see Figures 11.5 and 11.6). Nevertheless, such gradation, which
is essential for mesh-based methods, is not required at all in the present meshless
methods (BNM and HBNM).
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Figure 11.3: Short clamped cylindrical rod Step 1 : Adapted configuration
consisting of 228 cells obtained with γ = 1.25; (a) loaded face (b) clamped face
(c) curved surface of the rod (from [28])
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Figure 11.4: Short clamped cylindrical rod Step 2 : Adapted configuration
consisting of 324 cells obtained with γ = 1.25; (a) loaded face (b) clamped face
(c) curved surface of the rod (from [28])
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Figure 11.5: Short clamped cylindrical rod Step 3 : Adapted configuration
consisting of 576 cells obtained with γ = 1.25; (a) loaded face (b) clamped face
(c) curved surface of rod (from [28])
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Figure 11.6: ONE-step multilevel cell refinement for short clamped cylinder:
(a) loaded face (b) clamped face (c) curved surface of cylinder. The initial cell
configuration is shown in Figure 11.1(b) and (c) (from [28])
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