bookboon.com

Formulas and Conversions

IDC Technologies

Download free books at

IDC Technologies

Formulas and Conversions

Formulas and Conversions

© 2012 IDC Technologies \& Ventus Publishing ApS ISBN 978-87-403-0005-5

Contents

Foreword 6
1 Definition and Abbreviations for Physical Quantities 7
2 Units of Physical Quantities 9
3 System of Units 22
4 General Mathematical Formulae 26
4.1 Algebra 26
4.2 Geometry 28
$4.3 \quad$ Trigonometry 34
4.4 Logarithm 36
4.5 Exponents 38
4.6 Complex Numbers 38
5 Engineering Concepts and Formulae 41
5.1 Electricity 41
5.2 Applied Mechanics 55
5.3 Thermodynamics 64

5.4
Fluid Mechanics 77
6 References 81
6.1 Periodic Table of Elements 81
6.2 Resistor Color Coding 82
About IDC Technologies 84
Training Workshops and Books 85
Past Participants Say 89
Technical Workshops 91

Download free ebooks at bookboon.com

Foreword

IDC Technologies specializes in providing high quality state-of-the-art technical training workshops to engineers, scientists and technicians throughout the world. More than 50,000 engineers have attended IDC's workshops over the past 10 years. The tremendous success of the technical training workshops is based in part on the enormous investment IDC puts into constant review and updating of the workshops, an unwavering commitment to the highest quality standards and most importantly - enthusiastic, experienced IDC engineers who present the workshops and keep up-to-date with consultancy work.

The objective of this booklet is to provide today's engineer with useful technical information and as aide-memoir when you need to refresh your memory.

Conversions and formulas that are important and useful to the engineer, scientist and technician, independent of discipline, are covered in this useful booklet.

Although IDC Technologies was founded in Western Australia many years ago, it now draws engineers from all countries. IDC Technologies currently has offices in Australia, Canada, Ireland, Malaysia, New Zealand, Singapore, South Africa, UK and USA.

We have produced this booklet so that you will have important formulas and conversion at your fingertips. Information at an advanced level on engineering and technical topics can be gained from attendance at one of IDC Technologies Practical Training Workshops. Held across the globe, these workshops will sharpen your skills in today's competitive engineering environment.

Other books in this series

INSTRUMENTATION Automation using PLCs, SCADA and Telemetry, Process Control and Data Acquisition

COMMUNICATIONS Data Communications, Industrial Networking, TCP/IP and Fiber Optics

ELECTRICAL Power Quality, Power Systems Protection and Substation Automation

ELECTRONICS Personal Computers, Digital Signal Processing and Analog/Digital Conversions

1 Definition and Abbreviations for Physical Quantities

Symbol	Unit	Quantity
m	meter	Length
kg	kilogram	Mass
s	second	Time
A	ampere	Electric current
K	kelvin	Thermodynamic temp
cd	candela	Luminous intensity

Quantity	Unit	Symbol	Equivalent
Plane angle	radian	rad	-
Force	newton	N	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
Work, energy	heat	joule	$\mathrm{J} \cdot \mathrm{N} \cdot \mathrm{m}$
Power	watt	W	J / s
Frequency	hertz	Hz	s^{-1}
Viscosity: kinematic	-	$\mathrm{m}^{2} / \mathrm{s}$	10 c St (Centistoke)
Viscosity: Dynamic	-	$\mathrm{Ns} / \mathrm{m}^{2}$	$10^{3} \mathrm{cP}($ Centipoise $)$
Pressure	-	Pa or $\mathrm{N} / \mathrm{m}^{2}$	pascal, Pa

Symbol	Prefix	Factor by which unit is multiplied
T	Tera	10^{12}
G	Giga	10^{9}
M	Mega	10^{6}
k	Kilo	10^{3}
h	Hecto	10^{2}
da	Deca	10
d	Deci	10^{-1}
c	Centi	10^{-2}
m	Milli	10^{-3}
m	Micro	10^{-6}
n	Nano	10^{-9}
p	Pico	10^{-12}

Quantity	Electrical unit	Symbol	Derived unit
Potential	Volt	V	W/A
Resistance	Ohm	Ω	V/A
Charge	Coulomb	C	A•s
Capacitance	Farad	F	A•s/V
Electric field strength	-	V / m	-
Electric flux density	-	$\mathrm{C} / \mathrm{m}^{2}$	-

Quantity	Magnetic unit	Symbol	Derived unit
Magnetic flux	Weber	Wb	$\mathrm{V} \cdot \mathrm{s}=\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$
Inductance	Henry	H	$\mathrm{V} \cdot \mathrm{s} / \mathrm{A}=\mathrm{N} \cdot \mathrm{m} / \mathrm{A}^{2}$
Magnetic field strength	-	A / m	-
Magnetic flux density	Tesla	T	$\mathrm{Wb} / \mathrm{m}^{2}=(\mathrm{N}) /(\mathrm{Am})$

2 Units of Physical Quantities

Conversion Factors (general):
1 acre $=43,560$ square feet
1 cubic foot $=7.5$ gallons
1 foot $=0.305$ meters
1 gallon $=3.79$ liters
1 gallon $=8.34$ pounds
1 grain per gallon $=17.1 \mathrm{mg} / \mathrm{L}$
1 horsepower $=0.746$ kilowatts
1 million gallons per day $=694$ gallons per minute
1 pound $=0.454$ kilograms
1 pound per square inch $=2.31$ feet of water
Degrees Celsius $=($ Degrees Fahrenheit -32$)(5 / 9)$
Degrees Fahrenheit $=($ Degrees Celsius $)(9 / 5)+32$
$1 \%=10,000$ mg/L

Name	To convert from	To	Multiply by	Divide by
Acceleration	$\mathrm{ft} / \mathrm{sec}^{2}$	$\mathrm{m} / \mathrm{s}^{2}$	0.3048	3.2810
Area	acre	m^{2}	4047	$2.471 \mathrm{E}-04$
Area	ft^{2}	m^{2}	$9.294 \mathrm{E}-02$	10.7600
Area	hectare	m^{2}	$1.000 \mathrm{E}+04$	$1.000 \mathrm{E}-04$
Area	$i n^{2}$	m^{2}	$6.452 \mathrm{E}-04$	1550
Density	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	1000	$1.000 \mathrm{E}-03$
Density	$\mathrm{lbm} / \mathrm{ft}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	16.02	$6.243 \mathrm{E}-02$
Density	$\mathrm{lbm} / \mathrm{in}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	$2.767 \mathrm{E}+04$	$3.614 \mathrm{E}-05$
Density	$\mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{in}^{4}$	$\mathrm{kg} / \mathrm{m}^{3}$	$1.069 \mathrm{E}+07$	$9.357 \mathrm{E}-08$
Density	slug/ ft^{3}	$\mathrm{kg} / \mathrm{m}^{3}$	515.40	$1.940 \mathrm{E}-03$
Energy	BTU	J	1055	$9.478 \mathrm{E}-04$
Energy	cal	J	4.1859	0.2389
Energy	erg	J	$1.000 \mathrm{E}-07$	$1.000 \mathrm{E}+07$
Energy	eV	J	$1.602 \mathrm{E}-19$	$6.242 \mathrm{E}+18$
Energy	Ft.lbf	J	1.3557	0.7376
Energy	kiloton TNT	J	$4.187 \mathrm{E}+12$	$2.388 \mathrm{E}-13$
Energy	KW•hr	J	$3.600 \mathrm{E}+06$	$2.778 \mathrm{E}-07$
Energy	Megaton TNT	J	$4.187 \mathrm{E}+15$	$2.388 \mathrm{E}-16$
Force	Dyne	N	$1.000 \mathrm{E}-05$	$1.000 \mathrm{E}+05$
Force	Lbf	N	4.4484	0.2248
Force	Ozf	N	0.2780	3.5968
Heat capacity	BTU/lbm $\cdot{ }^{\circ} \mathrm{F}$	$\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$	4188	$2.388 \mathrm{E}-04$
Heat transfer coefficient	$\mathrm{BTU} / \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$	$\mathrm{W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$	5.6786	0.1761
Length	AU	m	$1.496 \mathrm{E}+11$	$6.685 \mathrm{E}-12$
Length	ft	m	0.3048	3.2810
Length	in	m	$2.540 \mathrm{E}-02$	39.3700
Length	mile	m	1609	$6.214 \mathrm{E}-04$
Length	Nautical mile	m	1853	$5.397 \mathrm{E}-04$
Length	parsec	m	$3.085 \mathrm{E}+16$	$3.241 \mathrm{E}-17$
Mass	amu	kg	$1.661 \mathrm{E}-27$	$6.022 \mathrm{E}+26$
Mass	lbm	kg	0.4535	2.2050
Mass	$\mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{in}$	kg	1200.00	$5.711 \mathrm{E}-03$
Mass	slug	kg	14.59	$6.853 \mathrm{E}-02$

Name	To convert from	To	Multiply by	Divide by
Mass flow rate	$\mathrm{lbm} / \mathrm{hr}$	kg/s	$1.260 \mathrm{E}-04$	7937
Mass flow rate	$\mathrm{lbm} / \mathrm{sec}$	kg/s	0.4535	2.2050
Moment of inertia	$\mathrm{ft} \cdot \mathrm{lb} \cdot \mathrm{s}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	1.3557	0.7376
Moment of inertia	$\mathrm{in} \cdot \mathrm{lb} \cdot \mathrm{s}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.1130	8.8510
Moment of inertia	$\mathrm{oz} \cdot \mathrm{in} \cdot \mathrm{s}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	7.062E-03	141.60
Power	BTU/hr	W	0.2931	3.4120
Power	hp	W	745.71	$1.341 \mathrm{E}-03$
Power	tons of refrigeration	W	3516	$2.844 \mathrm{E}-04$
Pressure	bar	Pa	$1.000 \mathrm{E}+05$	$1.000 \mathrm{E}-05$
Pressure	dyne/ cm^{2}	Pa	0.1000	10.0000
Pressure	in. mercury	Pa	3377	$2.961 \mathrm{E}-04$
Pressure	in. water	Pa	248.82	$4.019 \mathrm{E}-03$
Pressure	$\mathrm{kgf} / \mathrm{cm}^{2}$	Pa	$9.807 \mathrm{E}+04$	$1.020 \mathrm{E}-05$
Pressure	$\mathrm{lbf} / \mathrm{ft}^{2}$	Pa	47.89	$2.088 \mathrm{E}-02$
Pressure	$\mathrm{lbf} / \mathrm{in}^{2}$	Pa	6897	$1.450 \mathrm{E}-04$
Pressure	mbar	Pa	100.00	$1.000 \mathrm{E}-02$
Pressure	microns mercury	Pa	0.1333	7.501
Pressure	mm mercury	Pa	133.3	$7.501 \mathrm{E}-03$
Pressure	std atm	Pa	$1.013 \mathrm{E}+05$	$9.869 \mathrm{E}-06$
Specific heat	BTU/lbm $\cdot{ }^{\circ} \mathrm{F}$	$\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$	4186	$2.389 \mathrm{E}-04$
Specific heat	$\mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$	$\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$	4186	$2.389 \mathrm{E}-04$
Temperature	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	0.5556	1.8000
Thermal conductivity	BTU/hr•ft ${ }^{\circ} \mathrm{F}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	1.7307	0.5778
Thermal conductivity	BTU.in/hr.ft ${ }^{2} \cdot{ }^{\circ} \mathrm{F}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	0.1442	6.9340
Thermal conductivity	$\mathrm{cal} / \mathrm{cm} \cdot \mathrm{s} \cdot{ }^{\circ} \mathrm{C}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	418.60	$2.389 \mathrm{E}-03$
Thermal conductivity	$\mathrm{cal} / \mathrm{ft} \cdot \mathrm{hr} \cdot{ }^{\circ} \mathrm{F}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	$6.867 \mathrm{E}-03$	145.62

Name	To convert from	To	Multiply by	Divide by
Time	day	S	$8.640 \mathrm{E}+04$	$1.157 \mathrm{E}-05$
Time	sidereal year	S	$3.156 \mathrm{E}+07$	$3.169 \mathrm{E}-08$
Torque	$\mathrm{ft} \cdot \mathrm{lbf}$	$\mathrm{N} \cdot \mathrm{m}$	1.3557	0.7376
Torque	in $\cdot \mathrm{lbf}$	$\mathrm{N} \cdot \mathrm{m}$	0.1130	8.8504
Torque	$\mathrm{In} \cdot \mathrm{ozf}$	$\mathrm{N} \cdot \mathrm{m}$	$7.062 \mathrm{E}-03$	141.61
Velocity	$\mathrm{ft} / \mathrm{min}$	m / s	$5.079 \mathrm{E}-03$	196.90
Velocity	ft / s	m / s	0.3048	3.2810
Velocity	$\mathrm{Km} / \mathrm{hr}$	m / s	0.2778	3.6000
Velocity	miles $/ \mathrm{hr}$	m / s	0.4470	2.2370
Viscosity - absolute	centipose	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	$1.000 \mathrm{E}-03$	1000
Viscosity - absolute	$\mathrm{g} / \mathrm{cm} \cdot \mathrm{s}$	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	0.1000	10
Viscosity - absolute	$\mathrm{lbf} / \mathrm{ft} \cdot \mathrm{s}$	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	47.87	$2.089 \mathrm{E}-02$
Viscosity - absolute	$\mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	1.4881	0.6720
Viscosity - kinematic	centistoke	$\mathrm{m}^{2} / \mathrm{s}$	$1.000 \mathrm{E}-06$	$1.000 \mathrm{E}+06$
Viscosity - kinematic	$\mathrm{ft} / \mathrm{sec}$	$\mathrm{m}^{2} / \mathrm{s}$	$9.294 \mathrm{E}-02$	10.7600
Volume	ft^{3}	$\mathrm{~m}^{3}$	$2.831 \mathrm{E}-02$	35.3200
Volume	in^{3}	$\mathrm{~m}^{3}$	$1.639 \mathrm{E}-05$	$6.102 \mathrm{E}+04$
Volume	Liters	m^{3}	$1.000 \mathrm{E}-03$	1000
Volume	$\mathrm{U} . \mathrm{S}$. gallons	m^{3}	$3.785 \mathrm{E}-03$	264.20
Volume flow rate	$\mathrm{ft}^{3} / \mathrm{min}$	$\mathrm{m}^{3} / \mathrm{s}$	$4.719 \mathrm{E}-04$	2119
Volume flow rate	$\mathrm{U} . \mathrm{S}$. gallons $/ \mathrm{min}$	$\mathrm{m}^{3} / \mathrm{s}$	$6.309 \mathrm{E}-05$	$1.585 \mathrm{E}+04$

A. DISTANCE (Length)

Conversions

Multiply		By
LENGTH		

To Convert	To	Multiply By
Cables	Fathoms	120
Cables	Meters	219.456
Cables	Yards	240
Centimeters	Meters	0.01
Centimeters	Yards	0.01093613
Centimeters	Feet	0.0328084
Centimeters	Inches	0.3937008
Chains, (Surveyor's)	Rods	4
Chains, (Surveyor's)	Meters	20.1168
Chains, (Surveyor's)	Feet	66
Fathoms	Meters	1.8288
Fathoms	Feet	6
Feet	Statute Miles	0.00018939
Feet	Kilometers	0.0003048
Feet	Meters	0.3048
Feet	Yards	0.3333333
Feet	Inches	12
Feet	Centimeters	30.48
Furlongs	Statute Miles	0.125
Furlongs	Meters	201.168
Furlongs	Yards	220
Furlongs	Feet	660
Furlongs	Inches	7920
Hands (Height Of Horse)	Inches	4
Hands (Height Of Horse)	Centimeters	10.16
Inches	Meters	0.0254
Inches	Yards	0.02777778
Inches	Feet	0.08333333
Inches	Centimeters	2.54
Inches	Millimeters	25.4
Kilometers	Statute Miles	0.621371192
Kilometers	Meters	1000
Leagues, Nautical	Nautical Miles	3
Leagues, Nautical	Kilometers	5.556
Leagues, Statute	Statute Miles	3
Leagues, Statute	Kilometers	4.828032
Links, (Surveyor's)	Chains	0.01
Links, (Surveyor's)	Inches	7.92
Links, (Surveyor's)	Centimeters	20.1168
Meters	Statute Miles	0.000621371
Meters	Kilometers	0.001
Meters	Yards	1.093613298
Meters	Feet	3.280839895
Meters	Inches	39.370079
Meters	Centimeters	100
Meters	Millimeters	1000
Microns	Meters	0.000001
Microns	Inches	0.0000394
Miles, Nautical	Statute Miles	1.1507794
Miles, Nautical	Kilometers	1.852
Miles, Statute	Kilometers	1.609344
Miles, Statute	Furlongs	8

To Convert	To	Multiply By
Miles, Statute	Rods	320
Miles, Statute	Meters	1609.344
Miles, Statute	Yards	1760
Miles, Statute	Feet	5280
Miles, Statute	Inches	63360
Miles, Statute	Centimeters	160934.4
Millimeters	Inches	0.039370079
Mils	Inches	0.001
Mils	Millimeters	0.0254
Paces (US)	Inches	30
Paces (US)	Centimeters	76.2
Points (Typographical)	Inches	0.013837
Points (Typographical)	Millimeters	0.3514598
Rods	Meters	5.0292
Rods	Yards	5.5
Rods	Feet	16.5
Spans	Inches	9
Spans	Centimeters	22.86
Yards	Miles	0.00056818
Yards	Meters	0.9144
Yards	Feet	3
Yards	Inches	36
Yards	Centimeters	91.44

Conversion	
Length	
$1 \mathrm{ft}=12 \mathrm{in}$	$1 \mathrm{yd}=3 \mathrm{ft}$
$1 \mathrm{~cm}=0.3937 \mathrm{in}$	$1 \mathrm{in}=2.5400 \mathrm{~cm}$
$1 \mathrm{~m}=3.281 \mathrm{ft}$	$1 \mathrm{ft}=0.3048 \mathrm{~m}$
$1 \mathrm{~m}=1.0936 \mathrm{yd}$	$1 \mathrm{yd}=0.9144 \mathrm{~m}$
$1 \mathrm{~km}=0.6214$ mile	1 mile $=1.6093 \mathrm{~km}$
1 furlong $=40$ rods	1 fathom $=6 \mathrm{ft}$
1 statute mile $=8$ furlongs	$1 \mathrm{rod}=5.5 \mathrm{yd}$
1 statute mile $=5280 \mathrm{ft}$	$1 \mathrm{in}=100 \mathrm{mils}$
1 nautical mile $=6076 \mathrm{ft}$	1 light year $=9.461 \times 10^{15} \mathrm{~m}$
1 league $=3$ miles	$1 \mathrm{mil}=2.540 \times 10^{-5} \mathrm{~m}$
Area	
$1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}$	1 acre $=160 \mathrm{rod}^{2}$
$1 \mathrm{yd}^{2}=9 \mathrm{ft}^{2}$	1 acre $=43,560 \mathrm{ft}^{2}$
$1 \mathrm{rod}^{2}=30.25 \mathrm{yd}^{2}$	1 mile $^{2}=640$ acres
$1 \mathrm{~cm}^{2}=0.1550 \mathrm{in}^{2}$	$1 \mathrm{in}^{2}=6.4516 \mathrm{~cm}^{2}$
$1 \mathrm{~m}^{2}=10.764 \mathrm{ft}^{2}$	$1 \mathrm{ft}^{2}=0.0929 \mathrm{~m}^{2}$
$1 \mathrm{~km}^{2}=0.3861$ mile 2	$1 \mathrm{mile}^{2}=2.590 \mathrm{~km}^{2}$
Volume	
$1 \mathrm{~cm}^{3}=0.06102 \mathrm{in}^{3}$	$1 \mathrm{in}^{3}=16.387 \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}=35.31 \mathrm{ft}^{3}$	$1 \mathrm{ft}^{3}=0.02832 \mathrm{~m}^{3}$
1 Litre $=61.024 \mathrm{in}^{3}$	$1 \mathrm{in}^{3}=0.0164$ litre
1 Litre $=0.0353 \mathrm{ft}^{3}$	$1 \mathrm{ft}^{3}=28.32$ litres
1 Litre $=0.2642$ gal. (U.S.)	$1 \mathrm{yd}^{3}=0.7646 \mathrm{~m}^{3}$
1 Litre $=0.0284$ bu (U.S.)	1 gallon (US) $=3.785$ litres
1 Litre $=1000.000 \mathrm{~cm}^{3}$	1 gallon (US) $=3.785 \times 10^{-3} \mathrm{~m}^{3}$
1 Litre $=1.0567$ qt. (liquid) or 0.9081 qt. (dry)	1 bushel (US) = 35.24 litres
1 oz (US fluid) $=2.957 \times 10^{-5} \mathrm{~m}^{3}$	1 stere $=1 \mathrm{~m}^{3}$
Liquid Volume	
1 gill $=4$ fluid ounces	1 barrel $=31.5$ gallons
1 pint $=4$ gills	1 hogshead $=2 \mathrm{bbl}$ (63 gal)
1 quart $=2$ pints	1 tun $=252$ gallons
1 gallon $=4$ quarts	1 barrel (petrolum) $=42$ gallons
Dry Volume	
1 quart $=2$ pints	1 quart $=67.2 \mathrm{in}^{3}$
1 peck $=8$ quarts	1 peck $=537.6 \mathrm{in}^{3}$
1 bushel $=4$ pecks	1 bushel $=2150.5 \mathrm{in}^{3}$

B. Area

Conversions

Multiply	By	To obtain
AREA		
acre	$4,046.856$	meter $^{2}\left(\mathrm{~m}^{2}\right)$
acre	0.4046856	hectare
centimeter		
centimeter 2	0.1550003	inch 2
foot 2	0.001076391	foot 2

Multiply	By	To obtain
foot 2	929.0304^{2}	centimeter $^{2}\left(\mathrm{~cm}^{2}\right)$
foot 2	$92,903.04$	millimeter ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
hectare $^{\text {inch }}$ 2	2.471054	acre
inch 2	645.16	millimeter ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
inch 2	6.4516	centimeter $\left(\mathrm{cm}^{2}\right)$
inch 2	0.00064516	meter $^{2}\left(\mathrm{~m}^{2}\right)$
meter 2	$1,550.003$	inch 2
meter 2	10.763910	foot 2
meter 2	1.195990	yard 2
meter 2	0.0002471054	acre 2
millimeter 2	0.00001076391	foot 2
millimeter 2	0.001550003	inch 2
yard 2	0.8361274	meter $^{2}\left(\mathrm{~m}^{2}\right)$

C. Volume

Conversions

Metric Conversion Factors: Volume (including Capacity)

Multiply	By	To obtain
VOLUME (including CAPACITY)		
centimeter ${ }^{3}$	0.06102376	inch ${ }^{3}$
foot ${ }^{3}$	0.028311685	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
foot ${ }^{3}$	28.31685	liter
gallon (UK liquid)	0.004546092	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
gallon (UK liquid)	4.546092	litre
gallon (US liquid)	0.003785412	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
gallon (US liquid)	3.785412	liter
inch 3	16,387.06	millimeter ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
inch 3	16.38706	centimeter ${ }^{3}\left(\mathrm{~cm}^{3}\right)$
inch 3	0.00001638706	meter ${ }^{3}$ (m^{3})
Liter	$0.001 *$	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
Liter	0.2199692	gallon (UK liquid)
Liter	0.2641720	gallon (US liquid)
Liter	0.03531466	foot ${ }^{3}$
meter 3	219.9692	gallon (UK liquid)
meter 3	264.1720	gallon (US liquid)
meter 3	35.31466	foot ${ }^{3}$
meter 3	1.307951	yard ${ }^{3}$
meter 3	1000.*	liter
meter 3	61,023.76	inch 3
millimeter ${ }^{3}$	0.00006102376	inch ${ }^{3}$
Yard ${ }^{3}$	0.7645549	meter $^{3}\left(\mathrm{~m}^{3}\right)$

D. Mass and Weight

Conversions

To Convert	To	Multiply By
Carat	Milligrams	200
Drams, Avoirdupois	Avoirdupois Ounces	0.06255

To Convert	To	Multiply By
Drams, Avoirdupois	Grams	1.7718452
Drams, Avoirdupois	Grains	27.344
Drams, Troy	Troy Ounces	0.125
Drams, Troy	Scruples	3
Drams, Troy	Grams	3.8879346
Drams, Troy	Grains	60
Grains	Kilograms	$6.47989 \mathrm{E}-05$
Grains	Avoirdupois Pounds	0.00014286
Grains	Troy Pounds	0.00017361
Grains	Troy Ounces	0.00208333
Grains	Avoirdupois Ounces	0.00228571
Grains	Troy Drams	0.0166
Grains	Avoirdupois Drams	0.03657143
Grains	Pennyweights	0.042
Grains	Scruples	0.05
Grains	Grams	0.06479891
Grains	Milligrams	64.79891
Grams	Kilograms	0.001
Grams	Avoirdupois Pounds	0.002204623
Grams	Troy Pounds	0.00267923
Grams	Troy Ounces	0.032150747
Grams	Avoirdupois Ounces	0.035273961
Grams	Avoirdupois Drams	0.56438339
Grams	Grains	15.432361
Grams	Milligrams	1000
Hundredweights, Long	Long Tons	0.05

To Convert	To	Multiply By
Hundredweights, Long	Metric Tons	0.050802345
Hundredweights, Long	Short Tons	0.056
Hundredweights, Long	Kilograms	50.802345
Hundredweights, Long	Avoirdupois Pounds	112
Hundredweights, Short	Long Tons	0.04464286
Hundredweights, Short	Metric Tons	0.045359237
Hundredweights, Short	Short Tons	0.05
Hundredweights, Short	Kilograms	45.359237
Hundredweights, Short	Avoirdupois Pounds	100
Kilograms	Long Tons	0.0009842
Kilograms	Metric Tons	0.001
Kilograms	Short Tons	0.00110231
Kilograms	Short Hundredweights	0.02204623
Kilograms	Avoirdupois Pounds	2.204622622
Kilograms	Troy Pounds	2.679229
Kilograms	Troy Ounces	32.15075
Kilograms	Avoirdupois Ounces	35.273962
Kilograms	Avoirdupois Drams	564.3834
Kilograms	Grams	1000
Kilograms	Grains	15432.36
Milligrams	Grains	0.015432358
Ounces, Avoirdupois	Kilograms	0.028349523
Ounces, Avoirdupois	Avoirdupois Pounds	0.0625
Ounces, Avoirdupois	Troy Pounds	0.07595486
Ounces, Avoirdupois	Troy Ounces	0.9114583
Ounces, Avoirdupois	Avoirdupois Drams	16
Ounces, Avoirdupois	Grams	28.34952313
Ounces, Avoirdupois	Grains	437.5
Ounces, Troy	Avoirdupois Pounds	0.06857143
Ounces, Troy	Troy Pounds	0.0833333
Ounces, Troy	Avoirdupois Ounces	1.097143
Ounces, Troy	Troy Drams	8
Ounces, Troy	Avoirdupois Drams	17.55429
Ounces, Troy	Pennyweights	20
Ounces, Troy	Grams	31.1034768
Ounces, Troy	Grains	480
Pennyweights	Troy Ounces	0.05
Pennyweights	Grams	1.55517384
Pennyweights	Grains	24
Pounds, Avoirdupois	Long Tons	0.000446429
Pounds, Avoirdupois	Metric Tons	0.000453592
Pounds, Avoirdupois	Short Tons	0.0005
Pounds, Avoirdupois	Quintals	0.00453592
Pounds, Avoirdupois	Kilograms	0.45359237
Pounds, Avoirdupois	Troy Pounds	1.215278
Pounds, Avoirdupois	Troy Ounces	14.58333
Pounds, Avoirdupois	Avoirdupois Ounces	16
Pounds, Avoirdupois	Avoirdupois Drams	256
Pounds, Avoirdupois	Grams	453.59237
Pounds, Avoirdupois	Grains	7000
Pounds, Troy	Kilograms	0.373241722
Pounds, Troy	Avoirdupois Pounds	0.8228571

To Convert	To	Multiply By
Pounds, Troy	Troy Ounces	12
Pounds, Troy	Avoirdupois Ounces	13.16571
Pounds, Troy	Avoirdupois Drams	210.6514
Pounds, Troy	Pennyweights	240
Pounds, Troy	Grams	373.2417216
Pounds, Troy	Grains	5760
Quintals	Metric Tons	0.1
Quintals	Kilograms	100
Quintals	Avoirdupois Pounds	220.46226
Scruples	Troy Drams	0.333
Scruples	Grams	1.2959782
Scruples	Grains	20
Tons, Long (Deadweight)	Metric Tons	1.016046909
Tons, Long (Deadweight)	Short Tons	1.12
Tons, Long (Deadweight)	Long Hundredweights	20
Tons, Long (Deadweight)	Short Hundredweights	22.4
Tons, Long (Deadweight)	Kilograms	1016.04691
Tons, Long (Deadweight)	Avoirdupois Pounds	2240
Tons, Long (Deadweight)	Avoirdupois Ounces	35840
Tons, Metric	Long Tons	0.9842065
Tons, Metric	Short Tons	1.1023113
Tons, Metric	Quintals	10
Tons, Metric	Long Hundredweights	19.68413072
Tons, Metric	Short Hundredweights	22.04623
Tons, Metric	Kilograms	1000
Tons, Metric	Avoirdupois Pounds	2204.623
Tons, Metric	Troy Ounces	32150.75
Tons, Short	Long Tons	0.8928571
Tons, Short	Metric Tons	0.90718474
Tons, Short	Long Hundredweights	17.85714
Tons, Short	Short Hundredweights	20
Tons, Short	Kilograms	907.18474
Tons, Short		2000

E. Density

Conversions

To Convert	To	Multiply By
Grains/imp. Gallon	Parts/million	14.286
Grains/US gallon	Parts/million	17.118
Grains/US gallon	Pounds/million gal	142.86
Grams/cu. Cm	Pounds/mil-foot	$3.405 \mathrm{E}-07$
Grams/cu. Cm	Pounds/cu. in	0.03613
Grams/cu. Cm	Pounds/cu. ft	62.43
Grams/liter	Pounds/cu. ft	0.062427
Grams/liter	Pounds/1000 gal	8.345
Grams/liter	Grains/gal	58.417
Grams/liter	Parts/million	1000
Kilograms/cu meter	Pounds/mil-foot	$3.405 \mathrm{E}-10$
Kilograms/cu meter	Pounds/cu in	0.00003613
Kilograms/cu meter	Grams/cu cm	0.001

To Convert	To	Multiply By
Kilograms/cu meter	Pound/cu ft	0.06243
Milligrams/liter	Parts/million	1
Pounds/cu ft	Pounds/mil-foot	$5.456 \mathrm{E}-09$
Pounds/cu ft	Pounds/cu in	0.0005787
Pounds/cu ft	Grams/cu cm	0.01602
Pounds/cu ft	Kgs/cu meter	16.02
Pounds/cu in	Pounds/mil-foot	0.000009425
Pounds/cu in	Gms/cu cm	27.68
Pounds/cu in	Pounds/cu ft	1728
Pounds/cu in	Kgs/cu meter	27680

F. Relative Density (Specific Gravity) Of Various Substances

Substance	Relative Density
Water (fresh)	1.00
Mica	2.9
Water (sea average)	1.03
Nickel	8.6
Aluminum	2.56
Oil (linseed)	0.94
Antimony	6.70
Oil (olive)	0.92
Bismuth	9.80
Oil (petroleum)	$0.76-0.86$
Brass	8.40
Oil (turpentine)	0.87

See the light!

The sooner you realize we are right, the sooner your life will get better!

A bit over the top? Yes we know!
We are just that sure that we can make your media activities more effective.

Get "Bookboon's Free Media Advice" Email kbm@bookboon.com

Download free ebooks at bookboon.com

Substance	Relative Density
Brick	2.1
Paraffin	0.86
Calcium	1.58
Platinum	21.5
Carbon (diamond)	3.4
Sand (dry)	1.42
Carbon (graphite)	2.3
Silicon	2.6
Carbon (charcoal)	1.8
Silver	10.57
Chromium	6.5
Slate	2.1-2.8
Clay	1.9
Sodium	0.97
Coal	1.36-1.4
Steel (mild)	7.87
Cobalt	8.6
Sulphur	2.07
Copper	8.77
Tin	7.3
Cork	0.24
Tungsten	19.1
Glass (crown)	2.5
Wood (ash)	0.75
Glass (flint)	3.5
Wood (beech)	0.7-0.8
Gold	19.3
Wood (ebony)	1.1-1.2
Iron (cast)	7.21
Wood (elm)	0.66
Iron (wrought)	7.78
Wood (lignum-vitae)	1.3
Lead	11.4
Magnesium	1.74
Manganese	8.0
Mercury	13.6
Lead	11.4
Magnesium	1.74
Manganese	8.0
Wood (oak)	0.7-1.0
Wood (pine)	0.56
Wood (teak)	0.8
Zinc	7.0
Wood (oak)	0.7-1.0
Wood (pine)	0.56
Wood (teak)	0.8
Zinc	7.0
Mercury	13.6

G. Greek Alphabet

Name	Lower Case	Upper Case
Alpha	α	A
Beta	β	B
Gamma	γ	Γ
Delta	δ	Δ
Epsilon	ε	E
Zeta	ζ	Z
Eta	η	H
Theta	θ	Θ
Iota	1	I
Kарра	κ	K
Lambda	λ	Λ
Mu	μ	M
Nu	v	N
Xi	ξ	Ξ
Omicron	o	O
Pi	π	Π
Rho	ρ	P
Sigma	σ and ς	Σ
Tau	τ	T
Upsilon	v	Υ
Phi	φ	Φ
Chi	χ	X
Psi	ψ	Ψ
Omega	ω	Ω

Download free ebooks at bookboon.com

3 System of Units

The two most commonly used systems of units are as follows:

- SI
- Imperial

SI: The International System of Units (abbreviated "SI") is a scientific method of expressing the magnitudes of physical quantities. This system was formerly called the meter-kilogram-second (MKS) system.

Imperial: A unit of measure for capacity officially adopted in the British Imperial System; British units are both dry and wet

Metric System

	Exponent value	Numerical equivalent	Representation	Example
Tera	10^{12}	1000000000000	1000000000	T
Giga	10^{9}	1000000	G	Thz (Tera hertz)
Mega	10^{6}	1	M	Mhz (Giga hertz)
Unit quantity	1	0.001		hz (hertz) F (Farads)
Micro	10^{-6}	0.000001	m	mF (Micro farads)
Nano	10^{-9}	0.000000000001	p	nF (Nano farads)
Pico	10^{-12}		pF (Pico farads)	

Conversion Chart

Multiply by	Into Milli	Into Centi	Into Deci	Into MGL*	Into Deca	Into Hecto	Into Kilo
To convert Kilo	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	1
To convert Hecto	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	1	10^{-1}
To convert Deca	10^{4}	10^{3}	10^{2}	10^{1}	1	10^{-1}	10^{-2}
To convert MGL*	10^{3}	10^{2}	10^{1}	1	10^{-1}	10^{-2}	10^{-3}
To convert Deci	10^{2}	10^{1}	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}
To convert Centi	10^{1}	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}
To convert Milli	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}

Example:

To convert Kilogram Into Milligram $\rightarrow\left(1\right.$ Kilo X $\left.10^{6}\right)$ Milligrams

Physical constants

Name	Symbolic Representation	Numerical Equivalent
Avogadro's number	N	$6.023 \times 10^{26} /(\mathrm{kg} \mathrm{mol})$
Bohr magneton	B	$9.27 \times 10^{-24} \mathrm{Am} 25^{2}$
Boltzmann's constant	k	$1.380 \times 10^{-23} \mathrm{~J} / \mathrm{k}$
Stefan-Boltzmann constant	d	$5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
Characteristic impedance of free space	Zo	$\left(\mathrm{m}_{\mathrm{o}} / \mathrm{E}_{\mathrm{o}}\right)^{1 / 2}=120 \mathrm{PW}$
Electron volt	eV	$1.602 \times 10^{-19} \mathrm{~J}$
Electron charge	e	$1.602 \times 10^{-19} \mathrm{C}$
Electronic rest mass	$\mathrm{m}_{\text {e }}$	$9.109 \times 10^{-31} \mathrm{~kg}$
Electronic charge to mass ratio	$\mathrm{e} / \mathrm{m}_{\mathrm{e}}$	$1.759 \times 10^{11} \mathrm{C} / \mathrm{kg}$
Faraday constant	F	$9.65 \times 10^{7} \mathrm{C} /(\mathrm{kg} \mathrm{mol})$
Permeability of free space	m_{0}	$4 \mathrm{P} \times 10^{-7} \mathrm{H} / \mathrm{m}$
Permittivity of free space	E	$8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Proton mass	m_{p}	$1.672 \times 10^{-27} \mathrm{~kg}$
Proton to electron mass ratio	$\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}$	1835.6
Standard gravitational acceleration	g	$9.80665 \mathrm{~m} / \mathrm{s}^{2}, 9.80665 \mathrm{~N} / \mathrm{kg}$
Universal constant of gravitation	G	$6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Universal gas constant	R。	$8.314 \mathrm{~kJ} /(\mathrm{kg} \mathrm{mol} \mathrm{K})$
Velocity of light in vacuum	C	$2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Temperature	${ }^{\circ} \mathrm{C}$	$5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
Temperature	K	$\begin{aligned} & 5 / 9\left({ }^{\circ} \mathrm{F}+459.67\right), 5 / 9^{\circ} \mathrm{R},{ }^{\circ} \mathrm{C}+ \\ & 273.15 \end{aligned}$
Speed of light in air	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Electron charge	e	$-1.60 \times 10^{-19} \mathrm{C}$
Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

Name	Symbolic Representation	Numerical Equivalent
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Electron volt	1 eV	$1.60 \times 10^{-19} \mathrm{~J}$
Mass of proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Acceleration due to gravity on Earth	g	$9.80 \mathrm{~m} \mathrm{~s}^{-2}$
Acceleration due to gravity on the Moon	g_{M}	$1.62 \mathrm{~m} \mathrm{~s}^{-2}$
Radius of the Earth	R_{E}	$6.37 \times 10^{6} \mathrm{~m}$
Mass of the Earth	M_{E}	$5.98 \times 10^{24} \mathrm{~kg}$
Radius of the Sun	R_{S}	$6.96 \times 10^{8} \mathrm{~m}$
Mass of the Sun	M_{S}	$1.99 \times 10^{30} \mathrm{~kg}$
Radius of the Moon	R_{M}	$1.74 \times 10^{6} \mathrm{~m}$
Mass of the Moon	M_{M}	$7.35 \times 10^{22} \mathrm{~kg}$
Earth-Moon distance	-	$3.84 \times 10^{8} \mathrm{~m}$
Earth-Sun distance	-	$1.50 \times 10^{11} \mathrm{~m}$
Speed of light in air	c^{2}	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}$

Who is your target group?

 And how can we reach them?At Bookboon, you can segment the exact right
audience for your advertising campaign.
Our eBooks offer in-book advertising spot to reach
the right candidate.

Download free ebooks at bookboon.com

Name	Symbolic Representation	Numerical Equivalent
Electron charge	e	$-1.60 \times 10^{-19} \mathrm{C}$
Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Electron volt	1 eV	$1.60 \times 10^{-19} \mathrm{~J}$
Mass of proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Acceleration due to gravity on Earth	g	$9.80 \mathrm{~m} \mathrm{~s}^{-2}$
Acceleration due to gravity on the Moon	g_{M}	$1.62 \mathrm{~m} \mathrm{~s}^{-2}$
Ton	1 ton	$1.00 \times 10^{3} \mathrm{~kg}$

4 General Mathematical Formulae

4.1 Algebra

A. Expansion Formulae

Square of summation

- $(x+y)^{2}=x^{2}+2 x y+y^{2}$

Square of difference

- $(x-y)^{2}=x^{2}-2 x y+y^{2}$

Difference of squares

- $x^{2}-y^{2}=(x+y)(x-y)$

Cube of summation

- $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$

Summation of two cubes

- $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

Cube of difference

- $(x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$

Difference of two cubes

- $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

B. Quadratic Equation

- If $a x^{2}+b x+c=0$,

Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

The basic algebraic properties of real numbers a, b and c are:

Property	Description
Closure	$\mathrm{a}+\mathrm{b}$ and ab are real numbers
Commutative	$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}, \mathrm{ab}=\mathrm{ba}$
Associative	$(a+b)+c=a+(b+c),(a b) c=a(b c)$
Distributive	$(\mathrm{a}+\mathrm{b}) \mathrm{c}=\mathrm{ac}+\mathrm{bc}$
Identity	$\mathrm{a}+0=0+\mathrm{a}=\mathrm{a}$
Inverse	$\mathrm{a}+(-\mathrm{a})=0, \mathrm{a}(1 / \mathrm{a})=1$
Cancellation	If $\mathrm{a}+\mathrm{x}=\mathrm{a}+\mathrm{y}$, then $\mathrm{x}=\mathrm{y}$
Zero-factor	$\mathrm{a} 0=0 \mathrm{a}=0$
Negation	$-(-\mathrm{a})=\mathrm{a},(-\mathrm{a}) \mathrm{b}=\mathrm{a}(-\mathrm{b})=-(\mathrm{ab}),(-\mathrm{a})(-\mathrm{b})=\mathrm{ab}$

Algebraic Combinations
Factors with a common denominator can be expanded:

$$
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}
$$

Fractions can be added by finding a common denominator:
$\frac{a}{c}+\frac{b}{d}=\frac{a d+b c}{c d}$

Products of fractions can be carried out directly:
$\frac{a}{c} \times \frac{b}{d}=\frac{a b}{c d}$
Quotients of fractions can be evaluated by inverting and multiplying:

$$
\frac{a / b}{c / d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}
$$

Radical Combinations

$$
\begin{aligned}
& \sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b} \\
& \sqrt[n]{a}=a^{1 / n} \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\
& \sqrt[n]{a^{m}}=a^{\frac{m}{n}} \\
& \sqrt[n]{\sqrt[m]{a}}=\sqrt[m n]{a}
\end{aligned}
$$

4.2 Geometry

Item	Circumference / Perimeter	Area	Surface Area	Volume	Figure
Square	4 s		NA		

Item	Circumference Perimeter	Area	Surface Area	Volume	Figure
Rectangle	2(L + B)				

Item	Circumference / Perimeter	Area	Surface Area	Volume	Figure
Equilateral triangle	3s where s is the length of each side	$A=\frac{1}{2} b h$	NA	NA	
Trapezoid	$a+b+h\left(\frac{1}{\sin \theta}+\frac{1}{\sin \phi}\right)$ where θ and Φ are the 2 base angles	$A=\left(\frac{a+b}{2}\right) h$	NA	NA	

Getting ahead in your management career

Our expertise in flexible and accessible education and your passion to succeed will enable you to get ahead.

A world-class research university, Leicester offers flexible, innovative courses because we understand that you've got other responsibilities. In fact, we're committed to making sure that everyone in our vibrant community gets the very best experience at Leicester, whether you're on campus or on the other side of the world.

Whether you choose to study one of our specialist Masters' courses, or our AMBA accredited MBA by full-time or distance learning, you will join a global network of similarly minded professionals and be supported all the way.

Distance Learning

School of Management
Postgraduate Programmes

Get ahead, get in touch www.le.ac.uk/management
+44 (0)116 2525377 dladvisers@le.ac.uk dadvisers@le.ac.uk

Item	Circumference / Perimeter	Area	Surface Area	Volume	Figure
Circle	$\begin{aligned} & \mathrm{C}=2 \mathrm{pr} \\ & \mathrm{C}=\mathrm{pd} \end{aligned}$	$\mathrm{A}=\mathrm{pr}^{2}$	NA	NA	
Circle Sector	$2 \mathrm{r}+($ arc length $)$	$\begin{gathered} A=\frac{\operatorname{arc} \times r}{2} \\ A=\frac{\theta^{\circ}}{360} \times \pi r^{2} \\ A=\frac{\theta^{\circ} r^{2}}{2} \end{gathered}$	NA	NA	
Ellipse	$(1 / 4) \cdot D \cdot d \cdot \Pi$ where D and d are the two axis	$A=\frac{\pi}{4} D d$ D is the larger radius and d is the smaller radius	NA	NA	
Trapezoid	Sum of all sides	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$	NA	NA	

Item	Circumference / Perimeter	Area	Surface Area	Volume	Figure
Sphere	NA	NA	$S=4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$	
Pyramid	NA	NA	$1 / 2$.perimeter. slant height $+\mathrm{B}$	$\begin{gathered} \frac{1}{3} \text { base area. } \\ \text { perpendicular } \\ \text { height } \end{gathered}$	

With us you can shape the future. Every single day.

For more information go to:
www.eon-career.com

Your energy shapes the future.
e.on

Item	Circumference / Perimeter	Area	Surface Area	Volume	Figure
Rectangular prism	NA				
Cone		NA	$2 l \mathrm{~h}+21 \mathrm{w}+2 \mathrm{wh}$	$\mathrm{V}=1 \mathrm{wh}$	

4.3 Trigonometry

A. Pythagoras' Law

$$
c^{2}=a^{2}+b^{2}
$$

B. Basic Ratios

- $\operatorname{Sin} \theta=\mathrm{a} / \mathrm{c}$
- $\operatorname{Cos} \theta=b / c$

b
- $\operatorname{Tan} \theta=\mathrm{a} / \mathrm{b}$
- $\operatorname{Cosec} \theta=c / a$
- $\operatorname{Sec} \theta=c / b$
- $\operatorname{Cot} \theta=\mathrm{b} / \mathrm{a}$

Degrees versus Radians

- A circle in degree contains 360 degrees
- A circle in radians contains 2π radians

Sine, Cosine and Tangent

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenus }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenus }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

Sine, Cosine and the Pythagorean Triangle

$$
[\sin \theta]^{2}+[\cos \theta]^{2}=\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Tangent, Secant and Co-Secant

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \sec \theta=\frac{1}{\cos \theta} \\
& \csc \theta=\frac{1}{\sin \theta}
\end{aligned}
$$

C. Trigonometric Function Values

Euler's Representation

$$
\begin{aligned}
& e^{j \theta}=\cos (\theta)+j \sin (\theta) \\
& e^{-j \theta}=\cos (\theta)-j \sin (\theta)
\end{aligned}
$$

$$
\begin{aligned}
& e^{j n \theta}=\cos (n \theta)+j \sin (n \theta) \\
& \cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2} \\
& \sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j} \\
& \text { 4.4 Logarithm }
\end{aligned}
$$

Definition

The logarithm of a number to a particular base is the power (or index) to which that base must be raised to obtain the number.

The number 8 written in index form as $\mathbf{8}=\mathbf{2}^{\mathbf{3}}$

The equation can be rewritten in logarithm form as $\boldsymbol{\operatorname { l o g }}_{2} \mathbf{8}=\mathbf{3}$

Please click the advert

Do your employees receive

 the right training?Bookboon offers an eLibrairy with a wide range of
Soft Skill training \& Microsoft Office books to keep your staff up to date at all times.

Logarithm laws

The logarithm laws are obtained from the index laws and are:

- $\log _{a} x+\log _{a} y=\log _{a} x y$
- $\log _{a} x-\log _{a} y=\log _{a}(x / y)$
- $\log _{a} x y=y \log _{a} x$
- $\log _{a}(1 / x)=-\log _{a} x$
- $\log _{\mathrm{a}} 1=0$
- $\log _{\mathrm{a}} \mathrm{a}=1$
- $a^{\left(\log _{a} x\right)}=x$

Note: It is not possible to have the logarithm of a negative number. All logarithms must have the same base.

Euler Relationship

The trigonometric functions are related to a complex exponential by the Euler relationship:
$e^{j x}=\cos x+j \sin x$
$e^{-j x}=\cos x-j \sin x$

From these relationships the trig functions can be expressed in terms of the complex exponential:

$$
\begin{aligned}
& \cos x=\frac{e^{j x}+e^{-j x}}{2} \\
& \sin x=\frac{e^{j x}-e^{-j x}}{2}
\end{aligned}
$$

Hyperbolic Functions

The hyperbolic functions can be defined in terms of exponentials.

Hyperbolic sine $=\sinh \mathrm{x}=\frac{\frac{e^{x}-e^{-x}}{2}}{2}$

Hyperbolic cosine $=\cosh \mathrm{x}=\frac{\frac{e^{x}+e^{-x}}{2}}{2}$

Hyperbolic tangent $=\tanh \mathrm{x}=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{x}}$

4.5 Exponents

Summary of the Laws of Exponents

Let c, d, r, and s be any real numbers.

$c^{r} \cdot c^{s}=c^{r+s}$	$(c \cdot d)^{r}=c^{r} \cdot d^{r}$
$\frac{c^{r}}{c^{s}}=c^{r-s}, c \neq 0$	$\left(\frac{c}{d}\right)^{r}=\frac{c^{r}}{d^{r}}, d \neq 0$
$\left(c^{r}\right)^{s}=c^{r \cdot s}$	$c^{-r}=\frac{1}{c^{r}}$

Basic Combinations

Since the raising of a number n to a power p may be defined as multiplying n times itself p times, it follows that $n^{p_{1}+p_{2}}=n^{p_{1}} n^{p_{2}}$

The rule for raising a power to a power can also be deduced
$\left(n^{a}\right)^{b}=n^{a b}$
$(a b)^{n}=a^{n} b^{n}$
$\mathrm{a}^{\mathrm{m} / \mathrm{a}^{\mathrm{n}}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}$
where a not equal to zero

4.6 Complex Numbers

A complex number is a number with a real and an imaginary part, usually expressed in Cartesian form
$a+j b$ where $\mathbf{j}=\sqrt{ }-1$ and $\mathbf{j} \cdot \mathbf{j}=-\mathbf{1}$

Complex numbers can also be expressed in polar form
$\mathrm{Ae}^{\mathrm{j} \theta}$ where $\mathrm{A}=\sqrt{ } \mathrm{a}^{2}+\mathbf{b}^{2}$ and $\theta=\boldsymbol{\operatorname { t a n }}^{-1}(\mathbf{b} / \mathbf{a})$

The polar form can also be expressed in terms of trigonometric functions using the Euler relationship $\mathrm{e}^{\mathrm{j} \theta}=\cos \theta+\mathrm{j} \sin \theta$

Euler Relationship

The trigonometric functions are related to a complex exponential by the Euler relationship

$$
e^{j x}=\cos x+j \sin x
$$

$e^{-j \theta}=\cos x-j \sin x$

From these relationships the trigonometric functions can be expressed in terms of the complex exponential:

$$
\begin{aligned}
& \cos x=\frac{e^{j x}+e^{-j x}}{2} \\
& \sin x=\frac{e^{j x}-e^{-j x}}{2}
\end{aligned}
$$

This relationship is useful for expressing complex numbers in polar form, as well as many other applications.

Polar Form, Complex Numbers

The standard form of a complex number is
$a+j b$ where $j=\sqrt{ }-1$

Download free ebooks at bookboon.com

But this can be shown to be equivalent to the form
$A e^{i \theta}$ where $A=\sqrt{ } \mathbf{a}^{2}+b^{2}$ and $\theta=\tan ^{-1}(b / a)$
which is called the polar form of a complex number. The equivalence can be shown by using the Euler relationship for complex exponentials.

$$
\begin{aligned}
& A e^{j \theta}=\sqrt{a^{2}+b^{2}}\left(\cos \left[\tan ^{-1} \frac{b}{a}\right]+j \sin \left[\tan ^{-1} \frac{b}{a}\right]\right) \\
& A e^{j \theta}=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+j \frac{b}{\sqrt{a^{2}+b^{2}}}\right)=a+j b
\end{aligned}
$$

5 Engineering Concepts and Formulae

5.1 Electricity

Ohm's Law
$I=\frac{V}{R}$

Or
$V=I R$

Where
$\mathrm{I}=$ current (amperes)
$\mathrm{E}=$ electromotive force (volts)
$\mathrm{R}=$ resistance (ohms)

Temperature correction

$R_{t}=R o(1+\alpha t)$

Where

Ro $=$ resistance at $0^{\circ} \mathrm{C}($.
$\mathrm{R}_{\mathrm{t}}=$ resistance at $\mathrm{t}^{\circ} \mathrm{C}$ (.)
$\alpha=$ temperature coefficient which has an average value for copper of $0.00428\left(\Omega / \Omega^{\circ} \mathrm{C}\right)$
$R_{2}=R_{1} \frac{\left(1+\alpha t_{2}\right)}{\left(1+\alpha t_{1}\right)}$

Where $\mathrm{R}_{1}=$ resistance at t_{1}
$\mathrm{R}_{2}=$ resistance at t_{2}

Values of alpha	$\mathbf{\Omega} / \mathbf{\Omega}^{\circ} \mathbf{C}$
Copper	0.00428
Platinum	0.00358
Nickel	0.00672
Tungsten	0.00450
Aluminum	0.0040

Current, $I=\frac{n q v t A}{t}=n q v A$

Conductor Resistivity

$$
R=\frac{\rho L}{a}
$$

Where

$$
\begin{aligned}
& \rho=\text { specific resistance (or resistivity) (ohm meters, } \Omega \mathrm{m} \text {) } \\
& \mathrm{L}=\text { length (meters) } \\
& \mathrm{a}=\text { area of cross-section (square meters) }
\end{aligned}
$$

Is your recruitment website still missing a piece?

Bookboon can optimize your current traffic. By offering our free eBooks in your look and feel, we build a qualitative database of potential candidates.

Quantity	Equation
Resistance R of a uniform conductor	$R=\rho \frac{L}{A}$
Resistors in series, R_{s}	$R_{s}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
	$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
Resistors in parallel, R_{p}	$P=V=I^{2} R=\frac{V^{2}}{R}$
Power dissipated in resistor:	$\mathrm{V}=\mathrm{I} \mathrm{R}$
Potential drop across R	

Dynamo Formulae

Average e.m.f. generated in each conductor $=\frac{2 \varphi N p Z}{60 c}$
Where
$\mathrm{Z}=$ total number of armature conductors
$c=$ number of parallel paths through winding between positive and negative brushes
Where $\mathrm{c}=2$ (wave winding), $\mathrm{c}=2 \mathrm{p}$ (lap winding)
$\Phi=$ useful flux per pole (webers), entering or leaving the armature
$\mathrm{p}=$ number of pairs of poles
$\mathrm{N}=$ speed (revolutions per minute)

Generator Terminal volts $=$ EG - IaRa
Motor Terminal volts $=\mathrm{EB}+\mathrm{IaRa}$
Where $E G=$ generated e.m.f.
$E B=$ generated back e.m.f.
Ia $=$ armature current
$\mathrm{Ra}=$ armature resistance

Alternating Current

RMS value of sine curve $=0.707$ of maximum value
Mean Value of Sine wave $=0.637$ of maximum value
Form factor $=$ RMS value $/$ Mean Value $=1.11$
Frequency of Alternator $=\frac{p N}{60}$ cycles per second
Where p is number of pairs of poles
N is the rotational speed in $\mathrm{r} / \mathrm{min}$

Slip of Induction Motor

[(Slip speed of the field - Speed of the rotor) / Speed of the Field] $\times 100$

Inductors and Inductive Reactance

Physical Quantity	Equation
Inductors and Inductance	$\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
Inductors in Series:	$\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots$.
Inductor in Parallel:	$\frac{1}{\mathrm{~L}_{\mathrm{T}}}=\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}+\ldots .$
Current build up (switch initially closed after having been opened)	$\begin{aligned} & \text { At } v_{L}(t)=E e^{-\frac{t}{\tau}} \\ & v_{R}(t)=E\left(1-e^{-\frac{t}{\tau}}\right) \\ & i(t)=\frac{E}{R}\left(1-e^{-\frac{t}{\tau}}\right) \\ & \tau=\frac{L}{R} \end{aligned}$
Current decay (switch moved to a new position)	$\begin{aligned} & i(t)=I_{o} e^{-\frac{t}{\tau^{\prime}}} \\ & \mathrm{V}_{\mathrm{R}}(\mathrm{t})=\mathrm{Ri}(\mathrm{t}) \\ & \mathrm{V}_{\mathrm{L}}(\mathrm{t})=-\mathrm{R}_{\mathrm{T}} \mathrm{i}(\mathrm{t}) \\ & \tau^{\prime}=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{T}}} \end{aligned}$
Alternating Current	$\begin{aligned} & f=1 / T \\ & \omega=2 \pi f \end{aligned}$
Complex Numbers:	$\begin{aligned} & C=a+j b \\ & C=M \cos \theta+j M \sin \theta \\ & M=\sqrt{a^{2}+b^{2}} \\ & \theta=\tan ^{-1}\left(\frac{b}{a}\right) \end{aligned}$
Polar form:	$C=M \angle \theta$
Inductive Reactance	$\left\|X_{L}\right\|=\omega L$
Capacitive Reactance	$\left\|X_{C}\right\|=1 /(\omega \mathrm{C})$)
Resistance	R

Physical Quantity	Equation
	Resistance: $Z_{R}=R \angle 0^{\circ}$ Impedance Inductance: $Z_{L}=X_{L} \angle 90^{\circ}=\omega \mathrm{L} \angle 90^{\circ}$ $\angle-90^{\circ}$

Quantity	Equation
Ohm's Law for AC	$\mathrm{V}=\mathrm{I} \mathrm{Z}$
Time Domain	$\mathrm{V}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t} \pm \phi)$ $\mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{m}} \sin (\omega \mathrm{t} \pm \phi)$
Phasor Notation	$\mathrm{V}=\mathrm{V}_{\mathrm{rms}} \angle \phi$ $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \angle \phi$
Components in Series	$\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}+\ldots$
Voltage Divider Rule	$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{T}} \frac{\mathrm{Z}_{\mathrm{x}}}{\mathrm{Z}_{\mathrm{T}}}$

Turning a challenge into a learning curve. Just another day at the office for a high performer.

Accenture Boot Camp - your toughest test yet

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a difference every day. A place where you can develop your potential and grow professionally, working alongside talented colleagues. The only place where you can learn from our unrivalled experience, while helping our global clients achieve high performance. If this is your idea of a typical working day, then Accenture is the place to be.

It all starts at Boot Camp. It's 48 hours packed with intellectual challenges
that will stimulate your mind and and activities designed to let you enhance your career prospects. You'll spend time with other students, top Accenture Consultants and special guests. An inspirational two days
discover what it really means to be a high performer in business. We can't tell you everything about Boot Camp, but expect a fast-paced, exhilarating Find out more and apply online.

Visit accenture.com/bootcamp

- Consulting • Technology • Outsourcing

Quantity	Equation
Components in Parallel	$\frac{1}{\mathrm{Z}_{\mathrm{T}}}=\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}+\ldots$
Current Divider Rule	$\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{T}} \frac{\mathrm{Z}_{\mathrm{T}}}{\mathrm{Z}_{\mathrm{x}}}$
Two impedance values in parallel	$\mathrm{Z}_{\mathrm{T}}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$

Capacitance

Capacitors	$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}[\mathrm{~F}] \text { (Farads) }$
Capacitor in Series	$\frac{1}{\mathrm{C}_{\mathrm{T}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots$.
Capacitors in Parallel	$\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots \ldots$
Charging a Capacitor	$\begin{aligned} & i(t)=\frac{E}{R} e^{-\frac{t}{R C}} \\ & v_{R}(t)=E e^{-\frac{t}{R C}} \\ & v_{C}(t)=E\left(1-e^{-\frac{t}{R C}}\right) \\ & \tau=R C \end{aligned}$
Discharging a Capacitor	$\begin{aligned} & i(t)=-\frac{V_{o}}{R} e^{-\frac{t}{\tau^{\prime}}} \\ & \mathrm{V}_{\mathrm{R}}(\mathrm{t})=-\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau^{\prime}}} \\ & \mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau^{\prime}}} \\ & \tau^{\prime}=\mathrm{R}_{\mathrm{T}} \mathrm{C} \end{aligned}$

Quantity	Equation
Capacitance	$C=\frac{Q}{V}$
Capacitance of a Parallel-plate Capacitor	$C=\frac{\varepsilon A}{d}$

Quantity	Equation
Isolated Sphere	$\mathrm{C}=4 \pi \varepsilon \mathrm{r}$
Capacitors in parallel	$\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
Capacitors in series	$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Energy stored in a charged capacitor	$W=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V$
If the capacitor is isolated	$W=\frac{Q^{2}}{2 C}$
If the capacitor is connected to a	
battery	$W=\frac{1}{2} C V^{2}$
For R C circuits	$Q=Q_{o}\left(1-e^{-t / R C}\right) ;$ $V=V_{o}$ $\left(1-e^{-t / R C}\right)$
Charging a capacitor	$Q=Q_{o} e^{-t / R C}$ $V=V_{o} e^{-t / R C}$
Discharging a capacitor	

- If the capacitor is isolated, the presence of the dielectric decreases the potential difference between the plates
- If the capacitor is connected to a battery, the presence of the dielectric increases the charge stored in the capacitor.
- The introduction of the dielectric increases the capacitance of the capacitor

Current in AC Circuit

RMS Current

In Cartesian form	$I=\frac{V}{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]^{2}} \cdot\left[R-j\left(\omega L-\frac{1}{\omega C}\right)\right]$
	$I=\frac{V}{\sqrt{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]}} \angle-\phi_{s}$
In polar form \quad Amperes	
	$\phi_{s}=\tan ^{-1}\left[\frac{\omega L-\frac{1}{\omega C}}{R}\right]$
where	

Modulus	$\|I\|={\frac{V}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}}_{\text {Amperes }}$

Complex Impedance

In Cartesian form	$Z=R+j\left(\omega L-\frac{1}{\omega C}\right)_{\text {Ohms }}$
In polar form	$Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \angle \phi_{s}$
Ohms	
	$\phi_{s}=\tan ^{-1}\left[\frac{\omega L \frac{-}{\omega C}}{R}\right]$
Modulus	$\left.\|Z\|=\sqrt{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right.}\right]$ Ohms

Please click the advert

Power dissipation

Average power,	$P=V I \cos \phi$ Watts
Power dissipation in a resistor	$P=\|I\|^{2} R$ Watts

Rectification

Controlled half wave rectifier	Average DC voltage $=\frac{V_{m}}{2 \pi}(1+\cos \alpha)$ Volts
Controlled full wave rectifier	Average DC voltage $=\frac{V_{m}}{\pi}(1+\cos \alpha)$ Volts

Power Factor

DC Power	$P_{d c}=V I=I^{2} R=\frac{V^{2}}{R}$
AC Power	$P a c=\operatorname{Re}(V . I)=V \cos \phi$

Power in ac circuits

Quantity	Equation
Resistance	The mean power $=\bar{P}=\mathrm{I}_{\mathrm{rms}} \mathrm{V}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}}{ }^{2} \mathrm{R}$
Inductance	The instantaneous power $=(\mathrm{Io} \sin \mathrm{wt})(\mathrm{Vosin}(\mathrm{wt}+\pi)$
The mean power	$\bar{P}=0$
Capacitance	The instantaneous power $=(\mathrm{Io} \sin (\mathrm{wt}+\pi / 2))\left(\mathrm{V}_{\mathrm{o}} \sin \right.$ wt)
The mean power	$\bar{P}=0$
Formula for a.c. power	The mean power $=\bar{P}=I_{\text {rms }} \mathrm{V}_{\mathrm{rms}} \cos \phi$

Three Phase Alternators

Star connected

$$
\begin{aligned}
& \text { Line voltage }=\sqrt{3} \bullet \text { Phase Voltage } \\
& \text { Line current }=\text { phase current }
\end{aligned}
$$

Delta connected

Line voltage $=$ phase voltage
Line current $=\sqrt{3} \bullet$ Phase Current

Three phase power

$$
\mathrm{P}=\sqrt{3} \bullet E_{L} \bullet I_{L} \bullet \operatorname{Cos} \phi
$$

Where:
P is the active power in Watts
E_{L} is the Line Voltage in Volts
I_{L} is the line current in Amperes
Cos f is the power factor

Electrostatics

Quantity	Equation
Instantaneous current,	$I=\frac{d q}{d t}=C \frac{d v}{d t} \quad$ Amperes
Permittivity of free space	$\varepsilon_{0}=\frac{10^{-9}}{36 \pi}=8.85 \times 10^{-12} \quad$ Farads (meters) ${ }^{-1}$
Energy stored in a capacitor	$=\frac{1}{2} C V^{2} \quad$ Joules

Quantity	Equation
Coulomb's law	$F=k \frac{Q_{1} Q_{2}}{r^{2}}$
Electric fields	$E=\frac{F}{q}$
Due to a point charge	$E=\frac{Q}{4 \pi \varepsilon_{o} r^{2}}$
Due to a conducting sphere carrying charge Q Inside the sphere	$\mathrm{E}=0$
Outside the sphere	$E=\frac{Q}{4 \pi \varepsilon_{o} r^{2}}$
Just outside a uniformly charged conducting sphere or plate	$E=\frac{\sigma}{\varepsilon_{o}}$

- An electric field E is a vector
- The electric field strength is directly proportional to the number of electric field lines per unit cross-sectional area,
- The electric field at the surface of a conductor is perpendicular to the surface.
- The electric field is zero inside a conductor.

Quantity	Equation
Suppose a point charge Q is at A . The work done in bringing a charge q from infinity to some point a distance r from A is	$W=\frac{Q q}{4 \pi \varepsilon_{o} r}$
Electric potential	$V=\frac{W}{q}$
Due to a point charge	$V=\frac{Q}{4 \pi \varepsilon_{o} r}$
Due to a conducting sphere, of radius a , carrying charge Q : Inside the sphere	$V=\frac{Q}{4 \pi \varepsilon_{o} a}$
Outside the sphere	$V=\frac{Q}{4 \pi \varepsilon_{o} r}$
If the potential at a point is V, then the potential energy of a charge q at that point is	$\mathrm{U}=\mathrm{qV}$
Work done in bringing charge q from A of potential V_{A} to point B of potential V_{B}	$\mathrm{W}=\mathrm{q}\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$

Download free ebooks at bookboon.com

Quantity	Equation
Relation between E and V	$E=-\frac{d V}{d x}$
For uniform electric field	$E=\frac{V}{d}$

Magnetostatics

Physical Quantity	Equation
Magnetic flux density (also called the B-field) is defined as the force acting per unit current length.	$B=\frac{F}{I \ell}$
Force on a current-carrying conductor in a magnetic field	$\mathrm{F}=\mathrm{I} \ell \mathrm{B} \vec{F}=\mathrm{I} \vec{\ell} \cdot \vec{B}$ And Magnitude of $\vec{F}=\mathrm{F}=\mathrm{I} \ell \mathrm{B}$ $\sin \theta$
Force on a moving charged particle in a magnetic field	$\mathrm{F}=\mathrm{q} \vec{v} \cdot \vec{B}$
Circulating Charges	$q v B=\frac{m v^{2}}{r}$

Calculation of magnetic flux density

Physical Quantity	Equation
Magnetic fields around a long straight wire carrying current I	$B=\frac{\mu_{o} I}{2 \pi a}$ where $\mathrm{a}=$ perp. distance from a very long straight wire
Magnetic fields inside a long solenoid, carrying current	$\mathrm{I}: \mathrm{B}=\mu_{\mathrm{o}} \mathrm{n}$, where $\mathrm{n}=$ number of turns per unit length.
Hall effect At equilibrium	$\begin{aligned} & Q \frac{V_{H}}{d}=Q v B \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{B} \mathrm{v} \mathrm{~d} \end{aligned}$
The current in a material is given by	$\mathrm{I}=\mathrm{nQAv}$
The forces between two current-carrying conductors	$F_{2}=\frac{\mu_{o} I_{1} I_{2} \ell}{2 \pi a}$

Physical Quantity	Equation
The torque on a rectangular coil in a magnetic field	$\begin{aligned} & \mathrm{T}=\mathrm{Fb} \sin \theta \\ & =\mathrm{N} \text { I } \ell \mathrm{Bb} \sin \theta \\ & =\mathrm{N} \text { I A B } \sin \theta \end{aligned}$
If the coil is in a radial field and the plane of the coil is always parallel to the field, then	$\begin{aligned} & \mathrm{T}=\mathrm{N} \text { I A B } \sin \theta \\ & =\text { N I A B } \sin 90^{\circ} \\ & =\text { N I A B } \end{aligned}$
Magnetic flux f	$\phi=\mathrm{B} \mathrm{~A} \cos \theta$ and $\text { Flux-linkage }=N \phi$
Current Sensitivity	$S_{I}=\frac{\theta}{I}=\frac{N A B}{c}$

Lenz's law

The direction of the induced e.m.f. is such that it tends to oppose the flux-change causing it, $\varepsilon=-N \frac{d}{d t} \phi$ and does oppose it if induced current flows.

EMF Equations

E.m.f. induced in a straight conductor	$\varepsilon=$ B L v
E.m.f. induced between the center and the rim of a spinning disc	$\varepsilon=\mathrm{B} \pi \mathrm{r}^{2} \mathrm{f}$
E.m.f. induced in a rotating coil	$\mathrm{E}=\mathrm{N}$ A B w sin wt

Quantity	Equation
Self-induction	$L=-\frac{\varepsilon}{d I / d t}$
Energy stored in an inductor:	N Transformers: The L R (d.c.) circuit:
	$U=\frac{1}{2} L I^{2}$
	$I=\frac{E}{R}\left(1-e^{-R t / L}\right)$

Quantity \quad Equation

When a great load (or smaller resistance) is connected to the secondary coil, the flux in the core decreases. The e.m.f., $\varepsilon_{\text {p }}$, in the $\mathrm{V}_{\mathrm{p}}-\varepsilon_{\mathrm{p}=\mathrm{IR} ;} I=\frac{V_{P}-\varepsilon_{p}}{R}$ primary coil falls.

Kirchoff's laws

Kirchoff's first law (Junction Theorem)

At a junction, the total current entering the junction is equal to the total current leaving the junction.

Kirchoff's second law (Loop Theorem)

The net e.m.f. round a circuit is equal to the sum of the p.d.s round the loop.

Physical Quantity	Equation
Power	$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}=\mathrm{VI}$
Electric current	$\mathrm{I}=\frac{\mathrm{q}}{\mathrm{t}}$

Work	$\mathrm{W}=\mathrm{qV}$
Ohm's Law	$\mathrm{V}=\mathrm{IR}$
Resistances in Series	$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2} \ldots$
Resistances in Parallel	$\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \cdots$
Magnetic flux	$\Phi=\mathrm{BA}$
Electromagnetic induction	$\mathrm{Emf}=-\mathrm{N} \frac{\left(\Phi_{2}-\Phi_{1}\right)}{\mathrm{t}}$ emf $=\mathrm{IVB}$
Magnetic force	$\mathrm{F}=\mathrm{I} \mathbf{I} \mathrm{B}$

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap.
2. Gamma rays and X-rays occupy a common region.

5.2 Applied Mechanics

5.2.1 Newton's laws of motion

Newton' first law of motion

The inertia of a body is the reluctance of the body to change its state of rest or motion.
Mass is a measure of inertia.

Newton's second law of motion

$$
\mathrm{F}=\frac{\mathrm{mv}-\mathrm{mu}}{\Delta \mathrm{t}}
$$

$\mathrm{F}=\mathrm{ma}$

Impulse $=$ force \cdot time $=$ change of momentum
$\mathrm{Ft}=\mathrm{mv}-\mathrm{mu}$

Newton's third law of motion

When two objects interact, they exert equal and opposite forces on one another.
"Third-law pair" of forces act on two different bodies.

Universal Law

$\mathrm{F}=\mathrm{Gm} \mathrm{m}_{\mathrm{p}} / \mathrm{d}^{2}$
m_{s} is the mass of the sun.
m_{p} is the mass of the planet.

The Universal law and the second law must be consistent

Newton's Laws of Motion and Their Applications

Physical Quantity	Equations
Average velocity	$\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{s}}{\mathrm{t}}=\frac{\mathrm{v}+\mathrm{u}}{2}$
Acceleration	$\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}$
Momentum	$\mathrm{p}=\mathrm{mv}$
Force	$\mathrm{F}=\mathrm{ma}$
Weight	$\mathrm{weight}=\mathrm{mg}$
Work done	$\mathrm{W}=\mathrm{Fs}$
Kinetic energy	$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}{ }^{2}$
Gravitational potential energy	$\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$
Equations of motion	$\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} ;$

Physical Quantity	Equations
Centripetal acceleration	$\mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{r}}$
Centripetal force	$\mathrm{F}=\mathrm{ma}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
Newton's Law of Universal Gravitation	$\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$
Gravitational field strength	$\mathrm{g}=\mathrm{G} \frac{\mathrm{M}}{\mathrm{r}^{2}}$

Physical Quantity	Equations
Moment of a force	$\mathrm{M}=\mathrm{rF}$
Principle of moments	$\sum \mathrm{M}=0$
Stress	Stress $=\frac{\mathrm{F}}{\mathrm{A}}$

YOU THINK.
 Traditional values. Innovative ideas. YOU CAN WORK AT RMB

RAND
MERCHANT
BANK

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country's top talent chooses to work at RMB. For more information visit us at www.rmb.co.za

Strain	Strain $=\frac{\Delta \mathbf{I}}{\mathbf{I}}$
Young's Modulus	$\mathrm{Y}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathbf{I} / \mathbf{I}}$

Scalar: a property described by a magnitude only
Vector: a property described by a magnitude and a direction
Velocity: vector property equal to displacement / time

The magnitude of velocity may be referred to as speed
In SI the basic unit is m / s, in Imperial ft / s
Other common units are $\mathrm{km} / \mathrm{h}, \mathrm{mi} / \mathrm{h}$
Conversions:
$1 \mathrm{~m} / \mathrm{s}=3.28 \mathrm{ft} / \mathrm{s}$
$1 \mathrm{~km} / \mathrm{h}=0.621 \mathrm{mi} / \mathrm{h}$

Speed of sound in dry air is $331 \mathrm{~m} / \mathrm{s}$ at $0^{\circ} \mathrm{C}$ and increases by about $0.61 \mathrm{~m} / \mathrm{s}$ for each ${ }^{\circ} \mathrm{C}$ rise.

Speed of light in vacuum equals $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Acceleration: vector property equal to change in velocity time.

In SI the basic unit is $\mathrm{m} / \mathrm{s}^{2}$
In Imperial $\mathrm{ft} / \mathrm{s}^{2}$

Conversion:

$1 \frac{m}{s^{2}}=3.28 \frac{f t}{s^{2}}$
Acceleration due to gravity, g is $9.81 \mathrm{~m} / \mathrm{s}^{2}$

5.2.2 Linear Velocity and Acceleration

Quantity	Equations
If u initial velocity and v final velocity, then displacement s,	$s=\left(\frac{v+u}{2}\right)$
If t is the elapsed time	$s=u t+\frac{1}{2} a t^{2}$
If a is the acceleration	$v^{2}=u^{2}+2 a s$

Angular Velocity and Acceleration

Quantity	Equations
θ angular displacement (radians)	$\theta=\frac{\omega_{1}+\omega_{2}}{2} \times t$
ω angular velocity (radians/s);	$\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$
$\omega_{1}=$ initial, $\omega_{2}=$ final	$\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$
α angular acceleration (radians/s ${ }^{2}$)	$\mathrm{s}=\mathrm{r} \theta$
Linear displacement	$\mathrm{v}=\mathrm{r} \omega$
Linear velocity	$\mathrm{aT}=\mathrm{r} \alpha$
Linear, or tangential acceleration	

Tangential, Centripetal and Total Acceleration

Quantity	Equations
Tangential acceleration aT is due to angular acceleration α	$\mathrm{aT}=\mathrm{ra}$
Centripetal (Centrifugal) acceleration ac is due to change in direction only	$\mathrm{ac}=\mathrm{v}^{2} / \mathrm{r}=\mathrm{r} \omega^{2}$
Total acceleration, a, of a rotating point experiencing angular acceleration is the vector sum of aT and ac	$\mathrm{a}=\mathrm{aT}+\mathrm{ac}$

5.2.3 Force

Vector quantity, a push or pull which changes the shape and/or motion of an object
In SI the unit of force is the newton, N , defined as a kg m
In Imperial the unit of force is the pound lb
Conversion: $9.81 \mathrm{~N}=2.2 \mathrm{lb}$

Weight

The gravitational force of attraction between a mass, m, and the mass of the Earth
In SI weight can be calculated from Weight $=\mathrm{F}=\mathrm{mg}$, where $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
In Imperial, the mass of an object (rarely used), in slugs, can be calculated from the known weight in pounds
$m=\frac{w e i g h t}{g}$
$g=32.2 \frac{f t}{s^{2}}$

Torque Equation

$\mathrm{T}=\mathrm{I} \alpha$ where T is the acceleration torque in Nm, I is the moment of inertia in $\mathrm{kg} \mathrm{m}^{2}$ and α is the angular acceleration in radians $/ \mathrm{s}^{2}$

Momentum

Vector quantity, symbol p ,
$\mathrm{p}=\mathrm{mv}$ [Imperial $\mathrm{p}=(\mathrm{w} / \mathrm{g}) \mathrm{v}$, where w is weight]
in SI unit is $\mathrm{kgm} / \mathrm{s}$

Work

Scalar quantity, equal to the (vector) product of a force and the displacement of an object. In simple systems, where W is work, F force and s distance
$\mathrm{W}=\mathrm{F}$ s
In SI the unit of work is the joule, J, or kilojoule, kJ
$1 \mathrm{~J}=1 \mathrm{Nm}$
In Imperial the unit of work is the $\mathrm{ft}-\mathrm{lb}$

Energy

Energy is the ability to do work, the units are the same as for work; J, kJ, and $\mathrm{ft}-\mathrm{lb}$

Kinetic Energy

$$
E_{R}=\frac{1}{2} m k^{2} \omega^{2}
$$

Where k is radius of gyration, ω is angular velocity in $\mathrm{rad} / \mathrm{s}$

Kinetic Energy of Rotation

$E r=\frac{1}{2} I \omega^{2}$
Where $\mathrm{I}=\mathrm{mk}^{2}$ is the moment of inertia

5.2.4 Centripetal (Centrifugal) Force

$$
F_{c}=\frac{m v^{2}}{r}
$$

Where r is the radius
Where ω is angular velocity in rad/s

Potential Energy

Quantity	Equation
Energy due to position in a force field, such as gravity	Ep $=\mathrm{m} \mathrm{g} \mathrm{h}$
	Ep = w h
In Imperial this is usually expressed	Where w is weight, and h is height above some specified datum

Thermal Energy

In SI the common units of thermal energy are J , and kJ , (and $\mathrm{kJ} / \mathrm{kg}$ for specific quantities)
In Imperial, the units of thermal energy are British Thermal Units (Btu)

Conversions

$1 \mathrm{Btu}=1055 \mathrm{~J}$
$1 \mathrm{Btu}=778 \mathrm{ft}-\mathrm{lb}$

Electrical Energy

In SI the units of electrical energy are J, kJ and kilowatt hours kWh . In Imperial, the unit of electrical energy is the kWh

Conversions

$1 \mathrm{kWh}=3600 \mathrm{~kJ}$
$1 \mathrm{kWh}=3412 \mathrm{Btu}=2.66 \times 10^{6} \mathrm{ft}-\mathrm{lb}$

Power

A scalar quantity, equal to the rate of doing work
In SI the unit is the Watt W (or kW)
$1 W=1 \frac{J}{s}$
In Imperial, the units are:
Mechanical Power - $(\mathrm{ft}-\mathrm{lb}) / \mathrm{s}$, horsepower h.p.
Thermal Power - Btu / s
Electrical Power - W, kW, or h.p.

Conversions

$746 W=1 h . p$.

1h.p. $=550 \frac{f t-l b}{s}$
$1 k W=0.948 \frac{B t u}{s}$

Pressure

A vector quantity, force per unit area
In SI the basic units of pressure are pascals Pa and kPa
$1 P a=1 \frac{N}{m^{2}}$
In Imperial, the basic unit is the pound per square inch, psi

Atmospheric Pressure

At sea level atmospheric pressure equals 101.3 kPa or 14.7 psi

Pressure Conversions

$1 \mathrm{psi}=6.895 \mathrm{kPa}$

Pressure may be expressed in standard units, or in units of static fluid head, in both SI and Imperial systems

Common equivalencies are:

- $1 \mathrm{kPa}=0.294 \mathrm{in}$. mercury $=7.5 \mathrm{~mm}$ mercury
- $1 \mathrm{kPa}=4.02 \mathrm{in}$. water $=102 \mathrm{~mm}$ water
- $1 \mathrm{psi}=2.03 \mathrm{in}$. mercury $=51.7 \mathrm{~mm}$ mercury
- $1 \mathrm{psi}=27.7 \mathrm{in}$. water $=703 \mathrm{~mm}$ water
- $1 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}=9.81 \mathrm{kPa}$

Other pressure unit conversions:

- 1 bar $=14.5 \mathrm{psi}=100 \mathrm{kPa}$
- $1 \mathrm{~kg} / \mathrm{cm}^{2}=98.1 \mathrm{kPa}=14.2 \mathrm{psi}=0.981 \mathrm{bar}$
- 1 atmosphere $(\mathrm{atm})=101.3 \mathrm{kPa}=14.7 \mathrm{psi}$

Simple Harmonic Motion

Velocity of $\mathrm{P}=\omega \sqrt{R^{2}-x^{2}} \frac{m}{s}$

5.2.5 Stress, Strain And Modulus Of Elasticity

Young's modulus and the breaking stress for selected materials

Material	Young modulus	Breaking stress
x 10		
Aluminium $\mathbf{P a}$	$\mathbf{x ~ 1 0 ^ { 8 }} \mathbf{~ P a ~}$	
Copper	0.70	2.4
Brass	1.16	4.9
Iron (wrought)	0.90	4.7
Mild steel	1.93	3.0
Glass	2.10	11.0
Tungsten	0.55	10
Bone	4.10	20

5.3 Thermodynamics

5.3.1 Laws of Thermodynamics

- $\mathrm{W}=\mathrm{P} \Delta \mathrm{V}$
- $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
- $\mathrm{W}=\mathrm{nRT} \ln V_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}$
- $\mathrm{Q}=\mathrm{Cn} \Delta \mathrm{T}$
- $\mathrm{C}_{\mathrm{v}}=3 / 2 \mathrm{R}$
- $\mathrm{C}_{\mathrm{p}}=5 / 2 \mathrm{R}$
- $C_{p} / C_{v}=\gamma=5 / 3$
- $\mathrm{e}=1-\mathrm{Qc} / \mathrm{Q}_{\mathrm{h}}=\mathrm{W} / \mathrm{Q}_{\mathrm{h}}$
- $\mathrm{e}_{\mathrm{c}}=1-\mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{h}}$
- $\mathrm{COP}=\mathrm{Q}_{\mathrm{c}} / \mathrm{W}$ (refrigerators)
- $\mathrm{COP}=\mathrm{Q}_{\mathrm{h}} / \mathrm{W}$ (heat pumps)
- $\mathrm{Wmax}=\left(1-\mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{h}}\right) \mathrm{Q}_{\mathrm{h}}$
- $\Delta \mathrm{S}=\mathrm{Q} / \mathrm{T}$

5.3.2 Momentum

- $\mathrm{p}=\mathrm{mv}$
- $\Sigma \mathrm{F}=\Delta \mathrm{p} / \Delta \mathrm{t}$

5.3.3 Impulse

$\mathrm{I}=\mathrm{F}_{\mathrm{av}} \Delta \mathrm{t}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}$
5.3.4 Elastic and Inelastic collision

- $\mathrm{m}_{\mathrm{i}} \mathrm{v}_{1 \mathrm{i}}+\mathrm{m}_{2} \mathrm{v}_{2 \mathrm{i}}=\mathrm{m}_{1} \mathrm{v}_{1 \mathrm{f}}+\mathrm{m}_{2} \mathrm{v}_{2 \mathrm{f}}$
- $(1 / 2) \mathrm{m}_{\mathrm{i}} \mathrm{v}_{1 \mathrm{i}}{ }^{2}+(1 / 2) \mathrm{m}_{2} \mathrm{v}_{2 \mathrm{i}}{ }^{2}=1 / 2 \mathrm{~m}_{1} \mathrm{v}_{1 \mathrm{f}}{ }^{2}+1 / 2 \mathrm{~m}_{2} \mathrm{v}_{2 \mathrm{f}}{ }^{2}$
- $\mathrm{m}_{\mathrm{i}} \mathrm{v}_{1 \mathrm{i}}+\mathrm{m}_{2} \mathrm{v}_{2 \mathrm{i}}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}_{\mathrm{f}}$

5.3.5 Center of Mass

- $\mathrm{X}_{\mathrm{cm}}=\sum \mathrm{mx} / \mathrm{M}$
- $\mathrm{V}_{\mathrm{cm}}=\Sigma \mathrm{mv} / \mathrm{M}$
- $\mathrm{A}_{\mathrm{cm}}=\sum \mathrm{ma} / \mathrm{M}$
- $\mathrm{MA}_{\mathrm{cm}}=\mathrm{F}_{\text {net }}$

5.3.6 Angular Motion

- $\mathrm{s}=\mathrm{r} \theta$
- $\mathrm{V}_{\mathrm{t}}=\mathrm{r} \omega$
- $a_{t}=r a$
- $\mathrm{a}_{\mathrm{c}}=\mathrm{v}_{\mathrm{t}}^{2} / \mathrm{r}=\mathrm{r} \omega^{2}$
- $\omega=2 \pi / \mathrm{T}$
- $1 \mathrm{rev}=2 \pi \mathrm{rad}=360^{\circ}$

For constant α

- $\omega=\omega_{\mathrm{o}}+\alpha \mathrm{t}$
- $\omega^{2}=\omega_{\mathrm{o}}^{2}+2 \alpha \theta$
- $\theta=\omega_{0} t+1 / 2 \alpha t^{2}$
- $\theta=\left(\omega_{\mathrm{o}}+\omega\right) \cdot \mathrm{t} / 2$
- $\mathrm{I}=\sum \mathrm{mr}^{2}$
- $\mathrm{KE}_{\mathrm{R}}=1 / 2 \mathrm{I} \omega^{2}$
- $\tau=\mathrm{rF}$
- $\quad \sum \tau=\mathrm{I} \alpha$
- $\mathrm{W}_{\mathrm{R}}=\tau \theta$
- $\mathrm{L}=\mathrm{I} \omega$
- $\Sigma \tau=\mathrm{I} \alpha$
- $\mathrm{W}_{\mathrm{R}}=\tau \theta$
- $\mathrm{L}=\mathrm{I} \omega$
- $\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}$

5.3.7 Conditions of Equilibrium

- $\sum \mathrm{F}_{\mathrm{x}}=0$
- $\sum \mathrm{F}_{\mathrm{y}}=0$
- $\quad \Sigma \tau=0$ (any axis)

5.3.8 Gravity

- $\mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
- $\mathrm{T}=2 \pi / \sqrt{ } \mathrm{r}^{3} / \mathrm{GM}_{\mathrm{s}}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$
- $g=G M_{E} / R_{E}^{2}$
- $\mathrm{PE}=-\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}$
- $\mathrm{v}_{\mathrm{e}}=\sqrt{ } 2 \mathrm{GM}_{\mathrm{E}} / \mathrm{R}_{\mathrm{E}}$
- $\mathrm{v}_{\mathrm{s}}=\sqrt{ } \mathrm{GM}_{\mathrm{E}} / \mathrm{r}$
- $\mathrm{M}_{\mathrm{E}}=5.97 \times 10^{24} \mathrm{~kg}$
- $\mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}$

5.3.9 Vibrations \& Waves

- $\mathrm{F}=-\mathrm{kx}$
- $\mathrm{PE}_{\mathrm{s}}=1 / 2 \mathrm{kx}^{2}$
- $\mathrm{x}=\mathrm{A} \cos \theta=\mathrm{A} \cos (\omega \mathrm{t})$
- $\mathrm{v}=-\mathrm{A} \omega \sin (\omega \mathrm{t})$
- $\mathrm{a}=-\mathrm{A} \omega^{2} \cos (\omega \mathrm{t})$
- $\omega=\sqrt{ } \mathrm{k} / \mathrm{m}$
- $\mathrm{f}=1 / \mathrm{T}$
- $\mathrm{T}=2 \pi \sqrt{ } \mathrm{~m} / \mathrm{k}$
- $\mathrm{E}=1 / 2 \mathrm{kA}^{2}$

- $\mathrm{T}=2 \pi \sqrt{ } \mathrm{~L} / \mathrm{g}$
- $\mathrm{v}_{\max }=\mathrm{A} \omega$
- $a_{\text {max }}=A \omega^{2}$
- $\mathrm{v}=\lambda \mathrm{fv}=\sqrt{ } \mathrm{F}_{\mathrm{T}} / \mu$
- $\mu=m / L$
- $\mathrm{I}=\mathrm{P} / \mathrm{A}$
- $\beta=10 \log \left(\mathrm{I} / \mathrm{I}_{0}\right)$
- $\mathrm{I}_{\mathrm{o}}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
- $\mathrm{f}^{\prime}=\mathrm{f}\left[\left(1 \pm \mathrm{v}_{0} / \mathrm{v}\right) /\left(1 \overline{\mathrm{~F}}_{\mathrm{s}} / \mathrm{v}\right)\right]$
- Surface area of the sphere $=4 \pi \mathrm{r}^{2}$
- Speed of sound waves $=343 \mathrm{~m} / \mathrm{s}$

5.3.10 Standing Waves

- $\mathrm{f}_{\mathrm{n}}=\mathrm{nf}_{1}$
- $\mathrm{f}_{\mathrm{n}}=\mathrm{nv} / 2 \mathrm{~L}$ (air column, string fixed both ends) $\mathrm{n}=1,2,3,4 \ldots \ldots$.
- $f_{n}=n v / 4 L$ (open at one end) $n=1,3,5,7$.

5.3.11 Beats

- $\mathrm{f}_{\text {beats }}=\left|\mathrm{f}_{1}-\mathrm{f}_{2}\right|$
- Fluids
- $\rho=m / V$
- $P=F / A$
- $P_{2}=P_{1}+\rho g h$
- $P_{\text {atm }}=1.01 \times 10^{5} \mathrm{~Pa}=14.7 \mathrm{lb} / \mathrm{in}^{2}$
- $\mathrm{F}_{\mathrm{B}}=\rho_{\mathrm{f}} \mathrm{Vg}=\mathrm{W}_{\mathrm{f}}$ (weight of the displaced fluid)
- $\rho_{\mathrm{o}} / \rho_{\mathrm{f}}=\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{o}}$ (floating object)
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- $\mathrm{W}_{\mathrm{a}}=\mathrm{W}-\mathrm{F}_{\mathrm{B}}$

Equation of Continuity: Av = constant
Bernoulli's equation: $P+1 / 2 \rho v^{2}+\rho g y=0$

5.3.12 Temperature and Heat

- $\mathrm{T}_{\mathrm{F}}=(9 / 5) \mathrm{T}_{\mathrm{C}}+32$
- $\mathrm{T}_{\mathrm{C}}=5 / 9\left(\mathrm{~T}_{\mathrm{F}}-32\right)$
- $\Delta \mathrm{T}_{\mathrm{F}}=(9 / 5) \Delta \mathrm{T}_{\mathrm{C}}$
- $\mathrm{T}=\mathrm{T}_{\mathrm{C}}+273.15$
- $\rho=m / v$
- $\Delta \mathrm{L}=\alpha \mathrm{L}_{0} \Delta \mathrm{~T}$
- $\Delta \mathrm{A}=\gamma \mathrm{A}_{0} \Delta \mathrm{~T}$
- $\Delta \mathrm{V}=\beta \mathrm{V}_{\mathrm{o}} \Delta \mathrm{T} \quad \beta=3 \alpha$
- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{Q}=\mathrm{mL}$
- $1 \mathrm{kcal}=4186 \mathrm{~J}$
- Heat Loss = Heat Gain
- $\mathrm{Q}=(\mathrm{kA} \Delta \mathrm{T}) \mathrm{t} / \mathrm{L}$,
- $\mathrm{H}=\mathrm{Q} / \mathrm{t}=(\mathrm{kA} \Delta \mathrm{T}) / \mathrm{L}$
- $\mathrm{Q}=e \sigma \mathrm{~T}^{4} \mathrm{At}$
- $\mathrm{P}=\mathrm{Q} / \mathrm{t}$
- $P=\sigma A e T^{4}$
- $\mathrm{P}_{\text {net }}=\sigma \operatorname{Ae}\left(\mathrm{T}^{4}-\mathrm{T}_{\mathrm{s}}{ }^{4}\right)$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

5.3.13 Ideal Gases

- $\mathrm{PV}=\mathrm{nRT}$
- $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
- $\mathrm{PV}=\mathrm{NkT}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ molecules $/ \mathrm{mol}$
- $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $\mathrm{M}=\mathrm{N}_{\mathrm{A}} \mathrm{m}$
- $(\mathrm{KE})_{\mathrm{av}}=\left(1 / 2 \mathrm{mv}^{2}\right)_{\mathrm{av}}=3 / 2 \mathrm{kT}$
- $\mathrm{U}=3 / 2 \mathrm{NkT}=3 / 2 \mathrm{nRT}$

5.3.14 Elastic Deformation

- $P=F / A$
- $\mathrm{Y}=\mathrm{FL}_{\mathrm{o}} / \mathrm{A} \Delta \mathrm{L}$
- $\mathrm{S}=\mathrm{Fh} / \mathrm{A} \Delta \mathrm{x}$
- $B=-V_{0} \Delta F / A \Delta V$
- Volume of the sphere $=4 \pi r^{3} / 3$
- $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$

5.3.15 Temperature Scales

- ${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
- ${ }^{\circ} \mathrm{F}=(9 / 5){ }^{\circ} \mathrm{C}+32$
- ${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+460$ (R Rankine)
- $\mathrm{K}={ }^{\circ} \mathrm{C}+273$ (K Kelvin)

5.3.16 Sensible Heat Equation

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{M}=$ mass
- $\mathrm{C}=$ specific heat
- $\Delta \mathrm{T}=$ temperature chance

5.3.17 Latent Heat

- Latent heat of fusion of ice $=335 \mathrm{~kJ} / \mathrm{kg}$
- Latent heat of steam from and at $100^{\circ} \mathrm{C}=2257 \mathrm{~kJ} / \mathrm{kg}$
- 1 tonne of refrigeration $=335000 \mathrm{~kJ} /$ day $=233 \mathrm{~kJ} / \mathrm{min}$

5.3.18 Gas Laws

Boyle's Law

When gas temperature is constant
$\mathrm{PV}=$ constant or
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
Where P is absolute pressure and V is volume

Charles' Law

When gas pressure is constant,
$\frac{V}{T}=$ cons .
or

Download free ebooks at bookboon.com
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
where V is volume and T is absolute temperature

Gay-Lussac's Law

When gas volume is constant,
$\frac{P}{T}=$ const.
or
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
where P is absolute pressure and T is absolute temperature

General Gas Law

$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}=$ const .
$\mathrm{P} V=\mathrm{m} R \mathrm{~T}$ where $\mathrm{P}=$ absolute pressure (kPa)
$\mathrm{V}=$ volume $\left(\mathrm{m}^{3}\right)$
$\mathrm{T}=$ absolute temp (K)
$\mathrm{m}=$ mass (kg)
$\mathrm{R}=$ characteristic constant $(\mathrm{kJ} / \mathrm{kgK})$

Also
$\mathrm{PV}=\mathrm{nRoT}$ where $\mathrm{P}=$ absolute pressure (kPa)
$\mathrm{V}=$ volume $\left(\mathrm{m}^{3}\right)$
$\mathrm{T}=$ absolute temperature K
$\mathrm{N}=$ the number of kmoles of gas
Ro $=$ the universal gas constant $8.314 \mathrm{~kJ} / \mathrm{kmol} / \mathrm{K}$

5.3.19 Specific Heats Of Gases

GAS	Specific Heat at Constant Pressure $\mathrm{kJ} / \mathrm{kgK} \text { or } \mathrm{kJ} / \mathrm{kg}^{\circ} \mathrm{C}$	Specific Heat at Constant Volume $\mathrm{kJ} / \mathrm{kgK}$ or $\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$	Ratio of Specific $\gamma=c p / c v$
Air	1.005	0.718	1.40
Ammonia	2.060	1.561	1.32
Carbon Dioxide	0.825	0.630	1.31
Carbon Monoxide	1.051	0.751	1.40
Helium	5.234	3.153	1.66
Hydrogen	14.235	10.096	1.41
Hydrogen Sulphide	1.105	0.85	1.30
Methane	2.177	1.675	1.30
Nitrogen	1.043	0.745	1.40
Oxygen	0.913	0.652	1.40
Sulphur Dioxide	0.632	0.451	1.40

5.3.20 Efficiency of Heat Engines

Carnot Cycle

$\eta=\frac{T_{1}-T_{2}}{T_{1}}$
where T_{1} and T_{2} are absolute temperatures of heat source and sink

Air Standard Efficiencies

Spark Ignition Gas and Oil Engines (Constant Volume Cycle)
$\eta=1-\frac{1}{r_{v}{ }^{(\gamma-1)}}$
$\mathrm{r}_{\mathrm{v}}=$ compression ratio
$\gamma=$ specific heat (constant pressure) / Specific heat (constant volume)

Diesel Cycle

$$
\eta=1-\frac{R \gamma-1)}{{r_{v}}^{\gamma-1} \gamma(R-1)}
$$

Where $\mathrm{r}=$ ratio of compression
$R=$ ratio of cut-off volume to clearance volume

High Speed Diesel (Dual-Combustion) Cycle

$\eta=1 \frac{k \beta^{\gamma}-1}{r_{v}^{\gamma-1}[(k-1)+\gamma k(\beta-1)]}$
Where $\mathrm{r}_{\mathrm{v}}=$ cylinder volume / clearance volume
$\mathrm{k}=$ absolute pressure at the end of constant V heating (combustion) / absolute pressure at the beginning of constant
V combustion
$\beta=$ volume at the end of constant P heating (combustion) / clearance volume

Gas Turbines (Constant Pressure or Brayton Cycle)

$$
\eta=1-\frac{1}{r_{p}\left(\frac{\gamma-1}{\gamma}\right)}
$$

where $\mathrm{r}_{\mathrm{p}}=$ pressure ratio $=$ compressor discharge pressure $/$ compressor intake pressure

5.3.21 Heat Transfer by Conduction

Material	Coefficient of Thermal Conductivity $\mathbf{W} / \mathbf{m}{ }^{\circ} \mathrm{C}$
Air	0.025
Brass	104

Who is your target group?

And how can we reach them?
At Bookboon, you can segment the exact right
audience for your advertising campaign.
Our eBooks offer in-book advertising spot to reach
the right candidate.

Contact us to hear more kbm@bookboon.com

Material	Coefficient of Thermal Conductivity W/m				
${ }^{\circ} \mathbf{C}$		$	$	Concrete	0.85
:---:	:---:				
Cork	0.043				
Glass	70				
Iron, cast	60				
Steel	0.076				
Wallboard, paper	206				
Aluminum	0.6				
Brick	380				
Copper	0.038				
Felt	0.04				
Glass, fibre	0.04				
Plastic, cellular	0.15				
Wood					

5.3.22 Thermal Expansion of Solids

Increase in length $=\mathrm{L} \alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Where $\mathrm{L}=$ original length
$\alpha=$ coefficient of linear expansion
$\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=$ rise in temperature
Increase in volume $=\mathrm{V} \beta\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Where $\mathrm{V}=$ original volume
$\beta=$ coefficient of volumetric expansion
$\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=$ rise in temperature
Coefficient of volumetric expansion $=$ Coefficient of linear expansion $\times 3$
$\beta=3 \alpha$

5.3.23 Chemical Heating Value of a Fuel

Chemical Heating Value MJ per kg of fuel $=33.7 \mathrm{C}+144\left(\mathrm{H}_{2}-\frac{\mathrm{O}_{2}}{8}\right)+9.3 \mathrm{~S}$
C is the mass of carbon per kg of fuel
H_{2} is the mass of hydrogen per kg of fuel
O_{2} is the mass of oxygen per kg of fuel
S is the mass of sulphur per kg of fuel

Theoretical Air Required to Burn Fuel

$$
\text { Air }(\mathrm{kg} \text { per kg of fuel })=\left[\frac{8}{3} C+8\left(H_{2}-O_{2}\right)+S\right] \frac{100}{23}
$$

Air Supplied from Analysis of Flue Gases

$$
\text { Air in kg per kg of fuel }=\frac{N_{2}}{33\left(\mathrm{CO}_{2}+\mathrm{CO}\right)} \times C
$$

Boiler Formulae

$$
\text { Equivalent evaporation } \frac{m_{s}\left(h_{1}-h_{2}\right)}{2257 \mathrm{kj} / \mathrm{kg}}
$$

$$
\text { Factor of evaporation } \frac{\left(h_{1}-h_{2}\right)}{2257 \mathrm{kj} / \mathrm{kg}}
$$

Boiler Efficiency

$$
\frac{m_{s}\left(h_{1}-h_{2}\right)}{m f \times(\text { calorificvalue })}
$$

Where
$\mathrm{m}_{\mathrm{s}}=$ mass flow rate of steam
$h_{1}=$ enthalpy of steam produced in boiler
$h_{2}=$ enthalpy of feedwater to boiler
$m_{f}=$ mass flow rate of fuel

Name of process	Value of n	P-V-T Relationships			Heat added	Work done	Change in Internal Energy	Change in Enthalpy	Change in Entropy
		P-V	T-P	T-V					
Constant Volume	∞	--	$\frac{T_{1}}{T_{2}}=\frac{P_{1}}{P_{2}}$	--	$m c_{v}\left(T_{2}-T_{1}\right)$	0	$m c_{v}\left(T_{2}-T_{1}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	$m c_{v} \log _{e}\left(\frac{T_{2}}{T_{1}}\right)$
Constant pressure	0	--	--	$\frac{T_{1}}{T_{2}}=\frac{V_{1}}{V_{2}}$	$m c_{p}\left(T_{2}-T_{1}\right)$	$\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$	$m c_{v}\left(T_{2}-T_{1}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	$m R \log _{e}\left(\frac{P_{1}}{P_{2}}\right)$
$\mathrm{P}=$ Pressure									

Isothermal T=Constant	1	$\frac{P_{1}}{P_{2}}=\frac{V_{2}}{V_{1}}$	--	--	$m R T \log _{e}\left(\frac{P_{1}}{P_{2}}\right)$	${ }^{2} R T \log _{e}\left(\frac{P_{1}}{P_{2}}\right)$	0	0	$m R \log _{e}\left(\frac{P_{1}}{P_{2}}\right)$
Isentropic S=Constant	γ	$\frac{P_{1}}{P_{2}}=\left[\frac{V_{2}}{V_{1}}\right]^{*}$	$\frac{T_{1}}{T_{2}}=\left[\frac{P_{1}}{P_{2}}\right]^{\frac{\gamma-1}{\gamma}}$	$\frac{T_{1}}{T_{2}}=\left[\frac{V_{2}}{V_{1}}\right]^{\gamma-1}$	0	$m c_{v}\left(T_{1}-T_{2}\right)$	$m c_{v}\left(T_{2}-T_{1}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	0
Polytropic $P V^{\mathrm{n}}=$ Constant	n	$\frac{P_{1}}{P_{2}}=\left[\frac{V_{2}}{V_{1}}\right]^{n}$	$\frac{T_{1}}{T_{2}}=\left[\frac{P_{1}}{P_{2}}\right]^{\frac{n-1}{n}}$	$\frac{T_{1}}{T_{2}}=\left[\frac{V_{2}}{V_{1}}\right]^{n-1}$	$m c_{n}\left(T_{2}-T_{1}\right)$	$\frac{m R}{n-1}\left(T_{1}-T_{2}\right)$	$m c_{v}\left(T_{2}-T_{1}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	$m c_{n} \log _{e}\left(\frac{T_{2}}{T_{1}}\right)$

Thermodynamic Equations for perfect gases
*Can be used for reversible adiabatic processes
$c_{v}=$ Specific heat at constant volume, $\mathrm{kJ} / \mathrm{kgK}$
$c_{p}=$ Specific heat at constant pressure, $\mathrm{kJ} / \mathrm{kgK}$
$\mathrm{c}_{\mathrm{m}}=$ Specific heat for polytropic process $=c_{v}\left(\frac{\gamma-n}{1-n}\right) k J / k g K$
H = Enthalpy, kJ
$\gamma=$ Isentropic Exponent, $\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}$
$\mathrm{n}=$ polytropic exponent
$\mathrm{P}=$ Pressure, kPa

$\mathrm{R}=$ Gas content, $\mathrm{kJ} / \mathrm{kgK}$
S = Entropy, kJ/K
$\mathrm{T}=$ Absolute Temperature, $\mathrm{K}=273+{ }^{\circ} \mathrm{C}$
$\mathrm{U}=$ Internal Energy, kJ
$\mathrm{V}=$ Volume, m^{3}
$\mathrm{m}=$ Mass of gas, kg

Specific Heat and Linear Expansion of Solids	$\begin{aligned} & \text { Mean Specific Heat between } 0 \\ & { }^{\circ} \mathrm{C} \\ & \text { and } 100{ }^{\circ} \mathrm{C} \mathrm{~kJ} / \mathrm{kgK} \text { or } \mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C} \end{aligned}$	Coefficient of Linear Expansion between $\begin{aligned} & 0^{\circ} \mathrm{C} \text { and } 100{ }^{\circ} \mathrm{C} \\ & \left(\text { multiply by } 10^{-6}\right. \text {) } \end{aligned}$
Aluminum	0.909	23.8
Antimony	0.209	17.5
Bismuth	0.125	12.4
Brass	0.383	18.4
Carbon	0.795	7.9
Cobalt	0.402	12.3
Copper	0.388	16.5
Glass	0.896	9.0
Gold	0.130	14.2
$\text { Ice (between }-20{ }^{\circ} \mathrm{C} \text { \& } 0{ }^{\circ} \mathrm{C} \text {) }$	2.135	50.4
Iron (cast)	0.544	10.4
Iron (wrought)	0.465	12.0
Lead	0.131	29.0
Nickel	0.452	13.0
Platinum	0.134	8.6
Silicon	0.741	7.8
Silver	0.235	19.5
Steel (mild)	0.494	12.0
Tin	0.230	26.7
Zinc	0.389	16.5

Specific Heat and Volume Expansion for Liquids

Liquid	Specific Heat $\begin{aligned} & \text { (at } 20{ }^{\circ} \mathrm{C} \text {) } \\ & \text { KJ/kgK or } \mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C} \end{aligned}$	Coefficient of Volume Expansion (Multiply by 10^{-4})
Alcohal	2.470	11.0
Ammonia	0.473	
Benzine	1.138	12.4
Carbon Dioxide	3.643	1.82
Mercury	0.139	1.80
Olive oil	1.633	
Petroleum	2.135	
Gasoline	2.093	12.0
Turpentine	1.800	9.4
Water	4.183	3.7

5.4 Fluid Mechanics

5.4.1 Discharge from an Orifice

Let $\mathrm{A}=$ cross-sectional area of the orifice $=$	$\frac{\pi}{4} d^{2}$
And $\mathrm{Ac}=$ cross-sectional area of the jet at the vena conrtacta	$\frac{\pi}{4} d_{c}{ }^{2}$
Then $\mathrm{Ac}=\mathrm{CcA}$	$C_{c}=\frac{A_{c}}{A}=\left(\frac{d_{c}}{d}\right)^{2}$

Where C_{c} is the coefficient of contraction

Getting ahead in your management career

Our expertise in flexible and accessible education and your passion to succeed will enable you to get ahead.

A world-class research university, Leicester offers flexible, innovative courses because we understand that you've got other responsibilities. In fact, we're committed to making sure that everyone in our vibrant community gets the very best experience at Leicester, whether you're on campus or on the other side of the world.

Whether you choose to study one of our specialist Masters' courses, or our AMBA accredited MBA by full-time or distance learning, you will join a global network of similarly minded professionals and be supported all the way.

Get ahead, get in touch www.le.ac.uk/management +44 (0)116 2525377 dladvisers@le.ac.uk

Distance Learning
School of Management
Postgraduate Programmes

University of
Leicester

At the vena contracta, the volumetric flow rate Q of the fluid is given by

- $\mathrm{Q}=$ area of the jet at the vena contracta \cdot actual velocity $=\mathrm{A}_{\mathrm{c}} \mathrm{V}$
- Or $Q=C_{c} A C_{v} \sqrt{2 g h}$
- Typically, values for Cd vary between 0.6 and 0.65
- Circular orifice: $\mathrm{Q}=0.62 \mathrm{~A} \sqrt{ } 2 \mathrm{gh}$
- Where $\mathrm{Q}=$ flow $\left(\mathrm{m}^{3} / \mathrm{s}\right) \mathrm{A}=\operatorname{area}\left(\mathrm{m}^{2}\right) \mathrm{h}=$ head (m)
- Rectangular notch: $\mathrm{Q}=0.62(\mathrm{~B} \cdot \mathrm{H}) 2 / 3 \sqrt{ } 2 \mathrm{gh}$

Where B = breadth (m)
$\mathrm{H}=$ head (m above sill)
Triangular Right Angled Notch: $\mathrm{Q}=2.635 \mathrm{H}^{5 / 2}$
Where $\mathrm{H}=$ head (m above sill)

5.4.2 Bernoulli's Theory

$H=h+\frac{P}{w}+\frac{v^{2}}{2 g}$
$\mathrm{H}=$ total head (meters)
$\mathrm{w}=$ force of gravity on $1 \mathrm{~m}^{3}$ of fluid (N)
$\mathrm{h}=$ height above datum level (meters)
$\mathrm{v}=$ velocity of water (meters per second)
$\mathrm{P}=$ pressure ($\mathrm{N} / \mathrm{m}^{2}$ or Pa)
Loss of Head in Pipes Due to Friction

Loss of head in meters $=f \frac{L}{d} \frac{v^{2}}{2 g}$
$\mathrm{L}=$ length in meters
$\mathrm{v}=$ velocity of flow in meters per second
$\mathrm{d}=$ diameter in meters
$\mathrm{f}=$ constant value of 0.01 in large pipes to 0.02 in small pipes

5.4.3 Actual pipe dimensions

Nominal pipe size (in)	Outside diameter $(\mathbf{m m})$	Inside diameter $(\mathbf{m m})$	Wall thickness $(\mathbf{m m})$	Flow area ($\left.\mathbf{m}^{2}\right)$
$1 / 8$	10.3	6.8	1.73	3.660×10^{-5}
$1 / 4$	13.7	9.2	2.24	6717×10^{-5}
$3 / 8$	17.1	12.5	2.31	1.236×10^{-4}
$1 / 2$	21.3	15.8	2.77	1.960×10^{-4}

Nominal pipe size (in)	Outside diameter (mm)	Inside diameter (mm)	Wall thickness (mm)	Flow area (m^{2})
3/4	26.7	20.9	2.87	3.437×10^{-4}
1	33.4	26.6	3.38	5.574×10^{-4}
$11 / 4$	42.2	35.1	3.56	9.653×10^{-4}
$11 / 2$	48.3	40.9	3.68	1.314×10^{-3}
2	60.3	52.5	3.91	2.168×10^{-3}
$2^{1 / 2}$	73.0	62.7	5.16	3.090×10^{-3}
3	88.9	77.9	5.49	4.768×10^{-3}
$31 / 2$	101.6	90.1	5.74	6.381×10^{-3}
4	114.3	102.3	6.02	8.213×10^{-3}
5	141.3	128.2	6.55	1.291×10^{-2}
6	168.3	154.1	7.11	1.864×10^{-2}
8	219.1	202.7	8.18	3.226×10^{-2}
10	273.1	254.5	9.27	5.090×10^{-2}
12	323.9	303.2	10.31	7.219×10^{-2}
14	355.6	333.4	11.10	8.729×10^{-2}
16	406.4	381.0	12.70	0.1140
18	457.2	428.7	14.27	0.1443
20	508.0	477.9	15.06	0.1794
24	609.6	574.7	17.45	0.2594

6 References

6.1 Periodic Table of Elements

A																	8A
1																	18
1																	2
H	2 A											3A	4A	5A	6 A	7A	He
1.00	2											13	14	15	16	17	4.00
8																	3
3	4											5	6	7	8	9	10
Li	Be											B	C	N	O	F	Ne
6.94	9.01											10.8	12.0	14.0	16.0	19.0	20.1
1	2											1	1	1	0	0	8
11	12											13	14	15	16	17	18
Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	Al	Si	P	S	Cl	Ar
22.9	24.3	3	4	5	6	7	8	9	10	11	12	26.9	28.0	30.9	32.0	35.4	39.9
9	1											8	9	7	7	5	5
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.0	44.9	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.3	69.7	72.5	74.9	78.9	79.9	83.8
0	8	6	0	4	0	4	5	3	0	5	8	2	9	2	6	0	0
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4	87.6	88.9	91.2	92.9	95.9	97.9	101.	102.	106.	107.	112.	114.	118.	121.	127.	126.	131.
7	2	1	2	1	4		1	9	4	9	4	8	7	8	6	9	3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.	137.	138.	178.	180.	183.	186.	190.	192.	195.	197.	200.	204.	207.	209.	(209)	(210)	(222)
9	3	9	5	9	8	2	2	2	1	0	6	4	2	0			
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	226.	227.	(261)	(262)	(266)	(264)	(265)	(268)									
	0	0															

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.	140.	144.	(145)	150.	152.	157.	158.	162.	164.	167.	168.	173.	175.
1	9	2		4	0	3	9	5	9	3	9	0	0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.	231.	238.	237.	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
0	0	0	0										

6.2 Resistor Color Coding

Color	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet / Purple	7
Grey	8
White	9

With us you can shape the future. Every single day.

For more information go to:
www.eon-career.com

Your energy shapes the future.
e.on

Courtesy: Dick Smith Electronics, Australia

About IDC Technologies

As one of the world's leading engineering and technology training, consulting and publishing companies, IDC Technologies' strength lies in providing practical and useful technical training for engineers, technicians and other technical personnel. Your business grows by developing the skills and expertise of your most important asset - your people. For the past 12 years, we have helped our clients in achieving their business objectives by developing their people.

We specialize in the fields of electrical systems, industrial data communications, telecommunications, automation and control, mechanical engineering, project and financial management and are continually adding to our portfolio of over 140 different workshops. Our instructors are highly respected in their fields of expertise and in the last ten years have trained over 140,000 engineers, technicians and other technical personnel. With offices conveniently located worldwide, IDC Technologies has an enthusiastic team of professional engineers, technicians and support staff who are committed to providing the highest quality of training, publishing and consultancy services.

Our worldwide offices are located in:

Australia
Canada
Ireland
New Zealand
Singapore
South Africa
United Kingdom
USA

For more information visit our website: www.idc-online.com
or email us on idc@idc-online.com

Training Workshops and Books

Data Communications \& Networking

Practical Data Communications \& Networking for Engineers and Technicians
Practical DNP3, 60870.5 \& Modern SCADA Communication Systems
Practical Troubleshooting \& Problem Solving of Ethernet Networks
Practical FieldBus and Device Networks for Engineers and Technicians
Practical Fiber Optics for Engineers and Technicians
Practical Troubleshooting \& Problem Solving of Industrial Data Communications
Practical Industrial Networking for Engineers \& Technicians
Practical TCP/IP and Ethernet Networking for Industry
Practical Fundamentals of Telecommunications and Wireless Communications
Practical Radio \& Telemetry Systems for Industry
Practical TCP/IP Troubleshooting \& Problem Solving for Industry
Practical Wireless Networking Technologies for Industry
Practical Routers \& Switches (Including TCP/IP \& Ethernet) for Engineers and Technicians
Best Practice in Industrial Data Communications Systems
Practical Fundamentals of VOICE over IP (VoIP) for Engineers \& Technicians

Do your employees receive the right training?

Download free ebooks at bookboon.com

Practical Troubleshooting, Design \& Selection of Fiber Optic Systems for Industry
Troubleshooting Industrial Ethernet \& TCP/IP Networks
Back to Basics Wireless Networking \& Telemetry Systems for Industry
Wireless Networking \& Radio Telemetry Systems for Industry

Electrical Power

Practical Electrical Network Automation \& Communication Systems
Practical Troubleshooting of Electrical Equipment and Control Circuits
Practical Grounding/Earthing, Bonding, Lightning \& Surge Protection
Practical High Voltage Safety Operating Procedures for Engineers and Technicians
Practical Power Distribution
Practical Power Quality: Problems \& Solutions
Practical Power Systems Protection for Engineers and Technicians
Practical Variable Speed Drives for Instrumentation and Control Systems
Practical Electrical Wiring Standards - IEE BS7671-2001 Edition
Practical Wind \& Solar Power - Renewable Energy Technologies
Practical Distribution \& Substation Automation (incl. Communications) for Electrical Power Systems
Safe Operation \& Maintenance of Circuit Breakers and Switchgear
Troubleshooting, Maintenance and Protection of AC Electrical Motors \& Drives
Practical Power Transformers - Operation and Maintenance
Lightning, Surge Protection and Earthing of Electrical \& Electronic Systems

Electronics

Practical Digital Signal Processing Systems for Engineers and Technicians
Practical Embedded Controllers: Troubleshooting and Design
Practical EMC and EMI Control for Engineers and Technicians
Practical Industrial Electronics for Engineers and Technicians
Practical Image Processing and Applications
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout of Electronic Systems Practical Power Electronics \& Switch Mode Power Supply Design for Industry

Information Technology

Industrial Network Security for SCADA, Automation, Process Control and PLC Systems
Practical Web-Site Development \& E-Commerce Systems for Industry

Chemical Engineering

Practical Fundamentals of Chemical Engineering

Instrumentation, Automation \& Process Control

Practical Analytical Instrumentation in On-Line Applications
Practical Alarm Systems Management for Engineers and Technicians
Troubleshooting Programmable Logic Controller's for Automation and Process Control
Practical Batch Management \& Control (Including S88) for Industry
Practical Boiler Control and Instrumentation for Engineers and Technicians
Practical Programming for Industrial Control - using (IEC 1131-3 and OPC)
Practical Troubleshooting of Data Acquisition \& SCADA Systems for Engineers and Technicians
Practical Industrial Flow Measurement for Engineers and Technicians
Practical Hazops, Trips and Alarms
Practical Hazardous Areas for Engineers and Technicians
A Practical Mini MBA in Instrumentation and Automation
Practical Instrumentation for Automation and Process Control
Practical Intrinsic Safety for Engineers and Technicians
Practical Tuning of Industrial Control Loops
Practical Motion Control for Engineers and Technicians
Practical Fundamentals of OPC (OLE for Process Control)
Practical Process Control for Engineers and Technicians
Practical Process Control \& Tuning of Industrial Control Loops
Practical SCADA \& Telemetry Systems for Industry
Practical Shutdown \& Turnaround Management for Engineers and Managers
Practical Safety Instrumentation \& Emergency Shutdown Systems for Process Industries using IEC 61511 and IEC 61508 Practical Fundamentals of E-Manufacturing, Manufacturing Execution Systems (MES) and Supply Chain Management Practical Industrial Programming using 61131-3 for Programmable Logic Controllers (PLCs)

Control Valve Sizing, Selection and Maintenance
Best Practice in Process, Electrical and Instrumentation Drawings \& Documentation
Practical Distributed Control Systems (DCS)

Mechanical Engineering

Practical Fundamentals of Heating, Ventilation \& Air-conditioning (HVAC) for Engineers \& Technicians
Practical Boiler Plant Operation and Management for Engineers and Technicians
Practical Cleanroom Technology and Facilities for Engineers and Technicians
Practical Hydraulic Systems: Operation and Troubleshooting
Practical Lubrication Engineering for Engineers and Technicians
Practical Safe Lifting Practice and Maintenance
Practical Centrifugal Pumps - Optimizing Performance
Practical Machinery and Automation Safety for Industry
Practical Machinery Vibration Analysis and Predictive Maintenance
Practical Pneumatics: Operation and Troubleshooting for Engineers and Technicians
Practical Pumps and Compressors: Control, Operation, Maintenance and Troubleshooting

Project \& Financial Management

Practical Financial Fundamentals and Project Investment Decision Making
How to Manage Consultants
Marketing for Engineers and Technical Personnel
Practical Project Management for Engineers and Technicians
Practical Specification and Technical Writing for Technical Professionals

Download free ebooks at bookboon.com

Past Participants Say

"Excellent instructor with plenty of practical knowledge."
Ian Kemp, ANSTO
"Excellent depth of subject knowledge displayed."
Hugh Donohue, AMEC
"Saved hours of trial and error."
Mario Messwa, DAPS
"I've gained more useful info from this seminar than any I've previously attended."
Jim Hannen, Wheeling-Misshen Inc.
"This is the 2nd IDC Technologies class I have taken - both have been excellent!"
John Harms, Avista Corporation
"A most enjoyable and informative course. Thank you."
Pat V Hammond, Johnson Matthey PLC
"Written material was about the best I've seen for this type of course. The instructor was able to set an excellent pace and was very responsive to the class."
John Myhill, Automated Control Systems
"Excellent, I have taken a TCP/IP Class before and didn't understand it. After this course, I feel more confident with my newfound knowledge."
John Armbrust, Phelps Dodge
"This was one of the best courses I have ever been on. The instructor was excellent and kept me fully interested from start to finish. Really glad I attended."

Chris Mercer, Air Products
"Very competent and great presenter."
David Wolfe, Acromag
"Well presented, excellent material" Stephen Baron, Air Products
"Excellent presentation! Well done."
Brett Muhlhauser, Connell Wagner
"Well compiled technical material."
Robert Higgenbotham, Yallourn Energy
"Well presented and the instructor obviously has the practical knowledge to back things up."
Mike Mazurak, ANSTO
"Great refresher on current practice. Also helped to bring me up to date on new technology."
E. Burnie, Sellotape
"I like the practicality of the workshop."

Karl Armfield, Joy Mining

Is your recruitment website still missing a piece?

Please click the advert
Bookboon can optimize your current traffic. By offering our free eBooks in your look and feel, we build a qualitative database of potential candidates.

Technical Workshops

TECHNOLOGY TRAINING THAT WORKS

We deliver engineering and technology training that will maximize your business goals. In today's competitive environment, you require training that will help you and your organization to achieve its goals and produce a large return on investment. With our "Training that Works" objective you and your organization will:

- Get job-related skills that you need to achieve your business goals
- Improve the operation and design of your equipment and plant
- Improve your troubleshooting abilities
- Sharpen your competitive edge
- Boost morale and retain valuable staff
- Save time and money

EXPERT INSTRUCTORS

We search the world for good quality instructors who have three key attributes:

1. Expert knowledge and experience - of the course topic
2. Superb training abilities - to ensure the know-how is transferred effectively and quickly to you in a practical hands-on way
3. Listening skills - they listen carefully to the needs of the participants and want to ensure that you benefit from the experience Each and every instructor is evaluated by the delegates and we assess the presentation after each class to ensure that the instructor stays on track in presenting outstanding courses.

HANDS-ON APPROACH TO TRAINING

All IDC Technologies workshops include practical, hands-on sessions where the delegates are given the opportunity to apply in practice the theory they have learnt.

QUALITY MANUALS

A fully illustrated workshop manual with hundreds of pages of tables, charts, figures and handy hints, plus considerable reference material is provided FREE of charge to each delegate.

ACCREDITATION AND CONTINUING EDUCATION

IDC workshops satisfy criteria for Continuing Professional Development for most engineering professional associations throughout the world (incl. The Institution of Electrical Engineers and Institution of Measurement and Control in the UK, Institution of Engineers in Australia, Institution of Engineers New Zealand)

CERTIFICATE OF ATTENDANCE

Each delegate receives a Certificate of Attendance documenting their experience.

100\% MONEY BACK GUARANTEE

IDC Technologies' engineers have put considerable time and experience into ensuring that you gain maximum value from each workshop. If by lunch time of the first day you decide that the workshop is not appropriate for your requirements, please let us know so that we can arrange a 100% refund of your fee.

ON-SITE TRAINING

On-site training is a cost-effective method of training for companies with several employees to train in a particular area. Organizations can save valuable training dollars by holding courses on-site, where costs are significantly less. Other benefits are IDC's ability to focus on particular systems and equipment so that attendees obtain the greatest benefit from the training. All on-site workshops are tailored to meet with our client's training requirements and courses can be presented at beginners, intermediate or advanced levels based on the knowledge and experience of the delegates in attendance. Specific areas of interest to the client can also be covered in more detail.

CUSTOMIZED TRAINING

In addition to standard on-site training, IDC Technologies specializes in developing customized courses to meet our client's training needs. IDC has the engineering and training expertise and resources to work closely with clients in preparing and presenting specialized courses. You may select components of current IDC workshops to be combined with additional topics or we can design a course entirely to your specifications. The benefits to companies in adopting this option are reflected in the increased efficiency of their operations and equipment.

ON-SITE \& CUSTOMIZED TRAINING

For more information or a FREE proposal please contact our Client Services Manager:

Kevin Baker: business@idc-online.com

SAVE OVER 50\%

SPECIALIST CONSULTING

IDC Technologies has been providing high quality specialist advice and consulting for more than ten years to organizations around the world. The technological world today presents tremendous challenges to engineers, scientists and technicians in keeping up to date and taking advantage of the latest developments in the key technology areas. We pride our selves on being the premier provider of practical and cost-effective engineering solutions.

PROFESSIONALLY STAFFED

IDC Technologies consists of an enthusiastic and experienced team that is committed to providing the highest quality in consulting services. The company has thirty-five professional engineers; quality focused support staff, as well as a vast resource base of specialists in their relevant fields.

CLIENT FOCUS

IDC's independence and impartiality guarantee that clients receive unbiased advice and recommendations, focused on providing the best technical and economical solutions to the client's specific and individual requirements.

COMPANIES WHO HAVE BENEFITED FROM IDC TECHNOLOGIES'TRAINING:

Abstract

AUSTRALIA

AIR DUCTER • AIR SERVICES • ALCOA • ALINTA GAS • AMPOL REFINERIES •ANSTO • AUSTRALIAN COMMUNICATIONS AUTHORITY • AUSTRALIAN GEOLOGICAL SOCIETY • AUSTRALIAN RAIL ROAD GROUP - BHP BILLITON • BHP BILLITON - PETROLEUM DIVISION • BHP IRON ORE • BOC GASES • BOEING CONSTRUCTORS INC • BRISBANE CITY COUNCIL • BRITISH AEROSPACE AUSTRALIA • CAMMS AUSTRALIA PTY LTD • CHK WIRELESS TECHNOLOGIES •CI TECHNOLOGIES • CITIWATER TOWNSVILLE • CITY WEST WATER • CIVIL AVIATION AUTHORITY • COMALCO ALUMINIUM • CSIRO • DELTA ELECTRICITY • DEPT OF DEFENCE • DEPT OF TRANSPORT AND WORKS • DSTO • DUKE ENERGY INTERNATIONAL • EMERSON PROCESS MANAGEMENT • ENERGEX •ERG GROUP • ERGON ENERGY • ETSA • FMC FOODTECH PTY LTD • FOOD SCIENCE AUSTRALIA • GHD CONSULTING ENGINEERS • GIPPSLAND WATER •GLADSTONE TAFE COLLEGE • GORDON BROTHERS INDUSTRIES LTD •GOSFORD CITY COUNCIL•GREAT SOUTHERN ENERGY • HAMERSLEY IRON •HEWLETT PACKARD • HOLDEN • HOLDEN LTD • HONEYWELL • I\&E SYSTEMS PTY LTD • INTEGRAL ENERGY • KALGOORLIE NICKEL SMELTER • METRO BRICK• MILLENIUM CHEMICALS • MISSION ENERGY • MT ISA MINES • MURDOCH UNIVERSITY • MURDOCH UNIVERSITY • NABALCO • NEC • NHP ELECTRICAL •NILSON ELECTRIC • NORMANDY GOLD • NORTH PARKES MINES • NU-LEC INDUSTRIES AUSTRALIA LTD • PARKER HANNAFIN • PEAK GOLD MINES •PHARMACIA \& UPJOHN - POWER \& WATER AUTHORITY NT (PAWA) • POWERCOR • POWERLINK • PROSPECT ELECTRICITY • QETC • QUEENSLAND ALUMINA •RAAF AIRCRAFT RESEARCH AND DEVELOPMENT UNIT • RAAF BASE WILLIAMTOWN • RAYTHEON • RGC MINERAL SANDS • RLM SYSTEMS • ROBE RIVER IRON ASSOCIATES - ROYAL DARWIN HOSPITAL • SANTOS LTD •SCHNEIDER ELECTRIC • SHELL - CLYDE REFINERY • SNOWY MOUNTAIN HYDRO•SPC FRUIT • STANWELL POWER STATION • TELSTRA • THOMPSON MARCONI SONAR -TIWEST • TRANSEND NETWORKS PTY LTD • UNCLE BENS • VISION FIRE \& SECURITY • WESFARMERS CSBP - WESTERN POWER • WESTRAIL • WMC - KALGOORLIE NICKEL SMELTER • WMC FERTILIZERS • WOODSIDE - WORSLEY ALUMINA • WYONG SHIRE • YOKOGAWA AUSTRALIA

BOTSWANA

DE BEERS - JWANENG MINE • DE BEERS - ORAPA MINE

CANADA

AECL • AIRCOM INDUSTRIES (76) LTD • ATCO ELECTRIC • BC GAS - CANADA •BC HYDRO • BOMBARDIER - CITY OF LONDON - ONTARIO • CITY OF OTTAWA •CITY OF SASKATOON • CONOCO CANADA LIMITED - DEPT OF NATIONAL DEFENCE - CANADA • ENBRIDGE PIPELINES • ENMAX • FORD ELECTRONICS MANUFACTURING PLANT • GE ENERGY SERVICES • GENERAL MOTORS •GUILLEVIN AUTOMATION • HUSKY OIL • IMC LTD • IMPERIAL OIL • INCO LTD •KALPEN VACHHARAJANI • KEYANO COLLEGE • LABRADOR HYDRO • MANITOBA HYDRO • MANITOBA LOTTERIES CORP • MEMORIAL UNIVERSITY OF NEW FOUNDLAND • MILLTRONICS • NEW BRUNSWICK POWER • NOVA CHEMICALS •NXTPHASE CORPORATION - VANCOUVER • ONTARIO HYDRO • OTTAWA HYDRO• PETRO CANADA • POWER MEASUREMENT LTD • SASKATCHEWAN POWER •SPARTAN CONTROLS • STONE CONSOLIDATED • STORA • SUNCOR ENERGY -SYNCRUDE • TELUS • TRANS CANADA PIPELINES • TROJAN TECHNOLOGIES •WASCANA ENERGY • WEST COAST ENERGY • WEYERHAUSER

FRANCE

SCHLUMBERGER

INDIA

MASIBUS

Turning a challenge into a learning curve. Just another day at the office for a high performer.

Accenture Boot Camp - your toughest test yet

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a difference every day. A place where you can develop your potential and grow professionally, working alongside talented colleagues. The only place where you can learn from our unrivalled experience, while helping our global clients achieve high performance. If this is your idea of a typical working day, then Accenture is the place to be.

It all starts at Boot Camp. It's 48 hours packed with intellectual challenges that will stimulate your mind and and activities designed to let you enhance your career prospects. You'll spend time with other students, top Accenture Consultants and special guests. An inspirational two days
discover what it really means to be a high performer in business. We can't tell you everything about Boot Camp, but expect a fast-paced, exhilarating Find out more and apply online.
and intense learning experience. It could be your toughest test yet, which is exactly what will make it your biggest opportunity.

- Consulting • Technology • Outsourcing accenture

High performance. Delivered.

IRELAND

BAYER DIAGNOSTICS • ESB DISTRIBUTION • INTEL • IRISH CEMENT • JANNSEN PHARMACEUTICALS LTD • MICROSOL LIMITED • PFIZER • PILZ IRELAND •PROSCON ENGINEERING

KOREA

US DEPT OF THE ARMY

MALAWI

DWANGA SUGAR CORPORATION

MALAYSIA

GERMAN MALAYSIA INSTITUTE

NAMIBIA

NAMIBIAN BROADCASTING CORPORATION • NAMPOWER • NAMWATER

NEW ZEALAND

ACI PACKAGING • AJ GREAVES • ANCHOR PRODUCTS • AUCKLAND REGIONAL COUNCIL • BALLANCE AGRI NUTRIENTS • CONTACT ENERGY • ENZAFOODS NZ LTD • ERICCSON • FISHER \& PAYKEL • GEC ALSTHOM • JAMES HARDIE • METHANEX NZ LTD • NATURAL GAS NZ • NZ MILK PRODUCTS • NZ WATER AND WASTE ASSOC • NORSKE SKOG • NZ ALUMINIUM SMELTERS • NZ REFINING CO • PAN PAC FOREST PRODUCTS • POWERCO • ROCKWELL NZ • ROTORUA DISTRICT COUNCIL • ROYAL NEW ZEALAND NAVY - THE UNIVERSITY OF AUCKLAND •

SAUDI ARABIA

SAUDI ELECTRIC COMPANY

SINGAPORE

ACTIVEMEDIA INNOVATION PTE LTD • FLOTECH CONTROLS • LAND TRANSPORT AUTHORITY • NGEE ANN POLYTECHNIC • OWER SERAYA LTD • WESTINGHOUSE • YOKOGAWA SINGAPORE

SOUTH AFRICA

AMATOLA DISTRICT COUNCIL • ANGLO AMERICAN • BATEMAN METALS • CALTEX REFINERIES • CHEVRON ANGOLA • COLUMBUS STAINLESS • DE BEERS KIMBERLEY • DE BEERS VENETIA MINE • DEBEERS DEBTECH • DURBAN METRO•EAST DRIEFONTEIN GOLD MINE • EASTERN CAPE TECH • EMERGENCY SERVICES, METRORAIL • ESKOM • GRINTEK EWATION • HIGHVELD STEEL •HILLSIDE • ILLOVO SUGAR • IMPALA PLATINUMS • ISCOR • IST • JOY MINING •KOEBURG POWER STATION • LEVER PONDS • METSO

AUTOMATION •MIDDLEBURG FERROCHROME • MINTEK • MONDI KRAFT • MOSSGAS •NAMAQUA SANDS - NESTLE • NKOMATI MINE • OMNIA FERTILISERS • ORBICOM• OTB • PALABORA MINING • POTGIETERUS MUNICIPALITY • PROCONICS PTY LTD • RAND WATER BOARD • RDI • RICHARDS BAY MINERALS • SA NAVY • SABC• SALDANHA STEEL • SANS FIBRES • SAPPI DURBAN • SASOL COAL • SASOL MSM ROTATING EQUIPMENT•SASOL SYNTHETIC FUELS•SATRA•SILDANHA STEEL•SKILLTEC•SPOORNET•STEINMULLER AFRICA • TRANSTEL EASTERN REGION • UMGENI WATER • WATER UTILISATION CORPORATION • WESTERN PLATINUM • WITWATERSRAND TECHNIKON • YELLAND CONTROLS

SWAZILAND

SIMUNYE SUGAR

TANZANIA

GOLDEN PRIDE MINE

UNITED ARAB EMIRATES

EUROMATECH • PROMIS GROUP

UNITED KINGDOM

24 SEVEN • ABB AUTOMATION LTD • AER RIANTA • AIR PRODUCTS • ALLEN STEAM TURBINES/ROLLS ROYCE - ALLIED COLLOIDS • ALLIED DISTILLERS • ALSTOM • AMEC DESIGN \& MANAGEMENT • BAE SYSTEMS • BAILEY ICS • BBC ENGINEERING • BECHTEL • BNFL - MAGNOX GENERATION • BP CHEMICALS • BRITISH AMERICAN TOBACCO • BRITISH ENERGY • BRITISH GAS • BRITISH STEEL • CEGELEC • CERESTAR • COE LTD • CONOCO • CORBY POWER STATION • CORUS GROUP PLC • CRODA LEEK LTD • CRUICKSHANKS LTD - DARESBURY LABORATORIES • DATEL RAIL SYSTEMS • DRAX POWER STATION • ELF EXPLORATION UK PLC • ENERGY LOGISTICS • EURO TUNNEL • EUROTHERM • EUROTUNNEL • EVESHAM MICROS • EXPRO NORTH SEA LTD • EXULT LTD • FIRST ENGINEERING LTD • FISHER ROSEMOUNT • GEC METERS • GENESIS OIL \& GAS CONSULTANTS • GLAXO CHEM • GLAXO SMITH KLINE • GLAXO WELLCOME • GRAMPION REGIONAL COUNCIL • GREAT YARMOUTH POWER • HALLIBURTON KBR • HAMWORHTY COMBUSTION • HONEYWELL - ABERDEEN • HONEYWELL BRACKNELL • ICI NOBEL ENTERPRISES • ICS TRIPLEX • IGGESUND PAPER BOARD • INMARSAT LTD • INSTEM LIMITED • JOHN BROWN ENGINEERING • JOHNSON MATTHEY - KODAK • KVAERNER ENERGY • LEVER FABRIGE • LINDSAY OIL REFINERY • LLOYDS • LOGICA • LUCAS AEROSPACE • MERSEY TUNNELLS • METHODE ELECTRONICS • METTLER TOLEDO • MILLTRONICS • MOBIL OIL • MONTELL • MWH GLOBAL • NDC INFRARED • NEC SEMICONDUCTORS • NISSAN UK • NORTHERN LIGHTHOUSE BOARD • OKI EUROPE LTD • ORGANON LABORATORIES LTD • PHARMA SITE ENGINEERING• PHILLIPS PETROLEUM • POWERGEN • QINETIQ • RAIL TRACK SYSTEMS • RIG TECH • ROBERTS \& PARTNERS - ROLLS ROYCE • ROVER GROUP • RUGBY CEMENT • SCOTTISH COURAGE • SCOTTISH HYDRO ELECTRIC PLC • SCOTTISH POWER • SHELL CHEMICALS • SHELL UK EXPLORATION \& PRODUCTION • SHOTTON PAPER PLC • SIEMENS - AUTOMATION \& DRIVES • STRATHCLYDE WATER • SUN VALLEY POULTRY • SWALEK - TEXACO PEMBROKE • THAMES WATER • TMD TECHNOLOGIES LTD • TOTAL OIL MARINE • TOYOTA UK - TRANSCO • TRANSCO LOCKERLEY COMPRESSOR • TREND CONTROL SYSTEMS LTD • UKAEA • UNITED

KINGDOM PAPER • VG GAS • VICTREX PLC • VSEC • WATER SERVICE • YARROW SHIPBUILDERS • YORKSHIRE ELECTRIC • YORKSHIRE ELECTRIC

USA

ACW INCORPORATED • AERO SYSTEMS - NASA • AK STEEL CORPORATION • ALCATEL • ALLEN BRADLEY - AMERICAN ELECTRIC POWER/RADISSON AIRPORT HOTEL • AMGEN INCORPORATED • ANDERSEN CORPORATION • ARROW INTERNATIONAL • ASTRA ZENECA PHARMACEUTICALS • AVISTA CORPORATION - BOEING • BOWATER NEWSPRINT • CENTRAL MAINE POWER COMPANY • CHEVRON • CITY OF DETROIT • DAISHOWA PAPER MILL•DEGUSSA CORPORATION•DEPT OF ENERGY•DEQUESNE LIGHT•DETROIT WATER - EXXON MOBIL CHEMICAL COMPANY • FMC CORPORATION • GENERAL MONITORS • HARNISCHFEGER • HOME STAKE MINING CO • HONEYWELL • HUGHES AIRCRAFT • IDM CONTROLS • ISA • K-TRON INSTITUTE \bullet LCRA • LIFESCAN • LONGVIEW FIBER • LOOP LLC • LUCAS BODY SYSTEMS • MCKEE FOODS • MILLTRONICS - NASA • PARKER COMPUTER • PEPPERL FUCHS • PHELPS DODGE • PHILIP MORRIS • PROCESS EQUIPMENT COMPANY • RALSTON PURINA • SAN DIEGO COUNTY WATER AUTHORITY • SAN FRANCISCO WATER DEPARTMENT • SANTA CLARA VALLEY WATER • SECURITIES INDUSTRY AUTOMATION CORP • SERANO LABORATORIES • SIEMENS POWER • SIEMENS WESTINGHOUSE • SPAWAR SYSTEMS CENTER • SPEEDFAM CORP • STILL WATER MINING CORPORATION • TOYOTA MOTOR MANUFACTURING • TUCSON ELECTRIC • UNITED TECHNOLOGIES CORP (UTC) • UNOCAL ALASKA RESOURCES • UTILITY ENGINEERING • VALTEK - WASHINGTON WATER POWER • WISCONSIN POWER • ZENECA

ZIMBABWE

TRIANGLE LIMITED

