
Azadeh Alebrahim

Bridging the Gap
between Requirements
Engineering and
Software Architecture
A Problem-Oriented
and Quality-Driven Method

Bridging the Gap between Requirements
Engineering and Software Architecture

Azadeh Alebrahim

Bridging the Gap
between Requirements
Engineering and
Software Architecture
A Problem-Oriented
and Quality-Driven Method

With a foreword by Maritta Heisel

Azadeh Alebrahim
Duisburg, Germany

ISBN 978-3-658-17693-8 ISBN 978-3-658-17694-5 (eBook)
DOI 10.1007/978-3-658-17694-5

Library of Congress Control Number: 2017935953

Dissertation Universität Duisburg-Essen, 2016

Springer Vieweg
© Springer Fachmedien Wiesbaden GmbH 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer Vieweg imprint is published by Springer Nature
The registered company is Springer Fachmedien Wiesbaden GmbH
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

To my dear parents and dear brother Babak

Foreword

Developing software that perfectly fits its purpose is a truly non-trivial task. For
many years, the CHAOS research of the Standish Group shows that the majority
of software projects still cannot be considered to be successful, but are challenged
or even fail. The reasons for this undesirable situation are manifold, but an insuf-
ficient understanding of the problem is one of them. Different studies indicate that
in average software development projects, more effort is devoted to testing than
to requirements analysis and design. This distribution of effort has the disadvan-
tage that software quality is taken into account mostly at the end of the software
development process, when the product already exists. It appears to be promis-
ing to spend more effort in analyzing the problem to be solved and developing an
adequate design. In this way, software quality can be addressed right from the be-
ginning, and there is hope that the necessary testing effort will decrease at least as
much as the effort for the early phases increases. It is a universal truth that quality
cannot be tested into a product, but has to be built into it.

The advantages of thoroughly conducting requirements engineering and design
become even more apparent when the software development follows a model-
based approach. This means that the results of the different phases of the software
development lifecycle are expressed by means of models. Software development
then consists in developing a series of models, representing the software to be built
from different angles and on different levels of abstraction. It is not completely
unrealistic to assume that in the not-too-far future it will be possible to generate
working code from models, such that the coding phase of the software develop-
ment lifecycle will disappear. Generating code from models would be a similarly
important step towards using higher-level constructs in software development as
was the introduction of higher-level programming languages and compilers that
made writing machine code unnecessary. When code can be generated from mod-

VIII Foreword

els, then also testing would have to be conducted in a different manner than it is
done today. The coherence between models would play an important role in quality
assurance for software.

Besides models, patterns are one more mechanism that helps to make software
development more systematic and less error-prone. First identified in architecture,
patterns now are an established tool that can support all activities of the software
development lifecycle. Patterns are templates for the intermediate artifacts of soft-
ware development. They abstract from incidental properties of such artifacts and
only represent the essence that is important for using the artifact. Patterns are used
by instantiation, i.e., the essence represented by the pattern is concretized for the
problem situation at hand. Pattern- and model-based software development fit to-
gether very well and have the potential to lead to software of high quality.

Of course, the most important software quality is correctness. Even though de-
veloping correct software is still not mastered sufficiently – as all of us experience
with more or less frustration in our regular software use – most of the existing
software engineering approaches focus on the functional behavior of the software
to be built (or maintained). However, the importance of quality requirements (also
called non-functional requirements) is not to be under-estimated. Nobody wants
to use a software that is perceived as unacceptably slow, comes with an incompre-
hensible user interface, or exposes its users to security threats. As a consequence,
quality requirements deserve a thorough and systematic treatment, in much the
same way as functional ones.

This book presents a comprehensive method to address quality requirements
in software development in a systematic way. It particularly addresses two very
important software qualities, namely performance and security. Performance is
crucial for the practical acceptance of software systems. At the same time, it is in
conflict with almost all other desirable software properties. For example, building
up pleasant user interfaces or employing cryptographic mechanisms use processor
power and hence slow down the software. Hence, an appropriate balance between
performance and other software qualities has to be found. Security, on the other
hand, is a problem of growing importance to our society. In regular intervals, re-
ports on security breaches appear in the media. Almost every enterprise has been
subject to attacks. At the same time, legislation demands an appropriate protection
of data. This means that security also becomes a matter of compliance and thus its
consideration will become mandatory in many areas.

The QuaDRA method proposed in this book is model- and pattern-based, and
it addresses a wide variety of of important issues to be taken into account when
considering quality requirements. An important fact is that software qualities can-
not be assessed without taking into account the environment in which the software
operates. For example, a software system may be secure against attacks of laymen,

Foreword IX

but not against professional attackers. It can be fast enough when human users are
in the loop, but not for automatic control processes. The models that are set up
using the QuaDRA method not only represent quality requirements in an explicit
way, but also relate such requirements those parts of the environment that are rel-
evant for satisfying them.

Another problem for which quality-aware solutions are lacking concerns re-
quirements interactions. Before attempting to construct a software system, it
should be made sure that all requirements that have been elucidated and selected
for realization can indeed be satisfied at the same time. This cannot be taken
for granted, especially when performance plays an important role. The QuaDRA
method offers a systematic way of identifying and eliminating undesired interac-
tions between quality requirements.

After having identified and modeled a set of requirements to be implemented,
i.e., having understood the problem in detail, it is necessary to move to a solution
of the problem. A first and crucial step toward an implementation is the develop-
ment of an appropriate software architecture that not only reflects the functional
requirements but also the quality requirements. The QuaDRA method allows soft-
ware developers to select architectural solutions for quality requirements in the
form of patterns. Selecting such patterns leads to a refinement of the requirements,
which in turn leads to a refinement of the software architecture. Thus, it follows
the twin-peak paradigm which postulates that requirements and software architec-
ture have to be developed together, moving not only from the problem space to the
solution space but also vice versa.

It has to be noted that using the QuaDRA method is not a question of all-or-
nothing. Parts of the method can be integrated into existing software processes in
a non-obtrusive way. Moreover, readers who want to know more about the state of
the art can find a wealth of useful references. All in all, the reader of this book finds
concrete and comprehensive guidance for quality-aware software development.

Duisburg Germany, Maritta Heisel
November 2016

Preface

Scope

Two essential activities in the software development process are requirements en-
gineering (RE) and software architecting. The focus of RE is on eliciting, analyz-
ing, and managing requirements. Software architecting is concerned with provid-
ing an abstraction of the system as a blueprint to manage the complexity of soft-
ware systems. The development of software architectures is a challenging task,
even when the requirements for a software system are clear. Requirements in gen-
eral and quality requirements in particular drive the architecture of a software sys-
tem, whereas decisions made in the architectural phase can affect the achieve-
ment of initial requirements and thus change them. The common way of tradi-
tional software development processes such as the waterfall model is to build a
software architecture from requirement descriptions. This process considers the
forward development process from requirements to the software architecture, it
however does not consider the impact of design decisions on initial requirements.
The problem of the linear software development processes is twofold. On the one
hand requirements are elicited, analyzed, and specified in isolation without consid-
ering the impact of architecture artifacts. On the other hand, design decisions are
made without managing the conflicts and making necessary changes in the require-
ments. Hence, requirements and software architecture evolve together. According
to the intertwining nature of requirements and architectures at each level of re-
finement, requirement descriptions cannot be considered in isolation and should
be co-developed with architectural descriptions iteratively and concurrently. There
is, however, no structured solution on how to perform the co-development of re-
quirements and software architecture. With this book, we aim at providing a com-

XII Preface

prehensive and structured approach that supports the intertwining relationship of
requirements and software architecture. We propose a framework for the Problem-
oriented and Quality-based Co-Development of Requirements and Architecture
(QuaDRA). QuaDRA guides the software engineer in co-developing the require-
ments and early software architecture in an iterative and concurrent manner, taking
into account quality requirements.

Content

This book first systematically identifies the lack of methodological support for de-
velopment of requirements and software architecture in the state-of-the-art. We
systematically derive the meta-requirements for such a method. Later we use the
extracted meta-requirements as evaluation criteria for building a comparative eval-
uation framework aiming at analyzing the state-of-the-art methods. To gather the
state-of-the-art, we conducted a systematic literature review. Applying the evalu-
ation framework to the state-of-the-art showed that none of the compared meth-
ods fulfills all the meta-requirements. To close this gap, this book proposes the
QuaDRA framework as a problem-oriented approach comprising eight phases. It
provides an instantiation of the twin peaks model, in which we move back and
forth between two peaks for co-developing requirements and software architec-
ture. QuaDRA includes several structured methods. These methods guide software
engineers in quality- and pattern-based co-development of requirements and early
software architecture design alternatives in an iterative and concurrent manner. The
QuaDRA framework provides support for developing a single system. We further
show how to enhance it for supporting a software product line development. Fi-
nally, we validate the QuaDRA framework by applying the systematic evaluation
framework. The evaluation framework provides a basis for comparing QuaDRA
with the state-of-the-art based on the previously defined evaluation criteria. The
comparative evaluation demonstrates that QuaDRA exhibits a substantial progress
over the state-of-the-art.

Audience

This book is aimed at practitioners such as software engineers working in the
areas of requirements engineering and software architecture design. Particularly,
novices and less experienced software engineers benefit from this book as it pro-

Preface XIII

vides detailed guidance on how to develop software architectures from quality
requirements in a systematic way. It is also intended for researchers who aim at
investigating the relationship between requirements engineering and software ar-
chitecture and how the activities in each phase restrict the scope of consideration
in the other phase. As this book provides a novel software development method
compared to the traditional software development approaches, it can be served as
a supplementary reading for the undergraduate courses in the software engineer-
ing discipline. This book pays a particular attention to the quality requirements
security and performance. Therefore, it can be used to teach the graduate courses
in the requirements engineering and software architecture with focus on quality
requirements and their systematic integration into the software architecture.

Cologne Germany, Azadeh Alebrahim
November 2016

Acknowledgements

I would like to express my deepest thanks to my supervisor Prof. Maritta Heisel
for her patient guidance, encouragement, and advice she has provided throughout
my PhD. She has always supported me with valuable feedback on various research
papers as well as on this thesis. I am truly thankful for her selfless dedication to
both my personal and academic development. She has not only been a teacher, but
also a friend and advisor for me.

I would also like to express my sincere gratitude to Prof. Christine Choppy for
previous joint work and for her support and valuable feedback on my thesis.

My cordial thanks go to my colleagues at the working group Software Engi-
neering at the paluno institute and the external doctoral candidates for their support
and helpful comments during research sessions. In particular, I would like to thank
Stephan Faßbender, Nazila Gol Mohammadi, Denis Hatebur, and Rene Meis for
the joint work on some of the research topics.

I would also like to thank our project partner Prof. Michael Goedicke for collab-
oration on the GenEDA project, various research papers, and being a supportive
co-organizer of our VAQUITA workshop. My special thanks go to Martin Fil-
ipczyk for enjoyable working sessions.

I am grateful to Prof. Bashar Nuseibeh, Dr. Yijun Yu, and Dr. Thein Than Tun
for their hospitality, support, and inspiring discussions during my visit at the Open
University.

My thanks also go to Joachim Zumbrägel and Katja Krause for supporting me
in technical as well as organizational issues at the University of Duisburg-Essen.

I would also like to thank Christina Menges to proof read countless pages of
barren technical material.

Finally, I want to express my appreciation to my dear parents and my supportive
brother Babak for their patience, endless support, and never failing faith in me.

XVI Acknowledgements

They experienced all of the ups and downs of my studies throughout the years.
Last but not least, I would like to express my deep gratitude to my beloved partner
Martin for his continuous support, understanding, and encouragement.

This research was partially supported by the German Research Foundation
(DFG) under grant numbers HE3322/4-1 and HE3322/4-2.

Contents

1 Introduction . 1
1.1 Problem Statement . 1
1.2 Research Questions & Contribution . 5

1.2.1 Research Questions . 5
1.2.2 Contribution . 6

1.3 Outline . 14

2 Background . 19
2.1 Requirements Engineering . 19

2.1.1 Quality Requirements . 20
2.1.2 Problem Frames . 22

2.2 Software Architecture Concepts . 24
2.2.1 Definition of Software Architecture . 24
2.2.2 Difference between Architecture and Design 25
2.2.3 Architectural Patterns . 27
2.2.4 Quality-specific Mechanisms and Tactics 28
2.2.5 Viewpoint Models . 29
2.2.6 Architecture Description Languages vs UML 30
2.2.7 Architecture Evaluation . 31

2.3 UML Profiles . 32
2.3.1 UML profile for Problem Frames . 33
2.3.2 Architecture Profile . 37
2.3.3 Dependability Profile . 39
2.3.4 MARTE Profile . 40

2.4 Life-Cycle Expressions . 42
2.5 Variability Modeling . 42

XVIII Contents

2.6 Case Study Smart Grid . 43
2.6.1 Description of Smart Grids . 45
2.6.2 Functional Requirements . 46
2.6.3 Security Requirements . 48
2.6.4 Performance Requirements . 49

3 Framework for Identifying Meta-Requirements 51
3.1 Introduction . 51
3.2 Meta-Requirement Derivation . 54

3.2.1 Essential Meta-Requirements . 57
3.2.2 Recommended Meta-Requirements . 61
3.2.3 Optional Meta-Requirements . 67
3.2.4 Method Characteristics . 69

3.3 The Evaluation Framework NIMSAD . 70
3.3.1 Methodology Context . 71
3.3.2 Methodology User . 72
3.3.3 Methodology Contents . 72
3.3.4 Evaluation . 73

3.4 Our Proposed Evaluation Framework . 73
3.5 Related Review . 75
3.6 Research Method . 75

3.6.1 Planning Phase . 75
3.6.2 Conducting Phase . 79

3.7 Results and Discussion . 85
3.7.1 Description of Selected Methods . 86
3.7.2 Results of the SLR . 91

3.8 Comparative Evaluation . 97
3.8.1 Value Assignment Schema . 97
3.8.2 Framework Application . 104

3.9 Threats to Validity . 107
3.10 Contributions . 108

4 Phase 1: Context Elicitation & Problem Analysis 111
4.1 Introduction . 111
4.2 UML4PF Extension for Quality Requirements 112
4.3 Method for Problem-oriented Requirement Analysis 113
4.4 Related Work . 126
4.5 Contributions . 127

Contents XIX

5 Phase 2: Architectural Pattern Selection & Application 129
5.1 Introduction . 129
5.2 Artifacts and their Relations . 132
5.3 External Input for the Process . 134

5.3.1 Question Catalog (Questions) . 134
5.3.2 Question Catalog (Indicator Questions) 136
5.3.3 Relations between Problem Frames and Questions 137
5.3.4 Benefits and Liabilities of Architectural Patterns 138
5.3.5 Architectural Pattern Catalog . 140

5.4 The Pattern Selection Process . 141
5.5 Application to the Case Study Smart Grid . 145
5.6 Derivation of Initial Architecture . 161

5.6.1 Design Desicion regarding Architectural Pattern Selection . 162
5.6.2 Design Desicion regarding Gateway Physical Boundary . . . 162
5.6.3 Further Iterations - Problem Diagram Splitting 163
5.6.4 Method for Deriving Initial Architecture 165

5.7 Related Work . 173
5.8 Contributions . 174

6 Phase 3: Domain Knowledge Analysis . 175
6.1 Introduction . 175
6.2 Structured Meta-Process . 177
6.3 Structured Object-Process . 186
6.4 Related Work . 192
6.5 Contributions . 194

7 Phase 4: Requirements Interaction Analysis . 195
7.1 Introduction . 195
7.2 Functional Requirements Interaction Detection 198

7.2.1 Sunblind Example . 198
7.2.2 Method for Functional Requirements Interaction Detection 200
7.2.3 Application to the Case Study Smart Grid 209

7.3 Method for Quality Requirements Interaction Detection 210
7.4 Method for Performance Requirements Analysis 220
7.5 Method for Generating Requirement Alternatives 231
7.6 Related Work . 242

7.6.1 Related work with respect to Requirements Interaction 242
7.6.2 Related work with respect to Performance Analysis 244

7.7 Contributions . 245

XX Contents

8 Phase 5: Quality-specific Pattern Analysis . 247
8.1 Introduction . 247
8.2 Problem-oriented Security Patterns . 249

8.2.1 UML4PF Extension for Problem-oriented Security Patterns 250
8.2.2 Structure of the Problem-oriented Security Patterns 251
8.2.3 Problem-oriented Symmetric Encryption Pattern 253
8.2.4 Problem-oriented MAC Pattern . 256
8.2.5 Problem-oriented RBAC Pattern . 257
8.2.6 Problem-oriented Digital Signature Pattern 260
8.2.7 Problem-oriented Asymmetric Encryption Pattern 262

8.3 Problem-oriented Performance Patterns . 264
8.3.1 UML4PF Extension for Problem-oriented Performance

Patterns . 264
8.3.2 Structure of the Problem-oriented Performance Patterns . . . 265
8.3.3 Problem-oriented First Things First (FTF) Pattern 269
8.3.4 Problem-oriented Flex Time (FT) Pattern 270
8.3.5 Problem-oriented Master-Worker (MW) Pattern 271
8.3.6 Problem-oriented Load Balancer (LB) Pattern 273

8.4 Discussion . 274
8.5 Mapping Requirements to Quality Solutions 278

8.5.1 UML4PF Extension for Mapping Requirements to their
Solution Alternatives . 278

8.5.2 Problem-Solution Diagram . 282
8.6 Related Work . 285

8.6.1 Related work with respect to Security and Performance . . . 285
8.6.2 Related work with respect to Variability 286

8.7 Contributions . 288

9 Phase 6: Quality-specific Pattern Selection & Application 289
9.1 Introduction . 289
9.2 Method for Selecting & Applying Quality-specific Patterns 290
9.3 Contributions . 327

10 Phase 7: Software Architecture Alternatives Derivation 329
10.1 Introduction . 329
10.2 Method for Deriving Implementable Architecture Alternatives 330
10.3 Related Work . 348
10.4 Contributions . 351

Contents XXI

11 Phase 8: Software Architecture Alternatives Evaluation 353
11.1 Introduction . 353
11.2 Identification of Software Architecture Evaluation Methods 354

11.2.1 Research Method . 355
11.2.2 Results . 356

11.3 Comparative Framework for Software Architecture Evaluation
Methods . 357

11.4 Selection of Software Architecture Evaluation Methods 361
11.4.1 Requirements on the Evaluation Method 361
11.4.2 Application of the Comparative Framework 362

11.5 Evaluation of Architecture Alternatives using ATAM 367
11.5.1 Application of ATAM to Smart Grid’s Architecture

Alternatives . 367
11.5.2 Discussion of the results . 383

11.6 Related Work . 386
11.7 Contributions . 387

12 Validation of the QuaDRA Framework . 389
12.1 Introduction . 389
12.2 Evaluation Framework . 390
12.3 Value Assignment Schema . 392
12.4 Comparative Evaluation of the QuaDRA Framework 392

12.4.1 Value Assignment . 393
12.4.2 Comparison of QuaDRA with the State-of-the-Art Methods400

12.5 Contributions . 402

13 Extending Problem-Oriented Requirements Engineering for SPL . . . 403
13.1 Introduction . 403
13.2 Alarm System Example . 405
13.3 UML4PF Extension for Modeling Variability 405
13.4 PREVISE Method and its Application . 408

13.4.1 Product Line Requirement Model Creation 411
13.4.2 Deriving a Concrete Product Requirement Model 423

13.5 Related Work . 427
13.6 Contributions . 429

14 Conclusions . 431
14.1 Summary . 431
14.2 Answer to Research Questions . 433
14.3 Future Research . 437

XXII Contents

14.3.1 Risk Analysis for Deriving Security Requirements 437
14.3.2 Integrating Tactics into the Process of Architectural

Pattern Selection . 438
14.3.3 Aspect-oriented Requirements Engineering with Problem

Frames . 438
14.3.4 Providing Support for SPL in the Architecture Phase 439
14.3.5 Architecture Views . 440
14.3.6 Tool Support . 440

A OCL Expressions related to the UML profile Extension for
Quality Requirements . 443

B Architectural Pattern Selection . 445
B.1 Problem Frames Catalog . 445
B.2 Question Catalog . 447
B.3 Relations between Problem Frames and Questions 449
B.4 Benefits and Liabilities . 454
B.5 Architectural Pattern Catalog . 457
B.6 Initial Architecture - Port Types . 458

C Quality-specific Pattern Selection & Application 459
C.1 Problem-oriented Security Pattern Template for A1 459
C.2 Problem-oriented Security Pattern Template for A2 461
C.3 Problem-oriented Security Pattern Template for A3 464

D Quality-based Architecture . 469

E Architecture Evaluation Methods . 473

References . 479

Acronyms

A1 Architecture Alternative 1
A2 Architecture Alternative 2
A3 Architecture Alternative 3
AD Architecture Description
ADD Attribute Driven Design
ADL Architecture Description Language
AHP Analytic Hierarchy Process
ALMA Architecture Level Modifiability Analysis
ALPSM Architecture Level Prediction for Software Maintenance
ALRRA Architecture Level Reliability Risk Analysis
AMI Advanced Multi-metering Infrastructure
ANP Analytic Network Process
AO Aspect-Oriented
AO-CAM Aspect-Oriented Component and Aspect Model
AORE Aspect-Oriented Requirements Engineering
AOSD Aspect-Oriented Software Development
ARID Active Reviews for Intermediate Design
ARQ Additional Research Question
ASAAM Aspectual SAAM
ATAM Architecture Trade-off Analysis Method
AtE Authenticate then Encrypt
ATL Atlas Transformation Language
ATRIUM Architecture generaTed from RequIrements applying a Unified Method-

ology
AUML Agent UML
CBSD Component-Based Software Development

XXIV Acronyms

CSM Core Scenario Model
DK Domain Knowledge
E&A Encrypt and Authenticate
EC Exclusion Criteria
ERA Excellence in Research for Australia
ESAAMI Extending SAAM by Integration in the Domain
EtA Encrypt then Authenticate
FT Flex Time
FTF First Things First
GCM Generic Component Model
GO Goal-Oriented
GQAM Generic Quantitative Analysis Modeling
GRM Generic Resource Modeling
H High
HAN Home Area Network
HLAM High-Level Application Modeling
HRM Hardware Resource Modeling
IC Inclusion Criteria
ICT Information and Communication Technology
IEC International Electrotechnical Commission
ISO International Organisation for Standardization
KM Knowledge Management
L Low
LAN Local Area Network
LB Load Balancer
LC Life-Cycle
LMN Local Metrological Network
M Medium
M2M Model-to-Model
MAC Message Authentication Code
MARTE Modeling and Analysis of Real-Time and Embedded systems
MDD Model-Driven Development
MRQ Main Research Question
MVC Model-View-Controller
MW Master-Worker
NFP Non-Functional Properties
NFR Non-Functional Requirements
NIMSAD Normative Information Model-based Systems Analysis and Design
OOAD Object-Oriented Analysis and Design
OVM Orthogonal Variability Modeling

Acronyms XXV

PAC Presentation-Abstraction-Control
PAM Performance Analysis Modeling
PASA Performance Assessment of Software Architecture
PL Project Leader
PLC Power Line Communication
PM Product Manager
PoPeRA Problem-oriented Performance Requirements Analysis
PREVISE PRoblEm-oriented VarIability RequirementS Engineering
QA Quality Attribute
QADA Quality-driven Architecture Design and quality Analysis
QAW Quality Attribute Workshop
QuaDRA Quality-based Co-Development of Requirements and Architecture
QVT Query, View, Transformations
RBAC Role-Based Access Control
RE Requirements Engineering
RIT Requirements Interaction Table
RQ Research Questions
SA Software Architecture
SAAF Software Architecture Analysis of Flexibility
SAAM Scenario-based Architecture Analysis Method
SAAMCS SAAM founded on Complex Scenarios
SAAMER SAAM for Evolution and Reusability
SACAM Software Architecture Comparison Analysis Method
SAEM Software Architecture Evaluation Model
SAM Schedulability Analysis Modeling
SAR Software Review Architecture
SBAR Scenario-based Architecture Reengineering
SEI Software Engineering Institute
SIG Softgoals Interdependencies Graph
SLR Systematic Literature Review
SPE Software Performance Engineering
SPL Software Product Lines
SPLE Software Product Line Engineering
SPT Schedulability, Performance, and Time specification
SRM Software Resource Modeling
SSL Secure Sockets Layer
ToE Target of Evaluation
UCM Use Case Maps
UML Unified Modeling Language
VAQUITA VAriability for QUalIties in SofTware Architecture

XXVI Acronyms

VD Variability Dependency
VP Variation Point
WAN Wide Area Network

Chapter 1
Introduction

Abstract There exist two challenges in developing requirements and software ar-
chitecture in current research for which satisfactory solutions are still sought. The
first one refers to methods for building software architectures based on require-
ments. This task is even more challenging when software qualities have to be ad-
dressed in the software development. The other challenge refers to the process
for bridging the gap between requirements and software architecture. This process
is currently based on experience, communication, and intuition of software engi-
neers. Such processes can hardly be used by novices and less experienced soft-
ware engineers. This chapter outlines how this book aims to address the identified
challenges by presenting the QuaDRA framework, which is a comprehensive ap-
proach for the iterative and concurrent co-development of requirements and soft-
ware architecture with regard to quality requirements, in particular security and
performance.

1.1 Problem Statement

Managers, software engineers, and users call for cheaper, faster, and securer soft-
ware [71]. The analysis and design of quality requirements have not received as
much attention as functional requirements in recent years [172]. One reason is that
quality requirements (also known as non-functional requirements) are less well un-
derstood than functional requirements [71]. They are often integrated into the im-
plementation phase of the software development process as an after-thought [172].

Many software systems fail to achieve their quality objectives due to neglect-
ing quality requirements. Errors of neglecting or not properly considering quality

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_1

2 1 Introduction

requirements are acknowledged to be among the most expensive errors being diffi-
cult to correct [93]. Problems such as loss of productivity, loss of revenues, loss of
customers, cost overruns, etc. arise when software systems are constructed without
having quality requirements such as performance in mind [221]. Software products
which are developed without considering quality requirements face a failure rate
of 60% or higher [40].

Fixing such problems afterwards is costly or even hardly possible [219]. There-
fore, not or not properly dealing with quality requirements might lead to software
that is more expensive than initially planned. The earlier the errors and miscon-
ceptions are identified, the easier and cheaper is their elimination. Hence, there
is room for improving this situation with fully incorporating quality requirements
into all phases of the software development life cycle.

Two essential activities in the software development process are requirements
engineering and software architecting. Requirements engineering (RE) is con-
cerned with activities in the problem space. It aims at achieving a proper under-
standing of the problem to be solved. Requirements elicitation as one part of RE
aims at discovering the problem that needs to be solved and identifying the system
boundaries. The focus of the requirements engineer when eliciting requirements is
on the problem domain rather than on solutions to those problems. In a roadmap
for RE, Nuseibeh & Easterbrook [183] identified defining richer models for cap-
turing and analyzing quality requirements as one major challenge for RE in the
years ahead.

In RE, properties of the entities of the environment and assumptions about them
are called domain knowledge. Domain knowledge is often undocumented and tacit
in the minds of the people involved in the process of software development [197].
The common ad-hoc nature of gaining domain knowledge is error-prone. Hooks
and Farry [127] report on a project where 49% of requirements errors were due
to incorrect domain knowledge. Capturing inadequate assumptions about the envi-
ronment of the flight guidance software led to the crash of a Boeing 757 in Colom-
bia in December 1995 [178].

The reason for such errors is likely the lack of awareness and attention on the
importance of capturing and using domain knowledge when constructing software.
Fabian et al. [94] conclude in their survey about security RE methods that it is not
yet state of the art to consider domain knowledge. The software development pro-
cess involves knowledge-intensive activities [202]. It is an open research question
how to elicit domain knowledge as part of the software development process cor-
rectly for effective requirement engineering [181].

van Lamsweerde [161] and Jackson [133] underline the importance of eliciting
domain knowledge in addition to the elicitation of requirements to obtain correct

1.1 Problem Statement 3

specifications. However, there is sparse support in capturing and modeling domain
knowledge.

For almost every software system various stakeholders with diverse interests
and expectations exist [107]. These interests give rise to different sets of require-
ments. The combination of these sets causes unwanted interactions or conflicts
among the requirements. The achievement of one quality requirement might af-
fect the achievement of other quality requirements negatively. Hence, on top of
incorporating quality requirements into the software development process, the in-
teractions among functional and quality requirements have to be identified and
resolved during the software development process.

Unlike RE, software architecting is concerned with the solution space. The soft-
ware architecture plays a vital role to the success of a software project [213]. The
development of software architectures is a challenging task, even when the re-
quirements for a software system are clear. Requirements in general and quality
requirements in particular drive the architecture of a software system.

It is commonly agreed that for building upon common knowledge and best prac-
tices, the use of architectural patterns [62, 215] is valuable [45, 62]. Besides their
functional properties, each architectural pattern has benefits and drawbacks regard-
ing the achievement of quality requirements. Therefore, choosing the appropriate
architectural pattern is not trivial. The existing approaches are imprecise or do not
provide any aid for finding appropriate patterns [52] to address quality require-
ments. The selection of appropriate architectural patterns is therefore critical for a
successful software development.

Beside architectural patterns that contribute to the achievement of quality re-
quirements positively as well as negatively, there exist mechanisms and patterns
that improve a certain quality attribute of the system, such as performance and se-
curity [211, 96]. Different mechanisms and patterns can satisfy a certain quality
requirement to a certain degree [72, 44]. In some cases, the mechanism that fits
best to a certain quality requirement cannot be selected. The reason is that trade-
offs have to be made due to conflicting quality requirements. Therefore, solution
alternatives for achieving quality requirements have to be identified, captured, and
modeled appropriately.

Constructing a software architecture that achieves not only its functional re-
quirements, but also the desired quality requirements is a challenging task [73].
The current techniques for incorporating quality requirements into software ar-
chitectures are even less developed than the ones that concentrate on functional
requirements only. Therefore, the transition from requirements to software archi-
tectures is still a field of ongoing research [32]. Architectural design must be de-
rived from requirement models in such a way that the knowledge gained in the

4 1 Introduction

requirements engineering phase is used in a systematic way in the software archi-
tecture.

RE and software architecture have been performed separately for many years [53].
The common way of the traditional software development processes such as the
waterfall development process is to build a software architecture from require-
ment descriptions. This process considers the forward development process from
requirements to the software architecture, it however does not consider the other
way round, namely the impact of design decisions on initial requirements. The
problem in the linear software development approaches is that on the one hand
requirements are elicited, analyzed, and specified in isolation without considering
the impact of architecture artifacts. On the other hand, design decisions are made
without managing the conflicts and making necessary changes in the requirements.

Beside the common and traditional approaches utilizing requirements for cre-
ating the software architecture, there have been increasing efforts regarding the
relationship between requirements and architecture in recent years [32, 102]. De
Boer and van Vliet [53] review different opinions regarding this relationship be-
tween requirements as problem description and software architecture as solution
description. They propose a closer collaboration between the two communities to
profit from the research results that each community provides.

Requirements are supposed to be the architectural drivers [45, 38], whereas de-
cisions made in the architectural phase can affect the achievement of initial require-
ments and thus change them. Hence, requirements and software architecture evolve
together [239]. Little research and guidance is available that acknowledges the in-
tertwining relationship of the two fields, thus proposing the iterative and incremen-
tal co-development of requirements and software architecture [182, 195, 177]. Ac-
cording to the intertwining nature of requirements and architectures at each level of
refinement, requirement descriptions cannot be considered in isolation and should
be co-developed with architectural descriptions iteratively, known as Twin Peaks
model as proposed by Nuseibeh [182].

The international workshop on the Twin Peaks of requirements and architec-
ture (TwinPeaks) [1, 2, 3, 77, 4] provides a platform for researchers and practi-
tioners from the fields of RE and software architecture since 2012 to discuss their
experiences, identify open issues, and directions towards addressing open issues.
Regarding the intertwining relation of requirements and architecture, the effects
of design decisions on requirements has been explored in [152, 90]. There exist
some attempts regarding the selection of architectural patterns based on quality
requirements [217, 176].

There is, however, no comprehensive approach for co-development of require-
ments and architecture artifacts. Hence, supporting the interplay between require-
ments and software architecture remains a challenging task and an open problem in

1.2 Research Questions & Contribution 5

software engineering research [124]. Although the twin peaks model emphasizes
the co-development of requirements and software architecture in an iterative and
concurrent manner, it, however, does not propose any structured solution on how
to perform the co-development of requirements and software architecture [195].
This task is even more challenging when software qualities such as security and
performance have to be addressed in the software development.

1.2 Research Questions & Contribution

In this section, we first describe in Section 1.2.1 the research questions we aim at
addressing in this book. Then, we provide an overview of our contributions and
relate them to the research questions in Section 1.2.2.

1.2.1 Research Questions

In the previous section, we mentioned existing challenges in developing require-
ments and software architecture for which satisfactory solutions are still sought.
We highlight these challenges once again in summary in order to derive the re-
search questions:

• there exists a gap in research regarding methods for building software architec-
tures based on requirements. This task is even more challenging when software
qualities have to be addressed in the software development.

• the process for bridging the gap between requirements and software architec-
ture is currently based on experience, communication, and intuition of software
engineers. Such methods can hardly be used by novices and less experienced
software engineers.

Considering these open research problems, we derive four research questions
(RQ). These research questions address the challenges in dealing with quality re-
quirements in requirements engineering and software architecture:

RQ 1 What are the meta-requirements that a systematic method for quality-
aware development of requirements and software architecture should fulfill?

RQ 2 Is there a lack of methodological support in existing research for fulfilling
these meta-requirements?

6 1 Introduction

RQ 3 If yes, how can a new process provide guidance in developing require-
ments and software architecture with respect to quality requirements consider-
ing the identified meta-requirements?

RQ 4 Does the new process fulfill the identified meta-requirements? How can
this process be validated in a structured way with respect to the identified meta-
requirements?

Furthermore, we define an additional research question that deals with an es-
sential requirements engineering concept:

RQ 5 How can the new process of developing requirements be extended for
supporting important concepts of requirements engineering such as Software
Product Lines (SPL)?

1.2.2 Contribution

With this book, we aim at providing a comprehensive and structured approach that
contributes to the open research problems discussed earlier. To this end, we first
identify the meta-requirements for quality-aware development of requirements and
software architecture in a structured way. In order to provide evidence for the
identified meta-requirements, we reviewed empirical studies including literature
reviews, interviews, surveys, and group discussions. Based on the identified meta-
requirements, we develop a framework for comparative evaluation of state-of-the-
art in this area. To gather the state-of-the-art methods, we conducted a systematic
literature review. Applying the comparative evaluation framework to the selected
methods, we identify the lack of systematic and methodological guidelines. Con-
sequently, we contribute to the research questions RQ 1 and RQ 2. Figure 1.1 illus-
trates the contributions of this work and the related research questions addressed
by the contributions.

Overview of the QuaDRA Framework

As an attempt to respond to the identified need for a method in software engi-
neering which supports the development of requirements and software architec-
ture with respect to quality requirements, we propose the framework1 Problem-
oriented and Quality-based Co-Development of Requirements and Architecture

1 “A framework helps to structure one’s thinking similar to a method / methodology. It also
provides a structure to help connect a set of models or concepts. A framework can be perceived as

1.2 Research Questions & Contribution 7

Problem Peak Solution Peak

4

1

G
en

er
al

D
et

ai
le

d
Le

ve
l o

f d
et

ai
l

Independent DependentImplementation dependence

3

Phase 1:
Context

Elicitation &
Problem
Analysis

Phase 3:
Domain Knowledge

Analysis

Phase 4:
Requirement Interaction

Analysis

Phase 6:
Quality-specific Pattern Selection & Application

Phase 7:
Software Architecture Alternatives Derivation

Phase 5:
Quality-specific
Pattern Analysis

Phase 2:
Architectural

Pattern
Selection

2

The QuaDRA Framework

Research
Questions

RQ 1

RQ 2

RQ 3

RQ 5

RQ 4

Meta-Requirements Identification and Evaluation Framework

Validation of the QuaDRA Framework

QuaDRA Framework Extension (SPL)

Phase 8:
Software Architecture Alternatives Evaluation

5

Fig. 1.1: Contributions of this work and related research questions

(QuaDRA) that guides the software engineer in co-developing the requirements
and early software architecture design in an iterative and concurrent manner, tak-
ing into account quality requirements. The goal of the QuaDRA framework is to
meet the identified meta-requirements. With this comprehensive framework, we
aim at addressing the research question RQ 3.

In the following, we take a closer look at the constituent parts of the frame-
work’s title. The proposed framework is a problem-oriented approach. The reason
is that we make use of problem frames [133] as a basis for our framework. We
introduce problem frames and their benefits in Chapter 2 (see Section 2.1.2 on
page 22).

an integrating meta-model through which concepts, models, and methodologies can be structured
and their interconnections or differences displayed to assist understanding or decision making. A
methodology differs from a framework in that a methodology always implies a time-dependent
order of thinking and/or action stages [136].”

8 1 Introduction

Quality requirements are the key element of the QuaDRA framework. We con-
sider security and performance as quality requirements, because they are quite
different in nature. Security requirements can often be transformed into functional
ones. For example, the confidential transmission of data can be achieved through
encryption, which is an added functionality. Performance requirements, on the
other hand, can hardly be transformed into functional ones. Therefore, these two
kinds of requirements are appropriate representatives of quality requirements. If
these two can be treated in a similar way, we may hope that our results are gener-
alizable for other kinds of quality requirements as well.

The framework’s title contains the constituent parts Requirements and Archi-
tecture, as we emphasize the concurrent co-development of requirements and ar-
chitecture design. Software design consists of two levels of refinement, namely
the high-level (or coarse-grained) design and the low-level (or fine-grained or de-
tailed) design. The main result of the high-level design is the architecture capturing
the general design decisions, including the main software structure. The QuaDRA
framework aims at constructing a high-level design in the context of the twin peaks
model [182] providing a suitable starting point for the low-level design to be built
upon. The twin peaks model proposes the concurrent and iterative co-development
of requirement descriptions and architectural descriptions. It is based on the inter-
twining nature of requirements and architectures. In the following, we show the
phases of the QuaDRA framework and the related inputs and outputs.

Closer Look into the QuaDRA Framework

Figure 1.2 shows the QuaDRA framework in the order in which the phases have
to be executed. The phases of the process are visualized using ellipses. The control
flow is given by directed solid arrows. The artifacts used within the process, i.e.
the inputs for and outputs of the phases, are shown as notes. These artifacts can
be either externally given as visualized by the lane “external input” in the top of
Fig. 1.2, or generated within the framework as visualized by the lane “input/out-
put” in the bottom of the figure. The input and output relations are shown as dashed
arrows. In the following, we describe how and in which order each phase has to be
performed.

Phase 1 (Context Elicitation & Problem Analysis) is concerned with modeling
the context as well as modeling the functional and quality requirements. Existing
documents including functional and quality requirements are required as input for
this phase. The functional requirement models are extended with representations
for modeling quality requirements. As output we obtain a context diagram repre-
senting the problem description involving all domains related to the problem to be

1.2 Research Questions & Contribution 9

process
external

input output
input /

C
on

te
xt

D
ia

gr
am

P
ro

bl
em

D
ia

gr
am

s
P

ro
bl

em
D

ia
gr

am
s

P
ha

se
 1

E
xi

st
in

g
D

oc
um

en
ts

F
&

Q
 R

eq
.

P
ha

se
 2

S
el

ec
te

d
A

rc
hi

te
ct

ur
al

P
at

te
rn

(s
)

P
ha

se
 3

In
iti

al
A

rc
hi

te
ct

ur
e(

s)

In
st

an
tia

te
d

D
om

ai
n

K
no

w
le

dg
e

T
em

pl
at

es

P
ha

se
 4

P
ha

se
 5

P
ha

se
 6

In
st

an
tia

te
d

P
ro

bl
em

-
O

rie
nt

ed
Q

ua
lit

y
P

at
te

rn
s

(A
lte

rn
at

iv
es

)

P
ha

se
 7

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

A
lte

rn
at

iv
es

In
st

an
tia

te
d

R
eq

ui
re

m
en

t
A

lte
rn

at
iv

e
T

em
pl

at
es

P
ro
bl
em
-

S
ol
ut
io
n

D
ia
gr
am

C
on
fig
ur
at
io
n

D
ia
gr
am
s

P
ha

se
 8

E
va

lu
at

ed
S

of
tw

ar
e

A
rc

hi
te

ct
ur

e
A

lte
rn

at
iv

es

Fig. 1.2: Phases of the QuaDRA Framework and the related inputs and outputs

10 1 Introduction

solved, their relations to each other and to the software to be constructed. Prob-
lem diagrams representing subproblems to model functional requirements provide
another output of this phase. The problem diagrams contain annotations that rep-
resent quality requirements. Quality requirements complement functional require-
ments.

The requirement models provide a basis for selecting appropriate architectural
patterns in Phase 2 (Architectural Pattern Selection & Application) (see arrow 1
in Fig. 1.1). Hence, as input for Phase 2, we demand the problem diagrams from
the previous phase. The selected architectural patterns contribute to the satisfac-
tion of the modeled quality requirements. The selected patterns might lead to the
refinement of requirement models set up in Phase 1 by further decomposition of
subproblems. For example, when selecting a distributed architectural pattern the
subproblems have to be tailored to the selected pattern. Hence, a feedback from
the solution space to the problem space is required (see arrow 2 in Fig. 1.1). As
output for Phase 2, we obtain initial architecture(s) instantiating the selected archi-
tectural pattern(s) using the refined problem diagrams. Selecting different archi-
tectural patterns provides one way to produce architecture alternatives that satisfy
quality requirements in different ways.

We propose a method in Phase 3 (Domain Knowledge Analysis) for eliciting,
modeling, and using quality-related domain knowledge. In RE, properties of the
entities of the environment and assumptions about them are called domain knowl-
edge. Domain knowledge is required in addition to the elicitation of quality re-
quirements for detecting and resolving requirement interactions in the next phase.
This method augments the requirement models with required domain knowledge
for performance and security requirements by providing domain knowledge tem-
plates. Hence, problem diagrams are needed as input. This phase has to be per-
formed after selecting the architectural pattern(s) in Phase 2. The reason is that the
refined problem diagrams due to the pattern selection are required for this phase.
We obtain instantiated domain knowledge templates for each refined quality re-
quirement and each project. Problem diagrams enriched with the required domain
knowledge represent another output of this phase. The outputs of this phase are
used in the next phase for detecting requirement conflicts.

Detecting potential interactions among functional requirements as well as among
quality requirements (performance and security requirements) and resolving such
interactions is achieved in Phase 4 (Requirement Interaction Analysis). To this
end, we propose two methods for detecting interactions between functional re-
quirements as well as quality requirements which both make use of the problem
diagrams. To restrict the set of potential conflicting requirements between quality
requirements, we provide the performance analysis method PoPeRA with respect
to available resources and usage profiles. Finally, we propose a method that creates

1.2 Research Questions & Contribution 11

alternatives for remaining conflicting requirements as a resolution strategy. To this
end, we take instantiated domain knowledge templates as input and extend them
with alternatives for quality requirements. In doing so, we obtain instantiated re-
quirement alternative templates. All proposed methods for this phase require the
elicited domain knowledge (instantiated domain knowledge templates) in addition
to the problem diagrams as input in order to detect and resolve the potential con-
flicts. Hence, this phase has to be performed after Phase 3. As output, we obtain
the instantiated requirement alternative templates that are used in Phase 6 as input.

We selected appropriate architectural patterns in Phase 2 to support the achieve-
ment of quality requirements. In addition, we need mechanisms and patterns such
as load balancer for performance and encryption for security that aim at achieving
a particular quality requirement. We call these mechanisms and patterns quality-
specific patterns. Such quality-specific solutions are, however, not directly suit-
able for requirements analysis based on problem frames. They have to be adapted
in such a way that they can be applied to the requirement models in the next
phase. The adapted quality solutions which are represented as problem diagrams
are called problem-oriented quality (security / performance) patterns. Phase 5
(Quality-specific Pattern Analysis) provides a catalog of such patterns (see arrow 3
in Fig. 1.1) that can be selected and applied in Phase 6 (Quality Solution Identifica-
tion & Analysis) in order to satisfy quality requirements (see arrow 4 in Fig. 1.1).
Having quality requirement alternatives from the previous phase and problem-
oriented quality patterns, we are able to provide a link from quality requirement
alternatives to quality-specific solution alternatives. This mapping serves as an in-
termediate model to bridge the requirements and software architecture. The inter-
mediate model is called problem-solution diagram which is used in Phase 6 as
input.

After generating requirement alternatives in Phase 4 and setting up the problem-
solution diagram in Phase 5, we are able to select and apply problem-oriented
quality patterns for incorporating the quality-specific solutions in the requirement
models. The selection and application of these patterns is achieved in Phase 6
(Quality-specific Pattern Selection & Application) of the framework (see arrow 4
in Fig. 1.1) by proposing a structured method. It provides the basis for deriving
quality-based software architecture alternatives in Phase 7. By doing this, we ob-
tain subproblems that contain solution approaches with regard to security and per-
formance. They are called instantiated problem-oriented quality patterns. We can
create alternatives for achieving security and performance requirements by produc-
ing different instances of the problem-oriented quality patterns. In order to know
which architecture alternative is responsible for achieving which requirement al-
ternatives we set up a configuration diagram for each architecture alternative. It
contains the requirements to be achieved by the corresponding architecture alter-

12 1 Introduction

native and the solutions involved in the architecture alternative for addressing those
requirements.

In Phase 7 (Software Architecture Alternatives Derivation), the instantiated
problem-oriented quality patterns from the previous phase have to be transformed
into software architecture alternatives for achieving quality requirements in differ-
ent ways (see arrow 5 in Fig. 1.1). As input in addition to instantiated problem-
oriented quality patterns we require the initial architecture(s), and the configura-
tion diagrams to derive software architecture alternatives.

To examine to what extent the derived architecture alternatives fulfill the elicited
and modeled quality requirements, the resulting architecture alternatives from the
previous phase have to be evaluated in Phase 8 (Software Architecture Alterna-
tives Derivation & Evaluation). We present an evaluation of software architecture
alternatives based on an established architecture evaluation method. As input we
require the derived software architecture alternatives.

Validation of the QuaDRA Framework

In the aforementioned phases, we described how the QuaDRA framework can
guide the software engineer in co-developing requirements and software architec-
ture with taking into account quality requirements in an iterative and concurrent
manner. Now, we need to validate whether this new process fulfills the identi-
fied meta-requirements. To this end, we make use of the comparative evaluation
framework which we developed before. We apply this framework to the QuaDRA
method in order to investigate whether and to what extent the identified meta-
requirements are fulfilled. This contributes to the research question RQ 4.

QuaDRA Framework Extension (SPL)

We provide an extension of the QuaDRA framework which augments the capa-
bilities of the problem frames approach in the area of requirements engineering
in dealing with the established requirements engineering paradigm Software Prod-
uct Lines (SPL) [194]. Hence, the QuaDRA extension contributes to the research
question RQ 5. We extend Phase 1 of the QuaDRA framework (Context Elicita-
tion & Problem Analysis) in a way that it can be used for SPL. The so enhanced
requirement models contain annotations to deal with variability for SPL.

1.2 Research Questions & Contribution 13

Summary of the Contributions

The contributions of this work can be summarized as follows:

• Systematic identification of the lack of methodological support for quality-
aware development of requirements and software architecture (see Chapter 3).

– Systematic derivation of meta-requirements that a method for quality-aware
development of requirements and software architecture should fulfill, and
their classification.

– A structured evaluation framework for comparative evaluation of such meth-
ods.

– A systematic literature review for obtaining the state-of-the-art methods.
– A comparative evaluation of the state-of-the-art methods.

• A comprehensive and structured development framework that guides soft-
ware engineers in co-developing the requirements and early software architec-
ture design alternatives in an iterative and concurrent manner taking into ac-
count quality requirements.

– A method and a UML profile for modeling quality requirements (see Chap-
ter 4).

– A method for systematic selection of architectural patterns (see Chapter 5).
– A method for eliciting, modeling, and using quality-related domain knowl-

edge (see Chapter 6).
– A method for detecting potential interactions among functional requirements

(see Chapter 7).
– A method for detecting potential interactions among quality requirements

(see Chapter 7).
– A method for performance requirements analysis and restricting the set of

potential interactions (see Chapter 7).
– A method for resolving requirement conflicts by generating requirement al-

ternatives (see Chapter 7).
– Identifying, structuring, and analyzing quality-specific solutions (see Chap-

ter 8).
– An intermediate model and a UML profile for providing a mapping of quality

requirement alternatives to the quality-specific patterns. The intermediate
model contains rationales for choosing among alternatives (see Chapter 8).

– A method for selecting and applying quality-specific solutions (see Chap-
ter 9).

– A method for deriving software architecture alternatives (see Chapter 10)
– Evaluating software architecture alternatives (see Chapter 11).

14 1 Introduction

• Validating the fulfillment of meta-requirements through the development
framework by applying the comparative evaluation framework (see Chap-
ter 12).

• An extension of the development framework. A method and a UML profile
for augmenting the problem frames approach with Software Product Lines (see
Chapter 13).

• Demonstrating the application of the framework by a case study illustrating
the quality-aware co-development of requirements and software architecture
alternatives (throughout the whole book).

1.3 Outline

This dissertation presents the QuaDRA framework, which is a comprehensive ap-
proach for the iterative and concurrent co-development of requirements and soft-
ware architecture with regard to quality requirements, in particular security and
performance. We provide an instantiation of the twin peaks model, in which we
move forth and back between two peaks for co-developing requirements and soft-
ware architecture. Furthermore, we provide an extension for the QuaDRA frame-
work, in which we integrate the notion of SPL. The QuaDRA framework and its
extension provide answers to the research questions given in the previous section.
In Fig. 1.3, we show which chapter is going to provide answers to which research
question.

Research Question

RQ 5RQ 4RQ 3RQ 1 RQ 2

Thesis Chapter

Chapters
1, 2

Chapter
3

Chapter
12

Chapters
4 - 11

Chapters
13

Chapter
14

Fig. 1.3: Mapping between the research questions and chapters of the dissertation
contributing to them

The remainder of this book is structured as follows. Chapter 2 outlines basic
concepts, notations, and terminologies in the RE and software architecture fields

1.3 Outline 15

that our approach relies on. In addition, we describe the concepts of variability
modeling, which provide the foundation for the framework extension. Further-
more, we provide an overview of a software architecture evaluation method that
is used for evaluating software architectures. A description of the case study that
we have chosen to show the applicability of our approach provides the final part of
this background chapter.

The main contribution of this dissertation, which is the co-development of re-
quirements and software architecture with regard to quality requirements (QuaDRA
framework), is described in Chapters 3 - 12. First, we systematically identify the
lack of methodological support for quality-aware development of requirements
and software architecture in Chapter 3. To this end, we systematically derive the
meta-requirements for such a method and provide a classification of them. Iden-
tified meta-requirements are then structured in an evaluation framework which is
used for comparing state-of-the-art methods that have been selected by performing
a systematic literature review. As the comparative evaluation shows that none of
these methods fulfills the identified meta-requirements, we propose our QuaDRA
framework in Chapters 4 - 11 considering these meta-requirements.

In Chapter 4, we present a method for modeling quality requirements and de-
composing the problem diagrams with regard to design decisions. This comprises
Phase 1 of our comprehensive approach, which is accommodated in the problem
peak. In order to be able to model quality requirements using the UML profile for
problem frames, we extend this profile with new stereotypes for annotating quality
requirements.

Chapter 5 describes Phase 2 of the QuaDRA framework, in which we move to
the solution peak. We present a method that provides support for selecting appro-
priate architectural patterns with respect to quality requirements. In this method,
we relate problem diagrams to relevant architectural patterns by means of a ques-
tion catalog. An initial architecture is then derived by instantiating the selected
architectural pattern.

Chapter 6 presents Phase 3 of our framework accommodated in the problem
peak. In this chapter, we show which domain knowledge should be collected in
addition to requirements. Then, we present a method for eliciting, modeling, and
using quality-related domain knowledge.

Chapter 7 is devoted to Phase 4 of our framework and is located in the problem
peak. This phase is concerned with the management of requirement interactions.
In the first part of this chapter, we provide a method for detecting negative in-
teractions among functional requirements. The second part shows how we detect
interactions between quality requirements. In the third part of this chapter, we have
a deeper look at the workload of the system and the available resources process-
ing that workload. The reason is that the lack of resources is the essence of most

16 1 Introduction

performance problems. We present a method for Problem-oriented Performance
Requirements Analysis (PoPeRA) that guides the software engineer and perfor-
mance analyst in identifying potential performance problems early in the require-
ments analysis phase. This third part aims at restricting the scope of potential con-
flicts among quality requirements identified in the second part by analyzing the
required resources and the usage profiles. In the fourth part of this chapter, we
describe the resolution of negative interactions by proposing a method that sys-
tematically generates alternatives for remaining conflicting requirements.

In Chapter 8 describing Phase 5 of the QuaDRA framework, we re-use the
knowledge which is located in the solution space such as mechanisms and patterns
(also known as tactics) that target the achievement of security and performance re-
quirements (quality-specific solutions). We adapt the existing security and perfor-
mance patterns for requirement analysis. As a result, we derive problem-oriented
quality (security / performance) patterns that can be applied to subproblems in or-
der to satisfy security and performance requirements. In the second part of this
chapter, we provide a mapping between the quality requirement alternatives (ob-
tained from the previous phase) in the problem peak and the quality-specific solu-
tion alternatives in the solution peak as an intermediate model.

Chapter 9 describes Phase 6 of our framework. We propose a method for sys-
tematically selecting quality-specific patterns and applying them to the problem
diagrams by instantiation. Thus, we integrate solution approaches for security and
performance requirements already in the problem space.

The so enhanced requirement models facilitate deriving high-level architecture
alternatives from the requirement models, which is the aim of Chapter 10 describ-
ing Phase 7. To this end, we make use of requirement models that already contain
quality-specific solution approaches and derive architecture alternatives from these
models.

The derived software architectures are then evaluated with respect to security
and performance in Phase 8 described in Chapter 11. To this end, we apply the
architecture evaluation method Architecture Trade-off Analysis Method (ATAM),
which is selected from the set of existing architecture evaluation methods. The
selection is achieved by our developed comparative evaluation framework in a
systematic way.

For comparing the state-of-the-art methods, we developed an evaluation frame-
work in Chapter 3. In Chapter 12, we apply this evaluation framework to our de-
veloped QuaDRA framework in order to validate whether the identified gaps in
Chapter 3 are addressed by QuaDRA .

In Chapter 13, we describe how the problem-oriented requirements engineer-
ing may be enhanced with the concepts of SPL. In the QuaDRA framework, we
have provided support for developing a single system. In Chapter 13, we show

1.3 Outline 17

how to enhance the problem-oriented requirements engineering for supporting a
product-line development. We extend the problem frames approach with a nota-
tion for modeling variability by providing a UML profile. Furthermore, we pro-
pose the PRoblEm-oriented VarIability RequirementS Engineering (PREVISE)
method, which conducts requirements engineering in software product lines con-
sidering quality requirements. Our method covers domain engineering as well as
application engineering.

In the very last chapter, namely Chapter 14, we conclude this work by provid-
ing a summary of the results. Furthermore, we discuss the research questions and
provide a critical review of how we addressed the research questions in this book.
Finally, we provide suggestions for future research directions.

Chapter 2
Background

Abstract This chapter introduces fundamental basic concepts, notations, and ter-
minologies for requirements engineering as well as software architecture that the
proposed QuaDRA framework and its extension rely on. In addition, the UML
profiles used throughout this book, life-cycle expressions used for describing the
relation between the requirements in different methods of the QuaDRA framework
as well as variability modeling used in the extension of QuaDRA are introduced.
Finally, the description of the real-life case study smart grid used to illustrate the
application of QuaDRA is presented.

2.1 Requirements Engineering

Understanding and describing the problem that the software has to solve in a pre-
cise way is the first thing to do when developing a software [68]. Requirements
engineering (RE) as a sub-discipline of software engineering consists of require-
ments development and requirements management [240]. It covers a structured set
of activities in discovering, documenting, and maintaining a set of requirements
for a computer-based system [223]. The requirements of a software system consist
of functional requirements and quality requirements (also known as non-functional
requirements or NFRs).

We introduce definitions and descriptions of the quality requirements security
and performance in Section 2.1.1. Problem frames as the basis for our problem-
oriented requirements engineering is described in Section 2.1.2.

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_2

20 2 Background

2.1.1 Quality Requirements

For the success of software projects, quality requirements are as critical as func-
tional requirements as the software without considering the necessary quality prop-
erties may be too slow, unusable, or insecure [73, 40]. However, they are often
neglected in practice or poorly described in requirement documents [251].

There is no consensus in the software engineering community regarding the def-
inition of quality requirements (also known as non-functional requirements [184]).
Often, they are referred to as “-ilities” such as reliability or “-ities” such as security.
Nevertheless, there are quality requirements that end neither with “-ility” or “-ity”
such as performance [73]. Chung & Sampaio do Prado Leite [73] introduce the
notion of satisficing when talking about achieving quality requirements1. It refers
to the nature of quality requirements that cannot be addressed absolutely but in a
“good enough sense”. The notion of satisficing reflects the sense of good enough.

Eliciting, modeling, and managing quality requirements is one of the important
challenges in requirements engineering. Quality requirements are considered as
the most expensive and complex ones to deal with [72, 93]. They tend to inter-
fere, conflict, or contradict with each other. Achieving a particular type of qual-
ity requirements might hurt the achievement of other types of quality require-
ments [91, 72]. This negative impact reveals the need for making trade-offs be-
tween conflicting quality requirements to fulfill the overall software goal/purpose.
Performance and security requirements represent such conflicting requirements. In
the following, we describe these requirements and give definitions for them.

Security Requirements

Security is often an afterthought in designing software. Security requirements
are not considered explicitly and therefore not integrated in the software archi-
tecture [211]. Hence, there is a need for explicitly and systematically addressing
security as early as possible in the software development life cycle.

In the international standard ISO/IEC 25010 (SQuaRE) [130] which is the suc-
cessor of ISO/IEC 9126-1, security is defined as one of the characteristics for prod-
uct quality properties. It is divided into the five subcharacteristics confidentiality,
integrity, non-repudiation, accountability, and authenticity. In this book, we fo-

1 Quality requirements or non-functional requirements are treated as softgoals in the NFR Frame-
work introduced by Chung & Sampaio do Prado [73].

2.1 Requirements Engineering 21

cus on confidentiality, integrity, and authenticity which are defined in the standard
ISO/IEC 25010 as follows:

Confidentiality is defined as the “degree to which a product or system ensures
that data are accessible only to those authorized to have access.”

Integrity is defined as the “degree to which a system, product or component
prevents unauthorized access to, or modification of, computer programs or data.”

Authenticity is defined as the “degree to which the identity of a subject or re-
source can be proved to be the one claimed.”

Performance Requirements

According to Bass et al. [45], quality requirements are not completely dependent
on design or on implementation. Performance has partially architectural dependen-
cies and partially non-architectural dependencies. For example, it depends on the
amount of communication between components, on the allocation of the function-
alities to each component, on the usage of shared resources, which are all archi-
tectural dependencies. On the other hand, performance depends also on the choice
of algorithms to implement the functionalities and on how efficient the implemen-
tation of such algorithms is, which are both non-architectural dependencies.

Performance depends upon the load to the system and the resources available
to process the load [47]. Therefore, for performance assessment, performance re-
quirements and domain knowledge are used. Performance requirements describe
the response time characteristics of the system-to-be. Domain knowledge repre-
sents assumptions on the system-to-be such as the workload and the constraints on
resource usage.

In the international standard ISO/IEC 25010 (SQuaRE) [130] performance effi-
ciency (performance hereafter) is defined as one of the characteristics for product
quality properties. It is composed of the subcharacteristics time behavior, resource
utilization, and capacity. Time behavior including response time and throughput is
defined as “the degree to which the response and processing times and throughput
rates of a product or system, when performing its functions, meet requirements.”
In this book, we focus on response time.

22 2 Background

2.1.2 Problem Frames

Problem frames are a means to describe software development problems. They
were proposed by Michael Jackson [133], who describes them as follows:

“A problem frame is a kind of pattern. It defines an intuitively identifiable prob-
lem class in terms of its context and the characteristics of its domains, interfaces
and requirement.”

A problem frame is described by a frame diagram, which basically consists of
domains, interfaces between them, and a requirement. Domains describe entities in
the environment. Jackson distinguishes the domain types biddable domains that are
usually people, causal domains that comply with some physical laws, and lexical
domains that are data representations.

In problem diagrams, interfaces connect domains, and they contain shared phe-
nomena. Shared phenomena may be events, operation calls, messages, and the like.
They are observable by at least two domains, but controlled by only one domain, as
indicated by the name of that domain and “!”. In Fig. 2.1 the notation MD!{data}
(between MeterData and SubmitMD) means that the phenomenon data is con-
trolled by the domain MeterData and observed by the machine SubmitMD.

Fig. 2.1: Problem Diagram for submitting meter data to external entities

When we state a requirement, we want to change something in the world with
the software to be developed. Therefore, each requirement constrains at least one
domain. Such a constrained domain is the core of any problem description, because
it has to be controlled according to the requirements. A requirement may refer to
several other domains. The requirement R4 in Fig. 2.1 constrains the domain WAN.

2.1 Requirements Engineering 23

It refers to the domains MeterData and AuthorizedExternalEntity2. The task is to
construct a machine (i.e., software) that improves the behavior of the environment
(in which it is integrated) in accordance with the requirements.

Requirements analysis with problem frames proceeds as follows: first the envi-
ronment in which the machine will operate is represented by a context diagram. A
context diagram consists of machines, domains and interfaces. Then, the problem
is decomposed into subproblems, which are represented by problem diagrams. A
problem diagram consists of a submachine of the machine given in the context
diagram, the relevant domains, the interfaces between these domains, and a re-
quirement. Figures 2.1 shows a problem diagram in UML notation.

We use problem frames in this book as a basis for requirements engineering.
The use of problem frames has the following benefits:

• It takes the surrounding environment of the software into consideration [133].
• It allows decomposing the overall software problem into simpler subproblems,

thus reducing the complexity of the problem. The reason is that the complex-
ity of each single problem diagram is independent of the size of the system.
Moreover, the number of problem diagrams increase linearly even for large
systems [133].

• It enables us to check for inconsistencies in different parts of the model due to
its semi-formal structure [115].

• It makes it possible to annotate problem diagrams with quality requirements
and additional information such as domain knowledge, particularly when con-
sidering quality requirements [17].

• It allows us to obtain detailed information from the structure of problem di-
agrams. Such information enables us to perform interaction analysis and opti-
mization, whereas other requirements engineering approaches such as scenario-
based approaches and use cases do not contain detailed information for such
analyses [6].

• It not only helps to understand the software problem, but also supports in solv-
ing that problem. The structure of the problem diagrams and the properties
of the involved domains facilitate the development of corresponding architec-
ture components that reflect the problem characteristics. Hence, software ar-
chitectures can be derived from requirement models expressed as problem dia-
grams [69].

2 This example is taken from the case study smart grid which we introduce later on in this chapter.

24 2 Background

2.2 Software Architecture Concepts

In this section, we provide an overview of the main concepts and definitions
of software architecture and architecture terminology (Section 2.2.1 and Sec-
tion 2.2.2), architectural patterns and quality-specific patterns (Section 2.2.3 and
Section 2.2.4), Viewpoint models (Section 2.2.5), architecture description lan-
guages (Section 2.2.6), and architecture evaluation (Section 2.2.7).

2.2.1 Definition of Software Architecture

The need for having a software architecture (SA) discipline has been recognized
in the sixties, seventies, and eighties with growing complexity of software sys-
tems [192, 80]. But the formal work in the area of software architecture began in
the 1990s [187, 80].

Hofmeister et al. [126] describes software architecture as a blueprint of a system
bridging the system requirements and implementation. It does not provide a com-
prehensive refinement of the system, but an abstraction of the system to manage
complexity.

It is generally acknowledged that there is no common agreement on the def-
inition of software architecture [104, 222, 35]. More than 150 definitions of the
software architecture from the literature and from practitioners are collected by the
Software Engineering Institute (SEI) at Carnegie-Mellon University3 [78]. One of
the most used definitions for software architecture is provided by Bass et al. [44]:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationship among them.”

Rozanski and Woods [204] describe two key parts of this definition, namely
system structures and externally visible properties more detailed. Two types of
system structure exist for software architecture:

• The static structure forms the design-time organization of the software. It in-
cludes the elements of the software and their relationships.

• The dynamic structure describes the run-time elements of the software and their
interactions.

Externally visible properties of the system are manifested in two different ways,
namely externally visible behavior and quality properties:

3 http://www.sei.cmu.edu/architecture/

2.2 Software Architecture Concepts 25

• Externally visible behavior specifies what the system does. It defines the func-
tional interactions between the system and its environment.

• Quality properties specify how the system does it. They are non-functional
properties of the system that are externally visible such as performance and
security.

To a software problem, there might be more than one possible solution, known
as candidate architectures. According to Rozanski and Woods [204]:

“A candidate architecture for a system is a particular arrangement of static and
dynamic structures that has the potential to exhibit the system’s required externally
visible and quality properties.

In this book, we explore the solution space to identify candidate architectures
with respect to quality requirements. The candidate architectures or alternative
architectures stem from various architectural patterns having different impact on
quality requirements or quality strategies help satisficing quality requirements.

Rozanski and Woods [204] define an Architecture Description (AD) as
“a set of products that documents an architecture in a way its stakeholders can

understand and demonstrates that the architecture has met their concerns.”
Products in this context is referred to architectural models, scope definition,

constraints, and principles.

2.2.2 Difference between Architecture and Design

In the previous section, we gave an overview of existing definitions of software
architecture. In this section, we discuss how architecture is different from design.
This difference matters for this book as we have been developing a method includ-
ing requirements analysis and software architecture. Therefore, we need to know
for our method

• where are the boundaries to design
• which decisions are “architectural” and which are “non-architectural”

Perry & Wolf [192] clearly distinguish in their definitions between architecture
and design. They define architecture as follows:

“Architecture is concerned with the selection of architectural elements, their
interactions, and the constraints on those elements and their interactions neces-
sary to provide a framework to satisfy the requirements and serve as a basis for
the design.”

26 2 Background

Design is defined by Perry & Wolf [192] as:
“Design is concerned with the modularization and detailed interfaces of the

design elements, their algorithms and procedures, and the data types needed to
support the architecture and to satisfy the requirements.”

Hence, the design phase consists of two levels: high-level structure and low-
level structure of the software4. Software architecture (or architectural design)
is concerned with the design and implementation of the high-level structure of
the software [156, 174], whereas detailed design (or non-architectural design) is
concerned with the design and implementation of the low-level structure of the
software. From the perspective of the architecture, detailed design is part of the
realisation [194, pp 116,117].

According to Hofmeister et al. [126], software architecture is placed after re-
quirements and domain analysis and before detailed design, coding, integration,
and testing. This provides an approximate order of executing the tasks, it however
does not mean that the analysis phase must be finished before the design phase
begins. Overlaps and iterations between tasks exist. As described in Section 2.1,
in the requirements engineering phase the requirements of the system are elicited,
analyzed, and managed. It results in requirements that provide the key input to the
software architecture design. Requirements may need to be changed according to
the software architecture tasks. The software architecture guides the implementa-
tion tasks, including detailed design, coding, integration, and testing.

According to Clements et al. [78], decisions that are concerned with satisfying
functional and quality requirements can be seen as “architectural decisions”. De-
cisions that result in element properties that are not visible are “design decisions”
and not “architectural decisions”. Typical examples for design decisions are the
choice of data structures and algorithms.

Rozanski & Woods [204] state that “a concern, problem, or system element is
architecturally significant if it has a wide impact on the structure of the system
or on its important quality properties such as performance, scalability, security,
reliability, or evolvability.” Whether something is architecturally significant is a
subjective decision which is driven by the judgement of the architect, its skill and
expertise, and the circumstances of each individual system [204].

4 Also called coarse-grained design and fine-grained design

2.2 Software Architecture Concepts 27

2.2.3 Architectural Patterns

The software architecture is to a large extent influenced by its quality require-
ments [56, 44, 126]. It has to fulfill the defined functional requirements as well
as the desired quality requirements [56, 44, 126]. Developing such a software ar-
chitecture that achieves its quality requirements is one of the most demanding
tasks [39]. Architectural patterns in general contribute to the satisfaction of de-
sired quality requirements.

Architectural styles have been investigated for many years in different areas of
computer science [175]. According to Bass et al. [44], an architectural style is
“a specialization of element and relation types, together with a set of constraints
on how they can be used.”

We use the term architectural pattern as a synonym for architectural style as
suggested by Bass et al. [44] and Hofmeister et al. [126]. The idea of software
patterns stems originally from Christopher Alexander, a professor of building ar-
chitecture, who published a series of books about patterns, pattern language, and
catalog of patterns in building architecture [98].

Architectural patterns [62, 215, 33] describe the high-level structure and be-
havior of software systems. They represent well-proven generic solutions to prob-
lems that arise recurrently at the architectural design level. An architectural pattern
has three essential parts: a problem definition, a description of the problem’s con-
text, and a corresponding solution to the problem [109, 33]. Besides satisfying
functional requirements, architectural patterns aim at satisfying several quality re-
quirements. Applying an architectural pattern results in consequences regarding
the fulfillment of quality requirements. Positive consequences are documented as
benefits whereas the negative consequences are labeled as liabilities. Patterns may
have different variants that extend their functionality and/or come with different
benefits and liabilities.

In the literature, there is no consensus on the classification of patterns, regard-
ing their philosophy, the way of describing patterns, and the granularity of archi-
tectural patterns. For example, interpreter is a classical design pattern introduced
by Gamma et al. [103]. It, however, can be treated like an architectural pattern,
since it is a central and externally visible component [33]. Hence, there is no sin-
gle catalog of architectural patterns to be used by software architects. We decided
to select the patterns from Buschmann et al. [62], which are among the best set of
the existing architectural pattern collections.

28 2 Background

2.2.4 Quality-specific Mechanisms and Tactics

Architecture tactics or Tactics are established and proven strategies that can be
used to help fulfill a particular quality requirement [44, 204]. From an architectural
view a tactic may affect the overall architecture only slightly or, in some cases, an
implemented tactic may not be visible in the architecture at all. For example, a
client/server architecture could be augmented by a “Heartbeat” tactic to address
availability [44]. It enables the server to know which clients are still alive; how-
ever, this modification is neither an architectural pattern nor is its implementation
guaranteed to modify existing architectural views.

Introduce concurrency is an example for a performance tactic. It proposes to
process the requests in parallel by processing different event streams on different
threads for processing different sets of activities. This tactic describes a coarse-
grained solution to help achieve response time requirements. Such a tactic can be
mapped to more fine-grained mechanisms such as master-worker. The same holds
for security tactics. For example, maintain data confidentiality can be achieved by
the fine-grained mechanism encryption. To this end, we make use of such fine-
grained mechanisms instead of tactics in the QuaDRA framework. These mecha-
nisms are briefly described in the following.

2.2.4.1 Security patterns and mechanisms

Encryption is an important means to achieve confidentiality. A plaintext is en-
crypted using a secret key and decrypted either using the same key (symmetric
encryption) or a different key (asymmetric encryption). One advantage of sym-
metric encryption is that it is faster than asymmetric encryption. The disadvan-
tage is that both communication parties must know the same key, which has to
be distributed securely or negotiated. In asymmetric encryption, there is no key
distribution problem, but a trusted third party is needed that issues the key pairs.

RBAC Verifying permission is a frequently recurring problem in security rele-
vant systems. Hence, it has been treated in several access control patterns for
the design phase [248, 211]. Access control patterns define security constraints
regarding access to resources. Role-Based Access Control (RBAC) provides
access to resources based on functions of people in an environment, known as
roles, and the kind of permission they have, known as rights.

Digital signature is an important means for achieving integrity and authenticity
of data. Using the digital signature, the Sender produces a signature using the
private key and the data. The receiver ensures that the data is created by the
known sender using the public key.

2.2 Software Architecture Concepts 29

MAC is an important means for achieving integrity and authenticity of data.
Message Authentication Code (MAC) uses a secret key and the data to generate
a MAC. The verifier uses the same secret key to detect changes to the data.

2.2.4.2 Performance patterns and mechanisms

Load Balancer is a mechanism that is used to distribute computational load
evenly over two or more hardware components. The load balancing pattern con-
sists of a component called Load Balancer, and multiple hardware components
that implement the same functionality. The load balancer can be realized as a
hardware or a software component [96].

Master Worker makes it possible to serve requests in parallel, similarly to load
balancing. In contrast to load balancing that uses hardware components, the
master-worker pattern provides a software solution. It consists of a software
component called Master and two or more other software components, called
Worker. The task of the master is to divide the request into parallel tasks and to
forward them to the workers, which manage the smaller tasks [96].

First Things First ensures that the most important tasks will be processed if
not every task can be processed. The problem that this pattern aims at solving
is that a temporary overload of inbound requests is expected. This situation
may overwhelm the processing capacity of a specific resource. The First Things
First pattern uses the strategy of prioritizing tasks and performing the important
tasks with high priority first. In the case of a permanent overload, applying this
pattern would cause the starving of low-priority tasks [220].

Flex Time reduces the load of the system by spreading it temporally. That is, it
moves the load to a different period of time where the inbound requests do not
exceed the processing capacity of the resource. The problem that this pattern
solves is that an overload of the system is expected. The inbound requests ex-
ceed the processing capacity of a specific resource. Flex Time is only applicable
when some tasks can be performed at a different period of time [220].

2.2.5 Viewpoint Models

As the architecture of a software system is a complex construct, it cannot be de-
scribed in one single model. There are several representations of one or more struc-
tures and abstraction levels for software architecture, each of which describes a
separate concern of the architecture [204]. However, ISO/IEC/IEEE 42010 [131],

30 2 Background

which replaced IEEE Recommended Practice for Architectural Description of
Software Intensive Systems [129], provides no commitment what structures (com-
monly called views [204]) are required for software architecture. This ambiguity
in defining a software architecture and its constituents makes the understanding
and communication between the involved groups of stakeholders inefficient and
error-prone [222].

Common architectural view models summarized from the literature [174] are
Kruchten’s 4+1 view model [156], SEI viewpoint model [80], Siemens 4 view
model [126], and Raozanski & Woods view model [204, 245]. Table 2.1 shows the
views of each view model classified into requirement view, design view, and real-
ization view. These view models can be extended with further views if required,
for example for representing quality requirements.

Table 2.1: Overview of common view models

View model Requirement view Design view Realization view
4+1 use case view logical view development view

process view physical view
Siemens - conceptual view code view

module view execution view
SEI - functional view code view

concurrency view development view
physical view

Raozanski & context view functional view development view
Woods information view deployment view

concurrency view operational view

2.2.6 Architecture Description Languages vs UML

As the architecture description of a software system is essential for communication
among stakeholders and for being a basis for later phases of software development,
it should be unambiguous. Informal box and arrow diagrams are used by most of
the architects, which are highly ambiguous [187]. Hence, there have been some at-
tempts in the software engineering research community to specify design specific
languages, called Architecture Description Languages (ADLs) [80]. ADLs are a
means for representing the architecture of a software system in a formal way [187].
Some prominent ADLs are Rapide [170], Darwin [171], UniCon [214], etc. How-

2.2 Software Architecture Concepts 31

ever, the ADLs did not become very popular among the practitioners except for a
few in a specific domain [187].

In contrast, the Unified Modeling Language (UML) [235] is being widely
adopted to describe architectural constructs. UML is originally not constructed to
support architecture descriptions, since it does not support architectural concepts
(for example layers) and the successive refinement of design from the architectural
abstractions [80]. UML lacks formal semantics and is therefore a source of ambi-
guity and inconsistency [187]. However, UML has received much attention from
practicing architects as its facilities can be tailored to describe architectures. The
following reasons might contribute to the popularity of UML [187]:

• Providing a graphical representation of the software architecture. Most of the
ADLs are textual and less appealing to the software architects.

• Supporting multiple views which are important to the software architecture.
• Many tools are available for UML. ADLs lack supporting tools.
• UML is a general-purpose modeling language in contrast to most of the ADLs

that are constructed for domain-specific applications.

2.2.7 Architecture Evaluation

Finding errors during requirements analysis or early design and correcting them is
less costly than finding the same errors during testing. An architecture represents
the results of early design decisions. Architecture evaluation helps finding those
errors early to avoid failure. An architecture evaluation determines how suitable
the architecture is with respect to a set of goals and how problematic with respect
to another set of goals. The results of an architecture evaluation are information
and insights about the architecture [80]. Architecture Trade-off Analysis Method
(ATAM) is one of the well-known methods for evaluating architectures [204].
ATAM consists of nine steps categorized in four groups presentation (Steps 1 -
3), investigation and analysis (Steps 4 - 6), testing (Steps 7 and 8), and reporting
(Step 9). The steps are summarized as follows:

1. Present the ATAM: ATAM is described to the assembled participants by the
evaluation leader.

2. Present the business drivers: The business goals motivating the development
effort and the primary architectural drivers (for example high security) are de-
scribed by the project manager.

3. Present the architecture: The architecture is described by the architect focus-
ing on how business drivers are addressed.

32 2 Background

4. Identify the architectural approaches: The architect identifies architectural
approaches.

5. Generate the quality attribute utility tree: Quality attributes comprising sys-
tem utility (performance, security, etc.) are elicited, specified down to the level
of scenarios, and prioritized.

6. Analyze the architectural approaches: Architectural approaches addressing
scenarios identified in the previous step are elicited and analyzed. In this step,
architectural risks, nonrisks, sensitivity points, and trade-off points5 are identi-
fied.

7. Brainstorm and prioritize scenarios: Scenarios are prioritized involving all
the stakeholders.

8. Analyze the architectural approaches: This step re-applies Step 6 using the
highly ranked scenarios from the previous step. In this step, additional architec-
tural approaches, risks, nonrisks, sensitivity points, and trade-off points might
be identified.

9. Present the results: The information collected during the ATAM steps is pre-
sented to the assembled stakeholders by the ATAM team.

2.3 UML Profiles

UML is a widely used notation to express analysis and design artifacts. Therefore,
we use the UML profile for problem frames [115] and the Architecture profile [70]
that extend the UML meta-model to support problem-oriented requirements analy-
sis as well as the representation of quality-based software architecture with UML.
These profiles can be used to create the diagrams for the problem frames approach.
The description of UML4PF is given in Section 2.3.1 while the Architecture pro-
file is described in Section 2.3.2. In addition, we introduce the dependability pro-
file [114] in Section 2.3.3 that we use for annotating security requirements. The
MARTE profile [233] used for annotating performance requirements is described
in Section 2.3.4.

5 The terms risk, nonrisk, sensitivity point, and trade-off point are defined in Chapter 11 (see
Section 11.5 on page 367) when applying ATAM.

2.3 UML Profiles 33

2.3.1 UML profile for Problem Frames

Hatebur and Heisel proposed a UML profile for problem frames [115] that extends
the UML meta-model. It allows one to express Jackson’s original notation in UML.
Côté et al. [81] developed an Eclipse-Plugin, called UML4PF, that facilitates rep-
resenting the different diagrams occurring in the problem frame approach in UML.
The developed plug-in contains a number of validation conditions in terms of OCL
expressions [236] to check the consistency of model elements within one single di-
agram as well as between different diagrams.

Diagram types

Five kinds of diagrams exist in the UML profile for problem frames, namely the
context diagram, problem frame, problem diagram, domain knowledge diagram,
and technical context diagram. To represent these diagrams the corresponding
stereotypes�ContextDiagram�,�ProblemFrame�,�ProblemDiagram�,
�DomainKnowledgeDiagram�, and�TechnicalContextDiagram� have to
be applied. These stereotypes extend the meta-class Package in the UML meta-
model, as illustrated in Fig. 2.2. The context diagram and the technical context
diagram are special cases of a domain knowledge diagram.

Fig. 2.2: Diagram types

Domain types

Domains are represented by classes (extending the meta-class Class) with the
stereotypes �Domain� and �Machine�. More specific stereotypes are de-
fined for different types of domains such as �BiddableDomain�, �Causal-

34 2 Background

Domain�, and �LexicalDomain�. To describe the problem context, a con-
nection domain (�ConnectionDomain�) between two other domains may be
necessary. Connection domains establish a connection between other domains by
means of technical devices. Examples are video cameras, sensors, or networks.
This kind of modeling allows one to add further domain types, such as�Display-
Domain� (introduced in [82]), being a special case of a causal domain. Domain
types are shown in Fig. 2.3.

Fig. 2.3: Domain types

Statement types

As depicted in Fig. 2.4, domain knowledge (�DomainKnowledge�) and re-
quirements (�Requirement�) are special kind of statements. Using the attribute
description of the stereotype �Requirement�, a requirement can be textually
described. Assumptions (�Assumption�) and facts (�Fact�) represent spe-
cial kinds of domain knowledge.

Interface types

In problem diagrams, interfaces connect domains. For representing interfaces, we
use associations with the stereotype �connection� (extending the meta-class

2.3 UML Profiles 35

Fig. 2.4: Statement types

Association). Using the attribute description of the stereotype �connection�,
a textual description to an interface can be given. For annotating the interfaces
in a more precise way, more specific connections such as �call return� and
�stream� are available as shown in Fig. 2.5.

Dependency types

Each requirement constrains at least one domain. This is expressed by a depen-
dency from the requirement to a domain with the stereotype �constrains�. A
requirement may refer to several domains in the environment of the machine. This
is expressed by a dependency from the requirement to a domain with the stereo-
type�refersTo�. These dependencies extend the meta-class Dependency of the
UML meta-model.

36 2 Background

Fig. 2.5: Interface types

UML4PF Tool Support

For supporting requirements analysis with problem frames the tool UML4PF [81]
is developed as an Eclipse plug-in6. It contains the UML profile for problem frames
which allows creating problem diagrams as class diagrams in UML. For creating
problem diagrams, we use Papyrus7 as the graphical editor, which is available as
an Eclipse plug-in, open-source, and EMF-based. Nevertheless, any other EMF-
based editor can be used for creating the different diagram types.

UML4PF maintains a set of validation conditions expressed in OCL8 which can
be validated using another Eclipse plug-in for OCL. The components of UML4PF
are shown in Fig. 2.6. Boxes highlighted in gray denote components that UML4PF
re-uses and those in white represent those components particularly created for
UML4PF. The features of UML4PF can be summarized as follows:

Requirements Editor supports adding new requirements in a textual form.

6 http://www.eclipse.org/
7 https://eclipse.org/papyrus/
8 http://www.omg.org/spec/OCL/2.0/

2.3 UML Profiles 37

sdgenEditor e.g.
Papyrus

OCL expressions
− Interactive Model−

Transformer

Eclipse incl. EMF & OCL

UML Profile

for Problem Frames

− OCL Validator

− sdgen Editor

− Model Generator
− Requirements EditorUML4PF

Fig. 2.6: Components of the UML4PF Tool (taken from [81])

Model Generator automatically generates model elements.
OCL Validator checks OCL expressions for validity and consistency of the re-

quirement models.
sdgen Editor supports editing sequence diagrams.
Interactive Model Transformer supports creating software architectures using

interactive model transformations.

2.3.2 Architecture Profile

We describe the structural view of software architectures by composite structure
diagrams consisting of components and connectors.

Component types

For modeling components in the composite structure diagrams, the UML meta-
class Class is extended by the stereotype �Component�. For each machine
in the context diagram, one or more architectures are developed. The stereotypes
�Initial architecture�,�Implementable architecture�, and�Layered ar-
chitecture� indicate different stages of the software architecture development
(see Fig. 2.7). Furthermore, the stereotypes �Hardware� and �Software�
are introduced for representing hardware and software components.

There are different stereotypes that can be used for the machine domain. If
the machine domain represents a distributed system, one uses the stereotype
�distributed�. By a local system such as a single computer, the stereotype
�local� is used as shown in Fig. 2.8. It offers the attributes Multiprocessor for
stating whether the system is a multiprocessor system, MemorySpeed for giving

38 2 Background

the memory speed, and OS for describing the operating system. The stereotype
�process� expresses a process on a certain platform. A process can be de-
scribed by the attributes Multiprocessor and usedOS. The stereotype �task�
represents a single task within a process with the attribute usedOS for describing
the used operating system.

Fig. 2.7: Technical component types

Fig. 2.8: Component types

2.3 UML Profiles 39

Connector types

For modeling connectors in software architectures, we use the same stereotypes
that we used for interfaces in the UML profile for problem frames. The stereotypes
for connectors, however, extend the meta-class Connector instead of the meta-class
Association for interfaces.

2.3.3 Dependability Profile

We use the UML profile for dependability proposed by Hatebur and Heisel [114]
to annotate problem diagrams with security requirements.

Modeling confidentiality

For modeling a confidentiality requirement, the stereotype �Confidentiality�
has to be applied. It is a specialization of the stereotype �Dependability�, as
shown in Fig. 2.9, which extends the meta-class Class in the UML meta-model.
The stereotype �Confidentiality� states that the confidentiality of the domain
which is constrained in the problem diagram should be preserved by the stake-
holder and its disclosure should be prevented from the attacker. The constrained
domain is a causal domain. The attackers should be described in detail. The objec-
tive, skills, equipment, knowledge, preparation time, and the attack time have to be
described. For describing the attackers, the stereotype �Attacker� (not shown
in Fig. 2.9) has to be used which is a special biddable domain.

Modeling integrity

For modeling an integrity requirement, the stereotype �Integrity� has to be
applied which is similarly to the stereotype �Confidentiality�, a specializa-
tion of the stereotype �Dependability�, as shown in Fig. 2.9. The stereotype
�Integrity� states that the data or service of the domain which is constrained
in the problem diagram (constrainedByFunctional) must be either correct or the
domain which is influenced by a violation (influencedViolation) must perform an
action (actionIfViolation).

40 2 Background

Modeling authenticity

An authenticity requirement can be modeled using the stereotype�Authenticity�.
It is a specialization of the stereotype �Dependability� (see Fig. 2.9). The
stereotype �Authenticity� states that access to the influenced domain (influ-
enced) must be permitted for known domains (known) and must be denied for
unknown domains (unknown).

Fig. 2.9: Relevant stereotypes of dependability profile

2.3.4 MARTE Profile

The UML profile for Modeling and Analysis of Real-Time and Embedded sys-
tems (MARTE) [233] adopted by OMG consortium extends the UML modeling
language to support modeling of performance and real-time concepts. MARTE
replaced the UML profile for Schedulability, Performance, and Time specifi-
cation (SPT) [232]. The MARTE profile consists of the three main packages
MARTE foundations, MARTE design model, and MARTE analysis model, shown
in Fig. 2.10.

The package MARTE foundations contains elements to be reused by two other
packages. It consists of the sub-packages for defining core elements (CoreEle-
ments package), modeling non-functional properties (NFP package), time prop-

2.3 UML Profiles 41

erties (Time package), generic resource modeling (GRM package), and resource
allocation (Alloc package).

Fig. 2.10: Package structure of the MARTE profile

The packages MARTE design model and MARTE analysis model are structured
for designing systems and annotating system properties for analysis purposes. The
package MARTE design model contains the sub-packages Generic Component
Model package (GCM) that supports the modeling of component-based systems,
High-Level Application Modeling package (HLAM) for modeling of high-level
features, Software Resource Modeling (SRM), and Hardware Resource Modeling
(HRM) for detailed modeling of software and hardware resources.

The package MARTE analysis model contains the sub-packages Generic Quan-
titative Analysis Modeling (GQAM), Schedulability Analysis Modeling (SAM), and
Performance Analysis Modeling package (PAM). The package GQAM provides
generic concepts for analysis modeling that are further specialized by the packages
PAM for analysis of performance properties and SAM for analysis of schedulability
properties.

To model performance requirements and domain knowledge, we use the pack-
ages CoreElements, NFP, Time, GRM, HRM, GQAM, and PAM. There is an open-
source implementation of the MARTE specification based on Eclipse9 provided
by Papyrus UML10, which we use to annotate our requirements analysis models
with performance analysis properties.

9 http://www.eclipse.org/
10 https://www.eclipse.org/papyrus/

42 2 Background

2.4 Life-Cycle Expressions

The problem frames approach decomposes the overall problem into smaller sub-
problems that fit to problem frames. We use lightweight life-cycle expressions to
describe the relation between the requirements of the corresponding problem di-
agrams to be achieved to solve the overall problem. They are used in different
methods of the QuaDRA framework. The life-cycle expressions can be built using
the following syntax.

LC ::=R | (LC) | [LC] | LC ∗ | LC+ |
LC ; LC | LC | LC | LC || LC

The syntactical elements have the following semantics. Each requirement R
represents a life-cycle expression. Round braces are used to define the evaluation
order of the expression for a clear precedence of the operators. Let L and M be
life-cycle expressions, then

• [L] is the life-cycle, where L is optionally executed.
• L∗ is the life-cycle, where L is executed 0 or more times.
• L+ is the life-cycle, where L is executed at least once.
• L; M is the life-cycle, where at first L is executed and then M .
• L |M is the life-cycle, where either L or M is executed.
• L ||M is the life-cycle, where L and M are executed concurrently.

2.5 Variability Modeling

In software product line engineering (SPLE), orthogonal variability modeling
(OVM) describes an approach to capture a product line’s variability. In contrast
to other approaches, which integrate variability into existing design artifacts, (e.g.
using UML profiles, cf. [256]) OVM explicitly captures variability in distinct mod-
els. Using traceability links, elements from OVM models can be connected to
arbitrary design or development artifacts or elements within these artifacts, e.g.
requirements, a state within a UML state machine, or implemented classes [194].

OVM comprises a set of model elements that allow for modeling variability.
The central model element is the abstract variation point (VP). A VP defines a
place where single products may differ. Since a VP is an abstract model element, an
instance must either be an internal VP or an external VP. Internal VPs are visible
only to the developers, whereas external VPs are visible to every stakeholder. This

2.6 Case Study Smart Grid 43

visibility concept allows for creating views that contain only elements that are
relevant for non-developers.

Since an OVM model defines the variability of an entire SPL, it provides a
concept to derive products. Several model elements (including VPs) support a se-
lection concept. A single product is defined through all elements that have been
selected. To indicate a choice for the developer, selectable VPs may be optional.
In contrast, if a VP is considered essential, it is declared mandatory. A mandatory
VP must be selected for every product.

While VPs define where products may differ, variants define how they differ.
Variants and VPs are linked through variability dependencies (VD), where a vari-
ant has to be associated with at least one VP (in turn, a VP must be associated
with at least one variant). Similar to VPs, variability dependencies may be either
optional or mandatory. If a VP is selected and is associated with a variant through
an optional VD, this very variant may be selected. However, if the association is a
mandatory one, the variant must be selected.

To ensure flexibility in the product derivation, OVM offers the possibility to
define alternate choices. An alternate choice groups a set of variants that are as-
sociated with the same VP through optional dependencies and defines a minimum
and a maximum value. In product derivation, a number of n with minimum 6
n 6 maximum variants have to be selected if their corresponding VP has been
selected.

Since in practice relationships and interactions between variants and VPs can
be observed, OVM allows for defining these relationships through variability con-
straints. Variability constraints can be set up between two variants, two VPs, or
a variant and a VP. OVM provides two types of variability constraints: requires
and excludes. The requires constraint is directed from a source to a target element
and requires the target to be selected if the source has been selected. The excludes
constraint is undirected and prevents selecting one element if the other element has
been selected.

2.6 Case Study Smart Grid

To illustrate the application of our framework, we use the real-life case study of
smart grid. As sources for real functional and quality requirements, we consider di-
verse documents such as “Application Case Study: Smart Grid” and “Smart Grid
Concrete Scenario” provided by the industrial partners of the EU project NES-

44 2 Background

SoS11, the “Protection Profile for the Gateway of a Smart Metering System” [155]
provided by the German Federal Office for Information Security12, “Smart Me-
tering Implementation Programme, Overview Document” [106] and “Smart Me-
tering Implementation Programme, Design Requirements” [105] provided by the
UK Office of Gas and Electricity Markets13, and “D1.2 Report on Regulatory Re-
quirements [201]” and “Requirements of AMI (Advanced Multi-metering Infras-
tructure”) [200] provided by the EU project OPEN meter14.

The smart grid case study is suitable for illustrating the applicability of the
methods proposed in the QuaDRA framework due to the following reasons:

Consideration of quality requirements: In the smart grid case study, different
kinds of quality requirements have to be taken into account. We list them in the
following:

Security: For instance, a smart grid involves a wide range of data that should
be treated in a secure way. Additionally, introducing new data interfaces to
the grid (smart meters, collectors, and other smart devices) provides new
entry points for attackers. Therefore, special attention should be paid to se-
curity concerns.

Performance: The number of smart devices to be managed has a deep impact
on the performance of the whole system. This makes performance of smart
grids an important issue.

Considering these different kinds of quality requirements in the smart grid case
study allows us to illustrate:

• the elicitation and modeling of quality requirements (Phase 1: context elici-
tation & problem analysis, Chapter 4)

• the selection of architectural patterns (Phase 2: architectural pattern selec-
tion, Chapter 5)

• the capturing of quality-related domain knowledge and its integration in the
requirement models (Phase 3: domain knowledge analysis, Chapter 6),

• the exploration of quality-specific solution alternatives (Phase 5: quality so-
lution identification & analysis, Chapter 8).

Consideration of stakeholders: Due to the fact that different stakeholders with
diverse and partially contradicting interests are involved in the smart grid, the

11 http://www.nessos-project.eu/
12 www.bsi.bund.de
13 http://www.ofgem.gov.uk
14 http://www.openmeter.com/

2.6 Case Study Smart Grid 45

requirements for the whole system contain conflicts or undesired mutual influ-
ences. Therefore, the smart grid is a very good candidate to illustrate

• the applicability of our method for detecting interactions among functional
and quality requirements (Phase 4: requirement interaction analysis, Chap-
ter 7),

• the resolution of interacting requirements by generating requirement alter-
natives, selecting, and applying quality-specific solution alternatives (Phase
6: quality solution selection & application, Chapter 9),

• the derivation of architecture alternatives (Phase 7: quality-based software
architecture alternative derivation & evaluation).

We give a description of smart grids in Section 2.6.1. Section 2.6.2 presents
the functional requirements of the smart grid case study that we use throughout
this work. The relevant security and performance requirements are given in Sec-
tions 2.6.3 and 2.6.4.

2.6.1 Description of Smart Grids

To use energy in an optimal way, smart grids make it possible to couple the genera-
tion, distribution, storage, and consumption of energy. Smart grids use information
and communication technology (ICT) which allows for financial, informational,
and electrical transactions.

Fig. 2.11: The context of a smart grid system

46 2 Background

Figure 2.11 shows the simplified context of a smart grid system based on the
protection profile [155]. We first define the terms specific to the smart grid domain
taken from the protection profile:

Gateway represents the central communication unit in a smart metering system.
It is responsible for collecting, processing, storing, and communicating meter
data.

Meter data refers to meter readings measured by the meter regarding consump-
tion or production of a certain commodity.

Meter represents the device that measures the consumption or production of a
certain commodity and sends it to the gateway.

Authorized external entity could be a human or IT unit that communicates with
the gateway from outside the gateway boundaries through a Wide Area Network
(WAN). The roles defined as external entities that interact with the gateway
and the meter are consumer, grid operator, supplier, gateway operator, gateway
administrator, . . . (for the complete list of possible external entities see the
protection profile [155]).

WAN (Wide Area Network) provides the communication network that intercon-
nects the gateway with the outside world.

LMN (Local Metrological Network) provides the communication network be-
tween the meter and the gateway.

HAN (Home Area Network) provides the communication network between the
consumer and the gateway.

LAN (Local Area Network) provides the communication network that intercon-
nects domestic equipment or metrological equipment15.

Consumer refers to the end user or producer of commodities (electricity, gas,
water, or heat).

2.6.2 Functional Requirements

The functionality of the smart grid is described as use cases. The use cases given
in the documents of the open meter project are divided into the three categories
minimum, advanced, and optional. Minimum use cases are necessary to achieve
the goals of the system, whereas advanced use cases are of high interest, but might
not be absolutely required, and optional use cases provide add-on functions. As
treating all 20 use cases would go beyond the scope of this work, we decided to

15 In protection profile, LAN is referred to as hypernym for LMN (Local Metrological Network)
and HAN (Home Area Network).

2.6 Case Study Smart Grid 47

consider only the use case Meter Reading for Billing. This use case is concerned
with gathering, processing, and storing meter readings from smart meters for the
billing process. The considered use case belongs to the category minimum.

The protection profile [155, p.18] states that “the Gateway is responsible for
handling Meter Data. It receives the Meter Data from the Meter(s), processes it,
stores it, and submits it to external parties.” Therefore, we define the requirements
R1-R3 to receive, process, and store meter data from smart meters. The require-
ment R4 is concerned with submitting meter data to authorized external entities.
The gateway shall also provide meter data for consumers for the purpose of check-
ing the billing consistency (R5). Requirements with their descriptions are listed in
Table 2.2.

Table 2.2: Requirements for smart metering

Requirement Description Related
functional
requirement

R1 Smart meter gateway shall receive meter data from smart meters -
R2 Smart meter gateway shall process meter data from smart meters -
R3 Smart meter gateway shall store meter data from smart meters -
R4 Smart meter gateway shall submit processed meter data to autho-

rized external entities
-

R5 The gateway shall provide meter data for consumers for the purpose
of checking the billing consistency

-

R6 The gateway shall provide the protection of integrity when receiving
meter data from a meter via the LMN

R1

R7 The gateway shall provide the protection of confidentiality when re-
ceiving meter data from a meter via the LMN

R1

R8 The gateway shall provide the protection of authenticity when re-
ceiving meter data from a meter via the LMN

R1

R9 Data shall be protected from unauthorized disclosure while persis-
tently stored in the gateway

R3

R10 Integrity of data transferred in the WAN shall be protected R4
R11 Confidentiality of data transferred in the WAN shall be protected R4
R12 Authenticity of data transferred in the WAN shall be protected R4
R13 The gateway shall provide the protection of integrity when transmit-

ting processed meter data locally within the LAN
R5

R14 The gateway shall provide the protection of confidentiality when
transmitting processed meter data locally within the LAN

R5

R15 The gateway shall provide the protection of authenticity when trans-
mitting processed meter data locally within the LAN

R5

R16 Data shall be protected from unauthorized disclosure while tem-
porarily stored in the gateway

R1

48 2 Background

R18 The time to retrieve meter data from the smart meter and publish it
through the WAN shall be less than 5 seconds (together with R20,
R22, R24)

R1

R19 The time to retrieve meter data from the smart meter and publish it
through the HAN shall be less than 10 seconds (together with R21,
R23, R25)

R1

R20 The time to retrieve meter data from the smart meter and publish it
through the WAN shall be less than 5 seconds (together with R18,
R22, R24)

R2

R21 The time to retrieve meter data from the smart meter and publish it
through the HAN shall be less than 10 seconds (together with R19,
R23, R25)

R2

R22 The time to retrieve meter data from the smart meter and publish it
through the WAN shall be less than 5 seconds (together with R18,
R20, R24)

R3

R23 The time to retrieve meter data from the smart meter and publish it
through the HAN shall be less than 10 seconds (together with R19,
R21, R25)

R3

R24 The time to retrieve meter data from the smart meter and publish it
through WAN shall be less than 5 seconds (together with R18, R20,
R22)

R4

R25 The time to retrieve meter data from the smart meter and publish it
through the HAN shall be less than 10 seconds (together with R19,
R21, R23)

R5

2.6.3 Security Requirements

To ensure security of meter data, the protection profile [155, pp. 18, 20] demands
protection of data from unauthorized disclosure while received from a meter via
the LMN (R7), temporarily or persistently stored in the gateway (R9, R16), trans-
mitted to the corresponding external entity via the WAN (R11), and transmitted
locally within the LAN (R14). The gateway shall provide the protection of au-
thenticity and integrity when receiving meter data from a meter via the LMN, to
verify that the meter data has been sent from an authentic meter and has not been
altered during transmission (R6, R8). The gateway shall provide the protection of
authenticity and integrity when sending processed meter data to an external entity,
to enable the external entity to verify that the processed meter data has been sent
from an authentic gateway and has not been changed during transmission (R10,
R12, R13, R15).

2.6 Case Study Smart Grid 49

2.6.4 Performance Requirements

The report “Requirements of AMI” [200, p. 199–201] demands that the time to
retrieve meter data from the smart meter and publish it through the WAN shall be
less than 5 seconds. Since we decompose the whole functionality, from retriev-
ing meter data to publishing it, into requirements R1-R4, we also decompose this
performance requirement into the requirements R18 (related to R1), R20 (related
to R2), R22 (related to R3), and R24 (related to R4). The requirements R18, R20,
R22, and R24 shall be fulfilled in a way that in total they do not need more than 5
seconds.

Further, the report “Requirements of AMI” states that for the benefit of the
consumer, actual meter readings are to be provided to the end consumer device
through HAN. It demands that the time to retrieve meter data from the smart meter
and publish it through HAN shall be less than 10 seconds. Similar to the previous
requirement, we decompose this requirement into the requirements R19 (related
to R1), R21 (related to R2), R23 (related to R3), and R25 (related to R5). These
requirements together shall be fulfilled in less than 10 seconds.

Chapter 3
Framework for Identifying Meta-Requirements

Abstract As motivated in the very first chapter, this book is an attempt to address
the need for a software engineering method to bridge the gap between require-
ments engineering and software architecture with respect to quality requirements.
This chapter identifies what is needed for such a method by 1) identifying the
meta-requirements that such a method should fulfill and developing an evaluation
framework based on the identified meta-requirements, 2) capturing the state-of-
the-art in this area by conducting a systematic literature review and producing an
overview of existing work, 3) analyzing the existing work by applying the evalu-
ation framework. Our evaluation underlines the lack of systematic guidelines and
methods for quality-aware development of requirements and software architecture.
It shows that none of the existing methods fulfills all meta-requirements we identi-
fied before. In further chapters of this book, we describe our QuaDRA framework
which addresses the gap identified in this chapter by providing a method sup-
porting the development of requirements and software architecture with respect to
quality requirements.

3.1 Introduction

Substantial research in the fields of requirements engineering as well as software
architecture has been done for many years, however, in isolation [53, 186]. The
problem with existing software development approaches is that on the one hand
requirements are elicited, analyzed, and specified in isolation without considering
the impact of architectural decisions. On the other hand, design decisions are made
without managing conflicts and making necessary changes in the requirements. As

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_3

52 3 Framework for Identifying Meta-Requirements

requirements engineering and software architectural design affect each other, it is
neither feasible nor reasonable to separate them.

The software engineering community has been dealing with solving the prob-
lem of how to go from the problem space to the solution space using a method-
ological guidance [238]. Still, there exists a gap in research regarding methods
for building software architectures based on requirements. Little research has been
done to overcome this gap [102]. This task is even more challenging when software
qualities have to be addressed in the software development.

The other challenge deals with the ad-hoc nature and experience-based devel-
opment of software systems which provide difficulties for inexperienced software
architects following the current software development methods in practice. Ac-
cording to Galster et al. [102], the process for bridging the gap between require-
ments and software architecture is currently based on experience, communication,
and intuition of software engineers. Examples of such methods are the Attribute
Driven Design (ADD) method [244, 48, 37] and the QASAR method [55] that rely
heavily on the software architect to find suitable solutions for the satisfaction of
quality requirements [39]. Such methods can hardly be used by novices and less
experienced software architects.

The goal of this chapter is to discover whether the existing approaches fulfill
the meta-requirements (characteristics) needed for such methods. To this end, we
first need to find answers for the following two questions:

• What are the meta-requirements that a method for quality-aware development
of requirements and software architecture should address?

• What are the existing methods for quality-aware development of requirements
and software architecture?

Hence, in the first part of this chapter, we identify criteria for a method bridging
the gap between both phases with regard to quality requirements. These criteria are
used later on in this chapter to evaluate and analyze the existing methods. For iden-
tifying these criteria, we reviewed empirical studies related to quality requirements
and software architecture such as interviews, group discussions, and experience re-
ports. These works provide direct evidence from real case studies. Herewith, we
find an answer for the first question.

Comparing and evaluating methodologies is not a trivial task. Depending on
who does the evaluation (e.g., developer, user, etc.) and what the evaluation criteria
are (e.g., implementation cost), the evaluation process and its conclusions might
vary. Therefore, it is crucial to perform the evaluation by means of a systematic
approach considering all relevant criteria. Hence, we develop a structured frame-
work by means of the identified requirements. The framework is used later on in
this chapter to analyze the state-of-the-art methods. Our framework draws upon

3.1 Introduction 53

various sources for accurate selection of the components, elements, and evaluation
questions [136, 88, 35, 34, 173].

In order to find an answer for the second question, we first searched sec-
ondary studies such as surveys, reviews, and mapping studies1 to figure out
whether there exist relevant studies that describe methods for quality-aware de-
velopment of requirements and software architecture. As the found studies did not
directly address the topic in question as desired, we conducted a systematic anal-
ysis. Our analysis is a systematic study based on a Systematic Literature Review
(SLR) [36, 145, 147, 149]. In the second part of this chapter, we report on the
conducted SLR and selected methods.

Having answers for both questions, we are able to investigate whether the meth-
ods obtained from the SLR fulfill the identified meta-requirements. To this end, we
perform a comparative evaluation of the selected methods by applying our frame-
work. Our analysis acknowledges that substantial research has been done in the
area of requirements engineering as well as software architecture separately. Nev-
ertheless, there is not much effort on providing support for systematic develop-
ment of both phases with respect to quality requirements in a unified process. The
analysis shows that none of the existing methods fulfill all meta-requirements we
identified before. The main finding of our review is the identification of a need for
a unified and quality-aware method which supports the development of require-
ments and software architectures.

The rest of this chapter is organized as follows. In Section 3.2, we describe the
derivation of meta-requirements for a method for quality-aware development of re-
quirements and software architecture. We describe the NIMSAD framework [136]
and its terminology in Section 3.3. It is used as a basis for our evaluation frame-
work. Section 3.4 proposes our framework along with reasoning for selecting its
components. Section 3.5 reports on a secondary study that is related to our topic,
however does not cover all the issues. We describe our research methodology for
conducting the SLR in detail in Section 3.6 and the results of our study in Sec-
tion 3.7. Section 3.8 is devoted to the application of our framework for analyzing
methods resulted from our systematic review. Threats to validity are reported in
Section 3.9. We conclude this chapter in Section 3.10.

1 A mapping study is intended to identify gaps in the set of primary studies, where new or better
primary studies are required [61].

54 3 Framework for Identifying Meta-Requirements

3.2 Meta-Requirement Derivation

In the following, we describe the meta-requirements that we identified for a method
that supports the quality-aware development of requirements and software archi-
tecture.

In order to be able to reason about the need for such meta-requirements, we
reviewed 11 empirical studies related to quality requirements and software ar-
chitecture. The reviewed empirical studies include literature reviews, interviews,
surveys, and group discussions. These works provide direct evidence for meta-
requirements from real case studies.

We divide the meta-requirements into the three categories “essential”, “recom-
mended”, and “optional”. Essential meta-requirements are required and must be
fulfilled when developing such a method. That is, we cannot speak of a “method
supporting the quality-aware development of requirements and software architec-
ture” if the essential meta-requirements are not fulfilled.

Recommended meta-requirements are of high interest, but might not be abso-
lutely required. That is, we can still speak of a “method supporting the quality-
aware development of requirements and software architecture” if not all recom-
mended meta-requirements are met. In such a case, we are concerned with a
method which is not optimal for our purposes but still acceptable.

Optional meta-requirements represent those meta-requirements that must not
be necessarily fulfilled for a “method supporting the quality-aware development
of requirements and software architecture”. Their fulfillment, however, provides
additional characteristics that are useful.

We found strong evidence from empirical studies that underlines our classifica-
tion into essential, recommended, and optional meta-requirements. In order to give
reasoning for derived meta-requirements, we provide an overview of the empirical
studies and their findings. Table 3.1 shows an overview of the empirical studies,
the type of study analysis, and the population involved.

In the first empirical study Svensson et al. [228] have conducted a systematic
literature review, in which 18 empirical research studies related to the management
of quality requirements have been investigated. The aim of this SLR was to pro-
vide researchers with future research directions by collecting existing empirical
evidence on quality requirements.

The second empirical study is an exploratory study carried out by Ameller et
al. [30]. It investigates how software architects deal with quality requirements. The
authors interviewed 13 architects from 12 organizations.

We reviewed another empirical study which has been performed by Svensson et
al. [50] in industry to discover and describe how quality requirements are handled
in practice. The study uses semi-structured interviews, which enable exploratory

3.2 Meta-Requirement Derivation 55

Table 3.1: Overview of empirical studies

Title Type of Analysis Population Reference
1 Managing Quality Requirements: A System-

atic Review
SLR 1.560 candidate studies,

18 selected studies
[228]

2 How do Software Architects Consider Non-
functional Requirements: An Exploratory
Study

Interviews 13 software architects [30]

3 Quality Requirements in Practice: An Inter-
view Study in Requirements Engineering for
Embedded Systems

Interviews 5 product managers, 5
project leaders

[50]

4 The Bad Conscience of Requirements En-
gineering: An Investigation in Real-world
Treatment of Non-functional Requirements

Interviews 14 (different roles) [54]

5 A survey of Architecture Design Rationale Questionnaire 81 software architects [230]
6 Requirements Engineering in the Develop-

ment of Large-Scale Systems
Experience report - [151]

7 Software Architects’ Experiences of Quality
Requirements: What We Know and What We
Do Not Know?

Interviews 20 software architects [85]

8 Questionnaire Report on Matter Relating to
Software Architecture Evaluation

Questionnaire 50 (different roles) [29]

9 Mature Architecting - A Survey about the
Reasoning Process of Professional Architects

Questionnaire 53 software architects [121]

10 Naive Architecting - Understanding the Rea-
soning Process of Students

Questionnaire 22 students [120]

11 Transition from Requirements to Architec-
ture: A Review and Future Perspective

Review Not specified [102]

discussions between the researchers and the interviewees. Five companies have
participated in the study with one product manager (PM) and project leader (PL)
of each company.

The fourth empirical study is an interview study, in which professionals of two
companies have been interviewed about the problems they face regarding quality
requirements and their treatments [54]. A total of 14 professionals with different
experiences, responsibilities, and roles have been interviewed. All of them were
involved with product development in some way. The aim of this case study was to
document the state-of-the-practice regarding management of quality requirements
in industry and to corroborate the sparse literature of quality requirements. Borg et
al. [54] report on findings regarding the problems related to quality requirements.
The authors conclude that identified problems reflect the fact that problems related
to quality requirements occur throughout the entire software development process.

Tang et al. [230] conducted a question-based survey consisting of 30 questions.
81 professionals with three or more years of experience in software development
working in a designer or architect role have participated in this study. The aim of

56 3 Framework for Identifying Meta-Requirements

the survey was to investigate the perception of practitioners of the value of de-
sign rationale and how they use and document the rationale related to their design
decisions.

The sixth empirical study is an experience report from a large-scale industrial
project. Konrad and Gall [151] present requirements engineering challenges they
faced and lessons learned in a large-scale system with more than 4.000 require-
ments. The challenges and lessons learned have been reviewed by requirements
engineering experts. They agreed that similar challenges exist across projects at
numerous companies.

The seventh empirical study is an interview study, in which 20 software archi-
tects working in large projects and having at least 10 years of experience have been
interviewed [85]. The goal of this study was to investigate how software architects
deal with quality requirements in large and contract-based software system devel-
opment projects.

Almari & Boughton [29] conducted a survey in the form of a questionnaire
to discover the factors influencing the relationship between quality requirements,
software architecture, and its evaluation. 50 participants with different roles such
as architect, designer, and developer responded to 23 questions. The majority of
the participants had between 5 and 10 years of experience.

van Heesch & Avgeriou [121] conducted a survey with 53 industrial and expe-
rienced software architects. The aim of this questionnaire was to understand and
describe reasoning practices during three general architecting activities architec-
tural analysis, architectural synthesis, and architectural evaluation. The popula-
tion under study has been working in industry for at least five years and has been
responsible for software architecture design for at least two years.

A different survey from the same authors has been conducted with 22 under-
graduate students as inexperienced software architects [120]. The aim of the study
was to investigate the basic reasoning process of inexperienced designers and to
identify potential areas for improvement. In a first phase the students have been
asked to design an architecture. After that, the students filled in a questionnaire.

Galster et al. [102] conducted a review on existing approaches bridging the gap
between requirements and software architecture. This work targets methods cover-
ing both early phases of software engineering. The authors evaluate the suitability
of current approaches. At the end, they define criteria that a method covering re-
quirements engineering and software architecture must meet.

In the following, for each identified meta-requirement we provide first our rea-
soning followed by corroboration through experience reports and studies from
practice that we listed in Table 3.1. Subsequently, we conclude the reasoning by de-
ciding on the category of each meta-requirement. Table 3.2 (see page 69) provides

3.2 Meta-Requirement Derivation 57

a mapping of identified meta-requirements and the empirical studies, in which the
corresponding meta-requirement is addressed. A “*” in a cell of the Table 3.2 states
that there exists a positive empirical evidence from the related empirical study for
the corresponding meta-requirement. A “*-” means that the corresponding meta-
requirement has been evidenced for not being important in the related empirical
study. This is only the case for the meta-requirement tool support in two empirical
studies.

3.2.1 Essential Meta-Requirements

Eliciting and documenting quality requirements in a systematic and
structured way

Our reasoning: In Chapters 1 and 2, we reasoned about the critical role of quality
requirements in software development. To determine whether a software architec-
ture can achieve its quality requirements, the quality requirements must be elicited
and documented in a structured and comprehensive way [39]. Reviewing empiri-
cal studies related to quality requirements underlines this statement as described
below.

Corroboration: One of the findings of the first empirical study (see Table. 3.1) is
that there is no clear view on how to elicit quality requirements [228]. There are
some works that propose to relate quality requirements and design approaches for
ensuring the basic understanding of the design problem [111, 84, 89].

The interviews from the second empirical study [30] show that in 10 out of
13 projects, the quality requirements have not been elicited until the architecture
design phase. The customers either did not mention the desired quality require-
ments at all or provided only indications in the form of cost or efficiency. In
those projects, in which the architects elicit the quality requirements (10 out of
13 projects), the quality requirements have only been elicited based on the experi-
ence of the architects. In addition, Ameller et al. [30] report that from 13 architects
that have been interviewed, only 4 architects documented the quality requirements.
Nine architects did not document quality requirements at all.

According to Svensson [50], every fourth quality requirement is dismissed at
some stage. One explanation for dismissing quality requirements is that they are
lower prioritized than functional requirements. The results of this empirical study
reveal that all the companies face the challenge of getting QR into the projects.

58 3 Framework for Identifying Meta-Requirements

The interviews run by Daneva et al. [85] reveal that the majority of interviewed
software architects (14 out of 20) use checklists for eliciting requirements. Also
the majority of the software architects (15 out of 20) specify quality requirements
based on predefined templates in natural language.

One of the problems identified by Borg et al. [54] is related to elicitation and
documentation of quality requirements. The interviewees state that quality require-
ments are discovered too late or many of quality requirements are never discov-
ered. The most effective solution to the problem as suggested by the interviewees
would be to make quality requirements a part of the agenda.

van Heesch & Avgeriou [121] found out that most industrial software architects
consider a deep understanding of the problem space and the requirements- particu-
larly quality requirements- as essential. Also less experienced architects have tried
to understand quality requirements and considered them as important [120].

Conclusion: From these empirical studies we conclude that quality requirements
are considered as essential for the architecting activities. However, they are often
elicited late in the software development phase, namely in the software architecture
design phase and not early in the requirements engineering phase as it is desired for
avoiding costly errors in the downstream software development activities. In addi-
tion, these studies reveal the lack of proper documentation of quality requirements
in most projects. It seems that eliciting and documenting quality requirements in
a systematic and structured way is often not integrated in the process of software
development in practice. Hence, “eliciting and documenting quality requirements
in a systematic and structured way (abbreviated as quality req.)” is considered as
an “essential” meta-requirement for such a method under investigation.

A structured method and extensive guidelines

Our reasoning: Most software architecture methods provide only a coarse-
grained description of the proposed method. They are currently based on experi-
ence, communication, and intuition of software engineers [102]. Such methods can
hardly be used by novices and less experienced software architects. The decision-
making process as one of the challenging activities during architecting is often
described as an ad-hoc and creative process relying to a large extent on the experi-
ence and expertise of the architects [120, 253].

Corroboration: According to the results of the study with experienced software
architects, van Heesch & Avgeriou [121] recommend guiding inexperienced archi-
tects in almost all architecting activities. These activities include understanding the

3.2 Meta-Requirement Derivation 59

problem space and the requirements- particularly quality requirements-, negotiat-
ing and relaxing requirements, capturing design rationale and documenting them
adequately, searching for architecture alternatives and identifying dependencies
among them, validating solution candidates for quality requirements and finding
optimal trade-offs among them, and evaluating the architecture as a whole.

Conclusion: To avoid that architecting and designing systems are being done in
an ad-hoc and unsystematic manner and successfully only by experienced soft-
ware engineers, the method has to involve a number of steps to be performed.
In addition, it should explicitly be provided in which order certain steps have to
be executed. In addition to the structuring of the method, explicit guidelines and
heuristics must be provided in order to support inexperienced software architects
in achieving the goal of the method. Hence, we define “a structured method and ex-
tensive guidelines (abbreviated as guidance)” as an “essential” meta-requirement,
as according to van Heesch & Avgeriou [121] inexperienced software architects
rely on extensive description and guidance that support them in developing the
required artifacts.

Use of unified notations and languages as well as a combination of
semi-formal and natural language

Our reasoning: A method which supports the systematic development of re-
quirements and software architecture, has to create the artifacts for each of the
phases [216]. One of the essential properties of each method is the language or the
notation it uses [173]. Also for capturing software architecture, using an appropri-
ate notation is important [35].

Corroboration: Regarding the language and notation to use for describing soft-
ware architecture, in the study conducted by Almari & Boughton [29] the majority
of the respondents found a combination of semi-formal language and natural lan-
guage as the best. Also the authors underline this combination as a good one as
non-developer stakeholders can understand these languages easier. This question-
naire study reveals that great effort is needed to increase the awareness, knowl-
edge, and use of software architecture not only in practice, but also in academic
institutions.

The same questionnaire survey [29] reveals that an alarming 50 percent of the
respondents either used models infrequently or did not use models at all for the
architecture description. One main factor discouraging the use of modeling tech-
nique for the architecture description is “the difficulty in integrating these models

60 3 Framework for Identifying Meta-Requirements

with other artifacts” [29]. This statement reveals that participants find standalone
models less useful in the process of software development than those models that
can be used throughout the software development.

Conclusion: Hence, we conclude that a software development process covering
requirements engineering and software architecture must create artifacts for these
two phases. As an “essential” meta-requirement, we define “the use of unified
notations and languages as well as a combination of semi-formal and natural lan-
guage for producing the artifacts as essential (abbreviated as RE descr., design
descr.)”.

Use of reusable knowledge

Our reasoning: Addressing quality requirements on the architecture level relates
to identifying solutions for achieving quality requirements. The experienced ar-
chitects make use of their existing design knowledge or external knowledge repos-
itories such as patterns, styles, or tactics in order to find solutions for address-
ing quality requirements [159, 125]. Architectural patterns [62, 215] are solutions
to problems that arise recurrently in software design. Architectural patterns have
benefits and drawbacks regarding quality requirements, thus they can affect qual-
ity requirements positively or negatively. Strategies and mechanisms to improve
a certain quality attribute in the system are called Tactics by Bass et al. [44]2. In
contrast to architectural patterns that affect quality requirements, such mechanisms
specifically contribute to the fulfillment of a particular quality requirement.

Corroboration: Experienced architects participating in the survey conducted by
van Heesch & Avgeriou [121] have frequently searched for different solutions for
achieving quality requirements. They were also aware of dependencies between
some of the solutions, and pros and cons of each solution. In contrast, the inex-
perienced architects in the other study do not seem to be aware of the limitations
and constraints of the solutions for fulfilling quality requirements. For addressing
quality requirements, Galster et al. [102] define supporting the reuse of existing
architectural knowledge such as patterns and mechanisms as requirements for a
method bridging the gap between requirements and software architecture.

Conclusion: Hence, we conclude that a quality-aware software development pro-
cess covering requirements engineering and software architecture must include

2 Tactics and quality-specific mechanisms or solutions are used as synonyms in this book

3.2 Meta-Requirement Derivation 61

step-by-step and systematic ways for finding solutions such as patterns, styles, and
tactics to achieve quality requirements. In addition, the limitations and constraints
of those solutions must be considered. We define “the use of reusable knowledge,
namely architectural patterns as well as tactics for achieving specific quality re-
quirements (abbreviated as knowledge reuse)” as an “essential” meta-requirement.

3.2.2 Recommended Meta-Requirements

Traceability support between requirements and architecture artifacts

Our reasoning: The relations between requirements and software architecture
artifacts as well as within each artifact should be captured to keep track of them,
their origins, and their changes [102, 191].

Corroboration: One of the challenges reported by Konrad and Gall [151] is con-
cerned with traceability. For all development artifacts including requirements, a
full bi-directional traceability should be established. The authors report that creat-
ing and maintaining the trace links was a difficult task. The reason for that is that
a high amount of time and effort is required to keep track of changes. Also Tang et
al. [230] underline the lack of processes that guide the designers in tracing design
decisions during the software development. Also Galster et al. [102] recommend
supporting traceability for tracking design decisions and the rationale behind them.

Conclusion: Hence, we reason “traceability support between requirements and
architecture artifacts (abbreviated as traceability)” as a “recommended” meta-
requirement from the above-mentioned studies.

Capturing and documenting design rationale in a systematic way

Our reasoning: A software architecture can be seen as the result of complex
decisions, which are usually called architectural design decisions [134, 57, 237].
Architectural decisions are essential for the success or failure of a project [120].
When building a software architecture based on requirements, a huge amount of
information should be managed for taking the right design decisions. To this end,
rationales behind design decisions, particularly design decisions due to the satis-
faction of quality requirements, should be captured in order to support subsequent
implementation and maintenance of the software system. The need for document-

62 3 Framework for Identifying Meta-Requirements

ing and using architecture design rationale has been recognized by researchers and
practitioners [44, 57]. However, there is little empirical evidence on the importance
of design rationale [230].

Corroboration: The importance of design reasoning and design rationale in the
area of software architecture has been emphasized in the survey conducted by
Tang et al. [230]. The findings of this survey reveal that the majority of design-
ers captures reasoning and considers it as important for justifying the architectural
decisions. The authors of this survey hypothesize that designers unknowingly pay
more attention to the positive rationales to support the design decisions than to
the negative rationales. They paid special attention to the documentation of dis-
carded design choices. They found that 36% of the respondents do not document
discarded decisions. One reason for this might be that there is no software devel-
opment methodology or guideline that mandates the documentation of discarded
decisions. Documenting such decisions, however, may help newbies in a project to
understand the reasons for discarded design alternatives.

Although the frequency of documenting design rationales is relatively high, the
findings of the survey provide no insight whether the rationales are sufficiently
documented so that other designers can understand them without additional assis-
tance [230]. One of the main reasons for not documenting design rationale given
by the participants is the lack of processes as well as proper tools that guide the de-
signers in capturing, maintaining, and tracing design rationale during the software
development.

The results of the survey with inexperienced software architects show that doc-
umenting design rationale is one of the areas that needs to be improved [120]. Doc-
umenting design rationale includes documenting why an option was selected over
another option and what the possible limitations and constraints were. In contrast,
the survey with experienced software architects [121] reveals that these architects
are aware of the importance of documenting rationales behind design decisions.
They, however, do not use any systematic process for documenting the reasoning
part of decision making.

Conclusion: We conclude from the reviewed studies that software architects, par-
ticularly inexperienced architects, rely on methods that guide them in capturing
design rationale and ensure that design rationale is sufficiently and systematically
documented. Hence, we define “capturing and documenting design rationale in
a systematic way (abbreviated as design rationale)” as a “recommended” meta-
requirement.

3.2 Meta-Requirement Derivation 63

Detecting conflicts and interactions among (quality) requirements as well as
resolving such interdependencies

Our reasoning: Some quality requirements such as security and performance are
conflicting due to their nature. For such quality requirements identifying the con-
flicts and making trade-offs are often necessary. Hence, any approach that deals
with quality requirements has to take trade-off analysis into account. This involves
the systematic treatment of conflicts among requirements [172, 102]. Trade-off
analysis can be done on the requirements as well as on the architecture level.

Corroboration: Svensson et al. [228] report that there is no unified view in the
current practice with respect to handling dependencies between artifacts. The re-
sults of another empirical study conducted by Svensson et al. [50] show that inter-
dependencies among (quality) requirements are a major problem in market-driven
software development. In 3 out of 5 companies, no elicitation, analysis, or docu-
mentation of interdependencies involving quality requirements was conducted at
all. The problem includes detection of interdependencies as well as dealing with
them. According to Svensson et al. [50], one explanation for this is that the compa-
nies have more focus on functional requirements than quality requirements since
functional requirements are easier to handle than quality requirements.

In a different survey, Borg et al. [54] report that one of the primary problems
related to the management of quality requirements is the difficulty to manage con-
flicting quality requirements. The solution for minimizing conflict-related prob-
lems suggested by the respondents is to focus on the most important types of
quality requirements and to improve the competence regarding knowledge about
quality requirements. From our point of view, this suggestion contributes only to a
limited extent to solving the problem.

The findings of the survey conducted by Daneva et al. [85] reveal that the soft-
ware architects use no systematic and structured method for validating quality
requirements in terms of consistency checking or detecting negative interactions
among quality requirements. Most software architects use common sense practices
such as documentation reviews.

van Heesch & Avgeriou [120] found out that inexperienced software architects
are not aware of risks, e.g. due to conflicting requirements and consequently do
nothing to mitigate them. The same authors conducted another study with experi-
enced software architects [121]. The results show that experienced architects are
continuously involved in the negotiating process and relaxing the requirements if
conflicting or hard to implement. Some architects mentioned these activities as the
most important activities. In a different study, Farenhorst et al. [95] found out that

64 3 Framework for Identifying Meta-Requirements

more experienced architects (in terms of working years) consider auditing activi-
ties and quality assurance as more important.

Also in the review conducted by Galster et al. [102] supporting trade-off anal-
ysis is considered as important. It is defined as a requirement for a method that
covers both early phases of software development.

Conclusion: From the above-mentioned strong empirical evidences, we conclude
that trade-off analysis must be considered as a “recommended” meta-requirement.
This meta-requirement includes “detecting conflicts and interactions among (qual-
ity) requirements as well as resolving such interdependencies (abbreviated as
trade-off analysis)”.

Supporting architecture alternatives

Our reasoning: There might exist various solutions for achieving quality require-
ments, as they can be satisficed to different levels. Also conflicts and trade-off
analysis lead to discovering the potential alternatives for conflicting quality re-
quirements. Hence, a method that deals with quality requirements should allow
the development of various architecture alternatives [159, 102].

Corroboration: The study with experienced architects performed by van Heesch
& Avgeriou [121] reveals that is advisable to search for alternative design options
in order to fulfill quality requirements. This requires knowing the solution space
well when making design decisions in order to be able to choose suitable solution
candidates. van Heesch & Avgeriou [120] found out in a different study conducted
with inexperienced software architects that they often do not consider multiple de-
sign options at the same time. Supporting the development of various architecture
candidates is also considered as important by Galster et al. [102]. They define it as
a requirement that must be fulfilled.

Conclusion: According to these studies, we define “supporting architecture alter-
natives (abbreviated as arch. alternatives)” as a “recommended” meta-requirement.
This includes different solution candidates such as patterns and tactics for achiev-
ing quality requirements, as well as alternatives for the overall software architec-
ture.

3.2 Meta-Requirement Derivation 65

Supporting feedback loops between requirements and software architecture

Our reasoning: The common way of the traditional software development pro-
cesses such as the waterfall development process is to build a software architecture
from requirements. This process considers the forward development process from
requirements to the software architecture, it however does not consider the other
way around, namely the impact of design decisions on initial requirements. The
problem in the linear software development approaches is that on the one hand
requirements are elicited, analyzed, and specified in isolation without consider-
ing the impact of architecture artifacts. On the other hand, design decisions are
made without managing the conflicts and making necessary changes in the re-
quirements [32]. According to Jansen et al. [135] the architecting process consists
of a cycle of activities to be followed iteratively until the architecture is complete.
Hence, it is necessary to provide feedback loops in the architecting process to en-
able the software system to respond to changes in the problem space as well as in
the solution space.

Corroboration: In the survey study with experienced architecture [121], many
architects have stated that the architecture is refined and developed iteratively. Ac-
cording to the survey performed by Ameller et al. [30], the architects state that
quality requirements are elicited following an iterative process. Also, Galster et
al. [102] define providing a recursive and iterative method for bridging the gap
between requirements and software architecture as an important requirement to be
satisfied.

Conclusion: Developing requirements and software architecture in an iterative
manner is recommended in the empirical studies as described above. “Support-
ing feedback loops between requirements and software architecture (abbreviated
as iterative dev.)” should be a part of the quality-aware approaches developing re-
quirements and software architecture. Hence, we define this meta-requirement as
a “recommended” one.

Support for the evaluation of the software architecture

Our reasoning: Evaluation of software architecture is essential to ensure whether
and to which extent quality requirements have been addressed in the software ar-
chitecture. Some software architecture methods ensure the consideration of quality
requirements with non-architectural evaluation methods such as model checking,
inspection, and testing [173]. However, most software architecture methods do not

66 3 Framework for Identifying Meta-Requirements

provide an explicit way of evaluating the resulted software architecture with re-
spect to quality requirements.

Corroboration: The empirical study reported in [30] emphasizes the lack of eval-
uation based on the satisfaction of quality requirements. It reports that 11 out of 13
interviewed architects claimed the satisfaction of all quality requirements by the
end of the project. They, however, answered vaguely when asked how they have
validated them. They further commented that the evaluation is only discussed with
the customer as it is not easy to test. Based on the report by Ameller et al. [30],
eight interviewees performed some validation regarding usability, efficiency, ac-
curacy, and reliability. However, all of them presuppose an implemented system.
None of them performed any evaluation of the software architecture. In one ex-
treme case regarding the validation of quality requirements, the respondent stated
that they wait until the customer complains as the customer will notice when some-
thing does not work properly.

Also the findings of the interview study conducted by Svensson et al. [50] un-
derline the problem of evaluating quality requirements in software projects in prac-
tice. The companies face the challenge of “how to know when the quality level is
good enough?”.

A comparison of results between two studies with experienced architects [121]
and less experienced architects [120] shows that experienced architects usually
think of pros and cons of the design options. They are aware of dependencies
among different design options. We can conclude that the more experienced ar-
chitects consider the evaluation of design decisions and the evaluation of the ar-
chitecture as a whole belonging to the architecting activities, though it does not
seem to be performed in a systematic manner. The results of the second study with
inexperienced architects reveal that they do not critically evaluate their decisions.
Also validating design decisions against each other has been neglected by novices.

Conclusion: These studies, in particular the study performed by van Heesch &
Avgeriou [120] with inexperienced software architects, show strong evidence for
a method which provides “support for the evaluation of the software architecture
(abbreviated as arch. evaluation)”. Hence, we include it as a “recommended” meta-
requirement.

3.2 Meta-Requirement Derivation 67

3.2.3 Optional Meta-Requirements

Co-development of requirements and software architecture in an iterative
and concurrent manner

Our reasoning: Though the iterative and incremental co-development of require-
ments and software architecture has been acknowledged in the literature [182, 195,
177], supporting the interplay between requirements and software architecture re-
mains a challenging task in software engineering research [124].

Corroboration: Tang et al. [229] suggest in their empirical study to refine and
formulate the problem and solution space at the same time, which is in line with
the Twin Peaks model [182]. This statement can be corroborated in the work by
Doerr et al. [89]. They argue that elicitation of functional requirements, quality
requirements, and architecture must be performed in an intertwining manner.

Conclusion: Co-development of requirements and software architecture in an it-
erative and concurrent manner is recommended in the research. We also found
few empirical studies that underline this. The Twin Peaks model itself propos-
ing this paradigm comes from the experiences of its author in industrial environ-
ments [182]. Hence, we define “co-development of requirements and software ar-
chitecture in an iterative and concurrent manner (abbreviated as concurrent co-
dev.)” as an “optional” meta-requirement.

Defining architectural views

Our reasoning: Architectural views are considered as the crucial constituents of
the architecture description [102, 191, 159]. Different architectural views [204]
can be defined for a software architecture, each of which represents a specific per-
spective of the software architecture design. Table 2.1 in Chapter 2 (see page 30)
provides an overview of the common architectural view models. However, there
is no consensus about the number and nature of the architectural views between
the researchers and practitioners [44, 156, 126]. According to [41], the architects
have to choose those views that they think as appropriate based on the needed
engineering leverage of each view and the interests of the stakeholders.
Corroboration: In the review and future perspectives conducted by Galster et
al. [102], the support of different architectural views is considered as a requirement
for a method bridging the gap between requirements and software architecture.

68 3 Framework for Identifying Meta-Requirements

Conclusion: We consider “defining architectural views (abbreviated as arch.
views)” as an “optional” meta-requirement, as we did not find strong evidence
for it in the empirical studies we reviewed. Since there is no consensus on the
number and nature of the architectural views, it can be hardly defined which kinds
of architectural views are required. It is interesting to examine whether there will
be a consensus in the state-of-the-art methods regarding this meta-requirement. We
discuss this later on in Section 3.8 when reporting on the results of the comparative
evaluation of existing methods.

Tool support

Our reasoning: According to Kazman [142], one of the obstacles to the wide-
spread application of software development methods in the industry is the over-
head produced by tedious and time-consuming tasks of such approaches. A tool
can provide support for some time-consuming and error-prone tasks of a method.
In the following, we can see whether this claim can be corroborated by the empir-
ical studies we reviewed.

Corroboration: According to the survey performed by Ameller et al. [30], none
of the architects use any specific tools for managing quality requirements. They
are even not willing to use a decision support tool for the process of architectural
decision-making. The majority of the interviewed architects “do not trust”, or “do
not believe in automatic things” or “cannot imagine that this can be done”. Also
Daneva et al. [85] report on not using tools for validating quality requirements.
The results of this study reveal that common sense practices such as documenta-
tion reviews and building up communication processes are simple and powerful
ways of performing such activities. Galster et al. [102] do not support this opinion
regarding tools for supporting software engineers by applying methods as well as
architecting activities. They propose having a formal approach enabling tool sup-
port for checking consistency of the architectural artifacts. This statement, how-
ever, does not unambiguously underline providing tool support, but providing a
certain level of formalism that enables consistency checks.

Conclusion: According to these studies, tools are not used in practice. Among
the studies we reviewed, we could not find any evidence for considering a tool as
necessary for using a method. However, this is no evidence that a tool might not
be supportive by some tasks. For example, a tool might be useful for tedious tasks
such as consistency checking. Hence, we define “tool support” as an “optional”
meta-requirement.

3.2 Meta-Requirement Derivation 69

Table 3.2: Identified requirements and related evidence from empirical studies

Emp.
Study

QR Guidance QR
Ful-
fill.

Descr. Trace. Design
Rat.

Trade-off
Anal.

Arch.
Alt.

Iterative
Dev.

Arch.
Eval.

Concurrent
Co-dev.

View
Types

Tool
Sup-
port

1 * *
2 * * * *-
3 * * *
4 * *
5 * * *
6 *
7 * * *-
8 *
9 * * * * * * * *
10 * * * * * *
11 * * * * * * * * *

3.2.4 Method Characteristics

In addition to the three categories “essential”, “recommended”, and “optional” for
meta-requirements for a method under investigation, we define a new category,
namely “method characteristics”. This category is concerned with those charac-
teristics that every software engineering method exhibits. Examples for such char-
acteristics are development phase and application domain. Such kinds of charac-
teristics might also be used for comparison of the methods:

Development phase

refers to the software development phases. It includes requirements engineering,
architecture (or early design), and detailed design (or late design) phases. In ad-
dition, sub-phases in each development phase can be considered if available, for
example, elicitation within the requirements engineering phase. Although we com-
pare requirements engineering and software architecture methods, nevertheless
some methods might include other development phases such as the implemen-
tation phase as well.

70 3 Framework for Identifying Meta-Requirements

Method input/ method output

It is important to know which artifacts are required as input and which ones are
produced as output of a method. It is also essential to specify on which abstraction
level the required input and produced output artifacts are provided.

Application domain

It might also be of importance to know whether a method can be used in general
or is developed only for a specific application domain.

User Skill

As mentioned before, we place value on inexperienced software engineers as users
of the method under investigation. Hence, user skill refers to the skills that an in-
experienced software engineer needs additionally for applying the method at hand.
Certainly, it is of advantage if less specific knowledge is required for applying a
method.

3.3 The Evaluation Framework NIMSAD

We use the NIMSAD (Normative Information Model-based Systems Analysis
and Design) evaluation framework [136] as a basis for developing our framework
along with other sources (see Section 3.4). NIMSAD introduced by Jayaratna is
a generic and methodology-independent framework for understanding and eval-
uating any methodology. The aims of the NIMSAD framework are to support:
1) understanding of problem-solving processes in general and of any nature, 2)
evaluating methodologies, their structure, steps, form, nature, etc., and 3) drawing
conclusions.

NIMSAD has arisen from problem solving in industry and consultancy prac-
tice. Forsell [97] describes the advantages of applying the NIMSAD framework
as follows: 1) it has a wide scope, 2) it is not restricted to the evaluation of any
particular category of methodologies, 3) it is practical and has already been used
in several real-life case studies, and 4) it considers different use situations. The
NIMSAD framework considers the evaluation of a methodology as a dynamic ac-
tivity. The evaluation can be conducted before, during, and after the application

3.3 The Evaluation Framework NIMSAD 71

of a methodology. However, the framework does not attempt to rank the evaluated
methodologies.

According to the NIMSAD framework, an effective application of a methodol-
ogy depends upon the person who applies the methodology, the context in which
the methodology is practiced, and the methodology itself. The NIMSAD frame-
work proposes therefore to consider four essential components during the compar-
ison of methodologies. Figure 3.1 illustrates these four components. These com-
ponents are:

The problem situation (the methodology context): This refers to the situation
in which the methodology is intended to be used.

The intended problem solver (the methodology user): This includes the users
and stakeholders of the methodology.

The problem-solving process (the methodology): This describes the method-
ology to be evaluated.

The evaluation of the above three: This helps to measure the effectiveness of
the problem-solving process and the problem solver in the problem situation.

Intended problem solver Problem situation

Problem-solving process

Methodology

Methodology user Methodology context

Evaluation

Fig. 3.1: The components of the NIMSAD framework

In the following, we describe each of these components as they are important
to gain an understanding of the framework.

3.3.1 Methodology Context

The first component of the NIMSAD framework is concerned with the problem sit-
uation in which the methodology is intended to be used, i.e., the method context.

72 3 Framework for Identifying Meta-Requirements

The problem situation is an essential component as the effectiveness of a method
can only be measured within its context. Methodology context has a current situa-
tion and a desired situation. It is the current situation that a methodology user tries
to change with the help of a methodology to gain the desired situation in which the
problem is solved. For the methodology context we need to know what informa-
tion a method uses, what problem the method tries to solve with this information,
how the method is going to solve the problem, etc.

3.3.2 Methodology User

The second component is concerned with the role of the intended problem solver,
i.e., the user of the method. The success of effective design and development of a
method depends among other things on the personal characteristics of the method-
ology user. The intended problem solvers tend to select some elements of the situa-
tion as being relevant and dismiss some others as being irrelevant. The motivation
and skills of the methodology user might affect this selection. Thus, this is ad-
dressed in the methodology user component of the NIMSAD framework.

3.3.3 Methodology Contents

The third component is the problem solving process, which is represented by the
methodology itself. A methodology guides and assists a problem solver to under-
stand the problem situation and to overcome it. The NIMSAD framework proposes
three phases for the problem solving process, namely problem formulation, solu-
tion design, and solution implementation. The problem formulation phase is con-
cerned with understanding the situation of concern and the problems to be solved
by the use of the methodology. The solution design phase aims at producing an
agreed and acceptable design specification of the methodology. The implemen-
tation phase is considered as the outcome of the problem solving process. The
realization of the methodology is achieved in the implementation phase.

3.4 Our Proposed Evaluation Framework 73

3.3.4 Evaluation

The fourth component of the framework and the most important one brings the
three above mentioned elements together by evaluating the methodology. The eval-
uation helps measuring the effectiveness of the problem solving process and the
problem solver in the problem situation. This component is concerned with the
assessment of the methodology and the degree of assistance it provides by means
of models, concepts, structure, techniques, etc. The evaluation of a methodology
should reveal to what situation the methodology would be suitable for, how it is to
be used, and how the benefits can be measured.

3.4 Our Proposed Evaluation Framework

In this section, we introduce our evaluation framework as an analysis tool. We use
this framework for comparative evaluation of methods bridging the gap between
requirements and software architecture with respect to quality requirements. The
framework can easily be modified and extended to desirable features.

The evaluation framework shown in Table 3.3 consists of Components, Ele-
ments, Evaluation Questions, and Category (Columns of the table). The column
“category” specifies whether the meta-requirement is an “essential”, a “recom-
mended”, an “optional” meta-requirement, or a “method characteristic”.

For developing the evaluation framework, we make use of various sources for
accurate selection of its constituents:

1. The first source is the NIMSAD framework. The overall structure of our frame-
work is based on the NIMSAD framework. It involves four essential compo-
nents for method evaluation, namely method context, method users, method
content, and evaluation. These four components are depicted in the first column
of Table 3.3.

2. The second source for our evaluation framework is the application of the NIM-
SAD framework to different software engineering methods [34, 173]. In addi-
tion, we made use of the works defining the technical and non-technical issues
that a method should address [88, 35]. These works have influenced the second
column of the framework, mainly the elements of the components context, user,
and validation.

3. The third source are the meta-requirements that we derived in the previous sec-
tion from various empirical studies. These requirements have influenced the
elements of the component contents.

74 3 Framework for Identifying Meta-Requirements

Table 3.3: The components and elements of the framework and the evaluation
questions

Component Elements Evaluation Questions Classification
Context Development phase Which phases are covered by the method? Method characteristic

Method input What are the required inputs for the method? Method characteristic
Method output What are the produced outputs of the method? Method characteristic
Application domain For which application domain is the method de-

veloped?
Method characteristic

User User skill What specific skills does an inexperienced soft-
ware engineer require to accomplish tasks re-
quired by the method?

Method characteristic

Content Quality req. How are quality requirements elicited and docu-
mented?

Essential

Guidance How much support for applying the method by
the user is provided by the reported method?

Essential

Knowledge reuse To what extent is making use of reusable knowl-
edge supported?

Essential

RE descr. Which RE artifacts are created by the method?
Which notation/language is used by the method
to represent RE models, diagrams, and other ar-
tifacts it creates? Which RE approach is used for
creating the artifacts?

Essential

Design descr. Which design artifacts are created by the
method? Which notation/language is used by the
method to represent design models, diagrams,
and other artifacts it creates? Which design ap-
proach is used for creating the artifacts?

Essential

Traceability To what extent is traceability between require-
ments and design artifacts supported?

Recommended

Design rationale To what extent is capturing the rationales behind
design decisions supported?

Recommended

Trade-off analysis Whether and to what extent is trade-off analysis
supported?

Recommended

Arch. alternatives To what extent are alternative architectures sup-
ported?

Recommended

Iterative dev. To what extent is the iterative development of
requirements and software architectures sup-
ported?

Recommended

Concurrent co-dev. To what extent is the intertwining and concur-
rent co-development of requirements and soft-
ware architecture supported?

Optional

Arch. views Whether and which views are used for represent-
ing the RE and design artifacts?

Optional

Tool support Are there tools to support the method and its ar-
tifacts? Which activities of the methods are sup-
ported by the tools?

Optional

Validation Arch. evaluation Whether and how does the method evaluate the
satisfaction of quality requirements in the pro-
duced software architecture?

Recommended

3.6 Research Method 75

3.5 Related Review

We only found one secondary study related to our study. Galster et al. [102] present
a review and future perspective regarding the transition between the two important
phases of requirements engineering and software architecture within the software
development life cycle. This review emphasizes the lack of systematic guidelines
and methods providing support for building architecture based on requirements.
Moreover, it defines requirements and suitability criteria such as providing trace-
ability and capturing architectural rationale for a transition process. We captured
these requirements in our evaluation framework described in Section 3.4. However,
this review lacks some issues that are essential for our study: 1) It does not focus
on quality requirements and their fulfillment. 2) It is performed in 2006. Hence, it
does not consider the whole time span we are interested in. 3) It is not performed in
a systematic way. 4) It does not capture all characteristics that are essential and rec-
ommended for such methods such as capturing and eliciting quality requirements
in a proper way, evaluation of the software architecture, and providing guidance
(see Section 3.2).

3.6 Research Method

The aim of the SLR was to identify existing methods for developing requirements
and software architecture with respect to quality requirements. Hence, we devel-
oped a process shown in Fig. 3.2 on the basis of the systematic literature review
literature [146, 149, 148, 59]. In the following, we describe our process comprising
the three phases planning, conducting, and reporting in detail.

3.6.1 Planning Phase

Our process starts with the planning phase comprising three steps Step 1 - re-
search questions specification, Step 2 - need identification, and Step 3 - review
protocol development.

In the first step, we defined research questions according to the problem we
identified before (see Section 3.1). We aim at finding existing methods for quality-
aware development of requirements and software architecture.

In the second step, we searched secondary studies such as surveys, reviews,
and mapping studies to find out whether there exists already such a systematic

76 3 Framework for Identifying Meta-Requirements

process
external

input output
input /

R
ev

ie
w

P
ro

to
co

l

G
ui

de
lin

es
fo

r
pe

rf
or

m
in

g
S

LR
 in

 S
E

D
at

a
E

xt
ra

ct
io

n
F

or
m

Q
ua

lit
y

C
he

ck
Li

st

D
at

a
E

xt
ra

ct
io

n
F

or
m

D
at

a
E

xt
ra

ct
io

n
F

or
m

R
ev

ie
w

R
ep

or
t

S
te

p
7:

D
at

a
S

yn
th

es
is

S
te

p
8:

R
ev

ie
w

 R
ep

or
tin

g

R
es

ul
ts

S
te

p
6:

D
at

a
E

xt
ra

ct
io

n
S

te
p

5:
Q

ua
lit

y
A

ss
es

sm
en

t
S

te
p

4:
S

tu
dy

 S
el

ec
tio

n
S

te
p

3:
R

ev
ie

w
 P

ro
to

co
l

D
ev

el
op

m
en

t

P
rim

ar
y

S
tu

dy
(S

el
ec

te
d)

P
rim

ar
y

S
tu

dy
(S

el
ec

te
d)

P
rim

ar
y

S
tu

dy

R
es

ea
rc

h
Q

ue
st

io
ns

S
ur

ve
ys

R
ev

ie
w

s
M

ap
pi

ng
S

tu
di

es

S
te

p
2:

N
ee

d
Id

en
tif

ic
at

io
n

S
te

p
1:

R
es

ea
rc

h
Q

ue
st

io
n

S
pe

ci
fic

at
io

n

Id
en

tif
ie

d
P

ro
bl

em

N
ee

d
fo

r
an

 S
LR

P
la

nn
in

g
P

ha
se

C
on

du
ct

in
g

P
ha

se
R

ep
or

tin
g

P
ha

se

Fig. 3.2: Overview of our process

3.6 Research Method 77

review that provides an extensive overview of existing methods regarding bridging
the gap between requirements and software architectures with respect to quality
requirements. As we found no studies that directly address the topic in question as
desired, we decided to perform a systematic literature review. Hence, we defined
in the third step a protocol that describes the review process. In the following, we
describe each step in detail.

Step 1 - Research Questions Specification

We aim at reviewing the existing literature for identifying methods to develop re-
quirements and software architecture with regard to quality requirements. To this
end, we define one main research question (MRQ) and several additional research
questions (ARQ) as illustrated in Table 3.4. The MRQ aims at identifying the exist-
ing methods in our research field. The ARQs aim at extracting the characteristics
of the reported methods. In the third column of Table 3.4, we give a type for the
RQs which is either content or quality. The former refers to the characteristics of
the methods we want to extract and the latter relates to the quality of the methods.
We answer to the ARQs related to quality (ARQ 24 and ARQ 25) in the quality
assessment step, in which we assess whether the selected papers exhibit a certain
quality to be qualified for the data extraction step.

The ARQs serve as specific criteria for comparative evaluation of the reported
methods, which is described later on in this chapter. The ARQs can mainly be
mapped to the meta-requirements for such methods that we captured in the evalu-
ation framework (see Section 3.4). Table 3.5 shows how the ARQs are mapped to
the identified meta-requirements.

Step 2 - Need Identification

The aim of this step is to find related secondary literature such as surveys and re-
views, which might be relevant. In case we would find such systematic surveys
that can answer our research questions, there is no need for conducting a system-
atic review any more. As mentioned in Section 3.5, we only found one secondary
study related to our study. In Section 3.5, we gave four reasons why this review
does not cover all the desired aspects regarding a method for quality-aware devel-
opment of requirements and software architecture. Hence, we confirm the need for
conducting an SLR.

78 3 Framework for Identifying Meta-Requirements

Table 3.4: Research questions

RQ Question Type
MRQ Which methods are reported for developing requirements and software architecture

with respect to quality requirements?
Content

ARQ 1 Which SE phases are involved in the reported methods? Content
ARQ 2 What is the input of the reported method? Content
ARQ 3 What is the output of the reported method? Content
ARQ 4 Which application domains are the reported methods developed for? Content
ARQ 5 Which specific user skills are required for applying the reported methods? Content
ARQ 6 Which quality attributes are considered in the reported methods? Content
ARQ 7 How is the process support by the reported methods? Content
ARQ 8 How are quality requirements addressed in the software architecture in the reported

methods?
Content

ARQ 9 Which existing approach is used for the requirements engineering phase? Content
ARQ 10 Which notation or languages are used for requirements in the reported methods? Content
ARQ 11 Do the reported methods create requirements artifacts? Content
ARQ 12 Which existing approach is used for the architecture design phase? Content
ARQ 13 Which notation or languages are used for architectures in the reported methods? Content
ARQ 14 Do the reported methods create design artifacts? Content
ARQ 15 Do the reported methods support traceability concepts? Content
ARQ 16 Do the reported methods support capturing of design rationale? Content
ARQ 17 Do the reported methods deal with conflicts and trade-off analysis? Content
ARQ 18 Do the reported methods support the creation of architecture alternatives? Content
ARQ 19 Do the reported methods support the iterative development of requirements and archi-

tecture?
Content

ARQ 20 Do the reported methods support the intertwining and concurrent co-development of
requirements and architecture?

Content

ARQ 21 Which views are used in the reported methods? Content
ARQ 22 Do the reported methods provide tool-support for creating its artifacts? Content
ARQ 23 Do the reported methods support architecture evaluation? Content
ARQ 24 How detailed are the steps and structure of the reported methods defined? Quality,

Content
ARQ 25 How rigorously are the reported methods evaluated? Quality

Step 3 - Review Protocol Development

The aim of this step is to define a protocol that describes the review process which
will be carried out in the conducting phase. A literature review protocol includes
two perspectives. On the one hand, the main parts of the protocol are written before
conducting the review itself. On the other hand, results following the protocol are
also stored in the protocol. In this chapter, we describe both perspectives while
describing the Steps 1 to 8 of Fig. 3.2.

The review protocol includes a data extraction form that we prepared to be
filled in in the conducting phase. We prepared an excel sheet that has been used as
the data extraction form. As this literature review has been performed by only one

3.6 Research Method 79

Table 3.5: Mapping between ARQs and derived meta-requirements

ARQ Derived meta-requirement Category
ARQ 1 Involved phase Method characteristic
ARQ 2 Method input Method characteristic
ARQ 3 Method output Method characteristic
ARQ 4 Application domain Method characteristic
ARQ 5 User Skill Method characteristic
ARQ 6 Quality req. Essential
ARQ 7, ARQ 24 Guidance and method struc-

ture
Essential

ARQ 8 Knowledge reuse Essential
ARQ 9, ARQ 10, ARQ 11, ARQ 12, ARQ 13,
ARQ 14

RE and design descr. Essential

ARQ 15 Traceability Recommended
ARQ 16 Design rationale Recommended
ARQ 17 Trade-off analysis Recommended
ARQ 18 Arch. alternatives Recommended
ARQ 19 Iterative dev. Recommended
ARQ 20 Concurrent co-dev. Optional
ARQ 21 Arch views Optional
ARQ 22 Tool support Optional
ARQ 23 Arch. evaluation Recommended

researcher, it was more convenient to use an Excel sheet for this purpose instead of
preparing a data extraction form which is usually used by literature reviews con-
ducted by several researchers. Preparing such forms requires more effort. Hence,
we decided to store the data in an Excel file.

3.6.2 Conducting Phase

The conducting phase consists of four steps: Step 4 - study selection, Step 5 -
quality assessment, Step 6 - data extraction, and Step 7 - data synthesis. In this
phase, we conducted the SLR according to the review protocol by selecting the
relevant studies in a stepwise manner (Step 4). The selected studies have been
checked for its quality according to a quality check list (Step 5). In Step 6, we
extracted the relevant data according to the queries in the data extraction form.
The extracted data has been analyzed in Step 7 in order to answer the research
questions. In the following, we describe each step in detail.

80 3 Framework for Identifying Meta-Requirements

Steps 4 and 5 - Study Selection and Quality Assessment

In this section, we describe our strategy for searching and selecting relevant stud-
ies including the search sources and search terms. For finding relevant studies,
we performed manual, automated, and “snowball” search. Fig. 3.3 illustrates the
mechanism underpinning the selection process and the quality assessment. It re-
fines the Steps 4 and 5 of Fig. 3.2 by describing their sub-steps.

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Quality
Check
List

Sub-Step 6:
Perform

Snowball Search

Sub-Step 5:
Perform

Quality Assessment

Sub-Step 4:
Perform

Automated Search

Sub-Step 3:
Identify

Search Engines

Sub-Step 2:
Perform

Manual Search

Sub-Step 1:
Identify

Publication Venues

Research
Questions

Search
Strings

Manual
Search
Sources

Initial
Search
Strings

Manual
Retrieved
Studies

Automated
Search
Sources

Automated
Retrieved
Studies

Relevant
Studies

Snowball
Retrieved
Studies

Fig. 3.3: Mechanism underpinning the selection process

Sub-Step 1 - Identify Publication Venues
Search sources comprise search engines and publication venues. Publication venues
are used for performing manual search. Researchers use relevant conference pro-
ceedings or journals for retrieving relevant studies. According to our defined re-
search questions, we identified relevant publication venues as search sources for
manual search.

We considered specific journal papers and conference proceedings with the
ranking A and B. We selected the publication venues according to the Australian
ERA (Excellence in Research for Australia) Outlet Ranking3. As conference pro-
ceedings, we conducted the manual search within 5 publication venues (ECSA4,
QoSA5, RE6, REFSQ7, and WICSA8). In addition, we selected two journals JSS9

3 http://lamp.infosys.deakin.edu.au/era/
4 European Conference of Software Architecture
5 International ACM Sigsoft Conference on the Quality of Software Architectures
6 IEEE International Requirements Engineering Conference
7 International Working Conference on Requirements Engineering: Foundation for Software
Quality
8 Working IEEE/IFIP Conference on Software Architecture
9 Journal of Systems and Software

3.6 Research Method 81

and INFSOF10.

Sub-Step 2 - Perform Manual Search
We first conducted a manual search between 2005 and 2010 within particular
publication venues. As a basis for constructing the search strings for the manual
search, we used the MRQ. During the manual search, we revised the search strings
and added synonyms and alternative spellings to cover the maximum possible set
of primary studies treating the topic.

The main search terms were linked with the Boolean operator “AND” and the
synonyms and alternative spellings with the Boolean operator “OR” as shown in
Table 3.6. Doing this, we obtained the search string “SS1 AND SS2” which is
composed of search strings from Table 3.6.

Table 3.6: Search strings

Search string
SS1 “quality concerns” OR “quality requirements” OR “quality attributes” OR “non-functional require-

ments” OR “non-functional properties” OR “NFR” OR “NFRs”
SS2 “architecture” OR “software architecture” OR “design” OR “architectural design” OR “software

design”

We defined exclusion and inclusion criteria (EC, IC) as given in Table 3.7.
We excluded studies according to the exclusion criteria EC1–EC3 linked with the
boolean operator “OR”. We included studies according to the inclusion criteria
IC1–IC9 linked with the boolean operator “AND”. We considered IC2 and IC3 as
inclusion criteria, since our focus is on methods addressing quality requirements.
Additionally, we considered IC4 and IC5 as inclusion criteria as well, as we believe
that a method which should support the systematic development of requirements
and software architecture, has to create the artifacts for each of the phases. These
criteria guided the researcher in the decision whether to include or exclude studies.

We performed the selection process for manual search as well as for automated
search in three rounds as follows:

• First round: In this round, we scanned the studies by “title and abstract” to
remove the irrelevant papers according to the selection criteria. In case a paper
was considered completely irrelevant, the researcher did not protocol it at all.
The studies, in which the researcher was not sure about their relevance have
been included in the set of candidate studies for the second round.

10 Information and Software Technology

82 3 Framework for Identifying Meta-Requirements

Table 3.7: Exclusion and Inclusion Criteria

Exclusion Criteria
EC1 Published as book
EC2 Published as keynote, road map
EC3 Published as research review, and survey summarizing other research

Inclusion Criteria
IC1 Focus on developing requirements and software architecture with regard to quality requirements

IC2 Consideration of quality requirements
IC3 Fulfillment of quality requirements on the architecture level
IC4 Creation of requirements description
IC5 Creation of architecture description
IC6 Publishing time between 1.2005 and 12.2010
IC7 In the form of conference, journal papers
IC8 Subject area: computer science
IC9 Language: English

• Second round: The candidate studies from the first round have been further in-
vestigated in the second round according to the selection criteria. For this round,
we included additional sections of the papers, namely “introduction, discussion,
and conclusion”. Again, the studies, in which the researcher still was not sure
about their relevance have been included in the set of candidate studies for the
next round.

• Third round: The candidate studies from the second round have been scanned
by their full text according to the selection criteria. The resulting set of studies
has gone through a quality assessment before extracting data from the final set
of selected studies.

Sub-Step 3 - Identify Search Engines
Search engines are used for conducting automated search. Researchers use such
search engines to scan the online data bases for retrieving relevant studies ac-
cording to some defined search strings. For the automated search, we used the
established literature search engines Scopus11, and Science Direct12. We did not
include ACM Digital Library and IEEE Xplore since publications listed in their
catalog could also be found through the meta search engine Scopus.

Sub-Step 4 - Perform Automated Search
We conducted the automated search between the same time span as for manual
search. We used the search terms which have been revised and evaluated during
the manual search. For retrieving relevant studies from the automated search, we

11 http://www.scopus.com/
12 http://www.sciencedirect.com/

3.6 Research Method 83

used the same exclusion and inclusion criteria that we used for the manual search.
The results obtained from automated search complemented the results retrieved
from the manual search.

Sub-Step 5 - Perform Quality Assessment
Within quality assessment (Step 5 in Fig. 3.2), the papers selected in the manual
search as well as in the automated search were investigated further regarding their
quality. To this end, we used a quality check list given in Table 3.8. We used it to
record the quality of a paper consisting of four questions based on Table 6 in [149].

Each question had to be answered with a value from the set of possible values
defined in the check list. The paper that had been assigned at least one value de-
fined as “stop quality” was rejected from further analysis. This is only the case for
the question about the credibility of the papers. Along with the set of possible val-
ues for each question, the table provides numeric values that were used to calculate
a quality score by summing up the respective numeric value for each answer. We
chose a threshold of 0 for the quality scores to select the final set of studies. In the
end, the studies which reached the threshold were included in the final selection of
papers that went into data extraction. The threshold of 0 quality points was chosen
to include as many papers as possible for our investigation.

Question 1 in Table 3.8 is concerned with the credibility of the method and
findings reported in the paper at hand. Here the main question is if we can trust
the statements claimed in the paper. As one factor for credibility of the paper we
considered the type of the paper. We divided the types of the papers into the three
categories poster paper or idea paper (value: -1), Short paper or position paper
(value: 0), and full paper (value: 1). Only for a poster or short paper, we excluded
the paper immediately. The reason for the exclusion was less about the length of
the paper, but more about the lack of detailed content of the paper. This was the
case only for 2 studies.

Question 2 deals with the evaluation reported in the paper. We considered the
three cases real-life case study or big experiment (value: 1), desktop example or
small experiment (value: 0), and no evaluation (value: -1). None of these values
led to exclusion of the study.

Question 3 is concerned with the results of the evaluation and the quality of
the result reporting. Here, the questions are whether the results are conclusive and
connected to the initial research questions, whether all evidence is given in a way
the reader can comprehend them, whether important statements are given on the
base of evidence found in the results, and whether the reporting is clean? As possi-
ble values, we considered the three options everything clear and coherent (value:
1), some flaws (value: 0), and major flaws (value: -1). None of these values led to
exclusion from the study.

84 3 Framework for Identifying Meta-Requirements

Question 4 deals with the method itself and its details. We are interested in the
structure of the method. The main question here is how detailed the method is
described. As possible values, the three following options are given: step by step
and very detailed (value: 1), relatively detailed (value: 0), and vaguely conveyed
(value: -1). None of these values led to exclusion from the study.

Table 3.8: Quality Check List

Question Possible Values Stop Quality
1: How credible are the findings? credible(1), partially credible(0), not

credible(-1)
Yes (if -1)

2: How rigorously is the method evaluated? real-life case study / big experiment(1),
desktop example / small experiment(0), no
evaluation(-1)

No

3: How clear and coherent is the reporting? everything clear and coherent(1), some
flaws(0), major flaws(-1)

No

4: How detailed is the method conveyed? step by step and very detailed (1), relatively
detailed (0), vaguely conveyed (-1)

No

Sub-Step 6 - Perform Snowball Search
In addition to the manual and automated search, we performed a snowball search.
For the “snowball” search, we did not take the time span into account to be able
to find relevant studies published before 2005 as well. In the snowball search, we
scanned the references in the selected papers obtained from manual as well as au-
tomated search. These studies are those which have passed the quality assessment
step. For selecting relevant studies from the snowball search, we performed the
same three rounds as for the manual and automated search. The studies retrieved
from the snowball search have to go through the quality assessment. The final set
of relevant studies is composed of search results from manual search, automated
search, and snowball search that have been qualified in the quality assessment.

During the selection process, we identified duplicate papers, which we retrieved
from more than one search engine as well as by the manual search. We kept only
one of the duplicate studies in the final set of relevant studies. For the papers which
describe the same method, we aggregated the results.

Step 6 - Data Extraction

To extract and store data, we developed an excel sheet as an extraction form filled
out for the selected studies obtained from the quality assessment step. The extrac-
tion form contains meta information such as title, abstract, author names, publi-

3.7 Results and Discussion 85

cation venue, and publication year related to each paper obtained from the study
selection step. In addition, it contains answers to the quality check list shown in
Table 3.8 from the quality assessment step.

We extracted and elicited data in order to answer the MRQ and ARQs rep-
resented in Table 3.4. According to Table 3.5, the ARQs are mapped to meta-
requirements that we derived from empirical studies in Section 3.2. Having col-
lected this data, we are able to perform a comparative evaluation of selected meth-
ods using the evaluation framework described in Section 3.4.

In Section 3.7, we report on the results on the systematic literature review
and draw conclusions from the results. This corresponds to Step 7 and Step 8 in
Fig. 3.2.

3.7 Results and Discussion

In this section, we present the results (conducting phase, Step 7 in Fig. 3.2) we de-
rived from extracting data and draw conclusions from the results (reporting phase,
Step 8 in Fig. 3.2).

For the manual search, we searched 5 conference proceedings and 2 journals
from 2005 to 2010. We scanned 2304 papers within 7 publication venues. For the
automated search, we scanned 806 papers obtained from the general search engine
Scopus and 74 obtained from Science Direct. From the manual and automated
search, we selected 44 papers and for the snowball search, we selected 11 papers
for the study selection step. One paper out of 7 selected papers describes the same
method or report on a method we already selected. For such papers, we aggregated
the results of data extraction to avoid bias in the results. As the final result, we
extracted data for 6 papers (see Table 3.9).

Table 3.9: Study selection according to the selection process

Manual and automated search Snowball search
Round Selected Excluded Selected Excluded
First round 44 - 11 -
Second round 13 31 7 4
Third round 7 6 3 4
Quality assessment 4 3 3 0

86 3 Framework for Identifying Meta-Requirements

Table 3.10 shows the final list of 6 papers we selected for data extraction. The
aggregated paper is marked in italic font in the column Reference.

Table 3.10: Selected methods (answer to the MRQ)

Title Name Reference
1 ATRIUM: Software architecture driven by requirements ATRIUM [179],

[180]
2 Tactics based approach for integrating non-functional requirements in

object-oriented analysis and design
Marew et al. [172]

3 Integrating a software architecture-centric method into object-oriented
analysis and design

Sangwan et al. [208]

4 Knowledge based quality-driven architecture design and evaluation Ovaska et al. [185]
5 Towards MDD transformation from AO requirements to AO architecture Sánchez et al. [207]
6 Towards requirements-driven software development methodology: The

Tropos project
Tropos [65]

In the following, we first give a brief overview of the selected methods in Sec-
tion 3.7.1. Then, we discuss the results of the SLR by answering the research
questions for each method in Section 3.7.2.

3.7.1 Description of Selected Methods

In this section, we provide a brief description of the selected methods.

3.7.1.1 ATRIUM

Architecture generaTed from RequIrements applying a Unified Methodology (AT-
RIUM)[179, 180] is an aspect-oriented methodology that supports the develop-
ment of architectures from requirements. The intertwining of requirements and
software architectures is supported by ATRIUM. It pays special attention to trace-
ability support between requirements and software architecture. ATRIUM consists
of three main activities. In the first activity, goals of the system are defined taking
informal requirements into account. The ISO/IEC 25010 [130] is used for defining
quality requirements. Catalogues of patterns form the other input for this activity.
The output is a goal model which is based on KAOS [159] and the NFR frame-
work [72]. Quality requirements are then refined into operationalizations which
describe design decisions and design rationale made to satisfy requirements. Re-
quirements and operationalizations are related by means of contribution relation-

3.7 Results and Discussion 87

ships illustrating the effect of solutions on the requirements. In addition, architec-
tural patterns are applied by the architect to address quality requirements. They are
classified according to their positive and negative contributions to quality require-
ments. ATRIUM provides no systematic and methodical selection of architectural
patterns.

The second activity is concerned with defining architectural scenarios using
sequence diagrams. Architectural scenarios describe the system behavior under
certain operationalization decisions. Each scenario describes the interaction of ar-
chitectural and environmental elements to satisfy specific requirements.

In the third activity, a proto-architecture is generated from the scenario model
using Model-to-Model (M2M) transformations. The proto-architecture is a first
draft of the final architecture description that can be refined in a later stage of
the software development process. The target architecture description language
(ADL) is PRISMA [190] which combines component-based software development
(CBSD) and aspect-oriented software development (AOSD).

ATRIUM is supported by a tool called MORPHEUS. It includes a requirements
tool to describe requirement meta-models, a scenario editor for describing the sce-
narios, and a graphical environment for describing the proto-architecture obtained
from the scenario model. Although the authors claim that ATRIUM is designed
for the concurrent definition of requirements and software architecture, we can-
not comprehend this kind of development according to the available documents.
Nevertheless, in our comparative evaluation, we consider this meta-requirement as
fulfilled as this is claimed by the authors of this method.

3.7.1.2 Marew et al.

This method aims at incorporating quality requirements into the analysis and de-
sign phases of the existing object-oriented analysis and design (OOAD) [172]. For
modeling quality requirements, the NFR framework [72] is used. For realizing
quality requirements, tactics [44] are used as operationalization in the NFR frame-
work. The method considers trade-off analysis after the tactics are applied. During
trade-off analysis, the relationship among quality requirements is analyzed. Ac-
cording to the results of this activity, it is possible to go back to other phases and
redo the application of tactics.

This method uses the idea of aspect-oriented development to implement some
tactics by defining classpects (the use of the aspect idea in a class). In the design
phase, the tactics are integrated in the existing functional design. Some tactics re-
quire restructuring and redesigning the existing design. The method does not make
use of architectural patterns and styles. Hence, architecture alternatives that might

88 3 Framework for Identifying Meta-Requirements

result from the application of different architectural patterns are not considered by
Marew et al. Traceability between different artifacts is only partially provided. For
example, in the SIG graph (Softgoals Interdependencies Graph) based on the NFR
framework, NFRs and tactics are related. However, we did not find trace links be-
tween NFRs and class diagrams. The proposed method provides no support for
evaluating the resulting architecture.

3.7.1.3 Sangwan et al.

Sangwan et al. [208] combine the object-oriented analysis and design (OOAD)
methodology which heavily focuses on functional requirements with the methods
Quality Attribute Workshop (QAW) [42] and Attribute Driven Design (ADD) [244,
48, 37] in order to incorporate quality requirements into the software development
process. First the goals of the system are elicited using the QAW approach. The
next step is to link the goals to quality requirements. Scenarios are used for speci-
fying quality requirements.

The starting point is the system considered as a monolithic component which
has to be iteratively elaborated to a coarse-grained architecture by applying ADD.
This component is then recursively decomposed to sub-components. Tactics are
applied to satisfy quality requirements. It is mentioned that trade-offs among qual-
ity requirements and potential conflicts among tactics should be tackled. However,
no systematic approach to deal with these conflicts and making trade-offs is de-
scribed. It seems that trade-off analysis strongly relies on the experience of the
people performing it. Architectural patterns can also be applied in this approach.
However, it is unclear whether there is a systematic method for selecting among
the set of architectural patterns. For elaborating the high level architecture pro-
duced by ADD and specifying the fine-grained architectural detail, the standard
OOAD techniques are applied.

3.7.1.4 Ovaska et al.

A quality-aware, model-driven, ontology-orientated, and domain-specific software
architecture method is proposed by Ovaska et al. [185]. The specific domain this
method is tailored to is the embedded system domain. This method consists of
three main phases: modeling quality attributes (QA), representing quality prop-
erties in architectural models, and evaluating quality fulfilment from models and
code. In the first phase, two models are created; the QA ontology model which
captures the knowledge related to a specific quality requirement and the QA re-

3.7 Results and Discussion 89

quirements model which uses the QA ontology to define and update the quality
requirements. In the second phase, architectural patterns, generic and domain-
specific design patterns, and tactics are used for addressing quality requirements
in the software architecture. In this approach, tactics are called means such as se-
curity means. The third phase is concerned with prioritizing quality requirements,
performing a trade-off analysis between them, and achieving quality requirements
according to their priority. Low priority quality requirements are considered as
nice to have requirements. Although the use of architectural styles, patterns, and
tactics might lead to different architectures depending on the priorities of the re-
quirements, the creation of architecture alternatives is not addressed in this method.
Similar to the three methods described before, also the Ovaska et al. method does
not consider the evaluation of the resulted architecture with respect to quality re-
quirements.

This method uses UML for both requirements engineering and software ar-
chitecture. This allowed for developing a semi-automated tool based on the open
source platform Eclipse. The tool provides support for the whole design flow from
requirements to design.

3.7.1.5 Sánchez et al.

An aspect-oriented and a model-driven approach to derive software architecture
descriptions from requirements is proposed by Sánchez et al. [207]. The first step
is concerned with aspect-oriented requirements engineering (AORE). The goal of
this step is to collect requirements and capturing and analyzing concerns (func-
tional and quality concerns) which results in textual requirements. The second step
is concerned with AO requirements modeling. A UML model is constructed for
modeling textual requirements as a set of scenarios. In the third step, the scenario
model from the previous step is transformed into an AO architectural model using
predefined model-driven development (MDD) transformations. The architectural
model is expressed in UML containing a structural view and a behavioral view.
The structural view contains components, ports, interfaces, and connections. The
behavioral view involves the exchange of messages between components. Quality
requirements are addressed in the architectural model by means of aspects.

In this method, it is possible to generate several candidate architectures corre-
sponding to different design decisions by defining several transformations. Nev-
ertheless, it is the responsibility of the software architect to select the best one,
as there is no support for evaluating the software architectures and selecting the
most suitable software architecture provided. Trade-offs between quality require-
ments can be reflected in the architectural model, if they are already considered

90 3 Framework for Identifying Meta-Requirements

in the AORE step. However, there is no approach provided that describes how to
deal with interacting quality requirements and scenarios in the AORE step. Trace
links between scenarios and the architecture model might implicitly exist using
the transformation rules that are used for transformation from scenarios to the ar-
chitectural model. However, there is neither explicit support for traceability in this
method given, nor exists support for capturing design rationals.

For this method, the authors did not develop any specific tool. They made use
of standard tools and languages, whenever possible. For example, for the AORE
step, the tool to be used depends on the AORE process chosen. For the scenario
model and the architectural model, any UML tool can be used as these models are
based on UML. For transformation, QVT (Query, View, Transformations) [234] as
an OMG standard is used.

3.7.1.6 Tropos

Castro et al. [65] propose a development framework, named Tropos which adopts
the i* organizational modeling framework and uses it for modeling early and late
requirements, architectural, and detailed design. The early requirements analysis
is concerned with the intentions of stakeholders to be modeled as goals. In the i*
framework, stakeholders are represented as actors. Strategic dependency models
and strategic rational models are used for modeling the relationships among actors
and capturing rationales. Late requirement analysis is concerned with modeling re-
quirements containing functional and quality requirements. In this step, functional
requirements are operationalized. Quality requirements are either operationalized
or metricized.

The task in the architectural design step is to select among (organizational) ar-
chitectural styles. For evaluating and analyzing architectural styles against quality
requirements, the NFR framework is used. Softgoals are refined to sub-goals that
are more specific and precise for evaluating architectural styles against them. De-
sign rationale is represented as dashed clouds in the goal model. After selecting the
appropriate architectural style, the responsibilities are assigned to the actors. The
detailed design step focuses on introducing additional detail for each architectural
component. A set of stereotypes and tagged values are defined for accommodating
the Tropos concepts within UML. Class diagrams and sequence diagrams are used
for representing the detailed design.

Tropos provides partial support for traceability. For example, relations between
softgoals and architectural styles are established, whereas from goals to sequence
diagrams and class diagrams no trace links are provided. Regarding trade-off anal-
ysis, there is no methodical support for detecting and resolving conflicts among

3.7 Results and Discussion 91

quality goals. There is only the possibility for representing such dependencies
among goals in the goal model. Tropos considers different architectural styles and
selects among them. Nevertheless, it derives only one software architecture at the
end of the design phase which is implemented. Regarding the evaluation, only ar-
chitectural styles are compared with respect to their impact on softgoals. There
is no support given for the evaluation of the resulting architecture regarding the
achievement of softgoals.

3.7.2 Results of the SLR

In the following, we present the results of our synthesis by answering the research
questions shown in Table 3.4. Tables 3.11, 3.12, 3.13, 3.14, and 3.15 represent the
answers to ARQ 1–ARQ 25. The first column (Method) lists the selected papers as
the answer to the MRQ.

Table 3.11 illustrates the answers to ARQ 1–ARQ 5. As an answer to the ARQ
1 (SE phase), we classified the SE phases to requirements engineering (RE), ar-
chitecture (Arch), and design (Design). As we can see, all methods cover the
phases requirements engineering and architecture design. Input and Output of each
method are addressed in ARQ 2 and ARQ 3. The majority of the methods takes as
input an informal description of the requirements (informal requirements in Ta-
ble 3.11). The output of the methods varies depending on the requirements engi-
neering and architecture approach they use. Application domain is addressed in
ARQ 4. The majority of the methods can be applied in general. Only the method
Ovaska et al. is domain specific. It is specified for embedded systems.

ARQ 5 is concerned with the skills that an inexperienced software engineer
needs to know or learn in addition to conventional software engineering knowl-
edge. We assume that UML and some types of UML diagrams such as class di-
agrams, activity diagrams, use case diagrams, and sequence diagrams are known
to novices software engineers, as this material is supposed to be the standard ma-
terial being taught in undergraduate courses. In contrast, goal-oriented modeling
(GO in Table 3.11) needed for the methods ATRIUM, Marew et al., and Tropos,
aspect-oriented paradigm (AO) needed for the methods ATRIUM Marew et al.,
and Sánchez et al., model-driven development (MDD) needed for the methods
ATRIUM, Ovaska et al., and Sánchez et al. might not belong to the standard mate-
rial of the undergraduate courses.

92 3 Framework for Identifying Meta-Requirements

Table 3.11: Answers to ARQ 1–ARQ 5

MRQ ARQ 1 ARQ 2 ARQ 3 ARQ 4 ARQ 5
Method SE Phase Input Output App Dom. User Skill
ATRIUM RE13, Arch.14 Informal require-

ments
Proto arch. General GO15,

AO16,
MDD17,
AO-ADL18

Marew et al. RE, Design Informal require-
ments

Goal model, class dia-
gram, sequence diagram,
deployment diagram

General GO, AO

Sangwan et al. RE, Arch, Design Business concept
model, business
process model,
business goals

Interfaces specification,
detailed component
design, component
architecture

General QAW19,
ADD20,
OOAD21

Ovaska et al. RE, Arch, Design Informal require-
ments

Requirements quality at-
tribute ontology models,
architecture models

Embedded
system

MDD,
QADA22

Sánchez et al. RE, Arch Informal require-
ments

Component, sequence di-
agrams

General AO, MDD,
AO-CAM23

Tropos RE, Arch, Design Stakeholder
intentions

SD24 model, SR25 model,
formal Tropos specifi-
cation, NFR26 diagram,
Agent class diagram,
sequence diagram, col-
laboration diagrams, plan
diagram

General GO

Table 3.12 shows the answers to ARQ 6–ARQ 8 and ARQ 24. ARQ 6 is con-
cerned with eliciting and documenting quality requirements. As we can see, in con-

13 Requirements Engineering
14 Architecture
15 Goal-Oriented Concept
16 Aspect-Oriented Concept
17 Model-Driven Development
18 Aspect-Oriented Architecture Description Language
19 Quality Attribute Workshop
20 Attribute Driven Design
21 Object-Oriented Analysis and Design
22 Quality-driven Architecture Design and quality Analysis
23 Aspect-Oriented Component and Aspect Model
24 Strategic Dependency
25 Strategic Rationale
26 Non-Functional Requirement

3.7 Results and Discussion 93

trast to the results we obtained from empirical studies and experience reports from
practice (see Section 3.2), requirements elicitation and documentation in academia
is largely performed in a systematic way using well established methods and nota-
tions such as goal modeling and UML.

To investigate whether architecting and designing systems is being done in
an ad-hoc and unsystematic manner and only by experienced software engineers,
ARQ 7 and ARQ 24 aim at finding out how well the process is supported by the
selected methods and how detailed these methods are structured and described.
These questions are related to the essential meta-requirement Guidance (see Ta-
ble 3.5). The aim of these questions is to discover how suitable the selected meth-
ods are for less experienced software engineers. As we can see, only ATRIUM
provides guidelines and case studies that help the user in applying the method
(ARQ 7). As an answer to ARQ 24, we observe that ATRIUM provides a very
detailed and step by step description of the method as well.

ARQ 8 investigates how quality requirements are addressed in the software ar-
chitecture. This ARQ is related to the essential meta-requirement knowledge reuse.
As we can see in Table 3.12, only two methods Sangwan et al. and Ovaska et al.
use architectural patterns as well as tactics (also called quality means) for achiev-
ing quality requirements. The other methods use either architectural patterns or
tactics (also called mechanisms or quality means). In a suitable software architec-
ture both patterns and tactics have to be used as they contribute to the satisfaction
of quality requirements in different ways.

Table 3.12: Answers to ARQ 6–ARQ 8, and ARQ 24

MRQ ARQ 6 ARQ 7 ARQ 24 ARQ 8
Method Q Req. Guidance Method Structure Knowledge Reuse
ATRIUM Elicitation, documentation Yes Step by step Architectural patterns, design

patterns
Marew et al. Elicitation, documentation No Step by Step Tactics
Sangwan et al. Elicitation, documentation No Step by step Architectural patterns, tactics
Ovaska et al. Elicitation, documentation No Relatively detailed Architectural patterns, design

patterns, quality means
Sánchez et al. Elicitation, documentation No Relatively detailed Mechanisms
Tropos Elicitation, documentation No Step by step Organizational architectural

styles, social patterns

Table 3.13 shows the answers to ARQ 9–ARQ 14. ARQ 9 and ARQ 12 are con-
cerned with the known RE as well as architecture approaches that are used in the
selected methods. For example, Marew et al. uses the NFR framework and Tropos
uses i* as their requirements engineering approaches. The methods Marew et al.

94 3 Framework for Identifying Meta-Requirements

and Tropos do not use any known approach for the architecture phase. Ovaska et
al. uses QADA (Quality-driven Architecture Design and quality Analysis) as the
architecture approach.

ARQ 10 and ARQ 13 deal with the notations and languages used for creating
the requirements artifacts as well as architecture artifacts. Some methods use UML
or notations similar to UML and some methods use goal notations for creating
the requirements artifacts. These might be different kinds of goal notations. For
example, ATRIUM uses KAOS and the NFR framework, which is distinguished
from the goal notation i* in Tropos. For creating the architecture artifacts, the
majority of methods uses UML or its variants such as Agent UML (AUML) used in
Tropos.

ARQ 11 and ARQ 14 are concerned with the artifacts created in the requirements
engineering phase as well as in the architecture phases. Atrium creates a goal model
and a scenario model for describing the requirements, whereas Sánchez et al. uses
sequence diagrams as requirement descriptions. The artifacts that are created in the
architecture phase are different. However, most of the methods create a structure
diagram such as a class diagram. The second frequent diagram for representing
the software architecture is the sequence diagram for describing the behavior.

Table 3.13: Answers to ARQ 9–ARQ 14

MRQ ARQ 9 ARQ 10 ARQ 11 ARQ 12 ARQ 13 ARQ 14
Method RE Descr. Design Descr.
ATRIUM KAOS,

NFR frame-
work,
scenario

Goal no-
tation

Goal model, sce-
nario model

UML27,
AO-ADL

UML AO-ADL, structure dia-
gram

Marew et al. NFR frame-
work

Goal no-
tation

Goal model - UML class, sequence, deploy-
ment diagrams

Sangwan et al. QAW, use
cases

UML Quality attribute
scenarios, use
case model,
business type
model

ADD,
OOAD

UML Class, component dia-
gram

Ovaska et al. - UML Requirements
quality attribute
ontology models

QADA UML Collaboration, structure,
sequence, state, deploy-
ment diagram

Sánchez et al. Scenarios UML Sequence dia-
gram

AO-
CAM

UML Component, sequence
diagram

Tropos i* Goal no-
tation

SD model, SR
model, formal
tropos specifica-
tion

- Goal
notation,
AUML28

NFR requirements, class,
sequence, plan diagrams

3.7 Results and Discussion 95

Table 3.14 shows the answers to ARQ 15–ARQ 19 and ARQ 23. ARQ 15 is
concerned with providing support for traceability. It is only fully supported by
ATRIUM and Sangwan et al.. The rest of the selected methods support traceability
either partially or not at all. For example, Marew et al. provide traceability between
NFRs and tactics in the SIG graph, but not between NFRs and the class diagrams.
Also Tropos provides partial traceability support, namely only between softgoals
and architectural styles.

As discussed in Section 3.2, particularly inexperienced architects rely on meth-
ods that guide them in capturing design rationale and ensure that design rationale
is sufficiently and systematically documented. With ARQ 16, we aim at finding an-
swers on how well the selected methods support capturing design rationale behind
design decisions. Only ATRIUM and Tropos support the documenting of design
rationale when making design decisions. For the rest of the methods, we did not
find any hint regarding design rationale in the documentation of the methods.

We found strong empirical evidence in Section 3.2 for taking trade-off analysis
as a meta-requirement into account. This meta-requirement corresponds to ARQ
17. Only three methods Marew et al., Sangwan et al., and Ovaska et al. support
trade-off analysis. ATRIUM and Tropos provide the possibility to represent such
trade-offs. They, however, do not provide any systematic method for detecting as
well as resolving conflicts.

Creation of architecture alternatives (ARQ 18) is not supported by the most of
the methods. Only ATRIUM and Sánchez et al. provide the possibility to gener-
ate several candidate architectures corresponding to different design decisions by
defining several transformations. They, however, do not include the creation of
architecture alternatives in their method steps. In Tropos, one can choose among
different architectural styles for creating the resulting software architecture. How-
ever, the method is designed for creating only one resulting software architecture
and not candidate architectures.

Regarding the iterative software development (ARQ 19), some of the methods
such as ATRIUM, Marew et al., and Ovaska et al. support the iterative development
as recommended in the empirical studies described in Section 3.2.

As discussed in Section 3.2, evaluation of software architecture is essential to
ensure whether and to which extent quality requirements have been addressed in
the software architecture. Evaluating software architecture is addressed in ARQ 23.
As we can see in Table 3.14, none of the methods consider the evaluation of soft-
ware architectures. For example, in Sánchez et al. it is possible to create candidate
architectures based on different transformations. Nevertheless, it is the responsi-

27 Unified Modeling Language
28 Agent UML

96 3 Framework for Identifying Meta-Requirements

bility of the software architect to select the best one, as there is no support for
evaluating the software architectures and selecting the most suitable software ar-
chitecture provided. Only Tropos provides partial support for evaluation by evalu-
ating the architecture styles to be chosen for the final architecture. However, there
is no support in Tropos for evaluating the final software architecture with respect
to quality requirements.

Table 3.14: Answers to ARQ 15–ARQ 19 and ARQ 23

MRQ ARQ 15 ARQ 16 ARQ 17 ARQ 18 ARQ 19 ARQ 23
Method Traceability Design Rationale Trade-off Analysis Arch. Alt. Iterative Dev. Arch. Eval.
ATRIUM Yes Yes No Partially Yes No
Marew et al. Partially No Yes No Yes No
Sangwan et al. Yes No Yes No No No
Ovaska et al. No No Yes No Yes No
Sánchez et al. No No No Partially No No
Tropos partially Yes No Partially No Partially

Table 3.15 shows the answers to ARQ 20–ARQ 22 and ARQ 25. Co-development
of requirements and software architecture in an iterative and concurrent manner is
recommended in the literature. We also found few empirical studies that underline
this as discussed in Section 3.2. ARQ 20 is concerned with concurrent develop-
ment of requirements and software architecture. This is only answered with yes
by the ATRIUM approach. All other approaches do not support the intertwining
development of the two phases.

There is no consensus on the number and nature of the architectural views.
Hence, it can be hardly defined which kinds of architectural views are required. All
the selected studies provide at least a structural view for representing the software
architecture (ARQ 21). The behavioral view is considered in the majority of the
methods as well.

ARQ 22 addresses tool support by the selected methods. According to the stud-
ies we discussed before (see Section 3.2), tools are usually not used in practice.
Nevertheless, there is no evidence that a tool might not be supportive by some
tasks. As we can see in Table 3.15, tool support is only provided by the methods
using the MDD technique as it is hardly possible to transform one model into an-
other model without tool support. These methods are ATRIUM, Ovaska et al., and
Sánchez et al. to some extent.

Method evaluation addressed by ARQ 25 is one of the questions asked by the
quality assessment. It is classified into big experiment representing real-life case
studies, small experiment representing small case studies or desktop examples, and

3.8 Comparative Evaluation 97

no evaluation. All the selected methods used at least a small experiment for their
evaluation.

Table 3.15: Answers to ARQ 20–ARQ 22, ARQ 25

MRQ ARQ 20 ARQ 21 ARQ 22 ARQ 25
Method Concurrent Dev. Arch. Views Tool Support Method Eval.
ATRIUM Yes Not explicitly (structural) Yes Big experiment
Marew et al. No Structural, behavioral, deployment No Small experi-

ment
Sangwan et al. No Structural No Big experiment
Ovaska et al. No Structural, behavioral, deployment, de-

velopment
Yes Big experiment

Sánchez et al. No Structural, behavioral Partially Small experi-
ment

Tropos No Structural, behavioral No Small experi-
ment

3.8 Comparative Evaluation

This section deals with evaluating the selected methods based on the meta-require-
ments derived in Section 3.2 and the comparative evaluation framework developed
in Section 3.4. First, we describe how we perform the value assignment to the crite-
ria (meta-requirements) to make the selected methods comparable in Section 3.8.1.
Then, we show the application of the evaluation framework to the methods we have
selected from our systematic review.

3.8.1 Value Assignment Schema

It is not a trivial task to quantify the results we obtained from the previous sec-
tion. However, we need to some extent a quantification to make the methods com-
parable. We decided to use a 3-score scale consisting of +, o, and - for assign-
ing values to the meta-requirements, as it might be easier to handle than other
scoring systems. In the following, we describe for each meta-requirement a map-
ping between the answer of the related ARQ (obtained from the previous section)
and the assigned values. To show such a mapping, we provide one table for each
meta-requirement, in which the first column of the table represents the “meta-

98 3 Framework for Identifying Meta-Requirements

requirement”, the second column shows the “related ARQ”, the third column gives
the possible answers to the ARQ (“answer to ARQ”), and the fourth column repre-
sents the values we assigned (+, o, -) for making the meta-requirement comparable
with other methods (“assigned value”).

User skill

As described before (see Section 3.2), user skill refers to the skills that an inex-
perienced software engineer needs additionally for applying the method at hand.
Certainly, it is of advantage if less specific knowledge is required for applying a
method. Therefore, we assigned values to the meta-requirement user skill accord-
ing to the number of skills an inexperienced software architect requires to learn
additionally to be able to apply a method. This is shown in Table 3.16.

Table 3.16: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
User Skill ARQ 5 4 needed skills -

3 needed skills o
1-2 needed skill +

Eliciting and documenting quality requirements in a systematic and
structured way

We defined eliciting and documenting quality requirements in a systematic and
structured way as an “essential” meta-requirement that must be integrated in the
process of software development. Hence, we assigned the values to this meta-
requirement as illustrated in Table 3.17.

Table 3.17: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Quality requirements ARQ 6 Structured and systematic elicitation and docu-

mentation
+

Vaguely elicitation and documentation o
No elicitation and documentation -

3.8 Comparative Evaluation 99

Guidance and method structure

As discussed before, the methods have to involve a number of steps to be per-
formed. It should explicitly be provided in which order the certain steps have to
be executed. In addition to the structuring of the method, explicit guidelines and
heuristics must be provided in order to support inexperienced software architects
in achieving the goal of the method. Hence, we define the following values for the
criteria guidance and method structure shown in Table 3.18.

Table 3.18: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned
value

Guidance and method structure ARQ 7, ARQ 24 “Yes” and “step by step” +
“Yes” and “relatively detailed” o
“No” and “step by step” o
“No” and “relatively detailed” -

Knowledge reuse

A quality-aware software development process covering requirements engineering
and software architecture must include step-by-step and systematic ways for find-
ing solutions using architectural patterns and tactics29 to achieve quality require-
ments. The assigned values for this “essential” meta-requirement are illustrated in
Table 3.19.

Note that the use of patterns and tactics is manifested in the state-of-the-art as
a common and an established principle for fulfilling quality requirements. Since
all the considered methods in our study make use of patterns and/or tactics for
achieving quality requirements, the value assignment shown in Table 3.19 is suffi-
cient for comparing the selected methods. However, there might exist approaches
(i.e., in the future) that use other principles for achieving quality requirements. For
such a case, Table 3.19 has to be extended or modified in order to consider other
principles for achieving quality requirements.

29 Also known as mechanisms or quality means

100 3 Framework for Identifying Meta-Requirements

Table 3.19: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Knowledge reuse ARQ 8 “Architectural patterns” and “tactics30” +

“Only architectural patterns” o
“Only tactics” o
“No architectural patterns” and “no tactics” -

RE and design descriptions

From the empirical studies we concluded that the use of models, the use of uni-
fied notations and languages as well as a combination of semi-formal and natural
language for producing the artifacts are important. The assigned values to this “es-
sential meta-requirement” are shown in Table 3.20.

Table 3.20: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
RE and design descriptions ARQ 9, ARQ 10,

ARQ 11, ARQ 12,
ARQ 13, ARQ 14

“unified language for RE and architec-
ture” and “semi-formal”

+

“unified language for RE and architec-
ture” and “only natural language”

o

“different languages for RE and archi-
tecture” and “semi-formal”

o

“different languages for RE and archi-
tecture” and “only natural language”

-

Traceability support between requirements and architecture artifacts

We defined traceability as a “recommended” meta-requirement which can be sup-
ported fully, partially, or not at all by the selected methods. Table 3.21 shows the
mapping of the fulfillment of this meta-requirement to values we assigned.

Capturing and documenting design rationale in a systematic way

As described in Section 3.2, software architects, particularly inexperienced archi-
tects, rely on methods that guide them in capturing design rationale and ensure
that design rationale is sufficiently and systematically documented. A method can

3.8 Comparative Evaluation 101

Table 3.21: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Traceability ARQ 15 Yes +

Partially o
No -

fully, partially, or not at all support the capturing and documenting design rationale
in a systematic way. The value assignment is shown in Table 3.22.

Table 3.22: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Design rationale ARQ 16 Yes +

Partially o
No -

Detecting conflicts and interactions among (quality) requirements as well as
resolving such interdependencies

Trade-off analysis as a “recommended” meta-requirement should be integrated in
the process of software development. This includes detecting conflicts and inter-
actions among (quality) requirements as well as resolving such interdependencies.
The values assigned to this meta-requirement are displayed in Table 3.23.

Table 3.23: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Trade-off analysis ARQ 17 “Detection” and “resolution” +

“Only detection” o
“Only resolution” o
“No detection” and “no resolution” -

102 3 Framework for Identifying Meta-Requirements

Supporting architecture alternatives

We defined supporting architecture alternatives as a “recommended” meta-require-
ment. It refers to architecture alternatives to be created for the overall software ar-
chitecture that achieve quality requirements to different satisfaction levels. Some
methods do not consider the creation of such candidates for the final software
architecture. They, however, consider solution candidates such as patterns and tac-
tics for achieving quality requirements. We call this as a “partial” fulfillment of
this meta-requirement. Table 3.24 shows the related assigned values.

Table 3.24: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Architecture alterna-
tives

ARQ 18 Yes +

Partially o
No -

Supporting feedback loops between requirements and software architecture

To ensure that the software system responds adequately to changes, there should
exist at least feedback loops between the phases requirements engineering and
software architecture. Hence, developing requirements and software architecture
in an iterative manner is “recommended” in the empirical studies. See Table 3.25
for the defined mapping.

Table 3.25: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Iterative develop-
ment

ARQ 19 Yes +

No -

3.8 Comparative Evaluation 103

Co-development of requirements and software architecture in an iterative
and concurrent manner

Co-development of requirements and software architecture in an iterative and con-
current manner is recommended in the research. As we did not find much empirical
evidences, we defined it as an “optional” meta-requirement which can be supported
by the methods or not. Table 3.26 shows the related assigned values.

Table 3.26: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Concurrent co-
development

ARQ 20 Yes +

No -

Defining architectural views

Table 2.1 in Chapter 2 (see page 30) provides an overview of the common How-
ever, there is no consensus on the number and nature of the architectural views.
Hence, it can be hardly defined which kinds of architectural views are required.
According to Smolander et al. [222], the most appropriate set of architectural view
cannot be objectively specified in general. Based on the prevalent situation and
characteristics of the organizations and software projects, the architectural views
have to be selected. This dissension regarding the appropriate set of architectural
views makes it hard to assign values for this meta-requirement. Therefore, for this
“optional” meta-requirement we assign values according to the view types used in
the selected methods shown in Table 3.27.

Table 3.27: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Arch. views ARQ 21 “structural” and “behavioral” and “deployment”

or “development”
+

“structural” and “behavioral” o
“structural” -

104 3 Framework for Identifying Meta-Requirements

Tool support

We could not find any evidence for considering a tool as necessary for using a
method. Hence, we defined this meta-requirement as “optional”. Some methods
provide full tool support for their methods, some only partially, and some do not
provide a tool at all. This is reflected in Table 3.28.

Table 3.28: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Tool support ARQ 22 Yes +

Partially o
No -

Support for the evaluation of the software architecture

Studies with inexperienced software architects show strong preferences for a
method which supports the evaluation of the software architecture. Some meth-
ods include the evaluation of the resulting software architecture and some do not
consider this at all. There exist methods which only partially support the evalua-
tion by for example evaluating the architectural pattern candidates with respect to
quality requirements. The value assignment is illustrated in Table 3.29.

Table 3.29: Mapping between meta-requirements and their assigned values

Meta-requirements Related ARQ Answer to ARQ Assigned value
Architecture evalua-
tion

ARQ 23 Yes +

Partially o
No -

3.8.2 Framework Application

Table 3.30 shows the application of the evaluation framework to the methods we
have selected from our systematic review. The dark gray rows show the essential

3.8 Comparative Evaluation 105

meta-requirements, which are quality requirements, guidance, knowledge reuse,
and RE and design descriptions. The light gray rows indicate the recommended
meta-requirements, which include traceability, design rationale, trade-off analy-
sis, architecture alternatives, and iterative development. The non-colored rows are
the optional meta-requirements, which are concurrent co-development, architec-
ture views, and tool support. In addition, we take into account the method char-
acteristic user skill for the comparative evaluation of the selected methods, as the
number of new skills to learn by a novice software architect might have an impact
on the application of the method. In the previous section (see Section 3.8.1), we
described the value assignment schema that we use for comparative evaluation (see
Table 3.30).

Table 3.30: Comparative evaluation of selected methods

Component Elements ATRIUM Marew et al. Sangwan et al. Ovaska et
al.

Sánchez et
al.

Tropos

User User skill - + o + o +
Contents Quality require-

ments
+ + + + + +

Guid. and
method struc.

+ o o - - o

Knowledge reuse o o + + o o
RE and design
description

o - + + + o

Traceability + o + - - o
Design rationale + - - - - +
Trade-off analy-
sis

- + + + - -

Architecture al-
ternatives

o - - - o o

Iterative devel-
opment

+ + - + - -

Concurrent
co-development

+ - - - - -

Architecture
views

- + - + o o

Tool support + - - + o -
Architecture
evaluation

- - - - - o

As we can see in Table 3.30, we cannot find any method among the set of se-
lected methods that fulfills all the meta-requirements or nearly all of them. We
discuss the fulfillment of the meta-requirements by the selected methods by cate-
gory. We first consider the category essential meta-requirements that can be con-
sidered as must have meta-requirements as argued in Section 3.2. Two methods

106 3 Framework for Identifying Meta-Requirements

Sangwan et al. and Ovaska et al. fulfill three of the four meta-requirements. The
meta-requirement guidance and method structure cannot be fully fulfilled by these
methods. One reason for this can be that these methods are not designed for inex-
perienced software architects and novices. Hence, they do not place importance on
guiding the user providing a step by step method and detailed guidance.

The recommended meta-requirements do not need to be fulfilled necessarily by
the selected methods. Nevertheless, they have been recommended repeatedly in
research and empirical studies from practice as described in Section 3.2. Hence,
we expect the methods to fulfill the most of these meta-requirements, if not all
of them can be fulfilled by one single method. From six recommended meta-
requirements, the three meta-requirements traceability, design rationale, and iter-
ative development are fulfilled by the ATRIUM method. The other methods fulfill
even less meta-requirements. In ATRIUM, the meta-requirement trade-off analy-
sis is not considered at all. Trade-off analysis includes detection and resolution of
conflicts and interdependencies among quality requirements. Regarding architec-
ture alternatives, only alternatives for architectural patterns are taken into account
which lead to selecting only one architectural pattern for the final architecture.
Hence, the resulting final architecture does not include any alternatives. Moreover,
ATRIUM does not evaluate to what extent the resulting final software architecture
satisfices the elicited and modeled quality requirements (meta-requirement archi-
tecture evaluation).

Two of three optional meta-requirements that can be considered as nice to have
meta-requirements are fulfilled by ATRIUM and Ovaska et al.. ATRIUM not only
develops the requirements and software architecture in an iterative manner, it also
takes the concurrent co-development of these artifacts into account. In addition, a
tool is developed to support the user in applying the method.

Regarding the category method characteristic, we only considered user skill in
Table 3.30. Only three out of 6 selected methods cover this characteristic. Another
characteristic that might be interesting for comparison is the application domain
(not shown in Table 3.30). The majority of the methods can be applied in general.
Only the method Ovaska et al. is domain specific. It is specified for embedded
systems which causes a restriction in applying this method as it is not universally
applicable (see Table 3.11 on page 92).

Our evaluation underlines the lack of methodological support for a systematic
development of both phases with respect to quality requirements in a unified pro-
cess. The main finding of our review was the identification of a need for a unified
method which supports the development of requirements and software architec-
tures. In further chapters of this book, we describe our QuaDRA framework which
addresses the gaps identified in this chapter by providing a method supporting the
development of requirements and software architecture with respect to quality re-

3.9 Threats to Validity 107

quirements. We will apply later on in this book the evaluation framework to the
QuaDRA method in order to validate whether the identified gaps are addressed.

3.9 Threats to Validity

For quantitative research (such as experiments) in software engineering, four main
types of validity threats, namely conclusion, internal, construct, and external are
discussed by Wohlin et al. [242]. Among these four main types of validity threats,
the internal validity is classified as the one with the highest priority [243]. We
identified three types of validity threats that apply to our empirical study. We report
on these threats and the mitigation strategies we applied to control the identified
threats.

Internal validity threat refers to bias in designing the study and performing
the review that affect the outcome of the review. We identified three internal threats
regarding the conduction of the SLR. The first internal threat is associated with am-
biguity, incompleteness, and inconsistency of the data extraction form. To mitigate
this threat, we constructed the extraction form according to the research questions
represented in Table 3.4 which are derived based on the identified requirements
and the evaluation framework.

The second internal threat to validity concerns the design of the study in gen-
eral. To mitigate this internal threat, we developed our protocol in advance, which
has been reviewed by external reviewers within our working group.

Another important threat when performing systematic literature reviews refers
to the completeness of search terms. In order to cover the possible maximum num-
ber of relevant studies, we took into account the synonyms and alternative spellings
in the search strings. We first conducted the manual search using the defined ini-
tial search terms. Then, we revised and validated search terms during the manual
search. The validated search terms have been used for the automated search. All
studies found by the manual search have also been found by the automated search.
This indicates a very high quasi-sensitivity. It is an important criterion that is used
to evaluate the quality and performance of search strategies [254].

There exists an additional internal threat regarding the application of our com-
parative evaluation framework and the value assignment schema. Using the value
assignment schema (see Section 3.8.1), we described how we defined the possible
values for the defined meta-requirements and how we assigned values to the meth-
ods. It might be a bias regarding the value assignment, as it has been done by a
single researcher. We tried to mitigate this bias by describing the value assignment
process and the comparison process thoroughly and transparently in Sections 3.8.1

108 3 Framework for Identifying Meta-Requirements

and 3.8.2 so that it can be easily understood. In addition, the single researcher has
been carrying out research and collecting experiences in the fields of requirements
and architecture and related methods for 6 years. This might mitigate the risk of
bias regarding this internal threat as well. Nevertheless, we cannot fully eliminate
this internal threat.

External validity threat deals with the generalization of the results. Due to a
huge number of papers in the literature, there exists the possibility of not covering
all relevant papers. To reduce this kind of validity threat, we conducted the snow-
ball search in addition to the manual and automated search. We did not constrain
the snowball search by publication year as we did for the manual and automated
search. Hence, we reduced the external validity threat, which occurs due to a bi-
ased time span selection.

Construct validity threat is concerned with the relation between the measures
used in the review and the outcomes of the review. We identified one construct
validity, which might occur when the metrics and measures represented in the
extraction form do not reflect the results of the study appropriately. To reduce
this threat, we constructed the extraction form according to the research questions.
In addition, we used metrics described in the literature to convey the results in
a suitable way. Furthermore, the researcher involved in the study is experienced
in this area which reduces the likelihood of using inappropriate metrics in the
extraction form.

3.10 Contributions

In this chapter, we identified the lack of systematic and methodological guidelines
for quality-aware development of requirements and software architecture. Our con-
tributions can be captured as follows:

• Systematic identification of meta-requirements that a method for quality-
aware development of requirements and software architecture should fulfill. We
derived 19 meta-requirements.

• Classification of identified meta-requirements in essential which must be ful-
filled, recommended which might not be absolutely required, optional which do
not necessarily need to be fulfilled, and method characteristics.

• Corroborating the identified meta-requirements through direct evidence
from empirical studies. We reviewed 11 empirical studies related to quality re-
quirements and software architecture including literature reviews, interviews,
surveys, and group discussions.

3.10 Contributions 109

• Developing a structured framework for analyzing and comparing the state-
of-the-art methods. It is structured in Components, Elements, Evaluation Ques-
tions, and Classification. The evaluation framework can easily be modified and
extended to desirable features.

• Systematic selection of the state-of-the-art methods by conducting a system-
atic literature review. We scanned 2304 papers within 7 publication venues by
conducting manual, automated, and snowball search. As the final result, we ex-
tracted data for 6 papers.

• Defining a value assignment schema for making the selected methods compa-
rable. We selected a 3-score scale consisting of +, o, and - for assigning values
to the meta-requirements

• Comparative evaluation of the selected methods by applying the developed
framework. The evaluation showed that none of the compared methods fulfills
all the meta-requirements or nearly all of them. Our evaluation underlines the
lack of methodological support for systematic development of both phases with
respect to quality requirements in a unified process.

Chapter 4
Phase 1: Context Elicitation & Problem
Analysis

Abstract This chapter shows the modeling of the environment, functional as well
as quality requirements in a problem-oriented requirements engineering method.
We build upon functional models based on the problem frames approach in order
to extend them with annotations for modeling quality requirements.

4.1 Introduction

Quality requirements are harder to deal with than functional requirements in dif-
ferent respects. It is often not clear how to express quality requirements in such a
way that they can be analyzed appropriately. Properly modeling quality require-
ments should allow the analyst to unambiguously state what the requirement is, to
set it into relation with other (functional or non-functional) requirements, and to
determine if it is satisfiable at all.

Although the treatment of quality requirements in software development is not
yet as well mastered as the treatment of functional requirements [45], it has re-
cently caught more attention. Quality requirements such as security and perfor-
mance requirements must be elicited, analyzed, and documented as thoroughly as
functional ones.

As described in Chapter 2, we use the problem frames approach [133] as the
basis for requirements analysis. The problem frames approach provides many ad-
vantages as mentioned in Chapter 1. It, however, does not provide support for deal-
ing with quality requirements [51]. Hence, we extended the previous requirements
analysis approach based on problem frames [114] by explicitly taking into account
quality requirements in such a way that they can be analyzed appropriately. To this

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_4

112 4 Phase 1: Context Elicitation & Problem Analysis

end, we enriched the analysis models with annotations for quality requirements.
The so enhanced problem descriptions form the starting point for later phases of
the software development process such as architectural design. For this purpose,
we have extended the UML profile for problem frames [115].

This chapter, which represents Phase 1 of the QuaDRA framework is based on
our work presented in [17]. The author of this book is the main author of this pub-
lication. We had useful and valuable discussions with Denis Hatebur and Maritta
Heisel regarding modeling quality requirements.

The rest of this chapter is organized as follows. In Section 4.2, we describe our
proposed extension to the UML profile for problem frames. The method for mod-
eling quality requirements and its application is described in Section 4.3. Related
work is discussed in Section 4.4. Section 4.5 summarizes the contribution of this
chapter.

4.2 UML4PF Extension for Quality Requirements

UML [235] provides extension mechanisms such as stereotypes and tagged val-
ues that can be used to extend the UML meta-model. In order to provide sup-
port for modeling quality requirements we make use of such extensions. We
add three new stereotypes to the UML profile for problem frames which cur-
rently contains only the stereotype�Requirement� to indicate a functional re-
quirement. We introduce the stereotypes�QualityRequirement� and�Func-
tionalRequirement� to distinguish between a quality requirement and a func-
tional requirement. Both stereotypes have to be applied to UML classes. The
stereotype�complements� has to be applied to a UML dependency. It shows
the relationship between a functional requirement and a quality requirement. It has
a class with the stereotype �QualityRequirement� as the source and a class
with the stereotype�FunctionalRequirement� as the target. Table 4.1 lists the
new stereotypes, their description and the UML element they extend, and Fig. 4.1
shows the structure of the UML profile extension.

We extend the existing list of OCL expressions in the UML profile for problem
frames by identifying a new consistency condition for quality requirements:

A quality requirement is connected to at least one functional requirement by a
dependency with the stereotype�complements�.

Furthermore, some existing consistency conditions expressed with OCL have to
be modified in order to provide support for modeling quality requirements. Some
examples of such modifications are given in Appendix A.

4.3 Method for Problem-oriented Requirement Analysis 113

Table 4.1: Stereotypes defined for the UML profile extension

Stereotype Applies to Description
�QualityRequirement� Class Represents a quality requirement
�FunctionalRequirement�Class Represents a functional requirement
�complements� Dependency Represents a dependency from a quality requirement

(class with stereotype �QualityRequirement�)
to a functional requirement (class with stereotype
�FunctionalRequirement�)

Fig. 4.1: Structure of the UML profile extension for modeling quality requirements

4.3 Method for Problem-oriented Requirement Analysis

Our method for problem-oriented requirement analysis is shown in Fig. 4.2. The
artifacts in the top of Fig. 4.2 represent the external inputs for the steps of the
method. Those in the bottom of the figure represent the output of the steps pro-
viding input for further steps. Step 1 - Problem Context Elicitation and Step 2

114 4 Phase 1: Context Elicitation & Problem Analysis

- Functional Requirements Modeling provide support for eliciting the context and
modeling functional requirements, which are proposed by Hatebur & Heisel [114].
We extended this method by providing support for modeling quality requirements
such as performance and security (Step 3 - Quality Requirements Modeling). In
addition, we describe the impact of architectural decisions which are made on the
architecture level and make them visible on the requirement level. This is high-
lighted in gray in Fig. 4.2.

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Step 1:
Problem Context

Elicitation

Context
Diagram

Step 2:
Functional Requirements

Problem
Diagrams

Existing Documents
including
F&Q Requirements

Modeling

Step 3:
Quality Requirements

Modeling

Problem
Diagrams

Dependability
Profile

MARTE
ProfileUML4PF

Phase 2:
Architectural Pattern

Selection

Problem
Frames

Architectural
Patterns

Architectural
Pattern
Candidates

Fig. 4.2: Overview of Phase 1

Step 1 - Problem Context Elicitation

This step (Step 1 in Fig. 4.2) aims at understanding the system-to-be, the problem
it shall solve, and therefore understanding the environment it should influence ac-
cording to the requirements. Existing documents including functional and quality
requirements (F&Q Requirements in Fig. 4.2) are used as input for this step. We
obtain a problem description by eliciting all domains related to the problem to be
solved, their relations to each other and the software to be constructed. To elicit the
problem context, we set up a context diagram consisting of the machine (software-
to-be), related domains in the environment, and interfaces between these domains.
Creating a context diagram is the first step in the software development process
based on problem frames.

4.3 Method for Problem-oriented Requirement Analysis 115

Application of Step 1 - Problem Context Elicitation

To elicit the problem context for the smart grid example (see Section 2.6 on
page 43), we set up a context diagram consisting of the machine Smart Meter
Gateway, the domains LMN, HAN, WAN, MeterData, AuthorizedExternalEntities,
Consumer Data, . . . and interfaces between these domains. The context diagram
for the smart grid example is shown in Fig. 4.3. The machine Smart Meter Gate-
way collects and processes the recordings from the causal domain SmartMeter, and
stores them into the lexical domain MeterData. The machine is also responsible
for distributing the MeterData to external entities.

Fig. 4.3: Context diagram of smart grid

According to [155], a SmartMeter could be an Electric Meter, a Gas Meter,
or a Water Meter that are causal domains. The SmartMeter communicates with
the machine Smart Meter Gateway through the network Local Metrological Net-
work (LMN). The machine Smart Meter Gateway requests meter data from the
SmartMeter via the LMN (SMG!{requestForData}, LMN!{forwardRequest}). The
SmartMeter sends the requested meter data through the LMN to the machine Smart
Meter Gateway (SM!{meterData}, LMN!{forwardMeterData}).

116 4 Phase 1: Context Elicitation & Problem Analysis

The machine Smart Meter Gateway communicates with the outside world
such as the biddable domain AuthorizedExternalEntity through the network Wide
Area Network (WAN). The AuthorizedExternalEntity requests meter data through
the WAN (AEE!{requestForData}, WAN!{forwardRequest}). The machine Smart
Meter Gateway sends the requested meter data to the AuthorizedExternalEntity
through the WAN (SMG!{submitData}, WAN!{forwardData}).

The biddable domain Consumer can access the Gateway via the User Interface
(UI!{displayConsumerInfo}) through the network Home Area Network (HAN)
(SMG!{sendConsumerInfo}).

Step 2 - Functional Requirements Modeling

This step (Step 2 in Fig. 4.2) is concerned with decomposing the overall problem
into subproblems, which describe a certain functionality, as expressed by a set of
related functional requirements. The functionality of the software is the core, and
all quality requirements are related in some way to this core. In addition to existing
documents, we make use of the context diagram to provide input for this step. We
set up problem diagrams representing subproblems to model functional require-
ments. A problem diagram consists of one submachine of the machine given in the
context diagram, the relevant domains, the interfaces between these domains, and
a requirement referring to and constraining problem domains.

Application of Step 2 - Functional Requirements Modeling

As mentioned in the description of the smart grid case study in Section 2.6
(see page 43), we consider the use case Meter Reading for Billing of the smart
grid example. This use case is concerned with gathering, processing, and stor-
ing meter readings from smart meters for the billing process, and submitting
the meter readings to the authorized external entities. We set up a problem di-
agram for this use case, which is shown in Fig. 4.4. The AuthorizedExternal-
Entity sends a request to the machine HandlingSmartMeterData through the
network WAN (AEE!{requestForData}, WAN!{forwardRequest}). The machine
HandlingSmartMeterData sends a request to the SmartMeter (HSMD!{request-
ForData}) via the network LMN (LMN!{forwardRequest}). As an answer to
the request, the SmartMeter sends the meter readings (SM!{meterData}) to the
machine HandlingSmartMeterData through the network LMN (LMN!{forward-
MeterData}). The machine HandlingSmartMeterData stores meter readings into

4.3 Method for Problem-oriented Requirement Analysis 117

the lexical domain MeterData (HSMD!{writeMeterData}). The MeterData is
sent to the AuthorizedExternalEntity through the WAN (HSMD!{submitData},
WAN!{forwardData}). The requirement HandlingMeterData constrains the do-
mains WAN and MeterData. It refers to the domain SmartMeter.

Fig. 4.4: Problem diagram related to the use case Meter Reading for Billing

Figure 4.4 contains several functional requirements. Hence, we split it into more
simple problem diagrams, each of which describes one functional requirement. We
define 5 functional requirements. To provide billing information to external parties
and also to the consumer, the gateway receives the meter data from the meter(s)
(R1), processes it (R2), and stores it (R3). The gateway submits the stored data
to external entities (R4). The stored data can also be provided to the consumer to
allow her to verify an invoice (R5). Table 4.2 illustrates the functional requirements
R1-R5 and their description.

We set up problem diagrams to model the functional requirements R1-R5. In
this step, we only describe the problem diagram for the functional requirement
R4 shown in Fig. 4.5. In the next step of the method, we show all the prob-
lem diagrams for the requirements R1-R5 including the quality requirements. The
problem diagram SubmitMeterData in Fig. 4.5 describes that the machine Sub-
mitMD should receive the data from the domain MeterData (MD!{data}) and
sends it through the WAN (SMD!{sendsDataIntoWAN}) to the AuthorizedExter-
nalEntity (WAN!{forwardData}). The functional requirement R4 constrains the

118 4 Phase 1: Context Elicitation & Problem Analysis

Table 4.2: Functional Requirements R1-R5

Requirement Description
R1 Smart meter gateway shall receive meter data from smart meters
R2 Smart meter gateway shall process meter data from smart meters
R3 Smart meter gateway shall store meter data from smart meters
R4 Smart meter gateway shall submit processed meter data to authorized external Entities
R5 The gateway shall provide meter data for consumers for the purpose of checking the billing

consistency

domain WAN as the data has to be sent into the WAN. It refers to the domains
MeterData and AuthorizedExternalEntity.

Fig. 4.5: Problem diagram related to the functional requirement R4

Step 3 - Quality Requirements Modeling

To analyze and integrate software quality in the software development process,
quality requirements (obtained from existing documents) have to be modeled and
integrated as early as possible in the requirement models. Modeling quality re-
quirements is achieved in this step (Step 3 in Fig. 4.2).

In the problem frames approach the focus is only on functional requirements [51].
We extended the UML-based problem frames approach by providing a way to at-

4.3 Method for Problem-oriented Requirement Analysis 119

tach quality requirements to problem diagrams [17]. We represent quality require-
ments as annotations in problem diagrams. Since UML lacks notations to specify
and model quality requirements and quality-specific domain knowledge, we use
different UML profiles to add annotations to the UML models. We use a UML pro-
file for dependability proposed by Hatebur & Heisel [114] to annotate problem di-
agrams with security requirements (see Section 2.3.3 on page 39). For example, we
apply the stereotypes�integrity�,�confidentiality�, and�authenticity� to
represent integrity, confidentiality, and authenticity requirements.

To provide support for annotating problem descriptions with performance re-
quirements, we use the UML profile MARTE (Modeling and Analysis of Real-
time and Embedded Systems) [233] adopted by OMG consortium for modeling
performance-specific annotations (see Section 2.3.4 on page 40).

Application of Step 3 - Quality Requirements Modeling

In the smart grid example, besides the functionalities that the gateway has to pro-
vide, it is also responsible for the protection of authenticity, integrity, and confiden-
tiality of data temporarily or persistently stored in the gateway, transferred locally
within the LMN, transferred in the WAN and HAN. The number of smart devices
to be managed has a deep impact on the performance of the whole system. This
makes performance of smart grids an important issue beside security.

Fig. 4.6: Problem diagram related to functional requirement R1 and its correspond-
ing quality requirements

120 4 Phase 1: Context Elicitation & Problem Analysis

In this step, we enrich the problem diagrams set up in the previous step with
annotations for quality requirements. To this end, we make use of the UML profile
extension introduced in Section 4.2. We apply the dependency�complements�
from the quality requirement to its related functional requirement. It represents
that each quality requirement complements its related functional requirement. The
problem diagram ReceiveMeterData shown in Fig. 7.1 describes the functional re-
quirement R1, the related security requirements R6, R7, R8, and R16 and the cor-
responding performance requirements R18 and R19. It describes that the Smart-
Meter sends meter data (SM!{sendMeterData}) through LMN to the machine
ReceiveMeterData (LMN!{forwardMeterData}). The machine stores the received
meter data temporarily in the TemporaryStorage (RMD!{writeMeterData}). The
requirement R1 constrains the domain TemporaryStorage and refers to the domain
SmartMeter.

The problem diagram for receiving meter readings (see Fig. 7.1) is anno-
tated with security requirements R6 (integrity), R7 (confidentiality), R8 (authentic-
ity), and R16 (confidentiality) which complement the functional requirement R1.
The confidentiality requirement R7 is concerned with protecting confidentiality
during transmission of meter data, whereas the confidentiality requirement R16
shall protect the confidentiality of meter data during storage. Security require-
ments are represented using the stereotypes �confidentiality�, �integrity�,
and�authenticity�. The performance requirements R18 and R19 also comple-
ment the functional requirement R4. Performance requirements are indicated by
the stereotype�gaStep�. Table 4.3 illustrates the quality requirements related
to the functional requirement R1 and their description.

Figure 7.2 describes the functional requirement R2 and its corresponding per-
formance requirements R20 and R21. The functional requirement R2 states that
the smart meter gateway shall process meter data from smart meters. The machine
ProcessMeterData processes the stored meter data in the domain TemporaryStor-
age (PMD!{readData,writeData}). Table 4.4 illustrates the performance require-
ments related to the functional requirement R2 and their description.

Problem diagram StoreMeterData shown in Fig. 7.3 describes the functional
requirement R3 stating that the smart meter gateway shall store meter data from
smart meters. The machine StoreMeterData receives meter data from the domain
TemporaryStorage (TS!{data}) and stores it permanently in the lexical domain
MeterData (StMD!{writeMeterData}). The functional requirement R3 refers to
the domain TemporaryStorage and constrains the domain MeterData. It is comple-
mented by the confidentiality requirement R91 and the performance requirements

1 For temporary storing meter data, there is no integrity requirement defined by [155].

4.3 Method for Problem-oriented Requirement Analysis 121

Table 4.3: Security and performance requirements related to functional require-
ment R1

Quality
Requirement

Description

R6 The gateway shall provide the protection of integrity when receiving meter data from a
meter via the LMN

R7 The gateway shall provide the protection of confidentiality when receiving meter data from
a meter via the LMN

R8 The gateway shall provide the protection of authenticity when receiving meter data from
a meter via the LMN

R16 Data shall be protected from unauthorized disclosure while temporarily stored in the gate-
way

R18 The time to retrieve meter data from the smart meter and publish it through WAN shall be
less than 5 seconds (together with R20, R22, R24)

R19 The time to retrieve meter data from the smart meter and publish it through HAN shall be
less than 10 seconds (together with R21, R23, R25)

Fig. 4.7: Problem diagram related to functional requirement R2 and its correspond-
ing quality requirements

R22 and R23. Table 4.5 illustrates the performance and security requirements re-
lated to the functional requirement R3 and their description.

The functional requirement R4 is described by the problem diagram Submit-
MeterData shown in Fig. 7.4. We described this problem diagram in detail in the
previous step. In this step, we annotate it with the security requirements R10 (in-
tegrity), R11 (confidentiality), and R12 (authenticity) as well as the performance
requirement R24 which complement the functional requirement R4. Table 4.6 il-
lustrates the performance and security requirements related to the functional re-

122 4 Phase 1: Context Elicitation & Problem Analysis

Table 4.4: Security and performance requirements related to functional require-
ment R2

Quality
Requirement

Description

R20 The time to retrieve meter data from the smart meter and publish it through WAN shall be
less than 5 seconds (together with R18, R22, R24)

R21 The time to retrieve meter data from the smart meter and publish it through HAN shall be
less than 10 seconds (together with R19, R23, R25)

Fig. 4.8: Problem diagram related to functional requirement R3 and its correspond-
ing quality requirements

quirement R4 and their description. The notes in Fig. 7.4 represent descriptions of
quality requirements.

Figure 7.5 illustrates the problem diagram PublishConsumerInfo describing the
functional requirement R5 stating that the gateway shall provide meter data for
consumers for the purpose of checking the billing consistency. The machine Pub-
lishConsumerInfo receives meter data from the domain MeterData (MD!{data})
and sends it through the network HAN (PCI!{sendsConsumerInfo}) to the User In-
terface (HAN!{frowardConsumerInfo}). The User Interface provides meter data to
the Consumer (UI!{displayConsumerInfo}). The functional requirement R5 refers
to the domains MeterData and Consumer. It constrains the domain User Interface.
The security requirements R13 (integrity), R14 (confidentiality), and R15 (authen-
ticity) complement the functional requirement R5 as well as the performance re-

4.3 Method for Problem-oriented Requirement Analysis 123

Table 4.5: Security and performance requirements related to functional require-
ment R3

Quality
Requirement

Description

R9 Data shall be protected from unauthorized disclosure while persistently stored in the gate-
way

R22 The time to retrieve meter data from the smart meter and publish it through WAN shall be
less than 5 seconds (together with R18, R20, R24)

R23 The time to retrieve meter data from the smart meter and publish it through HAN shall be
less than 10 seconds (together with R19, R21, R25)

Table 4.6: Security and performance requirements related to functional require-
ment R4

Quality
Requirement

Description

R10 Integrity of data transferred in the WAN shall be protected
R11 Confidentiality of data transferred in the WAN shall be protected
R12 Authenticity of data transferred in the WAN shall be protected
R24 The time to retrieve meter data from the smart meter and publish it through WAN shall be

less than 5 seconds (together with R18, R20, R22)

Table 4.7: Security and performance requirements related to functional require-
ment R5

Quality
Requirement

Description

R13 The gateway shall provide the protection of integrity when transmitting processed meter
data locally within the LAN

R14 The gateway shall provide the protection of confidentiality when transmitting processed
meter data locally within the LAN

R15 The gateway shall provide the protection of authenticity when transmitting processed me-
ter data locally within the LAN

R25 The time to retrieve meter data from the smart meter and publish it through HAN shall be
less than 10 seconds (together with R19, R21, R23)

quirement R25. Table 4.7 illustrates the performance and security requirements
related to the functional requirement R5 and their description.

124 4 Phase 1: Context Elicitation & Problem Analysis

Fig. 4.9: Problem diagram related to functional requirement R4 and its correspond-
ing quality requirements

Further Iterations due to Architectural Pattern Selection

Design decisions on the architecture level might affect the initial requirements and
the problem diagrams describing those requirements accordingly. For instance, a
decision about the kind of distribution of the software, e.g., client-server, peer-to-
peer, or standalone might lead to further decomposition of the subproblems. For
distributed applications, the subproblems often have to be split in such a way that
each subproblem is allocated to only one of the distributed components. We might
need to introduce connection domains, e.g., networks.

Analogously to splitting the problem diagrams, we also have to split the func-
tional requirements and the corresponding quality requirements. Hence, there is a
need for further iterations regarding the decomposition of problem diagrams when

4.3 Method for Problem-oriented Requirement Analysis 125

Fig. 4.10: Problem diagram related to functional requirement R5 and its corre-
sponding quality requirements

taking design decisions. To this end, by taking design decisions, we have to go
back to this phase and check whether a further decomposition is required.

The next chapter (see Chapter 5) is concerned with making architectural deci-
sions regarding the selection of architectural patterns. Depending on the selected
architectural pattern(s), this design decision might affect the decomposition of the
problem diagrams as well as the quality requirements. Hence, we might need to go
back to Step 2 - Functional Requirements Modeling to decompose or merge sub-
problems as appropriate according to the selected architectural pattern. Decom-
position or merging of functional subproblems might have an impact on quality
requirements. Therefore, we need to go back to Step 3 - Quality Requirements
Modeling as well and check for appropriateness of modeled quality requirements.

In Chapter 5, we describe the second iteration according to the design decision
we make.

126 4 Phase 1: Context Elicitation & Problem Analysis

4.4 Related Work

Modeling and representing requirements have been a subject of research in the
past. Although the requirements engineering community categorizes the require-
ments into functional requirements and quality requirements (or non-functional
requirements), there is still a lack of modeling quality requirements [73].

Lencastre et al. [165] define a meta-model for problem frames using UML.
Their meta-model considers Jackson’s entire requirements engineering approach
based on context diagrams, problem frames, and problem decomposition. In con-
trast to our UML profile and our proposed method, it only addresses the analysis
of functional requirements and does not support the modeling of quality require-
ments. There is also no consideration of the OCL integrity conditions in their meta-
model.

Seater et al. [212] present a meta-model for problem frame instances. They pro-
vide a formalization for requirements and specifications. Consequently, their in-
tegrity conditions (“wellformedness predicates”) focus on correctly deriving spec-
ifications from requirements. In contrast, our UML profile concentrates on the
structure of problem frames and the different domain and phenomena types. Addi-
tionally, we extend the problem frames approach and the UML profile for problem
frames with stereotypes for modeling and analyzing quality requirements.

Hall et al. [108] provide a formal semantics for the problem frame approach.
Their model focuses on a formal specification language to describe problem frames
and problem diagrams. As compared to our UML profile and proposed method,
their approach neither considers integrity conditions nor the modeling and analyz-
ing of quality requirements.

Lin et al. [168, 167] introduce the notion of anti-requirement as the require-
ment of a malicious user. Such anti-requirements are described by so-called abuse
frames imposed by malicious users in a specific problem context. Abuse frames
take the viewpoint of a malicious user in contrast to traditional problem frames.
Such abuse frames facilitate the identification and analysis of threats. Modeling
anti-requirements as abuse frames can be seen as complementary to our work. It
supports the identification of threats driving the elicitation and modeling of se-
curity requirements which can be performed using our problem-oriented require-
ments analysis method proposed in this chapter.

In the area of goal-oriented requirements engineering, approaches such as
i* [249], KAOS [158], and the NFR framework [72] have treated the modeling
of soft-goals. In these approaches, goal models are mostly represented in tree-like
structures that define the intentions of different stakeholders at different levels of
abstraction [193]. Goals can be classified into two different categories: hard-goals
and soft-goals. Hard-goals may refer to the functional properties of the system be-

4.5 Contributions 127

havior, whereas soft-goals represent quality preferences of the stakeholders. Goal
models are defined for providing an interface to the stakeholders. Hence, they are
represented in a higher abstraction level than requirements. They need to be re-
fined into requirements. Thus, goal models can be seen as complementary to our
proposed UML profile and method.

Use cases are widely accepted as a means for eliciting functional requirements.
However, there is controversy about their suitability for eliciting and represent-
ing quality requirements [25]. Some approaches propose to combine quality re-
quirements with use cases and misuse cases (negative form of uses cases [25]).
Cysneiros & do Prado Leite [83] show how to reflect quality requirements in the
UML models. They make use of some UML artifacts such as use cases, class di-
agrams, and sequence diagrams to deal with quality requirements and to integrate
quality requirements into class diagrams. Alexander [25] suggests to combine use
cases and misuse cases to improve the efficiency of eliciting functional and qual-
ity requirements. In particular, safety and security requirements can be elicited
using such combinations of use cases and misuse cases. One approach for elic-
iting security threats and requirements based on use cases is proposed by Sindre
& Opdahl [218]. It extends traditional use cases to cover misuses by proposing
guidelines for how to describe misuse cases and method guidelines for eliciting
security requirements with misuse cases.

4.5 Contributions

In this chapter, we investigated how to provide support for modeling quality re-
quirements in addition to functional requirements. Our contributions can be sum-
marized as follows:

• A UML profile that extends the UML profile for problem frames by specific
stereotypes. Using this extension quality requirements can be annotated in the
requirement models. Our extension includes new OCL expressions as well as
the modification of some existing OCL expressions for checking the consis-
tency of new introduced elements with the existing ones.

• A method for requirements analysis based on the problem frames approach
with regard to quality requirements. Our method provides support for model-
ing quality requirements such as performance and security using the extension
of the UML profile for problem frames. The method takes into account design
decisions made in the architecture level. Such design decisions might affect the
initial requirements and the corresponding problem diagrams. Our method pro-
poses how to reflect the design decisions in the requirement level to decompose

128 4 Phase 1: Context Elicitation & Problem Analysis

the problem diagrams accordingly. In order to keep the requirement models and
the architectural models consistent, it is required to re-apply the method after
making every design decision. The method has to be re-applied until the archi-
tecture is stable and no more design decisions have to be made.

• The created requirement models in this chapter (Phase 1) provide the basis for
the remaining phases of the QuaDRA framework such as domain knowledge
analysis, requirement interaction detection and resolution, performance require-
ments analysis, quality-specific solution analysis, and architecture alternatives
derivation.

Chapter 5
Phase 2: Architectural Pattern Selection &
Application

Abstract Existing solutions for deriving architectures from requirements mostly
rely on experienced architects. Besides the required experience, it is often a prob-
lem that the decision is not properly reasoned and documented. In this chapter, we
propose a method to select appropriate architectural patterns with regard to given
quality requirements. This process is based on the characteristics of the software
to be built as well as on the properties of the architectural patterns. Our proposed
process connects requirements and architecture, guides even less experienced soft-
ware engineers through the pattern selection process, provides support for deci-
sion making, and makes the decision rationale transparent. In the second part of
this chapter, we use the result of the pattern selection process in order to derive an
initial architecture based on that result.

5.1 Introduction

In addition to functional requirements, to a large extent quality requirements gov-
ern the software architecture [44, 126, 56]. Creating software architectures that
meet the desired quality requirements is not a trivial task [226, 186]. Often, more
than one quality requirement has to be considered for constructing a software sys-
tem. The reason is that different stakeholders might have different views on various
quality requirements and their importance [137].

It is commonly agreed that for building upon common knowledge and best prac-
tices the use of patterns as architecture solutions is valuable [44, 62]. Patterns
describe solutions for commonly recurring problems in software development, in-
cluding the context in which a pattern is applicable. Patterns are found in various

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_5

130 5 Phase 2: Architectural Pattern Selection & Application

software development phases, such as Fowler’s analysis patterns [98] for business
engineering, Jackson’s problem frames [133] for the requirements level, architec-
tural patterns [62, 215] for the architecture level, and design patterns [103] for the
design level.

Taking into account different quality requirements requires knowledge about
benefits and liabilities of architectural patterns with respect to different quality
requirements [226]. Deciding on an appropriate architectural pattern among a set
of architectural pattern candidates with regard to different quality requirements
is often performed in an intuitive and ad-hoc manner. Such decisions rely on the
experience of senior software developers [225].

Pattern catalogs [62, 103] are used in architectural design methods that aim
to give guidance for deriving architectures from requirements (e.g. [44, 126]). In
these methods, pattern catalogs are used as a reference to find solutions for an
architectural problem by choosing appropriate patterns from the catalog.

Especially for novice software architects, pattern catalogs are an appropriate
source for finding suitable patterns for a particular design problem since making
design decisions is a complex and challenging task for junior designers [122].
Choosing the appropriate architectural pattern in a catalog is, however, not trivial.
Although several approaches exist for deriving architectures from requirements
(e.g. [69, 253]), most solutions rely on experienced architects for proposing and
choosing feasible architectural solutions. The existing approaches are imprecise
or do not provide any aid for finding appropriate patterns from catalogs [52]. It is
therefore critical to develop architecture systematically and without strong depen-
dencies on experienced architects. The experienced architect on the other hand has
an interest in finding multiple design alternatives before making a decision while
favoring well-known solutions [121]. Both aspects could be satisfied by a method
to systematically choose suitable patterns from a pattern catalog.

In the first part of this chapter which represents Phase 2 of the QuaDRA frame-
work, we propose a process which provides support for selecting appropriate ar-
chitectural patterns. Our process is based on the problem frames approach [133]. It
takes problem diagrams as input which are used to identify problem frames. Based
on a problem frame, the architect is asked a specific set of questions regarding
the problem at hand. Based on the answers given to the questions in the question
catalog, the architectural pattern candidates which might be relevant are shown
to the software architect. Each of the patterns in our catalog is annotated with in-
formation about benefits and liabilities regarding software qualities. As not every
quality or consequence has the same importance for the final decision, the qualities
and consequences are ranked using a decision method. Based on this ranking, the
architectural pattern candidates are ranked as well.

5.1 Introduction 131

The method is of interest for both, the experienced and the inexperienced ar-
chitect. Both can benefit from the process as it grounds decisions by making them
explicit and providing some reasoning for decisions as it captures relevant prob-
lems and qualities. It also shows alternatives which should only be discarded for
good reasons. Additionally, all this reasoning and decision making is documented
to allow others to comprehend the reasons for an architecture at hand. This can
be useful when evolving the architecture after some time, but also when the archi-
tecture is assessed by reviewers before the architecture is actually implemented.
Additionally, the inexperienced architect gets some guidance for selecting archi-
tectural patterns, which an experienced architect probably does not need.

From our experiences regarding the proposed method, we see the following
benefits. First, it supports both the experienced and the less experienced soft-
ware architect in selecting an appropriate architectural pattern for a given prob-
lem. It makes the decisions and according reasons explicitly visible. Second, it
is problem-oriented which follows the basic idea of most pattern forms and mit-
igates the risk of being too solution-oriented. A solution-oriented process would
lead to the problem that it is hard to make good decisions if the architect cannot
imagine if and which offered solution could work. Besides, being solution-driven
always bears the risk of neglecting parts of the original problem. Third, the ef-
fort for selecting a pattern is minimized as the process relies on questions which
are convenient to answer even when coming to complex decisions. If the system’s
requirements are available as problem diagrams, no extra input is needed for our
process. Additionally, the solution space is iteratively reduced, which enables one
to stop right at the point where solution selection is feasible. Hence, in many cases
the effort for the software architect is reduced since it is not necessary to conduct
the full process. Fourth, the process contains structured and transparent decision
making steps, which clarify the decision rationale. In the second part of this chap-
ter, we use the result of our pattern selection process in order to derive an initial
architecture based on that result. The initial architecture provides a basis to solve
the software development problem described by the problem descriptions. It uses
the already selected architectural pattern(s) to implement the functional require-
ments with regard to quality requirements.

This chapter is based on our joint work with our colleague Stephan Faßbender
and our project partner Martin Filipczyk. The concept of using problem frames
for selecting among architectural patterns has been developed jointly. Stephan
Faßbender elaborated this concept into the pattern selection process. External in-
puts and artifacts required for the selection process have been developed jointly.
The application of the method to the smart grid case study has been done by the
author of this book. This work has been actively discussed with the architecture

132 5 Phase 2: Architectural Pattern Selection & Application

community at the MiniPLoP [110] and with the pattern community at the Euro-
PLoP [9].

The remainder of this chapter is organized as follows. We describe the rela-
tion between problem frames, architectural patterns, and question catalog in Sec-
tion 5.2. The external inputs for our process are described in Section 5.3. Our
pattern selection process is given in Section 5.4. Section 5.5 illustrates the appli-
cation of our process to the case study smart grid. We describe how to derive an
initial architecture by applying the selected architectural pattern(s) in Section 5.6.
Section 5.7 presents related work, while Section 5.8 concludes this chapter and
summarizes the contribution.

5.2 Artifacts and their Relations

To understand how the pattern selection works one has to understand how the
artifacts used for the pattern selection process are related. Therefore, Fig. 5.1 gives
an overview of the entities we use in our process as well as their relationships. The
entities are visualized by rectangles and the relationships are depicted by solid
arrows.

Problem
Frame

Problem
Diagram

is instance of

Question
applies to

Qualityis relevant for

Indicator
Question

indicates

Architectural
Patternindicates problem solved by

indicates context described by

applies to

Benefit
impacts(severity)

Liabilityimpacts(severity)

has consequence

has consequence

Fig. 5.1: Relations between artifacts needed for pattern selection

The requirements we need to execute our process have to be captured within
problem diagrams. A problem diagram is an instance of a problem frame. We as-
sembled a set of architectural patterns from which the solution will finally be
selected. Each pattern has a description of its context and the problem it might be
applied for. From these descriptions we derived questions which, when answered
positively, indicate that the context or problem might apply for the system (rela-
tion between question and architectural pattern annotated with “indicates problem
solved by” or “indicates context described by”). For example, considering the ar-
chitectural pattern Pipes and Filters, the context is described as “Processing data

5.2 Artifacts and their Relations 133

streams”. From this context we derive the question “Q6: is the system-to-be related
to processing of data streams?. It is possible that patterns share parts of the same
context or problem.

Some of the questions directly apply to problem frames (relation between ques-
tion and problem frame annotated with “applies to”). This means that whenever a
specific problem frame is identified, the related question is being asked. For exam-
ple, the question “Q6: is the system-to-be related to processing of data streams?
has to be asked, when the problem frame transformation is identified. This ques-
tion indicates the context described by the architectural pattern Pipes and Filters.

For many questions such relations cannot be established directly. But the rela-
tion can be established if the problem diagram for which the problem frame was
identified embodies certain characteristics. For example, a question might only ap-
ply for a problem frame in case one domain has a specific behavior. Taken the
model building frame consisting of the lexical domain Model and the causal do-
main Sensor as an example (see Fig. B.5 for the model building frame in Ap-
pendix B.1) the causal domain Sensor provides the information from which the
model is built. The lexical domain Model shall then reflect the result of the model
building. Therefore, the lexical domain Model is constrained and the domain Sen-
sor is referred to by the corresponding requirement. One question might only apply
for this frame in case the Sensor domain is only accessible via low level hard-
ware functions. Indicator questions aim at identifying such a characteristic (rela-
tion between indicator question and problem frame annotated with “applies to”).
For developing the indicator questions, we generalize the questions derived from
the patterns by using placeholders for the generic parts of the question. Within our
process, these placeholders are being replaced with one or more elements from the
problem frames that reference an indicator question.

For example, by asking the indicator question “IQ2: is the functionality pro-
vided by Element1 a low level hardware functionality?”, Element1 is the place-
holder that has to be replaced with the Sensor domain from the model building
frame. If an indicator question is answered positively, it indicates the correspond-
ing question (relation between indicator question and question annotated with “in-
dicates”), meaning that the corresponding question is relevant. The corresponding
question in this case is “Q3B: is there low level (hardware) functionality to be
provided by the system? which indicates the problem solved by the architectural
pattern Layers. The concept of indicator questions becomes clearer in the next
section when we describe the external input for our process.

Up to this point, the relations are sufficient to connect problem diagrams and
architectural patterns. Note that the problem frames as defined by Jackson can only
be used to represent functionality. They do not support the modeling of qualities
directly. Hence, by now the architectural patterns and problem frames are only

134 5 Phase 2: Architectural Pattern Selection & Application

connected based on the functionality. For decision support for choosing an archi-
tectural pattern considering qualities, we need further artifacts and relations. When
applying an architectural pattern, various consequences in terms of benefits (rela-
tion between architectural pattern and benefit annotated with “has consequence”)
and liabilities (relation between architectural pattern and liability annotated with
“has consequence”) for certain software qualities can be observed1. While bene-
fits have a positive effect on certain qualities, liabilities have a negative influence
on certain qualities (relations between benefit and quality, and liability and qual-
ity annotated with “impacts (severity)”). The influence of a benefit or liability on
a quality can differ regarding their severity. Since our extension to the problem
frames notation allows for augmenting problem diagrams with qualities which are
relevant for the functionality at hand (see Chapter 4), qualities related to conse-
quences might be relevant for fulfilling certain requirements as demanded by the
problem diagrams (relation between quality and problem diagram annotated with
“is relevant for”). The quality extension is limited to the problem diagrams and
is therefore not usable for extending problem frames. This is due to the fact that
qualities can differ for every problem under consideration, which is represented
by a problem diagram, while the functionality as represented by the corresponding
frame remains the same.

5.3 External Input for the Process

For our process, we need to create a set of external inputs that are needed for the
various steps. To this end, we use architectural patterns from [62], which provide
the starting point for creating external inputs. An overview of the architectural
patterns that we use is given in Table 5.1. The type of the architectural patterns is
taken from [62].

5.3.1 Question Catalog (Questions)

From the architectural patterns, we derive questions that constitute the question
catalog. The question catalog contains the questions and indicator questions. The
question catalog is required as external input for the Step 2 of our process (see the
overview of the process in Fig. 5.3). Note that it is not required to know the steps of

1 By the terms consequences, benefits, and liabilities, we use the wording from architectural
pattern descriptions.

5.3 External Input for the Process 135

Table 5.1: Architectural Patterns

Type Name Identifier
From Mud to Structure Layers AP1
From Mud to Structure Pipes and Filters AP2
From Mud to Structure Blackboard AP3
Distributed Systems Broker AP4
Interactive Systems Model-View-Controller (MVC) AP5
Interactive Systems Presentation-Abstraction-Control (PAC) AP6
Adaptable Systems Microkernel AP7
Adaptable Systems Reflection AP8

the process in this section. In this section, we only intend to describe the creation
of the external input which should be comprehensible without any knowledge of
the process.

The questions target the context and the problem of the architectural patterns
(see relation between question and architectural pattern annotated with “indicates
problem solved by” or “indicates context described by” in Fig. 5.1 in Section 5.2).
From these descriptions we derive questions which, when answered positively, in-
dicate that the context or problem might apply for the system. We describe the
derivation of the questions using the two architectural patterns Pipes and Filters
and Blackboard. The context of the architectural pattern Pipes and Filters is given
as follows:

“Context: Processing data streams ([62] (p. 54)).”

From this context, we derive the question Q6: Is the system-to-be related to pro-
cessing of data streams?

The context of the architectural pattern Blackboard is given as follows:

“Context: An immature domain in which no closed approach to a solution is
known or feasible ([62] (p. 72)).”

From this context, we derive the question Q8: Is the domain of the system-to-be
immature and no solution for the problem the system shall solve is known?

We follow this procedure also for the problem part of the architectural patterns
Pipes and Filters and Blackboard. Doing this, we obtain Table 5.2. Q6 and Q7

136 5 Phase 2: Architectural Pattern Selection & Application

Table 5.2: An Excerpt of the Question Catalog (questions)

Identifier Question
Q6 Is the system-to-be related to processing of data streams?

Q7 Is one key functionality to transform input data to output data?
Q7A Is it possible to handle the data as a stream?
Q7B Are there several transformation steps?
Q7C Is the transformation to be changed frequently?
Q7D Are steps of the transformation to be carried out by different parties or parts of the system?

Q8 Is the domain of the system-to-be immature and no solution for the problem the system shall
solve is known?

Q9 Is there a transformation of data for which the transformation is (partly) unknown?

(and the related sub-questions) are derived from the context as well as the problem
of the architectural pattern Pipes and Filters. Q8 is derived from the context of the
architectural pattern Blackboard, while questions Q7 and Q9 are derived from the
description of its problem. As we can observe, the question Q7 is common in the
problem part of both architectural patterns. The complete list of the questions is
given in Appendix B.2.

5.3.2 Question Catalog (Indicator Questions)

Indicator questions constitute one part of the question catalog. They are required
as external input for the Step 2 of our process (see the overview of the process
in Fig. 5.3). For developing the indicator questions, we generalize the questions
derived from the patterns by inserting placeholders for the generic parts of the
questions. Within our process, these placeholders are replaced with one or more
elements from the problem frames.

To make the process of developing indicator questions more comprehensible,
we provide some examples. Considering the questions Q7A, Q7B, and Q7C from
the previous example, we develop indicator questions IQ11-IQ15 by generalizing
the questions (see Table 5.3). The placeholder Element1 of the indicator ques-
tions has to be replaced by elements of the problem frames. We describe this in
more detail in Section 5.4. The complete list of indicator questions is shown in
Appendix B.2.

5.3 External Input for the Process 137

Table 5.3: Examples of developing indicator questions

Question Indicator Question
Q7A: Is it possible to handle the data as a stream? IQ11: Is it possible to handle Element1 as a

stream?
Q7B: Are there several transformation steps? IQ12: Has Element1 been transformed before or

will Element1 be used in another transformation
afterward?

Q7B: Are there several transformation steps? IQ13: Has Element1 been transformed before?
Q7B: Are there several transformation steps? IQ14: Will Element1 be used in another transfor-

mation afterward?
Q7C: Is the transformation to be changed frequently? IQ15: Is it expected that the transformation de-

scribed by Element1 will change frequently?

5.3.3 Relations between Problem Frames and Questions

Another external input for Step 2 of our process is the relation between the prob-
lem frames and the (indicator) questions (see relation between indicator question
and problem frame annotated with “applies to” in Fig. 5.1 in Section 5.2). As an
example we show the relation between indicator questions and the problem frame
transformation in Table 5.4. A complete set of the relations between the indicator
questions and problem frames is given in Appendix B.3.

Such a table also contains the information how in the template the elements
of the indicator questions have to be replaced with the elements of the problem
frames. As an example, consider IQ11 from the previous example: IQ11: Is it
possible to handle Element1 as a stream? According to Table 5.4, Element1 has to
be replaced once with the lexical domain Inputs and once with the lexical domain
Outputs. Having replaced these elements with the domains of the transformation
frame, we obtain two indicator questions IQ11: Is it possible to handle Inputs as a
stream? and IQ11: Is it possible to handle Outputs as a stream?

Another example is IQ15: Is it expected that the transformation described by
Element1 will change frequently? In this case, Element1 has to be replaced once
with the requirement domain Transformation.

Table 5.4 also relates the questions directly to the problem frame (see relation
between question and problem frames annotated with “applies to” in Fig. 5.1 in
Section 5.2). For the case of transformation frame, questions Q6 and Q9 are di-
rectly related to this frame and can be asked without having any indicator questions
in between (see the right part of Table 5.4).

As described before, questions and indicator questions are related (see relation
between indicator question and question annotated with “indicates” in Fig. 5.1 in
Section 5.2). In Table 5.5, we show an excerpt of the relations between the indica-

138 5 Phase 2: Architectural Pattern Selection & Application

Table 5.4: Problem Frame Transformation and related Indicator Questions

Transformation

TransformMachine
<<machine>>

Outputs
<<lexicalDomain>>

Inputs
<<lexicalDomain>>

Transformation
<<requirement>>

Y3
<<constrains>>

<<refersTo>>
Y4

<<connection>>
I!Y1

TM!C2
<<connection>>

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement

Q6, Q9

IQ4 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ6 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ8 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ11 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ13 ELEMENT1 Inputs
IQ14 ELEMENT1 Outputs
IQ15 ELEMENT1 Transformation
IQ21 ELEMENT1 Transformation

IQ22 ELEMENT1 Inputs
ELEMENT1 Outputs

tor questions with the questions. It shows how the indicator questions IQ11-IQ15
from the previous example are related to the questions. Beside this relation, Ta-
ble 5.5 also contains the information if an indicator question is domain or problem
frame specific. In the first case which applies to IQ11, the indicator question has
only to be asked once regardless in how many problem diagrams it is contained. In
the second case such as in IQ12-IQ15 it depends on the problem frame and there-
fore on the problem diagram. In this case, the indicator question has to be asked
for each problem diagram matching the problem frame. The complete list of these
relations is illustrated in Appendix B.3.

5.3.4 Benefits and Liabilities of Architectural Patterns

We distill benefits and liabilities of the architectural patterns to a short form and
map them to the software qualities defined in the ISO/IEC 25010 standard [130]
(see relations between architectural pattern and benefit, and architectural pattern
and liability annotated with “has consequence” and relations between benefit and
quality, and liability and quality annotated with “impacts(severity)” in Fig. 5.1 in
Section 5.2). Benefits and liabilities of architectural patterns and their relation to

5.3 External Input for the Process 139

Table 5.5: An Excerpt of Indicator Question Properties (external input; used in
Step 2)

Identifier Indicated Question Problem
Frame
Specific

Domain
Specific

IQ11 Q7A No Yes
IQ12 Q7B Yes No
IQ13 Q7B Yes No
IQ14 Q7B Yes No
IQ15 Q7C Yes No

software qualities are required as external input for Step 6 of our process. Table 5.6
shows the benefits of the architectural pattern Pipes and Filters and their mapping
to the qualities. Liabilities of the architectural pattern Pipes and Filters with their
relation to the software qualities are illustrated in Table 5.7. The complete list of
benefits and liabilities is given in Appendix B.4.

Table 5.6: Benefits and their relation to qualities

Identifier Benefit Quality
B1 Reuse is improved Reusability
B1a Reusable knowledge source Reusability

B4 (Ex)changeability is improved Maintainability (Modularity, Modifiability), Portability (Re-
placeability)

B6 Flexibility is improved Maintainability (Modifiability, Testability), Portability (Re-
placeability, Adaptability), Compatibility (Interoperability)

B6a Enables experimentation Maintainability (Modifiability, Testability)
B6b Portability is improved Portability (Replaceability, Adaptability)
B6c Interoperability is improved Compatibility (Interoperability)

B7 Rapid prototyping is possible Maintainability (Analyzability, Modifiability, Testability)

B8a Enables parallel processing Efficiency2 (Resource utilization)

2 Performance, is referred to as efficiency in ISO/IEC 25010 standard [130].

140 5 Phase 2: Architectural Pattern Selection & Application

Table 5.7: Liabilities and their relation to qualities

Identifier Benefit Quality
L2a Sharing state might be expensive Efficiency (Resource utilization, Capacity)
L2b Might introduce additional transfor-

mation overhead
Efficiency (Resource utilization, Capacity)

L5a Sharing state is inflexible Maintainability (Modifiability, Testability), Portability
(Replaceability, Adaptability), Compatibility (Interop-
erability)

L6 Error handling is difficult Reliability (Fault tolerance, Recoverability), Maintain-
ability (Analyzability, Testability)

5.3.5 Architectural Pattern Catalog

Architectural patterns as well as their relations to the questions are required as ex-
ternal input for Steps 3 and 5 of our process. Table 5.8 shows an excerpt of the
architectural patterns catalog for Pipes and Filters and Blackboard, including the
type, name, and identifier of each pattern, questions related to each pattern sepa-
rated in questions regarding the context of the pattern and questions regarding the
problem each pattern intends to solve. The complete architectural pattern catalog
can be found in Appendix B.5.

Table 5.8: Architectural Pattern Description

Pattern Questions Consequences
Type Name Identifier Context Problem Benefits Liabilities
From Mud to
Structure

Pipes and Filters AP2 Q6 Q7 B1, B4, B6,
B7, B8A

L5A, L2A,
L2B, L6

From Mud to
Structure

Blackboard AP3 Q8 Q7, Q9 B1A, B4,
B6A, B9, B10

L7, L8, L9A
L2C

In order to emphasize how all these external inputs are related, we refer to
Fig. 5.2. It illustrates the relationship between the artifacts and their use in the
selection process from the perspective of the user starting from problem diagrams.
In the next section, we describe the process of the architectural pattern selection
that makes use of these artifacts.

5.4 The Pattern Selection Process 141

5.4 The Pattern Selection Process

In this section, we describe our pattern selection process. Figure 5.3 shows an
overview of the steps of the pattern selection process.

At first sight, Fig. 5.3 may suggest that an overwhelming amount of input is
needed to conduct the proposed process. However, only the problem diagrams
are specific to the particular software system which is being developed. All other
inputs, for example, the question catalog, are envisioned to be developed and opti-
mized in a community-driven process. We created first drafts for the external inputs
needed for our process in the previous section (see Section 5.3). The external inputs
include the question catalog, relations between problem frames and questions, re-
lations between patterns and questions, and relations between consequences and
qualities. For the problem frames, reliable sets of frames and their descriptions
are already available (cf. [82]). A subset of problem frames is provided in Ap-
pendix B.1. For the architectural patterns, we made use of architectural patterns
described in [62], which provide the starting point for creating external inputs.

Step 1 - Identify matching Problem Frame for each Problem
Diagram

For the first step, we assume that the requirements are modeled as problem dia-
grams. Modeling requirements as problem diagrams is described in detail in Chap-

Problem Diagram Problem Frameis instance of

Questions

answer
questions

Indicator Questions
determine

Questions

answer
questions

Architectural Patterns

select
architectural

pattern

select
architectural

pattern

Fig. 5.2: Relations between artifacts for pattern selection from the user perspective

142 5 Phase 2: Architectural Pattern Selection & Application

P
ro

bl
em

D
ia

gr
am

s
P

ro
bl

em
F

ra
m

es
Q

ue
st

io
n

C
at

al
og

P
ro

bl
em

 F
ra

m
es

an
d

Q
ue

st
io

ns

R
el

at
io

ns
P

at
te

rn
 a

nd
Q

ue
st

io
ns

R
el

at
io

ns
A

rc
hi

te
ct

ur
al

P
at

te
rn

s

P
ro

bl
em

F
ra

m
es

R
el

ev
an

t
A

ns
w

er
s

P
at

te
rn

C
an

di
da

te
s

A
rc

hi
te

ct
ur

al

Q
ua

lit
ie

s
C

on
se

qu
en

ce
an

d
Q

ua
lit

ie
s

R
el

at
io

ns

R
el

ev
an

t
Q

ua
lit

ie
s

R
el

ev
an

t
R

an
ke

d
C

on
se

qu
en

ce
s

A
rc

hi
te

ct
ur

al
 P

at
te

rn
C

an
di

da
te

s

R
an

ks
 fo

r

C
an

di
da

te
s

8)
 R

an
k

P
at

te
rn

process
input

external
output
input /

to
 b

e
ap

pl
ie

d

9)
 S

el
ec

t
P

at
te

rn

5)
 A

ns
w

er

R
el

at
ed

 to
P

at
te

rn
 C

an
di

da
te

s

O
pe

n
Q

ue
st

io
ns

C
on

se
qu

en
ce

s

6)
 C

he
ck

Q
ua

lit
ie

s
an

d
C

on
se

qu
en

ce
s

7)
 R

an
k

Q
ua

lit
ie

s
an

d
4)

 S
ho

w
P

at
te

rn
C

an
di

da
te

s

3)
 S

el
ec

t
P

at
te

rn
C

an
di

da
te

s

2)
 A

ns
w

er

Q
ue

st
io

ns
 R

el
at

ed
to

 Id
en

tif
ie

d
P

ro
bl

em
 F

ra
m

es

1)
 M

at
ch

P
ro

bl
em

D

ia
gr

am
s

an
d

P
ro

bl
em

 F
ra

m
es

R
an

ke
d

Q
ua

lit
ie

s
C

on
se

qu
en

ce
s

Fig. 5.3: The proposed pattern selection process

5.4 The Pattern Selection Process 143

ter 4. Problem diagrams can be direct instances of problem frames, but they can
also be modeled freely without any problem frame in mind. The step itself is con-
cerned with matching the given problem diagrams to the given problem frames.
The result of the step is a set of problem frames which are relevant for the system-
to-be.

Step 2 - Answer questions related to identified Problem Frames

In the second step, one starts by answering the set of indicator questions related to
the previously identified relevant problem frames. The relation between problem
frames and questions as well as the question catalog are external inputs to this step
(see Section 5.3.1, Section 5.3.2, and Section 5.3.3). Next, the questions directly
bound to problem frames and the questions indicated by the answers to the indica-
tor questions are answered. Note that this way one does not have to answer the full
set of questions but only those which are indicated by the problem frames them-
selves or by the positively answered indicator questions bound to these frames. The
result of this step are the questions with corresponding answers. Note that within
this step only the (indicator) questions are answered which are directly bound to a
problem frame which reduces the effort for the initial iteration of the process. The
answers to these questions might be already sufficient for selecting an architectural
pattern.

Step 3 - Select pattern candidates

Based on the answers and therefore related questions, one can select the architec-
tural pattern candidates. A positive answer to a question related to an architectural
pattern indicates that this pattern might provide the desired solution. The architec-
tural patterns as well as their relation to the questions have to be defined before-
hand. These relations form the external input for this step (see Section 5.3.5).

Step 4 - Show pattern candidates

Next, the architectural pattern candidates are shown to the user. The information
shown for each pattern includes the context and problem description of each pat-

144 5 Phase 2: Architectural Pattern Selection & Application

tern, the questions which are related to the context and problem description and
which have already been answered, the consequences, and the rank of the pat-
tern. The ranks for the architectural pattern candidates are only available when
the steps six to eight are already conducted. In this step, one can dismiss architec-
tural pattern candidates, which are not of relevance and therefore reduce the set of
architectural pattern candidates.

In this step, the user has to decide if one of the presented pattern candidates can
be selected, i.e. the pattern is applicable for the current problem and context with
regard to the system’s desired quality attributes. For this purpose, the user may
consult the pattern’s description, including benefits and liabilities. In this case,
Steps 5 to 8 can be skipped and one continues with Step 9. In case no decision
is possible (e.g., if there are multiple patterns presented which causes the user to
be uncertain), the further process flow depends on the availability of unanswered
questions. If there are unanswered questions available, the user continues with
Step 5. Otherwise, Step 6 is the next step.

Step 9 - Select pattern to be applied

If there is a pattern candidate which can be selected over the others, the pattern is
selected and constitutes the output of the process.

Step 5 - Answer open questions related to pattern candidates

If there are questions, derived from the pattern catalog, related to the architec-
tural pattern candidates, which have not been answered yet, one answers them
now. This might exclude pattern candidates, even if not all the additional answers
provide further information for the pattern selection. Note that one does not have
to answer all open questions at once. It is also possible to have some iterations
between showing candidates and answering open questions left. For example, it
might be reasonable to answer only the questions related to the context first. This
way, further patterns can be excluded where the context is not met before answer-
ing the questions related to the problem.

5.5 Application to the Case Study Smart Grid 145

Step 6 - Check qualities and consequences

In case that no decision is possible and no unanswered questions are left, one
has to consider the qualities annotated in the problem diagrams and which con-
sequences might influence the final decision. The relations between qualities and
consequences serve as external input for this step (see Section 5.3.4). The result of
this step are the relevant qualities and consequences.

Step 7 - Rank consequences and qualities

Not every quality or consequence has the same importance for the final deci-
sion about the pattern chosen. To reflect the different shades of the influences,
the qualities and consequences have to be ranked. For evaluating and comparing
options among each other, there are several methods known, such as direct scor-
ing [196], the analytic hierarchy process (AHP) [205], or the analytical network
process (ANP) [205]. If there is only a small number of pattern candidates and
desired qualities, a qualitative investigation and discussion might already be suf-
ficient for this step. The result of this step are the ranked consequences and the
ranked qualities.

Step 8 - Rank pattern candidates

Based on the ranked consequences and the ranked qualities, the architectural pat-
tern candidates are ranked. The result of this step are the ranks for the architectural
pattern candidates. The next step is Step 4, in which pattern candidates are shown
to the user and then selected in Step 9 (see the order of steps in Fig. 5.3).

5.5 Application to the Case Study Smart Grid

In the following, we apply the pattern selection process to the case study smart
grid. As described in Section 2.6 (see page 43), we consider the use case Meter
Reading for Billing, which is concerned with gathering, processing, and storing
meter readings from smart meters for the billing process. We defined the require-
ments R1-R3 to receive, process, and store meter data from smart meters. The

146 5 Phase 2: Architectural Pattern Selection & Application

requirement R4 is concerned with submitting meter data to authorized external en-
tities. The gateway shall also provide meter data for consumers for the purpose of
checking the billing consistency (R5).

Step 1 - Identify matching Problem Frame for each Problem
Diagram

In this step, we identify problem frames that match to the problem diagrams for
the requirements R1, R2, R3, R4, and R5.

Requirement R1 The problem diagram ReceiveMeterData depicted in Fig. 5.4
contains the causal domain SmartMeter, the connection domain LMN, and the
lexical domain TemporaryStorage. The domain LMN is a connection domain
which can be blinded out for identifying the matching problem frame. The re-
quirement R1 refers to the causal domain SmartMeter and constrains the lexical
domain TemporaryStorage. This problem diagram represents an instance of the
problem frame Model Building.

Fig. 5.4: Problem diagram related to functional requirement R1

Requirement R2 The problem diagram ProcessMeterData shown in Fig. 5.5
contains the lexical domain TemporaryStorage. The requirement R2 constrains
the lexical domain. This problem diagram represents an instance of the problem

5.5 Application to the Case Study Smart Grid 147

frame Transformation, in which TemporaryStorage represents the input as well
as the output.

Fig. 5.5: Problem diagram related to functional requirement R2

Requirement R3 The problem diagram StoreMeterData depicted in Fig. 5.6
contains two lexical domains TemporaryStorage and MeterData. The require-
ment R3 refers to the lexical domain TemporaryStorage and constrains the lex-
ical domain MeterData. This problem diagram represents an instance of the
problem frame Transformation.

Fig. 5.6: Problem diagram related to functional requirement R3

148 5 Phase 2: Architectural Pattern Selection & Application

Requirement R4 The problem diagram ReceiveMeterData depicted in Fig. 5.7
contains the lexical domain MeterData, the connection domain WAN, and the
biddable domain AuthorizedExternalEntities. The domain WAN is a connection
domain which can be blinded out for identifying the matching problem frame.
The domain AuthorizedExternalEntities can be considered as a domain playing
the role of a display domain, since the AuthorizedExternalEntities shall receive
MeterData. Therefore, this problem diagram represents an instance of the prob-
lem frame Model Display as the connection domain WAN is not necessary for
this problem and the domain AuthorizedExternalEntities is considered as a dis-
play domain.

Fig. 5.7: Problem diagram related to functional requirement R4

Requirement R5 The problem diagram PublishConsumerInfo depicted in Fig. 5.8
contains the lexical domain MeterData, the connection domain HAN, the causal
domain UserInterface, which is connected to the biddable domain Consumer.

5.5 Application to the Case Study Smart Grid 149

The domain HAN is a connection domain which can be blinded out for identify-
ing the matching problem frame. The domain UserInterface can be considered
as a display domain that displays the information to the Consumer, since a dis-
play domain is a special kind of a causal domain. The requirement R5 refers to
the domain MeterData and constrains the domain UserInterface. This problem
diagram represents an instance of the problem frame Model Display as the con-
nection domain HAN and the biddable domain Consumer are not necessary for
this problem.

Fig. 5.8: Problem diagram related to functional requirement R5

Step 2 - Answer questions related to identified Problem Frames

For this step, we need several external inputs, namely the question catalog con-
taining the questions and indicator questions. In addition, we need the relations
between the problem frames and the questions. Indicator questions for the problem
frames Model Building, Transformation, and Model Display are shown in Table 5.9
- Table 5.11.

150 5 Phase 2: Architectural Pattern Selection & Application

As described before, the questions and the indicator questions are related. These
tables relate the indicator questions related to the problem frames Model Building,
Transformation, and Model Display with the questions. Beside this relation, these
tables also contain the information if an indicator question is domain or problem
frame specific. In the first case, the indicator question has only to be answered
once, regardless in how many problem diagrams it is contained. In the second case
it depends on the problem frame and therefore on the problem diagram. In this
case, the indicator question has to be answered for each problem diagram matching
the problem frame.

Table 5.9: Indicator Question Properties related to problem frame Model Building
(external input; used in Step 2)

Identifier Indicator Question Indicated
Question

Problem
Frame
Specific

Domain
Specific

IQ2 Is the functionality provided by Element1 a low level hardware
functionality?

Q3B No Yes

IQ4 Is the Element1 distributed with regards to the machine? Q10 No Yes
IQ6 Is the communication between Element1 and the machine estab-

lished using multiple (exchangeable) protocols / mechanisms?
Q13A No Yes

IQ8 Shall Element1 be exchangeable at run-time? Q14B,
Q28

No Yes

IQ10 Can the functionality Element1 logically be grouped with other
functionality?

Q4A Yes No

IQ11 Is it possible to handle Element1 as a stream? Q7A No Yes
IQ14 Will Element1 be used in another transformation afterward? Q7B Yes No
IQ15 Is it expected that the transformation described by Element1 will

change frequently?
Q7C Yes No

IQ21 Is Element1 expected to change over time? Q26 Yes No
IQ22 Is Element1 likely to change over time? Q28 No Yes

As described before in Section 5.2, the indicator questions are formulated as
templates. They only refer to elements which have to be instantiated for each
problem diagram. Table 5.9 - Table 5.11 also contain the information how in the
template the elements of the indicator questions have to be instantiated. And these
tables also relate the questions directly to the problem frame.

Using these inputs, we obtain concrete questions for the requirements R1-R5
and the related problem frames. These concrete questions are given in Table 5.12 -
Table 5.16. We also gather and instantiate the questions indicated by the identified
problem frames Model Building, Transformation, and Model Display, and answer
them with regards to the given requirements.

5.5 Application to the Case Study Smart Grid 151

Table 5.10: Indicator Question Properties related to problem frame Transformation
(external input; used in Step 2)

Identifier Indicator Question Indicated
Question

Problem
Frame
Specific

Domain
Specific

IQ4 Is the Element1 distributed with regards to the machine? Q10 No Yes
IQ6 Is the communication between Element1 and the machine estab-

lished using multiple (exchangeable) protocols / mechanisms?
Q13A No Yes

IQ8 Shall Element1 be exchangeable at run-time? Q14B,
Q28

No Yes

IQ11 Is it possible to handle Element1 as a stream? Q7A No Yes
IQ13 Has Element1 been transformed before? Q7B Yes No
IQ14 Will Element1 be used in another transformation afterward? Q7B Yes No
IQ15 Is it expected that the transformation described by Element1 will

change frequently?
Q7C Yes No

IQ21 Is Element1 expected to change over time? Q26 Yes No
IQ22 Is Element1 likely to change over time? Q28 No Yes

Table 5.11: Indicator Question Properties related to problem frame Model Display
(external input; used in Step 2)

Identifier Indicator Question Indicated
Question

Problem
Frame
Specific

Domain
Specific

IQ2 Is the functionality provided by Element1 a low level hardware
functionality?

Q3B No Yes

IQ4 Is the Element1 distributed with regards to the machine? Q10 No Yes
IQ6 Is the communication between Element1 and the machine estab-

lished using multiple (exchangeable) protocols / mechanisms?
Q13A No Yes

IQ8 Shall Element1 be exchangeable at run-time? Q14B,
Q28

No Yes

IQ10 Can the functionality Element1 logically be grouped with other
functionality?

Q4A Yes No

IQ11 Is it possible to handle Element1 as a stream? Q7A No Yes
IQ13 Has Element1 been transformed before? Q7B Yes No
IQ15 Is it expected that the transformation described by Element1 will

change frequently?
Q7C Yes No

IQ17 Shall Element1 show multiple views based on Element2? Q17 Yes No
IQ18 Shall manipulations of Element2 be reflected immediately on El-

ement1?
Q18 Yes No

IQ21 Is Element1 expected to change over time? Q26 Yes No
IQ22 Is Element1 likely to change over time? Q28 No Yes

152 5 Phase 2: Architectural Pattern Selection & Application

Table 5.12: Indicator questions for R1 and Model Building (derived from external
inputs and used in Step 2)

Identifier Question Answers
IQ2 Is the functionality provided by Smart Meter a low

level hardware functionality?
Yes, SmartMeter provides low level
hardware functionality.

IQ4 Is the SmartMeter distributed with regards to the ma-
chine?

Yes, SmartMeter is located outside the
system-to-be.

IQ4 Is the TemporaryStorage distributed with regards to
the machine?

No, it is part of the machine.

IQ6 Is the communication between SmartMeter and the
machine established using multiple (exchangeable)
protocols / mechanisms?

No, there is no need for multiple pro-
tocols or mechanisms.

IQ6 Is the communication between TemporaryStorage
and the machine established using multiple (ex-
changeable) protocols / mechanisms?

No, there is no need for multiple pro-
tocols or mechanisms.

IQ8 Shall SmartMeter be exchangeable at run-time? No, there is no need for exchanging
SmartMeter at run-time.

IQ8 Shall TemporaryStorage be exchangeable at run-
time?

No, there is no need for exchanging
TemporaryStorage at run-time.

IQ10 Can the functionality R1 logically be grouped with
other functionality?

No, there is no similar functionality
that R1 can be grouped with.

IQ11 Is it possible to handle TemporaryStorage as a
stream?

Yes, it can be handled as a stream of
data.

IQ14 Will TemporaryStorage be used in another transfor-
mation afterward?

Yes, it will be used in R2 and R3.

IQ15 Is it expected that the transformation described by R1
will change frequently?

No, it is not expected that the transfor-
mation changed frequently.

IQ21 Is R1 expected to change over time? No, the requirement will not be
changed.

IQ22 Is SmartMeter likely to change over time? No, the change of SmartMeter is not
expected.

IQ22 Is TemporaryStorage likely to change over time? Yes, TemporaryStorage can change
frequently.

Table 5.13: Indicator questions for R2 and Transformation (derived from external
inputs and used in Step 2)

Identifier Question Answers
IQ13 Has TemporaryStorage been transformed before? Yes, it has been used in R1.
IQ14 Will TemporaryStorage be used in another transfor-

mation afterward?
Yes, it will be used in R3.

IQ15 Is it expected that the transformation described by R2
will change frequently?

No, it is not expected that the transfor-
mation changed frequently.

IQ21 Is R2 expected to change over time? No, the requirement will not be
changed.

5.5 Application to the Case Study Smart Grid 153

Table 5.14: Indicator questions for R3 and Transformation (derived from external
inputs and used in Step 2)

Identifier Question Answers
IQ4 Is the MeterData distributed with regards to the ma-

chine?
No, MeterData is part of the machine.

IQ6 Is the communication between MeterData and the
machine established using multiple (exchangeable)
protocols / mechanisms?

No, there is no need for multiple pro-
tocols or mechanisms.

IQ8 Shall MeterData be exchangeable at run-time? No, there is no need for exchanging
MeterData at run-time.

IQ11 Is it possible to handle MeterData as a stream? Yes, it can be handled as a stream of
data.

IQ14 Will MeterData be used in another transformation af-
terward?

Yes, it will be transformed into data to
be displayed.

IQ15 Is it expected that the transformation described by R3
will change frequently?

No, it is not expected that the transfor-
mation changed frequently.

IQ21 Is R3 expected to change over time? No, the requirement will not be
changed.

IQ22 Is MeterData likely to change over time? Yes, MeterData can change frequently.

Table 5.17-Table 5.21 show the indicator questions and the answers we assigned
to them. Since the indicator questions have to be instantiated with concrete el-
ements from the identified problem frames, the same indicator question may be
asked several times. Consequently, a question may have a set of elements for which
it is answered positively or negatively, respectively.

We then derive a set of indicated questions by identifying those indicator ques-
tions which have been answered positively at least once and gathering its respective
indicated questions. This set of indicated questions comprises

• Q3, Q7, Q10, and Q28 for R1 (sub questions are mapped to their respective su-
per question, e.g. Q7A and Q7B is mapped to Q7 and Q3B are mapped to Q3).
We identify six questions that have to be answered in order to identify relevant
pattern candidates for R1. While questions Q3, Q7, Q10, and Q28 are indicated
by indicator questions, Q6 and Q9 are indicated directly by the extracted prob-
lem frame, Model Building. Table 5.22 gives an overview of our answers to the
indicated questions as well as associated reasoning for R1.

• Q7 and Q28 for R2 and R3 (sub questions were mapped to their respective super
question, e.g. Q7A and Q7B are mapped to Q7). We identify four questions that
have to be answered in order to identify relevant pattern candidates for R2 and
R3. While questions Q7 and Q28 are indicated by indicator questions, Q6 and
Q9 are indicated directly by the extracted problem frames, Simple Transforma-
tion and Transformation. Table 5.23 gives an overview of our answers to the

154 5 Phase 2: Architectural Pattern Selection & Application

Table 5.15: Indicator questions for R4 and Model Display (derived from external
inputs and used in Step 2)

Identifier Question Answers
IQ2 Is the functionality provided by AuthorizedExter-

nalEntities a low level hardware functionality?
No, this functionality is no hardware
functionality.

IQ4 Is the AuthorizedExternalEntities distributed with
regards to the machine?

Yes, the system-to-be is connected
with the AuthorizedExternalEntities
through WAN.

IQ6 Is the communication between AuthorizedExter-
nalEntities and the machine established using multi-
ple (exchangeable) protocols / mechanisms?

No, there is no need for multiple pro-
tocols or mechanisms.

IQ8 Shall AuthorizedExternalEntities be exchangeable
at run-time?

No, there is no need for exchang-
ing AuthorizedExternalEntities at run-
time.

IQ10 Can the functionality R4 logically be grouped with
other functionality?

Yes, it might be grouped with the func-
tionality R5.

IQ13 Has MeterData been transformed before? Yes, MeterData has been transformed
before by processing and storing.

IQ15 Is it expected that the transformation described by R4
will change frequently?

No, it is not expected that the transfor-
mation changed frequently.

IQ17 Shall AuthorizedExternalEntities show multiple
views based on MeterData?

No, given the requirement R4, we do
not expect multiple views.

IQ18 Shall manipulations of MeterData be reflected imme-
diately on AuthorizedExternalEntities?

No, there is no need for immediately
reflecting the MeterData.

IQ21 Is R4 expected to change over time? No, the requirement will not be
changed.

IQ22 Is AuthorizedExternalEntities likely to change over
time?

No, the change of AuthorizedExter-
nalEntities is not expected.

indicated questions as well as associated reasoning for R2 and R3. We consider
indicated questions and answers for R2 and R3 in one table as R2 and R3 both
are concerned with the same problem frame.

• Q4, Q7, and Q10 for R4 and R5 (sub questions are mapped to their respec-
tive super question, e.g. Q7B is mapped to Q7 and Q4A is mapped to Q4). We
identify five questions that have to be answered in order to identify relevant pat-
tern candidates for R4 and R5. While questions Q4, Q7, and Q10 are indicated
by indicator questions, Q6, Q7, and Q9 are indicated directly by the extracted
problem frame Model Display. Table 5.24 gives an overview of our answers to
the indicated questions as well as associated reasoning for R4 and R5.

5.5 Application to the Case Study Smart Grid 155

Table 5.16: Indicator questions for R5 and Model Display (derived from external
inputs and used in Step 2)

Identifier Question Answers
IQ2 Is the functionality provided by User Interface a low

level hardware functionality?
No, this functionality is no hardware
functionality.

IQ4 Is the UserInterface distributed with regards to the
machine?

Yes, the system-to-be is connected
with the Consumer through HAN.

IQ6 Is the communication between UserInterface and the
machine established using multiple (exchangeable)
protocols / mechanisms?

No, there is no need for multiple pro-
tocols or mechanisms.

IQ8 Shall UserInterface be exchangeable at run-time? No, there is no need for exchanging
UserInterface at run-time.

IQ10 Can the functionality R5 logically be grouped with
other functionality?

Yes, it might be grouped with the func-
tionality R4.

IQ15 Is it expected that the transformation described by R5
will change frequently?

No, it is not expected that the transfor-
mation changed frequently.

IQ17 Shall UserInterface show multiple views based on
MeterData?

No, given the requirement R5, we do
not expect multiple views.

IQ18 Shall manipulations of MeterData be reflected imme-
diately on UserInterface?

No, there is no need for immediately
reflecting the MeterData.

IQ21 Is R5 expected to change over time? No, the requirement will not be
changed.

IQ22 Is UserInterface likely to change over time? No, the change of UserInterface is not
expected.

Table 5.17: Indicator Question Answers Overview for R1 (created and used in Step
2)

Indicator
Question

Indicated
Question

Negatively answered for Positively answered for

IQ2 Q3B - SmartMeter
IQ4 Q10 TemporaryStorage SmartMeter
IQ6 Q13A SmartMeter, TemporaryStorage -
IQ8 Q14B, Q28 SmartMeter, TemporaryStorage -
IQ10 Q4A R1 -
IQ11 Q7A - TemporaryStorage
IQ14 Q7B - TemporaryStorage
IQ15 Q7C R1 -
IQ21 Q26 R1 -
IQ22 Q28 SmartMeter TemporaryStorage

156 5 Phase 2: Architectural Pattern Selection & Application

Table 5.18: Indicator Question Answers Overview for R2 (created and used in Step
2)

Indicator
Question

Indicated
Question

Negatively answered for Positively answered for

IQ13 Q7B - TemporaryStorage
IQ14 Q7B - TemporaryStorage
IQ15 Q7C R2 -
IQ21 Q26 R2 -

Table 5.19: Indicator Question Answers Overview for R3 (created and used in Step
2)

Indicator
Question

Indicated
Question

Negatively answered for Positively answered for

IQ4 Q10 MeterData -
IQ6 Q13A MeterData -
IQ8 Q14B, Q28 MeterData -
IQ11 Q7A - MeterData
IQ14 Q7B - MeterData
IQ15 Q7C R3 -
IQ21 Q26 R3 -
IQ22 Q28 - MeterData

Table 5.20: Indicator Question Answers Overview for R4 (created and used in Step
2)

Indicator
Question

Indicated
Question

Negatively answered for Positively answered for

IQ2 Q3B AuthorizedExternalEntities -
IQ4 Q10 - AuthorizedExternalEntities
IQ6 Q13A AuthorizedExternalEntities -
IQ8 Q14B, Q28 AuthorizedExternalEntities -
IQ10 Q4A - R4
IQ13 Q7B - MeterData
IQ15 Q7C R4 -
IQ17 Q17 R4 (AuthorizedExternalEntities, Meter-

Data)
-

IQ18 Q18 R4 (AuthorizedExternalEntities, Meter-
Data)

-

IQ21 Q26 R4 -
IQ22 Q28 AuthorizedExternalEntities -

5.5 Application to the Case Study Smart Grid 157

Table 5.21: Indicator Question Answers Overview for R5 (created and used in Step
2)

Indicator
Question

Indicated
Question

Negatively answered for Positively answered for

IQ2 Q3B UserInterface -
IQ4 Q10 - UserInterface
IQ6 Q13A UserInterface -
IQ8 Q14B, Q28 UserInterface -
IQ10 Q4A - R5
IQ15 Q7C R5 -
IQ17 Q17 R5 (UserInterface, MeterData) -
IQ18 Q18 R5 (UserInterface, MeterData) -
IQ21 Q26 R5 -
IQ22 Q28 UserInterface -

Table 5.22: Answers to the indicated questions for R1 (created in Step 2, used in
Step 3)

Question Answer Reasoning
Q3 Yes There might be low level functionality (receiving MeterData from SmartMeter) and

high level functionality (processing, storing, and publishing MeterData)
Q6 No Meter readings of the smart reader shall only be gathered.
Q7 No Meter readings of smart meter shall be first converted into data to be processed by a

software.
Q9 No The transformations are known.
Q10 No The system-to-be is not distributed.
Q28 No There will be no change in the hardware or software.

Table 5.23: Answers to the indicated questions for R2 and R3 (created in Step 2,
used in Step 3)

Question Answer Reasoning
Q6 Yes TemporaryStorage and MeterData shall be processed as data streams.
Q7 Yes TemporaryStorage and MeterData shall be transformed from input data to output data

streams.
Q9 No The transformations are known.
Q28 No There will be no changes in the hardware or software.

158 5 Phase 2: Architectural Pattern Selection & Application

Table 5.24: Answers to the indicated questions for R4 and R5 (created in Step 2,
used in Step 3)

Question Answer Reasoning
Q4 Yes R4 and R5 might be partitioned.
Q6 Yes MeterData shall be processed.
Q7 Yes MeterData should be transformed to data to be displayed to the AuthorizedExter-

nalEntities and the Consumer (UserInterface).
Q9 No The transformations are known.
Q10 No The system-to-be is not distributed.

Step 3 - Select pattern candidates

As external inputs for this step, we need the architectural patterns and their rela-
tions to the questions. Table 5.25 shows the architectural patterns, including the
type, name, and identifier of each pattern, questions related to each pattern sepa-
rated in questions regarding the context of the pattern and questions regarding the
problem each pattern intends to solve. The whole architectural pattern catalog is
shown in Appendix B.5.

After answering the questions, those patterns that refer to at least one of the
questions answered with Yes are considered as pattern candidates. The pattern can-
didates are Layers (Q3, Q4), Pipes and Filters (Q6, Q7), and Blackboard (Q7).

Table 5.25: Excerpt of Architectural Pattern Descriptions

Pattern Questions Consequences
Type Name Identifier Context Problem Benefits Liabilities
From Mud to
Structure

Layers AP1 Q1, Q2 Q3, Q4, Q5 B1, B2, B3,
B4

L1, L2, L3, L4

From Mud to
Structure

Pipes and Filters AP2 Q6 Q7 B1, B4, B6,
B7, B8A

L5A, L2A,
L2B, L6

From Mud to
Structure

Blackboard AP3 Q8 Q7, Q9 B1A, B4,
B6A, B9, B10

L7, L8, L9A
L2C

5.5 Application to the Case Study Smart Grid 159

Step 4 - Show pattern candidates

In this step, we show the architectural pattern candidates to the user. It is possible
to reduce the set of architectural pattern candidates by dismissing those candidates
that are not relevant. In case no decision about the selection of pattern candidates
can be made, one has to continue with the process. So, we continue with the next
step, as we cannot dismiss any pattern candidate and decide for one candidate.

Step 5 - Answer open questions related to pattern candidates

For this step, we take the architectural patterns and their relations to the questions
into account as external input (see Table 5.25). To be able to make well-founded
assumptions regarding the appropriateness of the pattern candidates, we gather the
unanswered questions which are relevant for the three mentioned patterns, i.e. Q8
(unanswered question relevant for Blackboard), and Q1, Q2, and Q5 (unanswered
questions relevant for Layers). By the architectural pattern Pipes and Filters all
two questions Q6 and Q7 are already answered. We answer the open questions as
stated in Table 5.26.

We answer Q8 with No. It addresses the context of the architectural pattern
Blackboard. As the context of this pattern does not match to our problem, we
can exclude this architectural pattern from further consideration. We select the
architectural pattern Pipes and Filters, as the questions addressing the context and
the problem are positively answered. Questions Q1 and Q2 address the context
of the Layers architectural pattern. We answer both questions with No. As our
problem description (requirements) does not meet the context of this pattern, we
exclude this architectural pattern in this step.

As the architectural patterns Blackboard and Layers have been excluded in this
step, and only the architectural pattern Pipes and Filters is left, we could skip
Steps 6 to 8 and continue with Step 9. Nevertheless, we continue with Step 6 for
qualities and consequences of the selected pattern to show the application of these
steps as well.

Step 6 - Check qualities and consequences

Qualities and their relations to the consequences represent the external input of
this step (see Tables 5.6 and 5.7 in Section 5.3 for the benefits and liabilities of the

160 5 Phase 2: Architectural Pattern Selection & Application

Table 5.26: Unanswered questions referred by pattern candidates (created in Step
5; used in Step 3)

Question Answer Reasoning
Q1 No Smart Metering System is not a large system.
Q2 No There is no need for decomposing, as Smart Metering System does not have so many

components that are not manageable without decomposing.
Q5 No The mapping is not complex.
Q8 No From our point of view the Smart Metering domain is quite new, however not un-

known. Hence, the solution for the problem that the system shall solve is known.

architectural pattern Pipes and Filters and Tables B.11 and B.12 in Appendix B.4
for the complete list of benefits and liabilities). We gather and compare the rel-
evant qualities and consequences based on the qualities that are relevant for the
smart grid system. Based on the annotations of quality requirements in the prob-
lem diagrams, performance and security are identified as the main qualities being
relevant. The quality security is not addressed by the architectural patterns. Hence,
this should be achieved using specific mechanisms and security patterns. We ad-
dress this issue later on in Phases 5 and 6 of the QuaDRA framework (see Chap-
ters 8 and 9). The other quality, namely performance, is referred to as efficiency in
ISO/IEC 25010 standard [130]. Therefore, we concentrate on the pattern’s conse-
quences targeting efficiency in the decision process.

Step 7 - Rank consequences and qualities and Step 8 - Rank
pattern candidates

The benefits and liabilities of the Pipes and Filters architectural pattern are shown
in Table 5.27 and Table 5.28. The Pipes and Filters pattern has one benefit tar-
geting efficiency (B8A) stating that parallel processing is enabled by the pattern
and resulting in an efficient resource utilization. On the other hand, the pattern
references liability L2A states that resource utilization and capability is affected
negatively due to expensive state sharing. Since we do not see the need for state
sharing in the context of the given requirements, we consider this liability as not
severe.

As there is only the Pipes and Filters pattern left, no ranking is required and
possible.

5.6 Derivation of Initial Architecture 161

Table 5.27: An excerpt of the benefits and the related qualities (external input; used
in Step 6)

Identifier Benefit Related Quality
Pipes and Filters

B1 Reuse is improved Reusability
B4 (Ex)changeability is improved Maintainability (Modularity, Modifiability), Portability (Re-

placeability)
B6 Flexibility is improved Maintainability (Modifiability, Testability), Portability (Re-

placeability, Adaptability), Compatibility (Interoperability)
B7 Rapid prototyping is possible Maintainability (Analyzability, Modifiability, Testability)
B8A Enables parallel processing Efficiency (Resource utilization)

Table 5.28: An excerpt of the liabilities and the related qualities (external input;
used in Step 6)

Identifier Benefit Related Quality
Pipes and Filters

L2A Sharing state might be expensive Effciency (Resource utilization, Capacity)
L2B Might introduce additional trans-

formation overhead
Effciency (Resource utilization, Capacity)

L5A Sharing state is inflexible Maintainability (Modifiability, Testability), Portability (Re-
placeability, Adaptability), Compatibility (Interoperability)

L6 Error handling is difficult Reliability (Fault tolerance, Recoverability), Maintainabil-
ity (Analyzability, Testability)

Step 9 - Select pattern to be applied

We decide for the architectural pattern Pipes and Filters as it is the only pattern
left. In the next section, we set up an initial architecture which applies this patten.

5.6 Derivation of Initial Architecture

in Section 5.6.1 and Section 5.6.2. According to these design decisions, we re-
turn to Phase 1 of the QuaDRA framework and check the subproblems for their
appropriateness in Section 5.6.3. Finally, we derive an initial architecture in Sec-
tion 5.6.4 based on the subproblems.

162 5 Phase 2: Architectural Pattern Selection & Application

5.6.1 Design Desicion regarding Architectural Pattern Selection

In the previous section (see Section 5.5), we selected the architectural pattern Pipes
and Filters. The selected architectural pattern affects the decomposition of the
problem diagrams as well as the quality requirements as follows:

Design Decision One: Pipes and Filters for R2 and R3 For designing the re-
quirements R2 and R3, we decided for a Pipes and Filters architectural pattern.
Currently, we are concerned with two transformation steps, one transformation
for processing meter readings to be stored temporarily in the lexical domain
TemporaryStorage (R2 in Fig. 5.5) and the second transformation for storing
meter readings permanently in the lexical domain MeterData (R3 in Fig. 5.6).
These two transformations require the application of two Pipes and Filters ar-
chitectural patterns, which is not efficient due to performance reasons as one ad-
ditional transformation step should be performed which can be avoided. These
two transformations can be merged into one transformation. Therefore, we de-
cide for applying only one Pipes and Filters architectural pattern for both re-
quirements. This design decision affects the decomposition of the problem di-
agrams ProcessMeterData and StoreMeterData as well as the modeled quality
requirements.

Design Decision Two: Pipes and Filters for R4 For designing the requirement
R4, we decided for a Pipes and Filters architectural pattern. This design deci-
sion affects neither the structure of the subproblems nor the modeled quality
requirements.

Design Decision Three: Pipes and Filters for R5 For designing the requirement
R5, we decided for a Pipes and Filters architectural pattern. This design deci-
sion affects neither the structure of the subproblems nor the modeled quality
requirements.

5.6.2 Design Desicion regarding Gateway Physical Boundary

The Smart Meter is responsible for collecting the consumption or production data
and transmitting this data to the Gateway. According to the “Protection Profile for
the Gateway of a Smart Metering System” [155], the Gateway is typically placed
in the household or premises of the consumer and enables access to local Smart
Meter. To ensure the confidentiality, authenticity, and integrity of Meter Data, it
has to be encrypted and signed before transfer unless the transmission is physically
protected. This is the case if the Smart Meter and the Gateway are being imple-

5.6 Derivation of Initial Architecture 163

mented within one device and utilize a wired or optical connection. This is called
the One Box Solution. It is one physical unit in terms of a sealed box that enables
physical protection for the Gateway, Smart Meter, and the communication channel
between them. The advantage of this solution is that there is no need for security
mechanisms to protect the communication between the Gateway and the Smart
Meter as the communication happens in the protected area of the box. Hence, we
make the following design decision:

Design Decision Four: One Box Solution For the Smart Meter and the Smart
Meter Gateway, we decide for the One Box Solution, that is having the Smart
Meter and the Smart Meter Gateway in one physical device. This design deci-
sion affects the modeled quality requirements.

5.6.3 Further Iterations - Problem Diagram Splitting

In the previous chapter in Section 4.3 (see Phase 1 on page 124), we described that
design decisions might affect the decomposition of the problem diagrams. If this
is the case, we should return to that phase and check the appropriateness of the
decomposition of the problem diagrams according to the made design decision.

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Step 1:
Problem Context

Elicitation

Context
Diagram

Step 2:
Functional Requirements

Problem
Diagrams

Existing Documents
including
F&Q Requirements

Modeling

Step 3:
Quality Requirements

Modeling

Problem
Diagrams

Dependability
Profile

MARTE
ProfileUML4PF

Phase 2:
Architectural Pattern

Selection

Problem
Frames

Architectural
Patterns

Architectural
Pattern
Candidates

Fig. 5.9: Overview of Phase 1 and its relation to Phase 2

Figure 5.9 shows how the steps of Phase 1 are related to Phase 2 of our QuaDRA
framework. We might need to return to Step 2 - Functional Requirements Modeling
of Phase 1 to decompose or merge subproblems as appropriate according to the se-
lected architectural pattern. Decomposition or merging of functional subproblems
might have an impact on quality requirements. Therefore, we need to return to Step

164 5 Phase 2: Architectural Pattern Selection & Application

3 - Quality Requirements Modeling of Phase 1 as well and check for appropriate-
ness of modeled quality requirements. We perform the second iteration of Phase 1
as follows:

Step 2 - Functional Requirements Modeling (Second Iteration)

Design decision one (Pipes and Filters for R2 and R3) affects the decomposition
of subproblems for requirements R2 and R3. The other design decisions do not
affect the related functional subproblem as the structure of the problem diagrams
does not change.

We decided for applying only one Pipes and Filters architectural pattern which
provides one transformation as two transformations are not efficient due to per-
formance reasons. So, we can avoid one transformation by storing the processed
meter readings directly into the lexical domain MeterData permanently instead of
storing the processed meter readings first into the lexical domain TemporaryStor-
age. To this end, we need to merge the two problem diagrams ProcessMeterData
and StoreMeterData for the requirements R2 and R3 in order to apply only one
Pipes and Filters. The merged problem diagram is shown in Fig. 5.10.

Fig. 5.10: Merged problem diagram related to functional requirements R2 and R3

Step 3 - Quality Requirements Modeling (Second Iteration)

Design decision Four: One Box Solution:
The Smart Meter and the Smart Meter Gateway are embedded in one box, which

5.6 Derivation of Initial Architecture 165

is one physical unit in form of a sealed box/cabinet. This enables that the Gate-
way and the smart meter communication happens in the protected area of the box.
From the security point of view, this solution has the advantage that the commu-
nication is protected. Therefore, we can assume that the security requirements R6,
R7, and R8 are already fulfilled without applying additional security mechanisms.
Also the confidentiality requirement R16 is satisfied as the box is physically pro-
tected. Hence, we exclude these quality requirements from further consideration.
The confidentiality requirement R9 related to the functional requirement R3 is al-
ready satisfied due to the same reasons as for the confidentiality requirement R16.
Hence, we exclude this quality requirement from further consideration as well.

Design decision One: Pipes and Filters for R2 and R3:
We merged the subproblems for the requirements R2 and R3. Therefore, we only
consider R22 and R23 as performance requirements for the merged subproblem.
We exclude the performance requirements R20 and R21 from further considera-
tion. Note that this does not mean that we do not consider them at all. It only
means that now the performance requirements R18, R22, and R24 have to be ful-
filled together within 5 seconds and the performance requirements R19, 23, and
R25 have to be fulfilled in less than 10 seconds. Beforehand, the performance re-
quirements R18, R20, R22, and R24 had to be fulfilled together within 5 seconds
and the performance requirements R19, R21, 23, and R25 had to be fulfilled in less
than 10 seconds. It means that excluding the performance requirements R20 and
R21 is only a modeling decision and does not affect the fulfillment of the desired
performance requirements.

5.6.4 Method for Deriving Initial Architecture

After selecting the appropriate architectural patterns and decomposing/merging
subproblems according to the selected architectural patterns, we are now able to
start designing a software architecture for the machine in the context diagram.

Architecting the software-to-be begins with setting up an initial architecture that
we incrementally complete by selecting quality-specific solutions for quality re-
quirements in Chapter 8, applying them in Chapter 9, and deriving implementable
architecture alternatives in Chapter 10.

The initial architecture provides a basis to solve the software development prob-
lem described by the problem descriptions. It uses the already selected architec-
tural patterns to implement the functional requirements with regard to quality re-
quirements. Figure 5.11 illustrates our method for deriving the initial architecture

166 5 Phase 2: Architectural Pattern Selection & Application

consisting of four steps. In the following, we describe the steps of our method
followed by its application to the smart grid case study.

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Selected
Architectural
Pattern

Step 1:
Outer Component

Specification

Step 2:
Inner Components

Specification

Step 3:
Ports/Interfaces/Connectors

Specification

Context
Diagram

Problem
Diagrams

Initial
Architecture
(inner comp.)

Initial
Architecture
(outer comp.)

Initial
Architecture
(structural view)

Life-
Cycle

Step 4:
Behavior Specification

Initial
Architecture
(behavioral view)

Fig. 5.11: Overview of the method for deriving the initial architecture

Step 1 - Outer Component Specification

The initial architecture consists of one component for the overall machine which
builds the outer component of the software-to-be. Constructing the outer compo-
nent is performed in this step. We represent the initial architecture as a composite
structure diagram.

We make use of the UML profile for architecture (see Section 2.3.2 on page 37),
which is an extension to UML4PF. The UML profile for architecture allows us to
annotate such diagrams with information on components and connectors.

For modeling the machine domain, one has to choose between different stereo-
types. If the machine domain represents a distributed system, one uses the stereo-
type�distributed�. By a local system such as a single computer, the stereotype
�local� is used whereas the stereotypes�process� and�task� express a
process on a certain platform or a single task within a process. In addition, the
stereotype �initial architecture� has to be applied to the overall machine to
indicate that the architecture is an initial architecture and not yet implementable.

Input for this step is the context diagram. The overall machine component has
the same interfaces as described in the context diagram. As an output, one obtains
a composite structure diagram containing the outer component and its interfaces
to the outside world.

5.6 Derivation of Initial Architecture 167

Application of Step 1 - Outer Component Specification

The initial architecture for the smart grid case study is represented as a UML com-
posite structure diagram. For smart grid, we set up one overall component Smart
Meter Gateway corresponding to the machine in the context diagram. We choose
the stereotypes initial architecture and local as it is concerned with a single stand-
alone system. It has three ports typed with :PLMN, :PHAN, and :PWAN. The ports
have a class as a type. This class uses and realizes interfaces. For example, as de-
picted in Fig. 5.12, the class PWAN uses the interface SMD!{sendDataIntoWAN}
and the class PLMN realizes the interface LMN!{forwardMeterData}. The ports
with the class PLMN as a type provide the interface LMN!{forwardMeterData}
(depicted as a lollipop) and the ports with the class PWAN as a type require the
interface SMD!{sendDataIntoWAN} (depicted as a socket). The complete list of
the port types for the initial architecture is given in Appendix B.6. The output of
Step 1 is illustrated in Fig. 5.13.

Fig. 5.12: Port types of PWAN and PLMN

Step 2 - Inner Components Specification

The initial architecture contains one component for each subproblem. Therefore,
we use the modeled problem diagrams as an input to this step. The stereotype
�Component� has to be applied to indicate the components in the software
architecture. For deriving the components inside the overall machine, we make
use of the submachines in the problem diagrams. Each submachine becomes a
component to be located inside the outer component. Also the lexical domains as
data representations become components in the initial architecture.

168 5 Phase 2: Architectural Pattern Selection & Application

Fig. 5.13: Output of Step 1

By placing the components in the overall machine, one should consider the rel-
evant architectural patterns. The components have to be arranged in a way that they
reflect the structure of the relevant architectural style. In some cases new compo-
nents need to be added to the overall component in order to be able to instantiate
the architectural pattern. For example, in order to apply the Layered architectural
pattern, for each layer a new component needs to be introduced. In contrast, for the
architectural pattern Pipes and Filter there is no need for introducing new compo-
nents as the already existing components are used as Filters.

Application of Step 2 - Inner Components Specification

Now, we have to place components inside the overall component Smart Meter
Gateway considering the selected architectural pattern Pipes and Filters. For the
first component we take the submachine ReceiveMeterData in the problem di-
agram related to the functional requirement R1. It becomes a component Re-
ceiveMeterData in the initial architecture with the stereotype Component. The
lexical domain TemporaryStorage in the subproblem ReceiveMeterData becomes
a component as well, which is connected to the component ReceiveMeterData.

For the machine ProcessStoreMD, we apply the architectural pattern Pipes and
Filters. The machine ProcessStoreMD is mapped to a component in the initial
architecture which serves as a Filter. The two connections to the component Pro-
cessStoreMD serve as pipes. The component TemporaryStorage serves as a Pump,
which initiates “pumping” the data into the pipe. The component MeterData cor-
responds to the lexical domain MeterData in the subproblem related to the func-
tional requirement R2R3. It serves as a Sink initiating the final destination of the
transformation.

5.6 Derivation of Initial Architecture 169

The components SubmitMD and PublishConsumerInfo with the stereotype
Component correspond to the submachines in the problem diagrams related to the
functional requirements R4 and R5. Also these two components serve as Filters.
The connections between the component MeterData and these two components
serve as Pipes. The component MeterData represents the Pump. The two compo-
nents SubmitMD and PublishConsumerInfo are connected to the AuthorizedEx-
ternalEntities and UseInterface through two Pipes. So, we are concerned with
two parallel Pipes and Filters. The initial architecture of smart grid is shown in
Fig. 5.14. In the next step, we show how the components are connected to each
other.

Fig. 5.14: Structural view of the initial architecture of smart grid

170 5 Phase 2: Architectural Pattern Selection & Application

5.6.4.1 Step 3 - Ports/Interfaces/Connectors Specification

After specifying the inner components, one needs to specify how the components
are connected. To this end, the ports of each component, its interfaces, and con-
nectors have to be specified in this step. The architectural profile for modeling the
ports, interfaces, and connectors provides one input. Another input for this step
are problem diagrams that provide the basis for the specification of the ports and
interfaces.

The components are equipped with ports that correspond to the interfaces in
the problem diagrams. The ports should have a type represented as a class with
required and provided interfaces. A controlled interface in a problem diagram is
mapped to a required interface of the corresponding component in the initial archi-
tecture. An observed interface of the machine in the problem diagram is mapped
to a provided interface of the corresponding component in the initial architecture.
Component ports have to be connected to the ports of the overall machine through
connectors. In addition, we specify the connectors between each two components.
To this end, we add stereotypes from the UML profile for architecture that describe
the technical realization of these connectors. For example, for modeling a physical
connector, we make use of the stereotype �Physical�. In a Pipes and Filters
architectural pattern, the connectors between the Filters are Pipes expressed with
the stereotype �Stream�. The complete set of stereotypes to be used for the
connectors can be found in Section 2.3.2 (see page 37). As the output of this step,
we obtain the structural view of the initial architecture.

5.6.4.2 Application of Step 3 - Ports/Interfaces/Connectors Specification

The component ReceiveMeterData is connected to the SamrtMeter with the port
PLMN by a physical connector expressed with the stereotype �Physical�.
The component TemporaryStorage is connected to the component ReceiveMeter-
Data through a connector with the stereotype �call return�. The connectors
between the components TemporaryStorage, ProcessStoreMD, MeterData, Sub-
mitMD, and PublishConsumerInfor are Pipes. The pipes are expressed with the
stereotype�Stream�. The two components SubmitMD and PublishConsumer-
Info are connected to the AuthorizedExternalEntities and UseInterface through the
ports PWAN and PHAN.

5.6 Derivation of Initial Architecture 171

Step 4 - Behavior Specification

To complete the initial software architecture, one needs to specify the behavior of
the architecture in addition to its structure. Therefore, this step is concerned with
modeling the behavioral view of the initial architecture. As inputs for this step, we
make use of the problem diagrams and the life-cycle expressions that enable us to
specify the interactions3 between the components and their order. The life-cycle
contains information about the order of interactions described by the requirements.
For specifying the behavior, we use UML sequence diagrams. However, any other
diagram for modeling the behavior can be used.

Application of Step 4 - Behavior Specification

First, we set up the life-cycle (LC) expressions for our example. The smart grid
system has the following life-cycle:

LC = ((R1; R2R3) ; (R4 || R5))∗

At first, the machine of requirement R1 is executed in LC. That means the meter
data are obtained from the smart meter and stored temporarily. Then, the machine
for the requirement R2R3 is executed which processes the temporary stored meter
data and stores them persistently. The machines of the requirements R4 and R5 are
executed concurrently after the execution of the machines for R1 and R2R3. The
whole life-cycle can be repeated an arbitrary number of times. By establishing the
life-cycle, the order of the interactions between the components is specified.

For specifying the messages exchanging between the components, we make use
of the problem diagrams. Figure 5.15 shows the behavioral view of the initial archi-
tecture represented as a sequence diagram. It illustrates how the components of the
initial architecture interact with each other. The messages represent the phenomena
in the problem diagrams. The sequence diagram shows that the meter data is for-
warded through the LMN to the component ReceiveMeterData to be written into
the TemporaryStorage. The component ProcessStoreMD obtains data from Tempo-
raryStorage and writes it persistently into MeterData. The par construct shows the
parallel execution of the components SubmitMD and PublishConsumerInfo after
storing the MeterData persistently. The component SubmitMD receives this data
and sends it through WAN to the outside world. WAN represents one interface to
the outside world. The component PublishConsumerInfo receives MeterData and

3 With interaction in this context we mean the interplay between the components and not the
conflicts.

172 5 Phase 2: Architectural Pattern Selection & Application

sends it through LAN to the consumer. Also LAN represents one interface to the
outside world.

Fig. 5.15: Behavioral view of the initial architecture of smart grid

5.7 Related Work 173

5.7 Related Work

Zdun [253] proposes a generic pattern language grammar for formalizing patterns
and pattern relationships. Using this grammar, sequences of patterns conforming
to the pattern language can be derived in order to address a specific design prob-
lem. The author analyzes a pattern language consisting of 31 patterns for creating
distributed systems. The focus of this work is on describing the relationships and
dependencies among patterns in a formal way. There is no structured approach
presented on how to use such a pattern language in order to select appropriate
patterns. Hence, due to its abstraction level, this work is not meant to be applied
directly to concrete software projects. We, in contrast, propose a structured method
for selecting appropriate architectural patterns for real-world requirements.

Choppy et al. [69] propose new architectural patterns for basic problem frames
to be used in the design phase which are designed to reflect the structure of the
problem frames. To create an architectural solution for a concrete problem frame,
the relating architectural pattern must be instantiated which provides the starting
point for building a software architecture. While our process provides a top-down
approach by selecting the architectural patterns for the overall problem, this work
is a button-up approach by selecting the architectural patterns for each subprob-
lem. It derives an architecture only based on functional requirements. So, the final
architecture does not provide support for achieving quality requirements. From our
point of view, this approach can be seen as complementary to ours. So, the overall
architectural pattern can be selected through our systematic process. For instan-
tiating the inner components, this work can be used providing a mapping from
problem diagrams to the proposed problem frames-based architectural patterns.

Bass and John [46] use a scenario-based approach for selecting architectural
design patterns. They identify and classify architecturally significant usability sce-
narios that describe a user’s potential way to interact with a system and discover
adequate architectural patterns that support the interaction. Using a matrix, the
software architect can identify suitable tactics and benefits from applying the re-
spective tactics for each usability scenario. A hierarchy of architectural patterns
is provided that supports the architect to find patterns for implementing a certain
tactic. This approach is limited to usability and does not provide support for other
quality requirements.

Bosch and Molin [58] propose an iterative method for deriving an architectural
design from requirements. First, an initial architecture is created solely based on
the functional requirements. Then, a quality estimate for this application archi-
tecture is created, whereas the architect may choose from various proposed as-
sessment methods for each quality requirement. If the estimated quality is not in
conformance with the set of quality requirements, quality-optimizing architecture

174 5 Phase 2: Architectural Pattern Selection & Application

transformations are applied to the application and the conformance with quality re-
quirements is estimated again. Otherwise, if the estimated quality meets the quality
requirements, the process ends and the final architecture is found. While Bosch and
Molin [58] integrate quality requirements after the functionality has been designed,
we take quality requirements into account from the very beginning.

5.8 Contributions

In the first part of this chapter, we presented a method for selecting architectural
pattern(s) considering quality requirements. We first identify the problem to be
solved using problem diagrams which are instances of problem frames. In this
stage, we consider the functional requirements in the first place. The architect is
presented with questions from a question catalog that are appropriate for the prob-
lem identified in the previous step.

Then, we consider and rank benefits and liabilities of the architectural patterns
in order to address the quality requirements relevant for the problem annotated
in the problem diagrams. This way, we aid the software architect in finding ap-
propriate architectural patterns that solve the problem being addressed taking into
account quality requirements. To summarize the contributions of the first part of
this chapter, we propose a problem-oriented method that

• selects architectural pattern(s) addressing the functional requirements by min-
ing questions from the problem and the context of each architectural pattern
as well as the quality requirements by relating liabilities and benefits of each
architectural pattern.

• in addition to providing support for software architects in finding suitable archi-
tectural pattern(s), provides a reasoning about the appropriateness of the archi-
tectural design decisions. The reasoning is provided by a documentation of the
relevant questions, the related answers to those questions, and the consequences
related to the selected pattern. Consequently the software architects are able to
reconstruct the made design decisions later on.

In the second part, we proposed a method for deriving the initial architecture(s)
based on the selected architectural pattern(s) as the result of the pattern selec-
tion process from the first part. The initial architecture fulfills the functional re-
quirements and takes quality requirements into account by applying the selected
architectural pattern(s). It provides a basis for deriving software architecture alter-
natives to be constructed incrementally by selecting and applying quality-specific
solutions for addressing quality requirements in the next chapters.

Chapter 6
Phase 3: Domain Knowledge Analysis

Abstract In requirements engineering, properties of the domains of the environ-
ment and assumptions about them are called domain knowledge. This chapter out-
lines the significance of capturing the required domain knowledge when develop-
ing software and gives an example of capturing inadequate assumptions about the
environment and the resulting consequences. We present a structured method for
eliciting, modeling, and using quality-related domain knowledge, which is needed
to be captured in addition to exploring the requirements.

6.1 Introduction

The system-to-be comprises the software to be built and its surrounding envi-
ronment structured as a collection of domains such as people, devices, and ex-
isting software [161]. The environment represents the part of the real world into
which the software will be integrated. Hence, in requirements engineering, prop-
erties of the domains of the environment and assumptions about them, called
domain knowledge, need to be captured in addition to exploring the require-
ments [252, 160]. Note that we do not mean application domain under the term
domain, but entities in the environment that are relevant.

Despite the recognition of the significance of capturing the required domain
knowledge, it might be missing, left implicit, or be captured inadequately dur-
ing the software development process [161]. Domain knowledge is often undoc-
umented and tacit in the minds of the people involved in the process of software
development [197]. The common ad-hoc nature of gaining domain knowledge is
error-prone. Hooks and Farry [127] report on a project where 49% of requirements

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_6

176 6 Phase 3: Domain Knowledge Analysis

errors were due to incorrect domain knowledge. Capturing inadequate assumptions
about the environment of the flight guidance software led to the crash of a Boeing
757 in Colombia in December 1995 [178].

Several requirements engineering methods exist, e.g., for security. Fabian et
al. [94] conclude in their survey about these methods that it is not yet state of
the art to consider domain knowledge. The software development process involves
knowledge-intensive activities [202]. It is an open research question of how to elicit
domain knowledge as part of the software development process correctly for ef-
fective requirements engineering [181]. van Lamsweerde [161] and Jackson [133]
underline the importance of eliciting domain knowledge in addition to the elic-
itation of requirements to obtain correct specifications. However, there is sparse
support in capturing and modeling domain knowledge.

This chapter represents Phase 3 of the QuaDRA framework. In this chapter, we
propose a method for capturing implicit domain knowledge, particularly quality-
relevant domain knowledge, and making it explicit for reuse in a systematic man-
ner during the software development process. Our approach consists of a meta-
process and an object-process which are structured in the steps eliciting, modeling,
and using domain knowledge. Both processes are independent from any specific
tool or notation. This facilitates the integration of the processes into requirements
analysis and design processes.

The meta-process is applied for a given software quality together with a given
quality analysis method only once to define how to elicit, model, and use the rel-
evant domain knowledge for the specific software quality and the given analysis
method. Results of previous applications of the meta-process for the same software
quality together with a different analysis method can be reused. The object-process
is applied for a given software project. The domain knowledge is elicited, modeled,
and used using the principles that are output of the meta-process for the software
quality and quality analysis method under consideration.

We illustrate the application of the meta-process using our QuaRO1 method [6],
which analyzes and detects interactions between security and performance require-
ments based on pairwise comparisons, and the PoPeRA [22] method, which is a
method for identifying and analyzing potential performance problems on the re-
quirement analysis level. We illustrate the object-process using the smart grid sce-
nario (see Section 2.6 on page 43) as given application and the QuaRO method as
output of the meta-process.

The benefit of our method lies in improving the quality of the requirements
engineering process. This is achieved by providing a systematic method that fa-

1 The QuaRO method is a comprehensive method for optimizing requirements according to stake-
holders’ goals. Through this book, under the QuaRO method we understand the part concerning
requirements interaction detection.

6.2 Structured Meta-Process 177

cilitates the capturing and modeling of implicit domain knowledge as reusable
artifacts.

Furthermore, we discuss how domain knowledge affects other artifacts such
as requirements and architecture artifacts. We are convinced that during the soft-
ware development process, domain knowledge is not only used in requirements
engineering for obtaining adequate specifications, it also has to be captured during
the design phase when selecting patterns and mechanisms or when making design
decisions. There exist new assumptions and requirements associated with each pat-
tern and quality-specific solution, which have to be considered when deciding on
this solution.

The proposed method in this chapter is based on our work presented in [23].
We are the main author of this work. Rene Meis contributed to eliciting, modeling,
and using domain knowledge for privacy as one of the three quality requirements
considered in the publication. In this chapter, we introduce the elicitation, model-
ing, and use of domain knowledge for security and performance. Furthermore, we
had valuable discussions with Maritta Heisel and Rene Meis on this work.

In the following, we present the structured meta-process for eliciting, model-
ing, and using quality-related domain knowledge and its application in Section 6.2.
Section 6.3 is devoted to the structured object-process and its application. We dis-
cuss related work in Section 6.4 and summarize the contribution of this chapter in
Section 6.5.

6.2 Structured Meta-Process

This section describes the meta-process composed of three steps for eliciting,
modeling, and using domain knowledge for a specific software quality shown in
Fig. 6.1. The starting point is a set of functional and quality requirements that are
already modeled. Corresponding requirement models are existing and build the
basis for the meta-process. In Chapter 4, we have already described how to build
the requirement models.

The meta-process is quality-dependent. That is, it has to be conducted for each
software quality once. Once we have elicited and modeled domain knowledge for a
specific software quality in steps one and two, we use it in step three by extending
an existing method or defining a new one that uses the elicited and modeled domain
knowledge for analyzing quality requirements. We consider two methods, namely
QuaRO [6], which is a method to detect candidates for negative interactions based
on pairwise comparisons between quality requirements, and PoPeRA [5], which
is a method for identifying and analyzing potential performance problems on the

178 6 Phase 3: Domain Knowledge Analysis

requirements analysis level. For more information, we refer to Chapter 7, in which
the two methods are described.

e
xt

e
rn

a
l

in
p

u
t

o
u

tp
u

t
in

p
u

t
/

Domain
Expertise

Method
Description

Step 2:
Modeling Notation

Selection/Extensionm
et

a
pr

oc
es

s

Defined/Extended
Method Description

Step 3:
Method

Definition/Extension

Requirements
Modeling
Notation(s)

Domain
Knowledge
Templates

Elicitation
Principles

Step 1:
Information Needs

Elicitation

Modeling
Principles

Quality
Modeling
Notations

Selected
Quality Modeling
Notations

Fig. 6.1: Meta-process for eliciting, modeling, and using domain knowledge

The artifacts in the top of Fig. 6.1 represent the external inputs for the steps of
the method. Those in the bottom of the figure represent the output of the steps pro-
viding input for further steps and/or for the object-process (see Section 6.3). In the
following, we describe each step of the meta-process followed by its application
to the software qualities performance and security.

Step 1 - Information Needs Elicitation

This step (see Step 1 in Fig. 6.1) is concerned with eliciting relevant information
needed when dealing with specific software qualities. The source of information
is domain expertise. Optionally, requirements modeling notation(s) and a method
description could be further inputs if existing and needed.

We document the information needs that we elicit for the corresponding soft-
ware qualities as structured templates called Domain Knowledge Templates. Such
templates have to be instantiated separately for each type of software quality in
the first step of the object-process. In addition to the domain knowledge templates,
we provide guidance how to elicit relevant domain knowledge systematically. We
call such guidance Elicitation Principles. Domain knowledge templates represent
what domain knowledge has to be elicited, and elicitation principles represent how
this domain knowledge has to be elicited. Elicitation principles are used as input
for the first step of the object-process and describe how this step has to be carried
out.

6.2 Structured Meta-Process 179

Application of Step 1 - Information Needs Elicitation (for Performance)

We take the UML-based problem frames as the requirements modeling notation.
To elicit which domain knowledge the performance analyst requires in order to
analyze performance for early software development phases (PoPeRA and QuaRO
methods), we make use of domain expertise.

Performance is concerned with the workload of the system and the available
resources to process the workload [47]. The workload is described by triggers
of the system, representing requests from outside or inside the system. Workload
exhibits the characteristics of the system use. It includes the number of requests
(e.g., number of concurrent users) and their arrival pattern (how they are arriving
at the system). The arrival pattern can be periodic (e.g. every 10 milliseconds),
stochastic (according to a probabilistic distribution), or sporadically (not captured
by periodic or stochastic characterization) [44]. Workload of the system represents
one of the important issues for resource consumption. In order to answer to the
requests, the system has to process the requests, which takes time. Processing the
requests requires resources. Each resource has to be expressed by its type in the
system, such as CPU, memory, or network, its utilization, and its capacity, such as
the transmission speed for a network.

The resulting domain knowledge template for performance is shown in Ta-
ble 6.1. The columns “Domain Knowledge Description” and “Possible Values”
show the domain knowledge to be elicited for performance and its possible values.
The column “Value” has to be filled in in the first step of the object-process.

Table 6.1: Domain knowledge template for performance and mapping to the
MARTE profile

Quality: Performance
Domain Knowledge Template Mapping to MARTE

Domain Knowledge Description Possible Values Value Property
For each Problem Diagram

Number of concurrent users Natural GaWorkloadEvent. pat-
tern. population

Arrival pattern ArrivalPattern GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) GaStep. msgSize

For each Causal Domain
Memory capacity DataSize (bit, Byte, KB, MB, GB) HwMemory. memorySize

latency Duration (s, ms, min,hr, day) HwMemory. timing
Network bandwidth DataRate (b/s, Kb/s, Mb/s) HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) HwMedia. packetTime
CPU speed Frequency (Hz, kHz, MHz, GHz) HwProcessor. frequency

Number of cores Natural HwProcessor. nbCores

180 6 Phase 3: Domain Knowledge Analysis

Once we have captured the information needs as domain knowledge templates,
we have to give guidance how to elicit them (elicitation principles). The first part of
the domain knowledge template for performance contains information relevant for
each problem diagram. The second part of the template shows the domain knowl-
edge to be elicited for each causal domain. We iterate over the causal domains in
the requirement models (lexical and machine domains are special types of causal
domains). By each domain, we have to check if it represents or contains any hard-
ware device that the system is executed on, or any resource that can be consumed
by the corresponding performance requirement. Hence, we are concerned with two
cases:

• case 1: the domain itself represents a resource such as data storage, memory,
network, or software resource.

• case 2: the domain itself does not represent any resource, but it contains hidden
resources (resources not modeled yet in the problem diagrams) such as CPU,
data storage, memory, network, or software resource.

In the first case, the domain exists in the requirement models. It is a performance-
relevant resource, which has to be annotated as such a resource. In the second
case, the domain itself represents no resource, but it contains a hidden resource
with performance relevant characteristics that is not modeled yet. For example,
it contains a CPU, which is relevant when talking about performance issues. For
each resource type (CPU, network, memory), we have to state if the resource is
already existing in the requirement models or is not modeled yet.

Application of Step 1 - Information Needs Elicitation (for Security)

To guarantee security, we need domain knowledge about the type of possible at-
tackers that influence the restrictiveness of a security requirement. For example,
we need to know about the abilities of the attacker, how much resources and ef-
fort are available, how much influence security has on the behavior of the overall
system-to-be, and which solution to fulfill the requirement has to be chosen. While
it is almost impossible to secure a system against an almighty attacker, defending
against “script kiddies2” can be easily achieved without big impact on the rest of
the system.

Different types of attackers can be considered. For example, a software attacker
targets at manipulating the software, whereas a network attacker aims at manip-
ulating the network traffic. To describe the attacker we use the properties as de-

2 It refers to an unskilled person who relies on programs or files (scripts) of other people to
perform his/her attack (Retrieved from http://www.urbandictionary.com, Oct. 2015).

6.2 Structured Meta-Process 181

scribed by the Common Methodology for Information Technology Security Eval-
uation (CEM) [132] (domain expertise) for vulnerability assessment of the ToE
(target of evaluation i.e., system-to-be). The properties to be considered (accord-
ing to CEM) are [132]:

Elapsed time “Elapsed time is the total amount of time taken by an attacker
to identify a particular potential vulnerability . . . , to develop an attack method
and . . . to mount the attack . . . ” We distinguish between the preparation time
and the attack time.

Specialist expertise “Specialist expertise refers to the level of generic knowl-
edge of the underlying principles, product type or attack methods”

Knowledge of the ToE “Knowledge of the ToE refers to specific expertise in
relation to the ToE.”

Window of opportunity “Identification or exploitation of a vulnerability may
require considerable amounts of access to a ToE that may increase the likeli-
hood of detection. . . . Access may also need to be continuous, or over a number
of sessions.”

IT hardware/software or other equipment “. . . the equipment required to iden-
tify or exploit a vulnerability.”

The resulting domain knowledge template for security is shown in Table 6.2.
Now, we describe the elicitation principles that support us in capturing domain

knowledge. We have to identify attackers for each modeled security requirement.
There might exist more than one attacker for a security requirement. It should
be checked if such attackers for each security requirement are already identified.
If not, we have to identify suitable attackers according to the related security re-
quirement. The domain knowledge template has to be instantiated for each attacker
once.

Table 6.2: Domain knowledge template for security and mapping to the depend-
ability profile

Quality: Security
Domain Knowledge Template Mapping to profile

Domain Knowledge Descrip-
tion

Possible Values Value Property (Dependability pro-
file)

Preparation time one day, one week, two weeks, . . . Attacker.preparationTime
Attack time one day, one week, two weeks, . . . Attacker.attackTime
Specialist expertise laymen, proficient, expert, . . . Attacker.specialistExpertise
Knowledge of the ToE public, restricted, sensitive, critical Attacker.knowledge
Window of opportunity unnecessary/unlimited, easy, . . . Attacker.opportunity
IT hardware/software or other
equipment

standard, specialized, bespoke, . . . Attacker.equipment

182 6 Phase 3: Domain Knowledge Analysis

Step 2 - Modeling Notation Selection/Extension

The aim of this step (see Step 2 in Fig. 6.1) is to select a suitable notation for
modeling quality-relevant domain knowledge in a way that it can be used for the
requirements analysis. According to the elicited domain knowledge from the previ-
ous step, we investigate whether the existing notations are sufficient for integrating
domain knowledge in the existing requirement models. In such a case, we select
an appropriate notation. Otherwise, we have to extend the existing notations with
required artifacts or define a new one. The selected notation will be applied to
the requirement models in the object-process in order to support the modeling of
domain knowledge. In addition, we obtain Modeling Principles as output of this
step. They provide guidance for modeling the domain knowledge elicited in the
previous step.

Application of Step 2 - Modeling Notation Selection/Extension (for
Performance)

We select the MARTE profile [233] for modeling performance-related domain
knowledge. For more information regarding the MARTE profile, we refer to Chap-
ter 2 (see page 40). We make use of the stereotypes from the MARTE profile to
express the domain knowledge that we elicited in the first step of our method:

GaWorkloadEvent 3 represents the kind of arrival pattern. A ClosedPattern is
one kind of arrival pattern. It contains the attribute population that represents a
fixed number of active users ([233], pages 308 and 503). Population expects a
value of type NFP Integer, which is a complex data type defined in MARTE
containing the attribute value expecting an integer number ([233], pages 308
and 506). It initiates system-level behavior using arrival patterns. A ClosedPat-
tern is one kind of arrival patterns that contains the parameters necessary to
specify a closed Pattern. It is characterized by a fixed number of active or po-
tential users or jobs that cycle between the executing scenario (population), and
spending an external delay period (sometimes called “think time”) outside the
system, between the end of one response and the next request (extDelay). Other
kinds of arrival patterns are PeriodicPattern and AperiodicPattern. Population
represents the size of the workload (number of system users) ([233], pages 308
and 503).

HwMemory contains the attributes memorySize that specifies the storage capac-
ity and timing that specifies timings of the HwMemory ([233], page 597). The

3 Ga ist the abbreviation for Generic Analysis

6.2 Structured Meta-Process 183

former expects a value of the type NFP DataSize, which is a complex data type
defined in MARTE. It contains the attributes unit, which can be selected out of
an enumeration (bit, Byte, KB, MB, GB) and precision, which is a real number.
The latter expects a value of the type NFP Duration, which is a complex data
type defined in MARTE. It contains the attributes unit, which can be selected
out of an enumeration (s, ms, min, hr, day), clock, which is a String, precision,
which is a real number, worst, which is a real number representing the worst-
case value, and best, which is a real number representing the best-case value
([233], page 505). “It is a specialization of StorageResource, which represents
the different forms of memory. HwMemory contains memorySize and timing as
attributes. The former specifies the storage capacity of the HWMemory. The
latter specifies timings of the HWMemory” ([233], page 666).

CommunicationMedia It represents the means to transport information from
one location to another. It contains capacity as an attribute ([233], page 597).

HwMedia is a specialization of CommunicationMedia. It contains the attributes
bandWidth specifying the transfer bandwidth and packetTime specifying the
time to transmit an element ([233], pages 598 and 665). The former expects
a value of the type NFP DataTxRate, which is a complex data type defined in
MARTE. It contains the attributes unit, which can be selected out of an enumer-
ation (b/s, Kb/s, Mb/s) and precision, which is a real number. The latter expects
a value of the type NFP Duration ([233], page 505).

ComputingResource It represents either virtual or physical processing devices
capable of storing and executing program code. Hence its fundamental service
is to compute ([233], page 598).

HwProcessor is a generic computing resource symbolizing a processor. It con-
tains the attributes nbCores, which specifies the number of cores within the
HwProcessor and frequency (not contained in the specification, but in the
implementation) ([233], page 670). The former expects a value of the type
NFP Natural. The latter expects a value of the type NFP Frequency, which
is a complex data type defined in MARTE. It contains the attributes unit, which
can be selected out of an enumeration (Hz, KHz, MHz, GHz, rpm) and preci-
sion, which is a real number ([233], page 505).
“It is a specialization of ComputingResource, which represents either virtual
or physical processing devices capable of storing and executing program code.
HwProcessor is a generic computing resource that symbolizes a processor. It
contains as attributes nbCores, which specifies the number of cores within the
HWProcessor and frequency (not contained in the specification, but in the im-
plementation).” ([233], page 670)

184 6 Phase 3: Domain Knowledge Analysis

GaStep is a part of a scenario and contains the attribute msgSize, which specifies
the size of a message to be transmitted by the Step ([233], page 306). It expects
a value of the type NFP DataSize ([233], page 505).

The following modeling principles can be used to model performance-relevant
domain knowledge. We make use of stereotypes from the MARTE profile to anno-
tate the corresponding domains explicitly as resources. The MARTE profile pro-
vides specific stereotypes for each type of resource. To annotate the workload de-
scribed by triggers of the system, we make use of the stereotype�gaWorkloadE-
vent�. Its attributes represent the kind of arrival pattern and the number of con-
current users. MARTE defines several arrival patterns such as periodic describing
periodic interarrival patterns with a deviation (jitter), aperiodic describing an un-
bounded pattern defined by a distribution function, closed describing a workload
with a fix number of users defined by the attribute population, etc.

For data storage, MARTE provides the stereotype �storageResource�.
More specifically, the stereotype�hwMemory� can be used for representing a
hardware memory (memory capacity and memory latency). Other possible stereo-
types from MARTE are �resource�, �deviceResource�, �computing-
Resource� and its more specific stereotype �hwProcessor�, �communi-
cationResource� and its more specific stereotype�hwMedia�. For each re-
source, we have to capture its capacity and utilization. For example, a storage re-
source has a capacity and a latency. For a network resource, MARTE provides the
stereotype �communicationMedia�. More specifically, the stereotype �hw-
Media� can be used for representing a network resource (network bandwidth and
network latency). The stereotype�computingResource� and its more specific
stereotype�hwProcessor� are used to model a processor (processor speed and
number of processor cores). To model domain knowledge regarding message size
and response time, we apply the stereotype�gaStep� from the GQAM package
or�paStep� from the specialized package PAM. These stereotypes provide the
attribute respT for annotating such kind of domain knowledge.

In the case that we are concerned with a hidden resource, the hidden resource
has to be modeled explicitly as a causal domain. It additionally has to be annotated
with a performance relevant stereotype from the MARTE profile representing the
kind of resource it provides.

The column “Mapping to MARTE” in Table 6.1 shows how the elicited domain
knowledge in step one can be mapped to the MARTE stereotypes and attributes.
This mapping is used for modeling domain knowledge.

6.2 Structured Meta-Process 185

Application of Step 2 - Modeling Notation Selection/Extension (for Security)

We choose the dependability profile proposed by Hatebur and Heisel [114] for
modeling security-related domain knowledge. It provides stereotypes that enable
us to express security-relevant domain knowledge identified in the previous step.
Specifically, we make use of the stereotype�attacker� and its attributes to ex-
press the attackers and their characteristics that we elicited in the previous step.
Each identified attacker has to be modeled explicitly as a biddable domain. The
stereotype�attacker� has to be applied to it. The stereotype�attacker� con-
tains the attributes preparationTime, attackTime, specialistExpertise, knowledge,
opportunity, and equipment to describe the characteristics of the attacker.

The column “Mapping to profile” in Table 6.2 shows how the elicited security-
specific domain knowledge can be integrated in the requirement models using the
stereotypes and attributes from the dependability profile.

Step 3 - Method Definition/Extension

This step (see Step 3 in Fig. 6.1) aims at defining a new method for requirements
analysis such as the QuaRO and POPeRA methods, where quality-relevant domain
knowledge has to be considered from the beginning of the analysis process, or
extending an existing method with quality-relevant domain knowledge. In case
of extending an existing method, the method description has to be considered as
input. Additionally, we take the selected quality modeling notations into account
for defining a new method or extending an existing one.

Application of Step 3 - Method Definition/Extension (for Performance)

We define the PoPeRA method for detecting potential performance problems and
analyzing them. We first identify performance-critical resources that we elicited
and modeled as performance-relevant domain knowledge. Next, we identify prob-
lem diagrams, where the inbound requests exceed the processing capacity of the
performance-critical resource because of the high workload. The resources in
such problem diagrams represent potential bottlenecks. The PoPeRa method is
described in Section 7.4 (see page 220).

186 6 Phase 3: Domain Knowledge Analysis

Application of Step 3 - Method Definition/Extension (for Security and
Performance)

The QuaRO method uses the structure of problem diagrams to identify the do-
mains, where quality requirements might interact. When the state of a domain can
be changed by one or more sub-machines at the same time, their related quality
requirements might be in conflict. Modeling domain knowledge regarding secu-
rity and performance allows us detecting additional domains, where security and
performance might conflict. Resources modeled as domain knowledge represent
such conflicting domains. The reason is that the achievement of security require-
ments requires additional resources affecting the achievement of performance re-
quirements negatively. Modeling the attacker and its characteristics determines the
strength of the security mechanism to be selected, which affects the resource usage.
Therefore, the resource has to be identified and modeled as domain knowledge. To
detect interactions we set up tables, in which the columns contain information
about quality-relevant domains from the problem diagrams, and the rows contain
information about quality requirements under consideration. Whenever the state of
a domain can be changed for the achievement of the corresponding quality require-
ment, we enter a cross in the respective cell. In a stepwise process, we eliminate
requirements which are not in conflict. At the end, we obtain a set of security
and performance requirements which might be in conflict. The QuaRO method is
described in Section 7.3 (see page 210).

6.3 Structured Object-Process

In this section, we describe the object-process composed of the three steps elicit-
ing, modeling, and using domain knowledge for selected software qualities and a
specific software application. Once we have annotated the requirement models of
a concrete software application with quality requirements, we use the output of the
meta-process (see Section 6.2) for applying the object-process.

Figure 6.2 illustrates the steps of the object-process. In the following, we de-
scribe each step of the object-process followed by its application to the software
qualities performance and security and the concrete software application smart
grid.

6.3 Structured Object-Process 187

Domain
Knowledge
Models

ob
je

ct
pr

oc
es

s
ou

tp
ut

in
pu

t /

Step 1:
Domain Knowledge

Elicitation

Step 2:
Domain Knowledge

Modeling

ex
te

rn
al

in
pu

t

Instantiated
Domain Knowledge
Templates

Step 3:
Method Application

Elicitation
Principles

Modeling
Principles

Defined/Extended
Method Description

Domain
Knowledge
Templates

Requirement
Model(s)

Selected
Quality Modeling
Notation

Method
Application
Results

Fig. 6.2: Object-process for eliciting, modeling, and using domain knowledge

Step 1 - Domain Knowledge Elicitation

To elicit quality-relevant domain knowledge for a specific application, we instan-
tiate domain knowledge templates (output of the first step of the meta-process).
For the instantiation, we make use of the elicitation principles (also output of the
first step of the meta-process) and existing requirement models. The elicitation
principles provide guidance for the instantiation of the domain knowledge tem-
plates for the given requirement models. As output, we obtain instantiated domain
knowledge templates that serve as input for Step 2.

Application of Step 1 - Domain Knowledge Elicitation (for Performance)

For each performance requirement, we instantiate the domain knowledge template
for performance (see Table 6.1) according to the information contained in the exist-
ing documents for the smart grid application [155, 200]. We exemplify the instan-
tiation of the template for the performance requirement R24, which complements
the functional requirement R4 (see Fig. 6.3).

According to the elicitation principles (Step 1 of the meta-process, see Sec-
tion 6.2), we have to iterate over the causal domains in the requirement models
to identify relevant resources. In Fig. 6.3, the causal domain WAN represents a
performance-specific resource. The machine domain SubmitMD contains the hid-
den resource CPU, which is not modeled yet.

For eliciting domain knowledge for the performance requirement R24, we need
additional information such as number of concurrent users that is missing in the
Protection Profile [155] and Open Meter [200] documents. Hence, we looked for

188 6 Phase 3: Domain Knowledge Analysis

Fig. 6.3: Problem diagram for submitting meter data to external entities

the necessary domain knowledge in the existing literature 4 [87]. Based on this
search, we assume the values given in column “Value” in Table 6.3.

For eliciting knowledge about the “number of concurrent users”, we have to
know the number of electricity providers to which the meter readings have to be
sent. There are almost 50 electricity providers in Germany that receive meter read-
ings from the gateway (see the attribute population in Fig. 6.3). As the number of
concurrent users is not further specified in the documents under consideration, we
take the worst case.

“Data size” of meter readings to be transmitted to the gateway can be between
1 KB and 16 MB [87]. It varies according to the period of time, in which meter
data has to be sent to authorized external entities. It amounts to 1 KB by immediate
sending of meter data after reading and 16 MB by sending meter data every two
hours. This would be between 40 KB and 640 MB for 40 smart meters. We set

4 http://www.strom-pfadfinder.de/stromanbieter/

6.3 Structured Object-Process 189

640 MB as value for “data size” (see the attribute msgSize in Fig. 6.3). As it is not
further specified in the documents under consideration, we take the worst case.

According to the documents from the Open Meter project, for the communica-
tion to the outside (WAN in Fig. 6.3) a Power Line Communication (PLC) can be
used. We take 2.4 Kbps for the “network bandwidth”, which is the minimum speed
for a reliable communication (see the attribute bandWidth in Fig. 6.3). We could
not find any information about the latency of PLC to set the value for the “network
latency”. In the smart meters the “ARM 9 processors” 5 with one core and a speed
of 470 MHz can be used. The domain WAN is already modeled in the requirement
models, whereas the domains Memory and CPU are not modeled yet (see “Yes”
and “No” in Table 6.3). This remark helps us to know which resource has to be
modeled explicitly in the next step.

Table 6.3: Instantiated domain knowledge template for performance and mapping
to the MARTE profile

Quality: Performance, Requirement: R24
Domain Knowledge Template Mapping to MARTE

Domain Knowledge Description Possible Values Value Property
For Problem Diagram SubmitMeterData

Number of concurrent users Natural 50 GaWorkloadEvent. pat-
tern. population

Arrival pattern ArrivalPattern closed GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) 640

MB
GaStep. msgSize

For the domain SubmitMD
Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize

latency Duration (s, ms, min,hr, day) - HwMemory. timing
Network - bandwidth DataRate (b/s, Kb/s, Mb/s) - HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU No speed Frequency (Hz, kHz, MHz, GHz) 470

MHz
HwProcessor. frequency

Number of cores Natural 1 HwProcessor. nbCores
For the domain WAN

Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize
latency Duration (s, ms, min,hr, day) - HwMemory. timing

Network Yesbandwidth DataRate (b/s, Kb/s, Mb/s) 2.4
Kb/s

HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU - speed Frequency (Hz, kHz, MHz, GHz) - HwProcessor. frequency

Number of cores Natural - HwProcessor. nbCores

5 http://www.arm.com/markets/embedded/smart-meter.php

190 6 Phase 3: Domain Knowledge Analysis

Application of Step 1 - Domain Knowledge Elicitation (for Security)

For eliciting security-relevant domain knowledge, we have to instantiate the do-
main knowledge template for each identified attacker once. We identified one net-
work attacker for three security requirements R10, R11, and R12. The reason is that
the MeterData to be transmitted through the network WAN can be manipulated by
a network attacker (see Fig. 6.3). There is no information in the Protection Profile
[155] about the attacker that the system must be protected against. Therefore, we
assume that the system must be protected against the strongest attacker. Hence, we
select for each property the strongest one to obtain values for the column “Value”
(see the stereotypes �Attacker� in Fig. 6.3). Table 6.4 shows the instantiated
domain knowledge template for the confidentiality requirement R11.

Table 6.4: Instantiated domain knowledge template for security and mapping to
the dependability profile

Quality: Security, Requirement: R10, R11, R12
Domain Knowledge Template Mapping to profile

Domain Knowledge
Description

Possible Values Value Property (Dependability profile)

Preparation time one day, one week, two weeks, . . . more than
six months

Attacker.preparationTime

Attack time one day, one week, two weeks, . . . more than
six months

Attacker.attackTime

Specialist expertise laymen, proficient, expert, . . . multiple
experts

Attacker.specialistExpertise

Knowledge of the ToE public, restricted, sensitive, critical public Attacker.knowledge
Window of opportu-
nity

unnecessary/unlimited, easy, . . . difficult Attacker.opportunity

IT hardware/software
or other equipment

standard, specialized, bespoke, . . . multiple
bespoke

Attacker.equipment

Step 2 - Domain Knowledge Modeling

In this step (Step 2 in Fig. 6.2), we model the domain knowledge that we elicited
in the previous step. For modeling domain knowledge and integrating it in the
existing requirement models, we make use of the instantiated domain knowledge
templates. By means of modeling principles, we annotate the requirement models
with elicited domain knowledge. We use the selected quality modeling notations

6.3 Structured Object-Process 191

for annotating requirement models. As a result, we obtain domain knowledge mod-
els.

Application of Step 2 - Domain Knowledge Modeling (for Performance)

We make use of the stereotypes �gaWorkloadEvent�, �hwMedia�, �hw-
Processor�, and�gaStep� for modeling performance-specific domain knowl-
edge shown in Table 6.3. The modeled domain knowledge is shown in Fig. 6.3.

Application of Step 2 - Domain Knowledge Modeling (for Security)

In this step, we model the network attacker and its characteristics according to the
instantiated domain knowledge template shown in Table 6.4, if it is not modeled
yet. We model the network attacker explicitly as a biddable domain for the con-
fidentiality requirement R11. Then, we apply the stereotype �attacker� from
the dependability profile we selected in Step 2 of the meta-process. We assign the
attributes of the stereotype�attacker� using the values contained in Table 6.4.
The attacker and its properties are shown in Fig. 6.3.

Step 3 - Method Application

The third step is concerned with applying a specific requirements analysis method.
Existing requirement models and the domain knowledge models obtained from the
previous step are used as input. In addition, we make use of the method description
we defined or extended in the third step of the meta-process.

Application of Step 3 - Method Application (for Performance)

By applying the PoPeRA method, we identified CPU as a performance-critical
resource (see Fig. 6.3). Such resources are modeled as domain knowledge in the
problem diagrams where the software might fail to be responsive if related per-
formance requirements are not achieved. Then, using the identified performance-
critical resource CPU, we analyzed whether the processing capacity of CPU suf-
fices to satisfy the performance requirement R24 and other requirements that have
to be achieved using this resource with regard to the existing workload (modeled

192 6 Phase 3: Domain Knowledge Analysis

as domain knowledge). We identified CPU as potential bottleneck. After identi-
fying potential bottlenecks that might lead to performance deficiency, we reduce
the number of potential conflicts among quality requirements that we obtained as
output of the QuaRO method. For each pair of conflicting requirements, we check
whether we can mark it as irrelevant according to the identified bottleneck. For
more information regarding the PoPeRA method, we refer to Chapter 7. The re-
maining conflicting requirements have to be resolved later on in Chapter 9.

Application of Step 3 - Method Application (for Security)

By applying the QuaRO method, we identified potential interactions among se-
curity and performance requirements. Performance requirement R24 might be in
conflict with security requirements R10, R11, and R12 (see Fig. 6.3). The output of
the QuaRO method is used as input for the PoPeRA method. For more information
regarding QuaRO and PoPeRA, we refer to Chapter 7.

6.4 Related Work

There exist only few approaches dealing with capturing and representing knowl-
edge needed for a successful consideration of software qualities in software devel-
opment.

Zave and Jackson [252] identify four areas in which the foundation of the re-
quirements engineering discipline seems to be weak. One of these areas is domain
knowledge, which supports the refinement of requirements into implementable
specifications. The authors explain the terms requirements, domain knowledge,
specification, and the relationship between them. Among others, the authors em-
phasize the importance of capturing domain knowledge for the satisfaction of re-
quirements. However, they do not provide a structured way or a specific notation
to model domain knowledge, and they only consider functional requirements.

According to Probst [198], the goal of knowledge management (KM) is the im-
provement of processes and capabilities by utilizing knowledge resources such as
skills, experience, routines, and technologies. The author proposes a KM model
that structures the KM process as activities identification, acquisition, develop-
ment, distribution, preservation, and use of knowledge, called building blocks of
KM. The steps of our method can be easily mapped to these building blocks.
Knowledge identification identifies which knowledge and expertise exists. This is
a prerequisite for conducting our method. It leads to identify the need for captur-

6.4 Related Work 193

ing, modeling, and using domain knowledge. Knowledge acquisition is concerned
with obtaining knowledge from involved stakeholders, domain experts, or using
documents. This activity corresponds to the step information needs elicitation in
our meta-process. Knowledge development aims at producing new knowledge. It
can be related to the step domain knowledge elicitation in the object-process. The
objective of knowledge distribution is to make the knowledge available and us-
able. This activity corresponds to the step modeling notation selection in the meta-
process. Knowledge preservation avoids the loss of gained expertise by preserving
the knowledge after it has been developed. This building block can be mapped to
the step domain knowledge modeling which stores the captured domain knowl-
edge in requirement models. Consequently, the knowledge has to be deployed in
the production process (knowledge use). This is achieved in our method in the
steps method definition and method application. The mapping of the steps of our
method to the KM building blocks shows that we followed successfully the con-
cepts involved in the field of KM.

There exist several approaches for the elicitation of domain knowledge in the
field of domain engineering [139, 99]. These approaches focus on the develop-
ment of reusable software and therefore also on the analysis of the application
domain. During the domain analysis phase, domain knowledge is systematically
collected and documented. In the field of domain engineering the term “domain”
corresponds to the term “system” in Jackson’s terminology. In our method, we
show how to collect and document domain knowledge in a more fine-grained way
which allows us analyzing software quality requirements.

Peng et al. [189] present a method for the analysis of non-functional require-
ments based on a feature model. This method elicits the domain knowledge before
the analysis of non-functional requirements. In contrast, we suggest to elicit the re-
quired domain knowledge for a specific software quality. We think that our method
leads to a more complete and targeted elicitation of domain knowledge.

A method to derive software architectures from quality requirements is pre-
sented in an earlier work [16]. To meet performance requirements, we collect as-
sumptions and facts and represent them in a domain knowledge diagram for per-
formance. However, in that work, the performance-related domain knowledge is
not elicited and modeled systematically.

In the non-functional requirements (NFR) framework [71], knowledge about
the particular type of NFR and the domain has to be acquired before using the
NFR framework. This knowledge is captured to understand the characteristics of
the application domain and to obtain NFR-related information to be used for iden-
tifying the important NFR softgoals. Examples of such domain knowledge are
organizational priorities or providing terminologies for different types of NFRs.
This kind of domain knowledge differs from ours, as it is used as initial infor-

194 6 Phase 3: Domain Knowledge Analysis

mation to identify the goals and requirements. The knowledge we capture and
model is more fine-grained and is required in addition to the quality requirements.
Moreover, we provide a systematic method for capturing and modeling domain
knowledge, whereas the NFR framework does not provide any guidelines on how
to acquire such domain knowledge.

6.5 Contributions

For an adequate consideration of quality requirements during requirements analy-
sis, we have to identify and take into account the quality-specific domain knowl-
edge for concrete software projects. By means of two different requirement anal-
ysis methods, namely PePeRA for performance analysis and QuaRO for require-
ment interaction detection, we have pointed out the need for eliciting, modeling,
and using domain knowledge. To respond to the open research question of how to
elicit and model domain knowledge correctly, in this chapter, we have proposed a
structured method consisting of a meta-process and an object-process for eliciting,
modeling, and using quality-specific domain knowledge. It can be summarized as
follows:

• The meta-process is quality-dependent. It therefore has to be carried out once
for each kind of quality requirement to be considered. To facilitate the reuse of
captured and modeled domain knowledge, we provide individual templates and
guidelines suitable for each kind of quality requirement. These templates and
guidelines are reusable if the same quality shall be considered, but in a different
notation or for a different analysis method. We instantiated the meta-process for
two kinds of quality requirements, namely performance and security.

• The object-process has to be applied to a concrete software application for se-
lected software qualities. We use the output of the meta-process as the input for
the object-process. We showed how the elicited and modeled domain knowl-
edge can be used for performance and security requirements in the two methods
PoPeRA and QuaRo.

• Our approach is independent from any specific tool or notation. Hence, it can
easily be integrated into existing requirement analysis methods. Our proposed
method helps requirements engineers to develop processes for the considera-
tion of quality requirements in a structured way and independently of the tools
or notations they use. The results of this chapter are used in Phase 4: Require-
ments Interaction Analysis described in Chapter 7 and Phase 6: Quality-specific
Pattern Selection & Application described in Chapter 9.

Chapter 7
Phase 4: Requirements Interaction Analysis

Abstract This chapter is divided into four parts for dealing with conflicting re-
quirements. In the first part our structured method for detecting interactions among
functional requirements is introduced. In the second part, we propose the QuaRO
method to identify interaction candidates among quality requirements based on
pairwise comparisons. As output, we obtain a set of quality requirements that are
potentially interacting. The third part presents the PoPeRA method conducting a
performance analysis based on performance domain knowledge and security do-
main knowledge to identify potential bottlenecks. Using identified bottlenecks, we
further reduce the number of potential quality requirement interactions identified
by the QuaRO method. The fourth part proposes a structured method for resolving
the remaining interactions among quality requirements from the previous part by
generating alternatives for interacting requirements.

7.1 Introduction

Nowadays, for almost every software system, various stakeholders with diverse in-
terests exist. These interests give rise to different sets of requirements. The combi-
nation of these sets may lead to unwanted interactions among the requirements. In-
teractions may not only stem from requirements of different stakeholders, but also
from different quality requirements, which are desired by the stakeholders. Quality
requirements tend to interfere, conflict, or contradict with each other. Achieving a
particular type of quality requirements might hurt the achievement of other types
of quality requirements [91, 72]. Therefore, conflicting quality requirements can-
not be fulfilled at the same time. For example, enabling a secure communication

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_7

196 7 Phase 4: Requirements Interaction Analysis

might conflict with performance requirements. The identification of interactions
and inconsistencies in the requirements analysis is essential to avoid costly modi-
fications later on in the software development life cycle and to improve the overall
software quality. Nevertheless, such inconsistencies among functional as well as
quality requirements cannot be detected easily.

In general, the deviation between the intended behavior and structure as formu-
lated by single requirements of a stakeholder and the overall behavior and struc-
ture of the resulting system- or software-to-be is called requirement inconsisten-
cies [100, 162]. Such inconsistencies can stem from different sources. The first
source is the different understanding of terms and different views on the system-
to-be of different stakeholders. To this class of inconsistencies also adds missing
or misleading information [100, 224]. A second source are inconsistencies, which
stem from the transformation between different kinds of representations and mod-
els [100]. Another important source are interactions between requirements, which
lead to an unexpected behavior. For functional requirements this source is already
known as feature interaction for a long time, e.g. in the domain of telecommu-
nication [63, 64, 162]. For interactions, one can distinguish between unwanted
and desirable interactions. The strongest types of interactions are conflicts among
requirements, where requirements deny each other, and dependent requirements,
where one requirement can be only fulfilled when another requirement is also ful-
filled. Between these extremes, there are different shades of negative or positive
influences [203, 162]. In this chapter, we treat interactions among functional as
well as quality requirements. For functional requirements, we deal with inconsis-
tencies in terms of the third source, namely those interactions which are conflicts,
but our method also allows to find other kinds of interactions. For quality require-
ments, we are concerned with negative influences of requirements on each other.

This chapter represents Phase 4 of our QuaDRA framework. It includes four
parts for dealing with conflicting requirements. In the first part, we propose a struc-
tured method based on problem frames to identify interactions among functional
requirements. In the problem frames approach, functional requirements are de-
scribed and modeled as problem diagrams. The requirements look like separate
models without dependency among each other. But the domains represent the de-
pendencies between separate requirements. Shared domains provide points in the
requirement models where requirements might interact. We make use of this in-
formation contained in the model to detect interactions among functional require-
ments. We first start with a full set of requirements represented by subproblems.
Then, we incrementally narrow down the set of requirements which might interact
in order to obtain a small set of potentially conflicting requirements that can be
treated manually. This part is based on our work presented in [13]. The basic idea
of our method is developed by the author of this book. We then refined the method

7.1 Introduction 197

jointly with our colleagues Stephan Faßbender and Rene Meis. In [13], we pro-
posed a formalization of our method that can be used as a basis for tool support.
The formalization, which is not included in this chapter, has been done by Rene
Meis.

In the second part of this chapter, we propose the QuaRO method to identify
interactions among quality requirements based on pairwise comparisons. The pro-
cess of detecting candidates of interactions among quality requirements is similar
to the process of detecting functional requirement interactions in a way that we
analyze shared domains among quality requirements. The general principle of our
method is the use of the structure of problem diagrams to identify shared domains
where quality requirements might interact. These domains represent resources
used by conflicting requirements at the same time. Such domains are trade-off
points. Applying the QuaRO method, we obtain a set of quality requirement pairs
which are potentially conflicting. Detecting interactions among quality require-
ments is one part of our book chapter published in [6]. We are the main author
of this part. We had intensive and valuable discussions with Christine Choppy,
Stephan Faßbender, and Maritta Heisel on this topic.

In the third part of this chapter, we propose the PoPeRA method for analyzing
performance problems. The general idea of PoPeRA is based on identifying the
resources that might be used as shared resources between various subproblems,
the workload, and the security issues related to the subproblem. All this informa-
tion allows us to estimate whether the modeled performance requirements can be
achieved and, if not, where the potential performance bottlenecks are located. The
identified bottlenecks aid in further reducing the set of potentially conflicting qual-
ity requirements obtained from the QuaRO method. This part is based on our work
presented in [22], of which we are the main author.

The straightforward and simple way to resolve the remaining conflicts would be
to exclude one of the conflicting requirements from the final set of requirements
to be fulfilled for the software-to-be. A more suitable way is making trade-offs
among conflicting quality requirements. This way, they can only be satisfied to a
certain level [71]. For making trade-offs, we provide alternatives for one or both
conflicting requirements which are weaker than the original one. This way, both
requirements (alternatives) can be satisficed at the same time. For example, for se-
curity requirements there can be certain kinds of attackers we want to be secured
against. However, we might not be able to address a strong attacker with certain
properties such as the given time and resource limits. Hence, we generate an al-
ternative which is weaker than the original one and might not be conflicting any
more. Therefore, in the fourth part of this chapter, we propose a method to gener-
ate alternatives for remaining problematic quality requirements. Based on the type
of requirement we want to generate alternatives for, there are different properties,

198 7 Phase 4: Requirements Interaction Analysis

which are candidates to be relaxed. Our method identifies those properties and
proposes solutions for relaxing them. This part as one part of our book chapter is
published in [6]. Stephan Faßbender is the main author of the original method. We
however, modified the proposed method to fit in the QuaDRA framework.

The rest of the chapter is organized as follows: Our method to detect interacting
functional requirements is described in Section 7.2 while detecting interactions
among quality requirements using the QuaRO method is proposed in Section 7.3.
We introduce our PoPeRA method for performance analysis in Section 7.4 and the
method for generating requirement alternatives in Section 7.5. Section 7.6 presents
related work and Section 7.7 summarizes the contribution of this chapter.

7.2 Functional Requirements Interaction Detection

In this section, we first introduce a sunblind control system as an example in Sec-
tion 7.2.1. Then, we describe our problem-based functional interaction detection
method and its application to the sunblind example in Section 7.2.2.

We applied our method to the smart grid case study. As we did not find any
requirement interactions for the use case Meter Reading for Billing of the smart
grid case study, we chose the sunblind example for illustrating the applicability
of our method. We report on the application of our method to the smart grid case
study later on in Section 7.2.3.

7.2.1 Sunblind Example

We demonstrate our approach using a sunblind control system. A sunblind is made
up of metallic fins, which are attached to the outer side of the window. Addition-
ally, we have a sun sensor, which measures the sun intensity, a wind sensor, which
measures the wind speed, and a display, which is suitable to display the current
sun intensity and wind speed.

The sunblind is sensitive to sun and wind. A machine shall be built that lowers
the sunblind on sunshine and pulls it up on heavy wind. For individual settings
it shall be possible to control the sunblind manually, too. The commands for the
manual control shall be treated with a higher priority than those ones controlled by
the machine. The following requirements are given:

(R1) If there is sunshine for more than one minute, the sun blind will be lowered.
(R2) If there is no sunshine for more than 5 minutes, the sunblind will be pulled up.

7.2 Functional Requirements Interaction Detection 199

(R3) If there is heavy wind for more than 10 seconds, the sunblind will be pulled up,
to avoid destruction of the sunblind.

(R4) If the user issues an open/close/stop command, the sunblind will be pulled up/-
lowered/stopped.

(R5) If the user interacts with the sunblind, then sunshine and no sunshine are ig-
nored within the next 4 hours.

(R6) If the user activates the holiday mode, the sun blind is pulled up and turned off.
(R7) If the user deactivates the holiday mode, then the sunblind is turned on.
(R8) Sunshine intensity and wind speed shall be displayed on the weather display.

We modeled the requirements as problem diagrams, which are used as input for
our method. The problem diagrams for the requirements R1-R8 are shown in Fig-
ures 7.1-7.8.

Fig. 7.1: Problem diagram for the requirement R1

To build the overall machine, we have to determine which requirements have
to be established in parallel or in sequence. For this purpose, we use the life-cycle
expressions introduced in Section 2.4 (see page 42). Our method assumes that this
life-cycle is already created. The sunblind system has the following life-cycle:

LC =
(
R7; (R1 || R2 || R3 || (R4; R5) || R8)∗ || [R6]

)∗
At first, the machine of requirement R7 is executed in LC . That means the

user has to deactivate the holiday mode as first action. Then, the machines for
the requirements R1, R2, R3, R8, and the sequential composition of R4 and R5
are executed concurrently an arbitrary number of times. The parallel execution
can then be stopped by the machine of requirement R6, which is triggered by the
activation of the holiday mode issued by the user. The whole life-cycle can be

200 7 Phase 4: Requirements Interaction Analysis

Fig. 7.2: Problem diagram for the requirement R2

Fig. 7.3: Problem diagram for the requirement R3

repeated an arbitrary number of times. The requirements R4 and R5 are executed
sequentially, because after the user issued a command, the system to be built shall
preserve the user’s configuration of the sunblind for 4 hours.

Throughout this part we refer to this example to describe the proposed method.

7.2.2 Method for Functional Requirements Interaction Detection

Figure 7.9 shows the basic idea of our method consisting of three phases we pro-
pose to detect functional requirement interactions.

The method takes the full set of requirements modeled as problem diagrams
as input. Based on the information contained in the problem diagrams, Phase 1

7.2 Functional Requirements Interaction Detection 201

Fig. 7.4: Problem diagram for the requirement R4

Fig. 7.5: Problem diagram for the requirement R5

(structure-based pruning) takes place and removes all requirements for which the
structure of problem diagrams already implies that they will not interact. The result
is a first set of interaction candidates. In the second phase (life cycle-based prun-
ing), those candidates can be further reduced using the information of the life-cycle
which contains the information about the sequence of requirements. The life-cycle
has to be known beforehand and is an external input to our method. In the third
phase (precondition-based pruning), those candidates are analyzed further. In this
last phase, we identify whether a requirement interaction takes place. In order to
keep the effort of this phase manageable, we perform the Phases 1 and 2, which
reduce the number of potentially interacting requirements. The overall result is a
list of found interactions.

202 7 Phase 4: Requirements Interaction Analysis

Fig. 7.6: Problem diagram for the requirement R6

Fig. 7.7: Problem diagram for the requirement R7

Phase 1 - Structure-Based Pruning

In Phase 1, we make use of the structure of the problem diagrams. The steps for
selecting the requirements, which are candidates of a requirements interaction, are
as follows:

Step 1 - Initial Setup
First, we identify for each requirement which domains are referred to or con-
strained, and which phenomena are controlled or observed by this domain. As
a result, we obtain a table, where a column contains information about a specific
domain and where a row contains the information about a requirement. A cell con-
tains the phenomena controlled or observed by the domain - given by the column

7.2 Functional Requirements Interaction Detection 203

Fig. 7.8: Problem diagram for the requirement R8

Problem
Diagrams

Candidates
Interaction Interaction

Candidates

Reduced
Interactions

Life−Cycle

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Phase 1:
Structure-based

Pruning

Phase 2:
Life Cycle-based

Pruning

Phase 3:
Precondition-based

Pruning

Fig. 7.9: Method for detecting candidates for interactions among functional re-
quirements

- in the problem diagram for a requirement - given by the row. If the domain is
constrained in the problem diagram, then it is written in bold font, else in italic
font. The result for our example is given in Table 7.1.

Step 2 - Marking Irrelevant Domains
Second, we check for each column, and therefore for each domain, if the domain
is constrained at least once and has more than one entry in the corresponding cells
(phenomena). If this is not the case, the column (domain) and the corresponding
cells (phenomena) are marked as irrelevant. The reason is that interactions only
occur on domains which are constrained and target of more than one phenomenon.

From Table 7.1, we can see that no requirements interactions can occur on the
SunSensor, WindSensor, and User, because these domains are only referred to by

204 7 Phase 4: Requirements Interaction Analysis

Table 7.1: Initial requirements interaction table

Requirement
/ Domain

SunSensor
(CausalDo-
main)

SunBlind
(CausalDomain)

WindSensor
(CausalDo-
main)

User
(BiddableDo-
main)

WeatherDisplay
(DisplayDo-
main)

R1 S-
S!{brightness}

SC!{lower}

R3 WC!{pullUp} WS!{speed}
R4 UOC!{pullUp,

lower, stop}
U!{openCommand
, closeCommand ,
stopCommand}

R2 S-
S!{brightness}

NSC!{pullUp}

R5 PUCC!{start,
shutDown}

U!{openCommand
, closeCommand}

R6 AC!{shutDown,
lower}

U!{activate-
Holiday}

R7 DC!{start} U!{deactivate-
Holiday}

R8 S-
S!{brightness}

WS!{speed} DC!{wind-
Speed, sun-
Intensity}

the requirements in the problem diagrams. Since there is only one requirement
constraining the WeatherDisplay, we also do not expect any requirements interac-
tions on it. On the SunBlind domain we expect requirements interactions from the
table, because every requirement except R8 constrains this domain. So, after the
second step of Phase 1 we only focus on interactions on the domain SunBlind. All
other domains are marked as irrelevant (see Table 7.2).

Step 3 - Marking Relevant Phenomena
Third, we have to check for each phenomenon of a column (domain) which is not
marked as irrelevant if it is interacting with a combination of phenomena which
refer to or constrain the same domain. For each combination, we have to decide
whether we can reject the assumption that there is an interaction. If we cannot
reject this assumption for sure, we mark all phenomena of the combination as
relevant.

For our example, the phenomena of the requirements R4 and R5 are both not
interacting with any combination of the other requirements. That is, because the
user commands to lower, stop, and pull up the sunblind shall have a higher pri-
ority than the other requirements. For all other phenomena, we find combinations
of phenomena, such that there is possibly an interaction, and these phenomena are

7.2 Functional Requirements Interaction Detection 205

Table 7.2: Requirements interaction table after Step 2 of Phase 1

Requirement
/ Domain

SunSensor
(CausalDomain)

SunBlind
(CausalDomain)

WindSensor
(CausalDomain)

User
(BiddableDomain)

WeatherDisplay
(DisplayDomain)

R1 S-
S!{brightness}

SC!{lower}

R3 WC!{pullUp} WS!{speed}
R4 UOC!{pullUp,

lower, stop}
U!{openCommand
, closeCommand ,
stopCommand}

R2 S-
S!{brightness}

NSC!{pullUp}

R5 PUCC!{start,
shutDown}

U!{openCommand
, closeCommand}

R6 AC!{shutDown,
lower}

U!{activate-
Holiday}

R7 DC!{start} U!{deactivate-
Holiday}

R8 S-
S!{brightness}

WS!{speed} DC!{wind-
Speed, sun-
Intensity}

irrelevant relevant

marked as relevant (see Table 7.3).

Step 4 - Pruning
Last, we remove all columns (domains) where all corresponding cells (phenom-
ena) are not marked as relevant. And we remove all rows (requirements) where all
corresponding cells (phenomena) left are not marked as relevant.

In our example, we can reduce the requirements interaction table as follows. In
Step 2, we saw that the domain SunBlind is the only domain relevant for interac-
tions. Hence, the other columns (domains) can be removed. In Step 3, we obtained
that R4 and R5 are both not relevant. And also the requirement R8 is not relevant,
because it does not operate on the sunblind. Hence, the rows R4, R5, and R8 can
be removed from the table (see Table 7.4).

Phase 2 - Life Cycle-Based Pruning

Using the life-cycle, we can further reduce the set of requirements, which are can-
didates of requirements interaction. The life-cycle contains information about the
order of interplays described by the requirements. Besides the life-cycle, the re-

206 7 Phase 4: Requirements Interaction Analysis

Table 7.3: Requirements interaction table after Step 3 of Phase 1

Requirement
/ Domain

SunSensor
(CausalDomain)

SunBlind
(CausalDomain)

WindSensor
(CausalDomain)

User
(BiddableDomain)

Weathe rDisplay
(DisplayDomain)

R1 S-
S!{brightness}

SC!{lower}

R3 WC!{pullUp} WS!{speed}
R4 UOC!{pullUp,

lower, stop}
U!{openCommand
, closeCommand ,
stopCommand}

R2 S-
S!{brightness}

NSC!{pullUp}

R5 PUCC!{start,
shutDown}

U!{openCommand
, closeCommand}

R6 AC!{shutDown,
lower}

U!{activate-
Holiday}

R7 DC!{start} U!{deactivate-
Holiday}

R8 S-
S!{brightness}

WS!{speed} DC!{wind-
Speed, sun-
Intensity}

irrelevant relevant

Table 7.4: Requirements interaction table after Step 4 of Phase 1

Requirement / Domain SunBlind(CausalDomain)
R1 SC!{lower}
R3 WC!{pullUp}
R2 NSC!{pullUp}
R6 AC!{shutDown, lower}
R7 DC!{start}

irrelevant relevant

duced table, which is the output of Phase 1 (see Table 7.4), serves as input for this
phase.

In the sunblind example, we have the following life-cycle:

LC =
(
R7; (R1 || R2 || R3 || (R4; R5) || R8)∗ || [R6]

)∗
At first, the machine of requirement R7 is executed in LC . That means the

user has to deactivate the holiday mode as first action. Then, the machines for the
requirements R1, R2, R3, R8, and the sequential composition of R4 and R5 are ex-
ecuted concurrently an arbitrary number of times. The parallel execution can then
be stopped by the machine of requirement R6, which is triggered by the activation
of the holiday mode issued by the user. The whole life-cycle can be repeated an

7.2 Functional Requirements Interaction Detection 207

arbitrary number of times. The requirements R4 and R5 are executed sequentially,
because after the user issued a command, the system to be built shall preserve the
user’s configuration of the sunblind for 4 hours.

Step 1 - Reducing Life-Cycle
First, we reduce the life-cycle by removing all requirements which are not part of
the reduced table. Then, we obtain a life-cycle which can be handled more easily
when evaluating if two requirements happen concurrently or in sequence. And we
remove the relevance marker from the cells (phenomena).

The life-cycle LC from the example is reduced by removing all requirements
which are not part of the reduced table. By doing this, we obtain the following
life-cycle.

LC ′ =
(
R7; (R1 || R2 || R3)∗ || [R6]

)∗
Step 2 - Marking Relevant Phenomena
Second, we consider for each phenomenon all combinations of phenomena which
refer to or constrain the same domain for each column (domain) in the reduced
table. For each combination, we check the life-cycle for unwanted sequences of
the phenomena at hand. If such a sequence can happen, we mark all phenomena of
the combination as relevant.

For our example, we see from the life-cycle that the requirements R7 and R6
are not interacting with the other requirements. This is the case, because they are
treated with a higher priority. Furthermore, before the parallel composition of the
interplay described by other requirements is started, the sunblind is activated. And
if the sunblind is deactivated, it is pulled up, to avoid destruction in the case of
heavy wind. The remaining requirements R1, R2, and R3 are executed concur-
rently in arbitrary sequences. Hence, these phenomena are marked as relevant (see
Table 7.5).

Table 7.5: Requirements interaction table after Step 2 of Phase 2

Requirement / Domain SunBlind(CausalDomain)
R1 SC!{lower}
R3 WC!{pullUp}
R2 NSC!{pullUp}
R6 AC!{shutDown, lower}
R7 DC!{start}

irrelevant relevant

208 7 Phase 4: Requirements Interaction Analysis

Step 3 - Pruning
Last, we remove all columns (domains), where all corresponding cells (phenom-
ena) are not marked as relevant. And we remove all rows (requirements), where all
corresponding cells (phenomena) left are not marked as relevant.

For our example, we remove the rows R7 and R6 (see Table 7.6).

Table 7.6: Requirements interaction table after Step 3 of Phase 2

Requirement / Domain SunBlind(CausalDomain)
R1 SC!{lower}
R3 WC!{pullUp}
R2 NSC!{pullUp}

irrelevant relevant

Phase 3 - Precondition-based Pruning

We have now a reduced set of possibly interacting requirements. As described in
Chapter 6, reasoning about the requirements involves reasoning about the environ-
ment and the assumptions made about it (domain knowledge) [68]. According to
this, requirements have to be expressed in terms of the environment. Therefore,
they are normally written according to the general textual pattern: “If the environ-
ment is like this, then it shall be changed like that.” Hence, a requirement has a pre-
and a postcondition, both talking about phenomena of the environment [123]. For
example, the requirement R1 states “If there is sunshine for more than one minute,
the sunblind will be lowered.”

For each of the requirement pairs, we investigate whether there is a system
state that fulfills the preconditions of both requirements. To determine whether a
requirement pair is satisfiable, for each requirement pair we have to check whether
their preconditions can occur at the same time. If this is the case, for those require-
ment pairs we analyze the postconditions for a possible interaction.

For our example, the following requirements are left:
(R1) If there is sunshine for more than one minute, the sunblind will be lowered.
(R2) If there is no sunshine for more than 5 minutes, the sunblind will be pulled
up.
(R3) If there is heavy wind for more than 10 seconds, the sunblind will be pulled
up, to avoid destruction of the sunblind.

7.2 Functional Requirements Interaction Detection 209

Possible interactions are between the requirement pairs R1 and R2, R1 and R3,
and R2 and R3. As we see, the preconditions of the requirements R1 and R2 cannot
occur at the same time. Hence, no interaction between the requirements R1 and
R2 can happen. For the requirement pair R1 and R3, the preconditions can occur
at the same time. We, therefore, have to check the postconditions for a possible
interaction. We identify the postconditions as interacting as the sunblind cannot
“be lowered” and “be pulled up” at the same time. Regarding the requirement
pair R2 and R3, the preconditions can occur at the same time. Nevertheless, no
interaction can take place since the postconditions cannot interact with each other
(“the sunblind will be pulled up”).

So, we identified only one interaction among the requirements R1 and R3. To
cope with this interaction appropriate measures such as prioritization have to be
chosen.

In the next section, we report on the application of our method to the smart grid
case study.

7.2.3 Application to the Case Study Smart Grid

For the smart grid case study, we refined the 13 minimum uses cases (see Sec-
tion 2.6 on page 43) to 27 requirements and modeled them as problem diagrams.
The problem diagrams modeling the 27 requirements given by the 13 minimum use
cases served as an input to Phase 1, Step 1, resulting in 351 possible requirements
interactions. The initial requirements interaction table consisted of 19 domains
and 27 requirements. A number of 64 phenomena were documented as relevant,
because the requirements mentioned them. In the second step, the number of do-
mains on which an interaction could happen was reduced to 4, and 7 requirements
were removed from the set of candidates which could cause an interaction. At
this point, the number of possible interactions was already reduced by more than
fifty percent to 171. The involved number of possibly involved phenomena was
cut down to 19. Three of the phenomena were identified as possibly interacting
phenomena. As a result, only 1 domain and 5 requirements remained after Step 3.
Thus, at the end of Phase 1, we already reduced the number of possible interactions
to 10, which makes a reduction by more than 95 percent. Since all of the require-
ments left may have to be fulfilled in parallel, no further reduction was possible
in Phase 2. While checking the preconditions in Phase 3, one more requirement
could be rejected to be a candidate for an interaction. In the end, 4 requirements,
sources for 6 possible interactions, had to be analyzed in depth.

210 7 Phase 4: Requirements Interaction Analysis

The analysis revealed that the requirements left caused 2 interactions. One of
the original use cases described a process where the energy provider is able to
disconnect a household from the grid by ordering the gateway to cut off the elec-
tricity supply. One reason could be unpaid bills. On the other hand, the provider
can order the gateway to reconnect the household. A second use case describes
that the customer is able to define a power consumption threshold. If the threshold
is reached by the actual power consumption, the household is also cut off the grid
by the gateway. But for this case, the consumer is allowed to override the cut-off
manually, reconnecting the household. The two use cases, and therefore also the
requirements, did not refer to each other, allowing the customer to override a cut-
off ordered by the provider. Or the other way round, the provider could reconnect
a household which was taken off the grid on demand of the customer. Hence, we
found 2 real interactions.

To sum up, the effort to investigate requirements for interactions in depth was
reduced by more than 95 percent. For the interactions left over to the in-depth
analysis, the precision was 33 percent (2 real interactions / 6 possible interac-
tions), which is acceptable considering the overall reduction. For calculating the
recall, we made a full in depth analysis of all requirements and found no additional
interactions which makes a perfect recall of 100 percent. In general, when looking
for interactions, it is favorable to have a high recall rather than having a high pre-
cision. The reason is that missing one real interaction makes any effort reduction
worthless.

For the smart grid case study, especially the effort spent for Phase 1 payed
off. Phases 2 and 3 resulted only in a minor reduction of possible interactions.
But overall, the effort of executing our method is reasonable with regard to the
reduction.

Note that throughout this book, for the case study smart grid we consider the
use case Meter Reading for Billing (see Section 2.6 on page 43). As we did not
find any requirement interactions for the requirements involved in this use case by
applying our method, we applied the method to the sunblind example to illustrate
its applicability by detecting interactions among functional requirements.

7.3 Method for Quality Requirements Interaction Detection

In this section, we propose the QuaRO method to detect candidates for negative
interactions between quality requirements based on pairwise comparison of re-
quirements. Figure 7.10 illustrates the phases of our method, the inputs, and the
outputs of each phase.

7.3 Method for Quality Requirements Interaction Detection 211

Problem

Diagrams

Domain

Knowledge

Initial QR Interaction

Candidates

Life-Cycle

Initialization Phase

p
ro

c
e

s
s

e
xt

e
rn

a
l

in
p

u
t

o
u
tp

u
t

in
p

u
t
/

Tables

Life-Cycle Interaction

Candidates

Interaction

Candidates

Interaction

Candidates

Phase 1:

Treating Case 1

Phase 2:

Treating Case 2

Phase 3:

Treating Case 3

Phase 4:

Treating Case 4

Fig. 7.10: Overview of the QuaRO method to detect candidates for quality require-
ment interactions

To restrict the number of comparisons, we perform an initialization phase, in
which we make use of the general relationships among types of quality require-
ments. We investigate which two types of quality requirements may be in conflict
in general. In doing so, we consider different types of quality requirements. The
preparation phase results in a table containing all types of quality requirements
to be considered. We compare each two types of quality requirements regarding
potential conflicts. If there might be conflicts between two quality requirements,
we enter a cross in the cell where the two quality requirements cross, otherwise a
minus. For example, no interactions between a confidentiality requirement and an
integrity requirement are expected. Therefore, the cell crossing these two require-
ment types in the table contains a minus. In contrast, a confidentiality requirement
might be in conflict with a performance requirement. Therefore, the correspond-
ing cell contains a cross. Table 7.7 shows possible interactions among security
(confidentiality, integrity, authenticity)1 and performance requirements in general.

Table 7.7: Possible interactions among types of quality requirements in general

Confidentiality Integrity Authenticity Performance
Confidentiality - - x x
Integrity - - - x
Authenticity x - - x
Performance x x x x

1 Table 7.7 illustrates only those quality requirements that are considered in the specification of
the smart grid case study

212 7 Phase 4: Requirements Interaction Analysis

Interactions among quality requirements of different types can occur either be-
tween quality requirements related to the same functional requirement or among
those related to different functional requirements. We classify quality requirements
and their relations to the functional requirements into four cases, see Table 7.8.
Case one arises when two quality requirements of the same type are considered
that are related to the same functional requirement. The second case is concerned
with considering two quality requirements of different types that are related to the
same functional requirement. Case three occurs when two quality requirements
which are of the same type, but related to different functional requirements, must
be achieved in parallel. In the fourth case, two quality requirements which are of
different types and related to different functional requirements must be achieved
in parallel. We treat each case in a separate phase in the QuaRO method. The
classification is presented in Table 7.8. The abbreviations FR and QR stand for
“Functional Requirement” and “Quality Requirement”, respectively.

Table 7.8: Classification table

Case FR, type of QR Condition Row in QR table QuaRO
phase

Case 1 same FR, same type of QR - rows related to same FR in same
QR table

Phase 1

Case 2 same FR, different types of QR - rows related to same FR in different
QR tables

Phase 2

Case 3 different FR, same type of QR in parallel rows related to different FR in same
QR table

Phase 3

Case 4 different FR, different types of QR in parallel rows related to different FR in dif-
ferent QR tables

Phase 4

The general principle of the QuaRO method for detecting interactions among
requirements is using the structure of problem diagrams to identify the domains
where quality requirements might interact. Such domains are trade-off points.
When the state of a domain can be changed by one or more sub-machines at the
same time, their related quality requirements might be in conflict. We express this
situation in the problem diagrams by dependencies that constrain such domains.
Therefore, to detect interactions we set up tables where the columns contain infor-
mation about quality-relevant domains (possible trade-off points) from the prob-
lem diagrams, and the rows contain information about quality requirements under
consideration. We enter crosses in the cells, whenever the state of a domain can
be changed for the achievement of the corresponding quality requirement. In the
following, we describe the method and its application to the smart grid case study
in more detail.

7.3 Method for Quality Requirements Interaction Detection 213

Note that according to the design decisions that we made in Phase 2 of our
framework (see Architectural Pattern Selection in Chapter 5), we observed that
some quality requirements are already fulfilled. Therefore, there is no need for
further consideration of these requirements (see Section 4.3 on page 124 for rea-
soning). These quality requirements include security requirements R6, R7, R8, R9,
and R16 and performance requirements R20 and R21. We consider these require-
ments as fulfilled and, therefore, do not consider them by the application of the
QuaRO method to the smart grid case study.

Initialization Phase - Initial Setup

In this phase, we make use of the structure of the problem diagrams and domain
knowledge regarding quality requirements (see input in Fig. 7.10) to set up the
initial QR tables. These tables are used for the identification of interactions among
quality requirements in later phases. Furthermore, we set up life-cycle expressions
that represent the order in which the requirements must be achieved.

Step 1 - Set up Initial Tables

For each type of quality requirement, we identify which domains are constrained
by it. This results in initial QR tables, where the columns contain information
about quality-relevant domains from the problem diagrams, and the rows contain
information about quality requirements under consideration. We enter a cross in
each cell when a domain – given by the column – is relevant for the quality re-
quirement under consideration – given by the row. For each type of quality re-
quirement, we set up such a table. The second column in each table names the
functional requirement related to the quality requirement given in the first column.

When we deal with performance, we need domain knowledge that is necessary
to achieve performance requirements. In Chapter 6, we treated eliciting, modeling,
and using of quality-specific domain knowledge such as performance-specific and
security-specific domain knowledge. We described that performance is concerned
with the workload of the system and the available resources to process the work-
load. We showed how to model the workload and the resources using the MARTE
profile (see Section 6.2 on page 177 and Section 6.3 on page 186).

Having elicited and modeled the performance-specific domain knowledge, one
is now able to set up the initial performance table. In this table, similarly to
other initial QR tables, columns contain information about quality-relevant do-

214 7 Phase 4: Requirements Interaction Analysis

mains from problem diagrams (resources in case of performance requirements),
and rows contain information about quality requirements under consideration. Ta-
ble 7.9 presents the initial performance table.

Table 7.9: Initial Performance Table

QR Related FR LMN WAN HAN SmartMeter CPU
R18 R1 x x x
R19 R1 x x x
R22 R2R3 x
R23 R2R3 x
R24 R4 x x
R25 R5 x x

In Chapter 6 in Section 6.2 (see page 177), we argued that resources have to be
modeled for security requirements as well. The reason is that the achievement of
security requirements requires additional resources that affect the achievement of
performance requirements negatively. For example, we have to consider CPU as a
domain whenever we want to detect interactions among performance and security
requirements. The reason is that CPU time is consumed for the achievement of
security requirements. Eliciting and modeling resources allows us to set up initial
security tables. Initial tables for integrity, authenticity, and confidentiality for our
example are given in Table 7.10, Table 7.11, and Table 7.12.

Table 7.10: Initial Integrity Table

QR Related FR LMN WAN HAN CPU
R10 R4 x x
R13 R5 x x

Table 7.11: Initial Authenticity Table

QR Related FR LMN WAN HAN CPU
R12 R4 x x
R15 R5 x x

7.3 Method for Quality Requirements Interaction Detection 215

Table 7.12: Initial Confidentiality Table

QR Related FR LMN MeterData TemporaryStorage WAN HAN CPU
R11 R4 x x
R14 R5 x x

Step 2 - Set up Life-cycle

In this step, we set up the life-cycle to describe the relations between the functional
requirements of the corresponding subproblems to be achieved to solve the overall
problem. The following expression represents the life-cycle for our example:

LC = ((R1; R2R3) ; (R4 || R5))∗

At first, the machine of requirement R1 is executed in LC. That means the meter
data are obtained from the smart meter and stored temporarily. Then, the machine
for the requirement R2R3 is executed which processes the temporary stored meter
data and stores them persistently. The machines of the requirements R4 and R5 are
executed concurrently after the execution of the machines for R1 and R2R3. The
whole life-cycle can be repeated an arbitrary number of times.

Phase 1 - Treating Case 1

In this phase, we compare the rows in each table to identify potential conflicts
among quality requirements concerning the first case of Table 7.8. The aim is to
detect conflicts among the same type of quality requirements that are related to the
same functional requirement. To deal with this case of requirements conflicts, we
consider each table separately.

Step 1 - Eliminating Irrelevant Tables

To eliminate irrelevant tables, we make use of the initial interaction table (Ta-
ble 7.7) we set up before. According to this table, interactions among quality re-
quirements of the same type can only happen when considering two performance
requirements. Therefore, we mark Table 7.10, Table 7.11, and Table 7.12 as irrele-

216 7 Phase 4: Requirements Interaction Analysis

vant for requirements interaction and continue only with Table 7.9 for the treatment
of the first case.

Step 2 - Eliminating Irrelevant Rows

In each table under consideration, we perform a pairwise comparison between
quality requirements related to the same functional requirement. We check if such
quality requirements constrain the same domains (contain crosses in the same
columns). We consider the rows related to such quality requirements as relevant
and remove the irrelevant rows from Table 7.9. Doing so, we obtain Table 7.13.
We also removed the columns WAN and HAN, because they did not contain any
entry after removing irrelevant rows.

Table 7.13: Phase 1, Step 2: reduced performance table

QR Related FR LMN SmartMeter CPU
R18 R1 x x x
R19 R1 x x x
R22 R2R3 x
R23 R2R3 x

Step 3 - Detecting Interaction Candidates

Considering the new performance table from the previous step, we look at each
two rows sharing the same functional requirement. We determine that the require-
ments R18 and R19 share the same domains LMN, SmartMeter, and CPU. Further,
the requirements R22 and R23 share the same domain CPU. We identify these re-
quirements as candidates for requirement interactions. Table 7.15 summarizes all
detected interaction candidates.

Phase 2 - Treating Case 2

This phase is concerned with the second case of Table 7.8, dealing with possible
conflicts among different types of quality requirements related to the same func-

7.3 Method for Quality Requirements Interaction Detection 217

tional requirement. Hence, we compare quality requirements related to the same
functional requirement in each two tables to identify potential conflicts.

Step 1 - Eliminating Irrelevant Tables

To eliminate irrelevant tables, we make use of the initial interaction table (Ta-
ble 7.7) to determine which two tables should be compared with each other. For
our example, we can reduce the number of table comparisons to four: Table 7.10
and Table 7.9, Table 7.12 and Table 7.11, Table 7.12 and Table 7.9, Table 7.11 and
Table 7.9.

Note that in each phase we have to consider the initial QR tables such as Ta-
ble 7.9, and not the new reduced tables such as Table 7.13. The reason is that in
each phase we eliminate different rows from the initial QR tables according to
Table 7.8.

Step 2 - Detecting Interaction Candidates

To identify interactions among quality requirements related to the same functional
requirement, we have to look in different tables at the rows with the same related
functional requirement and check if the same domains (columns) contain crosses.
Such requirements are candidates for interactions.

This is mostly the case for performance and security requirements. The reason
is that solutions for achieving security requirements are time-consuming and this
is at the expense of performance. As an example, we describe how we compare
Table 7.9 and Table 7.10 . We consider the rows related to the same functional
requirement. The rows related to the functional requirement R4 contain entries in
the columns WAN and CPU. This implies that we might have a conflict between
the integrity requirement R10 and the performance requirement R24. Comparing
each further two rows results in the following potential conflict: R13 with R25.
Table 7.15 summarizes all detected interaction candidates.

Phase 3 - Treating Case 3

In this phase, we deal with case three of Table 7.8, i.e., we consider different func-
tional requirements complemented with the same type of quality requirement. Ta-
ble 7.7 enables us to eliminate irrelevant tables. Additionally, we make use of

218 7 Phase 4: Requirements Interaction Analysis

the information contained in the life-cycle expression regarding the concurrent
achievement of requirements.

Step 1 - Eliminating Irrelevant Tables

According to Table 7.8, we have to consider each table separately. According to
Table 7.7, no interactions will occur among different integrity, confidentiality, and
authenticity requirements. Hence, we mark Table 7.10, Table 7.11, and Table 7.12
as irrelevant. The only types of quality requirements to be considered are perfor-
mance requirements as given in Table 7.9.

Step 2 - Eliminating Irrelevant Rows

In each table under consideration, we perform a pairwise comparison between the
rows. According to Table 7.8, interactions can only arise when quality require-
ments must be satisfied in parallel. We make use of the life-cycle expression to
identify requirements that must be achieved in parallel.

According to the life-cycle, we can eliminate the rows for the requirements R18,
R19, R22, and R23 in Table 7.9. The reason is that the machines for the require-
ments R1 and R2R3 are executed sequentially. The sequential composition of the
requirements R1 and R2R3 is executed sequentially with the parallel composition
of R4 and R5. The reduced table is given in Table 7.14.

Table 7.14: Phase 3, Step 2: reduced performance table

QR Related FR LMN WAN HAN SmartMeter CPU
R24 R4 x x
R25 R5 x x

Step 3 - Detecting Interaction Candidates

In this step, we check if the requirements with parallel satisfaction contain entries
in the same column. We see in Table 7.14 that both requirements R4 and R5 con-
cern the same domain CPU. Therefore, we identify R24 and R25 as interaction
candidates as given in Table 7.15.

7.3 Method for Quality Requirements Interaction Detection 219

Phase 4 - Treating Case 4

This phase is concerned with case four of Table 7.8, i.e., different functional re-
quirements complemented with different types of quality requirements. Table 7.7
enables us to eliminate irrelevant tables. Additionally, we take the life-cycle ex-
pression into account to reduce the number of comparisons within each table.

Step 1 - Eliminating Irrelevant Tables

According to Table 7.7, we can reduce the number of table comparisons to three:
Table 7.10 and Table 7.9, Table 7.12 and Table 7.9, Table 7.11 and Table 7.9.

Step 2 - Eliminating Irrelevant Rows

According to the life-cycle, we can reduce the rows for the requirements R18, R19,
22, and R23 in Table 7.9 (see the reasoning in Phase 3, Step 2) and we obtain the
same table as shown in Table 7.14.

Step 3 - Detecting Interaction Candidates

According to Table 7.7 and the results obtained from the previous steps, we only
have to compare the rows in the following three tables: Table 7.10 and Table 7.14,
Table 7.12 and Table 7.14, Table 7.11 and Table 7.14.

We obtain interaction candidates between the integrity and performance re-
quirements, confidentiality and performance requirements, as well as authenticity
and performance requirements. Table 7.15 presents the overall result of applying
the QuaRO method.

Discussion of the results

At this point, we have to check if we can reduce the number of interaction candi-
dates. Looking at the result, we see that most interactions might be among perfor-
mance and security requirements and among different performance requirements.
Additionally, we identified two pairs of interaction candidates among authenticity
and confidentiality requirements (Table 7.15, Phase 2). We figure out that the in-
teraction depends on the order of applying confidentiality and authenticity solution

220 7 Phase 4: Requirements Interaction Analysis

Table 7.15: Candidates of requirements interactions

QuaRO phase Comparison between tables Interaction candidates
Phase 1 Table 7.9 with itself R18 and R19, R22 and R23
Phase 2 Table 7.9 with Table 7.10 R10 and R24, R13 and R25

Table 7.11 with Table 7.12 R11 and R12, R14 and R15,
Table 7.9 with Table 7.11 R12 and R24, R15 and R25
Table 7.12 with Table 7.9 R11 and R24, R14 and R25,

Phase 3 Table 7.14 with itself R24 and R25
Phase 4 Table 7.10 with Table 7.14 R10 and R25, R13 and R24

Table 7.12 with Table 7.14 R11 and R25, R14 and R24
Table 7.11 with Table 7.14 R12 and R25, R15 and R24

mechanisms. If we sign the data first and then encrypt it, we can achieve both con-
fidentiality and authenticity. The other way around, if we encrypted the data first
and then signed it, the confidentiality and authenticity requirements would interact
with each other. Under this condition, we can exclude interactions among require-
ment pairs R11 and R12, R14 and R15 (crossed out in Table 7.15). Of course, we
have to document this condition for the design and implementation phases. All
other candidates have to be taken into account for further considerations.

7.4 Method for Performance Requirements Analysis

In this section, we present our method for problem-oriented performance require-
ments analysis (PoPeRA) visualized in Fig. 7.11. Our method is concerned with
identifying performance-specific resources, their capacity and utilization, resource
usage and resource sharing, and the location of performance problems.

In the previous section (see Section 7.3), we detected a number of potentially
conflicting quality requirements. PoPeRA supports the requirements engineer in re-
ducing the number of those potential conflicts before applying strategies to resolve
the conflicts. To this end, the PoPeRA method focuses on identifying potential bot-
tlenecks that might lead to performance deficiencies.

The general idea of PoPeRA is based on identifying the resources that might
be used as shared resources between various subproblems and the workload for
each subproblem (Step 1) as well as identifying the security related issues for
each subproblem (Step 2). This information allows us to qualitatively estimate
whether the modeled performance requirements can be achieved and, if not, where
potential performance bottlenecks are located (Step 3). With regard to the identified

7.4 Method for Performance Requirements Analysis 221

bottlenecks, the number of potential requirement conflicts is reduced (Step 4). In
the following, we describe the steps of our method in more detail.

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

 Problem
Diagrams

Step 1:
Performance-critical

DK Identification

Step 2:
Security-critical
DK Identification

Step 3:
Potential Performance
Problem Identification

Potential
Bottlenecks

Step 4:
Performance-based

Pruning

Security-
critical
Requirements

Reduced Set
of Conflicting
Requirements

Conflicting
Quality
Requirements

Performance
Domain
Knowledge

Performance-
critical
Resources

Security
Domain
Knowledge

Fig. 7.11: Overview of the PoPeRA method

Step 1 - Performance-critical DK Identification

As described in Chapter 6, performance is concerned with the workload of the
system and the available resources to process the workload [44]. Capacity of the
resources and the workload are modeled as performance domain knowledge (DK)
in Chapter 6.

The goal of this step is to identify whether the available resources are able to
master the workload of the system. If the inbound requests exceed the processing
capacity of a resource, the resource will be in contention which causes delays for
some requests and subsequently to not achieving the performance requirements.
Typically, such resources are referred to as bottlenecks. Identifying the location of
these bottlenecks is critical for the performance of a system. Hence, in this step we
check the resources for their processing capacity and their workload.

Application of Step 1 - Performance-critical DK Identification

In Chapter 6 in Section 6.3 (see page 186), we explained detailed how we obtained
the performance domain knowledge. Hence, we refer to this chapter for detailed

222 7 Phase 4: Requirements Interaction Analysis

information. Table 7.16 - Table 7.19 show the performance domain knowledge for
the performance requirements R18 and R19, R22 and R23, R24, and R25.

Table 7.16 shows the performance domain knowledge for requirements R18
and R19. The number 74 is an estimated value based on the number of concurrent
users as authorized external entities which are 50 electricity providers maximum
and the number of concurrent users as consumers in premises with 8 menages and
3 devices per menage (24 in total). We have to make this assumption as there is
no information regarding the number of concurrent users in the Protection Pro-
file [155] and Open Meter [200] documents. The assumption is partially based on
the existing literature 2 [87].

“Data size” of meter readings to be transmitted to the gateway can be between
1 KB and 16 MB [87]. It varies according to the period of time, in which meter
data has to be sent to authorized external entities. It amounts to 1 KB by immediate
sending of meter data after reading and 16 MB by sending meter data every two
hours. This would be between 40 KB and 640 MB for 40 smart meters. We set 640
MB as value for “data size”. As it is not further specified in the documents under
consideration, we take the worst case.

A “CPU” with one core and a speed of 470 MHz can be used. This describes the
specification of the “ARM 9 processors” 3 which is used in the smart meters. LMN
is the “network” through which meter readings are transferred between the smart
meter the machine ReceiveMeterData. It has a bandwidth of 250 Kb/s minimum.

Values in other tables (Table 7.17 - Table 7.19) are captured in a similar way.

Step 2 - Security-critical DK Identification

Achieving security requirements requires additional resources such as CPU and is
time consuming, which is both at the expense of performance. Hence, by analyzing
performance problems, security requirements and their satisfaction should be taken
into account. In this step, we identify those subproblems which contain security
requirements.

Additionally, in those identified subproblems we check the related security do-
main knowledge, which is expressed by the attacker and its characteristics as de-
scribed in Chapter 6. The kind of the attacker and its characteristics such as the
time needed for an attack, its equipment, and its knowledge affect the selection
of security mechanisms for satisfying the related security requirements. For ex-

2 http://www.strom-pfadfinder.de/stromanbieter/
3 http://www.arm.com/markets/embedded/smart-meter.php

7.4 Method for Performance Requirements Analysis 223

Table 7.16: Performance domain knowledge for R18, R19

Quality: Performance, Requirement: R18, R19
Domain Knowledge Template Mapping to MARTE

Domain Knowledge Description Possible Values Value Property
For Problem Diagram ReceiveMeterData

Number of concurrent users Natural 74 GaWorkloadEvent. pat-
tern. population

Arrival pattern ArrivalPattern closed GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) 640

MB
GaStep. msgSize

For the domain ReceiveMeterData
Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize

latency Duration (s, ms, min,hr, day) - HwMemory. timing
Network - bandwidth DataRate (b/s, Kb/s, Mb/s) - HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU No speed Frequency (Hz, kHz, MHz, GHz) 470

MHz
HwProcessor. frequency

Number of cores Natural 1 HwProcessor. nbCores
For the domain LMN

Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize
latency Duration (s, ms, min,hr, day) - HwMemory. timing

Network Yesbandwidth DataRate (b/s, Kb/s, Mb/s) 250
Kb/s

HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU - speed Frequency (Hz, kHz, MHz, GHz) - HwProcessor. frequency

Number of cores Natural - HwProcessor. nbCores

Table 7.17: Performance domain knowledge for R22, R23

Quality: Performance, Requirement: R22, R23
Domain Knowledge Template Mapping to MARTE

Domain Knowledge Description Possible Values Value Property
For Problem Diagram ProcessStoreMD

Number of concurrent users Natural 74 GaWorkloadEvent. pat-
tern. population

Arrival pattern ArrivalPattern closed GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) 640

MB
GaStep. msgSize

For the domain ProcessStoreMD
Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize

latency Duration (s, ms, min,hr, day) - HwMemory. timing
Network - bandwidth DataRate (b/s, Kb/s, Mb/s) - HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU No speed Frequency (Hz, kHz, MHz, GHz) 470

MHz
HwProcessor. frequency

Number of cores Natural 1 HwProcessor. nbCores

224 7 Phase 4: Requirements Interaction Analysis

Table 7.18: Performance domain knowledge for R24

Quality: Performance, Requirement: R24
Domain Knowledge Template Mapping to MARTE

Domain Knowledge Description Possible Values Value Property
For Problem Diagram SubmitMeterData

Number of concurrent users Natural 50 GaWorkloadEvent. pat-
tern. population

Arrival pattern ArrivalPattern closed GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) 640

MB
GaStep. msgSize

For the domain SubmitMD
Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize

latency Duration (s, ms, min,hr, day) - HwMemory. timing
Network - bandwidth DataRate (b/s, Kb/s, Mb/s) - HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU No speed Frequency (Hz, kHz, MHz, GHz) 470

MHz
HwProcessor. frequency

Number of cores Natural 1 HwProcessor. nbCores
For the domain WAN

Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize
latency Duration (s, ms, min,hr, day) - HwMemory. timing

Network Yesbandwidth DataRate (b/s, Kb/s, Mb/s) 2.4
Kb/s

HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU - speed Frequency (Hz, kHz, MHz, GHz) - HwProcessor. frequency

Number of cores Natural - HwProcessor. nbCores

ample, to defend against a layman attacker with standard equipment and only one
day preparation and attack time, there is no need for strong security mechanisms
that affect the satisfaction of performance requirements negatively. Therefore, in
addition to the security requirements annotated in each problem diagram, we need
the related security domain knowledge in order to be able to estimate the strength
of the security solution to achieve the related security requirements.

Application of Step 2 - Security-critical DK Identification

For the smart grid case study, we check the problem diagrams for related security
requirements:

R1 For the smart grid case study, we decided for a One Box Solution which in-
cludes the Smart Meter and the Smart Meter Gateway in one physical device.
It has the advantage that the communication between the Smart Meter and the
Smart Meter Gateway is physically protected (see Section 5.6 on page 161).

7.4 Method for Performance Requirements Analysis 225

Table 7.19: Performance domain knowledge for R25

Quality: Performance, Requirement: R25
Domain Knowledge Template Mapping to MARTE

Domain Knowledge Description Possible Values Value Property
For Problem Diagram PublishConsumerInfo

Number of concurrent users Natural 24 GaWorkloadEvent. pat-
tern. population

Arrival pattern ArrivalPattern closed GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) 100

KB
GaStep. msgSize

For the domain PublishConsumerInfo
Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize

latency Duration (s, ms, min,hr, day) - HwMemory. timing
Network - bandwidth DataRate (b/s, Kb/s, Mb/s) - HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU No speed Frequency (Hz, kHz, MHz, GHz) 470

MHz
HwProcessor. frequency

Number of cores Natural 1 HwProcessor. nbCores
For the domain HAN

Memory - capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize
latency Duration (s, ms, min,hr, day) - HwMemory. timing

Network Yesbandwidth DataRate (b/s, Kb/s, Mb/s) 250
Kb/s

HwMedia. bandWidth

latency Duration (s, ms, min,hr, day) - HwMedia. packetTime
CPU - speed Frequency (Hz, kHz, MHz, GHz) - HwProcessor. frequency

Number of cores Natural - HwProcessor. nbCores

Hence, the security requirements R6, R7, and R8 related to the functional re-
quirement R1 are considered as fulfilled without applying additional security
mechanisms and excluded from further consideration. The security requirement
R16 is considered as satisfied as well, due to the same reason. Hence, there is
no security requirement related to R1 to be considered for this step.

R2R3 We decided for merging the subproblems for the requirements R2 and R3
(see Section 5.6 on page 161). We have to merge their related quality require-
ments as well. There is no security requirement for the functional requirement
R2. The confidentiality requirement R9 related to the functional requirement
R3 is already satisfied due to the same reasons as for the confidentiality re-
quirement R16. Hence, there is no security requirement related to R2R3 to be
considered for this step.

R4 The security requirements R10, R11, and R12 are related to the functional
requirement R4 and, therefore, have to be considered for this step.

R5 The security requirements R13, R14, and R15 are related to the functional
requirement R5 and, therefore, have to be considered for this step.

226 7 Phase 4: Requirements Interaction Analysis

Now, we consider the related security domain knowledge. In Chapter 6, we
proposed templates for eliciting and documenting security domain knowledge. We
identified one network attacker (WAN attacker4) for the three security require-
ments R10, R11, and R12. The reason is that the MeterData to be transmitted
through the network WAN can be manipulated by the WAN attacker. According
to [155], the WAN attacker, which is located in the WAN, tries to compromise the
confidentiality and/or integrity of the MeterData transmitted via the WAN. It can
also try to conquer a component of the infrastructure (i.e. SmartMeter or Gate-
way) via the WAN in order to cause damage to the component itself (e.g. by send-
ing forged MeterData to an external entity). The WAN attacker is characterized
according to Table 7.20.

Table 7.20: Security domain knowledge for the requirements R10, R11, and R12

Quality: Security, Requirement: R10, R11, R12
Domain Knowledge Template Mapping to profile

Domain Knowledge
Description

Possible Values Value Property (Dependability profile)

Preparation time one day, one week, two weeks, . . . more than
six months

Attacker.preparationTime

Attack time one day, one week, two weeks, . . . more than
six months

Attacker.attackTime

Specialist expertise laymen, proficient, expert, . . . multiple
experts

Attacker.specialistExpertise

Knowledge of the TOE public, restricted, sensitive, critical public Attacker.knowledge
Window of opportu-
nity

unnecessary/unlimited, easy, . . . difficult Attacker.opportunity

IT hardware/software
or other equipment

standard, specialized, bespoke, . . . multiple
bespoke

Attacker.equipment

We identified one local attacker for the three security requirements R13, R14,
and R15. The reason is that the MeterData to be transmitted through the network
HAN can be manipulated by a local attacker. The network HAN is an in-house data
communication network that is responsible for interconnecting domestic equip-
ment. It covers a moderately sized geographical area within the premises of the
consumer [155]. According to [155], the local attacker has less motivation than
the WAN attacker as a successful attack of a local attacker will always only impact
one Gateway. In addition, as this network is not a public one, our assumption is
that it cannot be attacked as severely as the WAN. The attacker for the requirements
R13, R14, and R15 is characterized as shown in Table 7.21.

4 The network attacker is a WAN attacker as the meter data corresponding to the requirements
R10, R11, and R12 are transmitted through a WAN.

7.4 Method for Performance Requirements Analysis 227

Table 7.21: Security domain knowledge for the requirements R13, R14, and R15

Quality: Security, Requirement: R13, R14, R15
Domain Knowledge Template Mapping to profile

Domain Knowledge
Description

Possible Values Value Property (Dependability profile)

Preparation time one day, one week, two weeks, . . . two weeks Attacker.preparationTime
Attack time one day, one week, two weeks, . . . two weeks Attacker.attackTime
Specialist expertise laymen, proficient, expert, . . . proficient Attacker.specialistExpertise
Knowledge of the TOE public, restricted, sensitive, critical public Attacker.knowledge
Window of opportu-
nity

unnecessary/unlimited, easy, . . . difficult Attacker.opportunity

IT hardware/software
or other equipment

standard, specialized, bespoke, . . . specialized Attacker.equipment

Step 3 - Potential Performance Problem Identification

This step has to be supported by a performance analyst to analyze whether the
processing capacity of existing resources (output of Step 1) suffices to satisfy per-
formance requirements for each subproblem with regard to the existing workload
(output of Step 1) and existing security issues (output of Step 2).

As a result of this step, those resources, in which the inbound requests might
exceed the processing capacity of the resource, are identified. That is, from the
set of performance-critical resources we indicate those resources whose problem
diagrams exhibit a high usage. We mark such resources as bottlenecks using the
stereotype�bottleneck�.

Application of Step 3 - Potential Performance Problem Identification

We go through the subproblems for the requirements R1, R2R3, R4, and R5 and
analyze the outputs of Step 1 and Step 2 with regard to the performance require-
ments. The result of this step is used in the next step for reducing the potential
requirement conflicts.

Subproblem ReceiveMeterData related to R1:

Workload From the results of Step 1, we obtain that the related subproblem
for the requirement R1 exhibits a higher workload than the workload for the
requirements R4 and R5 (see number of concurrent users in Table 7.16). The

228 7 Phase 4: Requirements Interaction Analysis

reason is that in a worst case the consumers as well as the authorized external
entities can request the submitting meter data as well as publishing consumer
info at the same time. In such a case the machine related to the requirement R1
has to obtain meter data from the smart meter for all the requests at the same
time. Therefore, it must deal with a higher workload than the other require-
ments. The same holds for the machine related to the requirement R2R3. Also,
a high amount of data has to be transferred through the LMN (see 640 MB for
Data size in Table 7.16).

Resource From the results of Step 1, we identify two resources CPU and LMN
related to the subproblem RcceiveMeterData (see Table 7.16). The network do-
main HAN exhibits a bandwidth of 250 Kb/s, which is much higher than 2.4
Kb/s (in comparison with the bandwidth of WAN related to R4). Therefore, the
network resource HAN is no bottleneck for transmitting MeterData.

Security DK According to the results of Step 2, for the subproblem ReceiveMe-
terData, there are no security requirements to be considered. Accordingly, there
is no security domain knowledge to be considered. Therefore, the performance
requirements R18 and R19 are not influenced negatively due to the security
issues.

Performance requirement The performance requirement R19 has to be achieved
together with the requirements R23 and R25 in less than 10 seconds.

Our estimation There is a high workload, but an average resource usage, and
no security related issues. Hence, we do not expect a potential performance
problem regarding R19.
For the performance requirement R18 we expect high workload, average re-
source usage, and no security issues. Up to this point, we have the same condi-
tions as for the performance requirement R19. However, R18 has to be achieved
together with the requirements R22 and R24 in less than 5 seconds. Therefore,
a potential performance problem for achieving the requirement R18 might be
expected. Hence, we mark the machine ReceiveMeterData as a bottleneck.

Subproblem processStoreMD related to R2R3:

Workload According to the results of Step 1, for the subproblem Process-
StoreMD related to R2R3, the same workload regarding the number of con-
current users applies as for the subproblem ReceiveMeterData related to R1
(see Table 7.17). Also, a high amount of data has to be processed and stored
(see 640 MB for Data size in Table 7.17).

Resource According to Table 7.17, we identify CPU as the only resource related
to the subproblem ProcessStoreMD.

7.4 Method for Performance Requirements Analysis 229

Security DK As the results of Step 2 for the requirement R2R3, we identify no
security requirements to be considered for performance analysis. Accordingly,
there is no security domain knowledge to be considered. Therefore, the per-
formance requirements R22 and R23 are not influenced negatively due to the
security issues.

Performance requirement The performance requirement R23 has to be achieved
together with the requirements R19 and R25 in less than 10 seconds.

Our estimation There is a high workload, but an average resource usage, and
no security related issues. Hence, we do not expect a potential performance
problem regarding R23.
For the performance requirement R22, we expect high workload, average re-
source usage, and no security issues. Up to this point, we have the same condi-
tions as for the performance requirement R23. However, R22 has to be achieved
together with the requirements R18 and R24 in less than 5 seconds. Therefore,
a potential performance problem for achieving the requirement R22 might be
expected. Hence, we mark the machine ProcessStoreMD as a bottleneck.

Subproblem SubmitMeterData related to R4:

Workload The results of Step 1 for the subproblem SubmitMeterData related to
R4 exhibit a relatively high workload (50 for the number of concurrent users in
Table 7.18). Also, a high amount of data has to be submitted through the WAN
(640 MB for Data size in Table 7.18). This might influence the achievement of
the performance requirement R24 negatively.

Resource According to Table 7.18, CPU and WAN (Network) are considered
as resources related to the subproblem SubmitMeterData. The network domain
WAN exhibits a bandwidth of 2.4 Kb/s, which is not much for the amount of data
to be transmitted (640 MB) to the AuthorizedExternalEntities (in comparison
with HAN for R5). Therefore, WAN might cause a bottleneck.

Security DK According to the results of Step 2, for the subproblem SubmitMe-
terData, there are three security requirements R10, R11, and R12. Table 7.20
shows that we are concerned with an attacker with the highest preparation and
attack time, multiple bespoke equipment, a very high expertise (multiple ex-
perts), etc. For such a case, we should consider a strong security mechanism that
is resource and time consuming accordingly. This might influence the achieve-
ment of the performance requirement R24 negatively.

Performance requirement The performance requirement R24 has to be achieved
together with the requirements R18 and R22 in less than 5 seconds.

230 7 Phase 4: Requirements Interaction Analysis

Our estimation According to the high workload, the high resource usage, and
the required security mechanisms, we identify a potential performance problem
for achieving the requirement R24. Hence, we mark the machine SubmitMeter-
Data as a bottleneck.

Subproblem PublishConsumerInfo related to R5:

Workload The results of Step 1 for the subproblem PublishConsumerInfo re-
lated to R5 exhibit a low workload (24 for the number of concurrent users in
Table 7.19). Also, the amount of data to be submitted through the HAN is not
high in comparison to 640 MB for R4 (100 KB for Data size in Table 7.19).
Therefore, it is unlikely that this workload affects the achievement of the per-
formance requirement R25 negatively.

Resource According to Table 7.19, we identify CPU and HAN as resources re-
lated to the subproblem SubmitMeterData. The network domain HAN exhibits
a bandwidth of 250 Kb/s, which is much higher than 2.4 Kb/s (the bandwidth
for WAN). Therefore, the network resource HAN might not cause a bottleneck
for transmitting MeterData.

Security DK According to the results of Step 2, for the subproblem PublishCon-
sumerInfo, there are three security requirements R13, R14, and R15. Table 7.21
shows that we are concerned with an attacker with a sparse preparation and at-
tack time, specialized equipment, a proficient expertise, etc. For such a case,
there is no need for considering a strong security mechanism (in comparison
to security mechanisms for achieving R10, R11, and R12). Therefore, no nega-
tive impact for achieving the performance requirement R25 regarding security
issues is expected.

Performance requirement The performance requirement R25 has to be achieved
together with the requirements R19 and R23 in less than 10 seconds.

Our estimation According to the low workload, the sparse resource usage, and
the weak security mechanisms, we do not expect a potential performance prob-
lem for achieving the requirement R25.

Step 4 - Performance-based Pruning

The goal of this step is to reduce the number of potential conflicts among quality
requirements. As the input of this step, we take the output of the QuaRO method
(see Section 7.3), namely the potential conflicts among performance and security

7.5 Method for Generating Requirement Alternatives 231

requirements, and the estimation from the previous step into account. For each
pair of conflicting requirements, we check whether we can mark it as irrelevant ac-
cording to the results of the previous step (Step 3: Potential Performance Problem
Identification). The remaining conflicting requirements have to be resolved later
on.

Application of Step 4 - Performance-based Pruning

Table 7.22 shows the output of the QuaRO method. In the previous step, we dis-
cussed that the requirements R19, R23, and R25 can be achieved according to the
related workload, resource usage, and related security requirements. Therefore, we
can exclude the combination of the security requirements R13, R14, and R15 with
the performance requirements R19, R23, and R25. They can be considered as not
conflicting as no strong security mechanisms are required. Therefore, we can mark
the requirement pairs R13 and R25, R14 and R25, and R15 andR25 as not conflict-
ing. Table 7.23 shows the excluded and the remaining conflicting requirements.

Table 7.22: Output of the QuaRO method

QuaRO phase Comparison between tables Interaction candidates
Phase 1 Table 7.9 with itself R18 and R19, R22 and R23
Phase 2 Table 7.9 with Table 7.10 R10 and R24, R13 and R25

Table 7.9 with Table 7.11 R12 and R24, R15 and R25
Table 7.12 with Table 7.9 R11 and R24, R14 and R25,

Phase 3 Table 7.14 with itself R24 and R25
Phase 4 Table 7.10 with Table 7.14 R10 and R25, R13 and R24

Table 7.12 with Table 7.14 R11 and R25, R14 and R24
Table 7.11 with Table 7.14 R12 and R25, R15 and R24

7.5 Method for Generating Requirement Alternatives

In this section, we propose our method for generating alternatives for problematic
quality requirements. Based on the type of requirement we want to generate alter-
natives for, there are different properties, which are candidates to be relaxed. The
qualities addressed by different requirements are very different, and as a result,
so are the properties, which can be used to relax a requirement. But for particular

232 7 Phase 4: Requirements Interaction Analysis

Table 7.23: Output of Step 4

QuaRO phase Comparison between tables Interaction candidates
Phase 1 Table 7.9 with itself R18 and R19, R22 and R23
Phase 2 Table 7.9 with Table 7.10 R10 and R24, R13 and R25

Table 7.9 with Table 7.11 R12 and R24, R15 and R25
Table 7.12 with Table 7.9 R11 and R24, R14 and R25

Phase 3 Table 7.14 with itself R24 and R25
Phase 4 Table 7.10 with Table 7.14 R10 and R25, R13 and R24

Table 7.12 with Table 7.14 R11 and R25, R14 and R24
Table 7.11 with Table 7.14 R12 and R25, R15 and R24

kinds of qualities those properties are the same. Hence, it is possible to define a
property template for a quality, which can be instantiated for a requirement belong-
ing to this quality. The relaxation templates for each type of quality requirements
are presented in the following.

Templates for requirement alternatives

We captured in Chapter 6 the properties for each kind of quality requirements as
domain knowledge and document them in a so-called Domain Knowledge Tem-
plate that has to be instantiated for each specific quality requirement. As we are
concerned with the same properties of quality requirements for generating require-
ment alternatives, we make use of such a template and extend it to document
generated requirement alternatives as well. In the domain knowledge templates,
we captured the following properties: Domain Knowledge Description describing
the quality-relevant property, Possible Values, describing the range of values the
property can take, and Value representing the value of property for the original
requirement.

We extend the domain knowledge template with one column for Upper/Lower
Bound describing the lower or upper bound (depending to the property) each prop-
erty can take when relaxing, and one or more columns for Value Alt representing
the values of the relaxed properties for requirements alternatives. In Tables 7.24
and 7.25, we present the Relaxation Templates for the qualities security and per-
formance before we introduce our method for generating alternatives. We make
use of the relaxation templates while we apply our method to generate and docu-
ment requirement alternatives.

7.5 Method for Generating Requirement Alternatives 233

Table 7.24: Relaxation template for performance

Quality: Performance
Relaxation Template

Domain Knowledge Description Possible Values Value Upper/
Lower
Bound

Value
Alt1

Value
Alt2

For each Problem Diagram
Number of concurrent users Natural

Arrival pattern ArrivalPattern
Data size DataSize (bit, Byte, KB, MB, GB)

For each Causal Domain
Memory capacity DataSize (bit, Byte, KB, MB, GB)

latency Duration (s, ms, min,hr, day)
Network bandwidth DataRate (b/s, Kb/s, Mb/s)

latency Duration (s, ms, min,hr, day)
CPU speed Frequency (Hz, kHz, MHz, GHz)

Number of
cores

Natural

Table 7.25: Relaxation template for security

Quality: Security
Relaxation Template

Domain Knowledge Description Possible Values Value Upper/
Lower
Bound

Value
Alt1

Value
Alt2

Preparation time one day, one week, two weeks, . . .
Attack time one day, one week, two weeks, . . .
Specialist expertise laymen, proficient, expert, . . .
Knowledge of the TOE public, restricted, sensitive, critical
Window of opportunity unnecessary/unlimited, easy, . . .
IT hardware/software or other equipment standard, specialized, bespoke, . . .

In the following, we describe our method to generate alternatives for interacting
requirements. An overview of the steps of this method is shown in Fig. 7.12.

Step 1 - Select pair of conflicting requirements

As the input for the generation of requirement alternatives we select pairs of pos-
sibly conflicting quality requirements. We have to analyze each pair for possible
requirement alternatives which resolve or relax the interaction.

234 7 Phase 4: Requirements Interaction Analysis
pr

oc
es

s
ex

te
rn

al
in

pu
t

ou
tp

ut
in

pu
t /

Step 1:
Select pair of

conflicting requirements

Pairs of
conflicting
requirements

Pair of
conflicting
requirements

Step 2:
Select first/second

requirement

Step 3:
Identify relaxation

property candidates

Step 4:
Identify upper/lower

relaxation bound

Step 5:
Generate requirement

alternatives

Quality
requirement

Relaxation
property
templates

Relaxation
property
candidates

Bounded
relaxation
property
candidates

Generated
requirement
alternatives

Fig. 7.12: Method for generating alternatives for interacting requirements

Application of Step 1 - Select pair of conflicting requirements

For our example, we make use of Table 7.26, the output of the PoPeRA method
(see Section 7.4), which serves as the input for this step. We go through the pairs
of possibly conflicting requirements and apply the method step by step to them.

Table 7.26: Input for Requirement Alternative Generation

QuaRO phase Comparison between tables Interaction candidates
Phase 1 Table 7.9 with itself R18 and R19, R22 and R23
Phase 2 Table 7.9 with Table 7.10 R10 and R24

Table 7.9 with Table 7.11 R12 and R24
Table 7.12 with Table 7.9 R11 and R24

Phase 3 Table 7.14 with itself R24 and R25
Phase 4 Table 7.10 with Table 7.14 R10 and R25, R13 and R24

Table 7.12 with Table 7.14 R11 and R25, R14 and R24
Table 7.11 with Table 7.14 R12 and R25, R15 and R24

Step 2 - Select first/second requirement

In this step, we have to check each of the two requirements for possibilities to
resolve the interaction. Hence, we have to execute the next steps for both require-
ments. Both requirements provide the possibility to be relaxed in order to resolve
the interaction.

7.5 Method for Generating Requirement Alternatives 235

In Chapter 6, we filled the column “value” of the Domain Knowledge Tem-
plates for all the requirements under consideration. For the Relaxation Templates
(see Tables 7.24 and 7.25), the column “value” remains the same. We have to fill
the column Upper/ Lower Bound and the columns Value Alt for the selected re-
quirement in the next steps.

Application of Step 2 - Select first/second requirement

For our smart grid case study, we aim at generating different alternatives for each
requirement in such a way that we have at the end different software architecture
candidates with different levels of satisfaction for security and performance.

We decide on generating three different architecture alternatives. For example,
we derive one architecture candidate which treats the desired security requirements
with a higher priority, one architecture candidate with the best fulfilled perfor-
mance requirements, and one architecture candidate which provides a compro-
mise of performance and security requirements. The architecture alternative with
the best fulfilled performance requirements should satisfy the initial performance
requirements and the security requirements alternatives which are weaker than the
initial security requirements R10-R15. Analogously, for the architecture alterna-
tive with the best fulfilled security requirements, we make use of performance re-
quirement alternatives which are weaker than the initial performance requirements
R18-R25 and the initial security requirements. To this end, in this step we need to
provide alternatives for all conflicting performance and security requirements to
be used in different architecture alternatives.

Tables 7.27 and 7.28 show the relaxation templates for security for the require-
ments R10, R11, R12, R13, R14, and R15. The relaxation templates for perfor-
mance for the requirements R18, R19, R22, R23, R24, and R25 are given in Ta-
ble 7.29 - Table 7.32. The templates are already filled in. We describe in the next
steps which parts of the templates have to be filled in which step and how.

Step 3 - Identify relaxation property candidates

Based on the type of requirement, there are different properties, which are can-
didates to be relaxed. These candidates are fixed for each kind of requirement.
Hence, we can use predefined templates to identify these properties. For each prop-
erty the actual value regarding the interacting requirement has to be stated. Next,
it has to be decided if this value for the property is a hard constraint, which cannot

236 7 Phase 4: Requirements Interaction Analysis

Table 7.27: Relaxation template for security requirements R10, R11, R12

Quality: Security, Requirements: R10, R11, R12
Relaxation Template

Domain Knowledge Descrip-
tion

Possible Values Value Upper/
Lower
Bound

Value
Alt1

Value
Alt2

Preparation time one day, one week, two weeks,
. . .

more
than six
months

one month one month three
months

Attack time one day, one week, two weeks,
. . .

more
than six
months

one month one month three
months

Specialist expertise laymen, proficient, expert, . . . multiple
experts

proficient proficient expert

Knowledge of the ToE public, restricted, sensitive,
critical

public public public public

Window of opportunity unnecessary/unlimited, easy,
. . .

difficult difficult difficult difficult

IT hardware/software or other
equipment

standard, specialized, bespoke,
. . .

multiple
bespoke

specialized specialized bespoke

Table 7.28: Relaxation template for security requirements R13, R14, R15

Quality: Security, Requirements: R13, R14, R15
Relaxation Template

Domain Knowledge Descrip-
tion

Possible Values Value Upper/
Lower
Bound

Value
Alt1

Value
Alt2

Preparation time one day, one week, two weeks,
. . .

two
weeks

one day one day one week

Attack time one day, one week, two weeks,
. . .

two
weeks

one day one day one week

Specialist expertise laymen, proficient, expert, . . . expert laymen laymen proficient
Knowledge of the ToE public, restricted, sensitive,

critical
public public public public

Window of opportunity unnecessary/unlimited, easy,
. . .

difficult difficult difficult difficult

IT hardware/software or other
equipment

standard, specialized, bespoke,
. . .

bespoke standard standard specialized

be changed, or a soft constraint, which might be relaxed. In the second case, we
identified a relaxation candidate.

7.5 Method for Generating Requirement Alternatives 237

Table 7.29: Relaxation template for performance requirements R18, R19

Quality: Performance, Requirements: R18, R19
Relaxation Template

Domain Knowledge Description Possible Values Value Upper/
Lower
Bound

Value Alt1 Value Alt2

For Problem Diagram ReceiveMeterData
Number of concurrent users Natural 74 9 9 36

Arrival pattern ArrivalPattern closed closed closed closed
Data size DataSize (bit,

Byte, KB, MB,
GB)

640 MB 50 KB 50 KB 1 MB

For Domain ReceiveMeterData
Memory - capacity DataSize (bit,

Byte, KB, MB,
GB)

Fixed Fixed Fixed Fixed

latency Duration (s, ms,
min,hr, day)

Fixed Fixed Fixed Fixed

Network - bandwidth DataRate (b/s,
Kb/s, Mb/s)

Not relevant Not relevant Not relevant Not relevant

latency Duration (s, ms,
min,hr, day)

Not relevant Not relevant Not relevant Not relevant

CPU No speed Frequency (Hz,
kHz, MHz, GHz)

Fixed Fixed Fixed Fixed

Number of
cores

Natural Fixed Fixed Fixed Fixed

For Domain LMN
Memory - capacity DataSize (bit,

Byte, KB, MB,
GB)

Not relevant Not relevant Not relevant Not relevant

latency Duration (s, ms,
min,hr, day)

Not relevant Not relevant Not relevant Not relevant

Network Yesbandwidth DataRate (b/s,
Kb/s, Mb/s)

250 Kb/s 250 Mb/s 250 Mb/s 10 Mb/s

latency Duration (s, ms,
min,hr, day)

Not known Not known Not known Not known

CPU - speed Frequency (Hz,
kHz, MHz, GHz)

Not relevant Not relevant Not relevant Not relevant

Number of
cores

Natural Not relevant Not relevant Not relevant Not relevant

Application of Step 3 - Identify relaxation property candidates

For the security requirements R10-R15, we figure out that the properties “knowl-
edge of the ToE” and “window of opportunity” are fixed and cannot be relaxed.
The rest of properties can be relaxed to generate alternatives for the requirements
R10-R15. For the performance requirements R18, R19, R22, R23, R24, and R25 the

238 7 Phase 4: Requirements Interaction Analysis

Table 7.30: Relaxation template for performance requirements R22, R23

Quality: Performance, Requirements: R22, R23
Relaxation Template

Domain Knowledge Description Possible Values Value Upper/
Lower
Bound

Value Alt1 Value Alt2

For Problem Diagram ProcessStoreMD
Number of concurrent users Natural 74 9 9 36

Arrival pattern ArrivalPattern Closed Closed Closed Closed
Data size DataSize (bit,

Byte, KB, MB,
GB)

640 MB 50 KB 50 KB 1 MB

For Domain ProcessStoreMD
Memory - capacity DataSize (bit,

Byte, KB, MB,
GB)

Fixed Fixed Fixed Fixed

latency Duration (s, ms,
min,hr, day)

Fixed Fixed Fixed Fixed

Network - bandwidth DataRate (b/s,
Kb/s, Mb/s)

Not relevant Not relevant Not relevant Not relevant

latency Duration (s, ms,
min,hr, day)

Not relevant Not relevant Not relevant Not relevant

CPU - speed Frequency (Hz,
kHz, MHz, GHz)

Fixed Fixed Fixed Fixed

Number of
cores

Natural Fixed Fixed Fixed Fixed

characteristics of memory, namely “Memory capacity” and “Memory latency”, and
the characteristics of processor, namely “CPU speed” and “CPU number of cores”
for the gateway are fixed. The rest of the properties can be used for relaxation, if
they are known and relevant.

Step 4 - Identify upper/lower relaxation bound

For each property, the upper/lower bound which is still acceptable has to be identi-
fied. The upper/lower bounds of all properties form the worst-case scenario, which
is still acceptable for a requirement.

7.5 Method for Generating Requirement Alternatives 239

Table 7.31: Relaxation template for performance requirement R24

Quality: Performance, Requirement: R24
Relaxation Template

Domain Knowledge Description Possible Values Value Upper/
Lower
Bound

Value Alt1 Value Alt2

For Problem Diagram SubmitMeterData
Number of concurrent users Natural 50 1 1 20

Arrival pattern ArrivalPattern Closed Closed Closed Closed
Data size DataSize (bit,

Byte, KB, MB,
GB)

640 MB 40 KB 40 KB 1 MB

For Domain SubmitMD
Memory - capacity DataSize (bit,

Byte, KB, MB,
GB)

Fixed Fixed Fixed Fixed

latency Duration (s, ms,
min,hr, day)

Fixed Fixed Fixed Fixed

Network - bandwidth DataRate (b/s,
Kb/s, Mb/s)

Not relevant Not relevant Not relevant Not relevant

latency Duration (s, ms,
min,hr, day)

Not relevant Not relevant Not relevant Not relevant

CPU No speed Frequency (Hz,
kHz, MHz, GHz)

Fixed Fixed Fixed Fixed

Number of
cores

Natural Fixed Fixed Fixed Fixed

For Domain WAN
Memory - capacity DataSize (bit,

Byte, KB, MB,
GB)

No relevant No relevant No relevant No relevant

latency Duration (s, ms,
min,hr, day)

No relevant No relevant No relevant No relevant

Network Yesbandwidth DataRate (b/s,
Kb/s, Mb/s)

2.4 Kb/s 250 Mb/s 250 Mb/s 10 Mb/s

latency Duration (s, ms,
min,hr, day)

Not known Not known Not known Not known

CPU - speed Frequency (Hz,
kHz, MHz, GHz)

No relevant No relevant No relevant No relevant

Number of
cores

Natural No relevant No relevant No relevant No relevant

Application of Step 4 - Identify upper/lower relaxation bound

To identify “upper/lower bound” for the security requirements R10, R11, and R12,
we have to assume values from the possible values, because we have no informa-
tion about the strength of the WAN attacker. Hence, we assume that the system has
to be protected at least against a WAN attacker who is a “proficient”, has “1 month”

240 7 Phase 4: Requirements Interaction Analysis

Table 7.32: Relaxation template for performance requirement R25

Quality: Performance, Requirement: R25
Relaxation Template

Domain Knowledge Description Possible Values Value Upper/
Lower
Bound

Value Alt1 Value Alt2

For Problem Diagram PublishConsumerInfo
Number of concurrent users Natural 24 8 8 16

Arrival pattern ArrivalPattern Closed Closed Closed Closed
Data size DataSize (bit,

Byte, KB, MB,
GB)

100 KB 10 KB 10 KB 50 KB

For Domain PublishConsumerInfo
Memory - capacity DataSize (bit,

Byte, KB, MB,
GB)

Fixed Fixed Fixed Fixed

latency Duration (s, ms,
min,hr, day)

Fixed Fixed Fixed Fixed

Network - bandwidth DataRate (b/s,
Kb/s, Mb/s)

Not relevant Not relevant Not relevant Not relevant

latency Duration (s, ms,
min,hr, day)

Not relevant Not relevant Not relevant Not relevant

CPU No speed Frequency (Hz,
kHz, MHz, GHz)

Fixed Fixed Fixed Fixed

Number of
cores

Natural Fixed Fixed Fixed Fixed

For Domain HAN
Memory - capacity DataSize (bit,

Byte, KB, MB,
GB)

No relevant No relevant No relevant No relevant

latency Duration (s, ms,
min,hr, day)

No relevant No relevant No relevant No relevant

Network Yesbandwidth DataRate (b/s,
Kb/s, Mb/s)

250 Kb/s 250 Mb/s 250 Mb/s 10 Mb/s

latency Duration (s, ms,
min,hr, day)

Not known Not known Not known Not known

CPU - speed Frequency (Hz,
kHz, MHz, GHz)

No relevant No relevant No relevant No relevant

Number of
cores

Natural No relevant No relevant No relevant No relevant

for preparing the attack, has “1 month” for the attack itself, and has a “proficient”
equipment for performing the attack (see Table 7.27). The “upper/lower bound”
for the security requirements R13, R14, and R15 is shown in Table 7.28. We as-
sume that the system has to be protected at least against a HAN attacker who is
“laymen”, has “1 day” for preparing the attack, has “1 day” for the attack itself,

7.5 Method for Generating Requirement Alternatives 241

and has a “standard” equipment for performing the attack. The properties “knowl-
edge of the ToE” and “window of opportunity” are fixed and cannot be relaxed.

As an example for identifying the “upper/lower bound”, we take the perfor-
mance requirement R24, which is shown in Table 7.31. We begin with the property
“number of concurrent users”. For the case that the gateway sends meter readings
to the external entities via a concentrator, there is only one user. Hence, we take
1 for the column “upper/lower bound”. As “upper/lower bound” for the property
“bandwidth” for the domain WAN, we take the bandwidth of Power Line Com-
munication (PLC) that can be up to 250 Mb/s. The “upper/lower bound” for the
property “data size” is assumed to be 40 KB [87]. For the “upper/lower bound”
for the requirements R18, R19, R22, R23, and R25 see Tables 7.29, 7.30, and 7.32.

Step 5 - Generate requirement alternatives

The first alternative is the requirement realizing the worst-case scenario. Between
the original requirement and this lower bound requirement, several other require-
ments can be generated by varying the relaxation candidates. For each generated
requirement this has to be checked, regardless of whether it eliminates the interac-
tion. If it does not, further relaxation is needed.

Application of Step 5 - Generate requirement alternatives

To relax the properties and thus generate alternatives for the requirements R11 and
R24, we choose values between the “value” and “upper/lower bound” for prop-
erties that can be relaxed. For example, for the requirement R24 the properties
“number of concurrent users”, “bandwidth” and “data size” can be relaxed. The
rest of the properties are either fixed or irrelevant for the corresponding require-
ment or unknown and thus cannot be considered for the relaxation process. Relax-
ing possible properties results in requirements alternatives R11.1 and R11.2 for the
original requirement R11 and in requirements alternatives R24.1 and R24.2 for the
original requirement R24. In this way, we cannot say that we assuredly resolve in-
teractions between quality requirements, but we can weaken them for sure or even
resolve them ideally.

242 7 Phase 4: Requirements Interaction Analysis

7.6 Related Work

In this section, we discuss related work regarding (functional and quality) require-
ments interaction in Section 7.6.1 and regarding performance analysis in Sec-
tion 7.6.2.

7.6.1 Related work with respect to Requirements Interaction

Although the problem of interaction between requirements has been known for
a long time and dealing with conflicts among requirements is considered as one
important aspect of requirements engineering, little progress has been made to
tackle this problem. In this section, we discuss approaches dealing with conflicts
among functional requirements as well as quality requirements.

Egyed and Grünbacher [92] introduce an approach based on software quality at-
tributes and dependencies between requirements in order to identify conflicts and
cooperations among requirements. They assume that two requirements are con-
flicting only if their quality attributes are conflicting and there is a dependency
between them. In a four-step method, the authors identify conflicts among require-
ments based on this assumption. After categorizing requirements into software
attributes such as security, usability, etc. manually, the authors identify conflicts
and cooperations between requirements using dependencies among requirements.
In a final step, they filter out requirements, the quality attributes of which are con-
flicting, but there is no dependency among them. The authors consider the case of
conflicting requirements only due to their functionality and not their quality. Our
method is similar to this method in a sense that both methods rely on dependencies
between requirements. We make use of the existing problem diagrams to find the
dependencies by taking the constrained domains into account.

In contrast to our problem-based method, Hausmann et al. [119] introduce a
use case-based approach to detect potential inconsistencies between functional re-
quirements. A rule-based specification of pre- and post-conditions is proposed to
express functional requirements. The requirements are then formalized in terms of
graph transformations that enable expressing the dependencies between require-
ments. Conflict detection is based on the idea of independence of graph transfor-
mations. Similar to our method, the results of the conflict detection method have
to be analyzed further manually. Our method detects a set of interaction candidates
that need to be analyzed further for real interactions. The approach proposed by
Hausmann et al. [119] detects dependencies that represent errors or conflicts to be
decided by the modeler. This is due to the incomplete nature of use cases.

7.6 Related Work 243

Kim et al. [144] propose a process for detecting and managing conflicts be-
tween functional requirements expressed in natural language. After identifying,
documenting, and prioritizing requirements using goals and scenarios in the first
phase, the requirements are classified through the requirements partitioning crite-
ria in the second step. In the third phase, conflicts are detected using a syntactic
method to identify candidate conflicts and a semantic method to identify actual
conflicts. Step four manages the detected conflicts according to the priorities. Sim-
ilar to our method, this process reduces the scope of requirements to be considered
by performing a syntactic analysis. The semantic analysis is performed manually
by the analyst to check and answer a list of questions. As opposed to our method,
this method is not formally specified.

Heisel and Souquières [123] developed a formal and heuristic method to detect
requirement interactions. Each requirement consists of a pre- and a post-condition.
The authors analyze whether the post-conditions are contradictory by sharing com-
mon pre-conditions. They also determine post-condition interaction candidates by
looking for incompatible post-conditions. As opposed to our approach, the authors
formalize the whole set of requirements, which is costly and time-consuming. Our
approach utilizes the structure of problem diagrams to reduce the effort for the
formalization.

The approach proposed by Alférez et al. [26] finds candidate points of interac-
tion. The authors first analyze the dependencies between use cases to identify po-
tential candidates of conflict. Then they determine whether the detected use cases
are related to more than one feature. In contrast to our method, it is not formally
defined. Furthermore, this approach is based on use cases, whereas we rely on
problem frames.

An approach to detect feature interactions in software product lines (SPL) is
proposed by Classen et al. [75]. The authors link feature diagrams used in SPL
to the problem frames approach by redefining the notions of feature and feature
interaction based on the entailment relationship D,S |=R [133, 252]. This enables
the authors to consider the environment in addition to the requirements, similar to
our method. To detect feature interactions, four algorithms are presented based on
a set of consistency rules. This work is complementary to our work. Using our
approach, the sets of requirements and domains that have to be considered for
interactions can be reduced and therefore the modeling and formalization effort is
reduced.

van Lamsweerde et al. [162] use different formal techniques for detecting con-
flicts among goals based on KAOS. One technique to detect conflicts is deriving
boundary conditions by backward chaining. Boundary conditions refer to combi-
nations of circumstances causing inconsistency among different goals. Every pre-
condition yields a boundary condition. The other technique is selecting a match-

244 7 Phase 4: Requirements Interaction Analysis

ing generic pattern. Our method for finding conflicts among requirements can be
seen as complementary to this approach that provides techniques for detecting
goal conflicts and resolving them. However, to use our method in connection with
this approach, requirements as refinement of goals have to be modeled as problem
diagrams.

7.6.2 Related work with respect to Performance Analysis

In a software development process, performance solutions are typically consid-
ered as architectural decisions to be made in the architecture and design phases.
A number of approaches that contributed to software performance development
have focused on architectural solutions. Nevertheless, information and knowledge
needed for dealing with performance issues, have to be collected and analyzed
early in the software development process. Similar to our approach, Williams and
Smith [241] explore the information needed to construct and evaluate performance
models. This information has to be captured during the analysis and design pro-
cess. They define a similar set of information required for early life cycle soft-
ware performance engineering. They use the terms “execution environment” for
resource capacity and “resource requirement” for resource utilization and resource
type.

In a later work, Smith and Williams [219] present their quantitative approach
software performance engineering (SPE) to construct software systems with re-
gard to performance objectives and requirements. SPE relies on use cases and sce-
narios that describe them. In the SPE process, after identifying critical use cases
and scenarios, execution graphs are used to determine performance requirements.
In further steps, the constructed execution graphs are evaluated to identify perfor-
mance problems. Although use cases and scenarios build the starting point of the
SPE process, it takes in further steps an architectural perspective. While the SPE
process uses use cases and scenarios, the POPeRA method is based on problem
frames. Problem frames contain more information for the analysis of performance
requirements than use cases and scenarios. In contrast to our POPeRA method that
focuses on performance requirements analysis, the SPE process requires detailed
information regarding system resources that are not available in the early phase of
software development, namely requirements engineering. Hence, the SPE process
can be used as complementary to the POPeRA method afterwards when perfor-
mance requirements analysis is performed.

Woodside et al. [246] propose a tool architecture called PUMA. It provides an
intermediate model called Core Scenario Model (CSM) that takes a UML model

7.7 Contributions 245

annotated with performance information as input. The UML model is then trans-
formed into performance models after removing the irrelevant design detail.

Tawhid and Petriu [231] propose to generate performance models for a specific
product from a software product line (SPL). They aim at choosing a suitable design
alternative in the early development phases. The starting point is a UML model
that is annotated with performance information using the MARTE profile. Using
the Atlas Transformation Language (ATL)5, an annotated UML model of a product
is derived from the annotated UML model of an SPL. In a second transformation
a performance model from the annotated UML model of the product is generated
using the PUMA transformation approach. These two approaches require design
detail that is not available in the requirements analysis phase. However, the PUMA
tool can potentially be applied to our annotated requirement models to create per-
formance models. It should be explored whether the resulting performance models
provide any useful information to use further.

Bass et al. [47] analyze how architectural mechanisms such as fixed priority
scheduling and caching help to achieve performance as one specific quality re-
quirement. They introduce the three strategies resource allocation, resource arbi-
tration, and resource use for the achievement of performance requirements. Each
strategy provides a set of performance mechanisms. Fixed priority scheduling that
prioritizes processes to a fixed priority uses the strategy resource arbitration. The
authors describe two mechanisms that correspond to our comprehensive approach
for performance analysis. They do not provide a systematic method on how to
identify performance problems and how to apply such mechanisms.

Methods that deal with performance in the early software development mostly
use use cases and scenarios for analyzing and understanding requirements. The
original problem frames approach does not support quality requirements. Some
work has been performed to security requirements analysis [209, 118] and depend-
ability requirements analysis [113, 112] based on problem frames. To the best of
our knowledge, there has been no research regarding performance requirements
analysis based on problem frames.

7.7 Contributions

In this chapter, we investigated how to detect and resolve requirement interactions
among functional as well as quality requirements. This chapter consists of four
parts. Our contributions can be summarized as follows:

5 http://www.eclipse.org/atl/

246 7 Phase 4: Requirements Interaction Analysis

• In the first part, we described a structured method to identify requirement inter-
actions between functional requirements. We first identified and reduced candi-
dates of interactions among a set of requirements modeled as problem diagrams.
Then, we showed how to reduce this set of candidates further using life-cycle
expressions. In the final phase of our method, we showed the existence of inter-
actions by analyzing the pre- and postconditions.

• In the second part, we presented the QuaRO method to detect candidates for
negative interactions between quality requirements based on pairwise compar-
ison of requirements. In a preparation phase, to restrict the number of compar-
isons we made use of general relationships among different types of quality
requirements. In further phases, we used the structure of problem diagrams to
identify trade-off points. As a result, we obtained a set of pairwise quality re-
quirements which are potentially conflicting.

• In the third part of this chapter, we proposed the PoPeRA method, which is
based on problem frames for analyzing performance requirements. The PoPeRA
method helps the performance analyst to identify potential performance prob-
lems as early as possible in the software development process using perfor-
mance domain knowledge and security domain knowledge. The identified bot-
tlenecks aid in further reducing the set of potentially conflicting quality require-
ments obtained from the QuaRO method. To summarize, the PoPeRA method 1)
uses the modeled performance and security domain knowledge to identify po-
tential bottlenecks, 2) guides the requirements engineer in stepwise analysis of
performance requirements, and 3) further reduces the set of potential conflicts
among quality requirements.

• In the fourth part, we provided a method for generating alternatives for interact-
ing requirements. This method resolves the remaining conflicts between quality
requirements from the PoPeRA method by relaxing them. For each original con-
flicting quality requirement, requirement alternatives are generated. Different
sets of quality requirement alternatives lead to different architecture alterna-
tives that fulfill the quality requirements security and performance with differ-
ent degrees of satisfaction. The generated quality requirement alternatives are
addressed in Chapter 9 by selecting and applying appropriate quality-specific
solutions.

Chapter 8
Phase 5: Quality-specific Pattern Analysis

Abstract This chapter first introduces the problem-oriented quality patterns for
the requirements analysis, which make use of the knowledge located in the de-
sign phase such as quality-specific solutions. We then discuss how the selection
of quality-specific solutions as design decisions can affect other artifacts such as
requirements and domain knowledge. In the third part of this chapter, we pro-
pose the problem-solution diagram enabling a mapping between the requirements
(problem space) and the problem-oriented quality patterns (solution space). This
intermediate model provides support for traceability between different model arti-
facts including the rationale for selecting the architectural solutions.

8.1 Introduction

As described before (see Chapters 2 and 5), patterns describe solutions for com-
monly recurring problems in software development. They are defined for different
software development phases. There exist solutions to performance problems such
as performance patterns [220, 96] to be applied during the design and implemen-
tation phases. Analogously, there exist security patterns that provide solutions to
security problems [211].

We follow the concept of the twin peaks [182] that advocates the concurrent
and iterative development of requirements and software architecture descriptions.
As described before in this book (see Chapters 1 and 3), according to the twin
peaks, requirements accommodated in the problem space and software architecture
and design decisions accommodated in the solution space cannot be developed in
isolation and should be developed concurrently.

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_8

248 8 Phase 5: Quality-specific Pattern Analysis

Hence, we aim at refining the requirement models and equipping them with
security and performance solution approaches early in the software development
process, namely at the requirements level (problem space). To this end, we reuse
the existing knowledge at the architectural level (solution space). That is, we use
conventional performance and security patterns and adapt them in a way that they
can be used in the problem-oriented requirements analysis. We call the adapted pat-
terns problem-oriented security patterns and problem-oriented performance pat-
terns as we represent them by means of problem diagrams. Refining requirement
models with quality issues using architectural knowledge allows us to bridge the
gap between quality (security and performance) problems and quality (security
and performance) solutions.

This chapter represents Phase 5 of the QuaDRA framework. In the first part, we
prepare the architectural knowledge which is located in the solution peak for be-
ing reused at the requirement levels by adapting and describing them as problem-
oriented security patterns and problem-oriented performance patterns. In Chap-
ter 9, we move to the problem peak to refine the requirement models by applying
the patterns proposed in this chapter. This part is based on our works presented
in [20] proposing problem-oriented security patterns and [5] proposing problem-
oriented performance patterns.

We discuss how the selection of quality-specific solutions as design decisions
can affect other artifacts such as requirements and domain knowledge. This part is
based on our work published in [19].

In Chapter 7, we generated alternatives for conflicting requirements. Generat-
ing alternatives for quality requirements leads to variability in the problem space.
Hence, quality requirements accommodated in the problem space can be consid-
ered as drivers that contribute to variability in the solution space. Problem-oriented
quality patterns as solution alternatives fulfill quality requirements in different
ways. We capture such patterns as variabilities in the solution space. To deal with
the complexity of variability, we need to 1) explicitly model variability and 2)
provide traceability links between variabilities at different levels of abstraction.

To this end, we present a UML-based approach to explicitly model variability in
the problem and the solution space by adopting the notion of variability modeling.
Then, we provide a mapping of quality requirement alternatives to the problem-
oriented quality patterns. This mapping, called problem-solution diagram, as an
intermediate model represents quality-specific solutions as variabilities which are
provided with rationales for selecting them. It, therefore, supports the software
engineer in the process of decision-making for selecting suitable quality-specific
solution variants, reflecting quality concerns, and reasoning about it. This part
is based on our work presented in [18]. We are the main author of the publica-
tions this chapter is based on. We had useful and valuable discussions with Maritta

8.2 Problem-oriented Security Patterns 249

Heisel regarding problem-oriented quality patterns and the relation between qual-
ity requirements and quality solutions.

The remainder of this chapter is organized as follows. We introduce our problem-
oriented security patterns in Section 8.2 while the problem-oriented performance
patterns are presented in Section 8.3. Section 8.4 discusses the benefits of the pro-
posed patterns for problem-oriented software development. The problem-solution
diagram as a mapping of quality requirements to possible quality-specific solutions
is given in Section 8.5. We present related work in Section 8.6. The contribution
of this chapter is given in Section 8.7.

8.2 Problem-oriented Security Patterns

According to Clements et al. [78], we require to consider two different concerns for
achieving security. The first concern is specifying usage relationships and commu-
nication restrictions among different parts of the system. Examples for achieving
this are access control such as Role-Based Access Control (RBAC), Message Au-
thentication Code (MAC), and encryption. The other concern is preventing unau-
thorized intrusion where it does the most damage. This can be achieved by access
control such as RBAC. These solutions that address the two concerns are of ar-
chitectural nature. In the following, we reuse this existing architectural knowledge
including patterns and mechanisms and adapt it in a way that it can be expressed as
problem diagrams for problem-oriented requirements analysis. We call the adapted
patterns problem-oriented security patterns. The adaptation allows us to integrate
such security-specific solutions early in the requirements engineering phase.

We present five problem-oriented security patterns, namely symmetric encryp-
tion, Message Authentication Code (MAC), Role-Based Access Control (RBAC),
digital signature, and asymmetric encryption as examples for achieving confiden-
tiality, integrity, and authenticity. Further problem-oriented security patterns may
be extracted from the existing security patterns and mechanisms by software en-
gineers to aid requirements engineers in integrating security solution approaches
early in the requirements analysis.

In the following, we first describe an extension of the UML profile UML4PF for
modeling problem-oriented security patterns in Section 8.2.1. Then, we describe
the structure of the problem-oriented security patterns in Section 8.2.2. Then, we
introduce the five problem-oriented security patterns symmetric encryption in Sec-
tion 8.2.3, MAC in Section 8.2.4, RBAC in Section 8.2.5, digital signature in Sec-
tion 8.2.6, and asymmetric encryption in Section 8.2.7.

250 8 Phase 5: Quality-specific Pattern Analysis

8.2.1 UML4PF Extension for Problem-oriented Security Patterns

We extend the problem frames notation by introducing new elements for model-
ing problem-oriented security patterns and their instantiations. Our extension is a
UML profile relying on the UML4PF profile (see Section 2.3.1 on page 33). Fig-
ure 8.1 shows the stereotypes of this UML profile. In the following, we describe
the stereotypes that we used in our profile.

Fig. 8.1: UML4PF Extension for modeling problem-oriented security patterns

One new kind of UML4PF diagrams is the composition frame. It is expressed
by the stereotype �CompositionFrame�. Composition frames deal with the
composition of two machines, each of which is described by a problem frame in
order to address combined requirements [163]. The other new type of diagrams
is the composition diagram which represents an instantiation of the composition
frame. It is expressed by the stereotype�CompositionDiagram�.

We introduce a new type of requirements, namely composition requirement
(expressed by the stereotype�CompositionRequirement�). A composition re-
quirement is the requirement corresponding to a composition frame or composition
diagram. It represents the combination of two requirements. The attribute origin
of the stereotype�CompositionRequirement� indicates the two requirements
which build the origin of the composition requirement.

Composition machine is a new type of domains. It represents the machine in a
composition frame or composition requirements. It is expressed by the stereotype
�CompositionMachine�.

Table 8.1 shows the list of defined stereotypes and their description. Our exten-
sion is used in the next sections for modeling problem-oriented security patterns.

8.2 Problem-oriented Security Patterns 251

Table 8.1: Stereotypes defined for UML4PF extension for modeling the problem-
oriented security patterns and their instances

Stereotype, Tagged values Applies to Description
�ConmpositionFrame� Package It represents the composition of two

machines, each of which is described
by a problem frame.

�CompositionDiagram� Package It represents an instance of a compo-
sition frame.

�CompositionRequirement� Class It represents the requirement corre-
sponding to the composition frame or
composition diagram.

{origin = Origin} �CompositionRequirement� It represents the requirements build-
ing the composition requirement.

�CompositionMachine� Class It represents the machine in the com-
position frame or composition dia-
gram.

8.2.2 Structure of the Problem-oriented Security Patterns

A problem-oriented security pattern consists of a graphical pattern and a template.
In the following, we describe the constituents of the pattern.

Graphical pattern:
The graphical pattern involves the following parts:

Functional Problem Frame: During the requirements analysis phase, it is es-
sential to describe and understand the problem explicitly. Hence, setting up a
functional problem diagram as an instance of the functional problem frame is
the first step to be performed for describing a specific problem. It captures the
structure of the problem explicitly and consists of a generic functional require-
ment and the involved domains. In order to describe the security problem related
to the functional requirement, the functional problem frame contains a specific
security requirement, for which we provide a solution approach in the second
part. The security requirement is annotated as complement to the functional
requirement.

Security Problem Frame: The functional problem frame describes the func-
tional problem and its related security requirement. The second part of a
problem-oriented security pattern is a security problem frame that describes
the particular solution approach for the security requirement annotated in the
first part.

252 8 Phase 5: Quality-specific Pattern Analysis

Composition Problem Frame: The third part is concerned with composing the
functional problem frame and security problem frame to obtain a solution for the
overall problem. Hence, we provide a composition problem frame that describes
how the functional problem frame and the security problem frame can be com-
posed to solve the overall problem. To this end, we make use of Composition
Frames introduced in [163, 24] as a new kind of problem frames. Composition
frames deal with the composition of two machines, each of which is described
by a problem diagram in order to address combined requirements [163]. We
use composition frames to integrate the problem frame for the selected security
solution with the functional problem frame. A composition frame includes the
domains shared between the functional problem and the security solution, and
their corresponding machine domains. For the graphical patterns we use the
same notation we use for problem frames.

As an optional part of the graphical pattern, a sequence diagram might be used to
illustrate how the functional machine and the security machine interact with each
other to solve the overall problem.

Template:
We provide a template consisting of two parts that documents additional informa-
tion related to the domains in the problem diagrams. Such information is not ob-
servable in the graphical pattern. The first part accommodates information about
the security mechanism itself such as name (Name), purpose (Purpose), descrip-
tion (Brief Description), and the quality requirement which will be achieved when
applying this pattern (Quality Requirement to be achieved). Moreover, a security
solution may affect the achievement of other quality requirements. For example,
improving the security may result in decreasing the performance. Hence, the im-
pact of each security solution on other quality requirements has to be captured in
the first part of the template (Affected Quality Requirement). A security pattern
not only solves a problem, but also produces new functional and quality problems
that have to be addressed either as Requirements to be elicited or as Assumptions
needed to be made in the second part of the template. We elicit new functional and
quality problems as requirements if the software to be built shall achieve them. As-
sumptions have to be satisfied by the environment [161]. They are not guaranteed
to be true in every case. For the case that we assume the environment (not the ma-
chine) takes the responsibility for meeting them, we capture them as assumptions.
This should be negotiated with the stakeholders and documented properly.

8.2 Problem-oriented Security Patterns 253

8.2.3 Problem-oriented Symmetric Encryption Pattern

Symmetric encryption is an important security mechanism to achieve confidential-
ity. There exists only one secret key which is used for encrypting and decrypting
a plaintext that has to be kept confidential. Asymmetric encryption is a similar
means to achieve confidentiality. It, however, uses different keys for the encryp-
tion and decryption. One advantage of symmetric encryption is that it is faster than
asymmetric encryption. The disadvantage is that both communication parties must
know the same key, which has to be distributed securely or negotiated. In asym-
metric encryption, there is no key distribution problem, but a trusted third party is
needed that issues the key pairs.

We present the problem-oriented symmetric encryption pattern by its corre-
sponding graphical pattern depicted in Fig. 8.2 and its corresponding template
shown in Table 8.2.

Graphical pattern:

Functional Problem Frame: The graphical pattern first describes the func-
tional problem expressed as the problem frame GenericProblem. It describes
the functional requirement FunctionalReq and the involved domains. The func-
tional requirement is concerned with “sending the data” to be achieved by the
machine FunctionalM. Data is expressed as the lexical domain Domain1 in
the problem frame. There exist a causal domain Domain2 such as a network for
transforming the data. The confidentiality requirement ConfidentialityReq is an-
notated in the problem frame by complementing the functional requirement. It
requires the achievement of the functional requirement in a confidential way.
The functional problem frame is depicted at the top of Fig. 8.2. Depending on
the functional requirement, the problem frame might contain other domains that
are not relevant for the security problem. Hence, they are not represented in the
pattern.

Security Problem Frame: The symmetric encryption as a solution for the con-
fidentiality problem is expressed by the problem frame SymmetricEncryption
shown in the middle of Fig. 8.2. It consists of all domains that are relevant for
the solution. The machine SymEncM should achieve the confidentiality require-
ment ConfidentialityReq by encrypting the Domain1 using the SecretKey which
is part of the machine SymEncM.

Composition Problem Frame: The third part of the graphical pattern shown
at the bottom of Fig. 8.2 is concerned with combining the functional problem
frame with the security problem frame to obtain the composed problem frame
FunctionalSecComposition. It consists of the new machine CompositionM, both

254 8 Phase 5: Quality-specific Pattern Analysis

Fig. 8.2: Problem-oriented symmetric encryption pattern (graphical pattern)

machine domains FunctionalM and SymEncM, and all the domains contained in
both problem frames. Note that the lexical domain SecretKey is part of the ma-
chine SymEncM that we made visible as it is of great importance for the encryp-
tion mechanism. The machine CompositionM is responsible for coordinating
the functional machine FunctionalM and the solution machine SymEncM. The
requirement CompositionReq shall be achieved by the machine CompositionM.
It combines the requirements FunctionalReq and ConfidentialityReq. Figure 8.3
shows how the different machines collaborate with each other in the composed
problem diagram FunctionalSecComposition. Domain1 sends its content to the
machine CompositionM. The machine CompositionM sends this content to the
machine SmyEncM and receives the encrypted content. The encrypted content

8.2 Problem-oriented Security Patterns 255

is sent to the machineFunctionalM which sends it further through the causal
domain Domain2.

Fig. 8.3: Sequence diagram of the composition problem diagram for Sysmmetric
Encryption

We will see in the following by the description of the related template that we
need to capture new assumptions and elicit new requirements regarding the secret
key.

Template:
The template shown in Table 8.2 represents the additional information correspond-
ing to the graphical part of the problem-oriented pattern symmetric encryption. Af-
ter capturing the basic information in the first part, in the second part we elicit new
requirements and capture new assumptions that arise with the solution, such as
secret key shall be/ is distributed. Eliciting this condition results in thinking about
security issues concerned with it, such as confidentiality and integrity of secret
key distribution shall be/is preserved. Note that the requirements and assumptions
are not fixed. Requirements have to be met by the machine (i.e. software-to-be)
and assumptions by the environment. If we require that the software we build is
responsible for preserving the confidentiality and integrity of the secret key not
only during the transmission but also during the storage, we have to capture these
as requirements. This is the reason why the necessary conditions are presented as
checkboxes to be selected by checking the relevant checkbox as requirement or
assumption.

256 8 Phase 5: Quality-specific Pattern Analysis

Table 8.2: Problem-oriented Symmetric Encryption pattern (template)

Security Solution
Name Symmetric Encryption
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description The plaintext is encrypted using the secret key
Quality Requirement to be achieved Security (confidentiality) ConfidentialityReq
Affected Quality Requirement Performance PerformanceReq, availability AvailabilityReq

Necessary Conditions

Requirement 2 Assumption 2
Secret key shall be/is distributed.

Requirement 2 Assumption 2
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of secret key during transmission shall be/is pre-
served

Requirement 2 Assumption 2
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of secret key during storage shall be/is preserved.

8.2.4 Problem-oriented MAC Pattern

Message Authentication Code (MAC) is an important means for achieving integrity
and authenticity of data. The MAC algorithm uses a secret key and the data to gen-
erate a MAC. The verifier uses the same secret key to detect changes to the data
as well as to ensure that the data is created by the known sender. The problem-
oriented MAC pattern is similar to the problem-oriented symmetric encryption
pattern in a manner that both patterns use a secret key for achieving their goal.
Hence, the graphical pattern of MAC is similar to the one of symmetric encryp-
tion. Therefore, we do not show the graphical pattern of MAC. Its template is
represented in Table 8.3.

Template:
The template shown in Table 8.3 represents the additional information related to
the problem-oriented pattern MAC. New requirements and assumptions to be con-
sidered are represented in the second part of the template.

8.2 Problem-oriented Security Patterns 257

Table 8.3: Problem-oriented MAC pattern (template)

Security Solution
Name Message Authentication Code (MAC)
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description MAC uses a secret key and the data to generate a MAC. The verifier

uses the same secret key to detect changes to the data.
Quality Requirement to be achieved Security (integrity and authenticity) IntegrityReq, AuthenticityReq
Affected Quality Requirement Performance PerformanceReq

Necessary Conditions

Requirement 2 Assumption 2
Secret key shall be/is distributed.

Requirement 2 Assumption 2
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of secret key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of secret key during storage shall be/is preserved.

8.2.5 Problem-oriented RBAC Pattern

Since verifying permission is a frequently recurring problem in security rele-
vant systems, it has been treated in several access control patterns for the design
phase [248, 211]. Access control patterns define security constraints regarding
access to resources. Role-Based Access Control (RBAC) provides access to re-
sources based on functions of people in an environment, known as roles, and the
kind of permission they have, known as rights.

We present the problem-oriented RBAC pattern by its corresponding graphical
pattern depicted in Fig. 8.4 and its corresponding template shown in Table 8.4.

Graphical pattern:

Functional Problem Frame: The first part of the graphical pattern, namely the
functional problem frame expressed by the problem frame GenericProblem, is
similar to the previous one from the structure point of view. The functional re-
quirement FunctionalReq might be “editing data” to be met by the functional
machine FunctionalM. Data is represented by the lexical domain Domain. The
functional requirement is complemented by the security requirement Integri-
tyReq demanding “the protection of data against unauthorized access”. The
functional problem frame is depicted at the top of Fig. 8.4.

258 8 Phase 5: Quality-specific Pattern Analysis

Fig. 8.4: Problem-oriented RBAC pattern (graphical pattern)

Security Problem Frame: The second part provides the domains that are re-
quired for applying the RBAC pattern, expressed by the problem frame RBAC
shown in the middle of Fig. 8.4. The lexical domain AccessRights represents
user id, assigned role(s) to it, and assigned right(s) to the role(s). It is a part of
the machine RBACM which is responsible for achieving the integrity require-
ment.

Composition Problem Frame: The third part composes the functional machine
FunctionalM with the security machine RBACM by introducing a new machine
CompositionM that has to meet the requirement CompositionReq composed of
the requirements FuncitonalReq and IntegrityReq. It is depicted at the bottom
of Fig. 8.4. Figure 8.5 shows how the different machines collaborate with each

8.2 Problem-oriented Security Patterns 259

other in the composed problem frame FunctionalSecComposition. After ob-
taining the data from the lexical domain Domain, the machine CompositionM
sends this content to the machine RBACM and receives the information about
accessing or denying the access to data. The assigned rights are then sent to the
machine FunctionalM.

Fig. 8.5: Sequence diagram of the composition problem diagram for RBAC

Note that due to introducing the composition machine CompositionM the in-
terfaces of the functional machine FunctionalM and the security machine RBAC
change. The new interfaces are specified at the bottom of Fig. 8.4 and in Fig. 8.5.

The problem-oriented RBAC pattern can be used to achieve a confidentiality
requirement as well. In Fig. 8.4, we only showed the use of the problem-oriented
RBAC pattern to achieve the integrity requirement IntegrityReq in order to keep
the figure clear and readable. One can apply the same pattern and only replace the
integrity requirement with the confidentiality requirement to achieve confidential-
ity.

Template:
The template shown in Table 8.4 represents the additional information correspond-
ing to the graphical part of the problem-oriented pattern RBAC. In addition to the
basic information regarding the pattern itself, it contains requirements and assump-
tions to be selected by the requirements engineer. Note that the assumption by
applying the problem-oriented RBAC pattern is that all the persons who are au-
thorized to access handle and behave correctly. Note that we do not capture this

260 8 Phase 5: Quality-specific Pattern Analysis

assumption in Table 8.4 as such kinds of assumptions deal with social engineering
and cannot be considered in software development.

Table 8.4: Problem-oriented RBAC pattern (template)

Security Solution
Name RBAC
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description It provides access to data based on defined roles and rights captured

as access rights.
Quality Requirement to be achieved Security (confidentiality and integrity during storage) Confidentiali-

tyReq, IntegrityReq
Affected Quality Requirement Performance PerformanceReq, availability AvailabilityReq

Necessary Conditions

Requirement 2 Assumption 2
Integrity of access rights shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of data during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of data during storage shall be/is preserved.

8.2.6 Problem-oriented Digital Signature Pattern

Digital signature is an important means for achieving integrity and authenticity of
data. Using the digital signature, a signature is produced using the private key and
the data. In order to ensure the authenticity of data, the signature is verified using
the public key.

We present the problem-oriented digital signature pattern by its corresponding
graphical pattern depicted in Fig. 8.6 and its corresponding template shown in Ta-
ble 8.5.

Graphical pattern:
The structure of the graphical pattern is similar to the structure of the problem-
oriented symmetric encryption pattern. The difference is that a private key is used
for signing the data. As we described the structure of the problem-oriented sym-
metric encryption pattern extensively, we do not describe the graphical pattern any
more and only refer to Fig. 8.6. The Fig. 8.7 shows how the different machines col-
laborate with each other in the composed problem diagram FunctionalSecCompo-
sition.

8.2 Problem-oriented Security Patterns 261

Fig. 8.6: Problem-oriented digital signature pattern (graphical pattern)

Note that the problem-oriented digital signature pattern can be used to achieve
an integrity requirement as well. In Fig. 8.6, we only showed the use of the
problem-oriented digital signature pattern to achieve the integrity requirement Au-
thenticityReq in order to keep the figure clear and readable. One can apply the
same pattern and only replace the authenticity requirement with the integrity re-
quirement to achieve integrity.

Template:
The template shown in Table 8.5 represents the additional information correspond-
ing to the graphical part of the problem-oriented pattern digital signature. New
requirements and assumptions to be considered are represented in the second part
of the template.

262 8 Phase 5: Quality-specific Pattern Analysis

Fig. 8.7: Sequence diagram of the composition problem diagram for Digital Sig-
nature

Table 8.5: Problem-oriented Digital Signature pattern (template)

Security Solution
Name Digital Signature
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description Sender produces a signature using the private key and the data.
Quality Requirement to be achieved Security (integrity and authenticity) IntegrityReq, AuthenticityReq
Affected Quality Requirement Performance PerformanceReq

Necessary Conditions

Requirement 2 Assumption 2
Integrity of public key during transmission shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of private key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2
Integrity of private key during transmission shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of private key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of private key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of public key during storage shall be/is preserved.

8.2.7 Problem-oriented Asymmetric Encryption Pattern

Asymmetric Encryption is an important means for achieving confidentiality of data.
Using the asymmetric encryption, the data is encrypted using the public key. De-
crypting the data is achieved using its private key. The problem-oriented asymmet-
ric encryption pattern is similar to the problem-oriented symmetric key pattern in
a manner that both patterns are concerned with encrypting data. The difference is
that the problem-oriented symmetric encryption pattern uses only one secret key
for encrypting and decrypting data. Therefore, this key must be kept secret. The

8.2 Problem-oriented Security Patterns 263

problem-oriented asymmetric encryption uses a public-private key pair for achiev-
ing its goal. It uses the public key for encrypting the data and the corresponding
private key for decrypting the data. We do not show the graphical pattern of asym-
metric encryption as the graphical pattern of the similar pattern symmetric encryp-
tion has been described extensively. Its template is represented in Table 8.6.

Template:
The template shown in Table 8.6 represents the additional information related to
the problem-oriented pattern asymmetric encryption. New requirements and as-
sumptions to be considered are represented in the second part of the template.

Table 8.6: Problem-oriented Asymmetric Encryption Pattern (template)

Security Solution
Name Asymmetric Encryption
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description The plaintext is encrypted using the public key and decrypted using

the private key.
Quality Requirement to be achieved Security (confidentiality) ConfidentialityReq
Affected quality requirements Performance PerformanceReq, availability AvailabilityReq

Necessary Conditions

Requirement 2 Assumption 2
Integrity of public key during transmission shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of private key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2
Integrity of private key during transmission shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of private key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of private key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of public key during storage shall be/is preserved.

Note that we do not provide a structured method to identify new requirements
and assumptions as necessary conditions. However, as mentioned earlier in this
section, new requirements and assumptions arise due to introducing the security
solution (Security Problem Frame). Hence, we can reduce the scope of considera-
tion for identifying new requirements and assumptions to the solution for the se-
curity requirement, namely to the Security Problem Frame. In this problem frame,
we only need to consider the lexical domain, for example the SecretKey for the
problem-oriented symmetric encryption pattern and its related security machine
SymEncM. For these two domains, we have to think about new problems that might
arise and then capture them as new requirements and/or assumptions.

264 8 Phase 5: Quality-specific Pattern Analysis

8.3 Problem-oriented Performance Patterns

According to Clements et al. [78], for achieving high performance, we need to con-
sider three different concerns, namely exploit potential parallelism, manage the
volume of the network communication and frequencies of data access, and identify
potential performance bottlenecks. In the previous chapter (see Chapter 7), we pro-
posed a method for identifying potential performance bottlenecks. For achieving
the other two concerns, we propose problem-oriented performance patterns in this
section. These patterns can be applied to problem diagrams containing potential
bottlenecks, which is the topic of the next chapter (see Chapter 9).

For exploiting potential parallelism, the problem-oriented performance patterns
Load Balancer and Master Worker can be applied. We make use of the problem-
oriented performance patterns First Things First and Flex Time for achieving the
second concern, namely managing the volume of the network communication and
frequencies of data access. These patterns provide solutions for the problem situa-
tion where an overload of the system is expected.

We make use of a collection of existing performance patterns taken from the
literature [96, 220] in order to adapt them for the requirements analysis phase.
The adaptation allows the use of such performance patterns in the requirements
analysis phase for the analysis of performance problems.

In the following, we first describe the structure of the problem-oriented perfor-
mance patterns in Section 8.3.2. Then, we introduce four problem-oriented per-
formance patterns First Things First in Section 8.3.3, Flex Time in Section 8.3.4,
Master Worker in Section 8.3.5, and Load Balancer in Section 8.3.6.

8.3.1 UML4PF Extension for Problem-oriented Performance
Patterns

We extend the problem frames notation by introducing a new element for modeling
performance problems. Our extension is a UML profile relying on the UML4PF
profile (see Section 2.3.1 on page 33). Figure 8.8 shows the stereotype of the
UML profile extension. In the following, we describe the new stereotype and its
attributes.

For modeling performance problems, we introduce the new stereotype�Bottle-
neck�. It represents potential performance problems.�Bottleneck� can be ap-
plied to the domains that represent resources. In dealing with performance prob-
lems, we are concerned with the types of resources, the type of overload, and the

8.3 Problem-oriented Performance Patterns 265

Fig. 8.8: UML4PF Extension for modeling performance problems

type of load distribution. These three different types are represented as attributes
of the stereotype�Bottleneck�.

Table 8.7 shows the list of the defined stereotype, its attributes and related de-
scriptions. Our extension is used in the next sections for modeling the potential
bottlenecks in the problem-oriented performance patterns.

Table 8.7: Stereotypes defined for UML4PF extension for modeling the perfor-
mance problems

Stereotype, Tagged values Applies to Description
�Bottleneck� Class It represents a resource that is a bottle-

neck.
{loadDistributionType = LoadDistribution-
Type}

�Bottleneck� It represents the type of the load distri-
bution. It can be spatial or temporal

{overloadType = OverloadDistributionType} �Bottleneck� It represents the type of the overload.
It can be permanent or temporary

{resourceType = ResourceType} �Bottleneck� It represents the type of the resource.
It can be software or hardware or soft-
ware/hardware if there is no matter
what is the type of the resource.

8.3.2 Structure of the Problem-oriented Performance Patterns

Each problem-oriented performance pattern encompasses a generic template for
describing performance patterns textually. It has to be instantiated for each perfor-
mance pattern explicitly. In addition to the template, we provide a problem frame

266 8 Phase 5: Quality-specific Pattern Analysis

that describes the generic structure of the problem. Then, we describe the solution
approach by introducing a new problem frame that describes the generic structure
of the solution.

Template:
A performance pattern conveys essential performance-specific information and
principles for facilitating the reuse of performance knowledge. We propose a tem-
plate that represents the information contained in the patterns in a way that they
can be used on a higher abstraction level than the architecture level, namely on the
requirements analysis level.

Our proposed template illustrated in Table 8.8 is inspired by the template for de-
sign patterns proposed by Gamma et al. [103]. We modified the template for design
patterns to describe and represent performance-specific information. Our template
contains additional information for modeling a performance analysis pattern us-
ing the UML4PF and MARTE profiles. The proposed template allows software
architects to define new performance analysis patterns according to this structure
as well.

Table 8.8: Template for problem-oriented performance patterns

1) Name Name of the pattern
2) Description Brief description of the pattern
3) Also known as Other well-known names for the pattern, if any
4) Problem Situation and structure of the problem
5) Applicability Conditions under which the pattern can be applied
6) Solution Structure of the solution using stereotypes from UML4PF and MARTE
7) Collaboration Behavior Description of solution elements
8) Benefits Benefits of applying the pattern
9) Consequences Consequences and hints to be considered when applying the pattern
10) Related patterns Another pattern related to the pattern

The following information about the characteristics of each mechanism is cap-
tured in the template given in Table 8.8: 1) name of the pattern, 2) description of the
pattern, 3) also known as representing other well-known names of the pattern, if
existing, 4) problem, which describes circumstances and structure of the problem,
5) applicability, which represents conditions under which the pattern can be ap-
plied using stereotypes from the UML profile extension and MARTE 6) solution,
which represents the structure of the solution using stereotypes from UML4PF
and MARTE, 7) collaboration describing the behavior of the solution, 8) bene-
fits of applying the pattern, 9) consequences and additional hints to be considered

8.3 Problem-oriented Performance Patterns 267

when applying the pattern, 10) related patterns describing other patterns that bear
relations to the pattern at hand.

The fields problem and applicability describe when the pattern can be applied.
They represent the pre-conditions for the pattern at hand. The fields solution, col-
laboration, benefits, and consequences describe the solution including its elements,
their relationships, and their behavior. They represent the post-conditions for the
pattern at hand.

Graphical Pattern:
The original performance patterns only describe the principle of the solution. They
do not provide any structure of the problem. We provide the structure of the prob-
lem as a specific problem frame in addition to the textual description in the tem-
plate. We call this problem frame the generic problem structure.

Note that the problem for all performance patterns presented in this chapter is
structured in the same way (see the field problem in the template). The reason is
that the lack of resources is the essence of most performance problems. This is the
case when more requests have to be processed at the same time than the resources
can process. Hence, there is only one problem frame describing the generic prob-
lem structure. Nevertheless, the conditions under which the patterns can be applied
are different (see the field applicability in the template).

Similar to the problem frame for describing the problem structure, we provide
a problem frame for describing the structure of the solution which we call generic
solution structure. Again, the structure of the solution is similar for all patterns
presented in this chapter. Nevertheless, the patterns behave differently to solve
problems that have the same structure but different applicability conditions. The
two generic problem frames have to be instantiated for each pattern separately.

Generic problem structure At the top of Fig. 8.9 is the problem frame describ-
ing the generic problem structure illustrated. Domains contained in this prob-
lem frame are:

• One domain Machine, which is a machine domain. It represents a resource
expressed by the stereotype�resource� responsible for responding to the
requests. The resource is expected to be the bottleneck which cannot com-
plete all inbound requests (see the stereotype�bottleneck� in the problem
frame GenericProblem in Fig. 8.9).

• One Domain1 domain, which transmits the requests to the machine domain
Machine. Note that the concrete problem diagram can contain more do-
mains, which are not relevant for the performance problem at hand.

268 8 Phase 5: Quality-specific Pattern Analysis

• One Domain2 domain, which represents an arbitrary domain that might be
required for processing the requests by the Machine. Note that this domain
does not need to be instantiated.

• One Requirement, which describes the functional requirement to be satisfied.
It requires the processing of the requests.

• One PerformanceReq, which describes the performance requirement to be
satisfied. It requires the satisfaction of the functional requirement Require-
ment within a specific time.

Generic solution structure At the bottom of Fig. 8.9, the problem frame de-
scribing the generic solution structure is shown. It is a composition frame that
composes several subproblems using a newly introduced machine domain. We
introduce the new machine domain FTF/FT/MW/LB to compose several ma-
chine domains that are bottlenecks (see machine domain Machine at the bottom
of Fig. 8.9) in order to prevent an overload for each single machine domain.
There exists only one machine domain Machine for the performance analysis
patterns FTF and FT and at least two machine domains Machine of the same
type for the performance analysis patterns LB and MW. Domains contained in
this problem frame are:

• One domain FTF/FT/MW/LB as a machine domain and as a resource with
the stereotypes�machine� and�resource�.

• At least one domain as machine domain and as resource (stereotypes�ma-
chine� and�resource�) responsible for responding to the requests (see
Machine in the problem frame GenericSolution in Fig. 8.9).

• One domain Domain1 with the stereotype�domain�, which transmits the
requests to the machine domain Machine.

• One domain Domain2 with the stereotype �domain� required for pro-
cessing the requests by the machine domain Machine.

• One functional requirement Requirement with the stereotype�requirement�
to be satisfied by the machine domains Machine (at least one machine do-
main).

• One PerformanceReq with the stereotypes�requirement� and�paStep�
to be satisfied by the machine domains Machine (at least one machine do-
main).

8.3 Problem-oriented Performance Patterns 269

Fig. 8.9: Problem frames describing the structure of the generic problem and the
generic solution

8.3.3 Problem-oriented First Things First (FTF) Pattern

The First Things First pattern ensures that the most important tasks will be pro-
cessed if not every task can be processed. The problem that this pattern aims at
solving is that a temporary overload of inbound requests is expected. This situation
may overwhelm the processing capacity of a specific resource. The First Things
First pattern uses the strategy of prioritizing tasks and performing the important

270 8 Phase 5: Quality-specific Pattern Analysis

tasks with a high priority first. In the case of a permanent overload, applying this
pattern would cause the starving of the low priority tasks [220].

The instantiation of the template given in Table 8.8 for the First Things First
pattern is shown in Table 8.9.

Table 8.9: First Things First Pattern

1) Name First Things First (FTF)
2) Description FTF ensures that the most important tasks will be processed if not every task can be

processed.
3) Also known as -
4) Problem A temporary overload of inbound requests is expected. This situation may over-

whelm the processing capacity of a specific resource (see the generic problem frame
in Fig. 8.9).

5) Applicability FTF pattern is only applicable when there is a temporary overload. That is, the at-
tribute overloadType of the stereotype�bottleneck� in the generic problem frame
(see Fig. 8.9) should have the value temporary.

6) Solution The solution uses the strategy of prioritizing tasks and performing the important
tasks with a high priority first. A new machine is introduced that takes the responsi-
bility for prioritizing the tasks and assigning them to corresponding domains.

7) Collaboration When requests are issued, they arrive through Domain1 at the newly introduced
machine domain FTF, which takes the responsibility to prioritize the requests and
forward them to the corresponding machine that performs the requests using the
domain Domain2. Note that there exists only one machine domain Machine (see the
sequence diagram in Fig. 8.10).

8) Benefits FTF reduces the contention delay for high-priority tasks.
9) Consequences In the case of a permanent overload, applying this pattern would cause the starving

of low-priority tasks.
10) Related patterns LB and MW patterns can be used to improve the processing capacity if the overload

is not temporary.

8.3.4 Problem-oriented Flex Time (FT) Pattern

The Flex Time pattern reduces the load of the system by spreading the load tem-
porally. That is, it moves the load to a different period of time where the inbound
requests do not exceed the processing capacity of the resource. The problem that
this pattern solves is that an overload of the system is expected. The inbound re-
quests exceed the processing capacity of a specific resource. Flex Time is only
applicable when some tasks can be performed at a different period of time [220].
Table 8.10 illustrates the instantiation of the template for the Flex Time pattern.

8.3 Problem-oriented Performance Patterns 271

Fig. 8.10: Sequence diagram describing the behavior of the FTF pattern

Table 8.10: Flex Time Pattern

1) Name Flex Time (FT)
2) Description FT moves the load to a different period of time where the inbound requests do not

exceed the processing capacity of the resource.
3) Also known as -
4) Problem An overload of the system is expected. The inbound requests exceed the processing

capacity of a specific resource (see the generic problem frame in Fig. 8.9).
5) Applicability FT is only applicable when some tasks can be performed at a different period of

time. That is, the attributes loadDistributionType and overloadType of the stereotype
�bottleneck� in the generic problem frame in Fig. 8.9 have the values temporal
and permanent.

6) Solution The solution uses the strategy of spreading the load at a different period of time. A
new machine is introduced that takes the responsibility for modifying the processing
time of the tasks and assigning them to corresponding domains for processing in the
specified time.

7) Collaboration When requests are issued, they arrive through Domain1 at the newly introduced
machine FT, which takes the responsibility to spread the requests at a different period
of time to be processed by the corresponding machine using the domain Domain2.
Note that there exists only one machine domain Machine (see the sequence diagram
in Fig. 8.11).

8) Benefits FT pattern reduces the load of the system by spreading it temporally.
9) Consequences The order of satisfying requirements will be changed. It has to be checked that this

modification does not cause new bottlenecks.
10) Related patterns LB and MW patterns can be used to reduce the load if the tasks cannot be performed

at a different period of time.

8.3.5 Problem-oriented Master-Worker (MW) Pattern

The Master-Worker pattern makes it possible to serve requests in parallel, sim-
ilarly to load balancing. In contrast to load balancing that uses hardware com-

272 8 Phase 5: Quality-specific Pattern Analysis

Fig. 8.11: Sequence diagram describing the behavior of the FT pattern

ponents, the master-worker pattern provides a software solution. It consists of a
software component called Master and two or more other software components,
called Worker. The machine FTF/FT/MW/LB in Fig. 8.9 represents the Master and
two or more machine domains Machine represent the Workers. The task of the
master is to divide the request into parallel tasks and to forward them to the work-
ers, which manage the smaller tasks [96]. We instantiate the presented template for
the Master-Worker pattern. The result is shown in Table 8.11.

Fig. 8.12: Sequence diagram describing the behavior of the MW and LB patterns

8.3 Problem-oriented Performance Patterns 273

Table 8.11: Master-Worker Pattern

1) Name Master-Worker (MW)
2) Description The MW pattern makes it possible to serve requests in parallel. It distributes the

load over two or more software resources. The MW pattern consists of a software
resource called master and two or more other software resources, called worker. The
task of the master is to divide the request into parallel tasks and to forward them
to the workers, which manage the smaller tasks. The task should be divisible into
parallel smaller tasks.

3) Also known as Computation replicating
4) Problem An overload of the system is expected. The inbound requests exceed the processing

capacity of a specific resource (see the generic problem frame in Fig. 8.9).
5) Applicability The MW pattern is applicable when the resource, which is the bottleneck, is a soft-

ware resource, the overload is permanent, and the load can be spread spatially. That
is, the attributes loadDistributionType and overloadType, and resourceType of the
stereotype�bottleneck� in the generic problem frame in Fig. 8.9 have the values
spatial, permanent, and software.

6) Solution The solution uses the strategy of spreading the load over several software resources.
7) Collaboration When requests are issued, they arrive through Domain1 at the newly introduced

machine MW/LB, which takes the responsibility to forward the request to the cor-
responding machines which have available resources and can process the request.
Fig. 8.12 exemplifies the MW and LB patterns in which the load is distributed be-
tween the two machines MachineA and MachineB. The machines process the request
and send the response using the domains Domain2A and Domain2B. Note that there
exist at least two machine domains of the same type. More than two machines can
be used if required dependent on the load of the system.

8) Benefits The MW pattern reduces the load of the system by spreading it spatially.
9) Consequences Efficient algorithm for allocating the requests to responders is required to ensure that

the newly introduced machine does not become the new bottleneck.
10) Related patterns The LB pattern can be used to reduce the load if the bottleneck is a hardware re-

source. The FT pattern can be used if the tasks can be performed at a different period
of time. The FTF pattern can be used when there is a temporary overload.

8.3.6 Problem-oriented Load Balancer (LB) Pattern

The Load Balancer pattern provides a mechanism that is used to distribute com-
putational load evenly over two or more components. The load balancing pattern
consists of a component called Load Balancer, and multiple components that im-
plement the same functionality. The machine FTF/FT/MW/LB in Fig. 8.9 repre-
sents the load balancer. The load balancer can be realized as a hardware or a soft-
ware component [96]. Table 8.12 presents the instantiation of the template for the
Load Balancer pattern.

274 8 Phase 5: Quality-specific Pattern Analysis

Table 8.12: Load Balancer Pattern

1) Name Load Balancer (LB)
2) Description The LB pattern is used to distribute computational load evenly over two or more

resources. It consists of a load balancer, and multiple resources that implement the
same functionality. The load balancer can be realized as a hardware or a software
component.

3) Also known as -
4) Problem An overload of the system is expected. The inbound requests exceed the processing

capacity of a specific resource (see the generic problem frame in Fig. 8.9).
5) Applicability The LB pattern is applicable when the overload is permanent and the load can be

spread spatially. That is, the attributes loadDistributionType and overloadType of the
stereotype�bottleneck� in the generic problem frame in Fig. 8.9 have the values
spatial and permanent.

6) Solution The solution uses the strategy of spreading the load over several resources.
7) Collaboration When requests are issued, they arrive through Domain1 at the newly introduced

machine MW/LB, which takes the responsibility to forward the request to the cor-
responding machines which have available resources and can process the request.
Fig. 8.12 exemplifies the MW and LB patterns in which the load is distributed be-
tween two machines MachineA and MachineB. The machines process the request
and send the response using the domains Domain2A and Domain2B. Note that there
exist at least two machine domains of the same type. More than two machines can
be used if required dependent on the load of the system.

8) Benefits The LB pattern reduces the load of the system by spreading it spatially.
9) Consequences Efficient algorithm for allocating the requests to responders is required to ensure that

the newly introduced LBMachine does not become the new bottleneck.
10) Related patterns The MW pattern can be used to reduce the load if the bottleneck is a software re-

source. Note that in a MW pattern the task should be divisible into parallel smaller
tasks. The FT pattern can be used if the tasks can be performed at a different period
of time. The FTF pattern can be used when there is a temporary overload.

8.4 Discussion

In the previous sections, we proposed problem-oriented security and performance
patterns to be applied in the requirements engineering phase to the requirement
models. In this section, we discuss the benefits of these patterns.

Refining requirement models:
The proposed problem-oriented quality-specific patterns allow software engineers
not only to think about security problems as early as possible in the software devel-
opment life cycle, but also to think about approaches solving such quality-specific
problems. By exploring the solution space, we find appropriate solution mecha-
nisms, which can be used for refining security and performance requirement mod-
els in the requirement engineering phase. We treat the refinement of requirement
models with problem-oriented security and performance patterns in Chapter 9,

8.4 Discussion 275

where we move to the problem peak.

Bridging the gap:
Problem-oriented security and performance patterns are located in the problem
space, aiming at structuring and elaborating security and performance problems.
These patterns in the requirements engineering phase represent the counterpart to
the “classical” security and performance patterns in the design phase. The elabo-
rated requirement models can easily be transformed into a particular security or
performance pattern at the design level. Thus, problem-oriented security patterns
support bridging the gap between quality-specific problems and quality-specific
solutions.

Impact of design decisions:
Problem-oriented quality-specific patterns represent solution candidates for achiev-
ing quality requirements. By exploring the solution space for achieving quality re-
quirements, the software architect requires to know which assumptions and facts
have to be considered, and which new functional and quality requirements have
to be elicited when making a design decision regarding a specific type of quality
requirement. Generally speaking, all information that can affect the requirements
and related domain knowledge by making design decisions has to be documented.

The proposed templates for problem-oriented security patterns represent con-
sequences of applying solution approaches by providing new assumptions and/or
requirements to be considered when deciding on a specific pattern. Such a tem-
plate helps the software engineer when selecting a particular solution candidate to
keep track of changes in the requirements and domain knowledge. It also supports
inexperienced architects in understanding the impact of design decisions on the
entire system, particularly on the achievement of quality requirements.

Resolving requirement interactions:
The proposed templates for problem-oriented security patterns can be used for re-
solving interactions among quality requirements. In Chapter 7, we showed how
conflicts among requirements can be resolved by relaxing the requirements and
relaxing or strengthening the domain knowledge. Another option for resolving in-
teractions is making trade-offs between corresponding quality-specific solutions.
To this end, one or both corresponding quality-specific solutions have to be re-
laxed. Making such design decisions requires eliciting or updating domain knowl-
edge and requirements associated with the particular solution. For example, select-
ing a symmetric encryption for achieving a confidentiality requirement instead of
an asymmetric encryption demands different assumptions and requirements with

276 8 Phase 5: Quality-specific Pattern Analysis

respect to the required keys and key distribution as shown in the corresponding
Templates 8.13 and 8.14.

Table 8.13: Problem-oriented Asymmetric Encryption Pattern (template)

Security Solution
Name Asymmetric Encryption
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description The plaintext is encrypted using the public key and decrypted using

the private key.
Quality Requirement to be achieved Security (confidentiality) ConfidentialityReq
Affected quality requirements Performance PerformanceReq, availability AvailabilityReq

Necessary Conditions

Requirement 2 Assumption 2
Integrity of public key during transmission shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of private key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2
Integrity of private key during transmission shall be/is preserved.

Requirement 2 Assumption 2
Confidentiality of private key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of private key during storage shall be/is preserved.

Requirement 2 Assumption 2
Integrity of public key during storage shall be/is preserved.

To demonstrate this idea, we consider the asymmetric encryption as the ini-
tial security-specific solution, which is selected for satisfying the security require-
ment R11 from the case study smart grid, which we introduced in Section 2.6 (see
page 43). R11 is concerned with transmitting meter data through the WAN in a
confidential way (see Table 8.15).

Asymmetric encryption provides sufficient protection during transmitting me-
ter data through the WAN so that the confidentiality requirement can be achieved.
However, we detected a conflict with the performance requirement R24 by apply-
ing our method for detecting requirement interactions from the previous Chapter
(see Chapter 7). Hence, R24 cannot be achieved in less than 5 seconds when keep-
ing the security-specific solution asymmetric encryption for meeting the security
requirement RQ11. We have to decide for a strategy to resolve the conflict. The
possible strategies might be:

• Relaxing the performance requirement by increasing the response time.
• Strengthening or relaxing the performance-related domain knowledge for ex-

ample by raising the network bandwidth or by decreasing the data size.

8.4 Discussion 277

Table 8.14: Problem-oriented Symmetric Encryption Pattern (template)

Security Solution
Name Symmetric Encryption
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description The plaintext is encrypted using the secret key
Quality Requirement to be
achieved

Security (confidentiality) ConfidentialityReq

Affected Quality Require-
ment

Performance PerformanceReq, availability AvailabilityReq

Necessary Conditions

Requirement 2 Assumption
2

Secret key shall be/is distributed.

Requirement 2 Assumption
2

Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption
2

Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption
2

Confidentiality of secret key during transmission shall be/is pre-
served

Requirement 2 Assumption
2

Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption
2

Integrity of secret key during storage shall be/is preserved.

Table 8.15: Requirements R11 and R24 for smart metering

Quality Requirement Description
R11 Confidentiality of data transferred in the WAN shall be protected
R24 The time to retrieve meter data from the smart meter and publish it through

WAN shall be less than 5 seconds (together with R18, R20, R22)

Such strategies are at the cost of performance requirement R24 and can only be
used if the security requirement R11 has a higher priority. Here, we assume that
the performance requirement R24 has a higher priority. Hence, we have to make
a trade-off by relaxing the security-specific solution. This can be achieved by se-
lecting another security-specific solution, which is faster. We decide on symmetric
encryption instead of asymmetric encryption. Symmetric encryption is faster than
the asymmetric encryption. It, however, demands other requirements and domain
knowledge. For example, we have to care about the key distribution. Hence, this

278 8 Phase 5: Quality-specific Pattern Analysis

design decision leads to changes in the requirements as well as in the domain
knowledge as shown in Table 8.14.

8.5 Mapping Requirements to Quality Solutions

In this section, we first introduce an extension of the UML profile UML4PF in
Section 8.5.1, which is used for modeling the problem-solution diagram. Then, we
propose the problem-solution diagram in Section 8.5.2, which provides a mapping
from generated quality requirement alternatives in Chapter 7 to problem-oriented
quality patterns.

8.5.1 UML4PF Extension for Mapping Requirements to their
Solution Alternatives

We extend the problem frames notation by introducing new elements for model-
ing alternatives for quality requirements and their corresponding solutions. Our
extension is a UML profile relying on the UML4PF profile (see Section 2.3.1 on
page 33). The profile extension allows the creation of new diagram types, state-
ments, and dependencies. Figure 8.13 shows the stereotypes of this UML profile.
In the following, we describe the stereotypes that we used in our profile.

New types of diagrams

One new kind of UML4PF diagrams is the problem-solution diagram. It is ex-
pressed by the stereotype �ProblemSolutionDiagram�. A problem solution
diagram consists of two parts for modeling different levels of abstraction. Each
part represents a layer. The concept of layers in a feature model is introduced in
FODA1 [140] and FORM2 [141]. We define the stereotypes�ProblemSpace�
and �SolutionSpace� for packages representing those layers. The problem
space captures requirements, particularly quality requirements. The solution space
encompasses solution alternatives for addressing the requirements. The configura-

1 Feature-Oriented Domain Analysis
2 Feature-Oriented Reuse Method

8.5 Mapping Requirements to Quality Solutions 279

Fig. 8.13: UML4PF Extension for mapping requirements to solution alternatives

tion diagram expressed by the stereotype�ConfigurationDiagram� is the other
new kind of UML4PF diagrams. It represents all the requirements to be addressed

280 8 Phase 5: Quality-specific Pattern Analysis

in an architecture alternative as well as their corresponding quality-specific solu-
tions.

New types of statements

We introduce two new types of statement, namely variant (expressed by the stereo-
type�Variant�) and variation point (expressed by the stereotype�Variation-
Point�). Variation points represent locations where variability occurs (see Sec-
tion 2.5 on page 42). Therefore, they describe variability. Each variation point
accommodates different variants. Each variant represents one way of realizing the
variability at the specific variation point. Therefore, variation points represent de-
cisions for selecting or not selecting a variant. Variants are connected by depen-
dencies to their corresponding variation point. When deriving candidate architec-
tures, decisions have to be made for each variation point. One can distinguish
between mandatory variation point (�MandatoryVP�) and optional variation
point (�OptionalVP�).

Related to variation points are variants, which can represent an optional vari-
ation or a mandatory variation. A variation point indicates by its min and max
properties how many of the variants have to be chosen for the variation point.
Each variant can be annotated with a rationale for selecting it. It is indicated by a
rationale attribute. Using this attribute, reasons for the selection or not selection
of a specific variant can be given.

The type of variation relation is indicated by a variation dependency (�Variation-
Dependency�) which can be optional (�OptionalVD�) or mandatory (�Man-
datoryVD�). Variants and variation points can be related by a constraint de-
pendency. The relation can be an excludes (�ExcludesCD�) or a requires
(�RequiresCD�) dependency. Requirements can be related by a requirement
dependency which can be composed of (�ComposedOfRD�) or refined by
(�RefinedByRD�). Two variation points can be related by a variation point
dependency (�VPDependency�). The stereotype�DrivesVPD� is a special-
ization of a variation point dependency. It represents that the source variation point
causes the target variation point.

Table 8.16 shows the list of defined stereotypes and their description. The de-
tailed usage of the stereotypes will be explained in the next section.

8.5 Mapping Requirements to Quality Solutions 281

Table 8.16: Stereotypes defined for UML4PF extension for modeling the mapping
of quality requirements and their corresponding solution alternatives

Stereotype, Tagged values Applies to Description
�ConfigurationDiagram� Package It represents all the components contained in an archi-

tecture alternative as well as the corresponding require-
ments.

�ProblemSolutionDiagram� Package It represents requirements, solutions alternatives, and
their mappings.

�ProblemSpace� Package It captures the requirements.
�SolutionSpace� Package It captures solutions alternatives on the architecture level.
�VariationPoint� Class It represents the Statement, where variability may exist.
�Variant� Class It represents a variation.
{rationale = Rationale} �Variant� It captures the reasoning for selecting a variant.
�MandatoryVP� Class It represents a variation point that must always be se-

lected.
�OptionalVP� Class It represents a variation point that may be selected.
�ConstraintDependency� Dependency It represents a dependency between two variants (classes

with stereotype�Variant�)
�ExcludesCD� Dependency It represents a dependency from a source variant (class

with stereotype �Variant�) to a target variant (class
with stereotype �Variant�) and prevents selecting the
target variant if the source variant has been selected.

�RequiresCD� Dependency It represents a dependency from a source variant (class
with stereotype �Variant�) to a target variant (class
with stereotype�Variant�) and requires the target vari-
ant to be selected if the source variant has been selected.

�VPDependency� Dependency It represents a dependency from a source variant
point (class with stereotype �VariationPoint�
or �MandatoryVP� or �OptionalVP�) to
a target variation point (class with stereotype
�VariationPoint� or �MandatoryVP� or
�OptionalVP�).

�DrivesVPD� Dependency It is a specialization of the dependency with the stereo-
type�VPDependency� meaning that the source vari-
ation point (class with stereotype �VariationPoint�)
causes the target variation point (class with stereotype
�VariationPoint�).

�VariationDependency� Dependency It represents a dependency providing a link from a varia-
tion point (class with stereotype�VariationPoint�)) to
its variants (class with stereotype�Variant�).

�MandatoryVD� Dependency It points to a variant that must always be selected.
�OptionalVD� Dependency It points to a variant that may be selected.
�RequirementDependency�Dependency It represents a dependency between two requirements.
�ComposedOfRD� Dependency It represents a dependency from a source requirement to

a target requirement and captures the decomposition re-
lationships between requirements.

�RefeindByRD� Dependency It represents a dependency from a source requirement to
a target requirement and captures the decomposition re-
lationships between requirements.

282 8 Phase 5: Quality-specific Pattern Analysis

8.5.2 Problem-Solution Diagram

In this section, we describe how to provide a mapping of quality requirements to
their potential solution alternatives by setting up a problem-solution diagram. It
uses the already modeled problem diagrams (see Chapter 4) and problem-oriented
quality-specific patterns (see Sections 8.2 and 8.3) and provides a mapping be-
tween them. The problem-solution diagram provides a basis for selecting appro-
priate quality-specific solution mechanisms in the next chapter (see Chapter 9).

For modeling the problem-solution diagram, we use the UML profile extension
we introduced in the previous section (see Section 8.5.1). The problem-solution
diagram consists of one package for representing the overall mapping between the
problem and the solution space. The stereotype �ProblemSolutionDiagram�
has to be applied to this overall package to represent the problem-solution diagram.
It consists of two layers to be expressed by the stereotypes �ProblemSpace�
and �SolutionSpace� to represent the space of requirements as well as the
space of solution alternatives.

For modeling the problem space, one uses functional as well as quality require-
ments from problem diagrams. The problem space can be designed in a flexi-
ble way. One can decide for modeling only quality requirements or for model-
ing both functional and quality requirements. In addition, one can model the de-
composition relationships among functional requirements using the stereotypes
�ComposedOfRD� and �RefinedByRD�. Quality requirements represent
the variation points as different solution alternatives can be chosen for addressing
them on the architecture level. Hence, for each quality requirement and its alterna-
tives (generated in Section 7.5 on page 231), one variation point has to be created
(expressed by the stereotype�VariationPoint�). In case one wants to restrict the
number of quality requirements related to one variation point, the attributes min
and max can be used. Quality requirements and their generated alternatives repre-
sent the variants of one variation point expressed by the stereotype�Variant�.

For modeling the solution space, one uses the problem-oriented security and
performance patterns as solution alternatives for achieving quality requirements.
The set of patterns provide the variation points and each single problem-oriented
security and performance pattern represents a variant. Since these solution al-
ternatives are accommodated in the design space and are used later on as com-
ponents in the architecture, they are additionally annotated with the stereotype
�Component� from the UML profile for architecture (see Section 2.3.2 on
page 37). Note that the solution space is not specific to the smart grid in contrast to
the problem space. It represents the set of possible quality-specific patterns and not
their instantiations. The reason is that the selection of appropriate quality-specific
patterns and their instantiation is achieved in the next chapter. Instantiating patterns

8.5 Mapping Requirements to Quality Solutions 283

that might not be selected in the next chapter would cause a high and unnecessary
modeling effort. We avoid this by using the patterns as possible quality-specific
solutions in the solution space.

The variation points in the problem space are linked to the variation points in
the solution space by a dependency with the stereotype �VPDependency�.
Variants in the problem space as well as variants in the solution space are linked
by a dependency with the stereotype�VariationDependency�.

The problem-solution diagram for the smart grid case study is shown in Fig. 8.14.
The problem-solution diagram SmartGridPS is represented by an overall pack-
age with the stereotype�ProblemSolutionDiagram�. It consists of the Smart-
GridRequirements representing the problem space (expressed by the stereotype
�ProblemSpace�) and the SmartGridSolutionAlternatives representing the so-
lution space (expressed by the stereotype�SolutionSpace�).

For the problem space, we make use of all the requirements, functional as well
as quality requirements that are already available in the problem diagrams. The re-
quirements R1, R2R3, R4, and R5 represent the functional requirements. The UML
profile extension provides the possibility to model the merging of requirements
R2 and R3 into the requirement R2R3. To this end, one might use the stereotype
�ComposedOfRD� (not shown in Fig. 8.14). A variation point is created for
each quality requirement and its generated alternatives. For example, R18VP ex-
pressed by the stereotype �MandatoryVP� is a mandatory variation point for
the performance requirement R18 and its generated alternatives R18.1 and R18.2
which represent variants (expressed by the stereotype�Variant�). The manda-
tory variation point R18VP has as attributes min=1 and max=1 which means that
exactly one variant of the three variants must be selected for an architecture al-
ternative. This holds for all mandatory variation points in the problem space. It is
only shown for R18VP in Fig. 8.14. Other quality requirements have to be modeled
in a similar way.

For the solution space, we create one variation point for the problem-oriented
performance patterns and one variation point for the problem-oriented security pat-
terns. Each of the problem-oriented performance patterns LB, MW, FT, and FTF
are modeled as variants and components (stereotypes�Variant� and�Compo-
nent�). Also the problem-oriented security patterns SymEnc, AsymEnc, RBAC,
DigSig, and MAC have to be modeled as components and variants. Variation
points in the problem space are linked to their corresponding variation points in
the solution space using dependencies with the stereotype�VPDependency�.
Problem-oriented quality pattern variants are annotated with rationales which fa-
cilitates the selection of the pattern variants.

284 8 Phase 5: Quality-specific Pattern Analysis

Fig. 8.14: Problem-Solution diagram for smart grid

8.6 Related Work 285

8.6 Related Work

In this section, we discuss related work with respect to security and performance
in Section 8.6.1 and with respect to variability in Section 8.6.2.

8.6.1 Related work with respect to Security and Performance

There has been a number of research works that proposed patterns for different
areas of software engineering and other application domains. We mainly discuss
here patterns that are related to the problem frames approach.

Beckers et al. [49] propose a meta model for describing context patterns for
various kinds of domain knowledge. The meta model is based on a number of con-
text patterns for different areas of domain knowledge such as Peer-to-Peer, cloud
computing, and the legal domain developed in the past by the authors. To improve
the understanding of the context and eliciting required information, these patterns
can be integrated into existing software development methods. The domain knowl-
edge required for the software engineering can be captured by instantiating such
context patterns. Similar to our patterns, the context patterns are provided for the
requirements engineering phase. However, they differ from our problem-oriented
security patterns as they elicit and analyze the context supporting the elicitation of
requirements while we focus on finding solution approaches for already elicited
security requirements.

Hatebur et al. [116] propose security problem frames and concretized secu-
rity problem frames. Security problem frames represent special kinds of problem
frames which address security problems. Security problem frames do not take into
account a solution. They have to be transformed into concretized security problem
frames which address a solution using generic security mechanisms. Similar to this
approach, we make use of the problem frames approach as a basis for providing se-
curity patterns. The first part of our graphical pattern, namely the generic problem
diagram, corresponds to the security problem frames proposed in [116]. The sec-
ond part of our graphical pattern represents a generic security mechanism, while
the third part corresponds to the concretized security problem frames. In addition,
we provide a template for each pattern including meta information and necessary
conditions that need to be considered when applying a specific pattern.

The same authors present a pattern system in a further work [117] based on se-
curity problem frames and their counterparts concretized security problem frames.
In this work, the relationships and dependencies between different frames are rep-
resented explicitly in a pattern system. The pattern system should support the se-

286 8 Phase 5: Quality-specific Pattern Analysis

curity engineer by choosing the appropriate concretized security problem frame
for an identified security problem frame.

A pattern language for security risk analysis of web applications is proposed
by Li et al. [166], which can be used to support conducting a risk analysis in the
early phase of the software development life cycle. The authors introduce three
basic pattern types, namely security requirement patterns, web application archi-
tecture design patterns, and risk analysis model patterns that can be combined to
build security risk analysis composite patterns. A security requirement pattern is
defined according to the problem frames notation. An instantiation of the secu-
rity requirement pattern, namely a security requirement, represents the input for
the web application architecture design pattern representing the architecture de-
sign for a specific web application. Our problem-oriented security patterns can be
used as an intermediate step between the security requirement patterns and web
application architecture design patterns to facilitate the transformation of security
requirement patterns in the requirement analysis phase into the web application ar-
chitecture design patterns in the design phase. In addition, our patterns help iden-
tifying new assumptions / requirements that need to be considered when applying
a specific security pattern.

Composition frames used in this chapter for problem-oriented performance pat-
terns are used in some other work as well. Laney et al. [163] propose a systematic
method to resolve inconsistencies in the problem frames. The authors introduce
composition frames in order to deal with composing conflicting requirements.
Composition frames are also used in our work on aspect-oriented requirements
engineering based on problem frames to restructure requirement models using se-
curity patterns [24]. Composition frames in our previous work serve as a means
to weave security aspects into the functional structures. In our current work, we
use composition frames in a different way. A composition frame in our approach
represents the generic solution structure for performance analysis patterns. We use
composition frames to apply performance analysis patterns to problem diagrams
containing performance problems.

8.6.2 Related work with respect to Variability

One related research topic aims at adopting the notion of variability modeling to
generate software architectures. A feature-based method is proposed by Bruijn
and van Vliet [60] to generate software architectures with respect to functional
and non-functional requirements. The authors treat functional and non-functional
requirements separately, constructing two branches in the feature graph. Bruijn

8.6 Related Work 287

and van Vliet generate design alternatives by using Use Case Maps (UCM) as
a scenario-based architectural description language, which is not model- and
pattern-based in contrast to our work.

To treat variability in the requirements analysis and consequently generate a
customizable software design, Hui et al. [128] propose a framework for identify-
ing requirements (user goals, user skills, user preferences) from a user perspective.
However, this work focuses on the early stage of requirements analysis by choos-
ing goals to represent and analyze variability. This work can be seen as comple-
mentary to our approach as our work deals with requirements and specification.

There are a number of UML extensions to model variability. A UML profile is
proposed by Clauß [76]. This profile supports only the UML 1.4 and not the current
UML version. Also Ziadi et al. [255] introduce a UML profile. We found some
differences regarding the modeling of relationships between features or variants.
Also modeling of variants in terms of optional or alternative variants is performed
in a different way. We customized our UML profile for variability in a way that it
can serve our specific needs regarding the coverage of both requirement space and
design space.

Another research topic is concerned with connecting problem frames with vari-
ability modeling. Zuo et al. [257] introduce an extension of the problem frames
notation that provides support for product line engineering using the notion of fea-
ture analysis. While Ali et al. [27] propose a method to treat variability of context
(conditions in the operating environment influencing the behaviour of the system)
in requirements, we take a step forward and connect functional and quality re-
quirements to commonality and variability in the solution space, expressed by al-
ternative solutions. A method for integrating software product line engineering and
the problem frames concept considering domain concerns is proposed by Dao et
al. [86]. In this work a feature model is mapped to a problem frames model. A goal
model is adopted to represent various concerns and variable quality requirements.
The mapping between these different models is complicated and time-consuming,
hence requires a tool support.

There are works concerning the modeling of quality properties in the context
of variability modeling. Yu et al. [250] relate stakeholder goals including quality
properties captured as goal models to a feature model by introducing a mapping
between goals and features. Lee and Kang [164] consider the usage context as the
primary driver for feature selection. The authors present three variability models
for the usage context, quality attributes, and the product as well as three mappings
between them to derive a product configuration.

288 8 Phase 5: Quality-specific Pattern Analysis

8.7 Contributions

In the first part of this chapter, we adapted security and performance architectural
patterns in a way that they can be used in the requirements engineering phase
for the analysis of security and performance problems. The adapted patterns, the
problem-oriented security patterns as well as problem-oriented performance pat-
terns, are provided using a systematic structure. This part can be summarized as
follows:

• Problem-oriented security patterns consist of a three-part graphical pattern and
a template describing the effect of the security pattern on requirements when
applied.

• We presented five examples of problem-oriented security patterns to address
confidentiality, integrity, and authenticity problems on the requirement level.

• Problem-oriented performance patterns consist of a template and two new prob-
lem frames describing the generic structure of the problem and the solution.

• We provided four examples of problem-oriented performance patterns.
• Other security and performance patterns and mechanisms located in the solu-

tion space can easily be transformed into the problem space analogously, using
the proposed structure for problem-oriented security and performance patterns.
Necessary for such a transformation is the knowledge about the patterns and/or
mechanisms, their structure, and their constituents to build the problem-oriented
security and performance patterns.

In a further part of this chapter, we connected the generated quality require-
ment alternatives from Chapter 7 and the quality-specific solutions. To this end,
we introduced the problem-solution diagram, which

• provides a mapping of (quality) requirements to problem-oriented quality pat-
terns. Quality requirements drive the variability in the solution space and serve
as selection criteria.

• enables the annotation of quality solutions in the solution space with rationales
for choosing among alternatives. Thus, the problem-solution diagram repre-
sents a “decision space” and provides a good starting point to identify solution
candidates for quality requirements.

• supports maintaining traceability between model artifacts, namely between the
requirements and the architectural solutions addressing those requirements, in-
cluding the rationale for selecting the architectural solutions.

The results of this chapter are used in the next chapter for selecting problem-
oriented quality patterns and applying them to the requirement models.

Chapter 9
Phase 6: Quality-specific Pattern Selection &
Application

Abstract In this chapter, we propose a structured method that selects appropri-
ate problem-oriented security and performance patterns introduced in the previous
chapter. The method applies such patterns to the requirement models in order to
address the quality requirements security and performance early in the software
development. This way, we refine the requirement models and bridge the gap be-
tween quality problems and quality solutions.

9.1 Introduction

After relaxing the conflicting quality requirements and generating requirement al-
ternatives (see Chapter 7), we have to select appropriate quality-specific solution
mechanisms and apply them to achieve the requirement alternatives. To this end,
we introduced problem-oriented performance patterns and problem-oriented se-
curity patterns in Chapter 8 as solutions for achieving the quality requirements
performance and security.

This chapter represents Phase 6 of the QuaDRA framework. In this chapter,
we propose a structured method that selects appropriate problem-oriented quality
patterns and applies them to requirement models. Doing this, the quality-specific
solutions are integrated into the software development process to refine the require-
ment models and bridge the gap between security and performance problems, and
security and performance solutions. The instantiations of the patterns provide a
basis for a seamless transition from requirement analysis to architectural design,
which is achieved in the next chapter.

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_9

290 9 Phase 6: Quality-specific Pattern Selection & Application

This chapter is based on our works presented in [21] proposing the applica-
tion of problem-oriented security patterns and [22] proposing the application of
problem-oriented performance patterns. We are the main author of these works.
We had useful and valuable discussions with Maritta Heisel regarding quality-
specific solution candidates.

The remainder of this chapter is organized as follows. Our method for selecting
and applying problem-oriented quality patterns in presented in Section 9.2. The
contribution of this chapter is given in Section 9.3. Note that this chapter does not
contain a related work section, as we extensively discussed related work regarding
security and performance solution approaches in Chapter 8 (see Section 8.6 on
page 285).

9.2 Method for Selecting & Applying Quality-specific Patterns

In this section, we propose a method to select and apply problem-oriented per-
formance patterns and problem-oriented security patterns in a structured way. The
output of this method is a set of problem diagrams containing solution mechanisms
for achieving quality requirements. This set of problem diagrams provides the ba-
sis for deriving an architecture alternative in the next chapter. For deriving different
architecture alternatives, different sets of quality-specific problem diagrams have
to be created. To this end, one needs to apply the method iteratively. For example,
for producing input for three different software architecture alternatives, one needs
to iterate three times over the steps of this method.

In the following, we describe our method to select and apply problem-oriented
quality-specific patterns. An overview of the steps of the method is shown in
Fig. 9.1.

Step 1 - Prioritize quality requirements

In the first step, one needs to prioritize quality requirements for the target software
architecture alternative. For deriving each architecture alternative, a new prioriti-
zation of quality requirements is needed. Therefore, we require the quality require-
ments relevant for our purpose as the input for this step.

9.2 Method for Selecting & Applying Quality-specific Patterns 291

process
external

input output
input /

S
te

p
1:

P
rio

rit
iz

e
qu

al
ity

re
qu

ire
m

en
ts

Q
ua

lit
y

re
qu

ire
m

en
ts

S
te

p
2:

S
el

ec
t q

ua
lit

y
re

qu
ire

m
en

ts

P
rio

rit
iz

ed
qu

al
ity

re
qu

ire
m

en
ts

C
on

fig
ur

at
io

n
di

ag
ra

m

S
te

p
3:

 S
el

ec
t

pr
ob

le
m

-o
rie

nt
ed

se
cu

rit
y

pa
tte

rn

S
te

p
7:

 S
el

ec
t

pr
ob

le
m

-o
rie

nt
ed

pe
rf

or
m

an
ce

 p
at

te
rn

S
te

p
8:

 A
pp

ly
pr

ob
le

m
-o

rie
nt

ed

pe
rf

or
m

an
ce

 p
at

te
rn

P
ro

bl
em

-o
rie

nt
ed

se
cu

rit
y

pa
tte

rn
s

Q
ua

lit
y

re
qu

ire
m

en
t

al
te

rn
at

iv
es

P
ro

bl
em

-o
rie

nt
ed

pe
rf

or
m

an
ce

 p
at

te
rn

s

C
on

fig
ur

at
io

n
di

ag
ra

m
C

on
fig

ur
at

io
n

di
ag

ra
m

P
ro

bl
em

-s
ol

ut
io

n
di

ag
ra

m

S
te

p
4:

 A
pp

ly
pr

ob
le

m
-o

rie
nt

ed
se

cu
rit

y
pa

tte
rn

S
ec

ur
ity

-s
pe

ci
fic

pr
ob

le
m

 d
ia

gr
am

s

S
te

p
5:

 M
er

ge
se

cu
rit

y
co

m
po

si
tio

n
di

ag
ra

m
 (

sa
m

e
fu

nc
tio

na
l r

eq
.)

S
te

p
6:

 M
er

ge
se

cu
rit

y
co

m
po

si
tio

n
di

ag
ra

m
 (

di
ffe

re
nt

fu
nc

tio
na

l r
eq

.)

S
ec

ur
ity

-s
pe

ci
fic

pr
ob

le
m

 d
ia

gr
am

s
S

ec
ur

ity
-s

pe
ci

fic
pr

ob
le

m
 d

ia
gr

am
s

Q
ua

lit
y-

sp
ec

ifi
c

pr
ob

le
m

 d
ia

gr
am

s

P
ro

bl
em

 d
ia

gr
am

s
w

ith

pe
rf

or
m

an
ce

 p
ro

bl
em

s
(P

oP
eR

A
)

Fig. 9.1: Method for selecting and applying quality-specific patterns

292 9 Phase 6: Quality-specific Pattern Selection & Application

Application of Step 1 - Prioritize quality requirements

In Chapter 7 (see Section 7.5 on page 231), we described that we aim at deriving
three different software architecture alternatives with different levels of satisfac-
tion for security and performance for our smart grid case study. As security and
performance requirements are interacting, the three architecture alternatives pro-
vide trade-offs between these two quality requirements.

The first architecture alternative has to treat the desired performance require-
ments with the highest priority (architecture alternative 1), the second one has to
rank the security requirements first (architecture alternative 2), and the third one
has to provide a trade-off of performance and security requirements with similar
priorities (architecture alternative 3). This architecture alternative fulfills neither
the security requirements nor the performance requirements to the best degree of
satisfaction. It, however, satisfices both quality requirements with a trade-off which
treats both quality requirements with the same priority. We apply the next steps for
all three software architecture alternatives.

Step 2 - Select quality requirements

As the input of this step, we take the generated quality requirement alternatives (see
Section 7.5 on page 231) and the problem-solution diagram (see Section 8.5 on
page 278) into account. For each architecture alternative, one has to select among
the sets of quality requirement alternatives. To this end, for each variation point in
the problem space of the problem-solution diagram, one quality requirement vari-
ant has to be selected. This way, one decides on the requirements to be addressed
in the corresponding software architecture alternative. A configuration diagram
which corresponds to the selected architecture alternative is created as the output
of this step.

Note that the configuration diagram cannot be fully created in this step as the
quality-specific solutions are not selected yet. Hence, the configuration diagram in
this step contains only the requirements to be addressed in the selected architecture
alternative. It has to be completed in the next steps when deciding on quality-
specific solutions for each architecture alternative.

9.2 Method for Selecting & Applying Quality-specific Patterns 293

Application of Step 2 - Select quality requirements

Architecture Alternative 1
For the smart grid case study, we decided on three architecture alternatives. For
the architecture alternative 1, we select the following performance requirement
variants: R18, R19, R22, R23, R24, and R25. These performance requirements are
the original performance requirements and hence not weakened. As the architec-
ture alternative 1 has to provide a trade-off with the best performance, we need to
select the weaker security requirement alternatives than the original ones. To this
end, we select the following security requirement variants: R10.1, R11.1, R12.1,
R13.1, R14.1, and R15.1 (see Tables 7.27 and 7.28 on page 236 for the require-
ment alternatives). Figure 9.2 shows the configuration diagram for the architecture
alternative 1.

Fig. 9.2: Configuration diagram (only requirements) for the architecture alterna-
tive 1

Architecture Alternative 2
For the architecture alternative 2, we decide for the strongest security require-
ments, namely the original ones R10, R11, R12, R13, R14, and R15. In contrast
to the security requirements, we decide for the weakest generated performance re-
quirements that are still acceptable, namely R18.1, R19.1, R22.1, R23.1, R24.1,
and R25.1 (see Tables 7.29 - Table 7.32 on page 237 for the requirement alterna-
tives). Figure 9.3 shows the configuration diagram for the architecture alternative
2.

Architecture Alternative 3
The architecture alternative 3 has to provide a trade-off between performance and
security requirements with similar priorities. To this end, we decide on the security
requirement alternatives R10.2, R11.2, R12.2, R13.2, R14.2, and R15.2 and perfor-

294 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.3: Configuration diagram (only requirements) for the architecture alterna-
tive 2

mance requirement alternatives R18.2, R19.2, R22.2, R23.2, R24.2, and R25.2 (see
Tables 7.27 - Table 7.32 on page 236 for the requirement alternatives). Figure 9.4
shows the configuration diagram for the architecture alternative 3. Table 9.1 gives
an overview of the selected quality requirement variants for all three architecture
alternatives.

Fig. 9.4: Configuration diagram (only requirements) for the architecture alterna-
tive 3

Step 3 - Select problem-oriented security patterns

The proposed problem-oriented security patterns in Section 8.2 (see page 249)
have to be selected in this step for addressing security requirements. According to
the strength of the generated security requirement alternatives, it has to be decided
on the problem-oriented security patterns. In the previous chapter (see Section 8.5
on page 278), we provided the possibility to annotate the problem-oriented security
pattern variants in the problem-solution diagram with rationales (see the problem

9.2 Method for Selecting & Applying Quality-specific Patterns 295

Table 9.1: Quality Requirement Variants for the Corresponding Architecture Al-
ternatives

Problem-Solution Diagram Arch. Alternative 1 Arch. Alternative 2 Arch. Alternative 3
Variation Point Variant Variant Variant
R18VP R18 R18.1 R18.2
R19VP R19 R19.1 R19.2
R22VP R22 R22.1 R22.2
R23VP R23 R23.1 R23.2
R24VP R24 R24.1 R24.2
R25VP R25 R25.1 R25.2
R10VP R10.1 R10 R10.2
R11VP R11.1 R11 R11.2
R12VP R12.1 R12 R12.2
R13VP R13.1 R13 R13.2
R14VP R14.1 R14 R14.2
R15VP R15.1 R15 R15.2

space in Fig. 8.14 on page 284). Such rationales should support the selection of
those pattern variants. In addition to the problem-oriented security patterns and
the problem-solution diagram, we require the quality requirement alternatives and
the configuration diagrams as the input for this step.

Application of Step 3 - Select problem-oriented security patterns

Architecture Alternative 1
For the architecture alternative 1, we selected the weakest security requirements
R10.1, R11.1, and R12.1 (related to the functional requirement R4) and R13.1,
R14.1, and R15.1 (related to the functional requirement R5). According to Ta-
ble 7.27 (see Section 7.5 on page 231), for the requirements R10.1, R11.1, R12.1,
we are concerned with a WAN attacker, who has one month preparation time, one
month attack time, a proficient expertise, and a specialized equipment. As we are
not concerned with the strongest attacker, the confidentiality requirement R11.1 is
satisficed by selecting the problem-oriented security pattern symmetric encryption.
Symmetric encryption is fast when compared with other types of encryption such
as asymmetric encryption. To achieve the integrity and authenticity requirements
R10.1 and R12.1, we select the problem-oriented security pattern MAC. MAC uses
symmetric keys (only one secret key). This implies that MAC is also faster than the
alternative solution digital signature which uses asymmetric keys (public-private
key pair).

296 9 Phase 6: Quality-specific Pattern Selection & Application

According to Table 7.28 (see Section 7.5 on page 231), for the requirements
R13.1, R14.1, R15.1, the HAN attacker has only one day preparation time, one day
attack time, a laymen expertise, and a standard equipment. Hence, we are con-
cerned with an attacker with the weakest attacker profile targeting a not public
network (HAN). According to this and considering the lower priority of security
requirements for the architecture alternative 1, we decide for not selecting a secu-
rity mechanism for the requirements R13.1, R14.1, R15.1 as the remaining risk for
being attacked by such an attacker is low.

Architecture Alternative 2
For the architecture alternative 2, we selected the original security requirements
R10, R11, and R12 (related to the functional requirement R4) and R13, R14, and
R15 (related to the functional requirement R5) in order to meet the security re-
quirements the best. For the confidentiality requirements R11 and R14, we select
the problem-oriented security pattern asymmetric encryption which does not have
the key distribution problem compared to its alternative symmetric encryption due
to the usage of public-private key pair instead of a shared secret key. For the in-
tegrity requirements R10 and R13 and the authenticity requirements R12 and R15
we choose the problem-oriented security pattern digital signature due to the same
reason as for the asymmetric encryption. It uses a public-private key pair instead
of a shared secret key used in MAC.

Architecture Alternative 3
For the architecture alternative 3, we selected the security requirements R10.2,
R11.2, and R12.2 (related to the functional requirement R4) and R13.2, R14.2,
and R15.2 (related to the functional requirement R5). These security requirements
are not as weak as the security requirements to be addressed by the first architec-
ture alternatives nor as strong as the security requirements related to the second
architecture alternatives. Hence, we select the problem-oriented security pattern
symmetric encryption for the confidentiality requirements R11.2 and R14.2. For
the integrity requirements R10.2 and R13.2 and for the authenticity requirements
R12.2 and R15.2 we decide on the problem oriented security pattern MAC which
provides integrity as well as authenticity.

As we can observe, for the architecture alternative 3 for achieving the secu-
rity requirements related to the functional requirement R4 we selected the same
problem-oriented security patterns as for the architecture alternative 1. As the se-
curity requirements to be addressed in the architecture alternative 3 are stronger
than those ones to be addressed in the architecture alternative 1, the correspond-
ing problem-oriented security pattern symmetric encryption for the architecture
alternative 3 has to use a stronger encryption algorithm or a stronger key than

9.2 Method for Selecting & Applying Quality-specific Patterns 297

the ones for the architecture alternative 1. This can be captured as an annotation
using the rationale attribute of the stereotype �Variant� for the design phase.
The complete configuration diagrams are shown in the next step after selecting the
problem-oriented performance patterns.

Step 4 - Apply problem-oriented security patterns

In this step, we apply the problem-oriented security patterns selected in Step 3.
As the input, we take the problem-oriented security patterns (see Section 8.2 on
page 249) and the created configuration diagrams for each architecture alterna-
tive from the previous step into account. To each problem diagram, the selected
security mechanism has to be applied by instantiating the problem-oriented se-
curity patterns. As described in Section 8.2 (see page 249), the graphical pattern
involves the three parts functional problem diagram, which is the problem dia-
gram annotated with security requirements, security problem diagram, which is
the problem diagram describing the particular solution approach for the security
requirement annotated in the functional problem diagram, and the composition
problem diagram, which is the problem diagram composing the first and second
part for achieving both functional and security requirements.

As described previously in Section 8.2 (see page 249), new requirements and
assumptions arise due to introducing the security solutions. Hence, we have to
think about new problems that might arise and then capture them as new require-
ments and/or assumptions. To this end, we introduced specific templates that rep-
resent additional information corresponding to the graphical part of each problem-
oriented security pattern. These templates have to be instantiated in this step for
each security requirement, for which we introduce a problem-oriented security
pattern.

Application of Step 4 - Apply problem-oriented security patterns

Architecture Alternative 1
For the smart grid case study, according to the configuration diagram for the ar-
chitecture alternative 1 illustrated in Fig. 9.21, we selected the problem-oriented
security pattern symmetric encryption (see Fig. 8.2 in on page 254) for achieving
the confidentiality requirement R11.1 and the problem-oriented security pattern
MAC for achieving the integrity and authenticity requirements R10.1 and R12.1
related to the functional requirement R4.

298 9 Phase 6: Quality-specific Pattern Selection & Application

The functional problem diagram in our case study is the problem diagram Sub-
mitMeterData for the functional requirement R4 shown in Fig. 9.5. Symmetric
encryption as the selected solution for the confidentiality problem is expressed
by the problem diagram SymEnc R4 shown at the top of Fig. 9.6. It contains the
machine SymEncM, which is responsible for achieving the confidentiality require-
ment R11.1 by encrypting the lexical domain MeterData using the lexical domain
SecretKey, which is part of the machine SymEncM.

Fig. 9.5: Problem diagram related to functional requirement R4 and its correspond-
ing quality requirements

The composition problem diagram R4 SymEnc Composition shown at the bot-
tom of Fig. 9.6 combines the functional problem diagram with the security prob-
lem diagram. It consists of the new machine EncryptionManager R4, both ma-
chine domains SubmitMD and SymEncM, and the domains of both problem dia-
grams. Consider that the lexical domain SecretKey is part of the machine SymEncM

9.2 Method for Selecting & Applying Quality-specific Patterns 299

and hence is not shown in the composition problem diagram. The machine En-
cryptionManager R4 is responsible for coordinating the functional machine Sub-
mitMD and the security solution machine SecretKey. It is responsible for obtaining
MeterData, encrypting it using SymEncM and sending it to the AuthorizedExter-
nalEntities using SubmitM. The requirement ComposedR4R11.1 consists of the
requirements R4 and R11.1. It shall be achieved by the machine EncryptionMan-
ager R4.

Fig. 9.6: Instantiated problem-oriented security pattern symmetric encryption for
the confidentiality requirement R11.1

Table 9.2 provides an instantiation of the problem-oriented symmetric encryp-
tion pattern template shown in Table 8.2 (see page 256). The instantiation is for the
confidentiality requirement R11.1. In the second part of this template, one needs
to decide whether the new conditions have to be treated as assumptions or new re-
quirements. Here, we assume that these necessary conditions hold. We only show

300 9 Phase 6: Quality-specific Pattern Selection & Application

the template instantiation for the confidentiality requirement R11.1. The complete
set of template instantiations is shown in Appendix C.

Table 9.2: Problem-oriented Symmetric Encryption pattern template for the confi-
dentiality requirement R11.1

Security Solution for the Confidentiality Requirement R11.1
Name Symmetric Encryption
Purpose For MeterData constrained by the requirement R4
Brief Description The plaintext is encrypted using the secret key
Quality Requirement to be achieved Security (confidentiality) R11.1
Affected Quality Requirement Performance R18, R19, R22, R23, R24, R25

Necessary Conditions

Requirement 2 Assumption 2�
Secret key shall be/is distributed.

Requirement 2 Assumption 2�
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of secret key during transmission shall be/is pre-
served

Requirement 2 Assumption 2�
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of encryption machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of encryption machine shall be/is preserved.

MAC as the selected solution for the integrity and authenticity problem is ex-
pressed by the problem diagram MAC R4 shown at the top of Fig. 9.7. It con-
tains the machine MACM, which is responsible for achieving the integrity and
authenticity requirements R10.1 and R12.1. Similar to symmetric encryption, the
MAC mechanism uses a shared SecretKey, which is part of the machine MACM.
The composition problem diagram R4 MAC Composition shown at the bottom
of Fig. 9.7 combines the functional problem diagram SubmitMeterData with the
security problem diagram MAC R4. We do not describe it in detail as it is very
similar to the composition diagram of the symmetric encryption pattern. In this
case, the MAC algorithm of the machine MACManager R4 calculates a MAC
value which allows the verifier (in our case study the AuthorizedExternalEntities)
to detect any changes to the MeterData. The AuthorizedExternalEntities possess
the same SecretKey for verifying MeterData.

9.2 Method for Selecting & Applying Quality-specific Patterns 301

Fig. 9.7: Instantiated problem-oriented security pattern MAC for the integrity and
authenticity requirements R10.1 and R12.1

Architecture Alternative 2
According to the configuration diagram for the architecture alternative 2 illustrated
in Fig. 9.221 , we selected the problem-oriented security pattern asymmetric en-
cryption for achieving the confidentiality requirements R11 (related to the func-
tional requirement R4) and R14 (related to the functional requirement R5) and the
problem-oriented security pattern digital signature for achieving the integrity and
authenticity requirements R10 and R12 (related to the functional requirement R4)
and R13 and R15 (related to the functional requirement R5).

1 The dependency �RequiresCD� is a specialization of the dependency
�ConstraintDependency� between two variants. It requires the target variant to be
selected if the source variant has been selected (see Section 8.5.1 on page 278 for more
information).

302 9 Phase 6: Quality-specific Pattern Selection & Application

The instantiated asymmetric encryption problem diagram AsymEnc R4 R5 for
the confidentiality requirements R11 and R14 is shown at the top of Fig. 9.8. The
machine AsymEncM uses the PublicKey to encrypt MeterData. The PrivateKey
used for decryption at the receiver side is not shown in this figure as it only shows
the sender side responsible for encrypting the data.

Fig. 9.8: Instantiated problem-oriented security pattern asymmetric encryption for
the confidentiality requirements R11

The composition problem diagram R4 AsymEnc Composition shown at the
bottom of Fig. 9.8 combines the functional problem diagram SubmitMD with the
security problem diagram AsymEnc R4 R5 shown at the top of Fig. 9.8. It consists
of the new machine EncryptionManager R4, both machine domains SubmitMD
and AsymEncM, and the domains of both problem diagrams. The machine En-
cryptionManager R4 is responsible for obtaining MeterData, encrypting it using
AsymEncM and sending it to the AuthorizedExternalEntities using SubmitM. The

9.2 Method for Selecting & Applying Quality-specific Patterns 303

Fig. 9.9: Problem diagram related to functional requirement R5 and its correspond-
ing quality requirements

requirement ComposedR4R11 consisting of the requirements R4 and R11 shall be
achieved by the machine EncryptionManager R4.

The functional problem diagram related to the functional requirement R5 is
the problem diagram PublishConsumerInfo shown in Fig. 9.9. The composition
problem diagram R5 AsymEnc Composition shown at the bottom of Fig. 9.10
combines the functional problem diagram PublishConsumerInfo with the security
problem diagram AsymEnc R4 R5 shown at the top of Fig. 9.10. The new ma-
chine EncryptionManager R5 is responsible for obtaining MeterData, encrypting
it using the asymmetric encryption algorithm of the machine AsymEncM and send-
ing it to the Consumer using the functional machine PublishConsumerInfo.

On the top of Fig. 9.11, the instantiated digital signature problem diagram
DigSig R4 R5 for the integrity and authenticity requirements R10, R12, R13, and
R15 (related to the functional requirements R4 and R5) is illustrated. The machine
DigSigM uses the PrivateKey to sign MeterData. The PublicKey used for verify-
ing at the receiver side is not shown in this figure as it only shows the sender side
responsible for signing the data.

The composition problem diagram R4 DigSig Composition shown in the mid-
dle of Fig. 9.11 combines the functional problem diagram SubmitMeterData

304 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.10: Instantiated problem-oriented security pattern asymmetric encryption
for the confidentiality requirements R14

(related to the functional requirement R4) with the security problem diagram
DigSig R4 R5. The machine SignatureManager R4 obtains MeterData, signs it
using the machine DigSigM, and sends the signed MeterData using the machine
SubmitMD to the AuthorizedExternalEntities which verify the signed MeterData
using the corresponding public key.

The composition problem diagram R5 DigSig Composition shown at the bot-
tom of Fig. 9.11 combines the functional problem diagram PublishConsumer-
Info (related to the functional requirement R5) with the security problem diagram
DigSig R4 R5. It is constructed in a similar way to the composition problem di-
agram R4 DigSig Composition (related to the functional requirement R4) shown

9.2 Method for Selecting & Applying Quality-specific Patterns 305

previously.

Architecture Alternative 3
For the smart grid case study, according to the configuration diagram for the ar-
chitecture alternative 3 illustrated in Fig. 9.23, we selected the problem-oriented
security pattern symmetric encryption for achieving the confidentiality require-
ments R11.2 and R14.2 (related to the functional requirements R4 and R5), and the
problem-oriented security pattern MAC for achieving the integrity and authentic-
ity requirements R10.2 and R12.2 (related to the functional requirement R4), and
R13.2 and R15.2 (related to the functional requirement R5). As the instantiation
of the selected problem-oriented security patterns is similar to the ones for the ar-
chitecture alternative 1, we only show the instantiations and do not describe them
further. The application of the problem-oriented symmetric encryption pattern is
shown in Fig. 9.12 while Fig. 9.13 shows the application of the problem-oriented
MAC pattern.

Step 5 - Merge security composition diagrams related to the same
functional requirement

The idea of this step and the next step is to merge the created composition dia-
grams step by step in order to obtain a new composition diagram which contains
all relevant security-specific solutions. In this step, we merge the created compo-
sition diagrams which are related to the same functionality (same functional re-
quirement). As the input for this step, we make use of the diagrams resulted from
the previous step. In the next step, those composition diagrams are merged that are
related to different functionalities.

Each composition diagram contains one security manager machine. For merg-
ing two composition diagrams, a new composition diagram is created which con-
tains a new composition machine and the domains from both composition dia-
grams. The new composition machine is composed of the two composition ma-
chines from the composition diagrams to be merged. All the phenomena from both
composition diagrams are also contained in the new composition diagram.

306 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.11: Instantiated problem-oriented digital signature pattern for the integrity
and authenticity requirements R10, R12, R13, and R15

9.2 Method for Selecting & Applying Quality-specific Patterns 307

Fig. 9.12: Instantiated problem-oriented symmetric encryption pattern for the con-
fidentiality requirements R11.2 and R14.2

308 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.13: Instantiated problem-oriented MAC pattern for the integrity and authen-
ticity requirements R10.2, R12.2, R13.2, and R14.2

9.2 Method for Selecting & Applying Quality-specific Patterns 309

Application of Step 5 - Merge security composition diagrams related to the
same functional requirement

Architecture Alternative 1
For the architecture alternative 1, we selected symmetric encryption and MAC
for achieving confidentiality requirement R11.1, integrity requirement R10.1, and
authenticity requirement R12.1 related to the functional requirement R4. For
merging the composition diagrams R4 SymEncComposition (see Fig. 9.6) and
R4 MAC Composition (see Fig. 9.7), one creates the new composition diagram
R4 Merge SymEnc MAC which contains the new composition machine SecMan-
ager Sym MAC R4 and the domains contained in both composition diagrams,
namely MeterData, SymEncM, MACM, SubmitM, WAN, and AuthorizedExter-
nalEntity. The new composition machine SecManager Sym MAC R4 is com-
posed of the composition machines EncryptionManager R4 and MACManager R4.
All the phenomena from both composition diagrams are also contained in the
new composition diagram. Figure 9.14 illustrates the new composition diagram
R4 Merge SymEnc MAC. The new composition machine SecManager Sym -
MAC R4 is in charge of coordinating the order of performing encryption and
authentication using MAC. Krawczyk [154] identifies three types of combining
encryption with authentication using MAC for protecting communications over an
insecure network. These three types are

1. Encrypt then Authenticate (known as EtA). It is used in IPsec. The cleartext is
encrypted first. Then, a MAC value is computed on the ciphertext. The MAC
value is then appended to the ciphertext.

2. Authenticate then Encrypt (known as AtE). It is used in Secure Sockets Layer
(SSL). In this case, the MAC value is computed on the cleartext and appended
to the data. Then, the whole is encrypted.

3. Encrypt and Authenticate (known as E&A). It is used in SSH. Here, the MAC
value is computed on the cleartext. The cleartext is encrypted. The MAC value
is then appended at the end of the ciphertext.

Although AtE and E&A are common methods for composing encryption and
authentication, they might be subject of attacks. Krawczyk shows that only EtA is
the most secure way in general.

Architecture Alternative 2
For the architecture alternative 2, we selected asymmetric encryption and digi-
tal signature for achieving confidentiality requirements R11 and R14, integrity re-
quirements R10 and R13, and authenticity requirements R12 and R15 related to the
functional requirements R4 and R5. Hence, we are concerned with two merges.

310 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.14: Merged composition diagrams related to the functional requirement R4
for the architecture alternative 1

First, we merge the composition diagrams R4 AsymEnc Composition (see the
diagram at the bottom of Fig. 9.8) and R4 DigSig Composition (see the mid-
dle diagram in Fig. 9.11), both related to the functional requirement R4. To this
end, we create the new composition diagram R4 Merge DigSig AsymEnc con-
taining the new composition machine SecManager Sig Asym R4 and the do-
mains contained in both composition diagrams. The new composition machine
is composed of the composition machines EncryptionManager R4 and Signature-
Manager R4. All the phenomena from both composition diagrams are also con-
tained in the new composition diagram. Figure 9.15 illustrates the new composi-
tion diagram R4 Merge DigSig AsymEnc. The new composition machine Sec-
Manager Sig Asym R4 is in charge of coordinating the order of encrypting and
signing. Also here, three types of combining encryption and signature for pro-
tecting the communication over insecure networks are possible, namely 1) sign-
then-encrypt, 2) encrypt-then-sign, and 3) encrypt-and-sign. Although encrypt-
then-sign and encrypt-and-sign could provide enough security in most cases, there
are, however, subtle attacks for these two cases that might not necessarily cause a
problem in all scenarios. Therefore, it is recommended to use sign-then-encrypt.

Second, we merge the composition diagrams R5 AsymEnc Composition (see
the diagram at the bottom of Fig. 9.10) and R5 DigSig Composition (see the third

9.2 Method for Selecting & Applying Quality-specific Patterns 311

Fig. 9.15: Merged composition diagrams related to the functional requirement R4
for the architecture alternative 2

diagram in Fig. 9.11), both related to the functional requirement R5. To this end,
we create the new composition diagram R5 Merge DigSig AsymEnc containing
the new composition machine SecManager Sig Asym R5 and the domains con-
tained in both composition diagrams. The new composition machine is composed
of the composition machines EncryptionManager R5 and SignatureManager R5.
All the phenomena from both composition diagrams are also contained in the
new composition diagram. Figure 9.16 illustrates the new composition diagram
R4 Merge DigSig AsymEnc. Also here, the new composition machine SecMan-
ager Sig Asym R5 is in charge of coordinating the order of encrypting and sign-
ing.

Architecture Alternative 3
For the architecture alternative 3, we selected symmetric encryption and MAC
for achieving confidentiality requirements R11.2 and R14.2, integrity requirements
R10.2 and R13.2, and authenticity requirements R12.2 and R15.2 related to the
functional requirements R4 and R5. Here, we are concerned with two merges as
well.

First, we merge the composition diagrams R4 SymEnc Composition (see the
second diagram in Fig. 9.12) and R4 MAC Composition (see the second diagram

312 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.16: Merged composition diagrams related to the functional requirement R5
for the architecture alternative 2

in Fig. 9.13), both related to the functional requirement R4. To this end, we create
the new composition diagram R4 Merge SymEnc MAC containing the new com-
position machine SecManager Sym MAC R4 and the domains contained in both
composition diagrams. The new composition machine is composed of the compo-
sition machines EncryptionManager R4 and MACManager R4. All the phenom-
ena from both composition diagrams are also contained in the new composition di-
agram. Figure 9.17 illustrates the new composition diagram R4 Merge SymEnc -
MAC. The new composition machine SecManager Sym MAC R4 is in charge of
coordinating the order of performing encryption and authentication using MAC as
described for the architecture alternative 1.

Second, we merge the composition diagrams R5 SymEnc Composition (see
the third diagram in Fig. 9.12) and R5 MAC Composition (see the third diagram
in Fig. 9.13), both related to the functional requirement R5. To this end, we create
the new composition diagram R5 Merge SymEnc MAC containing the new com-
position machine SecManager Sym MAC R5 and the domains contained in both

9.2 Method for Selecting & Applying Quality-specific Patterns 313

Fig. 9.17: Merged composition diagrams related to the functional requirement R4
for the architecture alternative 3

composition diagrams. The new composition machine is composed of the compo-
sition machines EncryptionManager R5 and MACManager R5. All the phenom-
ena from both composition diagrams are also contained in the new composition di-
agram. Figure 9.18 illustrates the new composition diagram R5 Merge SymEnc -
MAC. Also here, the new composition machine SecManager Sym MAC R5 is in
charge of coordinating the order of performing encryption and authentication us-
ing MAC.

Step 6 - Merge security composition diagrams related to different
functional requirements

In this step, we merge the created composition diagrams relating to different func-
tional requirements from the previous step. We use the resulted security-specific
diagrams as an input to Step 8 of our method for applying performance-specific
patterns.

314 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.18: Merged composition diagrams related to the functional requirement R5
for the architecture alternative 3

The procedure is similar to the one from the previous step. Each composition
diagram contains one security manager machine. For merging two composition di-
agrams, a new composition diagram is created which contains a new composition
machine and the domains from both composition diagrams. The new composition
machine is composed of the two composition machines from the composition dia-
grams to be merged. All the phenomena from both composition diagrams are also
contained in the new composition diagram.

Application of Step 6 - Merge security composition diagrams related to
different functional requirements

Architecture Alternative 1
This step cannot be applied to the diagrams for the architecture alternative 1, as
it only addresses security requirements complementing the functional requirement
R4.

9.2 Method for Selecting & Applying Quality-specific Patterns 315

Architecture Alternative 2
For the architecture alternative 2, we merge the composition diagrams R4 Merge -
DigSig AsymEnc (see Fig. 9.15) and R5 Merge DigSig AsymEnc (see Fig. 9.16).
The new composition diagram Merge R4 R5 DigSig AsymEnc contains the new
composition machine SecManager Sig Asym R4 R5 and the domains from both
composition diagrams to be merged. The new composition machine composes the
composition machines SecManager Sig Asym R4 and SecManager Sig Asym R5.
All the phenomena from both composition diagrams are also contained in the new
composition diagram. Figure 9.19 illustrates the new composition diagram.

Fig. 9.19: Merged composition diagrams related to the functional requirements
R4 and R5 for the architecture alternative 2

Architecture Alternative 3
For the architecture alternative 3, we merge the composition diagrams R4 Merge -
SymEnc MAC (see Fig. 9.17) and R5 Merge SymEnc MAC (see Fig. 9.18). The
new composition diagram Merge R4 R5 SymEnc MAC contains the new com-

316 9 Phase 6: Quality-specific Pattern Selection & Application

position machine SecManager Sym MAC R4 R5 and the domains from both
composition diagrams to be merged. The new composition machine composes the
composition machines SecManager Sym MAC R4 and SecManager Sym MAC R5.
All the phenomena from both composition diagrams are also contained in the new
composition diagram. Figure 9.20 illustrates the new composition diagram.

Fig. 9.20: Merged composition diagrams related to the functional requirements
R4 and R5 for the architecture alternative 3

Step 7 - Select problem-oriented performance patterns

In this step, we select appropriate problem-oriented performance patterns. As input
in addition to the problem-oriented performance patterns, performance require-
ment alternatives, problem-solution diagram, and the configuration diagrams, one
needs the problem diagrams identified as problematic from the performance per-

9.2 Method for Selecting & Applying Quality-specific Patterns 317

Table 9.3: Performance analysis patterns and their selection criteria

Selection Criteria
Type of load distribution Type of overload Type of resource

First Things First (FTF) spatial / temporal temporary software / hardware
Flex Time (FT) temporal permanent software / hardware

Load Balancer (LB) spatial permanent software / hardware
Master-Worker (MW) spatial permanent software

spective. Such subproblems have been identified using our performance require-
ment analysis method PoPeRA (see Section 7.4 on page 220).

Problem-oriented performance patterns are introduced in Chapter 8 (see Sec-
tion 8.3 on page 264). The field applicability in the template for problem-oriented
performance patterns (see Table 8.8 in Section 8.3.2 on page 266) represents the
pre-conditions each subproblem has to fulfill before applying the specific perfor-
mance pattern. In order to systematically select the appropriate problem-oriented
performance patterns, for each subproblem with identified potential performance
problems we have to determine whether the specific subproblem fulfills the re-
quired pre-conditions by answering the questions 1) does the subproblem exhibit a
permanent or a temporary high usage?, 2) does the subproblem exhibit a spatial or
temporal load distribution?, and 3) does the involved resource provide a software
or a hardware resource?

Table 9.3 shows the conditions under which the problem-oriented performance
patterns can be applied. It provides support in selecting the appropriate patterns.
As an example, the problem-oriented performance pattern Flex Time (FT) can be
applied if the resource is a hardware or a software component, the subproblem can
be satisfied to a different period of time (temporal), and a permanent overload of
the subproblem is expected.

Application of Step 7 - Select problem-oriented performance patterns

Architecture Alternative 1
According to our performance requirement analysis method PoPeRA (see Sec-
tion 7.4 on page 220), we expect high workload and average resource usage for
the performance requirements R18 and R19 related to the functional requirement
R1. In addition, the performance requirement R18 has to be achieved together with
the performance requirements R22 and R24 in less than 5 seconds. Therefore, a
potential performance problem due to the requirement R18 for the subproblem
ReceiveMeterData is expected.

318 9 Phase 6: Quality-specific Pattern Selection & Application

Also for the performance requirements R22 and R23, related to the functional
requirement R2R3, we expect high workload and average resource usage. In addi-
tion, the performance requirement R22 has to be achieved together with the per-
formance requirements R18 and R24 in less than 5 seconds. Therefore, a potential
performance problem for the subproblem PrcessStoreMD is expected due to the
requirement R22.

According to the high workload, the high resource usage, and the strong secu-
rity requirements R10.1, R11.1, and R12.1 (according to the WAN attacker profile)
for the subproblem SubmitMeterData, we identify a potential performance prob-
lem for achieving the performance requirement R24.

For the subproblem PublishConsumerInfo we expect low workload and sparse
resource usage. In addition, we did not select any security mechanisms for the
corresponding security requirements R13.1, R14.1, and R15.1 as we have weak se-
curity requirements (according to the HAN attacker profile). Therefore, we do not
expect a potential performance problem for achieving the performance require-
ment R25. Hence, there is no need for selecting problem-oriented performance
requirements for this subproblem.

Now, we have to select the appropriate problem-oriented performance patterns
for the subproblems with performance problems, namely the subproblems Re-
ceiveMeterData related to the functional requirement R1, PrcessStoreMD related
to the functional requirement R2R3, and SubmitMeterData related to the functional
requirement R4. To this end, we make use of Table 9.3.

For all three subproblems, we have a spatial load distribution and a software re-
source. This is annotated using the attributes loadDistributionTypes and resource-
Type of the stereotype�bottleneck�. The overload is temporary as the system
faces overload only when requesting MeterData. This is annotated using the at-
tribute overloadType of the stereotype�bottleneck� (see Fig. 9.24).

According to this, we could select the First Things First pattern that can provide
a prioritization of requests. For example, for the subproblem ReceiveMeterData,
it can assign a higher priority to the requests related to the requirement R18 and a
lower priority to the requests related to the requirement R19. This solution might
solve the problem for the performance requirement R18, it however might cause
problems for the performance requirement R19 as it is treated with a lower priority.
As we aim at providing the best performance for the architecture alternative 1, we
select the Load Balancer pattern that is usually applied by permanent overload.
With this solution, the problem of starving requests related to the requirement R19
does not arise.

Also for the subproblems ProcessStoreMD related to the functional requirement
R2R3 and SubmitMeterData related to the functional requirement R4, we select the
Load Balancer pattern for the same reason. Figure 9.21 shows the configuration

9.2 Method for Selecting & Applying Quality-specific Patterns 319

diagram for the architecture alternative 1.

Fig. 9.21: Configuration diagram for the architecture alternative 1

Architecture Alternative 2
The architecture alternative 2 should provide the best security. Performance is con-
sidered with a lower priority. For this architecture alternative, the performance re-
quirement alternatives R18.1, R19.1, R22.1, R23.1, R24.1, and R25.1 are selected.
These requirements are relaxed in a way that there is no need for applying per-
formance patterns to achieve them. For example, the number of concurrent users
is reduced, the network bandwidth and the CPU frequency are increased so that
performance problems cannot arise (see Table 7.29 for performance requirement
alternatives R18.1 and R19.1 on page 237, Table 7.30 for performance requirement
alternatives R22.1 and R23.1 on page 238, Table 7.31 for performance requirement
alternative R24.1 on page 239, and Table 7.32 for performance requirement alter-
native R25.1 on page 240 in Section 7.5). Figure 9.22 shows the configuration
diagram for the architecture alternative 2.
Architecture Alternative 3
For architecture alternative 3, we consider performance and security with the same
priority. To this end, we relaxed all quality requirements in a way that they can be
achieved together using appropriate problem-oriented performance and security
patterns. As we are concerned with relaxed performance requirements, a perfor-
mance solution such as Load Balancer is not required. Performance requirements

320 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.22: Configuration diagram for the architecture alternative 2

R19.2, R23.2, and R25.2 should be achieved in less than 10 seconds whereas per-
formance requirements R18.2, R22.2, and R24.2 should be achieved in less than
5 seconds. All requirements with relaxed domain knowledge are shown in Ta-
ble 7.29 - Table 7.32 (see page 237). According to this, we select the First Things
First pattern for all performance requirements. It assigns performance require-
ments R18.2, R22.2, and R24.2 a higher priority than performance requirements
R19.2, R23.2, and R25.2. By doing this, all performance requirements can be ful-
filled. Figure 9.23 shows the configuration diagram for the architecture alternative
3.

Fig. 9.23: Configuration diagram for the architecture alternative 3

9.2 Method for Selecting & Applying Quality-specific Patterns 321

Step 8 - Apply Problem-oriented Performance Patterns

In this step, selected problem-oriented performance patterns have to be applied
to the corresponding subproblems. These subproblems have to be instances of
the problem frame describing the generic problem structure introduced in Sec-
tion 8.3.2 (see the generic problem frame in Figure 8.9 on page 269). The fields
solution and collaboration in the template for problem-oriented performance pat-
terns (see Table 8.8 in Section 8.3.2 on page 266) describe how the selected pat-
tern can be applied. The generic solution structure shown at the bottom of Fig. 8.9
in Section 8.3.2 (see page 269) exemplifies the composition of subproblems as
a problem frame describing the generic solution structure. Several patterns can
be applied to a subproblem if the subproblem fulfills the required pre-conditions
shown in Table 9.3.

Application of Step 8 - Apply problem-oriented performance pattern

Architecture Alternative 1
We can apply patterns to the subproblems only when subproblems are valid in-
stances of the problem frame describing the generic problem structure given in
Section 8.3.2 (see the top of Fig. 8.9 on page 269). We can apply the Load Bal-
ancer pattern to the subproblem ReceiveMeterData (see Fig. 9.24), as it represents
a valid instance of the problem frame describing the generic problem structure.
The instance contains the following elements:

Fig. 9.24: Subproblem ReceiveMeterData related to functional requirement R1

322 9 Phase 6: Quality-specific Pattern Selection & Application

• One machine domain ReceiveMeterData corresponding to the domain Machine
in the generic problem structure (see the top of Fig. 8.9 on page 269). It repre-
sents a resource expressed by the stereotype�resource�which is expected to
be the bottleneck expressed with the stereotype�bottleneck�. The machine
domain is responsible for responding to the requests. The machine domain is a
software resource.

• One domain LMN corresponding to the domain Domain1 in the generic prob-
lem structure. It transmits the requests to the machine domain ReceiveMeter-
Data. Note that the domain SmartMeter is an additional domain not relevant
for the performance problem at hand.

• One domain TemporaryStorage corresponding to the domain Domain2 in the
generic problem structure. It is required for processing the requests by the ma-
chine domain ReceiveMeterData.

• One requirement R1, which describes the functional requirement.
• Two performance requirements R18 and R19, which describe the performance

requirements corresponding to the functional requirement R1.

Subproblems ProcessStoreMD and SubmitMeterData represent valid instances
of the problem frame describing the generic problem structure similar to the sub-
problem ReceiveMeterData. Furthermore, each specific pattern can be applied to
a subproblem, if the subproblem fulfills the pre-conditions of the specific pattern
given in the field applicability of the pattern template. In the previous step, we
specified the characteristics of each problematic subproblem using load distribu-
tion type, overload type, and resource type, which correspond to the pre-conditions
for the application of the problem-oriented performance pattern Load Balancer.

Figure 9.25 shows the application of Load Balancer to the subproblems Re-
ceiveMeterData, ProcessStoreMD, and SubmitMeterData which are instantiations
of the generic solution structure shown at the bottom of Fig. 8.9 (see page 269).

On the top of Fig. 9.25, the application of Load Balancer to the subproblem
ReceiveMeterData is shown. It represents a valid instance of the problem frame
describing the generic solution structure (see the bottom of Fig. 8.9 on page 269).
The instance contains the following elements:

• One domain LB as a machine domain and as a resource with the stereotypes
�machine� and�resource�.

• At least one domain as machine domain ReceiveMeterData and as a resource
(stereotypes �machine� and �resource�) responsible for responding to
the requests. The new machine LB obtains meter readings from SmartMeter
through LMN and distributes the request between several machines ReceiveMe-
terData (see the multiplicity 1..* in Fig. 9.25) that are responsible for temporar-
ily storing meter readings into TemporaryStorage.

9.2 Method for Selecting & Applying Quality-specific Patterns 323

Fig. 9.25: Application of Load Balancer to subproblems related to functional
requirements R1, R2R3, and R4

324 9 Phase 6: Quality-specific Pattern Selection & Application

• One domain LMN, which transmits the requests to the machine domain Re-
ceiveMeterData.

• One domain TemporaryStorage required for processing the requests by the ma-
chine domain ReceiveMeterData.

• One functional requirement R1 to be satisfied by the machine domains Re-
ceiveMeterData.

• Two performance requirements R18 and R19 to be satisfied by the machine
domains ReceiveMeterData.

The subproblem in the middle of Fig. 9.25 shows the application of Load Bal-
ancer to the subproblem ProcessStoreMD. The new machine LB obtains meter
readings from TemporaryStorage and distributes it between several machines Pro-
cessStoreMD which persistently store meter readings into MeterData.

The application of Load Balancer to the subproblem SubmitMeterData is
shown at the bottom of Fig. 9.25. Note that Load Balancer is applied to the com-
position diagram containing the problem-oriented security patterns symmetric en-
cryption and MAC. In this subproblem, the security manager functionality is ex-
tended with the load balancing functionality, instead of introducing a new machine
LB. The reason is that a security manager machine and a load balancer machine
both are in charge of coordinating the other machines. Hence, they can be com-
bined into one machine SecManager LB in order to prevent introducing a new
machine domain. For this subproblem, the load balancer distributes the load be-
tween several machines SymEnc, MAC, and SubmitMD as required. Introducing
only several SubmitMD machines does not solve the problem of potentially over-
loading the encryption machine SymEnc or the MAC machine MACM as these
actions are time consuming.

Architecture Alternative 2
No problem-oriented performance patterns are selected for the architecture alter-
native 2.

Architecture Alternative 3
For the architecture alternative 3, we do not show that the problem diagrams are
a valid instance of the generic problem structure described in Section 8.3.2 (see
the top of Fig. 8.9 on page 269) as this is shown once for the architecture alter-
native 1. In the previous step, we specified the characteristics of each problematic
subproblem using load distribution type, overload type, and resource type, which
correspond to the pre-conditions for the application of the problem-oriented per-
formance pattern First Things First.

Figure 9.26 shows the application of First Things First to subproblems Re-
ceiveMeterData and ProcessStoreMD which are instantiations of the generic so-

9.2 Method for Selecting & Applying Quality-specific Patterns 325

Fig. 9.26: Application of FTF to subproblems related to functional requirements
R1 and R2R3

lution structure shown at the bottom of Fig. 8.9 (see page 269). On the top of
Fig. 9.26, the application of First Things First to the subproblem ReceiveMeter-
Data is shown. The new machine FTF obtains meter readings from SmartMeter
through LMN and forwards meter readings to the machine ReceiveMeterData ac-
cording to the priority of the meter readings. Here, we deal with two kinds of me-
ter readings, meter readings that should be processed, stored, and submitted to the
authorized external entities within 5 seconds (related to requirement R18.2) and
meter readings that should be processed, stored, and submitted to the consumer
within 10 seconds (related to requirement R19.2). The new machine FTF forwards
the first kind of meter readings with a higher priority than the second kind of meter
readings. The second problem diagram in Fig. 9.26 shows the application of First
Things First to the subproblem ProcessStoreMD. Also here, the requests related to

326 9 Phase 6: Quality-specific Pattern Selection & Application

Fig. 9.27: Application of FTF to subproblems related to functional requirements
R4 and R5

the requirement R22.2 are treated with a higher priority than the requests related
to performance requirement R23.2.

Figure 9.27 shows the application of First Things First to the subproblems Sub-
mitMeterData and PublishConsumerInfo. Also here, we apply First Things First
to the composition diagram which contains already the applied problem-oriented
security patterns symmetric encryption and MAC. The new machine FTF is com-
bined with the existing security manager machine SecManager to the machine Sec-
Manager FTF which coordinates the order of sending requests to the SymEncM
and MACM. In addition, it assigns priorities to the requests and forwards the re-
quests related to performance requirement R24.2 with higher priority than those
requests related to performance requirement R25.2.

9.3 Contributions 327

9.3 Contributions

In this chapter, we bridged the quality requirements with corresponding solution
alternatives for achieving them by proposing a comprehensive method. It can be
summarized as follows:

• Our method supports the selection of appropriate problem-oriented quality pat-
terns and the application of the selected patterns to the requirement models in
order to address the quality requirements security and performance. It provides
guidance for refining security and performance problems located in the problem
space using problem-oriented quality patterns.

• The application of our method results in alternatives for the requirement mod-
els enriched with quality-specific solutions according to the defined priorities of
quality requirements. Our method supports less experienced software engineers
in selecting and applying different solution approaches early in the require-
ments engineering phase in a systematic manner. The enriched requirement
model alternatives differ in solutions selected for achieving quality require-
ments. Such alternatives in requirement models allow us to derive software ar-
chitecture alternatives that achieve quality requirements in different ways. The
derivation of software architecture alternatives is achieved in the next chapter.

Chapter 10
Phase 7: Software Architecture Alternatives
Derivation

Abstract In the previous chapter, we systematically incorporated quality-specific
mechanisms into requirement models in order to address quality requirements.
This chapter proposes a systematic method for deriving implementable software
architecture alternatives based on the requirement models. Such requirement mod-
els are enriched with quality-specific solutions. The derived implementable soft-
ware architecture alternatives fulfill quality requirements with different levels of
satisfaction.

10.1 Introduction

In Chapter 5, we described how to derive the initial software architecture that is
oriented on the decomposition of the overall software development problem into
subproblems. It uses the already selected architectural patterns to implement the
functional requirements with regard to quality requirements. As a consequence, the
derived initial software architecture contributes to the achievement of quality re-
quirements. It, however, does not involve quality-specific solutions to specifically
address quality requirements.

In order to incorporate quality-specific solutions into a software architecture,
we have introduced problem-oriented quality patterns in Chapter 8 and applied
them systematically to the requirement models in Chapter 9. We developed alterna-
tives for the requirement models enriched with quality-specific solutions according
to the defined priorities of quality requirements. Such alternatives in requirement
models allow the derivation of software architecture alternatives.

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_10

330 10 Phase 7: Software Architecture Alternatives Derivation

This chapter describes Phase 7 of our QuaDRA framework. In this chapter,
we transform the initial software architecture into implementable software archi-
tecture alternatives. The implementable architecture alternatives extend the initial
architecture with additional components that address quality requirements. To this
end, we use the requirement models containing problem-oriented quality-specific
patterns as well as the initial architecture. Application of different quality-specific
solutions leads to the derivation of architecture alternatives that fulfill quality re-
quirements in different ways. We propose a systematic method for deriving imple-
mentable architecture alternatives.

This chapter is based on our works presented in [16, 7, 150]. In [7], we system-
atically derive a software architecture from a given problem description based on
problem frames. The derived software architecture considers only functional re-
quirements. My colleague Denis Hatebur made the main contribution to this work.
We contributed to this work with intensive discussions and feedback together with
Isabelle Côté, Maritta Heisel, and Christine Choppy.

We extended this approach by addressing quality requirements in order to de-
rive quality-based software architectures in [16]1 We are the main author of this
work. With Denis Hatebur and Maritta Heisel, we had helpful and constructive
discussions.

The work presented in [150] uses our quality-based software architecture
derivation method presented in [16] as one part of a comprehensive method for
deriving and evaluating architecture alternatives. This work has been developed
jointly in the context of a research project collaboration with our project partners
Marco Konersmann and Benjamin Kersten. Michael Goedicke and Maritta Heisel
provided valuable feedback on our work.

The remainder of this chapter is organized as follows. We describe how to
systematically derive architecture alternatives from the quality-based requirement
models in Section 10.2. Along with the description of software architecture deriva-
tion, we show its application to the smart grid. Section 10.3 presents related work,
while Section 10.4 concludes this chapter and summarizes the contribution.

10.2 Method for Deriving Implementable Architecture
Alternatives

In this section, we propose a systematic method for deriving implementable ar-
chitecture alternatives. For modeling the implementable architecture alternatives,

1 This work was done after the work in [7]. However, it was published earlier.

10.2 Method for Deriving Implementable Architecture Alternatives 331

we proceed similarly to the modeling of the initial architecture (see Section 5.6
on page 161). Implementable architectures are represented as composite structure
diagrams. For modeling these architectures, we use the UML profile for architec-
tures (see Section 2.3.2 on page 37). It allows us to annotate composite structure
diagrams with information on components and connectors.

Figure 10.1 illustrates our method for deriving the implementable architecture
alternatives consisting of five steps. In the following, we describe the steps of the
method followed by its application to the smart grid case study.

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Step 1:
Outer Component

Specification

Step 2:
Inner Components

Specification

Step 3:
Architectural Pattern

Applicability Checking

Derived
Architecture Alt.
(outer comp.)

Initial
Architecture

Quality-Specific
Problem Diagrams

Step 4:
Ports/Interfaces/Connectors

Specification

Problem
Diagrams

Life-
Cycle

Step 5:
Behavior Specification

Derived
Architecture Alt.
(inner comp.)

Derived
Architecture Alt.
(inner comp.)

Impl.
Architecture Alt.
(structural view)

Impl.
Architecture Alt.
(behavioral view)

Fig. 10.1: Overview of the method for deriving the implementable architecture
alternatives

Step 1 - Outer Component Specification

The implementable architecture consists of one component for the overall machine
that is the outer component, similar to the initial architecture. As the input for this
step, we require the initial architecture (see Step 1 in Fig. 10.1).

The same stereotypes used for modeling the initial architecture (see Section 5.6
on page 161) are used for annotating the outer component and the connectors. To
this end, we use the architecture profile (see Section 2.3.2 on page 37).

In the initial architecture, the outer component, its type, and its interfaces are
specified. For the implementable architecture these elements can be re-used. How-
ever, for the outer component in the implementable architecture, one has to apply
the stereotype�implementable architecture� to indicate that this architecture
is an implementable architecture. The ports of the overall machine remain the same
as those in the initial architecture. As the output, we obtain the outer component of

332 10 Phase 7: Software Architecture Alternatives Derivation

the implementable architecture alternatives, its ports, and interfaces to the outside
world.

Application of Step 1 - Outer Component Specification

For the architecture alternatives, we set up one outer component for each architec-
ture alternative. The overall components for the three architecture alternatives are
called Smart Meter Gateway (Alternative 1), Smart Meter Gateway (Alternative
2), and Smart Meter Gateway (Alternative 3). They correspond to the overall com-
ponent in the initial architecture. The initial architecture derived in Phase 2 (see
Chapter 5) is again illustrated in Fig. 10.2.

Fig. 10.2: Structural view of the initial architecture of smart grid

10.2 Method for Deriving Implementable Architecture Alternatives 333

For the overall component, we choose the stereotypes implementable architecture
to indicate that the architecture is an implementable one and local to indicate
that we are concerned with a single stand-alone system. Similar to the initial
architecture, the implementable architecture has three ports typed with :PLMN,
:PHAN, and :PWAN which have a class as a type. This class uses and real-
izes interfaces. The port with the class PLMN as a type provides the interface
LMN!{forwardMeterData} (depicted as a lollipop) and the ports with the classes
PWAN and PHAN as a type require the interfaces SMD!{sendDataIntoWAN} as
well as PCI!{sendConsumerInfo} (depicted as a socket).

Step 2 - Inner Components Selection

Inner components are those components placed inside the outer component. The
aim of this step is to select the inner components. Note that the ports, interfaces,
and connectors between these components are specified later on in Step 4. As
the first input for this step, we require the outer component from the previous
step. Similar to the initial architecture, the implementable architecture contains one
component for each subproblem expressed with the stereotype�Component�
to indicate the components in the software architecture. Hence, the other input for
this step are the initial problem diagrams (see Step 2 in Fig. 10.1). These compo-
nents are also contained in the initial architecture.

In addition, the implementable architecture contains new components for ad-
dressing the quality requirements. For deriving those components inside the outer
component, we make use of the quality-specific problem diagrams from the pre-
vious chapter as a further input of this step (see Section 9.2 on page 290). Each
submachine in such problem diagrams becomes a component to be located inside
the outer component. Also the lexical domains as data representations become
components in the implementable architecture, similar to the initial architecture.

Application of Step 2 - Inner Components Selection

Architecture Alternative 1
The implementable architecture alternatives for the smart grid case study are rep-
resented as UML composite structure diagrams shown in Figures 10.3 - 10.5. The
components highlighted in gray are the new components addressing quality re-
quirements not existing in the initial architecture. In the following, we describe
how we derive the inner components of these architecture alternatives.

334 10 Phase 7: Software Architecture Alternatives Derivation

In this step, one has to select components to be placed inside the outer compo-
nent Smart Meter Gateway (Alternative 1). To this end, we consider the problem
diagrams enriched with problem-specific solutions from the previous phase (see
Fig. 9.25 in Section 9.2 on page 323).

Problem diagram related to functional requirement R1: From the subproblem
LB R1 PD, we take the machines LB1 and ReceiveMeterData and the lexical
domain TemporaryStorage as components for the implementable architecture ex-
pressed with the stereotype Component. Note that we might have more instances
of the component ReceiveMeterData if needed. This is shown in Fig. 10.3 by the
port multiplicity [1..*] related to the component ReceiveMeterData.

Problem diagram related to functional requirement R2R3: The new sub-
problem related to the functional requirement R2R3 is the problem diagram
LB R2R3 PD which contains the new machine LB2 in addition to the functional
machine ProcessStoreMD. Hence, LB2 and ProcessStoreMD become components
in the implementable architecture. In addition, the lexical domain MeterData is
mapped to a component in the architecture. Also here, we might have more in-
stances of the component ProcessStoreMD dependent on the current load (see
the multiplicity [1..*] of the port related to the component ProcessStoreMD in
Fig. 10.3).

Problem diagram related to functional requirement R4: The new subprob-
lem related to the functional requirement R4 is the problem diagram LB R4 PD
which contains three new machines SecManager LB, SymEncM, and MACM be-
ing represented as components in the implementable architecture in addition to the
component SubmitMD. More than one instance of the components SymEncM and
MACM is possible if needed (see the port multiplicity [1..*] related to the compo-
nents SymEncM and MACM in Fig. 10.3).

Problem diagram related to functional requirement R5: The initial problem di-
agram PublishConsumerInfo serves as a basis for the implementable architecture
alternative 1 as we did not apply any quality-specific solution to it. Hence, the
machine PublishConsumerInfo becomes a component in the implementable archi-
tecture.

Architecture Alternative 2
In the previous chapter (see Section 9.2 on page 290), we applied problem-oriented
security patterns only to the problem diagrams related to the functional require-
ments R4 and R5. Hence, for the functional requirements R1 and R2R3, we take

10.2 Method for Deriving Implementable Architecture Alternatives 335

Fig. 10.3: Structural view of the implementable architecture of smart grid (alter-
native 1)

the initial functional problem diagrams ReceiveMeterData and ProcessStoreMD as
a basis for the implementable architecture. Therefore, modeling the implementable
architecture for these two subproblems is similar to the modeling of the initial ar-
chitecture.

Problem diagram related to functional requirements R1 and R2R3: Consid-
ering the problem diagram related to the functional requirement R1, the machine
ReceiveMeterData and the lexical domain TemporaryStorage become components
in the implementable architecture alternative 2. Considering the problem diagram

336 10 Phase 7: Software Architecture Alternatives Derivation

related to the functional requirement R2R3, the machine ProcessStoreMD and the
lexical domain MeterData are mapped to components as well.

Problem diagram related to functional requirements R4 and R5: For the sub-
problems related to the functional requirements R4 and R5, we consider the com-
position problem diagram Merge R4R5 DigSig AsymEnc shown in Fig. 9.19 in
Section 9.2 (see page 315). Here, we are concerned with three new machines Sec-
Manager Sig Asym R4 R5, DigSigM, and AsymEncM that become components
in the implementable architecture alternative 2. In addition, the machines Sub-
mitMD and PublishConsumerInfo become components in the implementable ar-
chitecture expressed with the stereotype�Component�.

Architecture Alternative 3
For the architecture alternative 3, we consider the composition problem diagrams
enriched with problem-specific solutions from the previous phase (see Figures 9.26
and 9.27 in Section 9.2 on pages 325 and 326).

Problem diagram related to functional requirement R1: From the subproblem
FTF R1 PD, we take the machines FTF1 and ReceiveMeterData, and the lexical
domain TemporaryStorage as components for the implementable architecture ex-
pressed with the stereotype Component.

Problem diagram related to functional requirement R2R3: The new sub-
problem related to the functional requirement R2R3 is the problem diagram
FTF R2R3 PD which contains the new machine FTF2 in addition to the func-
tional problem diagram ProcessStoreMD. Similar to the architecture alternatives 1
and 2, the lexical domain MeterData becomes a component in the architecture al-
ternative 3.

Problem diagram related to functional requirements R4 and R5: For the sub-
problems related to the functional requirements R4 and R5, we consider the com-
position problem diagram shown in Fig. 9.27 in Section 9.2 (see page 326). Here,
we are concerned with three new machines SecManager FTF, SymEncM, and
MACM that become components in the architecture alternative 3. In addition, the
machines SubmitMD and PublishConsumerInfo become components in the archi-
tecture alternative 3 expressed with the stereotype�Component�.

10.2 Method for Deriving Implementable Architecture Alternatives 337

Fig. 10.4: Structural view of the implementable architecture of smart grid (alter-
native 2)

Step 3 - Architectural Pattern Applicability Checking

In Phase 2 of our framework (see Chapter 5), we selected the architectural pat-
tern with regard to functional requirements. The selected architectural pattern con-
tributes to the achievement of quality requirements as well.

338 10 Phase 7: Software Architecture Alternatives Derivation

Fig. 10.5: Structural view of the implementable architecture of smart grid (alter-
native 3)

Applying problem-oriented quality patterns does not influence the overall struc-
ture of the architecture and the already applied architectural patterns. The reason
is that the essence of the problem diagrams, namely the functional requirements,
remains unmodified. The problem-oriented quality patterns provide a local solu-
tion to specific parts of the architecture in contrast to architectural patterns which
specify the overall structure of the software architecture. Therefore, the selected ar-
chitectural patterns still fit to the new problem diagrams containing quality specific
solutions. Hence, they can be easily integrated into the existing initial architecture
without changing the overall structure of the existing architecture.

10.2 Method for Deriving Implementable Architecture Alternatives 339

In the previous phase, we added new machines to the initial problem diagrams
in order to achieve quality requirements. Under the consideration of the new ma-
chines, we need to take the new components corresponding those machines into
account as one part of the architectural pattern. Therefore, as inputs of this step,
we consider the quality-specific problem diagrams, the initial architecture, and the
derived architecture from the previous step (see Step 3 in Fig. 10.1). As the output
of this step, we obtain the derived architecture including the selected architectural
pattern. This architecture has to be completed in the next step by specifying the
interfaces between the components.

Application of Step 3 - Architectural Pattern Applicability Checking

Architecture Alternative 1
Problem diagram related to functional requirement R2R3: To the subproblem
ReceiveMeterData related to the functional requirement R1, we did not apply any
architectural pattern. To the subproblem ProcessStoreMD, we applied the archi-
tectural pattern Pipes and Filters in the initial architecture. Before applying this
architectural pattern to the architecture, we have to specify the possible changes
due to introducing new components in the architecture.

The new subproblem related to the functional requirement R2R3 is the problem
diagram LB R2R3 PD which contains the new machine LB2 in addition to the
functional problem diagram ProcessStoreMD. We observe that we are able to apply
the architectural pattern Pipes and Filters to the problem diagram LB R2R3 PD as
the new machine LB2 can serve as a new Filter. Hence, we are concerned with two
Filters LB2 and ProcessStoreMD. The connections to the componentLB2, between
the components LB2 and ProcessStoreMD, and the connection out of the compo-
nent ProcessStoreMD serve as pipes. The component TemporaryStorage serves as
a Source and the component MeterData serves as a Sink initiating the final desti-
nation of the transformation.

Problem diagram related to functional requirement R4: We applied the archi-
tectural pattern Pipes and Filters also to the subproblem SubmitMD in the ini-
tial architecture. The quality-specific problem diagram LB R4 PD corresponds
to the functional subproblem SubmitMD. The new components SecManager LB,
SymEncM, and MACM serve as new Filters as they are responsible for transform-
ing MeterData from a plaintext to ciphertext. The component SubmitMD serves as
a Filter similar to the initial architecture.

340 10 Phase 7: Software Architecture Alternatives Derivation

Problem diagram related to functional requirement R5: We did not apply any
quality-specific solution to the subproblem PublishConsumerInfo. Therefore, the
applicability of the architectural pattern Pipes and Filters to the subproblem Pub-
lishConsumerInfo does not need to be checked. The component PublishConsumer-
Info serves as a Filter similar to the initial architecture.

Architecture Alternative 2

Problem diagram related to functional requirement R2R3: To the subproblem
ReceiveMeterData related to the functional requirement R1, we did not apply any
architectural pattern. To the subproblem ProcessStoreMD, we apply the architec-
tural pattern Pipes and Filters. As we did not use any quality-specific solutions for
this subproblem, the application of the architectural pattern remains the same as in
the initial architecture. So, there is no need for checking its applicability. The com-
ponent ProcessStoreMD serves as a Filter and the components TemporaryStorage
and MeterData serve as a Source as well as a Sink.

Problem diagram related to functional requirements R4 and R5: To the sub-
problem Merge R4R5 DigSig AsymEnc related to the functional requirements
R4 and R5, the architectural pattern Pipes and Filters can be applied. All machines
in this subproblem can serve as Filters.

Architecture Alternative 3

Problem diagram related to functional requirements R2R3: To the subproblem
ReceiveMeterData related to the functional requirement R1, we did not apply any
architectural pattern. To the subproblem ProcessStoreMD, we applied the architec-
tural pattern Pipes and Filters in the initial architecture. The architectural pattern
Pipes and Filters can be applied to the implementable architecture, as well as the
new machine FTF2 in the problem diagram FTF R2R3 PD can serve as a new
Filter. Hence, we are concerned with two Filters FTF2 and ProcessStoreMD. The
component TemporaryStorage serves as a Source and the component MeterData
serves as a Sink initiating the final destination of the transformation.

Problem diagram related to functional requirements R4 and R5: The architec-
tural pattern Pipes and Filters applied in the initial architecture can also be applied
to the quality-specific problem diagram related to the functional requirements R4
and R5. The components SecManager FTF, SymEncM, and MACM serve as the
new Filters as they are responsible for transforming MeterData from a plaintext to
a ciphertext. The components SubmitMD and PublishConsumerInfo serve as Fil-

10.2 Method for Deriving Implementable Architecture Alternatives 341

ters similar to the initial architecture. The component MeterData represents the
Source.

Step 4 - Ports/Interfaces/Connectors Specification

After selecting the inner components and the architectural pattern, one needs to
specify how the components are connected. To this end, the ports of each compo-
nent, its interfaces, and connectors have to be specified in this step. As the inputs
for this step, we consider the derived architecture from the previous step, the ini-
tial problem diagrams and the quality-specific problem diagrams that provide the
basis for the specification of the ports and interfaces (see Step 4 in Fig. 10.1).

The components are equipped with ports that correspond to the interfaces in the
quality-specific problem diagrams. For the case that no quality-specific problem
diagram is available, the ports in the initial problem diagrams are used. The ports
should have a type represented as a class with required and provided interfaces.
A controlled interface in a quality-specific problem diagram or an initial problem
diagram is mapped to a required interface of the corresponding component in the
implementable architecture. An observed interface of the machine in the quality-
specific problem diagram or the initial problem diagram is mapped to a provided
interface of the corresponding component in the implementable architecture. Com-
ponent ports have to be connected to the ports of the outer component. The ports
of the outer component remain the same as those in the initial architecture. In addi-
tion, we add stereotypes that describe the technical realization of these connectors.
The complete set of stereotypes to be used for the connections can be found in
Section 2.3.2 (see page 37).

Application of Step 4 - Ports/Interfaces/Connectors Specification

Architecture Alternative 1
Problem diagram related to functional requirement R1: The component LB1
is connected to the SamrtMeter with the port PLMN by a physical connector
expressed with the stereotype �Physical�. It is also connected to the compo-
nent ReceiveMeterData using a connector with the stereotype call return. The
component LB1 provides the interface LMN!{forwardMeterData} and requires
the interface LB!{distributeRequest}. The component TemporaryStorage is con-
nected to the component ReceiveMeterData using a connector with the stereotype
call return. Note that we do not use the stereotype�stream� for this connector

342 10 Phase 7: Software Architecture Alternatives Derivation

as we did not apply the architectural pattern Pipes and Filters to this problem dia-
gram.

Problem diagram related to functional requirement R2R3: The component LB2
is connected to the component TemporaryStorage with one required and one pro-
vided interface and to the component ProcessStoreMD with one required interface.
The connectors between these components are represented with the stereotype
�Stream� as they provide Pipes in the architectural pattern Pipes and Filters.
Also the connector between the components ProcessStoreMD and MeterData is a
Pipe expressed with the stereotype Stream.

Problem diagram related to functional requirements R4 and R5: The connec-
tors between the component SecManager LB and other connected components
serve as Pipes and are expressed with the stereotype �Stream�. The compo-
nent SubmitMD is connected to the AuthorizedExternalEntities through the port
PWAN. This connector serves as a Pipe, as well, expressed with the stereotype
�Stream�.

The connector between the component MeterData and the component Publish-
ConsumerInfo serves as a Pipe expressed with the stereotype �Stream�. The
component PublishConsumerInfo is connected to the UserInterface through the
port PHAN. This connector serves as a Pipe, as well, expressed with the stereo-
type�Stream�.

Architecture Alternative 2
Problem diagram related to functional requirements R1 and R2R3: The com-
ponents ReceiveMeterData, TemporaryStorage, ProcessStoreMD, and MeterData
are connected similarly to the initial architecture. The component ReceiveMeter-
Data is connected to the SmartMeter with the port PLMN by a physical connection
expressed with the stereotype�Physical�. The component TemporaryStorage is
connected to the component ReceiveMeterData using a connection with the stereo-
type call return. The two connections to the component ProcessStoreMD serve as
pipes. The pipes are expressed with the stereotype�Stream�.

Problem diagram related to functional requirements R4 and R5: The connec-
tors between the component SecManager Sym Asym R4 R5 and other connected
components serve as Pipes and are expressed with the stereotype �Stream�.
The component SecManager Sym Asym R4 R5 has one provided interface and
a required one to the component DigSigM. It has also one provided interface and
one required interface to the component AsymEncM. The components SubmitMD
and PublishConsumerInfo are connected to the AuthorizedExternalEntities as well

10.2 Method for Deriving Implementable Architecture Alternatives 343

as Consumer through the ports PWAN and LHAN. These connections serve as
Pipes, as well, expressed with the stereotype�Stream�.

Architecture Alternative 3

Problem diagram related to functional requirement R1: The component FTF1
is connected to the SamrtMeter with the port PLMN by a physical connection ex-
pressed with the stereotype�Physical�. It is also connected to the component
ReceiveMeterData with one required interface FTF!{forwardPrioritizedRequest}
using a connection with the stereotype call return. The component TemporaryS-
torage is connected to the component ReceiveMeterData using a connection with
the stereotype call return.

Problem diagram related to functional requirement R2R3: The connections
to the componentFTF2, between the components FTF2 and ProcessStoreMD, and
the connection out of the component ProcessStoreMD serve as pipes. The pipes are
expressed with the stereotype�Stream�. FTF2 is connected to TemporaryStor-
age with one required and one provided interface. It is connected to the component
ProcessStoreMD with one required interface.

Problem diagram related to functional requirements R4 and R5: The connec-
tions between the component SecManager FTF and other connected components
serve as Pipes expressed with the stereotype�Stream�. SecManager FTF has
one provided and one required interface to the component SymEncM. To the com-
ponent MACM are also one provided and one required interface available. The
components SubmitMD and PublishConsumerInfo are connected to the Autho-
rizedExternalEntities and Consumer through the ports PWAN and PHAN. These
connections serve as Pipes, as well, expressed with the sterotype�Stream�.

Step 5 - Behavior Specification

To complete the implementable architecture, one needs to specify the behavior of
the architecture alternatives in addition to their structural view. Therefore, this step
is concerned with modeling the behavioral view of the implementable architecture
alternatives. As inputs for this step, we make use of the initial problem diagrams,
quality-specific problem diagrams and the life-cycle expressions that enable us

344 10 Phase 7: Software Architecture Alternatives Derivation

to specify the interactions2 between the components and their order (see Step 5
in Fig. 10.1). The life-cycle contains information about the order of interactions
described by the requirements. For specifying the behavior, we use UML sequence
diagrams. However, any other diagram for modeling the behavior can be used. For
more information regarding creating sequence diagrams from problem diagrams,
we refer to [112].

Application of Step 5 - Behavior Specification

Architecture Alternative 1
Figure 10.6 shows the behavioral view of the implementable architecture alterna-
tive 1 represented as a sequence diagram. The messages represent the phenomena
in the problem diagrams as well as in the quality-specific problem diagrams. LC
shown below represents the life-cycle of the smart grid also used for illustrating
the behavioral view of the initial architecture.

LC = ((R1; R2R3) ; (R4 || R5))∗

The same life-cycle is used here for representing the behavioral view of the
architecture alternatives. Instead of functional problem diagrams, we use quality-
specific problem diagrams. Only for the case that no quality-specific problem di-
agram exists, we make use of the initial problem diagrams. For achieving the
requirement R1, the quality-specific problem diagram LB R1 PD is relevant.
The quality-specific problem diagram LB R2R3 PD is related to the require-
ment R2R3. For the requirement R4, we use the quality-specific problem diagram
LB R4 PD. As we did not apply any quality-specific solution related to the re-
quirement R5, we make use of the initial problem diagram PublishConsumerInfo
for this requirement.

The sequence diagram in Fig. 10.6 shows that the meter data is forwarded
through the LMN to the component LB1, which forwards the request to the com-
ponent ReceiveMeterData. Meter data is then temporarily stored into TemporaryS-
torage. The component LB2 obtains data from TemporaryStorage and forwards it
to the component ProcessStoreMD, which writes it persistently into MeterData.
The components LB1 and LB2 in this case only forward the request to the next
component. It is possible to have several components ReceiveMeterData as well
as ProcessStoreMD. This is marked in the structural view of the architecture al-
ternative 1 shown in Fig. 10.3 by a port multiplicity related to the components

2 With interaction in this context we mean the interplay between the components.

10.2 Method for Deriving Implementable Architecture Alternatives 345

Fig. 10.6: Behavioral view of the implementable architecture (alternative 1)

346 10 Phase 7: Software Architecture Alternatives Derivation

ReceiveMeterData and ProcessMeterData. In such a case the components LB1
and LB2 are responsible for distributing the request between these components.

The par construct shows the parallel execution of the components related to
the functional requirements R4 and R5 after storing the MeterData persistently.
The component PublishConsumerInfo receives MeterData and sends it through
LAN to the consumer. LAN represents one interface to the outside world. In paral-
lel, the component SecManager LB obtains meter data and distributes it between
the two components SymEncM1 and SymencM2 responsible for encrypting me-
ter data. We decided for having two instances of the component SymEncM (see
the port multiplicity related to the component SymEncM in Fig. 10.3). More in-
stances are possible. Having encrypted the meter data, it is sent to the components
MACM1 and MACM2, where a MAC value of the encrypted meter data is built.
Also here, we decided for having two instances of the component MACM, called
MACM1 and MACM2, in the sequence diagram. The result is sent to the com-
ponents SubmitMD1 and SubmitMD2 to be sent through WAN to the authorized
external entities. The same applies for the component SubmitMD with the two in-
stances SubmitMD1 and SubmitMD2.

The component SecManager LB is responsible for distributing the load be-
tween each two components SymEncM1 and SymEncM2 for encrypting meter data,
MACM1 and MACM2 for building a MAC value, and SubmitMD1 and SubmitMD2
for sending meter data to the outside world.

For representing the components in the sequence diagram, we used objects in-
stead of classes as we are concerned with more than one instance for some com-
ponents.

Architecture Alternative 2
Figure 10.7 shows the behavioral view of the implementable architecture 2 rep-
resented as a sequence diagram. Here we are concerned with the same compo-
nents for achieving the requirements R1 and R2R3 as in the initial architecture.
The additional components related to the requirements R4 and R5 are SecMan-
ager Sig Asym R4 R5, DigSigM, and AsymEncM to be taken from the quality-
specific problem diagram Merge R4R5 DigSig AsymEnc.

The sequence diagram shows that the meter data is forwarded through the LMN
to the component ReceiveMeterData to be written into the TemporaryStorage.
The component ProcessStoreMD obtains data from TemporaryStorage and writes
it persistently into MeterData. The components SecManager Sig Asym R4 R5,
DigSigM, and AsymEncM must be executed sequentially before sending meter data
to the consumer using the component PublishConsumerInfo through LAN as well
as sending meter data to the authorized external entities using the component Sub-
mitMD through WAN. Sending meter data to the consumer and to the authorized

10.2 Method for Deriving Implementable Architecture Alternatives 347

Fig. 10.7: Behavioral view of the implementable architecture (alternative 2)

348 10 Phase 7: Software Architecture Alternatives Derivation

external entities is executed in parallel.

Architecture Alternative 3
Figure 10.8 shows the behavioral view of the implementable architecture 3 rep-
resented as a sequence diagram. Relevant for the requirement R1 is the quality-
specific problem diagram FTF R1 PD and for the requirement R2R3 the quality-
specific problem diagram FTF R2R3 PD. For the requirements R4 and R5, we
make use of the quality-specific problem diagram FTF R4 R5 which contains the
quality-specific components SecManager FTF, SymEncM, and MACM in addition
to the initial components SubmitMD and PublishConsumerInfo.

The sequence diagram in Fig. 10.8 shows that the meter data is forwarded
through the LMN to the component FTF1, which forwards the prioritized request
to the component ReceiveMeterData. Meter data is then temporarily stored into
TemporaryStorage. The component FTF2 obtains data from TemporaryStorage
and forwards it to the component ProcessStoreMD, which writes it persistently
into MeterData. The components FTF1 and FTF2 are responsible for forwarding
the requests with higher priority in case not all requests can be processed at the
same time.

The component SecManager FTF obtains meter data and sends it to the com-
ponents SymEncM responsible for encrypting meter data. Having encrypted meter
data, it is sent to the component MACM, where a MAC value of the encrypted me-
ter data is built. The par construct shows the parallel execution of the components
related to the functional requirements R4 and R5. The components SubmitMD and
PublishConsumerInfo send the result through WAN and LAN to the authorized ex-
ternal entities and to the consumer.

In a systematic way, we showed how to derive implementable architecture alter-
natives from the problem diagrams containing quality solutions for achieving qual-
ity requirements. We applied the architectural patterns that we selected in Phase 2
of QuaDRA . Each architecture alternatives is represented by a structural as well
as a behavioral view. We applied the proposed method to the case study smart grid
and derived three different implementable architecture alternatives that vary in the
level of achievement of quality requirements. The derived architecture alternatives
are evaluated in the next chapter with regard to quality requirements.

10.3 Related Work

In this section, we consider those works related to constructing architectures based
on problem frames. Schmidt and Wentzlaff [210] propose a problem frames-based

10.3 Related Work 349

Fig. 10.8: Behavioral view of the implementable architecture (alternative 3)

350 10 Phase 7: Software Architecture Alternatives Derivation

method by providing a mapping of requirements to architecture design considering
usability and security requirements. After understanding the problem and decom-
posing it to simple subproblems using the problem frames approach, the authors
identify different roles existing in the problem diagrams such as the operator (user)
and display (display). The identified roles are then mapped to the artifacts of an
architectural pattern such as the Model View Controller. By way of an example,
the authors show how to balance security and usability requirements. In this pa-
per, there is no systematic approach given for selecting the architectural patterns.
It seems that the method is rather a high-level approach relying on the expertise
of the method user for applying it and selecting appropriate architectural patterns.
Furthermore, there is no specification of the interfaces between the components
and the related ports given.

Choppy et al. [70] propose a systematic derivation of software architectures
from problem descriptions. After setting up an initial architecture containing one
component for each subproblem, the authors apply different design patterns to
the initial architecture to obtain an intermediate architecture. In a final step, the
components of the intermediate architecture are re-arranged to construct a layered
architecture. The first and second steps of our method are inspired by this method.
So, the procedure of the first two steps is similar to setting up the initial archi-
tecture in this work. The further steps, however, are different. In this work, only
functional requirements are considered. So, the final architecture does not provide
any systematic support for addressing quality requirements. Moreover, there is no
systematic selection of architectural patterns. The final step of this work constructs
always a software architecture using the layered architectural pattern.

Choppy et al. [69] propose new architectural patterns for basic problem frames
to be used in the design phase which are designed to reflect the structure of the
problem frames. To create an architectural solution for a concrete problem frame,
the relating architectural pattern must be instantiated which provides the starting
point for building a software architecture. In contrast, we make use of the existing
architectural patterns. The approach proposed by Choppy et al. derives the archi-
tecture only based on functional requirements. So, the final architecture does not
provide support for achieving quality requirements. There is also no considera-
tion of reusable knowledge on the architecture level such as existing architectural
patterns.

10.4 Contributions 351

10.4 Contributions

In this chapter, we derive implementable architecture alternatives represented as
the structural view using composite structure diagrams and as the behavioral view
using sequence diagrams. The implementable architecture extends the initial ar-
chitecture with additional components that address quality requirements. For the
software architecture, we use problem diagrams that instantiate problem-oriented
quality patterns in order to incorporate quality-specific solutions into the architec-
ture. To summarize the contributions of this chapter, our approach

• provides a seamless transition from requirements analysis to architectural de-
sign. It uses the structure of problem diagrams as a basis to derive software
architectures.

• explicitly addresses quality requirements (in particular, security and perfor-
mance) by applying quality-specific solutions in a systematic way.

• derives software architecture alternatives aiming at satisfying quality require-
ments to different levels.

Chapter 11
Phase 8: Software Architecture Alternatives
Evaluation

Abstract In order to investigate whether a candidate architecture is suitable to
achieve its functional as well as quality requirements, candidate architectures have
to be evaluated by applying a software architecture evaluation method. This chap-
ter provides a structured overview of existing architecture evaluation methods. We
review the secondary literature in a systematic way in order to gather the state-of-
the-art in the area of software architecture evaluation methods. Then, we select one
method according to the defined selection criteria. The selected architecture evalu-
ation method is used for evaluating the resulting architecture alternatives using the
QuaDRA framework from the previous chapter.

11.1 Introduction

To choose an appropriate candidate architecture which achieves functional require-
ments as well as quality requirements with a particular level of satisfaction, the re-
sulting candidate architectures have to be evaluated. Architecture evaluation aids
to address the following concerns [169]:

• Understanding the software architecture
• Verifying that all requirements are addressed in the software architecture
• Making sure that the software will have the desired quality attributes
• Identifying problems with the software architecture

Architecture evaluation methods focus on evaluating a software architecture to
determine if and where in the software architecture there might occur problems.
The aim of architecture evaluation is not to provide scalar results, but qualitative

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_11

354 11 Phase 8: Software Architecture Alternatives Evaluation

results. Precisely characterizing quality requirements in terms of measurements at
an early stage of design is not useful as such parameters are often implementation
dependent. The architecture evaluation analyzes if an architecture is suitable with
respect to a set of quality requirements and problematic with respect to another set
of requirements.

In this chapter, we aim at evaluating the derived architecture alternatives that
we created using the QuaDRA framework. We first provide a structured overview
of existing software architecture evaluation methods. We review the secondary
literature in a systematic way in order to gather the state-of-the-art in the area of
software architecture evaluation methods. Then, we select one evaluation method
according to defined selection criteria.

It is crucial to perform the selection by means of a systematic approach consid-
ering all relevant criteria. Hence, we develop a structured framework by means of
the defined selection criteria. The framework draws upon various sources for accu-
rate selection of the components, elements, and evaluation questions [136, 88, 35,
34, 173]. Our framework aids in deciding which architecture evaluation method is
best suited for evaluating the derived architecture alternatives. The selected method
is then applied for evaluation and identification of the problematic concerns in the
created architecture alternatives.

The remainder of this chapter is organized as follows. We provide an overview
of the state-of-the-art in the context of software architecture evaluation methods
in Section 11.2. Section 11.3 provides a framework for selecting an appropriate
software architecture evaluation method while in Section 11.4 we select the most
suitable evaluation method using the developed framework. We evaluate software
architecture alternatives using the selected method in Section 11.5. Section 11.6
presents related work and Section 11.7 concludes this chapter and summarizes its
contributions.

11.2 Identification of Software Architecture Evaluation
Methods

In this section, we aim at finding the state-of-the-art methods with regard to archi-
tecture evaluation. To this end, we define the following research question:

“Which methods are reported for evaluating architectures?”
To respond to this question, we searched secondary studies such as surveys,

reviews, and mapping studies. Our objective was to find out whether there ex-
ists already a systematic review that provides an extensive overview of existing

11.2 Identification of Software Architecture Evaluation Methods 355

methods regarding architecture evaluation. In the following, we describe our re-
search method for finding secondary studies in Section 11.2.1 and the results in
Section 11.2.2.

11.2.1 Research Method

For finding relevant studies, we performed automated and “snowball” search. We
conducted the automated search between 2005 and 2015. As a basis for construct-
ing the search strings for the manual search, we used the defined research ques-
tion. The main search terms were linked with the Boolean operator “AND” and
the synonyms and alternative spellings with the Boolean operator “OR” as shown
in Table 11.1. Doing this, we obtained the search string “SS1 AND SS2 AND SS3”
which is composed of search strings from Table 11.1.

Table 11.1: Search strings

Search string
SS1: “software architecture”
SS2: “evaluation” OR “assessment” OR “analysis”
SS3: “survey” OR “SLR” OR “mapping study” OR “systematic review” OR “literature review” OR

“comparison” OR “comparative”

We defined exclusion and inclusion criteria (EC, IC) as given in Table 11.2. We
excluded studies according to the exclusion criterion EC1. We included studies ac-
cording to the inclusion criteria IC1–IC5 linked with the boolean operator “AND”.
These criteria guided the researcher in the decision whether to include or exclude
studies.

Table 11.2: Exclusion and Inclusion Criteria

Exclusion Criteria
EC1: Published as keynote, road map

Inclusion Criteria
IC1: Focus on architecture evaluation methods
IC2: Publishing time between 1/2005 and 4/2015
IC3: In the form of conference, journal papers
IC4: Subject area: computer science
IC5: Language: English

356 11 Phase 8: Software Architecture Alternatives Evaluation

We performed the selection process for automated search in three rounds as
follows:

• First round: In this round, we scanned the studies by “title and abstract” to
remove irrelevant papers according to the selection criteria. In case a paper was
considered completely irrelevant, the researcher did not protocol it at all. The
studies, in which the researcher was not sure about their relevance have been
included in the set of candidate studies for the second round.

• Second round: The candidate studies from the first round have been further in-
vestigated in the second round according to the selection criteria. For this round,
we included additional sections of the papers, namely “introduction, discussion,
and conclusion”. Again, the studies, in which the researcher still was not sure
about their relevance, have been included in the set of candidate studies for the
next round.

• Third round: The candidate studies from the second round have been scanned
by their full text according to the selection criteria. The remaining studies build
the search results from automated search.

In addition to the automated search, we performed a snowball search. For the
“snowball” search, we did not take the time span into account to be able to find
relevant studies published before 2005 as well. In the snowball search, we scanned
the references in the selected papers obtained from automated search. The final
set of relevant studies is composed of search results from automated search and
snowball search.

11.2.2 Results

We scanned 258 papers for the automated search and selected 5 papers. In addition,
we selected 2 papers from the snowball search. Table 11.3 shows the final list of
7 secondary studies. The selected studies provide a comprehensive overview of
the state-of-the-art regarding architecture evaluation methods. They respond to our
research question. Therefore, there is no need for conducting a systematic literature
review for finding the primary studies.

From the 7 selected secondary studies, we extracted 16 architecture evaluation
methods. A short description of the 16 methods is given in Appendix E. In the next
section, we propose a comparative framework for comparing these methods with
regard to their properties. The properties serve as selection criteria for selecting
the most appropriate architecture evaluation method. Depending on the software
project at hand, different architecture evaluation methods can be selected.

11.3 Comparative Framework for Software Architecture Evaluation Methods 357

Table 11.3: Secondary studies regarding architecture evaluation methods

Title Reference Kind of search
1 A systematic mapping study on architectural analysis [66] Automated
2 Sustainability evaluation of software architectures: A systematic review [153] Automated
3 A ten-year survey of software architecture [67] Automated
4 Evaluation approaches for software architecture documentation: A system-

atic review
[43] Automated

5 A survey on software architecture evaluation methods [188] Automated
6 A survey on software architecture analysis methods [88] Snowball
7 Comparison of scenario-based software architecture evaluation methods [34] Snowball

11.3 Comparative Framework for Software Architecture
Evaluation Methods

In this section, we introduce our comparative framework as a selection tool. We use
this framework for comparing architecture evaluation methods extracted from the
secondary studies in the previous section. Thereby, we focus on their similarities
and differences.

The evaluation framework is shown in Table 11.4. We make use of the NIM-
SAD framework (see Chapter 3 on page 70) for the overall structure of the
framework, similar to our evaluation framework proposed in Chapter 3 for the
comparative evaluation of the state-of-the-art methods with regard to the derived
meta-requirements. The framework investigates the architecture evaluation meth-
ods from the point of view of method context, method user, method content, and
validation taken from the NIMSAD framework. These four facets comprise the
components of our framework.

Each component consists of elements, and the related evaluation questions. We
make use of various sources for accurate selection of the elements of the frame-
work. To this end, we investigate the secondary studies from the previous section.
Some of these studies provide also a comparison of architecture evaluation meth-
ods. Based on these studies, we define selection criteria to be embedded in the
NIMSAD framework as elements. We distinguish between essential and beneficial
selection criteria. The former are concerned with those criteria that must be ad-
dressed for the appropriate selection of an evaluation method. For example, qual-
ity requirements is an essential selection criteria. The quality requirements that are
addressed in the software architecture to be evaluated must be covered by the eval-
uation method. Beneficial selection criteria are those that need not necessarily be
addressed. It, however, exhibits a benefit if they are supported by the evaluation
method. For example, consider the beneficial selection criteria process support.
Detailed guidance on how to perform the evaluation method helps the evaluator by

358 11 Phase 8: Software Architecture Alternatives Evaluation

conducting the evaluation task. Therefore, it is beneficial if the evaluation method
covers support for performing the process.

In Table 11.4, the column “elements” represents the selection criteria. The col-
umn “evaluation questions” contains questions specifying the selection criteria to
be answered by each evaluation method. The answers to the evaluation questions
must comply with the demands related to the software architecture to be evaluated
(see Section 11.4.1). The column “classification” specifies whether the selection
criterion is “essential” or “beneficial”.

Table 11.4: The components and elements of the comparison framework and the
related questions

Component Elements Evaluation Questions Classification
Context Specific goal What is the specific goal of the method? Essential

Quality requirements Which quality attributes are treated by the method? Essential
SA design phase For which SA sub-phase is the method applicable? Essential
Method input What are the required inputs for the method? In which

form has the software architecture description to be
available?

Essential

User Involved stakeholder Which stakeholders participate in the evaluation pro-
cess?

Beneficial

Process support How much support is provided for the user while apply-
ing the method?

Beneficial

Required effort How much effort is required for the user for applying the
method?

Beneficial

Content Tool support Are there tools that support the evaluation process? Beneficial
Reusable knowledge Does the evaluation method produce and make use of

reusable knowledge?
Beneficial

Validation Method maturity Has the method been validated in industrial case studies? Beneficial

In the following, we give reasoning for integrating these criteria in the compar-
ative framework.
Specific goal: Software architecture evaluation methods have the common goal of
evaluating the potential of an architecture to achieve or fail to achieve the required
quality requirements. However, most of them are optimized for achieving a spe-
cific goal, such as risk assessment, trade-off analysis, architecture comparison, etc.
In order to benefit best from an evaluation process, the goal of the evaluation has
to be specified [35]. The specific goal of the evaluation method must be in accor-
dance with the requirements for such a method.

Quality requirements: Most of the architecture evaluation methods deal with
evaluating only one kind of quality requirements. For example, ALMA1 aims at

1 Architecture Level Modifiability Analysis

11.3 Comparative Framework for Software Architecture Evaluation Methods 359

evaluating the architecture with regard to modifiability. However, some software
systems require the evaluation of multiple attributes. In order to select the proper
architecture evaluation method, the considered quality requirements in a software
architecture to be evaluated must be covered by the evaluation method.

SA design phase: Traditionally, software architecture evaluation has to be con-
ducted after specifying the software architecture and before the implementation
phase [35]. However, software architecture can be evaluated at any stage with
different goals in mind [169]. In addition to the traditional software architecture
evaluation, there are two other variations with regard to the stage of application,
namely early and late evaluation. In the early evaluation, there is no need for wait-
ing until the full specification of the architecture is completed. The objective of
early evaluation is to examine those architectural decisions that are already taken
and select among those options that are pending. It is commonly based on the ex-
periences and reasoning of software developers [227]. In the late evaluation, not
only the architecture, but also the implementation is available and complete. This
might be the case when an organization inherits a legacy system. In this case, the
stakeholders are interested in understanding the system and whether it meets its
requirements [80]. We conclude that the stage in which an evaluation method eval-
uates a software architecture must be in accordance with the stage in which the
software architecture is.

Method input: One criteria for selecting a suitable architecture evaluation method
is the input that is required by the evaluation method. Evaluation methods might
require different artifacts as input for their successful application. Therefore, it is
essential to know what architecture artifacts are needed as input. The input required
by an evaluation method must be in accordance with the artifacts represented as a
software architecture. As an example, consider an architecture evaluation method
requiring a deployment view of the software architecture as input, but the software
architecture to be evaluated can only be represented by a structural view. In this
case, the evaluation method cannot be selected for evaluating the software archi-
tecture at hand.

Involved stakeholder: A stakeholder is a person or organisational representative
who has an interest in a system [157]. The evaluation methods vary in the cate-
gories of stakeholders that are required to be involved for the evaluation process.
It is beneficial that the categories of the stakeholders required by an evaluation
method to be involved is in accordance with the categories of the stakeholders that
are available by the evaluation process.

360 11 Phase 8: Software Architecture Alternatives Evaluation

Process support: For deciding on an architecture evaluation method, it might be
beneficial to know how much support and guidance for conducting the evalua-
tion method is available. A coarse-grained description might be available by all
the evaluation methods. However, detailed guidance is mostly missing by those
methods [34]. Therefore, it is beneficial that the process support provided by an
evaluation method covers the process support that is needed for conducting the ar-
chitecture evaluation.

Required effort: Providing explicit information regarding the effort in terms of
the number of person days required for performing the evaluation is beneficial for
selecting an evaluation method. Particularly for large systems, evaluating software
architectures is a complicated task that requires substantial resources [44]. It is
beneficial that the effort required for applying an evaluation method is in accor-
dance with the effort that can be offered for evaluating the architecture at hand.

Tool support: The software architecture community emphasizes the need for au-
tomating the tasks of software architecture evaluation as far as possible. The reason
is that these tasks are concerned with collecting, managing, and documenting rele-
vant information which are tedious and error-prone. A tool can support the evalua-
tor by evaluating the outcome, measurement, and administrative information [35].
Therefore, it has to be specified whether the architecture evaluation method has to
provide a tool for evaluating the software architecture at hand.

Reusable knowledge: In the software engineering domain, the idea of reusabil-
ity has long been acknowledged as a means for improving productivity, quality
and cost effectiveness [31]. To prevent each evaluation starting from scratch, the
reusable knowledge from previous activities and projects has to be incorporated
in the software evaluation methods. It has to be specified whether the evaluation
method makes use of reusable knowledge by the evaluation process.

Method maturity: It is important that the evaluation methods are validated and
applied to numerous software-intensive applications and in different application
domains to show that they are generally applicable [35]. Therefore, it is beneficial
that the maturity of an evaluation method complies with the method maturity that
is needed for evaluating the software architecture at hand.

11.4 Selection of Software Architecture Evaluation Methods 361

11.4 Selection of Software Architecture Evaluation Methods

This section deals with comparing the evaluation methods we extracted from the
secondary studies with regard to the selection criteria we defined in the previous
section. We aim at selecting the most appropriate evaluation method for evaluat-
ing the three architecture alternatives developed using the QuaDRA framework.
Depending on the architecture to be evaluated and the requirements for an eval-
uation method, different evaluated methods can be appropriate. First, we define
our requirements on an evaluation method in Section 11.4.1. Then, we apply the
comparative framework to the methods we extracted before in Section 11.4.2.

11.4.1 Requirements on the Evaluation Method

We first define the requirements on an evaluation method in order to be able to
evaluate our derived software architectures. These requirements are mapped to
the essential selection criteria in the comparison framework. Table 11.5 shows
the requirements to be fulfilled by the evaluation method to be selected for our
purpose.

As the specific goal we define “evaluating and analyzing the architecture with
regard to defined quality requirements”. We keep the specific goal intentionally
generic as every kind of architecture evaluation can provide us with insights re-
garding the architecture and the fulfillment of quality requirements. An evaluation
method must be able to evaluate the quality requirements “performance and secu-
rity” at least in order to be taken into consideration. The evaluation method must
be able to evaluate software architectures after producing the “final version of the
software architecture and before starting with the detailed design”. We are able
to provide the “problem description, requirements description, and the software
architecture description” to the evaluation method. The evaluation method must
require as input these provided artifacts or a subset of them, but no more artifacts
than the provided ones. Using these requirements as essential selection criteria,
we select an evaluation method in the next section by applying the comparison
framework.

362 11 Phase 8: Software Architecture Alternatives Evaluation

Table 11.5: Requirements for the evaluation method to be selected for evaluating
the architecture alternatives created by the QuaDRA framework

Elements Requirements
Specific goal Evaluating and analyzing the architecture with regard to defined quality require-

ments
Quality requirements Performance, security
SA design phase Final version of SA, but prior to detailed design
Method input Problem description, requirements description, SA description

11.4.2 Application of the Comparative Framework

Tables 11.6 - 11.9 show the application of the comparative framework to the 16
methods we have extracted from the secondary studies. These tables illustrate the
properties of the extracted evaluation methods. A short description of the 16 meth-
ods is given in Appendix E. Our objective of the comparative evaluation is to select
the most appropriate method that fulfills the requirements defined in Table 11.5.
To reduce the effort of applying the framework to all 16 methods, we first partially
compare the methods by applying the essential selection criteria. Those methods
that fulfill all essential selection criteria are further investigated by applying the
beneficial selection criteria.

Application of the framework has shown that only three methods ATAM, SAEM,
and SACAM meet our defined requirements. Most of the methods have been ex-
cluded from further consideration since they deal with other quality requirements
than performance and security.

SAAM, ESAAMI, SAAMCS, SAAMER, and ASAAM do not fulfill the essential
selection criterion quality requirements. SAAM, ESAAMI, and ASAAM consider
each quality requirement in isolation. They cannot analyze an architecture consid-
ering two or more quality requirements at the same time. SAAMCS and SAAMER
provide variants of SAAM for the quality requirements flexibility as well as evolu-
tion and reusability.

SBAR fulfills the essential selection criterion quality requirements. It, however,
does not meet the essential selection criterion method input as it requires an im-
plemented architecture as input (see Table 11.7). Regarding the essential selection
criterion specific goal, we do not restrict our requirement to a specific goal as any
kind of architecture evaluation provides us with insights regarding the weaknesses
of the developed architecture alternatives.

The architecture evaluation methods ALPSM, ALMA, PASA, ALRRA, SAR,
SAAF, and ARID are excluded because they do not fulfill the essential selection
criterion quality requirements. ALPSM and ALMA analyze maintainability of a

11.4 Selection of Software Architecture Evaluation Methods 363

software system, while PASA and ALRRA analyze performance as well as reli-
ability related risks. SAR evaluates the architecture with regard to evolution and
confiability. SAAF considers only flexibility and ARID validates the software ar-
chitecture from the suitability point of view.

Table 11.6: Framework application for essential selection criteria- part 1

Elements SAAM2 SAAMCS3 ESAAMI4 SAAMER5

Specific goal Identifying risks and
analyzing suitability

Predicting flexibility,
assessing risks

Identifying risks and
analyzing suitability
in a domain-specific
and reuse-based de-
velopment process

Assessing SA for
reuse and evolution

Quality require-
ments

Any single qual-
ity requirement to
be considered in
isolation

Flexibility6 Any single qual-
ity requirement to
be considered in
isolation

Evolution, Reusabil-
ity

SA design
phase

Final version of SA Final version of SA Final version of SA Final version of SA

Method input Problem descrip-
tion, requirements
description, SA
description (static
and dynamic rep-
resentation of SA,
allocation of func-
tion to structure)

Categories of com-
plex scenarios, SA
description divided
into macroar-
chitecture and
microarchitecture

Requirements
description, SA
description

Requirements
description, SA
description

2 Scenario-based Architecture Analysis Method
3 SAAM founded on Complex Scenarios
4 Extending SAAM by Integration in the Domain
5 SAAM for Evolution and Reusability
6 According to ISO 25010 [130], flexibility represents the “degree to which a product or system
can be used with effectiveness, efficiency, freedom from risk and satisfaction in contexts beyond
those initially specified in the requirements”.
7 Aspectual SAAM
8 Architecture Trade-off Analysis Method
9 Scenario-based Architecture Reengineering
10 Architecture Level Prediction for Software Maintenance
11 Software Architecture Evaluation Model
12 Architecture Level Modifiability Analysis
13 Performance Assessment of Software Architecture
14 Architecture Level Reliability Risk Analysis

364 11 Phase 8: Software Architecture Alternatives Evaluation

Table 11.7: Framework application for essential selection criteria- part 2

Elements ASAAM7 ATAM8 SBAR9 ALPSM10

Specific goal Evaluating the qual-
ity of the architecture
using aspects and
refactoring concepts

ATAM: Identifying
and analyzing sensi-
tivity and trade-off
points

Estimating the abil-
ity of SA for achiev-
ing quality require-
ments

Analyzing maintain-
ability of the soft-
ware system

Quality require-
ments

Any single qual-
ity requirement to
be considered in
isolation

Multiple quality re-
quirements

Multiple quality re-
quirements

Maintainability

SA design
phase

Final version of SA Final version of SA
/ During SA design
and analysis

System Extension or
reengineering stage
(applied iteratively)

Final version of SA

Method input Requirements
description, SA
description

Requirements
description, SA
description

Implemented archi-
tecture

Requirements
description, SA
description, histor-
ical maintenance
data, expertise from
software engineers

Table 11.8: Framework application for essential selection criteria- part 3

Elements SAEM11 ALMA12 PASA13 ALRRA14

Specific goal Evaluating and pre-
dicting the final sys-
tem quality

Predicting mainte-
nance effort (Union
of ALPSM and
SAAF)

Identifying and mit-
igating performance
related risks

Analyzing reliability
related risks

Quality require-
ments

Internal and exter-
nal quality attributes
based on a quality
model

Maintainability Performance Reliability

SA design
phase

Final version of
SA (intermediate
product of the design
process)

Final version of SA Final version of SA,
post-deployment,
during upgrade of
legacy system

Final version of SA

Method input Software archi-
tecture from the
developer and user
view

Requirements
description, SA
description

Various view of the
SA description

SA description

15 Software Architecture Comparison Analysis Method
16 Software Review Architecture
17 Software Architecture Analysis of Flexibility
18 Active Reviews for Intermediate Design
19 According to ISO 25010 [130] “this characteristic represents the degree to which a product
or system provides functions that meet stated and implied needs when used under specified con-

11.4 Selection of Software Architecture Evaluation Methods 365

Table 11.9: Framework application for essential selection criteria- part 4

Elements SACAM15 SAR16 SAAF17 ARID18

Specific goal Selecting architec-
ture by comparing
different candidate
architectures

Evaluating the
architecture regard-
ing evolution and
confiability

Identifying high
complexity scenarios

Validating design
visibility

Quality require-
ments

Multiple quality re-
quirements

Evolution and confi-
ability

Flexibility Suitability19

SA design
phase

During design phase Final version of SA Final version of SA Intermediate Archi-
tecture

Method input Available documen-
tation for architec-
ture candidates, busi-
ness goals/compari-
son criteria

Requirements
description, SA
description

Problem descrip-
tion, requirements
description, SA
description (static
and dynamic rep-
resentation of SA,
allocation of func-
tion to structure)

Detailed design of
the components

Table 11.10 shows the application of the comparative framework to the methods
ATAM, SAEM, and SACAM with regard to beneficial selection criteria.

ATAM is a comprehensive method that brings together all major stakeholders of
a project and involves them into the evaluation process. SAEM requires knowledge
of experts and some data for the evaluation. It, however, is not clear whether and to
what extent any stakeholder is involved in evaluation. SACAM makes use of those
stakeholders who are relevant for comparing different architecture candidates.

Regarding process support, only ATAM provides a comprehensive guidance
published as a book including different case studies [80] and as technical re-
ports describing the application of ATAM in different application domains sys-
tems [101, 138, 79, 41]. The two other methods either provide sparse guidance on
how to apply them without introducing any application example or describe the
application of methods with only small examples.

For a small-size evaluation, ATAM requires the stakeholders such as the archi-
tect and the project manager to be available for 11 days whereas the evaluation
team needs 15 person-days for conducting the evaluation. The approximate effort
for a medium-size evaluation is, however, higher. It amounts to 13 person-days for
the stakeholders and 25 person-days for the evaluation team. SAEM provides no
information regarding the required effort for the application. 11 days are required
for performing an architecture comparison and evaluation using SACAM. This,
however, is not further specified in terms of the size of the project to be evaluated

ditions. This characteristic is composed of the subcharacteristics completeness, correctness, and
appropriateness”.

366 11 Phase 8: Software Architecture Alternatives Evaluation

and the number of persons to be involved. As the available information regarding
the required effort of evaluation is not complete, it makes a comparison of methods
for this selection criteria difficult.

None of the three methods provides any tool for supporting the evaluation pro-
cess. All methods apply the evaluation in a manual manner. Regarding reusable
knowledge, ATAM pays explicit attention in reusing the experience of an evalua-
tion in further projects. To this end, ATAM provides templates for different steps
for documenting the results and capturing the identified scenarios, quality require-
ments, and risks in a structured way. This is not supported by SAEM. SACAM
provides an evaluation framework that can be reused for comparing architectures.

Regarding method maturity, we observe that ATAM is the most mature method
which is continuously being validated by application to various real projects and
case studies [101, 138, 79, 41]. SAEM is not validated yet. To the best of our
knowledge, there exist no examples and case studies that apply this evaluation
method. There exist small examples that apply SACAM which can be taken as
proof of concept. However, there are no real case studies known.

Taken the results of comparing these three methods as a whole, we notice
that ATAM fulfills more beneficial selection criteria that the other two methods.
Therefore, we select ATAM for evaluating the architecture alternatives derived by
QuaDRA .

Table 11.10: Framework application for beneficial selection criteria

Elements ATAM SAEM SACAM
Involved stakeholder All major stakeholders Experts’ knowledge and

company’s accumulated
data are required for the
evaluation

Designer, comparison
stakeholders, candidate
stakeholders

Process support Comprehensively covered No guidance (no details of
the process, no examples)

Moderate guidance (two
small examples)

Required effort 11/15 person days Not specified 11 days
Tool support Not available Not available Not available
Reusable knowledge Explicitly incorporated in

the evaluation process
Not considered Comparison framework

can be reused for an
application domain

Method maturity Continuously being vali-
dated

Not validated on any soft-
ware system

Proof of concept

11.5 Evaluation of Architecture Alternatives using ATAM 367

11.5 Evaluation of Architecture Alternatives using ATAM

The application of our comparative framework in Section 11.4 has shown that
ATAM fulfills all essential selection criteria. It also provides better results regard-
ing the beneficial selection criteria compared to SAEM and SACAM. Therefore, we
selected ATAM for evaluating the architecture alternatives created by the QuaDRA
framework. We describe its application to the three architecture alternatives in Sec-
tion 11.5.1. A discussion regarding the application of ATAM and the results is
given in Section 11.5.2.

11.5.1 Application of ATAM to Smart Grid’s Architecture
Alternatives

In this section, we apply ATAM to our case study. We give a description of each
ATAM step followed by its application.

Step 1 - Present the ATAM

The first step is concerned with presenting the steps of the evaluation method,
the techniques used in ATAM, and the output of ATAM to the stakeholders by the
architecture evaluator or the architecture evaluation team. The aim of this step is to
build a consensus regarding the understanding and the expectation of the method
as well as to clarify any obscurities.

Application of Step 1 - Present the ATAM

We skip this step as in our case we take the role of the architect as a stakeholder as
well as the role of the method evaluator.

Step 2 - Present the business drivers

The business goals and the primary architectural drivers are presented by the
project manager in order to build a homogeneous understanding. The presentation

368 11 Phase 8: Software Architecture Alternatives Evaluation

contains the main functions of the system, possible restrictions, business goals,
and architectural drivers.

Application of Step 2 - Present the business drivers

The developed architectures for the smart metering system include five main func-
tions, namely receiving the meter data from the smart meter (R1), processing meter
data (R2), storing meter data (R3), submitting the stored data to external entities
(R4), and providing the stored data to the consumer (R5).

The objective of a software system is to realize the defined business goals. Busi-
ness goals exist in various forms and different levels of abstraction. Kazmann and
Bass [143] categorize the business goals into five categories reduce total cost of
ownership, improve capability/quality of system, improve market position, support
improved business processes, and improve confidence in and perception of the sys-
tem. The business goal in our case is to improve the quality of system. Quality in
this context mainly means security and performance. These two quality require-
ments represent the architectural drivers as well.

Step 3 - Present the architecture

In this step, the leading architect presents the architecture of the system containing
technical restrictions, interacting systems, and architectural approaches that have
been used for fulfilling the quality requirements.

Application of Step 3 - Present the architecture

Relevant documents for presenting the architecture are

1. the complete list of functional as well as quality requirements (see Chapter 2,
page 43),

2. the context view defining the scope of the software, the scope of the environ-
ment, and the relations between the software and its environment. The context
view was the first document that we produced. It is represented as a context
diagram (see Chapter 4, page 114),

3. the problem diagrams describing functional and quality requirements (see
Chapter 4, page 118),

4. the requirements view providing a mapping between the requirements and the
architecture. It shows that the architecture addresses the quality requirements

11.5 Evaluation of Architecture Alternatives using ATAM 369

and no important requirement has been forgotten. We describe the requirements
view by setting up the problem-solution diagram providing the traceability be-
tween the quality requirements that shaped the architecture as the main archi-
tectural drivers and the quality-specific solutions addressing those requirements
in the architecture (see Chapter 8, page 278),

5. the structural and behavioral views of the final software architecture alternatives
(see Chapter 11, Figures 10.3- 10.8).

Step 4 - Identify the architectural approaches

In this step, the architecture is viewed by the evaluator team in order to identify the
applied architectural approaches. Architectural approaches represent early design
decisions made by the architect. They provide the main means for achieving the
goal of an architecture. They determine how the system handles changes, responds
to attacks, or interacts with other systems.

Application of Step 4 - Identify the architectural approaches

In this step, we identify architectural approaches and mechanisms that we used for
achieving security and performance requirements for each architecture alternative.
For a detailed description of the architecture alternatives and the applied architec-
tural approaches, we refer to Chapter 10 (see Section 10.2 on page 330). In the
following, we briefly show the list of the applied architectural approaches to the
architecture alternatives:

Architecture alternative 1:

• Pipes & Filters
• Load Balancer (LB) to achieve performance requirements (for distributing the

load by receiving, storing, processing, and submitting meter data)
• Symmetric encryption to achieve confidentiality requirements (to protect the

confidentiality of data transferred through WAN)
• Message Authentication Code (MAC) to achieve integrity and authenticity re-

quirements (to protect the integrity and authenticity of data transferred through
WAN)

Architecture alternative 2:

• Pipes & Filters

370 11 Phase 8: Software Architecture Alternatives Evaluation

• Asymmetric encryption to achieve confidentiality requirements (to protect the
confidentiality of data transferred through WAN and HAN)

• Digital signature to achieve integrity and authenticity requirements (to protect
the integrity and authenticity of data transferred through WAN and HAN)

Architecture alternative 3:

• Pipes & Filters
• First Things First (FTF) to achieve performance requirements (for forwarding

the requests with higher priority prior to other requests)
• Symmetric encryption to achieve confidentiality requirements (to protect the

confidentiality of data transferred through WAN and HAN)
• Message Authentication Code (MAC) to achieve integrity and authenticity re-

quirements (to protect the integrity and authenticity of data transferred through
WAN and HAN)

Step 5 - Generate the quality attribute utility tree

In this step, priorities and the most important quality requirements are determined.
This step provides guidance for the evaluation team as well as for the stakeholders
to reflect on the system requirements. In order to identify the key requirements, a
utility tree has to be constructed. It guides the stakeholders by defining the concrete
quality requirements and prioritizing them.

Figure 11.1 provides an example for the utility tree taken from [80]. It starts
with Utility as the root node and is subdivided into the categories of quality re-
quirements, which are further refined into their sub-categories. For example, secu-
rity is refined into data confidentiality and data integrity. The final level is achieved
by further division of sub-categories in order to analyze and prioritize the quality
requirements in a more precise way. This level provides the concrete scenarios20

(or requirements). For example data confidentiality is further refined into credit
card transactions are secure 99.999% of the time and customer DB authoriza-
tion works 99.999% of the time. Prioritization is achieved by assigning High (H),
Medium (M), and Low (L) to the concrete requirements. The tuple in Fig. 11.1
on each leaf represents the prioritization of two dimensions. The first dimension
states the importance of the requirement’s success while the second one expresses
the difficulty to achieve this requirement.

The utility tree as the output of Step 5 points out where to focus on and where
to examine the architectural approaches. Constructing such a utility tree helps to

20 Requirements in the context of the QuaDRA framework can be considered as scenarios in the
context of ATAM, as they are represented in the same level of granularity

11.5 Evaluation of Architecture Alternatives using ATAM 371

Utility

Performance

Modifiability

Availability

Security

Data
latency

Transaction
throughput

New
products

Change
COTS

H/W
failure

COTS S/W
failures

Data
confidentiality

Data
integrity

Reduce storage latency on
customerDB to < 200 ms.

Deliver video in real time

Add CORBA middleware
in < 20 person-months

Change web user interface
in < 4 person-weeks

Power outage at site 1 requires traffic
redirected to site 2 in < 3 seconds

Network failure detected and
recovered in < 1.5 minutes

Creditcard transactions are secure
99.999% of time

Customer DB authorization works
99.999% of time

(L, M)

(M, M)

(H, H)

(H, L)
(H, H)

(H, H)
(H, M)

(H,L)

Fig. 11.1: An Example of the utility tree

decide on those scenarios (requirements) that need to be focused on according to
the defined prioritization. ATAM suggests to select those scenarios containing at
least one H and one M in their prioritization. The reason is that these scenarios
have a higher impact on the overall achievement of quality requirements for the
system.

Application of Step 5 - Generate the quality attribute utility tree

We set up the utility tree for our example shown in Table 11.11. The two quality
requirement categories are security and performance (see column Quality require-
ment category) that are refined into confidentiality, authenticity, integrity as well
as response time (see column Quality requirement sub-category). The final refine-
ment of quality requirements is achieved by precisely describing each requirement
(see column Quality requirement refinement).

As an example, we take the category security and its sub-category confidential-
ity. The requirement R7 states that “the gateway shall provide the protection of
confidentiality when receiving meter data from a meter via the LMN.”

372 11 Phase 8: Software Architecture Alternatives Evaluation

A prioritization of requirements is required in this step which allows us to select
and analyze those requirements with higher priorities in further steps. We assign
priorities by defining the importance and the difficulty of achievement for each
requirement and each architecture alternative. A1-A3 represent architecture alter-
native 1 - architecture alternative 3. In Chapter 9 (see Section 9.2 on page 290), we
described that we aim at deriving three different software architecture alternatives
with different levels of satisfaction for security and performance for our smart grid
case study. As security and performance requirements are interacting, the three ar-
chitecture alternatives provide trade-offs between these two quality requirements.
The first architecture alternative has to treat the desired performance requirements
with the highest priority (architecture alternative 1), the second one has to rank
the security requirements first (architecture alternative 2), and the third one has
to provide a trade-off of performance and security requirements with similar pri-
orities (architecture alternative 3). This architecture alternative fulfills neither the
security requirements nor the performance requirements to the best degree of sat-
isfaction. It, however, satisfices both quality requirements with a trade-off which
treats both quality requirements with a similar priority.

Table 11.11: Utility tree for smart grid

Quality
requirement
category

Quality
requirement
sub-category

Quality requirement refinement Importance Difficulty

Security Confidentiality The gateway shall provide the protection
of confidentiality when receiving meter
data from a meter via the LMN (R7).

A1:L A1:L

A2:H A2:L
A3:M A3:L

Data shall be protected from unauthorized
disclosure while persistently stored in the
gateway (R9).

A1:L A1:L

A2:H A2:L
A3:M A3:L

Confidentiality of data transferred in the
WAN shall be protected (R11).

A1:L A1:M

A2:H A2:H
A3:M A3:M

The gateway shall provide the protection
of confidentiality when transmitting pro-
cessed meter data locally within the LAN
(R14).

A1:L A1:L

A2:H A2:L
A3:M A3:L

11.5 Evaluation of Architecture Alternatives using ATAM 373

Data shall be protected from unauthorized
disclosure while temporarily stored in the
gateway (R16).

A1:L A1:L

A2:H A2:L
A3:M A3:L

Authenticity The gateway shall provide the protection
of authenticity when receiving meter data
from a meter via the LMN (R8).

A1:L A1:L

A2:H A2:L
A3:M A3:L

Authenticity of data transferred in the
WAN shall be protected (R12).

A1:L A1:M

A2:H A2:H
A3:M A3:M

The gateway shall provide the protec-
tion of authenticity when transmitting pro-
cessed meter data locally within the LAN
(R15).

A1:L A1:L

A2:H A2:L
A3:M A3:L

Integrity The gateway shall provide the protection
of integrity when receiving meter data
from a meter via the LMN (R6).

A1:L A1:L

A2:H A2:L
A3:M A3:L

Integrity of data transferred in the WAN
shall be protected (R10).

A1:L A1:M

A2:H A2:H
A3:M A3:M

The gateway shall provide the protection
of integrity when transmitting processed
meter data locally within the LAN (R13).

A1:L A1:L

A2:H A2:L
A3:M A3:L

Performance Response
Time

The time to retrieve meter data from the
smart meter and publish it through the
WAN shall be less than 5 seconds (R18,
R20, R22, R24)

A1:H A1:H

A2:L A2:L
A3:M A3:M

The time to retrieve meter data from the
smart meter and publish it through the
HAN shall be less than 10 seconds (R19,
R21, R23, R25)

A1:H A1:M

A2:L A2:L
A3:M A3:L

374 11 Phase 8: Software Architecture Alternatives Evaluation

Therefore, we set the importance of all security requirements as L and for all
performance requirements as H for the architecture alternative A1 as we treat per-
formance for this architecture alternative with higher priority than security. The
same reasoning holds for the importance of architecture alternatives A2 and A3.
So, we set the importance of all security requirements as H and for all perfor-
mance requirements as L for the architecture alternative A2. For the architecture
alternative A3, we set the importance of all security and performance requirements
as M.

As we can see in Table 11.11, the difficulty of all three architecture alternatives
for the requirements R6, R7, R9, and R16 is set as L. The reason for this is due to
the design decision One Box Solution we made in Chapter 5 (see Section 5.6 on
page 161). For the Smart Meter and the Smart Meter Gateway, we decided for the
One Box Solution, that is having the Smart Meter and the Smart Meter Gateway
in one physical device in form of a sealed box/cabinet. This enables that the Gate-
way and the smart meter communication happens in the protected area of the box.
From the security point of view, this solution has the advantage that the commu-
nication is protected. Therefore, we assume that the security requirements R6, R7,
and R8 are already fulfilled without applying additional security mechanisms. Also
the confidentiality requirements R9 and R16 are satisfied as the box is physically
protected. Therefore, the difficulty of achieving these requirements is set as L.

The security requirements R10, R11, and R12 are related to the same functional
requirement R4 which requires submitting of meter data to authorized external
entities through WAN. According to the security analysis in Chapter 7 (see Sec-
tion 7.4 on page 222), for architecture alternative 2 (A2) we are concerned with
a WAN attacker with the highest preparation and attack time, multiple bespoke
equipment, a very high expertise (multiple experts), etc. To this end, we decide on
high difficulty (H). For A1 and A3, we are concerned with a WAN attacker, who is
less experienced and has less equipment available. Hence, we decide on medium
difficulty (M).

The security requirements R13, R14, and R15 are related to the same functional
requirement R5 which requires publishing consumer info for the consumer through
HAN. According to the security analysis in Chapter 7 (see Section 7.4 on pages 222
and 227), for architecture alternative 2 (A2) we are concerned with a HAN attacker
with a sparse preparation and attack time, specialized equipment, a proficient ex-
pertise, etc. To this end, we decide on low difficulty (L). For A1 and A3, the HAN
attacker has even less experience and equipment available. Also in this case, we
decide on low difficulty (L).

At this point, we have to decide on those scenarios (requirements) that need
to be focused on according to the defined prioritization. According to the ATAM
suggestion for selecting scenarios containing at least one H and one M in their

11.5 Evaluation of Architecture Alternatives using ATAM 375

prioritization, we select those scenarios with the combinations (H, M), (M, H), or
(H, H). To this end, we select the scenarios for R10, R11, and R12 for A2 to further
investigation (see the fields highlighted in gray in Table 11.11).

For the category performance, we capture the requirements R18, R20, R22, and
R24 as one scenario as the response time is only available for all 4 requirements
together. The same holds for the requirements R19, R21, R23, and R25.

According to the performance analysis in Chapter 7 (see Section 7.4 on pages 222
and 227), for the requirements R18, R20, and R22, we expect a high workload and
average resource usage while for the requirement R24 a high workload and a high
resource usage are expected. In addition, for this requirement, the security require-
ments R10, R11, and R12 have to be achieved at the same time. To this end, we set
the difficulty of achievement for the requirements R18, R20, R22, and R24 for A1
as high (H). For A2 and A3, we relaxed the performance-related domain knowl-
edge as a conflict resolution strategy (see Chapter 7). Hence, we can achieve them
with low (L) and medium (M) difficulty.

According to the performance analysis in Chapter 7 (see Section 7.4 on pages 222
and 227), for the requirements R19, R21, and R23, we expect a high workload and
average resource usage while for the requirement R25 a low workload and a sparse
resource usage are expected. In addition, for this requirement, we are concerned
with weak security mechanisms. To this end, we set the difficulty of achievement
for the requirements R19, R21, R23, and R25 for A1 as medium (M). For A2 and
A3, we relaxed the performance-related domain knowledge as a conflict resolution
strategy (see Chapter 7). Hence, we can achieve them with low (L) difficulty.

Due to ATAM suggestion for scenario selection, we select both performance
scenarios for A1to further investigation (see the fields highlighted in gray in Ta-
ble 11.11). Note that no scenarios for A3 have been selected considering the ATAM
suggestion for selecting scenarios.

Step 6 - Analyze the architectural approaches

After capturing the architectural approaches and collecting the set of quality re-
quirements, in this step the evaluator team examines to what extent the applied ar-
chitectural approaches meet the quality requirements. In this step, risks, nonrisks,
sensitivity points, and trade-off points are identified.

According to Clements et al. [80], risks refer to those architectural decisions
that are potentially problematic. Nonrisks represent good design decisions based
on assumptions that are often implicit in the software architecture.

An architectural decision that is critical for achieving a particular quality re-
quirement is called sensitivity point. It may involve one or more architectural com-

376 11 Phase 8: Software Architecture Alternatives Evaluation

ponents. Sensitivity points are those locations in the architecture that the architect
has to pay attention to when analyzing the achievement of a quality requirement.
An architectural decision that affects more than one quality requirement and repre-
sents a sensitivity point for more than one quality requirement is a trade-off point.

ATAM provides a template for structuring the analysis of architectural ap-
proaches shown in Fig. 11.2 (taken from [80]). The template has to be instantiated
for specifying one scenario. The template supports the evaluator team in partic-
ularly identifying the sensitivity points, trade-off points, risks, and nonrisks for
the selected scenarios of the utility tree. Sensitivity and trade-off points are later
specified as either risks or nonrisks.

Analysis of Architectural Approach

Scenario #:Number Scenario: Text of scenario from utility tree

Attribute(s)

Environment Relevant assumptions about the environment in which the
system resides, and the relevant conditions when the scenario
is carried out

Stimulus A precise statement of the quality attribute stimulus (e.g. function
invoked, failure, threat, modification) embodied by the scenario

Response
A precise statement of the quality attribute response (e.g.
response time, measure of difficulty of modification)

Architectural Decisions Sensitivity Tradeoffs Risk Nonrisks

Architectural decisions
relevant to this scenario
that affect quality
attribute response

Sensitivity
point #

Risk #

...

...

Reasoning Qualitative and/or quantitative rationale for why the list of architectural
decisions contributes to meeting each quality attribute requirement
expressed by the scenario

Architectural
Diagram

Quality attributes with which this scenario is concerned

... ...

Tradeoff
point #

Nonrisk #

...

...

...

...

Diagram or diagrams of architectural views annotated with architectural
information to support the above reasoning, accompanied by explanatory
text if desired

Fig. 11.2: Template for the analysis of architectural approaches

11.5 Evaluation of Architecture Alternatives using ATAM 377

Figure 11.3 (taken from [80]) provides an example of applying the template
for the scenario A12: detect and recover from HW failure of a primary CPU and
the quality requirement availability. This scenario can happen in the “normal op-
eration” of the system (environment) when “one of the CPUs fails” (stimulus).
In this case the system has to provide “0.999999 availability of the switch” (re-
sponse). Architectural decisions that have been made so far are “backup CPUs”,
“no backup data channel”, “watchdog”, “heartbeat”, and “failover routing”. The
evaluator team analyzes these architectural decisions and identifies all these archi-
tectural approaches as sensitivity points. “No backup data channel” is identified as
a trade-off point. The further analysis of these architectural decisions shows that
“backup CPUs” and “no backup data channel” provide risks to the architecture
whereas “watchdog”, “heartbeat” and “failover routing” are nonrisks. The tem-
plate provides also the option to give a reasoning for the analysis and also to draw
an architectural diagram if needed.

Application of Step 6 - Analyze the architectural approaches

For the analysis, we use the template shown in Fig. 11.2. We instantiate this tem-
plate for the integrity requirement R10 and the authenticity requirement R12 for
the architecture alternative A2 (see the instantiated template in Fig. 11.4). The
architectural approach (architectural decision (AD) in Fig. 11.4) that has been ap-
plied in the architecture alternative A2 in order to achieve these requirements is
the digital signature. This scenario shown in Fig. 11.4 happens in the “normal
operation” (environment), “while transferring” (stimulus), and the system has to
achieve the “integrity and authenticity of data” as a response to the stimulus. For
achieving the requirements R10 and R12, we only applied digital signature as an
architectural decision. It is a sensitivity point (S1)) as it affects the security of the
architecture. We identified one risk (R1) associated with digital signature. The risk
is that an attacker might be able to forge signatures or misuse signatures, if the pro-
cess of digital signing is not secure21. As a reasoning for the architectural decision
digital signature, we refer to the description of the problem-oriented digital signa-
ture pattern given in Section 8.2.6 on page 260. It describes why digital signature
contributes to achieving the integrity and authenticity requirements. As an archi-
tectural diagram, we refer to the structural view of the architecture alternative 2
(A2) given in Fig. 10.4 on page 337.

The architectural approach asymmetric encryption has been applied in the ar-
chitecture alternative A2 in order to achieve the confidentiality requirement R11

21 https://www.thales-esecurity.com/solutions/by-technology-focus/digital-signatures

378 11 Phase 8: Software Architecture Alternatives Evaluation

Analysis of Architectural Approach

Scenario #: 12 Scenario: Detect and recover from HW failure of a primary CPU

Attribute(s) Aailability

Environment Normal operations

Stimulus One of the CPU fails

Response 0.999999 availability of the switch

Architectural Decisions Sensitivity Tradeoffs Risk Nonrisks

Backup CPUs S2 R8

No backup data channel S3 T3 R9

Watchdog S4 N12

Heartbeat S5 N13

Failover routing S6 N14

Reasoning - Ensures no common mode failure by using different hardware and
operating system (see Risk 8)
- Worst-case roll over is accomplished in 4 seconds as computing
slate takes that long at worst
- Garanteed to detect failure with 2 seconds based on rates of
heartbeat and watchdog
- Watchdog is simple and proven reliable
- Availability requirement might be at risk due to lack of backup
data channel (see Risk 9)

Architectural Diagram Primary
CPU (OS1)

Backup CPU
w/watchdog

(OS2)

Switch
CPU (OS1)

heartbeat
(1 sec.)

Fig. 11.3: An Example for the analysis of architectural approaches

(see the instantiated template in Fig. 11.5). The scenario happens in the “normal
operation” (environment), “while transferring” (stimulus), and the system has to
achieve the “confidentiality of data” as a response to the stimulus. For achieving
the requirement R11, we only applied the asymmetric encryption as the architec-
tural decision (AD2). It is a sensitivity point as it affects security of the system.

11.5 Evaluation of Architecture Alternatives using ATAM 379

Analysis of Architectural Approach

Scenario #: R10 / R12 Scenario: Integrity and authenticity of data transferred in the
WAN shall be protected.

Attribute(s)

Environment Normal operation

Stimulus While transferring

Response Integrity and authenticity of data

Architectural Decisions Sensitivity Tradeoffs Risk Nonrisks

AD1 - digital signature S1

Reasoning See problem-oriented digital signature pattern in Chapter 8
(Section 8.2.5 on page 186)

Architectural
Diagram

Security (integrity, authenticity)

See A2 in Figure 10.4 in Section 10.2 on page 242

R1

Fig. 11.4: Analysis of the scenarios R10 and R12 for A2

As a reasoning for the architectural decision asymmetric encryption, we refer to
the description of the problem-oriented asymmetric encryption pattern given in
Section 8.2.7 on page 262. It describes why asymmetric encryption contributes to
achieving the confidentiality requirement. As an architectural diagram, we refer
to the structural view of the architecture alternative 2 (A2) given in Fig. 10.4 on
page 337.

The architectural approach load balancer has been applied in the architecture
alternative A1 in order to achieve the response time requirements R18-R25 (see the
instantiated template in Fig. 11.6). The scenario happens in a “normal operation”
(environment), “while receiving, processing, storing, submitting” (stimulus), and
the system has to respond “in less than 5 sec for requirements R18, R20, R22, R24
and in less than 10 sec for requirements R19, R21, R23, R25” as a response to the
stimulus.

For achieving these requirements, we applied the load balancer as the archi-
tectural decision (AD3). It is a sensitivity point (S3) as introducing a load balancer
might affect the performance of the system itself. It is not a trade-off point as it
does not affect the security of the system. For A1 three load balancers are placed.
At this stage of the software architecture, it is hard to assess whether all three load
balancers are required. Further performance analysis might be required later on if
the detailed design is built and there exist more details regarding the deployment
of the software components on the hardware components. For now, we can mark
the load balancer as a risk (R3) which has to be investigated further.

380 11 Phase 8: Software Architecture Alternatives Evaluation

Analysis of Architectural Approach

Scenario #: R11 Scenario: Confidentiality of data transferred in the WAN shall
be protected.

Attribute(s)

Environment Normal operation

Stimulus While transferring

Response Confidentiality of data

Architectural Decisions Sensitivity Tradeoffs Risk Nonrisks

AD2 - asymmetric encryption S2

Reasoning See problem-oriented asymmetric encryption pattern in Chapter 8
(Section 8.2.6 on page 186)

Architectural
Diagram

Security (confidentiality)

See A2 in Figure 10.4 in Section 10.2 on page 242

Fig. 11.5: Analysis of the scenario R11 for A2

The other architectural decision is symmetric encryption which contributes to
the achievement of security (confidentiality). Therefore, it is a sensitivity point
(S4). It might take some time due to the required computation time and, there-
fore, affect the achievement of the performance requirements. Hence, it represents
a trade-off point (T4) to be taken into account as an architectural decision (AD4
in Fig. 11.6). We argue that this might not be a problem related to performance in
A1 as we only use this mechanism for encrypting meter data that are submitted to
the outside world, namely to the authorized external entities (related to R4). For
meter data related to R5, we do not use the encryption mechanism due to perfor-
mance reasons. Therefore, it does not represent a risk for achieving performance
requirements R18 - R25.

The other architectural decision is MAC which contributes to the achievement
of security (integrity and authenticity). Therefore, it is a sensitivity point (S5). Also
this mechanism takes some time due to its computation and, therefore, affects the
fulfillment of the performance requirements. Hence, it represents a trade-off point
(T5) to be considered as an architectural decision (AD5 in Fig. 11.6). For this
architectural decision, we argue similarly to the previous architectural decision. It
might not cause a problem for performance in A1 as we only use this mechanism
for achieving security related to R4. Similar to the reasoning for the architectural
approach symmetric encryption, the architectural approach MAC does not provide
a risk for achieving performance requirements.

11.5 Evaluation of Architecture Alternatives using ATAM 381

Analysis of Architectural Approach

Scenario #: R18-R25 Scenario: The time to retrieve meter data from the smart
meter and publish it through the WAN shall be less than 5
seconds (R18, R20, R22, R24). The time to retrieve meter
data from the smart meter and publish it through the HAN
shall be less than 10 seconds (R19, R21, R23, R25).

Attribute(s)

Environment Normal operation

Stimulus Receive, process, store, and submit

Response Response time in less than 5 sec/response time in less than 10 sec

Architectural Decisions Sensitivity Tradeoffs Risk Nonrisks

AD3 - LB S3

Reasoning See problem-oriented load balancer pattern in Chapter 8
(Section 8.3 on page 188)

Architectural
Diagram

Performance (response time)

See A1 in Figure 10.3 in Section 10.2

AD4 - symmetric encryption

R3

S4 T4

AD5 - MAC S5 T5

Fig. 11.6: Analysis of the scenarios R18-R25 for A1

Step 7 - Brainstorm and prioritize scenarios

In this step, other stakeholders than the architect brainstorm for identifying scenar-
ios in order to revisit those scenarios from Step 5. The list of identified scenarios
by the other stakeholders has to be compared with the scenarios contained in the
utility tree from Step 5 to examine whether new scenarios have been identified.
The purpose of this step is to find a consensus between the architect and other
stakeholders regarding the scenarios and their prioritization. For the case that new
scenarios have been identified by other stakeholders, they have to be added to the
utility tree.

Application of Step 7 - Brainstorm and prioritize scenarios

We skip this step as in our case our position as the architect makes us the only
stakeholder.

382 11 Phase 8: Software Architecture Alternatives Evaluation

Step 8 - Analyze the architectural approaches

In this step, the same activities as in Step 6 have to be performed by the eval-
uator. The new scenarios from the previous step have to be taken into account.
The architect explains to the stakeholders whether and to what extent the applied
architectural approaches contribute to the satisfaction of new scenarios.

Application of Step 8 - Analyze the architectural approaches

We skip this step due to skipping Step 7.

Step 9 - Present the results

The evaluator team presents the gained information and results of applying ATAM
to the stakeholders. The architecture, quality requirements, and the collected infor-
mation from each step are summarized. The main outputs of ATAM, namely 1) the
prioritized scenarios, 2) the catalog of architectural approaches used, 3) mapping
of architectural approaches to quality requirements, 4) risks and nonrisks, and 5)
sensitivity and trade-off points are presented to the stakeholders.

Application of Step 9 - Present the results

We presented the application of each ATAM step in detail. We selected scenarios
to be further analyzed for the architecture alternatives A1 and A2. According to the
selection criteria suggested by ATAM, we did not select any scenarios related to
the architecture alternative A3. Hence, it is considered as not critical.

Regarding the architecture alternative A1, we identified three architectural de-
cisions load balancer, symmetric encryption, and MAC. Load balancer has been
identified as a potential risk to be further analyzed in the detailed design. Symmet-
ric encryption and MAC represent trade-off points. We, however, did not identify
a risk regarding these two architectural approaches.

Regarding the architecture alternative A2, we identified two architectural de-
cisions digital signature and asymmetric encryption for the scenarios R10, R11,
and R12. Digital signature has been identified as a potential risk to be taken into
account during the detailed design and implementation.

11.5 Evaluation of Architecture Alternatives using ATAM 383

11.5.2 Discussion of the results

In this step, we discuss our experience of applying ATAM.

Architecture evaluation experience

We observed that ATAM provides a guideline on the steps of the evaluation and the
order of applying the steps. It, however, does not explicitly state how to apply each
step. For example, Step 6 of ATAM is concerned with analyzing the architectural
approaches. ATAM provides a template for this step. However, there is no clear
guidance on how to analyze the architectural approaches, and identify the risks
and nonrisks in a detailed and systematic manner. A challenge that we have faced
during the application of ATAM was that experience and intuition of the evaluators
play an essential role in how expressive and convincing the results are. ATAM is a
strong experience-based approach for architecture evaluation. This holds for other
methods developed by the Software Engineering Institute (SEI)22, such as ADD23,
as well [102].

Experienced evaluators use the instantiated templates as output of Step 6 to de-
cide which architectural decisions might be problematic based on their experience.
Beside the templates that support the collection of the right information in a struc-
tured way for the evaluator, Step 6 does not provide any systematic support on how
to identify the problematic decisions.

Reliability of the results

By applying ATAM, we played the role of the software architect as a stakeholder
as well as the role of the evaluator at the same time. This might have biased the
results of the evaluation. To mitigate this bias, we allocated a master thesis on this
topic using the same case study in order to gain a different and external perspective
regarding the evaluation task. The results obtained from the master thesis are not
much different as also in this case there was a lack of experience in evaluating soft-
ware architectures. This supports our view of ATAM being an experience-based
method.

22 http://www.sei.cmu.edu/
23 Attribute Driven Design

384 11 Phase 8: Software Architecture Alternatives Evaluation

Benefits of the architecture evaluation

The main and obvious benefit of architecture evaluation is identifying architec-
tural problems and risks. In addition, there are the other benefits that contribute
to the success of a software project. We give an overview of these benefits in the
following [80]:
Put stakeholders in the same room is considered as one additional benefit of
applying ATAM. In most cases, an architecture evaluation is the first time that
stakeholders gather together in order to explain their goals and motivations and to
communicate with each other.
Forces an articulation of specific quality goals is another additional benefit of
ATAM given by its authors. Often quality goals and requirements are not captured
in the requirement documents or only documented in a vague and an ambiguous
manner. ATAM supports the explicit and precise capturing of quality requirements
by establishing a utility tree which forces the stakeholders to think about their
desired goals and requirements. Also this benefit does not apply in our case as
we documented quality requirements in a systematic and methodical manner in
Phase 1 of QuaDRA .
Results in the prioritization of conflicting goals ATAM helps resolving con-
flicting goals and requirements by prioritizing them if they cannot all be satisfied.
Also this additional benefit does not provide an added value as we provide meth-
ods for systematically detecting and resolving conflicting requirements in Phase 4
of QuaDRA described in Chapter 7.
Forces a clear explication of the architecture The architect has to explain the
architecture to the stakeholders that were not privy to the architecture creation
process and to make them understand it. As explained before, we as the only stake-
holder in the evaluation process do not benefit from this force.
Improves the quality of architectural documentation Often in practice, the ar-
chitecture documentation has not been prepared well. But, the architecture evalua-
tion requires a full documentation of the software architecture. At the latest when
evaluating the architecture, the documentation should be completed. Here, we also
observe that we cannot profit much, as documenting all artifacts produced by every
phase of the QuaDRA framework is an explicit part of QuaDRA.
Uncovers opportunities for cross-project reuse Stakeholders and evaluators are
often involved in other projects. As such, they are in a position to discover com-
ponents that can be reused in other projects or reuse and import components from
other project to the current one. From our point of view, this might be a beneficial
issue when working in practice in different projects. However, this benefit could
not be explored in our current position in the research and within this book.

11.5 Evaluation of Architecture Alternatives using ATAM 385

Results in improved architecture practices Those organizations that incorporate
architecture evaluation into their development process benefit from the improve-
ment in the quality of the developed architectures. The reason is that the architects
learn to already address the issues in the architecture development which will be
raised later in the architecture evaluation. Also this benefit does not directly apply
to our case.

All these benefits do not apply to our current work. However, many projects
might profit from these add-ons as often the software architectures created in such
organizations lack documentation and explicit consideration of quality require-
ments. So, they might use one or more of these benefits when evaluating the archi-
tecture to obtain a better architecture. A straightforward and right way for obtain-
ing a suitable software architecture is, however, to construct the software archi-
tecture from the beginning in a systematic and methodical way. We have shown in
this book how to develop such an architecture. After applying ATAM, we observed
that most of the benefits of applying ATAM are not applicable to our case, as the
software architecture derived using the QuaDRA framework already contains most
of the artifacts that are created during ATAM. In the following, we describe which
steps of ATAM can be left out when applying QuaDRA for creating architectures.

Benefits of applying QuaDRA

When using QuaDRA for deriving architectures, there is no need for applying all
the steps of ATAM for the architecture evaluation. In this case, most of the ATAM
steps can be left out.

Step 2 of ATAM is concerned with identifying the main functions of the system,
possible restrictions, business goals, and architectural drivers. We treated these
issues in Phase 1 of QuaDRA described in Chapter 4.

Steps 3 and 4 of ATAM are concerned with the architecture of the system
containing technical restrictions, interacting systems, and architectural approaches
that have been used for fulfilling the quality requirements. We treat these issues in
different parts of QuaDRA. For example, in Phase 1, we provide the context view
defining the scope of the system and the environment. In Phase 3, we select, docu-
ment, and apply architectural patterns in a systematic way. In Phase 7, we provide
the structural and behavioral view of the software architecture. As all these phases
are carefully documented, the related steps in ATAM can be left out.

Similar to ATAM, QuaDRA supports the explicit and precise capturing of qual-
ity requirements which forces the stakeholders to think about their desired goals
and requirements. We documented quality requirements in a systematic and me-
thodical manner in Phase 1 of QuaDRA described in Chapter 4. Therefore, when

386 11 Phase 8: Software Architecture Alternatives Evaluation

conducting QuaDRA for deriving quality-based software architecture, the related
step in ATAM, namely Step 5, can be left out in a large part. We consider the re-
quirement prioritization part of Step 5 as useful in order to avoid the consideration
of all requirements.

Step 6 of ATAM uses the results of the previous steps and structures them in
predefined templates. In order to identify risks, nonrisks, sensitivity and trade-off
points, applying this step might be useful. However, as we provide methods for
identifying conflicts (trade-off points in ATAM) and resolving them in Phase 4 of
QuaDRA, not many new insights can be expected as the result of this step. Steps 7
and 8 provide a repetition of Steps 5 and 6 when new scenarios are identified.
Step 9 presents the results.

11.6 Related Work

In this section, we review the attempts providing a systematic comparison of the
state-of-the-art in the area of architecture evaluation methods. There is little con-
sensus on the criteria that a software architecture evaluation method should fully
address. To the best of our knowledge there is a sparse number of works dealing
with this topic [88, 34, 35]. All these works propose an explicit framework for
comparing architecture evaluation methods.

Dobrica and Niemelä [88] present and discuss eight of the most representative
architecture evaluation methods. They propose a comparison framework for com-
paring these methods including eight comparison elements. Similar to our com-
parison framework, this work is a qualitative framework which discusses the sim-
ilarities and differences between the architecture evaluation methods instead of
providing a quantitative judgement. In this work, the authors do not provide any
explanation on why those particular elements have been selected for their frame-
work. There is also no explanation of the elements of the framework. Furthermore,
the authors do not reason why they selected those eight particular evaluation meth-
ods.

A framework for comparing and classifying software architecture evaluation
methods is proposed by Babar et al. [35]. This framework includes 15 comparison
elements. In contrast to the previous work, it provides a detailed explanation of
the framework elements. Also this work provides a comparison of eight evaluation
methods. This work focuses only on scenario-based architecture evaluation meth-
ods. The methods SAAM, SAAMCS, SAAMER, ATAM, and SBAR are selected in
both frameworks for comparison.

11.7 Contributions 387

Babar and Gorton [34] improve the work proposed in [35] by making some
adjustments to the framework. For the new framework, they make use of the NIM-
SAD framework for classifying the components of the framework in context, stake-
holders, contents, and reliability. They also extend the comparison elements to 17.
In this work, the authors limit their comparative evaluation to only four scenario-
based methods SAAM, ATAM, PASA, and ALMA. All these three frameworks do
not report on how they selected the evaluation methods to be compared. In con-
trast, we conducted a systematic literature review to find the architecture evaluation
methods. In our framework, we provide a comparison of 16 architecture evaluation
methods.

11.7 Contributions

In order to identify and localize the problems with the derived software architec-
ture alternatives regarding the achievement of quality requirements, we conducted
an architecture evaluation in this chapter. Our contributions can be summarized as
follows:

• Systematic selection of the state-of-the-art methods by conducting a secondary
literature review. We scanned 258 secondary studies by conducting automated
and snowball search. As the final result, we selected 7 secondary studies from
which we extracted 16 architecture evaluation methods.

• Developing a structured framework and selection criteria for analyzing and
comparing the state-of-the-art methods. The framework is structured in Com-
ponents, Elements, Evaluation Questions, and Classification. It can be easily
modified and extended to desirable features.

• Selecting an architecture evaluation method by applying the developed frame-
work for evaluating the architecture alternatives created by QuaDRA. Only the
three methods ATAM, SAEM, and SACAM fulfilled all the essential selection
criteria. ATAM has been selected as the most suitable method as it fulfills more
beneficial selection criteria than the other methods.

• Evaluating the derived architecture alternatives by applying ATAM. The aim of
ATAM is not to provide a decision regarding the selection of the most suitable
architecture alternative with regard to specific quality requirements. It rather
focuses on determining if and where in the software architecture there might be
problems with regard to specific quality requirements.

• Critically discussing the results of applying ATAM and its benefits to the
QuaDRA framework. The architecture evaluation using ATAM showed that the
most benefits one could gain from applying ATAM can also be obtained by de-

388 11 Phase 8: Software Architecture Alternatives Evaluation

riving software architectures using the QuaDRA framework. The reason is that
almost all the artifacts to be created during the application of ATAM are created
during different phases of QuaDRA.

Chapter 12
Validation of the QuaDRA Framework

Abstract At the beginning of this book in Chapter 1, we described the existing gap
in research regarding methods for building software architectures based on (qual-
ity) requirements. We developed the QuaDRA framework described in Chapters 4
- 11 that aims at bridging this gap. This chapter describes the validation of the
QuaDRA framework for quality-aware co-development of requirements and soft-
ware architecture alternatives. It represents a comparative evaluation of QuaDRA
and the state-of-the-art methods. The objective of the comparative evaluation is to
figure out whether QuaDRA exhibits a substantial progress over the state-of-the-
art methods.

12.1 Introduction

We highlighted two existing challenges in software engineering at the beginning
of this book in Chapter 1 that provide the basis for this book: 1) an existing gap in
research regarding methods for building software architectures based on (quality)
requirements, 2) the intuition-, communication-, and experience-based nature of
existing methods for developing requirements and software architectures.

In order to overcome these challenges, we first systematically derived meta-
requirements that a method for quality-aware development of requirements and
software architecture has to meet in Chapter 3. After classifying the meta-require-
ments in essential, recommended, and optional, we used them as evaluation crite-
ria in a structured framework that we developed for comparing the state-of-the-art
methods. The comparative evaluation has shown that none of the compared meth-
ods fulfills all the essential and recommended meta-requirements or nearly all of

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_12

390 12 Validation of the QuaDRA Framework

them. Our evaluation underlined the lack of methodological support for systematic
development of artifacts in both phases with respect to quality requirements in a
unified process.

We developed a framework described in Chapters 4 - 11 that aims at remedying
this lack by fulfilling the identified meta-requirements. In developing QuaDRA our
primary goal was to achieve the essential and recommended meta-requirements.
The optional meta-requirements played a secondary role in being achieved by the
QuaDRA framework.

The goal of this chapter is to provide a validation of QuaDRA by apply-
ing the systematic evaluation framework from Chapter 3. The framework appli-
cation demonstrates to what extent the QuaDRA framework satisfies the meta-
requirements. It allows us to compare our method with the state-of-the-art meth-
ods. Our objective of the comparative evaluation is to figure out whether QuaDRA
exhibits a substantial progress over the state-of-the-art methods. With this chapter
we provide answers for the research question RQ 4 defined at the beginning of this
book.

This chapter is structured as follows. Section 12.2 reviews the evaluation frame-
work that we developed before. Section 12.3 provides an overview of the value
assignment schema for making our method comparable with the state-of-the-art
methods. In Section 12.4, we validate the QuaDRA framework by applying the
developed evaluation framework. We conclude this chapter in Section 12.5.

12.2 Evaluation Framework

We developed an evaluation framework in Chapter 3 as an analysis tool for com-
parative evaluation of methods bridging the gap between requirements and soft-
ware architecture with respect to quality requirements (see Section 3.4 on page 73).
This evaluation framework uses the meta-requirements that we derived in Sec-
tion 3.2 (see page 54). The meta-requirements build the elements of the frame-
work. We used this framework for evaluating the methods, which we identified
by conducting an SLR in Section 3.6 (see page 75). The evaluation framework is
shown in Table 12.1.

We divided the meta-requirements into the three categories “essential”, “rec-
ommended”, and “optional”:

Essential meta-requirements are required and must be fulfilled when devel-
oping such a method. That is, we cannot speak of a “method supporting the
quality-aware development of requirements and software architecture” if not
all of the essential meta-requirements are fulfilled.

12.2 Evaluation Framework 391

Table 12.1: The comparative evaluation framework and its constituents

Component Elements Evaluation Questions Classification
Context Development phase Which phases are covered by the method? Method characteristic

Method input What are the required inputs for the method? Method characteristic
Method output What are the produced outputs of the method? Method characteristic
Application domain For which application domain is the method de-

veloped?
Method characteristic

User User skill What specific skills does an inexperienced soft-
ware engineer require to accomplish tasks re-
quired by the method?

Method characteristic

Content Quality req. How are quality requirements elicited and docu-
mented?

Essential

Guidance How much support for applying the method by
the user is provided by the reported method?

Essential

Knowledge reuse To what extent is making use of reusable knowl-
edge supported?

Essential

RE descr. Which RE artifacts are created by the method?
Which notation/language is used by the method
to represent RE models, diagrams, and other ar-
tifacts it creates? Which RE approach is used for
creating the artifacts?

Essential

Design descr. Which design artifacts are created by the
method? Which notation/language is used by the
method to represent design models, diagrams,
and other artifacts it creates? Which design ap-
proach is used for creating the artifacts?

Essential

Traceability To what extent is traceability between require-
ments and design artifacts supported?

Recommended

Design rationale To what extent is capturing the rationales behind
design decisions supported?

Recommended

Trade-off analysis Whether and to what extent is trade-off analysis
supported?

Recommended

Arch. alternatives To what extent are alternative architectures sup-
ported?

Recommended

Iterative dev. To what extent is the iterative development of
requirements and software architectures sup-
ported?

Recommended

Concurrent co-dev. To what extent is the intertwining and concur-
rent co-development of requirements and soft-
ware architecture supported?

Optional

Arch. views Whether and which views are used for represent-
ing the RE and design artifacts?

Optional

Tool support Are there tools to support the method and its ar-
tifacts? Which activities of the methods are sup-
ported by the tools?

Optional

Validation Arch. evaluation Whether and how does the method evaluate the
satisfaction of quality requirements in the pro-
duced software architecture?

Recommended

392 12 Validation of the QuaDRA Framework

Recommended meta-requirements are of high interest, but might not be abso-
lutely required. That is, we can still speak of a “method supporting the quality-
aware development of requirements and software architecture” if not all recom-
mended meta-requirements are met. In such a case, we are concerned with a
method which is not optimal for our purposes but still acceptable.

Optional meta-requirements represent those meta-requirements that do not
need to be necessarily fulfilled for a “method supporting the quality-aware de-
velopment of requirements and software architecture”. Their fulfillment, how-
ever, provides additional characteristics that are useful.

In addition to the three categories “essential”, “recommended”, and “optional
for meta-requirements, we defined the category “method characteristics”. This
category is concerned with those characteristics that every software engineering
method exhibits. Examples for such characteristics are user skill and application
domain. We also make use of these characteristics for the comparative evaluation.

12.3 Value Assignment Schema

In Chapter 3, we provided a value assignment schema that we chose for mak-
ing the selected methods comparable (see Section 3.8.1 on page 97). We decided
to use a 3-score scale consisting of +, o, and - for assigning values to the meta-
requirements, as it might be easier to handle than other scoring systems.

Table 12.2 shows the value assignment schema for each meta-requirement. The
first column of Table 12.2 represents the “meta-requirement”, the second column
gives the possible answers to the evaluation question (“answer to evaluation ques-
tion”), and the third column represents the values we assigned (+, o, -) for making
the meta-requirement comparable with other methods (“assigned value”).

12.4 Comparative Evaluation of the QuaDRA Framework

This section deals with evaluating the QuaDRA framework based on the derived
meta-requirements and the developed comparative evaluation framework. We first
evaluate the QuaDRA framework by assigning values to the meta-requirements
and give reasoning for it in Section 12.4.1. We show the application of the eval-
uation framework to QuaDRA and then compare the results of evaluation with
state-of-the-art methods in Section 12.4.2.

12.4 Comparative Evaluation of the QuaDRA Framework 393

12.4.1 Value Assignment

For each meta-requirement, we ask the evaluation question and provide answers
for the question (answer for QuaDRA).

User skill

Evaluation question: What specific skills does an inexperienced software engi-
neer require to accomplish tasks required by the method?
Answer for QuaDRA: QuaDRA uses problem frames as the basis for require-
ments engineering. Hence, the only specific skill that the user requires is the knowl-
edge of problem frames. In addition to problem frames, QuaDRA uses UML di-
agrams for modeling requirement as well as architecture descriptions. However,
UML is assumed to be known to the software engineers. Therefore, it is not con-
sidered as a specific skill. As a result of evaluation, we assign the value “+” to
the essential meta-requirement user skill as only 1 specific skill is required for
applying the QuaDRA framework.

Quality requirements

Evaluation question: How are quality requirements elicited and documented?
Answer for QuaDRA: In QuaDRA , quality requirements are elicited and doc-
umented right from the beginning of the software development process, namely
in the requirements engineering. In Phase 1 of QuaDRA (see Chapter 4), we pro-
pose a systematic method that elicits quality requirements and documents them
in a structured way. By applying this method, quality requirements can be cap-
tured and documented as problem diagrams in a structured way. Each problem di-
agram additionally contains the textual description of quality requirements in nat-
ural language. To the essential meta-requirements quality requirements we assign
the value “+” as the proposed method elicits and documents quality requirements
in a structured and systematic way.

Guidance and method structure

Evaluation question: How much support for applying the method by the user is
provided by the reported method?
Answer for QuaDRA: The QuaDRA framework provides various structured

394 12 Validation of the QuaDRA Framework

Table 12.2: Mapping between meta-requirements and the assigned values

Meta-requirements Answer to evaluation question Assigned value
User Skill 4 needed skills -

3 needed skills o
1-2 needed skills +

Quality requirements Structured and systematic elicitation and documentation +
Vaguely elicitation and documentation o
No elicitation and documentation -

Guidance and method struc-
ture

“Yes” and “step by step” +

“Yes” and “relatively detailed” o
“No” and “step by step” o
“No” and “relatively detailed” -

Knowledge reuse “Architectural patterns” and “tactics1” +
“Only architectural patterns” o
“Only tactics” o
“No architectural patterns” and “no tactics” -

RE and design descriptions “unified language for RE and architecture” and “semi-
formal”

+

“unified language for RE and architecture” and “only nat-
ural language”

o

“different languages for RE and architecture” and “semi-
formal”

o

“different languages for RE and architecture” and “only
natural language”

-

Traceability Yes +
Partially o
No -

Design rationale Yes +
Partially o
No -

Trade-off analysis “Detection” and “resolution” +
“Only detection” o
“Only resolution” o
“No detection” and “no resolution” -

Architecture alternatives Yes +
Partially o
No -

Iterative development Yes +
No -

Concurrent co-development Yes +
No -

Arch. views “structural” and “behavioral” and “deployment” or “de-
velopment”

+

“structural” and “behavioral” o
“structural” -

Tool support Yes +
Partially o
No -

Architecture evaluation Yes +
Partially o
No -

12.4 Comparative Evaluation of the QuaDRA Framework 395

methods for the different phases of co-developing requirements and software ar-
chitecture alternatives. Each method involves a number of steps to be performed,
required inputs and resulting outputs. In addition, it explicitly specifies in which
order the different steps have to be executed. All the methods provide a “step by
step” guidance in order to support inexperienced software engineers in achieving
the goal of the method. That is, our proposed methods do not rely on intuition or
experience of software engineers. As an example, our decision making process for
selecting architectural patterns is a “step-by-step” and systematic process in con-
trast to the current state-of-the-art in which the decision making process is often
described as an ad-hoc and creative process relying to a large extent on the experi-
ence and expertise of the architects [120, 253]. Therefore, we assign the value “+”
to the essential meta-requirement guidance and method structure.

Knowledge reuse

Evaluation question: To what extent is making use of reusable knowledge sup-
ported?
Answer for QuaDRA: A quality-aware software development process covering
requirements engineering and software architecture must include step-by-step and
systematic ways for finding solutions such as patterns, styles, and tactics to achieve
quality requirements. QuaDRA uses architectural patterns for addressing quality
requirements in the software architecture. In Phase 2 (see Chapter 5), a systematic
pattern selection process is presented which guides the user through the pattern
selection and provides support for decision making. In Phase 5 (see Chapter 8)
mechanisms (also known as tactics) for fulfilling quality requirements are identi-
fied and analyzed. Such mechanisms are used in a structured method in Phase 6
(see Chapter 9) for enriching requirement models with quality-specific solutions.
The value “+” is assigned to the essential meta-requirement knowledge reuse as
we use architectural patterns as well as quality-specific mechanisms for achieving
quality requirements.

RE and design description

Evaluation question: Which RE and design artifacts are created by the method?
Which notation/language is used by the method to represent RE and design mod-
els, diagrams, and other artifacts it creates? Which RE and design approach is used
for creating the artifacts?
Answer for QuaDRA: We create a context diagram as well as problem diagrams

396 12 Validation of the QuaDRA Framework

annotated with domain knowledge as RE artifacts (see Chapter 4). As design ar-
tifacts we create architecture diagrams containing the structural as well as the be-
havioral views (see Chapters 5 and 11). The notation and the language that is used
in both kinds of artifacts is UML. The context diagrams and the problem diagrams
are represented as UML class diagrams. Architecture artifacts contain the struc-
tural view of the architecture represented as UML composite structure diagrams
and the behavioral view of the architecture represented as UML sequence dia-
grams. The requirement artifacts as well as the design artifacts are maintained in
one unified model. This allows us to keep consistency of the UML artifacts through
the two phases requirements engineering and architecture design. As we use UML
for representing the RE as well as design artifacts, we are concerned with a uni-
fied and semi-formal language. Hence, the value “+” is assigned to the essential
meta-requirement RE and design description.

Traceability

Evaluation question: To what extent is traceability between requirements and de-
sign artifacts supported?
Answer for QuaDRA: We provide the intermediate model problem-solution di-
agram which explicitly provides trace links from quality requirements to the
quality-specific solution alternatives (see Chapter 8 on page 278). Furthermore,
to create architecture, we map problem diagrams to components in the software
architecture. So, it is clear which components are in charge of fulfilling which re-
quirements. Furthermore, we keep the requirements as well as the design artifacts
in one unified model. This helps us to find the links between different model ar-
tifacts using OCL expressions. So, we assign the value “+” to the recommended
meta-requirement traceability.

Design rationale

Evaluation question: To what extent is capturing the rationales behind design de-
cisions supported?
Answer for QuaDRA: Our pattern selection process contains structured and trans-
parent decision making steps, which support the software engineer in capturing and
tracing the design decisions and the related rationale. It provides a reasoning about
the appropriateness of the architectural design decisions. The reasoning is pro-
vided by a documentation of the relevant questions, the related answers to those
questions, and the consequences related to the selected pattern. Consequently, the

12.4 Comparative Evaluation of the QuaDRA Framework 397

software engineers are able to reconstruct the made design decisions later on (see
Chapter 5). Also other methods of the QuaDRA framework such as requirement
interaction detection methods, performance analysis method, and requirement al-
ternative generation method guide the user in documenting rationales by decision
making in a structured way so that other designers can understand them without
additional assistance.

In addition, in our developed templates for problem-oriented quality patterns,
we document the pre-conditions and post-conditions for applying the patterns. The
pre-conditions can be annotated in the requirement models using the attributes of
the �bottleneck� stereotype. Thus, we capture the limitations and constraints
of the possible options.

Furthermore, the problem-solution diagram provides the possibility to docu-
ment rationales for selecting quality-specific solutions in the solution space. Each
quality-specific solution alternative can be annotated with a rationale for selecting
it. It is indicated by the attribute rationale of the stereotype variant. Using this
attribute reasons for selecting or not selecting a specific quality-specific solution
can be annotated in the models. Moreover, in the architecture diagram, we provide
the option for documenting rationales for the selected quality-specific solution.
This can be captured as an annotation using the attribute rationale. By doing this,
we keep the documentation for selecting or not selecting an option over another
option in the architecture models. Consequently, we assign the value “+” to the
recommended meta-requirement design rationale.

Trade-off analysis

Evaluation question: Whether and to what extent is trade-off analysis supported?
Answer for QuaDRA: Trade-off analysis involves the systematic treatment of
conflicts among requirements. Most software engineers use common sense prac-
tices such as documentation reviews. In the QuaDRA framework, we propose two
methods for systematic detection of functional as well as quality requirements (see
Chapter 7 on page 198 and 210). To make the conflicting requirements manage-
able, we narrow down the set of interacting requirement pairs using a structured
method (see Chapter 7 on page 220). Another method is proposed to resolve the
remaining conflicts among quality requirements by relaxing them and generating
requirement alternatives (see Chapter 7 on page 231). So, QuaDRA detects and
resolves conflicts between quality requirements. Hence, we assign the value “+”
to the recommended meta-requirement trade-off analysis.

398 12 Validation of the QuaDRA Framework

Architecture alternatives

Evaluation question: To what extent are alternative architectures supported?
Answer for QuaDRA: There might exist various solutions for achieving quality
requirements. Such solution might lead to different levels of satisfaction of qual-
ity requirements. We make use of architectural patterns (see Chapter 5) as well as
quality-specific solutions (see Chapters 8 and 9) to address quality requirements.
Selecting different architectural patterns and quality-specific solutions leads to ar-
chitecture alternatives. In the QuaDRA framework, we propose the systematic
derivation of architecture alternatives from requirement descriptions (see Chap-
ter 10). Having supported the creation of architecture alternatives by QuaDRA ,
we assign the value “+” to the recommended meta-requirement architecture alter-
natives.

Iterative development

Evaluation question: To what extent is the iterative development of requirements
and software architectures supported?
Answer for QuaDRA: It is necessary to provide feedback loops in the architecting
process to enable the software system to respond to changes in the problem space
as well as in the solution space. QuaDRA proposes an iterative and concurrent way
of developing requirement and architecture descriptions. The phases of QuaDRA
are constructed in such a way that there is forward and backward feedback between
the problem and the solution peaks. So, the changes in one peak are considered in
the other peak for further development. This way, the artifacts in both phases are
developed concurrently and consistently to each other. Hence, we assign the value
“+” to the recommended meta-requirement iterative development.

Architecture evaluation

Evaluation question: Whether and how does the method evaluate the satisfaction
of quality requirements in the produced software architecture?
Answer for QuaDRA: Evaluation of software architecture is essential to ensure
whether and to which extent quality requirements have been addressed in the
software architecture. In Phase 8 of the QuaDRA framework (see Chapter 11),
we provide an evaluation of the created software architecture alternatives using
the widely used and established method ATAM. The architecture evaluation using
ATAM shows that the most benefits one could gain from applying ATAM can also

12.4 Comparative Evaluation of the QuaDRA Framework 399

be obtained by deriving software architectures using the QuaDRA framework. The
reason is that almost all the artifacts to be created during the application of ATAM
are created during different phases of QuaDRA. Therefore, we can say that the
architecture evaluation is already contained in QuaDRA by construction. Hence,
we assign the value “+” to the recommended meta-requirement architecture eval-
uation.

Concurrent co-development

Evaluation question: To what extent is the intertwining and concurrent co-deve-
lopment of requirements and software architecture supported?
Answer for QuaDRA: As described above, we not only propose an iterative ap-
proach for developing the requirements and software architectures. We also pro-
pose the concurrent co-development of the requirement and architecture artifacts.
QuaDRA follows the idea of the Twin Peaks model which resulted from the expe-
riences of its author in industrial environments [182]. We assign the value “+” to
the optional meta-requirement concurrent co-development.

Architecture views

Evaluation question: Whether and which views are used for representing the RE
and design artifacts?
Answer for QuaDRA: Different architectural views can be defined for a software
architecture, each of which represents a specific perspective of the software ar-
chitecture design. Since there is no consensus on the number and nature of the
architectural views, it can be hardly defined which kinds of architectural views are
required. According to Smolander et al. [222], the most appropriate set of archi-
tectural views cannot be objectively specified in general. Based on the prevalent
situation and characteristics of the organizations and software projects, the archi-
tectural views have to be selected.

We found out that all the six selected methods support the structural view of the
software architecture and most of them provide additionally the behavioral view
of the software architecture. Two of the selected methods provide the deployment
view as well. QuaDRA provides four different views. In addition to the structural
view and the behavioral view, we provide two additional views namely the context
view and the requirements view.

The context view proposed by Rozanski and Woods [204, 245] documents the
system context. In our context view, we defined the scope of the software, the scope

400 12 Validation of the QuaDRA Framework

of the environment, and the relations between the software and its environment.
The context view was the first document that we produced. It is illustrated as a
context diagram.

According to Clements et al. [78], in order to document the software archi-
tecture in an appropriate way, it has to be shown that the architecture satisfies the
requirements and no important requirement has been forgotten. To this end, a map-
ping between the requirements and the architecture can be captured in a separate
requirements view. We describe the requirements view by setting up the problem-
solution diagram providing the traceability between the quality requirements that
shaped the architecture as the main architectural drivers and the quality-specific
solutions addressing those requirements in the architecture.

We believe that for software projects developing architectures based on quality
requirements, these four views are essential. Nevertheless, we assign the value “o”
to the optional meta-requirement architecture views as we do not provide support
for the deployment view or development view.

Tool support

Evaluation question: Are there tools to support the method and its artifacts?
Answer for QuaDRA: A tool can provide support for some time-consuming and
error-prone tasks of a method. For the QuaDRA framework, we provided tool sup-
port based on the UML4PF tool mainly for modeling the required artifacts. We
developed various UML profiles that are integrated in the UML4PF tool. Never-
theless, new features for the tool that support the the interactive creation of the
problem-solution diagram, the initial architecture, and the quality-driven archi-
tecture alternatives in a semi-automated way might be useful. Another useful fea-
ture is the identification and implementation of validation conditions in order to
check the consistency of artifacts within each model and between different mod-
els. Hence, we assign the value “o” to the optional meta-requirement tool support
as we do not provide tool support for all the activities of the QuaDRA framework.

12.4.2 Comparison of QuaDRA with the State-of-the-Art Methods

Table 12.3 shows the application of the evaluation framework to QuaDRA using
the value assignment above. It also illustrates the application of the evaluation
framework to the state-of-the-art methods which we presented in Chapter 3 (see
page 97). This way, we present a direct comparison of the existing methods with

12.4 Comparative Evaluation of the QuaDRA Framework 401

the QuaDRA framework and show to what extent our developed framework fulfills
the meta-requirements.

The dark gray rows show the essential meta-requirements, which are quality re-
quirements, guidance, knowledge reuse, and RE and design descriptions. The light
gray rows indicate the recommended meta-requirements, which include traceabil-
ity, design rationale, trade-off analysis, architecture alternatives, and iterative de-
velopment. The non-colored rows are the optional meta-requirements, which are
concurrent co-development, architecture views, and tool support. In addition, we
take into account the method characteristic user skill for the comparative evalua-
tion, as the number of new skills to learn by a novice software engineer might have
an impact on the application of the method.

Table 12.3: Evaluation comparison of QuaDRA with state-of-the-art methods

Elements ATRIUM Marew
et al.

Sangwan
et al.

Ovaska
et al.

Sánchez
et al.

Tropos QuaDRA

User skill - + o + o + +
Quality requirements + + + + + + +
Guidance and method structure + o o - - o +
Knowledge reuse o o + + o o +
RE and design description o - + + + o +
Traceability + o + - - o +
Design rationale + - - - - + +
Trade-off analysis - + + + - - +
Architecture alternatives o - - - o o +
Iterative development + + - + - - +
Concurrent co-development + - - - - - +
Architecture views - + - + o o o
Tool support + - - + o - o
Architecture evaluation - - - - - o +

In Chapter 3 (see page 104), we discussed the fulfillment of the meta-requirements
by the state-of-the-art methods by category. Regarding the category essential meta-
requirements that are considered as must have meta-requirements, we have seen
that none of the methods fulfills all four meta-requirements. Eliciting and doc-
umenting meta-requirements in a structured way (quality requirements in Ta-
ble 12.3) is fulfilled by all methods whereas (Guidance and method structure in
Table 12.3) is not satisfied by most of the methods. One reason for this can be that
these methods do not place importance on guiding the user providing a step by step
method and detailed guidance as they are designed for experienced software engi-
neers and not for novices. QuaDRA, in contrast to the existing methods, fulfills all
the essential meta-requirements.

402 12 Validation of the QuaDRA Framework

Regarding the category recommended meta-requirements, we take from Ta-
ble 12.3 that none of the state-of-the-art methods deals with creating architec-
ture alternatives. Some of the methods take alternatives for architectural patterns
into account. They, however, do not create alternatives for the final architecture.
Architecture evaluation is another recommended meta-requirement that is fully
satisfied by none of the state-of-the-art methods. This means that these methods
do not evaluate to what extent the resulting final software architecture meets the
elicited and modeled quality requirements. Similar to the category essential meta-
requirements, QuaDRA is also for the category recommended meta-requirements
the only method that fulfills all meta-requirements.

Regarding the category optional meta-requirements, two of the existing meth-
ods satisfy two of three optional meta-requirements. QuaDRA satisfies one op-
tional meta-requirement fully and the two others from this category are partially
satisfied.

According to this evaluation, we showed that QuaDRA is able to address the
identified gaps in Chapter 3 and to remedy the lack of methodological support for
systematic development of both phases with respect to quality requirements in a
unified process.

12.5 Contributions

In this chapter, we applied our structured evaluation framework to the QuaDRA
framework. Our objective was to examine to what extent the derived meta-require-
ments are fulfilled by our developed method. We aimed at examining to what
extent QuaDRA can contribute to bridging the existing gap with regard to the
quality-aware development of requirements and software architecture alternatives.
Our contributions can be captured as follows:

• Evaluation of QuaDRA by applying the developed framework. The evalua-
tion shows that QuaDRA fulfills all the essential and recommended meta-
requirements.

• Comparative evaluation of QuaDRA with the state-of-the-art methods. It demon-
strates that QuaDRA exhibits a substantial progress over the state-of-the-art
methods.

• Overcoming the lack of systematic and methodological guidelines for develop-
ment of requirements and software architecture with respect to quality require-
ments in a unified process.

Chapter 13
Extending Problem-Oriented Requirements
Engineering for SPL

Abstract In the QuaDRA framework, we have provided support for developing a
single system. In this chapter, we show how to enhance the problem-oriented re-
quirements engineering for supporting a product line development. We extend the
problem frames approach with a notation for modeling variability by providing a
UML profile. Furthermore, we propose the structured PREVISE method, which
conducts requirements engineering in software product lines taking into account
quality requirements. Our method covers domain engineering as well as applica-
tion engineering.

13.1 Introduction

In the QuaDRA framework, we developed a method for deriving design alterna-
tives from quality requirements (Chapters 4 - 11). We investigated how differ-
ent user preferences and needs regarding security and performance can influence
the design of software. In this chapter, we perform a first effort for extending the
QuaDRA framework, which supports a single-system development to a product-
line development addressing quality requirements.

Software product line engineering (SPLE) represents a paradigm to develop
software applications which are tailored to individual customer’s needs [194]. The
benefits of applying SPLE are the reduction of development cost, enhancement of
productivity, reduction of time to market, enhancement of quality, and reduction
of maintenance of a software [194].

Software product lines (SPL) involve a set of common features as well as a
set of variable ones. The first challenge we are facing is how to utilize and ad-

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_13

404 13 Extending Problem-Oriented Requirements Engineering for SPL

just conventional requirements engineering techniques for modeling and engineer-
ing product families. Modeling and managing variability is the central concept in
SPLE. Beyond the variability which is caused by variable requirements, there exist
further variabilities, which might emerge because of changes in the environment
in which the software will be located. Such kind of variability should be taken into
consideration when developing SPL.

In this chapter, we propose the PREVISE (PRoblEm-oriented VarIability Re-
quirementS Engineering) method, which conducts requirements engineering in
software product lines considering quality requirements. Our method is composed
of four phases. It covers domain engineering (Phases 1 and 2) as well as appli-
cation engineering (Phases 3 and 4). While Phase 1 is concerned with exploring
the variability caused due to entities in the environment of the software, Phase 2
identifies the variability in functional and quality requirements. The configuration
for a concrete product is selected in Phase 3. Subsequently, deriving a requirement
model for a concrete product is achieved in Phase 4.

The PREVISE method extends Phase 1 of the QuaDRA framework for devel-
oping SPL. The benefit of our proposed method is manifold.

• First, it elicits variability and adds it stepwise to the model. One can start from
a description of a system-to-be containing no variability. Hence, we do not rely
on (complete) knowledge about the variability of a system-to-be.

• Second, it considers all kinds of sources for variability in a structured way. It
identifies the variability, which is caused by entities in the environment, the
communication shared between the entities and the system-to-be, and variabil-
ity due to varying behavior of the system-to-be.

• Third, the information regarding variability, environment, functional require-
ments, and quality requirements are kept in a single model, which facilitates
consistency checking, traceability, and tool support. For modeling we rely on
UML, which is widely adopted and provides diagrams for all software engi-
neering phases.

• Fourth, our method enables the generation of feature diagrams [140] and Or-
thogonal Variability Modeling (OVM) [194] diagrams from the model, which
enables documentation and supports the analysis of the variability (see Sec-
tion 2.5 for more information regarding feature modeling and OVM).

This chapter is based on our work presented in [10]. The PREVISE method
and the UML profile for variability modeling have been developed jointly with our
colleague Stephan Faßbender. The application of the method to the example has
been done by Stephan Faßbender. We had valuable and useful discussions with
our colleague Martin Filipczyk regarding variability modeling. Michael Goedicke,
Maritta Heisel, and Marco Konersmann provided valuable feedback on this work.

13.3 UML4PF Extension for Modeling Variability 405

The chapter is structured as follows. An alarm system as a running example is
introduced in Section 13.2. Section 13.3 describes how we extend problem frames
with a notation for variability. We introduce the PREVISE method in Section 13.4.
Section 13.5 presents related work. Section 13.6 concludes this chapter, and sum-
marizes the contribution.

13.2 Alarm System Example

As our running example, we have chosen an alarm system. We will not elaborate on
a full alarm system, but a very small and simple one, blanking many functionalities
that such a system normally embodies. An initial problem description is given as
follows:

The alarm system is installed within a defined perimeter, such as a building. In
this building alarm buttons and signal horns are installed. Whenever a person in
the building witnesses a critical situation such as a fire, he / she shall warn others.
A witness can alert others in the building, using the alarm buttons. The alarm is
given using the signal horn. The alarm shall be given within one second.

Additionally, every alarm raised is forwarded to an alarm central. The notifi-
cation is repeated every 30 seconds. The broadcast to the alarm central is optional
as not every owner of the alarm system needs or can afford using such an alarm
central. When a communication to an alarm central is established, no third party
shall be able to tamper with the communication. From this small scenario, we can
derive two functional requirements (R), one performance requirement (PR) and
one security requirement (SR):

R1 A witness can alert others in a building using the alarm button. The alarm is
given using the signal horn.

R2 Every alarm raised is forwarded to an alarm central. The notification is re-
peated every 30 seconds.

PR1 The alarm shall be given within one second.
SR1 When a communication to an alarm central is established, no third party

shall be able to tamper with the communication.

13.3 UML4PF Extension for Modeling Variability

We extend the problem frames notation by introducing new elements for modeling
variability in software product lines. We base our extension on the OVM terms

406 13 Extending Problem-Oriented Requirements Engineering for SPL

(see Section 2.5 for detailed information). Our extension is a UML profile relying
on the UML4PF profile (see Section 2.3.1 for detailed information). The profile
extension allows the creation of new types of diagrams and statements. Figure 13.1
shows the stereotypes of the problem frames profile for variability.

New types of diagrams

The first new kind of UML4PF diagrams is the variability diagram. It is expressed
by the stereotype�VariabilityDiagram�. A variability diagram captures the ac-
tual variation points.

The variability can stem from requirements, domains, and phenomena. There-
fore, we define requirement variability diagram (expressed by the stereotype
�RequirementVariabilityDiagram�), domain variability diagram (expressed
by the stereotype �DoaminVeriabilityDiagram�), and phenomenon variabil-
ity diagram (expressed by the stereotype�PhenomenonVariabilityDiagram�).
One special variability diagram is the constraint variability diagram (expressed by
the stereotype�ConstraintVariabilityDiagram�) which captures constraints to
variability.

We define two new sub-types for the context diagram, namely a variability
context diagram (expressed by the stereotype �VariabilityContextDiagram�)
and a product context diagram (expressed by the stereotype �ProductContext-
Diagram�). A variability context diagram describes the context containing the
variability. In contrast, a product context diagram describes the context regarding
a particular product, which is defined by a configuration.

The same distinction is made for problem diagrams. For problem diagrams we
also have variability problem diagrams and product problem diagrams. The final
new type of diagrams is the configuration diagram which describes a particular
configuration for a product.

New types of statements

To the statement, we introduce three new types, namely variant (expressed by the
stereotype �Variant�), variation visibility (expressed by the stereotype �Va-
riationVisibility�), and variation point (expressed by the stereotype�Variation-
Point�). One can distinguish between mandatory variation point (�Mandatory-
VP�) and optional variation point (�OptionalVP�). A variation point can have

13.3 UML4PF Extension for Modeling Variability 407

Fig. 13.1: UML4PF Extension for Variability

408 13 Extending Problem-Oriented Requirements Engineering for SPL

two different kinds of variation visibility, namely the external (�ExternalV�)
and internal (�InternalV�) visibility.

Related to variation points are variants, which can represent an optional varia-
tion or a mandatory variation. A variation point indicates by its min and max prop-
erties how many of the variants have to be chosen for the variation point. The type
of variation relation is indicated by a variation dependency (�VariationDepen-
dency�) which can be optional (�OptionalVD�) or mandatory (�Mandatory-
VD�).

Variants and variation points can be related by a constraint dependency. The
relation can be an excludes (�ExcludesCD�) or a requires (�RequiresCD�)
dependency.

Table 13.1 shows the list of defined stereotypes and their description. The de-
tailed usage of the stereotypes will be explained in Section 13.4.

The UML profile for variability is to a large extent similar to the UML4PF
extension for mapping requirements to their solution alternatives proposed in Sec-
tion 8.5.1 (see page 278) as both profiles are based on the variability notion pro-
vided in OVM. It is possible to merge both profiles into one profile. However, we
deliberately keep the two profiles separate, so they can be applied independently
from each other. In this way, one can only use the QuaDRA framework with its
corresponding UML profiles. In case one wants to use the QuaDRA extension for
variability as well, the UML4PF extension for variability has to be bound in addi-
tion.

13.4 PREVISE Method and its Application

In this section, we present the PREVISE (PRoblEm-oriented VarIability Require-
mentS Engineering) method which defines the activities in Phase 1 of the do-
main and the application engineering, namely the requirements engineering. We
describe how we extend our problem-oriented requirements engineering method
described in Chapter 4 for SPL.

Figure 13.2 shows an overview of the PREVISE method for domain engineer-
ing. Domain engineering consists of the two phases Context Variability Elicita-
tion and Problem Variability Decomposition. Application engineering consists of
the two phases Configuration Engineering and Deriving a Product Requirements
Model. In the following, we briefly describe the phases of the PREVISE method:

Phase Context Variability Elicitation: This phase comprises four steps. In this
phase, we analyze the context of the software to be built and identify the vari-

13.4 PREVISE Method and its Application 409

Table 13.1: Stereotypes defined for UML4PF extension for variability modeling

Stereotype Applies to Description
�VariabilityDiagram� Package It captures the actual variation points.
�RequirementVariabilityDiagram� Package It captures variability arising from requirements.
�PhenomenonVariabilityDiagram� Package It captures variability arising from phenomena.
�DomainVariabilityDiagram� Package It captures variability arising from domains.
�ConstraintVariabilityDiagram� Package It captures constraints to variability.
�VariabilityContextDiagram� Package It represents the context containing variability.
�ProductContextDiagram� Package It represents the context regarding a particular prod-

uct, which is defined by a configuration. This con-
text diagram does not contain variability any more.

�VariabilityProblemDiagram� Package It represents a problem diagram containing vari-
ability.

�ProductProblemDiagram� Package It represents a problem diagram regarding a partic-
ular product, which is defined by a configuration.
This problem diagram does not contain variability
any more.

�ConfigurationDiagram� Package It describes a particular configuration for a product.
�Variant� Class It represents a variation.
�VariationVisibility� Class It represents the visibility of a variation.
�InternalV� Class It is visible only to the developers.
�ExternalV� Class It is visible to every stakeholder.
�VariationPoint� Class It represents a Statement, where the product might

contain variability.
�MandatoryVP� Class It represents a variation point that should be se-

lected for every product.
�OptionalVP� Class It represents a variation point that could be selected

for a product.
�ConstraintDependency� Dependency It represents a dependency between two variants

(class with stereotype�Variant�)
�ExcludesCD� Dependency It represents a dependency from a source variant

(class with stereotype�Variant�) to a target vari-
ant (class with stereotype �Variant�) and pre-
vents selecting the target variant if the source vari-
ant has been selected.

�RequiresCD� Dependency It represents a dependency from a source variant
(class with stereotype�Variant�) to a target vari-
ant (class with stereotype �Variant�) and re-
quires the target variant to be selected if the source
variant has been selected.

�VariationDependency� Dependency It represents a dependency providing a link
from a variation point (class with stereotype
�VariationPoint�)) to its variants (class with
stereotype�Variant�).

�MandatoryVD� Dependency It represents that the variant must be selected for a
product.

�OptionalVD� Dependency It represents that the variant may be selected for a
product.

410 13 Extending Problem-Oriented Requirements Engineering for SPL

process
external

input output
input /

S
te

p
4:

P
ro

bl
em

 c
on

te
xt

va
ria

bi
lit

y
el

ic
ita

tio
n

S
te

p
3:

D
om

ai
n

va
ria

bi
lit

y
id

en
tif

ic
at

io
n

S
te

p
2:

P
he

no
m

en
on

 v
ar

ia
bi

lit
y

id
en

tif
ic

at
io

n

S
te

p
1:

P
ro

bl
em

 c
on

te
xt

el
ic

ita
tio

n

P
ro

bl
em

de
sc

rip
tio

n/
re

qu
ire

m
en

ts

C
on

te
xt

D
ia

gr
am

P
he

no
m

en
on

va
ria

bi
lit

y
di

ag
ra

m

process
external

input output
input /

S
te

p
6:

C
on

st
ra

in
t

id
en

tif
ic

at
io

n

S
te

p
5:

O
pt

io
na

l r
eq

ui
re

m
en

t
id

en
tif

ic
at

io
n

S
te

p
4:

Q
ua

lit
y

re
qu

ire
m

en
t

va
ria

bi
lit

y
id

en
tif

ic
at

io
n

S
te

p
3:

Q
ua

lit
y

re
qu

ire
m

en
t

m
od

el
in

g

S
te

p
2:

F
un

ct
io

na
l v

ar
ia

bi
lit

y
m

od
el

in
g

S
te

p
1:

P
ro

bl
em

 d
es

cr
ip

tio
n/

re
qu

ire
m

en
ts

 a
dj

us
tm

e
nt

V
ar

ia
bi

lit
y

pr
ob

le
m

di
ag

ra
m

s

R
eq

ui
re

m
en

t
va

ria
bi

lit
y

di
ag

ra
mD
om

ai
n

va
ria

bi
lit

y
di

ag
ra

m

V
ar

ia
bi

lit
y

co
nt

ex
t

di
ag

ra
m

P
ro

bl
em

de
sc

rip
tio

n/
re

qu
ire

m
en

ts

A
dj

us
te

d
pr

ob
le

m
de

sc
rip

tio
n/

re
qu

ire
m

en
ts

V
ar

ia
bi

lit
y

pr
ob

le
m

di
ag

ra
m

s

Q
ua

lit
y

re
qu

ire
m

en
t

al
te

rn
at

iv
es

R
eq

ui
re

m
en

t
va

ria
bi

lit
y

di
ag

ra
m

R
eq

ui
re

m
en

t
va

ria
bi

lit
y

di
ag

ra
m

C
on

st
ra

in
t

va
ria

bi
lit

y
di

ag
ra

m

P
ha

se
 1

: C
on

te
xt

 V
ar

ia
bi

lit
y

E
lic

ita
tio

n

P
ha

se
 2

: P
ro

bl
em

 V
ar

ia
bi

lit
y

D
ec

om
po

si
tio

n

S
ou

rc
es

 o
f

de
pe

nd
en

ci
es

V
ar

ia
bi

lit
y

co
nt

ex
t

di
ag

ra
m

Fig. 13.2: Overview of the PREVISE method for domain engineering

13.4 PREVISE Method and its Application 411

ability originating from the context. In each step we create different types of dia-
grams that we require later on in the application engineering. Context diagram,
phenomenon variability diagram, domain variability diagram, and variability
context diagram are the outputs of Steps 1 to 4. This phase is the counterpart
to Step 1 (problem context elicitation) of Phase 1 for developing single systems
introduced in Chapter 4 (see Section 4.3 on page 114).

Phase Problem Variability Decomposition: This phase comprises six steps. In
this phase, the overall problem is decomposed into smaller subproblems ac-
cording to the requirements of the system-to-be. The quality and functional
requirements are adjusted in a way that they reflect the variability of the prob-
lem. Variability problem diagram, requirement variability diagram, and con-
straint variability diagram are the types of diagrams that we produce in this
phase. This phase is the counterpart to Steps 2 and 3 (functional requirements
modeling and quality requirements modeling) of Phase 1 for developing single
systems introduced in Chapter 4 (see Section 4.3 on page 116 and Section 4.3
on page 118).

Phase Configuration Engineering: This phase comprises four steps. In this
phase the configuration for the concrete product is selected. Configuration dia-
gram is the output of this phase. It is possible to define more than one configu-
ration. To this end, this phase has to be repeated.

Phase Deriving a Product Requirements Model: This phase comprises three
steps. In this phase, the concrete product requirements model is derived based
on the configuration produced in the previous phase. For each configuration,
one can derive product requirement models.

In the following, we describe each phase and its corresponding steps in detail.
After the description of each step, we directly show its application to the example
alarm system. In Section 13.4.1, we describe the phases of domain engineering and
the subsequent steps, in which we create a requirement model for the SPL. Then,
we describe the phases of application engineering, in which we derive a concrete
SPL product from the SPL requirement model in Section 13.4.2.

13.4.1 Product Line Requirement Model Creation

This section describes the elicitation and modeling of variability contained in the
context of the problem as well as the variability contained in the requirements. By
doing this, we obtain requirement models for SPL.

412 13 Extending Problem-Oriented Requirements Engineering for SPL

Phase 1 - Context Variability Elicitation

In this phase, the context of the system-to-be is analyzed, and variation points in
the environment of the machine are identified.

Step 1 - Problem context elicitation
The input of this step is the problem description/ requirements. For our method, it
is not necessary to have a problem description which already includes variability.
Instead, one can start by giving a problem description for one possible product.
The variability is identified and added in later steps. Hence, in Step 1 we derive
a context diagram from the problem description as described in Chapter 4 (see
Section 4.3 on page 114).

Application of Step 1 - Problem context elicitation
The context diagram for our example is shown in Fig. 13.3. A biddable domain
Witness alerts others in the building (W!alert) using the causal domain Button
which requests the machine AlarmSystem for raising an alarm (B!raiseAlarm).
The machine AlarmSystem produces an alarm using the causal domain SignalHorn
(AS!giveAlarm). In addition, the machine can broadcast the alarm to the causal do-
main AlarmCentral (AS!broadcastAlarm).

Fig. 13.3: Context diagram for the Alarm System

Step 2 - Phenomenon variability identification
In this step, we analyze the phenomena of the context diagram in order to identify
variability in phenomena. Hence, the context diagram serves as input for this step.
By investigating the phenomena we are faced with two issues. The first issue is

13.4 PREVISE Method and its Application 413

regrading the generic phenomena. One case is that the phenomenon at hand is a
generic one which has more than one possible concrete instance. The other case
is that the phenomenon is a specific one, but there may be other alternatives for
the phenomenon at hand. If one of these two cases holds, the generic phenomenon
has to be considered as a variation point. The concrete phenomena have to be
modeled as variants. Additionally, one has to decide if a variant or a variation
point is optional or not.

The second issue is when a phenomenon is shared using a dedicated connec-
tion domain. In this case, this connection domain has to be added to the context
diagram.

For modeling the variability in phenomena, we make use of the phenomenon
variability diagram (stereotype�PhenomenonVariabilityDiagram�). A varia-
tion point has to be modeled either as mandatory (stereotype�MandatoryVP�)
or as optional (stereotype�OptionalVP�). A variant is expressed by the stereo-
type�Variant�.

Application of Step 2 - Phenomenon variability identification
For our example, the phenomenon alert turns out to be a generic phenomenon,
which has two variants. First, one can push something to give the alert. Second,
one can shout to give an alarm, which is a more advanced option for an alarm
system. Figure 13.4 shows the resulting phenomenon variability diagram named
PVD Alert:

Phenomenon alert is a mandatory variation point with two optional variants
(see max in Fig. 13.4) from which at least one (see min in Fig. 13.4) has to be
chosen.

Phenomenon pushToAlert is a variant phenomenon. There is an optional vari-
ation dependency (stereotype�OptionalVD�) connecting the variation point
alert to the variant pushToAlert.

Phenomenon shoutToAlert is a variant phenomenon. There is an optional vari-
ation dependency (stereotype�OptionalVD�) connecting the variation point
alert to the variant shoutToAlert.

Additionally, we find three connection domains. The SignalHorn and the But-
ton are connected to the machine via Wires. The AlarmCentral is connected via
the Internet. The connection domains have to be modeled in the context diagram.
Note that we do not show the refined context diagram containing the connection
domains here.

Step 3 - Domain variability identification
Similar to the phenomena, the variability of domains in the context diagram has
to be investigated. Hence, the context diagram is the input for this step. We have

414 13 Extending Problem-Oriented Requirements Engineering for SPL

Fig. 13.4: Phenomenon Variability Diagram for alert

to check for variation points and variants. Note that it can occur that a variant is a
variation point since it can be further refined to variants.

For modeling the variability in domains, we make use of the domain variability
diagram (stereotype�DomainVariabilityDiagram�). Variation points and vari-
ants have to be modeled as described before.

Application of Step 3 - Domain variability identification
One example for domain variability is shown in Fig. 13.5. The starting domain for
this variability is the causal domain Wire. It connects the causal domain Button
with the machine. The domain Wire is abstracted to the causal domain RaiserCon-
nection, which is a mandatory variation point. The resulting domain variability
diagram is shown in Fig. 13.5 named DVD RaiserConnection:

Domain RaiserConnection is a mandatory variation point with two optional
variants (see max in Fig. 13.5) from which at least one (see min in Fig. 13.5)
has to be chosen.

Domain DirectAccess is a variant domain. There is a mandatory variation de-
pendency (stereotype�MandatoryVD�) connecting the variation point Rais-
erConnection to the variant DirectAccess.

Domain IndirectAccess is a variant domain. There is an optional variation de-
pendency (stereotype�OptionalVD�) connecting the variation point Raiser-
Connection to the variant IndirectAccess.

Variants for the domain DirectAccess are shown in Fig. 13.6:

Domain DirectAccess is a mandatory variation point with two optional variants
from which exactly one has to be chosen (see min and max in Fig. 13.6).

13.4 PREVISE Method and its Application 415

Fig. 13.5: Domain Variability Diagram for the domain RaiserConnection

Domain Wire is a variant domain. There is an optional variation dependency
(stereotype �OptionalVD�) connecting the variation point DirectAccess to
the variant Wire.

Domain Wireless is a variant domain. There is an optional variation depen-
dency (stereotype �OptionalVD�) connecting the variation point DirectAc-
cess to the variant Wire.

Fig. 13.6: Domain Variability Diagram for the domain DirectAccess

The causal domain Button is abstracted to the causal domain Raiser. Variants
for the domain Raiser are shown in Fig. 13.7:

Domain Raiser is a mandatory variation point with two optional variants from
which at least one has to be chosen (see Min and max in Fig. 13.7).

Domain MobileRaiser is a variant domain. There is an optional variation de-
pendency (stereotype�OptionalVD�) connecting the variation point Raiser
to the variant MobileRaiser.

416 13 Extending Problem-Oriented Requirements Engineering for SPL

Domain InstalledRaiser is a variant domain. There is an optional variation de-
pendency (stereotype�OptionalVD�) connecting the variation point Raiser
to the variant InstalledRaiser.

Fig. 13.7: Domain Variability Diagram for the domain Raiser

The domain InstalledRaiser is a variation point as well. Its variants are shown
in Fig. 13.8:

Domain InstalledRaiser is an optional variation point with three optional vari-
ants from which at least one has to be chosen (see min and max in Fig. 13.8).

Domain Switch is a variant domain. There is an optional variation dependency
(stereotype�OptionalVD�) connecting the variation point InstalledRaiser to
the variant Switch.

Domain Button is a variant domain. There is an optional variation dependency
(stereotype�OptionalVD�) connecting the variation point InstalledRaiser to
the variant Button.

Domain VoiceSensor is a variant domain. There is an optional variation depen-
dency (stereotype �OptionalVD�) connecting the variation point VoiceSen-
sor to the variant Button.

The causal domain SignalHorn is abstracted to the causal domain Notifier. The
domain Notifier is a variation point as well. Its variants are shown in Fig. 13.9:

Domain Notifier is a mandatory variation point with one optional variant and
one mandatory variant from which at least the mandatory variant has to be
chosen (see min and max in Fig. 13.9).

Domain SignalHorn is a variant domain. There is a mandatory variation depen-
dency (stereotype�MandatoryVD�) connecting the variation point Notifier
to the variant SignalHorn.

13.4 PREVISE Method and its Application 417

Fig. 13.8: Domain Variability Diagram for the domain InstalledRaiser

Domain Display is a variant domain. There is an optional variation dependency
(stereotype �OptionalVD�) connecting the variation point Notifier to the
variant Display.

Fig. 13.9: Domain Variability Diagram for the domain Notifier

Step 4 - Problem context variability elicitation
In this step, we capture the variability in the context diagram which has to be
modeled as variability context diagram. The variability context diagram is a spe-
cialization of the context diagram. It represents a context diagram for the SPL. The
variability context diagram enables us not only to elicit all domains related to the
problem to be solved, but also to capture which domains represent variability and
which ones commonality.

The structure of the variability context diagram is similar to the context dia-
gram from Step 1. It differs from the context diagram in the way that we represent

418 13 Extending Problem-Oriented Requirements Engineering for SPL

variation points for the problem domains and phenomena which involve variabil-
ity. The context diagram and the domain variability diagrams are used as input to
generate the variability context diagram. It is possible to generate the variability
context diagram automatically using the context diagram and the domain variabil-
ity diagrams.

For modeling the variability context diagram (stereotype�VariabilityContext-
Diagram�), we use the domain stereotypes as usually for a context diagram. In
addition, we make use of the stereotypes�MandatoryVP� and�OptionalVP�
to illustrate the variation points.

Application of Step 4 - Problem context variability elicitation
Figure 13.10 illustrates the resulting variability context diagram for our example.
The domains AlarmSystem,Witness, and AlarmCentral are directly taken from the
context diagram as they are not variable. The domain SignalHorn is replaced by
the variation point Notifier. The domain Button is replaced by the variation point
Raiser. Additionally, the connection domains and their abstract variation points
RaiserConnection, NotifierConnection, and AlarmCentralConnection are added to
the variability context diagram. Table 13.2 shows an overview of the domains in
the context diagram and the variability context diagram.

Fig. 13.10: Variability Context Diagram for the Alarm System

13.4 PREVISE Method and its Application 419

Table 13.2: Domains in the context diagram and variability context diagram

Domain in context diagram Domain in context variability diagram
AlarmSystem AlarmSystem
Witness Witness
AlarmCentral AlarmCentral
SignalHorn Notifier
Button Raiser
- NotifierConnection
- RaiserConnection
- AlarmCentralConnection

13.4.1.1 Phase 2 - Problem Variability Decomposition

In this phase, the overall problem is decomposed into smaller subproblems ac-
cording to the requirements of the system-to-be. The quality requirements and
functional requirements are adjusted in a way that they reflect the variability of the
problem.

Step 1 - Problem description/ requirements adjustment
In this step, the textual requirements of the machine are derived from the prob-
lem description. As the initial problem description does not contain the variability
identified in Phase 1, the textual description of the requirements has to be adjusted.

Application of Step 1 - Problem description/ requirements adjustment
In Section 13.2, we already derived the textual requirements from the initial prob-
lem description. In this step, the wording has to be adjusted to the variability con-
text diagram. For example, requirement R1 changes to “A witness can [alert] others
in a building using [raisers]. The alarm is given using [notifiers].”

Step 2 - Functional variability modeling
This step is concerned with decomposing the overall problem into subproblems,
which accommodate variability. As input, we take the adjusted problem descrip-
tion / requirements and the variability context diagram into account. Each func-
tional requirement has to be modeled as a problem diagram. Whenever the problem
diagram contains at least one variation point, the requirement is variable, too. Such
diagram is a specialization of a problem diagram. It is called variability problem
diagram.

But variability in a requirement cannot only stem from the phenomena or
domains which are variable. Sometimes requirements contain further variation
points, which do not show up in the structure of a problem diagram. One rea-
son might be a variability in behavior, for example in the sequence of phenomena.

420 13 Extending Problem-Oriented Requirements Engineering for SPL

Hence, each requirement has to be checked for such variations not visible in the
problem diagrams. Such variabilities are represented by a requirement variability
diagram which represents the requirement as variation point and its alternatives as
variants.

Application of Step 2 - Functional variability modeling
For our example, the functional requirement R2 contains further variability. The
repetition of the alarm notification is optional. The according requirement vari-
ability diagram is shown in Fig. 13.11. Note that the requirement R2.1 contains
further variability regarding the time span between the repetitions. Figure 13.12
shows the variability problem diagram for the requirement R2.

Fig. 13.11: Requirement Variability Diagram for the requirement R2

Functional requirement R1 contains no variability, as it is not a variation point.
Figure 13.13 shows the variability problem diagram for the requirement R1.

Step 3 - Quality requirement modeling
This step is concerned with annotating quality requirements which complement

13.4 PREVISE Method and its Application 421

Fig. 13.12: Variability Problem Diagram for the requirement R2

Fig. 13.13: Variability Problem Diagram for the requirement R1

functional requirements. In contrast to functional requirements, quality require-
ments are not modeled as problem diagrams on their own. Instead, they augment
existing functional requirements. Therefore, as input we take variability problem
diagrams in addition to the adjusted problem description/ requirements into ac-
count. This step is identical to Step 3 of Phase 1 introduced in Chapter 4 (see
Section 4.3 on page 118).

Step 4 - Quality requirement variability identification
This step is concerned with variability in quality requirements. There might be
different reasons for causing such a variability. Making trade-offs among quality
requirements of different types might be one reason. Such requirements are subject

422 13 Extending Problem-Oriented Requirements Engineering for SPL

to interactions. Interactions among quality requirements can be detected by apply-
ing the method proposed in Phase 4 in Chapter 7 (see Section 7.3 on page 210). To
resolve interactions, we generate requirement alternatives by relaxing the original
requirement. The generated quality requirement alternatives provide variants for
the original requirement. The requirement variability diagrams have to be updated
according to the results of the method proposed in Phase 4. Sometimes, quality
requirements introduce new domains, e.g., an attacker for security, and new phe-
nomena. Thus, one has to check these domains and phenomena for variability, too.

Application of Step 4 - Quality requirement variability identification
For our example, we have the security requirement SR1. It complements the func-
tional requirement R2. A biddable domain representing an Attacker has to be
added. The domain Attacker represents a variation point as there can be different
kinds of attackers distinguished by their abilities (see Chapter 7 for more informa-
tion).

Step 5 - Optional requirement identification
In this step, we identify the requirements that are optional. They have to be mod-
eled as optional variation point.

Application of Step 5 - Optional requirement identification
For the alarm system, the notification of the alarm central is optional, which is
already reflected in Fig. 13.11, as R2 is annotated as an optional variation point
(optionalVP).

Step 6 - Constraint identification
This step is concerned with identifying constraint dependencies among require-
ments, phenomena, and domain variants. Dependencies caused by quality require-
ments interactions are identified in the method proposed in Phase 4 in Chapter 7
(see Section 7.3 on page 210). For functional requirements, one can use the RIT
(Requirements Interaction Tables) as proposed in in Phase 4 in Chapter 7 (see Sec-
tion 7.2 on page 198). Other kinds of dependencies have to be checked manually.

We distinguish between two types of dependencies, namely requires (stereo-
type �RequiresCD�) in which one variant or variation point requires an-
other variant or variation point for a valid configuration, and excludes (stereotype
�ExcludesCD�) in which one variant or variation point is not allowed together
with another variant or variation point in a valid configuration. Variability in con-
straints is modeled by the constraint variability diagram.

Application of Step 6 - Constraint identification
In our example, the phenomenon shoutToAlert requires a Voice Sensor. The ac-
cording constraint variability diagram is shown in Fig. 13.14.

13.4 PREVISE Method and its Application 423

Fig. 13.14: Constraint Variability Diagram for alert to shout

13.4.2 Deriving a Concrete Product Requirement Model

To derive requirements for a concrete SPL product, we make use of the artifacts
generated in domain engineering. The aim of the application engineering is to get
a coherent subset of requirements for a particular product from the overall set of
requirements containing variability. Figure 13.15 shows an overview of the PRE-
VISE method for application engineering. The application engineering is divided
into two phases, which are explained in the following.

13.4.2.1 Phase 3 - Configuration engineering

In this phase, the configuration for the concrete product is selected. The following
steps can be supported by a feature diagram and OVM diagrams (see Section 2.5
on page 42) derived from the domain requirements model. Note that this phase can
be repeated to define more than one configuration.

Step 1 - Requirements selection:
The first step towards a configuration is to select the desired requirements among
all optional requirements. This selection may reduce the phenomena and domains
to select from in the next steps. The reason is that phenomena and domains which
are only bound to optional requirements that are not selected can be left out. For
all requirements which represent an optional variation point, one has to decide
whether to include the requirement or not. Next, one has to select a variant for
all requirements which represent a variation point and which are included in the
desired set of requirements. The desired set contains the selected optional and

424 13 Extending Problem-Oriented Requirements Engineering for SPL

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Step 4:
Configuration

validation

Step 3:
Domain
selection

Step 2:
Phenomena

selection

Step 1:
Requirements

selection

Requirement
vairability
diagram

Configuration
Diagram

pr
oc

es
s

ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Step 3:
Product quality

requirement modeling

Step 2:
Product functional

requirement modeling

Step 1:
Product context

definition

Product
context
diagram

Phase 3: Configuration Engineering

Phase 4: Deriving a Product Requirements Model

Configuration
Diagram

Configuration
Diagram

Configuration
Diagram

Product
problem
diagram

Product
problem
diagram

Variability
problem
diagrams

Phenomenon
vairability
diagram

Domain
variability
diagrams

Constraint
variability
diagram

Vairability
context
diagram

Configuration
Diagram

Variability
problem
diagrams

Fig. 13.15: Overview of the PREVISE method for domain engineering

all mandatory requirements. The selected variants have to be documented in a
configuration diagram (stereotype�ConfigurationDiagram�).

Application of Step 1 - Requirements selection:
For our alarm system product, we decide to leave out the notification of the alarm
central. Hence, we also do not have to select any requirement variant, as R1, which
is the only requirement in our desired set, is no variation point. Consequently, the
configuration diagram contains no requirement variant. Figure 13.16 shows the
(complete) configuration diagram for our example.

Step 2 - Phenomena selection:
The second step is to select the variants for all phenomena that are variation points.
To this end, we make use of the phenomenon variability diagram. The reason for
going first for the phenomena is that phenomena are the starting point of the in-
teraction of end users with the system-to-be. Thus, we have the end user in focus.

13.4 PREVISE Method and its Application 425

Additionally, the selected phenomena often constrain the set of domains to be cho-
sen from. In many cases, specific phenomena exclude or require specific domains.

Application of Step 2 - Phenomena selection:
From the phenomenon variability diagram shown in Fig. 13.4, we select the phe-
nomenon pushToAlert, which is a variant of the phenomenon alert. The basic prod-
uct of our alarm system will only support the alarm raising by pressing a raiser.
Figure 13.16 shows the (complete) configuration diagram for our alarm system
product.

Step 3 - Domain selection:
In this step, one has to select for all domain variation points the according desired
variants. To this end, we make use of domain variability diagrams.

Application of Step 3 - Domain selection:
For the domain Notifier, we select the variants Display and SignalHorn (see
Fig. 13.9). For the raiser, we select the Switch (see Fig. 13.8). Both are connected
via wire to the alarm system (see Fig. 13.6). The selected domains are shown in
the configuration diagram in Fig. 13.16.

Fig. 13.16: Configuration Diagram for Basic Product

Step 4 - Configuration validation:
Last, we have to check if the constraints defined in the constraint variability dia-
grams are all satisfied. Additionally, we have to check whether the variation de-
pendencies given by the variation diagrams domain variability diagrams and phe-
nomenon variability diagram and the min / max constraints of the variation points
are satisfied.

426 13 Extending Problem-Oriented Requirements Engineering for SPL

Application of Step 4 - Configuration validation:
For our case, the configuration is valid. For example, the phenomenon alert re-
quires at least one variant as shown in Fig. 13.4. We selected the variant push-
ToAlert.

The domain RaiserConnection requires at least one variant to be selected (see
Fig. 13.5). We see that the DirectAccess is mandatory. For the DirectAccess, we
have to select exactly one variant which is the domain Wire in our case (see
Fig. 13.6).

The domain Raiser demands at least one variant to be selected (see Fig. 13.7).
We selected the causal domain InstalledRaiser, from which at least one variant has
to be selected (see Fig. 13.8). We selected the causal domain Switch.

The domain Notifier requires at least one variant and two variants maximum.
We selected the two variants SignalHorn and Display (see Fig. 13.9).

13.4.2.2 Phase 4 - Deriving a Product Requirements Model

In this phase, the concrete product requirements model is derived based on a given
configuration. Note that one can define more than one configuration at a time and
derive product requirement models for them.

Step 1 - Product context definition:
This step is concerned with deriving a product context diagram for a concrete prod-
uct. A product context diagram is a context diagram which is tailored to a concrete
product. To derive a product context diagram, we make use of a configuration dia-
gram that defines which requirement variants have to be achieved by the concrete
product. Then, we derive the product context diagram from the variability context
diagram, replacing all variation points by the variants defined by the configura-
tion. Variation points which are not addressed by a variant in the configuration are
removed.

Application of Step 1 - Product context definition:
In our case, we combine the variability context diagram shown in Fig. 13.10 with
the configuration given in Fig. 13.16. The resulting product context diagram is
shown in Fig. 13.17. The domain Witness is no variation point. Therefore, it re-
mains unchanged. For the variation points NotifierConnection and RaiserConnec-
tion we selected the variant Wire. For the variation point Notifier we selected the
variants SignalHorn and Display. The variant Switch has been selected for the
variation point Raiser. The phenomenon variant pushToAlert between the domains
Witness and Switch in the product context diagram has been selected for the phe-

13.5 Related Work 427

nomenon variation point alert between the domains Witness and Raiser in the vari-
ability context diagram.

Fig. 13.17: Product Context Diagram for the Alarm System

Step 2 - Product functional requirement modeling:
In this step, we derive product problem diagrams for a concrete product. By means
of the configuration we know which functional requirements have to be involved
in the requirement models for the concrete SPL product. We use the variability
problem diagrams for deriving the product problem diagrams. One additional step
is the textual adjustment of the requirements.

Application of Step 2 - Product functional requirement modeling:
We only have one requirement for our basic product configuration. The adjusted
text for the requirement R1 states that “A witness can push to alert others in a
building using a switch. The alarm is given using signal horns and displays.” The
according product problem diagram is shown in Fig. 13.18.

Step 3 - Product quality requirement modeling:
For the product quality requirement modeling one has to perform the same activi-
ties as given for Step 2.

13.5 Related Work

In this section, we report on methods which connect problem frames and variabil-
ity. They combine problem frames as an early requirements analysis approach with
methods or notations for modeling variability to develop product families.

428 13 Extending Problem-Oriented Requirements Engineering for SPL

Fig. 13.18: Product Problem Diagram for Alert

Zuo et al. [257] introduce an extension of the problem frames notation that
provides support for product line engineering. The extension for problem frames
only supports variability in requirements and machines. In contrast to the PRE-
VISE method, the authors do not consider the variability, which can be caused by
domains and phenomena. Furthermore, the authors provide only a notation for do-
main engineering. They do not propose a method for conducting domain engineer-
ing. Besides, this work does not take application engineering into consideration.
That is, there is no methodical support provided on how to derive a product from
the SPL.

Ali et al. [28] propose a vision for dealing with variability in requirements
caused by the environment. The authors propose an idea for a framework, which
relates the three requirements engineering methods goal models, feature diagrams,
and problem frames to the environmental context in order to use context infor-
mation for product derivation. Similar to Phase 1 of our method, namely context
variability elicitation, this approach proposes to consider the context dimension
as it influences the variability at the system level. In contrast, it does not pay at-
tention to the variability which might be caused by the requirements. It relies on
existing knowledge about variability. Moreover, it does not introduce any system-
atic method to conduct SPLE with problem frames.

Variability, which emerges due to changes in the environment (contextual vari-
ability), is discussed by Salifu et al. [206]. The authors first set up problem dia-
grams and then identify a set of variables representing the contextual variations.
Using the contextual variables, variant problem diagrams are derived. Contextual
variability is taken into account in Phase 1 of our method as well. In their work, the
authors provide no systematic approach on how to identify contextual variations in

13.6 Contributions 429

the environment. In contrast, we set up context diagrams and identify contextual
variations systematically by identifying variable phenomena and domains involv-
ing in the context diagram. Moreover, application engineering is not considered in
this work.

An approach for combining SPLE and the problem frames concept is proposed
by Dao et al. [86]. The starting point is a feature model, which is mapped to a
problem frames model to elicit functional requirements and domain assumptions.
To take quality requirements into account, a goal model is adopted. In contrast
to our method, which addresses quality requirements by augmenting the existing
functional problem diagrams, this approach uses goal models. The three different
notations feature models, problem frames, and goal models are used, which might
cause consistency problems among different models. In contrast, we provide one
single model, which enables consistency checking and tool support.

Similar to our method, the approach proposed by Classen et al. [74] considers
variability in requirements and phenomena. However, the authors do not treat vari-
ability in domains. Moreover, they do not consider the context diagram and the
variability reflected in it due to the variability in domains. Furthermore, quality
requirements are not considered.

13.6 Contributions

In this chapter, we have presented an extension of the problem frames notation
to enable variability modeling. The notation is available as UML profile in the
UML4PF tool suite. The notation extension for variability is accompanied by a
method called PREVISE for discovering variability, modeling variability, and de-
riving products from variability models. The contributions of this work are as fol-
lows:

• An OVM-based notation for adding variability to requirements, which are ex-
pressed in the problem frames notation (see Section 13.3).

• A method, which can be conducted without any previous knowledge about vari-
ability.

• A structured method for conducting domain engineering in the requirements
phase, which includes discovering and modeling variability (see Section 13.4.1).

• A structured method for conducting application engineering in the require-
ments phase, which includes setting up configurations for products and de-
riving requirement models for products according to the configurations (see
Section 13.4.2).

Chapter 14
Conclusions

Abstract This chapter first summarizes the results of this book. Then, we discuss
the previously defined research questions and provide a critical review of to what
extent the research questions are addressed in this book. Finally, we point out
proposals for future research.

14.1 Summary

One challenge in developing requirements and software architecture is the existing
gap regarding methods for building software architectures based on requirements.
This task is even more challenging when software qualities have to be addressed in
the software development. The other challenge is concerned with the ad-hoc nature
and experience-based development of software systems which provide difficulties
for inexperienced software engineers to follow the current software development
methods in practice. The goal of this book is to contribute to the filling of the afore-
mentioned gaps by developing a systematic method that bridges the gap between
requirements and software architecture with respect to quality requirements. Be-
fore developing such a method, two issues need to be clarified: 1) What are the
meta-requirements that a method for quality-aware development of requirements
and software architecture should fulfill? 2) Do the existing methods fulfill these
meta-requirements? If yes, there is no need for developing such a method.

Chapter 3 provides answers to these questions. We reviewed empirical studies
related to quality requirements and software architecture such as interviews, group
discussions, and experience reports in order to identify the meta-requirements.
These works provide direct evidence from real case studies. Based on the identified

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5_14

432 14 Conclusions

meta-requirements, we developed a comprehensive evaluation framework aiming
at comparing and analyzing the existing methods. In order to identify the existing
methods, we conducted a systematic literature review. As a result, we identified
6 relevant methods. Applying the evaluation framework to the identified methods
showed that none of the compared methods fulfills all the meta-requirements or
nearly all of them. Our evaluation underlines the lack of methodological support
for a systematic development of requirements and software architecture with re-
spect to quality requirements in a unified process.

In order to meet the meta-requirements and fill the identified gap, we devel-
oped the comprehensive framework QuaDRA based on problem frames, compris-
ing eight phases proposed in Chapters 4 - 11. QuaDRA provides a structured way
for guiding software engineers in quality- and pattern-based co-development of
requirements and early software architecture design alternatives in an iterative and
concurrent manner.

QuaDRA starts with Phase 1 (see Chapter 4), in which we proposed a structured
method for modeling the context as well as modeling the functional and quality
requirements. To this end, we extended the UML profile for problem frames with
new stereotypes for annotating quality requirements in the problem diagrams.

After that, we developed a process in Phase 2 for the systematic selection of
appropriate architectural patterns that contribute to the satisfaction of the modeled
quality requirements (see Chapter 5). In our process, we relate problem diagrams
to relevant architectural patterns by means of a question catalog. Selecting dif-
ferent architectural patterns provides one way to produce architecture alternatives
that achieve quality requirements in different ways. Furthermore, we proposed a
systematic method for creating initial architecture(s) based on the selected archi-
tectural pattern(s). The created initial architecture(s) provide(s) the basis for the
final architecture alternatives.

For Phase 3, we showed a structured method for eliciting and modeling quality-
related domain knowledge which is required for detecting and resolving require-
ment conflicts (see Chapter 6). Our method augments the requirement models with
required domain knowledge for performance and security requirements by provid-
ing domain knowledge templates.

For the detection and the resolution of potential conflicts among functional as
well as quality requirements, we developed a method in Phase 4 of QuaDRA in
Chapter 7. Furthermore, we showed how the PoPeRA method can be used for an-
alyzing the conflicting requirements with respect to available resources and usage
profiles. Using the PoPeRA method, the set of potential conflicting requirements
can be restricted. Moreover, as a resolution strategy, we presented a method that
supports the creation of quality requirement alternatives for remaining conflicting
requirements in a systematic way.

14.2 Answer to Research Questions 433

We developed problem-oriented quality patterns as quality-specific solutions
based on problem frames. Such patterns target the achievement of security and
performance requirements. Moreover, we proposed an intermediate model, called
problem-solution diagram for providing a mapping between the quality require-
ment alternatives and the quality-specific solution alternatives. The problem-
solution diagram can be used for deriving architecture alternatives (see Phase 5 in
Chapter 8). By means of a structured method, we showed how the quality-specific
patterns can be instantiated and integrated in the requirement models. Our method
results in subproblems that contain solution approaches with regard to security and
performance (see Phase 6 in Chapter 9).

In Phase 7, we presented a systematic method for deriving architecture alter-
natives. The requirement models enriched with solution approaches are used for
creating the implementable architecture alternatives based on the initial architec-
ture(s) (see Chapter 10). In order to provide an evaluation of the software architec-
ture alternatives, we reviewed the state-of-the-art methods in the area of software
architecture evaluation. We developed a framework for the systematic selection of
existing architecture evaluation methods. Using our framework, we selected the es-
tablished evaluation method ATAM that can be applied for evaluating the derived
implementable architecture alternatives with regard to security and performance
(see Phase 8 in Chapter 11).

The validation of the QuaDRA framework regarding the fulfillment of meta-
requirements is achieved in Chapter 12. To this end, we applied our comparative
evaluation framework developed in Chapter 3. The analysis showed that all impor-
tant meta-requirements are fulfilled by the QuaDRA framework. QuaDRA over-
comes the lack of systematic and methodological guidelines for development of
requirements and software architecture with respect to quality requirements in a
unified process.

In addition, we proposed an extension of QuaDRA for supporting SPL. In
Chapter 13, we extended the problem frames approach with a notation for mod-
eling variability by providing a UML profile. Furthermore, we conducted require-
ments engineering in SPL considering quality requirements in a methodical way.

14.2 Answer to Research Questions

After providing a summary of our contributions in the previous section, in this
section we explicitly show how the research questions are addressed in our book.

RQ 1 What are the meta-requirements that a systematic method for quality-
aware development of requirements and software architecture should fulfill?

434 14 Conclusions

Answer After reviewing 11 empirical studies related to quality requirements
and software architecture in Chapter 3, we systematically identified meta-
requirements for a method bridging the gap between both phases with re-
gard to quality requirements. We classified the identified meta-requirements
into the three categories “essential”, “recommended”, and “optional”. Essen-
tial meta-requirements are required and must be fulfilled when developing such
a method. That is, we cannot speak of a “method supporting the quality-aware
development of requirements and software architecture” if the essential meta-
requirements are not fulfilled. These meta-requirements are:

• Eliciting and documenting quality requirements in a systematic and struc-
tured way

• A structured method and extensive guidelines
• Use of unified notations and languages as well as a combination of semi-

formal and natural language
• Use of reusable knowledge

Recommended meta-requirements are of high interest, but might not be abso-
lutely required. That is, we can still speak of a “method supporting the quality-
aware development of requirements and software architecture” if not all recom-
mended meta-requirements are met. In such a case, we are concerned with a
method which is not optimal for our purposes but still acceptable. These meta-
requirements are:

• Traceability support between requirements and architecture artifacts
• Capturing and documenting design rationale in a systematic way
• Detecting conflicts and interactions among (quality) requirements as well as

resolving such interdependencies
• Supporting architecture alternatives
• Supporting feedback loops between requirements and software architecture
• Support for the evaluation of the software architecture

Optional meta-requirements represent those meta-requirements that do not nec-
essarily have to be fulfilled for a “method supporting the quality-aware devel-
opment of requirements and software architecture”. Their fulfillment, however,
provides additional characteristics that are useful. These meta-requirements are:

• Co-development of requirements and software architecture in an iterative
and concurrent manner

• Defining architectural views
• Tool support

14.2 Answer to Research Questions 435

RQ 2 Is there a lack of methodological support in existing research for fulfilling
these metarequirements?

Answer In order to be able to find an answer for this research question, one
needs to know the existing methods for quality-aware development of require-
ments and software architecture. To this end, we conducted a Systematic Liter-
ature Review (SLR). We scanned 2304 papers using manual search, automated
search, and snowball search. As the final result, we extracted data from 6 pa-
pers describing 6 different methods. The next step was to investigate whether
these methods fulfill the meta-requirements. To this end, we developed a com-
parative evaluation framework as an analysis tool by means of the identified
meta-requirements. The framework is applied to analyze the identified meth-
ods from the SLR. Our evaluation underlines the lack of methodological sup-
port for systematic development of both phases with respect to quality require-
ments in a unified process. It shows that none of the existing methods fulfills all
meta-requirements we identified before. The main finding of our review was the
identification of a need for a unified method which supports the development of
requirements and software architectures with respect to quality requirements.

RQ 3 If yes, how can a new process provide guidance in developing require-
ments and software architecture with respect to quality requirements consider-
ing the identified meta-requirements?

Answer In Chapters 4 - 11 of this work, we provided the comprehensive and
structured development framework QuaDRA composed of eight phases based
on the problem frames approach. It guides software engineers in co-developing
the requirements and early software architecture design alternatives in an it-
erative and concurrent manner taking into account quality requirements. The
QuaDRA framework involves the following structured methods for

• modeling quality requirements (see Chapter 4),
• systematic selection of architectural patterns (see Chapter 5)
• eliciting, modeling, and using quality-related domain knowledge (see Chap-

ter 6).
• detecting potential interactions among functional requirements (see Chap-

ter 7).
• detecting potential interactions among quality requirements (see Chapter 7).
• performance requirements analysis and restricting the set of potential inter-

actions (see Chapter 7).
• resolving requirement conflicts by generating requirement alternatives (see

Chapter 7).
• identifying, structuring, and analyzing quality-specific solutions (see Chap-

ter 8).

436 14 Conclusions

• selecting and applying quality-specific solutions (see Chapter 9).
• deriving software architecture alternatives (see Chapter 10).
• evaluating software architecture alternatives (see Chapter 11).

RQ 4 Does the new process fulfill the identified meta-requirements? How can
this process be validated in a structured way with respect to the identified meta-
requirements?

Answer Chapter 12 of this book provides a validation of the QuaDRA frame-
work. We apply the comparative evaluation framework comprising the essen-
tial, recommended, optional meta-requirements to QuaDRA in order to exam-
ine to what extent these meta-requirements are fulfilled by our method. We
compare the results of applying the evaluation framework to QuaDRA with the
results of its application to the state-of-the-art methods in Chapter 3. We sum-
marize that

• none of the state-of-the-art methods fulfills all 4 essential meta-requirements
whereas our QuaDRA framework satisfies all 4 essential meta-requirements
quality requirements, guidance and method structure, knowledge reuse, RE
and design description.

• none of the state-of-the-art methods fulfills all recommended meta-require-
ments whereas our QuaDRA framework satisfies all recommended meta-
requirements traceability, design rationale, trade-off analysis, architecture
alternatives, iterative development, and architecture evaluation.

• optional meta-requirements are partially fulfilled by QuaDRA. This is also
the case for the state-of-the-art methods. We fully satisfy the optional meta-
requirement concurrent co-development, and partially the meta-requirements
tool support and architecture views.

We conclude that with QuaDRA we achieve our goal for a systematic co-
development of requirements and software architecture with regard to quality
requirements. Although we do not fully meet the optional meta-requirements,
this causes no obstacle in achieving our goal, as these meta-requirements pro-
vide only additional nice to have features for such a method. Thus, we can
contribute to closing the identified gap between requirements engineering and
software architecture taking into account not only functional but also quality
requirements. Software engineers and particularly inexperienced software en-
gineers benefit from our method as it is based on structured steps and systematic
guidance as opposed to an ad-hoc, experience- and intuition-based state-of-the-
art approach.

RQ 5 How can the new process be extended for supporting important concepts
of requirements engineering such as Software Product Lines (SPL)?

14.3 Future Research 437

Answer Chapter 13 of this book presents an extension of the the problem frames
notation as well as methodical support for SPL. In Chapter 13, we provide the
structured PREVISE method as an extension of the QuaDRA framework, which
supports a single-system development, to a product-line development address-
ing quality requirements. PREVISE, which consists of four phases, covers do-
main engineering (Phases 1 and 2) as well as application engineering (Phases 3
and 4). While Phase 1 is concerned with exploring the variability caused due to
entities in the environment of the software, Phase 2 identifies the variability in
functional and quality requirements. The configuration for a concrete product is
selected in Phase 3. Subsequently, deriving a requirement model for a concrete
product is achieved in Phase 4.

14.3 Future Research

This section provides several proposals on how our work can be continued.

14.3.1 Risk Analysis for Deriving Security Requirements

In Phase 1 of the QuaDRA framework (see Chapter 4), we showed how to elicit se-
curity requirements from existing documents and incorporated them into require-
ment models in a systematic way. This procedure might bear the risk that not all
relevant security requirements can be considered in the requirement models due
to poor documentation of the requirements. In order to improve this situation, we
aim at extending the QuaDRA framework with security risk analysis as a separate
phase to be performed before eliciting and modeling security requirements. We
have already performed preliminary work regarding security risk analysis [15, 14]
which consists of identifying assets, vulnerabilities and threats, assessing business
impact, determining security failures, and estimating risk levels. Finally, security
requirements have to be defined for those assets that have an unacceptable risk
level. The so defined security requirements are then modeled and integrated into
requirement models.

438 14 Conclusions

14.3.2 Integrating Tactics into the Process of Architectural
Pattern Selection

As described before (see Section 2.2.3 on page 27 and Section 2.2.4 on page 28),
while architectural patterns contribute to the fulfillment of several quality require-
ments positively or negatively in a larger scale, tactics aim at improving one spe-
cific quality requirement in a more local manner. Hence, when assessing an ar-
chitectural pattern’s appropriateness for fulfilling a quality it is also important to
judge whether further tactics regarding a quality are applicable and how much
effort one has to spend to integrate them into an architectural pattern. In Chap-
ter 5, we provided a systematic process for selecting architectural patterns. In this
process, tactics are not considered yet. In the future, we want to enrich the archi-
tectural pattern process with tactics. We have performed preliminary work on this
topic in [8]. In this work, we investigate the relationship between several archi-
tectural patterns and performance as well as security tactics. We study how easily
a tactic can be implemented in an architectural pattern. Based on our investiga-
tion, we provide mappings between the architectural patterns and tactics. We aim
at using the results of this work for extending our pattern selection process with
tactics.

14.3.3 Aspect-oriented Requirements Engineering with Problem
Frames

In Chapter 13, we proposed an extension of the QuaDRA framework for sup-
porting SPL. Another important concept in requirements engineering is Aspect-
Oriented Requirements Engineering (AORE) [199]. It deals with cross-cutting con-
cerns at the requirements level in order to achieve the separation of concerns. The
cross-cutting concerns are encapsulated into separate modules, known as aspects,
that can be woven into a base system without altering its structure. This provides
support for modularity and maintainability. Quality concerns [71] such as security,
performance and usability affect several parts in software systems, and are consid-
ered as cross-cutting concerns. We aim to provide a structured method based on
problem frames for extending the QuaDRA framework also with AORE and have
already performed preliminary work in [24].

14.3 Future Research 439

14.3.4 Providing Support for SPL in the Architecture Phase

In Chapter 13, we provided the structured PREVISE method as an extension of
the QuaDRA framework to support SPL for RE. We aim at extending this method
for supporting SPL in the architecture phase considering quality requirements. We
had lots of discussions with our colleagues and project partners1 on this topic.
As a result of our discussions, we conclude that taking into account variability on
the architecture level with regard to quality requirements appears as a complex
or even hardly possible task if using architectural patterns for addressing quality
requirements. Hence, we decided to run a workshop in order to bring together re-
searchers and practitioners to share ideas and experiences, discuss open problems,
and propose promising solutions with a particular focus on handling variability in
software architecture with respect to quality attributes. The VAriability for QUalI-
ties in SofTware Architecture (VAQUITA)2 workshop was held jointly with ECSA
2015 [11, 12]. During the working group discussion, we discussed about variabil-
ity and SPL considering quality attributes on the architecture level. We identified
that it might be too complex to come up with a (reference) architecture with suffi-
cient commonalities when applying architectural patterns for addressing different
quality requirements. The problem identified in this context is that on the one hand
quality requirements are mostly conflicting and on the other hand architectural
patterns contributing to the satisfaction of those requirements always come with
some benefits for one type of quality requirements and liabilities for the other type
of quality requirements. This makes the decision about selecting the architectural
patterns for a (reference) architecture complex. However, the workshop partici-
pants discussed four potential solutions to deal with this dilemma:

Early design decision Early at the architectural level, it should be decided on
the satisfaction of only one type of non-conflicting quality requirements. This
early design decision allows the selection of an architectural pattern contribut-
ing to the satisfaction of the selected quality requirement. This idea, however,
is contrasting the variability and product line concepts.

Patterns in application engineering The architectural pattern should not be
applied in the domain engineering but in the application engineering phase.
This solution might need some refactoring work as it might be late to apply an
architectural pattern at this level.

No common architecture There might not exist a (reference) architecture which
accommodates the commonalities of all conflicting quality requirements. The

1 GenEDA project. http://www.geneda.org/
2 http://vaquita-workshop.org/

440 14 Conclusions

reason is that quality requirements are considered as architectural drivers. Dif-
ferent conflicting quality requirements might lead to completely different soft-
ware architectures using different architectural patterns so that no common ar-
chitecture can exist.

Pattern and tactics An architectural pattern positively contributing to one type
of quality requirements and negatively contributing to other types of quality re-
quirements should be applied in domain engineering. In application engineer-
ing, tactics should be used to compensate the negative effect of the architectural
pattern on one type of quality requirements. This solution also does not provide
an optimal solution to the problem at hand.

In the future, we want to investigate these various suggestions in order to select
a proper solution for extending the QuaDRA framework to support SPL at the
architecture level.

14.3.5 Architecture Views

In Chapter 12, we emphasized that there is no consensus on the number and nature
of the architectural views. Therefore, the architectural views have to be selected,
based on the prevalent situation and characteristics of the organizations and soft-
ware projects.

All the six methods selected by our SLR in Chapter 3 support the structural
view of the software architecture and most of them provide additionally the be-
havioral view of the software architecture. Two of the selected methods provide
the deployment view as well. We provided four different views for our QuaDRA
framework. In addition to the structural view and the behavioral view, we provided
two additional views, namely the context view and the requirements view as these
views are essential when dealing with quality requirements. In order to provide the
deployment view as well, we aim at extending our framework with this architecture
view.

14.3.6 Tool Support

In this book, we provided tool support based on the UML4PF tool mainly for mod-
eling the required artifacts. We developed various UML profiles that are integrated
in the UML4PF tool. Our UML profiles define the relevant stereotypes for the
following tasks:

14.3 Future Research 441

• modeling quality requirements and incorporating them into requirement models
• modeling problem-solution diagrams
• modeling problem-oriented patterns and integrating them into requirement

models
• supporting SPL with problem frames

We want to extend the UML4PF tool with further modules to

• interactively create the required artifacts such as the problem-solution diagram,
the initial architecture, and the quality-driven architecture alternatives in a
semi-automated way.

• identify and implement validation conditions in order to check the consistency
of artifacts within each model and between different models.

Appendix A
OCL Expressions related to the UML profile
Extension for Quality Requirements

1Dependency . a l l I n s t a n c e s () −>
2s e l e c t (a | a . oclAsType (Dependency) . g e t A p p l i e d S t e r e o t y p e s () . name −>
3i n c l u d e s (’ c o n s t r a i n s ’)) −>
4f o r A l l (s o u r c e . g e t A p p l i e d S t e r e o t y p e s () . name −>
5i n c l u d e s (’ F u n c t i o n a l R e q u i r e m e n t ’) i m p l i e s not
6t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ Machine ’) or
7(t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ CausalDomain ’) or
8t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . g e n e r a l . name−>i n c l u d e s (’ CausalDomain ’) or
9t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . g e n e r a l . g e n e r a l . name−>i n c l u d e s (’ CausalDomain ’)))

Listing A.1: A functional requirement does not constrain a machine domain

We retrieve all dependencies (line 1). After that, we select those dependencies
that have the stereotype�constrains� assigned (lines 2 and 3). It is then neces-
sary to verify that all dependencies originating (keyword source) from a functional
requirement (lines 4 and 5) do not point (keyword target) to a machine domain
(line 6). The expression also passes if this dependency points to a machine that is
also a causal domain or a sub-type (in another subproblem) (lines 7-9).

1C l a s s . a l l I n s t a n c e s () −>
2s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>

i n c l u d e s (’ F u n c t i o n a l R e q u i r e m e n t ’)) −>
3f o r A l l (c l i e n t D e p e n d e n c y −>
4c o l l e c t (r | r . oclAsType (Dependency) . g e t A p p l i e d S t e r e o t y p e s () . name −>
5i n c l u d e s (’ c o n s t r a i n s ’))
6−> c o u n t (t rue) >= 1)

Listing A.2: A functional requirement has at least one constrains dependency

We collect all classes which have the stereotype�FunctionalRequirement�
(lines 1 and 2). For theses classes, the dependencies of the class (using clientDe-
pendency, line 3) with the stereotype�constrains� assigned are collected (lines

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5

444 A OCL Expressions related to the UML profile Extension for Quality
Requirements

3-5). We then check for each of these dependencies that there is at leas one depen-
dency with the stereotype�constrains� (line 6).

1C l a s s . a l l I n s t a n c e s ()−>
2s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −> i n c l u d e s (’ D e p e n d a b i l i t y ’) or
3g e t A p p l i e d S t e r e o t y p e s () . g e n e r a l . name −> i n c l u d e s (’ D e p e n d a b i l i t y ’) or
4g e t A p p l i e d S t e r e o t y p e s () . g e n e r a l . g e n e r a l . name −> i n c l u d e s (’ D e p e n d a b i l i t y ’)

and
5g e t A p p l i e d S t e r e o t y p e s () . name −> i n c l u d e s (’ Q u a l i t y R e q u i r e m e n t ’)) −>
6f o r A l l (c l i e n t D e p e n d e n c y −>
7s e l e c t (d | d . oclAsType (Dependency) . g e t A p p l i e d S t e r e o t y p e s . name −>
8i n c l u d e s (’ complements ’))
9. oclAsType (Dependency) . t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . name −>
10i n c l u d e s (’ F u n c t i o n a l R e q u i r e m e n t ’)
11−> c o u n t (t rue) >= 1)

Listing A.3: A dependability requirement always complements a functional
requirement

We select all classes with the stereotype �Dependability� or its subtypes
(�Confidentiality�, �Integrity�, or �Availability�) and additionally the
stereotype �QualityRequirement� (lines 1-5). In all these classes, we check
whether their dependencies with the stereotype �complements� point to at
least one class with the stereotype�FunctionalRequirement�.

Appendix B
Architectural Pattern Selection

B.1 Problem Frames Catalog

ControlMachine
<<machine>>

ControlledDomain
<<causalDomain>>CM!C1

<<connection>>

C3
<<constrains>>

CD!C2 Required Behavior
<<requirement>>

Fig. B.1: Required Behavior

TransformationMachine
<<machine>>

Data
<<lexicalDomain>>TM!C1

<<connection>>

C3
<<constrains>>

D!Y1 Simple Transformation
<<requirement>>

Fig. B.2: Simple Transformation

ControlMachine
<<machine>>

Controlled Domain
<<causalDomain>>

Operator
<<biddableDomain>>

Commanded Behavior
<<requirement>>

C3
<<constrains>>

<<refersTo>>
E4

<<connection>>
O!E4

CM!C1
<<connection>>

CD!C2

Fig. B.3: Commanded Behavior

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5

446 B Architectural Pattern Selection

TransformMachine
<<machine>>

Outputs
<<lexicalDomain>>

Inputs
<<lexicalDomain>>

Transformation
<<requirement>>

Y3
<<constrains>>

<<refersTo>>
Y4

<<connection>>
I!Y1

TM!C2
<<connection>>

Fig. B.4: Transformation

BuildingMachine
<<machine>>

Model
<<lexicalDomain>>

Sensor
<<causalDomain>>

Model Building
<<requirement>>

Y2
<<constrains>>

<<refersTo>>
C3

<<connection>>

BM!C1

BM!C2
<<connection>>

M!Y1

S!C2

Fig. B.5: Model Building

DisplayMachine
<<machine>>

Display
<<displayDomain>>

DisplayInformation
<<lexicalDomain>>

Model Display
<<requirement>>

C3
<<constrains>>

<<refersTo>>
Y2

<<connection>>
DI!Y1

DM!C2
<<connection>>

Fig. B.6: Model Display

InformationMachine
<<machine>>

Display
<<displayDomain>>

RealWorld
<<causalDomain>>

Information Display
<<requirement>>

C4
<<constrains>>

<<refersTo>>
Y1

<<connection>>
RW!C2

DM!C3
<<connection>>

Fig. B.7: Information Display

B.2 Question Catalog 447

B.2 Question Catalog

Table B.1: Question Catalog (questions)

Identifier Question
Q1 Is the system to be developed considered as a large system?
Q2 Shall the system be decomposed?
Q3 Shall the system fulfill functionality on different levels of abstraction?
Q3A Is there high level (user centric) functionality to be provided by the system?
Q3B Is there low level (hardware) functionality to be provided by the system?
Q3C Is there a flow of communication / transformation between functionality on different levels of abstraction?
Q4 Is a partitioning of high level functionality possible?
Q4A Does a classification scheme separating groups of functionality exist?
Q4B Is the functionality of a class non interfering with the functionality of other classes?
Q5 Is the mapping between high level functionality and low level functionality complex?
Q6 Is the system-to-be related to processing of data streams?
Q7 Is one key functionality to transform input data to output data?
Q7A Is it possible to handle the data as a stream?
Q7B Are there several transformation steps?
Q7C Is the transformation to be changed frequently?
Q7D Are steps of the transformation to be carried out by different parties or parts of the system?
Q8 Is the domain of the system-to-be immature and no solution for the problem the system shall solve is

known?
Q9 Is there a transformation of data for which the transformation is (partly) unknown?
Q9A Is it possible to split up the transformation into several steps, where the solution for some transformations

is unknown?
Q9B Is the (best) strategy for combining the transformations unknown?
Q10 Is the environment of the system-to-be or the system-to-be distributed?
Q11 Are there heterogeneous and independent components, which have to cooperate?
Q12 Shall a monolithic system be avoided?
Q12A Has the system-to-be or parts of it to be distributed?
Q13 Is there heterogeneity, which cannot be avoided?
Q13A Is there more than one communication mechanism / protocol to be used?
Q13B Is there more than one technology / platform / framework to be used?
Q13C Is there more than one programming language to be used?
Q14 Shall the system-to-be provide component encapsulation?
Q14A Shall the system-to-be hide component specific details from the user / invoker?
Q14B Shall it be possible to change components at run-time?
Q14C Shall all component invocations be transparent for the invoker?
Q15 Is the system to be developed an interactive application?
Q16 Are requirements of different users regarding the user interface conflicting in an interactive application

and is there a need for several / flexible user interface paradigms?
Q17 Shall the same information in an interactive application be presented differently in multiple views?
Q18 Shall data manipulations of the system to be developed in an interactive application be reflected immedi-

ately by the display?
Q19 Shall changes to the user interface in an interactive application be easy and possible even at run-time?
Q20 Is it the case that changes to the user interface / porting the user interface in an interactive application

affect code in the core of the application?
Q21 Shall the interactive system be developed with the help of agents?
Q22 Are agents in an interactive system responsible for separate tasks to perform the whole system function-

ality in a cooperative manner?
Q23 Is the interactive system to be developed a production-planning-system (PPS)?
Q24 Do the agents in an interactive system maintain their own state and data model?

448 B Architectural Pattern Selection

Q25 Do changes to individual agents in an interactive system affect the whole system?
Q26 Is the system-to-be expected to be able to adapt changing system requirements?
Q27 Shall core functionality be encapsulated to enable development of multiple applications building on core

functionality?
Q28 Does the system have to cope with a changing software and hardware environment?

Table B.2: Question Catalog (indicator questions)

Identifier Indicator Question
IQ1 Is the behavior of Element1 as described by Element2 dependent on an user functionality on

a higher abstraction level?
IQ2 Is the functionality provided by Element1 a low level hardware functionality?
IQ3 Is the functionality provided to Element1 translated into a low level functionality executed by

Element2?
IQ4 Is the Element1 distributed with regards to the machine?
IQ5 Is the Element1 distributed with regards to the Element2?
IQ6 Is the communication between Element1 and the machine established using multiple (ex-

changeable) protocols / mechanisms?
IQ7 Is the communication between Element1 and Element2 established using multiple (exchange-

able) protocols / mechanisms?
IQ8 Shall Element1 be exchangeable at run-time?
IQ9 Is the information shown on Element1 dependent on low level functionality?
IQ10 Can the functionality Element1 logically be grouped with other functionality?
IQ11 Is it possible to handle Element1 as a stream?
IQ12 Has Element1 been transformed before or will Element1 be used in another transformation

afterward?
IQ13 Has Element1 been transformed before?
IQ14 Will Element1 be used in another transformation afterward?
IQ15 Is it expected that the transformation described by Element1 will change frequently?
IQ16 Shall the functionality of Element1 be hidden from Element2?
IQ17 Shall Element1 show multiple views based on Element2?
IQ18 Shall manipulations of Element2 be reflected immediately on Element1?
IQ19 Shall Element1 show multiple views to Element2?
IQ20 Shall several / flexible interface paradigms used for representing information on Element1 to

suffice different needs of Element2 ?
IQ21 Is Element1 expected to change over time?
IQ22 Is Element1 likely to change over time?

B.3 Relations between Problem Frames and Questions 449

B.3 Relations between Problem Frames and Questions

Table B.3: Problem Frame Required Behavior and related Indicator Questions

Required Behavior

ControlMachine
<<machine>>

ControlledDomain
<<causalDomain>>CM!C1

<<connection>>

C3
<<constrains>>

CD!C2 Required Behavior
<<requirement>>

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement
IQ1 ELEMENT1 Controlled Domain
IQ2 ELEMENT1 Controlled Domain
IQ4 ELEMENT1 Controlled Domain
IQ6 ELEMENT1 Controlled Domain
IQ8 ELEMENT1 Controlled Domain
IQ21 ELEMENT1 Required Behavior
IQ22 ELEMENT1 Controlled Domain

Table B.4: Problem Frame Simple Transformation and related Indicator Questions

Simple Transformation

TransformationMachine
<<machine>>

Data
<<lexicalDomain>>TM!C1

<<connection>>

C3
<<constrains>>

D!Y1 Simple Transformation
<<requirement>>

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement

Q6, Q9

IQ4 ELEMENT1 Data
IQ6 ELEMENT1 Data
IQ8 ELEMENT1 Data
IQ11 ELEMENT1 Data
IQ12 ELEMENT1 Data
IQ15 ELEMENT1 Simple Transformation
IQ21 ELEMENT1 Simple Transformation
IQ22 ELEMENT1 Data

450 B Architectural Pattern Selection

Table B.5: Problem Frame Commanded Behavior and related Indicator Questions

Commanded Behavior

ControlMachine
<<machine>>

Controlled Domain
<<causalDomain>>

Operator
<<biddableDomain>>

Commanded Behavior
<<requirement>>

C3
<<constrains>>

<<refersTo>>
E4

<<connection>>
O!E4

CM!C1
<<connection>>

CD!C2

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement
IQ2 ELEMENT1 Controlled Domain

IQ3 ELEMENT1 Operator
ELEMENT2 Controlled Domain

IQ4 ELEMENT1 Controlled Domain
IQ6 ELEMENT1 Controlled Domain
IQ8 ELEMENT1 Controlled Domain
IQ10 ELEMENT1 Commanded Behavior

IQ16 ELEMENT1 Controlled Domain
ELEMENT2 Operator

IQ21 ELEMENT1 Commanded Behavior
IQ22 ELEMENT1 Controlled Domain

Table B.6: Problem Frame Transformation and related Indicator Questions

Transformation

TransformMachine
<<machine>>

Outputs
<<lexicalDomain>>

Inputs
<<lexicalDomain>>

Transformation
<<requirement>>

Y3
<<constrains>>

<<refersTo>>
Y4

<<connection>>
I!Y1

TM!C2
<<connection>>

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement

Q6, Q9

IQ4 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ6 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ8 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ11 ELEMENT1 Inputs
ELEMENT1 Outputs

IQ13 ELEMENT1 Inputs
IQ14 ELEMENT1 Outputs
IQ15 ELEMENT1 Transformation
IQ21 ELEMENT1 Transformation

IQ22 ELEMENT1 Inputs
ELEMENT1 Outputs

B.3 Relations between Problem Frames and Questions 451

Table B.7: Problem Frame Model Building and related Indicator Questions

Model Building

BuildingMachine
<<machine>>

Model
<<lexicalDomain>>

Sensor
<<causalDomain>>

Model Building
<<requirement>>

Y2
<<constrains>>

<<refersTo>>
C3

<<connection>>

BM!C1

BM!C2
<<connection>>

M!Y1

S!C2

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement

Q6, Q9

IQ2 ELEMENT1 Sensor

IQ4 ELEMENT1 Model
Sensor

IQ6 ELEMENT1 Model
Sensor

IQ8 ELEMENT1 Model
Sensor

IQ10 ELEMENT1 Model Building
IQ11 ELEMENT1 Model
IQ14 ELEMENT1 Model
IQ15 ELEMENT1 Model Building
IQ21 ELEMENT1 Model Building

IQ22 ELEMENT1 Model
Sensor

452 B Architectural Pattern Selection

Table B.8: Problem Frame Model Display and related Indicator Questions

Model Display

DisplayMachine
<<machine>>

Display
<<displayDomain>>

DisplayInformation
<<lexicalDomain>>

Model Display
<<requirement>>

C3
<<constrains>>

<<refersTo>>
Y2

<<connection>>
DI!Y1

DM!C2
<<connection>>

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement

Q6, Q7,
Q9

IQ2 ELEMENT1 Display

IQ4 ELEMENT1 Display
Display Information

IQ6 ELEMENT1 Display
Display Information

IQ8 ELEMENT1 Display
Display Information

IQ10 ELEMENT1 Model Display
IQ11 ELEMENT1 Display Information
IQ13 ELEMENT1 Display Information
IQ15 ELEMENT1 Model Display

IQ17 ELEMENT1 Display
ELEMENT2 Display Information

IQ18 ELEMENT1 Display
ELEMENT2 Display Information

IQ21 ELEMENT1 Model Display

IQ22 ELEMENT1 Display
Display Information

Table B.9: Problem Frame Information Display and related Indicator Questions

Information Display

InformationMachine
<<machine>>

Display
<<displayDomain>>

RealWorld
<<causalDomain>>

Information Display
<<requirement>>

C4
<<constrains>>

<<refersTo>>
Y1

<<connection>>
RW!C2

DM!C3
<<connection>>

Indicator Questions Question

Identifier ELEMENTS IdentifierELEMENT Replacement
IQ2 ELEMENT1 Real World

IQ4 ELEMENT1 Display
Real World

IQ6 ELEMENT1 Display
Real World

IQ8 ELEMENT1 Display
Real World

IQ10 ELEMENT1 Information Display
IQ15 ELEMENT1 Information Display
IQ21 ELEMENT1 Information Display

IQ22 ELEMENT1 Display
Real World

B.3 Relations between Problem Frames and Questions 453

Table B.10: Indicator Question Properties (external input; used in Step 2)

Identifier Indicated Question Problem
Frame
Specific

Domain
Specific

IQ1 Q3A Yes No
IQ2 Q3B No Yes
IQ3 Q3C No Yes
IQ4 Q10 No Yes
IQ5 Q10 No Yes
IQ6 Q13A No Yes
IQ7 Q13A No Yes
IQ8 Q14B, Q28 No Yes
IQ9 Q3A Yes No
IQ10 Q4A Yes No
IQ11 Q7A No Yes
IQ12 Q7B Yes No
IQ13 Q7B Yes No
IQ14 Q7B Yes No
IQ15 Q7C Yes No
IQ16 Q14C Yes No
IQ17 Q17 Yes No
IQ18 Q18 Yes No
IQ19 Q17 Yes No
IQ20 Q16 Yes No
IQ21 Q26 Yes No
IQ22 Q28 No Yes

454 B Architectural Pattern Selection

B.4 Benefits and Liabilities

Table B.12: Liabilities and their relation to qualities

Identifier Benefit Quality
L1 Cascading of changing behavior is difficult Maintainability (Modifiability)
L2 The efficiency might be affected negatively Efficiency (all)
L2a Sharing state might be expensive Efficiency (Resource utilization, Capacity)
L2b Might introduce additional transformation

overhead
Efficiency (Resource utilization, Capacity)

L2c Cannot be parallelized Efficiency (Resource utilization)
L2d Frequently data access in view affects perfor-

mance
Efficiency (Resource utilization, Time behaviour)

L3 Work might be done several times or com-
pletely unnecessary work is done

Efficiency (Resource utilization)

L3a Potential for excessive number of updates Efficiency (Resource utilization)
L4 Right granularity of of classification / group-

ing is hard to find
Development effort1

L5 The flexibility might be affected negatively Maintainability (Modifiability, Testability), Portability (Re-
placeability, Adaptability), Compatibility (Interoperability)

L5a Sharing state is inflexible Maintainability (Modifiability, Testability), Portability (Re-
placeability, Adaptability), Compatibility (Interoperability)

L6 Error handling is difficult Reliability (Fault tolerance, Recoverability), Maintainabil-
ity (Analyzability, Testability)

L7 Testing is difficult Maintainability (Testability)
L8 Establishing a control strategy is difficult Maintainability (Analyzability, Testability), Functional

suitability (Functional appropriateness), Reliability (Avail-
ability)

L9 Effort to be spent is high Development effort
L9a Development effort is high Development effort
L10 Robustness impacted negatively Reliability (Recoverability, Fault tolerance)
L11 Complexity might be increased Maintainability (Analyzability, Modifiability, Testability),

Efficiency (Capacity)
L11a Complexity of control components is high Development effort, Maintainability (Analyzability, Modi-

fiability, Testability)
L11b Modification on meta level may cause dam-

age
Maintainability (Modifiability, Analyzability)

L11c Increased number of components Efficiency (Capacity)
L12 Reusability might be affected negatively Maintainability (Reusability)
L12a Individual reuse of view and controller is dif-

ficult
Maintainability (Reusability)

L13 View and controller components are closely-
coupled

Maintainability (Modifiability), Portability (Replaceability,
Adaptability)

L14 Change to view and controller when porting
is required

Portability (Replaceability, Adaptability)

L15 Additional wrapping is required when using
MVC with modern user-interface tools

Development effort

L16 Similar user interfaces require high maintain-
ability effort

Maintainability

L17 Not all potential changes to the software are
supported

Maintainability (Modifiability)

1 not in ISO 25010

B.4 Benefits and Liabilities 455

L18 Programming language might not support re-
flection

-

456 B Architectural Pattern Selection

Table B.11: Benefits and their relation to qualities

Identifier Benefit Quality
B1 Reuse is improved Reusability
B1a Reusable knowledge source Reusability

B2 Standardization of task and interfaces
improved

Reusability, Portability(Adaptability, Replaceability),
Interoperability

B3 Dependencies are kept local Maintainability (all)

B4 (Ex)changeability is improved Maintainability (Modularity, Modifiability), Portability
(Replaceability)

B5 No intermediate file necessary Efficiency (Resource utilization)

B6 Flexibility is improved Maintainability (Modifiability, Testability), Portability
(Replaceability, Adaptability), Compatibility (Interoper-
ability)

B6a Enables experimentation Maintainability (Modifiability, Testability)
B6b Portability is improved Portability (Replaceability, Adaptability)
B6c Interoperability is improved Compatibility (Interoperability)

B7 Rapid prototyping is possible Maintainability (Analyzability, Modifiability, Testabil-
ity)

B8 Efficiency is improved Efficiency
B8a Enables parallel processing Efficiency (Resource utilization)

B9 Maintainability is improved Maintainability

B10 Improved robustness Reiliability (Recoverability, Fault tolerance))

B11 Location transparency Usability (Accessibility), Portability (Adaptability, Re-
placeability), Maintainability (all)

B12 Implementing and using multiple
views with a single model

Maintainability (all), Portability (Adaptability, Replace-
ability)

B12a Synchronizing of views Maintainability (all), Portability (Adaptability, Replace-
ability)

B12b Pluggable views and controllers even
at run-time

Portability (Adaptability, Replaceability)

B12c Exchangeability of “look and feel” Maintainability (Modifiability), Portability (Adaptabil-
ity, Replaceability)

B13 Enables building application frame-
works

Maintainability (all), Reliability (Maturity)

B14 Enables separation of concerns Maintainability (all)

B15 Provides support for change and exten-
sion

Maintainability (Modularity, Reusability, Analyzability,
Modifiability), Portability (Adaptability, Replaceabil-
ity), Compatibility (Interoperability)

B15a No explicit source code modifications
are needed

Maintainability (Modularity, Reusability, Analyzability,
Modifiability), Portability (Adaptability, Replaceability)

B15b Support for any kind of change Maintainability (Modularity, Reusability, Analyzability,
Modifiability), Portability (Adaptability, Replaceability)

B16 It facilitates multi-tasking and multi-
user applications

Usability (Operability), Efficiency (Resource utiliza-
tion)

B.5 Architectural Pattern Catalog 457

B.5 Architectural Pattern Catalog

Table B.13: Architectural Pattern Description

Pattern Questions Consequences
Type Name Identifier Context Problem Benefits Liabilities
From Mud to
Structure

Layers AP1 Q1, Q2 Q3, Q4, Q5 B1, B2, B3, B4 L1, L2, L3, L4

From Mud to
Structure

Pipes and Filters AP2 Q6 Q7 B1, B4, B6, B7,
B8A

L5A, L2A,
L2B, L6

From Mud to
Structure

Blackboard AP3 Q8 Q7, Q9 B1A, B4, B6A,
B9, B10

L7, L8, L9A
L2C

Distributed
Systems

Broker AP4 Q10,
Q11

Q12, Q13, Q14 B1, B4, B6B,
B6C, B11

L2, L10, L7

Interactive
Systems

Model-View-
Controller

AP5 Q15 Q16, Q17, Q18,
Q19, Q20

B12, B13 L2D, L3A, L11,
L12A, L13,
L14, L15

Interactive
Systems

Presentation-
Abstraction-
Control

AP6 Q15,
Q21

Q22, Q23, Q24,
Q25

B14, B15, B17 L11, L11A, L2,
L16

Adaptable
Systems

Microkernel AP7 Q26,
Q27

Q28, Q29 B6B, B9, B15 L2, L11, L9A

Adaptable
Systems

Reflection AP8 Q30 Q26 B15, B16,
B16A

L11B, L11C,
L2, L17, L18

458 B Architectural Pattern Selection

B.6 Initial Architecture - Port Types

Fig. B.8: Complete list of port types for the initial architecture

Appendix C
Quality-specific Pattern Selection & Application

C.1 Problem-oriented Security Pattern Template for A1

Table C.1: Problem-oriented Symmetric Encryption pattern template for the con-
fidentiality requirement R11.1

Security Solution for the Confidentiality Requirement R11.1
Name Symmetric Encryption
Purpose For MeterData constrained by the requirement R4
Brief Description The plaintext is encrypted using the secret key
Quality Requirement to be achieved Security (confidentiality) R11.1
Affected Quality Requirement Performance R18, R19, R22, R23, R24, R25

Necessary Conditions

Requirement 2 Assumption 2�
Secret key shall be/is distributed.

Requirement 2 Assumption 2�
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of secret key during transmission shall be/is pre-
served

Requirement 2 Assumption 2�
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of encryption machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of encryption machine shall be/is preserved.

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5

460 C Quality-specific Pattern Selection & Application

Table C.2: Problem-oriented MAC pattern template for the integrity and authen-
ticitiy requirements R10.1 and 12.1

Security Solution for the Integrity and Authenticity Requirements R10.1 and 12.1
Name Message Authentication Code (MAC)
Purpose For MeterData constrained by the requirement R4
Brief Description MAC uses a secret key and the data to generate a MAC. The verifier

uses the same secret key to detect changes to the data.
Quality Requirement to be achieved Security (integrity and authenticity) 10.1, 12.1
Affected Quality Requirement Performance R18, R19, R22, R23, R24, R25

Necessary Conditions

Requirement 2 Assumption 2�
Secret key shall be/is distributed.

Requirement 2 Assumption 2�
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of secret key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2�
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of encryption machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of encryption machine shall be/is preserved.

C.2 Problem-oriented Security Pattern Template for A2 461

C.2 Problem-oriented Security Pattern Template for A2

Table C.3: Problem-oriented Asymmetric Encryption Pattern template for the Con-
fidentiality requirement R14

Security Solution for Confidentiality requirement R14
Name Asymmetric Encryption
Purpose For MeterData constrained by the requirement R5
Brief Description The plaintext is encrypted using the public key and decrypted using

the private key.
Quality Requirement to be achieved Security (confidentiality) R14
Affected quality requirements Performance R18.1, R22.1, R24.1

Necessary Conditions

Requirement 2 Assumption 2�
Integrity of public key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2�
Integrity of private key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of public key during storage shall be/is preserved.

462 C Quality-specific Pattern Selection & Application

Table C.4: Problem-oriented Asymmetric Encryption Pattern template for the Con-
fidentiality requirement R11

Security Solution for Confidentiality requirement R11
Name Asymmetric Encryption
Purpose For MeterData constrained by the requirement R4
Brief Description The plaintext is encrypted using the public key and decrypted using

the private key.
Quality Requirement to be achieved Security (confidentiality) R11
Affected quality requirements Performance R18.1, R19.1, R22.1, R23.1, R24.1, R25.1

Necessary Conditions

Requirement 2 Assumption 2�
Integrity of public key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2�
Integrity of private key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of public key during storage shall be/is preserved.

Table C.5: Problem-oriented Digital Signature pattern template for the Integrity
and Authenticity requirements R10 and R12

Security Solution for Integrity and Authenticity Requirements R10 and R12
Name Digital Signature
Purpose For MeterData constrained by the requirement R4
Brief Description Sender produces a signature using the private key and the data.
Quality Requirement to be achieved Security (integrity and authenticity) R10, R12
Affected Quality Requirement Performance R18.1, R19.1, R22.1, R23.1, R24.1, R25.1

Necessary Conditions

Requirement 2 Assumption 2�
Integrity of public key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2�
Integrity of private key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of public key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of signature machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of signature machine shall be/is preserved.

C.2 Problem-oriented Security Pattern Template for A2 463

Table C.6: Problem-oriented Digital Signature pattern template for the integrity
and authenticity requirements R13 and R15

Security Solution for Integrity and Authenticity Requirements R13 and R15
Name Digital Signature
Purpose For MeterData constrained by the requirement R5
Brief Description Sender produces a signature using the private key and the data.
Quality Requirement to be achieved Security (integrity and authenticity) R13, R15
Affected Quality Requirement Performance R18.1, R22.1, R24.1

Necessary Conditions

Requirement 2 Assumption 2�
Integrity of public key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2�
Integrity of private key during transmission shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of private key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of public key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of signature machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of signature machine shall be/is preserved.

464 C Quality-specific Pattern Selection & Application

C.3 Problem-oriented Security Pattern Template for A3

Table C.7: Problem-oriented Symmetric Encryption pattern template for the con-
fidentiality requirement R11.2

Security Solution for the Confidentiality Requirement R11.2
Name Symmetric Encryption
Purpose For MeterData constrained by the requirement R4
Brief Description The plaintext is encrypted using the secret key
Quality Requirement to be achieved Security (confidentiality) R11.2
Affected Quality Requirement Performance R18.2, R19.2, R22.2, R23.2, R24.2, R25.2

Necessary Conditions

Requirement 2 Assumption 2�
Secret key shall be/is distributed.

Requirement 2 Assumption 2�
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of secret key during transmission shall be/is pre-
served

Requirement 2 Assumption 2�
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of encryption machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of encryption machine shall be/is preserved.

C.3 Problem-oriented Security Pattern Template for A3 465

Table C.8: Problem-oriented Symmetric Encryption pattern template for the con-
fidentiality requirement R14.2

Security Solution for the Confidentiality Requirement R14.2
Name Symmetric Encryption
Purpose For MeterData constrained by the requirement R5
Brief Description The plaintext is encrypted using the secret key
Quality Requirement to be achieved Security (confidentiality) R14.2
Affected Quality Requirement Performance R18.2, R22.2, R24.2

Necessary Conditions

Requirement 2 Assumption 2�
Secret key shall be/is distributed.

Requirement 2 Assumption 2�
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of secret key during transmission shall be/is pre-
served

Requirement 2 Assumption 2�
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of encryption machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of encryption machine shall be/is preserved.

466 C Quality-specific Pattern Selection & Application

Table C.9: Problem-oriented MAC pattern template for the integrity and authen-
ticitiy requirements R10.2 and 12.2

Security Solution Security Solution for the Integrity and Authenticity Requirements R10.2 and 12.2
Name Message Authentication Code (MAC)
Purpose For MeterData constrained by the requirement R4
Brief Description MAC uses a secret key and the data to generate a MAC. The verifier

uses the same secret key to detect changes to the data.
Quality Requirement to be achieved Security (integrity and authenticity) R10.2, R12.2
Affected Quality Requirement Performance R18.2, R19.2, R22.2, R23.2, R24.2, R25.2

Necessary Conditions

Requirement 2 Assumption 2�
Secret key shall be/is distributed.

Requirement 2 Assumption 2�
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of secret key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2�
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of encryption machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of encryption machine shall be/is preserved.

C.3 Problem-oriented Security Pattern Template for A3 467

Table C.10: Problem-oriented MAC pattern template for the integrity and authen-
ticitiy requirements R13.2 and 15.2

Security Solution Security Solution for the Integrity and Authenticity Requirements R13.2 and 15.2
Name Message Authentication Code (MAC)
Purpose For MeterData constrained by the requirement R5
Brief Description MAC uses a secret key and the data to generate a MAC. The verifier

uses the same secret key to detect changes to the data.
Quality Requirement to be achieved Security (integrity and authenticity) R13.2, R15.2
Affected Quality Requirement Performance R18.2, R22.2, R24.2

Necessary Conditions

Requirement 2 Assumption 2�
Secret key shall be/is distributed.

Requirement 2 Assumption 2�
Confidentiality of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key distribution shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of secret key during transmission shall be/is pre-
served.

Requirement 2 Assumption 2�
Confidentiality of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of secret key during storage shall be/is preserved.

Requirement 2 Assumption 2�
Confidentiality of encryption machine shall be/is preserved.

Requirement 2 Assumption 2�
Integrity of encryption machine shall be/is preserved.

Appendix D
Quality-based Architecture

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5

470 D Quality-based Architecture

Fig. D.1: List of port types for the quality-based architecture alternative 1

D Quality-based Architecture 471

Fig. D.2: List of port types for the quality-based architecture alternative 2

472 D Quality-based Architecture

Fig. D.3: List of port types for the quality-based architecture alternative 3

Appendix E
Architecture Evaluation Methods

This section provides an overview of the state-of-the-art of the architecture eval-
uation methods. For this overview, we used the secondary studies published
in [88, 34, 35].

Scenario-based Architecture Analysis Method (SAAM)

SAAM consists of 6 activities. Its goal is to identify and assess the risks inherent to
the architecture as well as analyzing the suitability of the architecture with regard
to the desired characteristics of a particular system. Any single quality require-
ment in the form of scenarios can be evaluated by SAAM. SAAM can be applied
to the final version of the software architecture and prior to the detailed design.
The software architecture to be evaluated has to be presented as structural and be-
havioral views. Additionally, the allocation of functionality to the structure should
be specified.

SAAM founded on Complex Scenarios (SAAMCS)

SAAMCS comprising 3 activities extends SAAM for considering complex scenar-
ios and their impact on the software architecture. Flexibility is the quality require-
ment that is addressed by SAAMCS. It can be applied to the final version of the
software architecture. The software architecture has to be described as macroar-
chitecture and microarchitecture.

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5

474 E Architecture Evaluation Methods

Extending SAAM by Integration in the Domain (ESAAMI)

ESAAMI integrates SAAM in a domain-specific and reuse-bassed development
process. ESAAMI requires the similar architecture descriptions used by SAAM.
The method activities in ESAAMI are similar to SAAM.

SAAM Evolution and Reusability (SAAMER)

SAAMER comprises 4 activities to be performed iteratively. It provides an exten-
sion to SAAM with respect to the quality requirements evolution and reusability.
SAAMER can be applied to the final version of the software architecture. It re-
quires the architectural views static, map, dynamic, and resource for assessing the
software architectures.

Aspectual SAAM (ASAAM)

ASAAM as an extension to SAAM provides support for evaluating the quality
of the software architecture using aspects and refactoring concepts. Similar to
SAAM, any quality requirements to be considered in isolation can be addressed
by ASAAM. ASAAM can be applied to the final version of the software architec-
ture.

Architecture Trade-off Analysis Method (ATAM)

A comprehensive description of ATAM is given in Chapter 2 (see Section 2.2.7 on
page 31) as well as in Chapter 11 (see Section 11.5 on page 367).

Scenario-based Architecture Reeingeering (SBAR)

The goal of SBAR is to estimate the ability of the desigend software architecture
for achieving quality requirements. The method comprises 3 activities that have
to be performed iteratively. SBAR can be applied to an existing system for sys-

E Architecture Evaluation Methods 475

tem extension or reengineering of the system. Multiple quality requirements are
considered in SBAR. An implemented system is required for this method.

Architecture Level Prediction for Software Maintenance
(ALPSM)

ALPSM evaluates the maintainability of the software architecture. For predicting
the effort needed for adapting the system, it uses the size of changes. ALPSM can
be applied to the final version of the software architecture. It consists of 6 activities.

Software Architecture Evaluation Method (SAEM)

The goal of SAEM is to predict the quality of the final system. It considers internal
and external quality requirements based on a quality model. The internal quality
represents the set of qualities from the developer’s view. The external quality rep-
resents the set of qualities from the perspective of the user. SAEM can be applied to
the final version of the software architecture. As architecture descriptions the two
different viewpoints, namely the developer view and the user view are required.

Architecture Level Modifiability Analysis (ALMA)

The goal of ALMA is to analyze the software architecture from the modifiabil-
ity point of view. The focus of analyzing is on risk assessment, maintenance cost
prediction, and software architecture comparison. ALMA consists of 5 activities
to be performed sequentially. It can be applied to the final version of the software
architecture. As architectural descriptions, several architectural views such as con-
textual, conceptual, and dynamic are required for ALMA.

Performance Assessment of Software Architecture (PASA)

The goal of PASA is to assess the software architecture with regard to performance.
It comprises 10 activities for identifying and mitigating performance related risk

476 E Architecture Evaluation Methods

on the architecture level. It can be applied to the final version of the software archi-
tecture, to the post-deployment stage, and during an upgrade of a legacy system. It
requires various views of the software architecture description.

Architecture Level Reliability Risk Analysis (ALRRA)

The goal of ALRRA is to analyze the reliability related risks on the level of soft-
ware architecture. It is used to identify critical components and connectors. AL-
RRA consists of 6 activities. It can be applied to the final version of the software
architecture [247].

Software Architecture Comparison Analysis Method (SACAM)

The goal of SACAM is to select an architecture by comparing different candidate
architectures. It uses business goals of the organization as a basis for the selection
criteria. SACAM consists of 6 activities. It can be applied to the final version of
the software architecture.

Software Architecture Review (SAR)

The goal of SAR is to evaluate the software architecture with regard to evolution
and confiability. It can be applied to the final version of the software architecture.

Software Architecture Analysis of Flexibility (SAAF)

SAAF is very similar to SAAM regarding the evaluation of the software architec-
ture. Additionally, it provides support for idenfiying scenarios with high complex-
ity during the evaluation. SAAF can be applied to the final version of the software
architecture.

E Architecture Evaluation Methods 477

Active Reviews for Intermediate Design (ARID)

The goal of ARID is to perform a suitability analysis for the intermediate design.
It comprises 9 activities to be performed in 2 phases. The suitability of the design
is the quality requirement considered in ARID. As the architectural description,
ARID needs detailed design of the components.

References

[1] Proceedings of the 1st International Workshop on Twin Peaks of Require-
ments and Architecture (TwinPeaks). IEEE (2012)

[2] Proceedings of the 2nd International Workshop on the Twin Peaks of Re-
quirements and Architecture (TwinPeaks). IEEE Press (2013)

[3] Proceedings of the 3rd International Workshop on Twin Peaks of Require-
ments and Architecture (TwinPeaks). IEEE (2013)

[4] Proceedings of the 5th International Workshop on the Twin Peaks of Re-
quirements and Architecture (TwinPeaks), vol. 2 (2015)

[5] Alebrahim, A.: Performance Analysis Patterns for Requirements Analysis.
In: Proceedings of Student Research Forum Papers and Posters, the 41st In-
ternational Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM), CEUR Workshop Proceedings, vol. 1326, pp. 54–
66. CEUR-WS.org (2015)

[6] Alebrahim, A., Choppy, C., Faßbender, S., Heisel, M.: Optimizing func-
tional and quality requirements according to stakeholders’ goals. In: I. Mis-
trik, R. Bahsoon, P. Eeles, R. Roshandel, M. Stal (eds.) System Quality and
Software Architecture (SQSA), chap. 4, pp. 75–120. Elsevier (2014)

[7] Alebrahim, A., Côté, I., Heisel, M., Choppy, C., Hatebur, D.: Designing
Architectures from Problem Descriptions by Interactive Model Transfor-
mation. In: Proceedings ot the 27th Symposium on Applied Computing
(SAC), pp. 1256–1258. ACM (2012)

[8] Alebrahim, A., Fassbender, S., Filipczyk, M., Goedicke, M., Heisel, M.: To-
wards a Reliable Mapping Between Performance and Security Tactics, and
Architectural Patterns. In: Proceedings of the 20th European Conference on
Pattern Languages of Programs (EuroPLoP), pp. 39:1–39:43. ACM, New
York, NY, USA (2015)

© Springer Fachmedien Wiesbaden GmbH 2017
A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,
DOI 10.1007/978-3-658-17694-5

480 REFERENCES

[9] Alebrahim, A., Fassbender, S., Filipczyk, M., Goedicke, M., Heisel, M.: To-
wards Systematic Selection of Architectural Patterns with Respect to Qual-
ity Requirements. In: Proceedings of the 20th European Conference on
Pattern Languages of Programs (EuroPLoP), pp. 40:1–40:20. ACM, New
York, NY, USA (2015)

[10] Alebrahim, A., Faßbender, S., Filipczyk, M., Goedicke, M., Heisel, M.,
Konersmann, M.: Towards a Computer-aided Problem-oriented Variability
Requirements Engineering Method. In: L. Iliadis, M. Papazoglou, K. Pohl
(eds.) Advanced Information Systems Engineering Workshops - CAiSE
2014 International Workshops, LNBI 178, pp. 136–147. Springer (2014)

[11] Alebrahim, A., Faßbender, S., Filipczyk, M., Goedicke, M., Heisel, M.,
Zdun, U.: 1st Workshop on VAriability for QUalIties in SofTware Archi-
tecture (VAQUITA): Workshop Introduction. In: Proceedings of the 2015
European Conference on Software Architecture Workshops, ECSAW ’15,
pp. 22:1–22:2. ACM (2015)

[12] Alebrahim, A., Faßbender, S., Filipczyk, M., Goedicke, M., Heisel, M.,
Zdun, U.: Variability for Qualities in Software Architecture. SIGSOFT Soft-
ware Engineering Notes 41(1), 32–35 (2016)

[13] Alebrahim, A., Faßbender, S., Heisel, M., Meis, R.: Problem-Based Re-
quirements Interaction Analysis. In: Proceedings of the 20th International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ), LNCS 8396, pp. 200–215. Springer (2014)

[14] Alebrahim, A., Faßbender, S., Htebur, D., Goeke, L., Côté, I.: A Pattern-
Based and Tool-Supported Risk Analysis Method Compliant to ISO 27001
for Cloud Systems. International Journal of Secure Software Engineering
(IJSSE) 6(1), 24–46 (2015)

[15] Alebrahim, A., Hatebur, D., Goeke, L.: Pattern-Based and ISO 27001 Com-
pliant Risk Analysis for Cloud Systems. In: Proceedings of the 1st Interna-
tional Workshop on Evolving Security and Privacy Requirements Engineer-
ing (ESPRE), pp. 42–47. IEEE (2014)

[16] Alebrahim, A., Hatebur, D., Heisel, M.: A Method to Derive Software Ar-
chitectures from Quality Requirements. In: T.D. Thu, K. Leung (eds.)
Proceedings of the 18th Asia-Pacific Software Engineering Conference
(APSEC), pp. 322–330. IEEE Computer Society (2011)

[17] Alebrahim, A., Hatebur, D., Heisel, M.: Towards Systematic Integration of
Quality Requirements into Software Architecture. In: I. Crnkovic, V. Gruhn,
M. Book (eds.) Proceedings of the 5th European Conference on Software
Architecture (ECSA), LNCS 6903, pp. 17–25. Springer (2011)

[18] Alebrahim, A., Heisel, M.: Supporting Quality-Driven Design Decisions by
Modeling Variability. In: Proceedings of the 8th International ACM SIG-

REFERENCES 481

SOFT Conference on Quality of Software Architectures, part of Comparch
’12 Federated Events on Component-Based Software Engineering and Soft-
ware Architecture (QoSA), pp. 43–48. ACM (2012)

[19] Alebrahim, A., Heisel, M.: Intertwining Relationship between Require-
ments, Architecture, and Domain Knowledge. In: Proceedings of the 9th
International Conference on Software Engineering Advances (ICSEA), pp.
1–7 (2014)

[20] Alebrahim, A., Heisel, M.: Problem-oriented Security Patterns for Require-
ments Engineering. In: Proceedings of the 19th European Conference
on Pattern Languages of Programs (EuroPLoP), pp. 9:1–9:17. ACM, New
York, NY, USA (2014)

[21] Alebrahim, A., Heisel, M.: Towards Developing Secure Software using
Problem-oriented Security Patterns. In: Proceedings of the 6th International
Cross-Domain Conference on Availability, Reliability, and Security in In-
formation Systems and HCI (CD-ARES), LNCS 8708, pp. 45–62. Springer
(2014)

[22] Alebrahim, A., Heisel, M.: Applying Performance Patterns for Require-
ments Analysis. In: Proceedings of the 20th European Conference on Pat-
tern Languages of Programs (EuroPLoP), pp. 35:1–35:15. ACM, New York,
NY, USA (2015)

[23] Alebrahim, A., Heisel, M., Meis, R.: A Structured Approach for Eliciting,
Modeling, and Using Quality-Related Domain Knowledge. In: Proceed-
ings of the 14th International Conference on Computational Science and Its
Applications (ICCSA), LNCS 8583, pp. 370–386. Springer (2014)

[24] Alebrahim, A., Tun, T.T., Yu, Y., Heisel, M., , Nuseibeh, B.: An Aspect-
Oriented Approach to Relating Security Requirements and Access Control.
In: Proceedings of the CAiSE’12 Forum at the 24th International Con-
ference on Advanced Information Systems Engineering (CAiSE), CEUR
Workshop Proceedings, vol. 855, pp. 15–22. CEUR-WS.org (2012)

[25] Alexander, I.: Misuse cases help to elicit non-functional requirements.
Computing & Control Engineering Journal pp. 40–45 (2003)

[26] Alférez, M., Moreira, A., Kulesza, U., Araújo, J.a., Mateus, R., Amaral,
V.: Detecting feature interactions in SPL requirements analysis models. In:
Proceedings of the 1st International Workshop on Feature-Oriented Soft-
ware Development, FOSD ’09, pp. 117–123. ACM (2009)

[27] Ali, R., Yu, Y., Chitchyan, R., Nhlabatsi, A., Giorgini, P.: Towards a Uni-
fied Framework for Contextual Variability in Requirements. In: IWSPM’09
(2009)

482 REFERENCES

[28] Ali, R., Yu, Y., Chitchyan, R., Nhlabatsi, A., Giorgini, P.: Towards a Unified
Framework for Contextual Variability in Requirements. In: IWSPM ’09,
pp. 31–34. IEEE (2009)

[29] Almari, H., Boughton, C.: Questionnaire report on matter relating to soft-
ware architecture evaluation. In: Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing (SNPD), 2014 15th
IEEE/ACIS International Conference on, pp. 1–6 (2014)

[30] Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects
consider non-functional requirements: An exploratory study. In: Proceed-
ings of the 20th IEEE International Requirements Engineering Conference
(RE), pp. 41–50 (2012)

[31] Aurum, A., Jeffery, R., Wohlin, C., Handzic, M.: Managing Software Engi-
neering Knowledge. Springer (2003)

[32] Avgeriou, P., Grundy, J., Hall, J.G., Lago, P., Mistrı́k, I. (eds.): Relating
Software Requirements and Architectures. Springer (2011)

[33] Avgeriou, P., Zdun, U.: Architectural patterns revisited: a pattern language.
In: Proceedings of the 10th European Conference on Pattern Languages of
Programs (EuroPlop), pp. 1–39 (2005)

[34] Babar, M., Gorton, I.: Comparison of scenario-based software architecture
evaluation methods. In: Proceedings of the 11th Asia-Pacific Software En-
gineering Conference (APSEC), pp. 600–607 (2004)

[35] Babar, M., Zhu, L., Jeffery, R.: A framework for classifying and comparing
software architecture evaluation methods. In: Proceedings of the Australian
Software Engineering Conference (ASWEC), pp. 309–318 (2004)

[36] Babar, M.A., Zhang, H.: Systematic Literature Reviews in Software Engi-
neering: Preliminary Results from Interviews with Researchers. In: Pro-
ceedings of the 3rd International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), pp. 346–355. IEEE Computer Society
(2009)

[37] Bachmann, F., Bass, L.: Introduction to the Attribute Driven Design
Method. In: Proceedings of the 23rd International Conference on Software
Engineering, ICSE ’01, pp. 745–746. IEEE Computer Society, Washington,
DC, USA (2001)

[38] Bachmann, F., Bass, L., Klein, M.: Moving from quality attribute require-
ments to architectural decisions. In: STRAW, pp. 122–129 (2003)

[39] Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software archi-
tectures to achieve quality attribute requirements. Software, IEE Proceed-
ings - 152(4), 153–165 (2005)

REFERENCES 483

[40] Bajpai, V., Gorthi, R.: On Non-Functional Requirements: A Survey. In:
IEEE Students’ Conference on Electrical, Electronics and Computer Sci-
ence (SCEECS), pp. 1–4. IEEE Computer Society (2012)

[41] Barbacci, M., Clements, P., Lattanze, A., Northrop, L., Wood, W.: Using
the architecture tradeoff analysis method (atam) to evaluate the software
architecture for a product line of avionics systems: A case study. Tech. Rep.
CMU/SEI-2003-TN-012, Software Engineering Institute, Carnegie Mellon
University (2003)

[42] Barbacci, M., Ellison, R., Weinstock, C., Wood, W.: Quality attribute work-
shop participants handbook. Tech. rep., Software Engineering Institute
(2000)

[43] Barcelos, R., Travassos, G.: Evaluation approaches for Software Architec-
tural Documents: A systematic Review. In: Ibero-American Workshop on
Requirements Engineering and Software Environments (IDEAS) (2006)

[44] Bass, L., Clemens, P., Kazman, R.: Software architecture in practice, second
edn. Addison-Wesley (2003)

[45] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, SEI
Series in Software Engineering. Addison Wesley (1998)

[46] Bass, L., John, B.E.: Linking usability to software architecture patterns
through general scenarios. Journal of Systems and Software 66(3), 187
– 197 (2003)

[47] Bass, L., Klein, M., Bachmann, F.: Quality attributes design primitives.
Tech. rep., Software Engineering Institute (2000)

[48] Bass, L.J., Klein, M., Bachmann, F.: Quality Attribute Design Primitives
and the Attribute Driven Design Method. In: Revised Papers from the 4th
International Workshop on Software Product-Family Engineering, PFE ’01,
pp. 169–186. Springer Verlag, London, UK, UK (2002)

[49] Beckers, K., Faßbender, S., Heisel, M.: A meta-model for context-patterns.
In: Proceedings of the 18th European Conference on Pattern Languages of
Program (EuroPLoP), pp. 5:1–5:15. ACM (2013)

[50] Berntsson Svensson, R., Gorschek, T., Regnell, B.: Quality requirements
in practice: An interview study in requirements engineering for embedded
systems. In: M. Glinz, P. Heymans (eds.) Requirements Engineering: Foun-
dation for Software Quality (REFSQ), LNCS 5512, pp. 218–232. Springer
Berlin Heidelberg (2009)

[51] Bin, Y., Zhi, J., Xiaohong, C.: An Approach for Selecting Implementation
Strategies of Non-functional Requirements. In: Proceedings of the 4th Asia-
Pacific Symposium on Internetware, Internetware ’12, pp. 20:1–20:7. ACM
(2012)

484 REFERENCES

[52] Bode, S., Riebisch, M.: Impact Evaluation for Quality-Oriented Architec-
tural Decisions regarding Evolvability. In: Software Architecture, pp. 182–
197. Springer (2010)

[53] de Boer, R.C., van Vliet, H.: Controversy Corner: On the similarity between
requirements and architecture. Journal of System and Software 82(3), 544–
550 (2009)

[54] Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The bad conscience of
requirements engineering: An investigation in real-world treatment of non-
functional requirements. In: International Conference on Software Engi-
neering Research and Practice (SERP) (2003)

[55] Bosch, J.: Design and use of software architectures. Addison-Weseley
(2000)

[56] Bosch, J.: Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-line Approach. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA (2000)

[57] Bosch, J.: Software Architecture: The Next Step. In: F. Oquendo, B. War-
boys, R. Morrison (eds.) Software Architecture, LNCS 3047, pp. 194–199.
Springer Berlin Heidelberg (2004)

[58] Bosch, J., Molin, P.: Software architecture design: evaluation and transfor-
mation. In: Proceedings of the International Conference and Workshop on
Engineering of Computer-Based Systems (ECBS), pp. 4–10 (1999)

[59] Brereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil, M.: Lessons
from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software 80(4), 571–583
(2007)

[60] Bruijn, H.d., Vliet, J.C.v.: Scenario-Based Generation and Evaluation of
Software Architectures. In: Proceedings of the 3rd International Confrence
on Generative and Component-Based Software Engineering (GCSE), pp.
128–139. Springer (2001)

[61] Budgen, D., Turner, M., Brereton, P., Kitchenham, B.: Using Mapping Stud-
ies in Software Engineering. In: Proceedings of PPIG 2008, pp. 195–204.
Lancaster University (2008)

[62] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, vol. 1. John Wiley
& Sons (1996)

[63] Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interac-
tion: a critical review and considered forecast. Comput. Netw. 41, 115–141
(2003)

[64] Cameron, E.J., Velthuijsen, H.: Feature interactions in telecommunications
systems. Comm. Mag. 31(8), 18–23 (1993)

REFERENCES 485

[65] Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven infor-
mation systems engineering: The tropos project. Inf. Syst. 27(6), 365–389
(2002)

[66] Catal, C., Atalay, M.: A Systematic Mapping Study on Architectural Anal-
ysis. In: Proceedings of the 10th International Conference on Information
Technology: New Generations (ITNG), pp. 661–664 (2013)

[67] Chen, Y., Li, X., Yi, L., Liu, D., Tang, L., Yang, H.: A ten-year survey
of software architecture. In: IEEE International Conference on Software
Engineering and Service Sciences (ICSESS), pp. 729–733 (2010)

[68] Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineer-
ing. In: Future of Software Engineering, FOSE ’07, pp. 285–303. IEEE
Computer Society (2007)

[69] Choppy, C., Hatebur, D., Heisel, M.: Architectural patterns for problem
frames. IEE Proceedings – Software, Special issue on Relating Software
Requirements and Architecture 152(4), 198–208 (2005)

[70] Choppy, C., Hatebur, D., Heisel, M.: Systematic Architectural Design based
on Problem Patterns. In: P. Avgeriou, J. Grundy, J. Hall, P. Lago, I. Mistrik
(eds.) Relating Software Requirements and Architectures, chap. 9, pp. 133–
159. Springer (2011)

[71] Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional Requirements
in Software Engineering. Kluwer Academic Publishers (2000)

[72] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional require-
ments in software engineering. Klewer Academic (2000)

[73] Chung, L., Sampaio do Prado Leite, J.C.: On Non-Functional Requirements
in Software Engineering. In: A. Borgida, V. Chaudhri, P. Giorgini, E. Yu
(eds.) Conceptual Modeling: Foundations and Applications, Lecture Notes
in Computer Science, vol. 5600, pp. 363–379. Springer Berlin Heidelberg
(2009)

[74] Classen, A., Heymans, P., Laney, R.C., Nuseibeh, B., Tun, T.T.: On the
Structure of Problem Variability: From Feature Diagrams to Problem
Frames. In: Proceedings of the 1st International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS), pp. 109–117 (2007)

[75] Classen, A., Heymans, P., Schobbens, P.Y.: What’s in a feature: a require-
ments engineering perspective. In: Proceedings of the Theory and Practice
of Software, 11th International Conference on Fundamental Approaches to
Software Engineering, FASE’08/ETAPS’08, pp. 16–30. Springer (2008)

[76] Clauß, M.: Modeling variability with UML. In: GCSE – Young Researchers
Workshop (2001)

486 REFERENCES

[77] Cleland-Huang, J., Avgeriou, P., Burge, J.E., Franch, X., Galster, M., Mi-
rakhorli, M., Roshandel, R. (eds.): Proceedings of the 4th International
Workshop on Twin Peaks of Requirements and Architecture. ACM (2014)

[78] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Mer-
son, P., Nord, R., Stafford, J.: Documenting Software Architectures: Views
and Beyond, second edn. Addison-Wesley (2011)

[79] Clements, P., Bergey, J., Mason, D.: Using the sei architecture tradeoff
analysis method to evaluate win-t: A case study. Tech. Rep. CMU/SEI-
2005-TN-027, Software Engineering Institute, Carnegie Mellon University
(2005)

[80] Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley Professional (2002)

[81] Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF – A Tool for
Problem-Oriented Requirements Analysis. In: Proceedings of the Interna-
tional Conference on Requirements Engineering (RE), pp. 349–350. IEEE
Computer Society (2011)

[82] Côté, I., Hatebur, D., Heisel, M., Schmidt, H., Wentzlaff, I.: A System-
atic Account of Problem Frames. In: Proceedings of the European Con-
ference on Pattern Languages of Programs (EuroPLoP), pp. 749–767. Uni-
versitätsverlag Konstanz (2008)

[83] Cysneiros, L.M., do Prado Leite, J.C.S.: Using uml to reflect non-functional
requirements. In: Proceedings of the 2001 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON ’01, pp. 2–. IBM
Press (2001)

[84] Cysneiros, L.M., do Prado Leite, J.C.S.: Nonfunctional requirements: From
elicitation to conceptual models. IEEE TRANSACTIONS ON SOFT-
WARE ENGINEERING 30(5), 328–350 (2004)

[85] Daneva, M., Buglione, L., Herrmann, A.: Software architects experiences of
quality requirements: What we know and what we do not know? In: J. Do-
err, A. Opdahl (eds.) Requirements Engineering: Foundation for Software
Quality, LNCS 7830, pp. 1–17. Springer Berlin Heidelberg (2013)

[86] Dao, T.M., Lee, H., Kang, K.C.: Problem frames-based approach to achiev-
ing quality attributes in software product line engineering. In: Proceedings
of the 15th International Conference on Software Product Lines (SPLC),
pp. 175–180. IEEE (2011)

[87] Deconinck, G.: An evaluation of two-way communication means for ad-
vanced metering in Flanders (Belgium). In: Instrumentation and Measure-
ment Technology Conference Proceedings (IMTC), pp. 900–905 (2008)

REFERENCES 487

[88] Dobrica, L., Niemelä, E.: A Survey on Software Architecture Analysis
Methods. IEEE Transactions on Software Engineering. 28(7), 638–653
(2002)

[89] Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-functional
requirements in industry - three case studies adopting an experience-based
nfr method. In: Proceedings of the 13th IEEE International Conference on
Requirements Engineering (RE), pp. 373–382 (2005)

[90] Durdik, Z., Koziolek, A., Reussner, R.: How the understanding of the effects
of design decisions informs requirements engineering. In: Twin Peaks of
Requirements and Architecture (TwinPeaks), 2013 2nd International Work-
shop on the, pp. 14–18 (2013)

[91] Ebert, C.: Putting requirement management into praxis: dealing with non-
functional requirements. Information and Software Technology 40(3), 175
– 185 (1998)

[92] Egyed, A., Grunbacher, P.: Identifying requirements conflicts and cooper-
ation: How quality attributes and automated traceability can help. IEEE
Softw. 21(6), 50–58 (2004)

[93] Ernst, N.A., Yu, Y., Mylopoulos, J.: Visualizing Non-functional Require-
ments. In: Proceedings of the 1st International Workshop on Require-
ments Engineering Visualization, REV ’06, pp. 2–. IEEE Computer Society,
Washington, DC, USA (2006)

[94] Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison
of security requirements engineering methods. Requirements Engineering
– Special Issue on Security Requirements Engineering 15, 7–40 (2010)

[95] Farenhorst, R., Hoorn, J., Lago, P., van Vliet, H.: The lonesome architect.
In: Software Architecture, 2009 European Conference on Software Archi-
tecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on, pp.
61–70 (2009). DOI 10.1109/WICSA.2009.5290792

[96] Ford, C., Gileadi, I., Purba, S., Moerman, M.: Patterns for Performance and
Operability. Auerbach Publications (2008)

[97] Forsell, M.: Improving Component Reuse in Software Development. Ph.D.
thesis, Department of Computer Science and Information Systems, Univer-
sity of Jyväskylä (2002)

[98] Fowler, M.: Analysis Patterns: Reusable Object Models. Addison Wesley
(1996)

[99] Frakes, W., Prieto-;Diaz, R., Fox, C.: Dare: Domain analysis and reuse en-
vironment. Annals of Software Engineering 5(1), 125–141 (1998)

[100] France, R., Rumpe, B.: Model-driven development of complex software: A
research roadmap. In: 2007 Future of Software Engineering, FOSE ’07, pp.
37–54. IEEE Computer Society, Washington, DC, USA (2007)

488 REFERENCES

[101] Gallagher, B.: Using the architecture tradeoff analysis method to evaluate a
reference architecture: A case study. Tech. Rep. CMU/SEI-2000-TN-007,
Software Engineering Institute, Carnegie Mellon University (2000)

[102] Galster, M., Eberlein, A., Moussavi, M.: Transition from requirements to ar-
chitecture: A review and future perspective. In: Proceedings of the Seventh
ACIS International Conference on Software Engineering, Artificial Intelli-
gence, Networking, and Parallel/Distributed Computing (SNPD), pp. 9–16
(2006)

[103] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley (1995)

[104] Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s
hard to build systems out of existing parts. In: Proceedings of the 17th
International Conference on Software Engineering, ICSE ’95, pp. 179–185.
ACM, New York, NY, USA (1995)

[105] of Gas, O., Markets, E.: Smart Metering Implementation Programme, Re-
sponse to Prospectus Consultation, Design Requirements. Tech. rep., Office
of Gas and Electricity Markets (2011)

[106] of Gas, O., Markets, E.: Smart Metering Implementation Programme, Re-
sponse to Prospectus Consultation, Overview Document. Tech. rep., Office
of Gas and Electricity Markets (2011)

[107] Grunbacher, P., Egyed, A., Medvidovic, N.: Reconciling Software Require-
ments And Architectures With Intermediate Models. In: SOFTWARE AND
SYSTEMS MODELING, pp. 202–211. Springer (2003)

[108] Hall, J.G., Rapanotti, L., Jackson, M.: Problem frame semantics for soft-
ware development. Software and System Modeling 4(2), 189–198 (2005)

[109] Harrison, N.B., Avgeriou, P.: How Do Architecture Patterns and Tactics In-
teract? A Model and Annotation. Journal of Systems and Software 83(10),
1735–1758 (2010)

[110] Harrison, N.B., van Heesch, U., Sobernig, S., Sommerlad, P., Filipczyk, M.,
Fülleborn, A., Musil, A., Musil, J.: Software architecture patterns: Reflec-
tion and advances: [summary of the miniplop writers’ workshop at ecsa’14].
ACM SIGSOFT Software Engineering Notes 40(1), 30–34 (2015)

[111] Hassenzahl, M., Wessler, R., Hamborg, K.C.: Exploring and understanding
product qualities that users desire. In: Proceedings of the IHM/HCI Confer-
ence on Human-Computer Interaction, vol. 2 (2001)

[112] Hatebur, D.: Pattern- and component-based development of dependable sys-
tems. Ph.D. thesis, University of Duisburg-Essen (2012)

[113] Hatebur, D., Heisel, M.: A foundation for requirements analysis of depend-
able software. In: Proceedings of the International Conference on Computer

REFERENCES 489

Safety, Reliability and Security (SAFECOMP), LNCS 5775, pp. 311–325.
Springer (2009)

[114] Hatebur, D., Heisel, M.: A UML Profile for Requirements Analysis of De-
pendable Software. In: E. Schoitsch (ed.) Proceedings of the International
Conference on Computer Safety, Reliability and Security (SAFECOMP),
LNCS 6351, pp. 317–331. Springer (2010)

[115] Hatebur, D., Heisel, M.: Making Pattern- and Model-Based Software Devel-
opment More Rigorous. In: J.S. Dong, H. Zhu (eds.) Proceedings of 12th
International Conference on Formal Engineering Methods, LNCS 6447, pp.
253–269. Springer (2010)

[116] Hatebur, D., Heisel, M., Schmidt, H.: Security engineering using prob-
lem frames. In: Proceedings of the International Conference on Emerging
Trends in Information and Communication Security (ETRICS), pp. 238–
253. Springer Verlag (2006)

[117] Hatebur, D., Heisel, M., Schmidt, H.: A pattern system for security require-
ments engineering. In: Proceedings of the 7th International Conference on
Availability, Reliability and Security (AReS), pp. 356–365. IEEE Computer
Society, Los Alamitos, CA, USA (2007)

[118] Hatebur, D., Heisel, M., Schmidt, H.: Analysis and component-based real-
ization of security requirements. In: Proceedings of the International Con-
ference on Availability, Reliability and Security (AReS), pp. 195–203. IEEE
Computer Society (2008)

[119] Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting func-
tional requirements in a use case-driven approach: a static analysis tech-
nique based on graph transformation. In: Proceedings of the 24th Inter-
national Conference on Software Engineering (ICSE), pp. 105–115. ACM
(2002)

[120] van Heesch, U., Avgeriou, P.: Naive architecting - understanding the rea-
soning process of students. In: M.A. Babar, I. Gorton (eds.) Software Ar-
chitecture, LNCS 6285, pp. 24–37. Springer Berlin Heidelberg (2010)

[121] van Heesch, U., Avgeriou, P.: Mature architecting - a survey about the
reasoning process of professional architects. In: Software Architecture
(WICSA), 2011 9th Working IEEE/IFIP Conference on, pp. 260–269
(2011)

[122] van Heesch, U., Avgeriou, P., Tang, A.: Does decision documentation help
junior designers rationalize their decisions? a comparative multiple-case
study. J. Syst. Softw. 86(6), 1545–1565 (2013)

[123] Heisel, M., Souquières, J.: A heuristic algorithm to detect feature interac-
tions in requirements. In: Language Constructs for Describing Features, pp.
143–162. Springer (2000)

490 REFERENCES

[124] Heyman, T., Yskout, K., Scandariato, R., Schmidt, H., Yu, Y.: The Secu-
rity Twin Peaks. In: Proceedings of the International Symposium on Engi-
neering Secure Software and Systems (ESSoS), LNCS 6542, pp. 167–180.
Springer (2011)

[125] Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.:
A general model of software architecture design derived from five industrial
approaches. Journal of Systems and Software 80(1), 106 – 126 (2007)

[126] Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture, 1st edn.
Addison-Wesley Professional (2009)

[127] Hooks, I.F., Farry, K.A.: Customer-centered Products: Creating Successful
Products Through Smart Requirements Management. AMACOM (2001)

[128] Hui, B., Liaskos, S., Mylopoulos, J.: Requirements Analysis for Customiz-
able Software: A Goals-Skills-Preferences Framework. In: Proceedings
of the 11th International Requirements Engineering Conference (RE), pp.
117–126 (2003)

[129] International Organization for Standardization (ISO), International Elec-
trotechnical Commission (IEC): IEEE Recommended Practice for Architec-
tural Description of Software-Intensive Systems (ISO/IEC 42010) (2007)

[130] International Organization for Standardization (ISO), International Elec-
trotechnical Commission (IEC): ISO/IEC 25010. Systems and software en-
gineering – Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models (2011)

[131] International Organization for Standardization (ISO), International Elec-
trotechnical Commission (IEC), Institute of Electrical and Electronics Engi-
neers(IEEE): Systems and software engineering - Architecture description
(ISO/IEC/IEEE 42010) (2011)

[132] International Organization for Standardization (ISO) and International Elec-
trotechnical Commission (IEC): Common Evaluation Methodology 3.1.
ISO/IEC 15408 (2009)

[133] Jackson, M.: Problem Frames. Analyzing and structuring software develop-
ment problems. Addison-Wesley (2001)

[134] Jansen, A., Bosch, J.: Software architecture as a set of architectural design
decisions. In: Software Architecture, 2005. WICSA 2005. 5th Working
IEEE/IFIP Conference on, pp. 109–120 (2005)

[135] Jansen, A., Bosch, J., Avgeriou, P.: Documenting after the fact: Recovering
architectural design decisions. J. Syst. Softw. 81(4), 536–557 (2008)

[136] Jayaratna, N.: Understanding and Evaluating Methodologies: NIMSAD, a
Systematic Framework. McGraw-Hill, Inc., New York, NY, USA (1994)

[137] Johansson, E., Wesslen, A., Bratthall, L., Host, M.: The importance of qual-
ity requirements in software platform development-a survey. In: Proceed-

REFERENCES 491

ings of the 34th Annual Hawaii International Conference on System Sci-
ences, pp. 10 pp.– (2001)

[138] Jones, L., Lattanze, A.: Using the architecture tradeoff analysis method to
evaluate a wargame simulation system: A case study. Tech. Rep. CMU/SEI-
2001-TN-022, Software Engineering Institute, Carnegie Mellon University
(2001)

[139] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (foda) feasibility study. Tech. rep., Carnegie-
Mellon University Software Engineering Institute (1990)

[140] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-
Mellon University Software Engineering Institute (1990)

[141] Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference Architec-
tures. Annals of Software Engineering 5, 143–168 (1998)

[142] Kazman, R.: Tool Support for Architecture Analysis and Design. In: Joint
Proceedings of the Second International Software Architecture Workshop
(ISAW-2) and International Workshop on Multiple Perspectives in Software
Development (Viewpoints ’96) on SIGSOFT ’96 Workshops, ISAW ’96, pp.
94–97. ACM, New York, NY, USA (1996)

[143] Kazman, R., Bass, L.: Categorizing business goals for software architec-
tures. Tech. Rep. CMU/SEI-2005-TR-021, Software Engineering Institute,
Carnegie Mellon University (2005)

[144] Kim, M., Park, S., Sugumaran, V., Yang, H.: Managing requirements con-
flicts in software product lines: A goal and scenario based approach. Data
Knowl. Eng. 61, 417–432 (2007)

[145] Kitchenham, B.: Procedures for Performing Systematic Reviews. Tech.
Rep. Keele University TR/SE-0401 and NICTA 0400011T.1, Keele Uni-
versity (UK) and National ICT Australia Ltd (2004)

[146] Kitchenham, B.: Procedures for performing systematic reviews. Tech. rep.,
Keele University and NICTA (2004)

[147] Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J.,
Linkman, S.: Systematic literature reviews in software engineering – A sys-
tematic literature review. Information and Software Technology 51(1), 7 –
15 (2009)

[148] Kitchenham, B., Brereton, P., Turner, M., Niazi, M., Linkman, S.G., Preto-
rius, R., Budgen, D.: Refining the systematic literature review process - two
participant-observer case studies. Empirical Software Engineering 15(6),
618–653 (2010)

492 REFERENCES

[149] Kitchenham, B., Charters, S., Budgen, D., Brereton, P., Turner, M.,
Linkman, S., Jørgensen, M., Mendes, E., Visaggio, G.: Guidelines for per-
forming Systematic Literature Reviews in Software Engineering. Tech. rep.,
EBSE (2007)

[150] Konersmann, M., Alebrahim, A., Heisel, M., Goedicke, M., Kersten, B.:
Deriving Quality-based Architecture Alternatives with Patterns. In: Soft-
ware Engineering 2012: Fachtagung des GI-Fachbereichs Softwaretechnik,
LNI 198, pp. 71–82. GI (2012)

[151] Konrad, S., Gall, M.: Requirements Engineering in the Development of
Large-Scale Systems. In: Proceedings of the 16th IEEE International Re-
quirements Engineering (RE), pp. 217–222 (2008)

[152] Koziolek, A.: Architecture-driven quality requirements prioritization. In:
First International Workshop on the Twin Peaks of Requirements and Ar-
chitecture (Twin Peaks), pp. 15–19 (2012)

[153] Koziolek, H.: Sustainability evaluation of software architectures: A system-
atic review. In: Proceedings of the Joint ACM SIGSOFT Conference –
QoSA and ACM SIGSOFT Symposium – ISARCS on Quality of Software
Architectures – QoSA and Architecting Critical Systems – ISARCS, pp.
3–12. ACM (2011)

[154] Krawczyk, H.: The order of encryption and authentication for protecting
communications (or: how secure is ssl?). Cryptology ePrint Archive, Report
2001/045 (2001)

[155] Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection profile
for the gateway of a smart metering system. Tech. rep., BSI (2011)

[156] Kruchten, P.: The 4+1 View Model of architecture. IEEE Software 12(6),
42–50 (1995)

[157] Kruchten, P.: The Rational Unified Process: An Introduction. Addison-
Wesley Professional (2003)

[158] van Lamsweerde, A.: Goal-oriented requirements engineering: a guided
tour. In: Proceedings of the 5th IEEE International Symposium on Require-
ments Engineering (RE), pp. 249–262. IEEE Computer Society (2001)

[159] van Lamsweerde, A.: From system goals to software architecture. In:
M. Bernardo, P. Inverardi (eds.) Formal Methods for Software Architec-
tures, Lecture Notes in Computer Science, vol. 2804, pp. 25–43. Springer
Berlin Heidelberg (2003)

[160] van Lamsweerde, A.: Reasoning about alternative requirements options.
In: A. Borgida, V. Chaudhri, P. Giorgini, E. Yu (eds.) Conceptual Model-
ing: Foundations and Applications, vol. LNCS 5600, pp. 380–397. Springer
(2009)

REFERENCES 493

[161] van Lamsweerde, A.: Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley (2009)

[162] van Lamsweerde, A., Letier, E., Darimont, R.: Managing Conflicts in Goal-
Driven Requirements Engineering. IEEE Trans. Softw. Eng. 24(11), 908–
926 (1998)

[163] Laney, R., Barroca, L., Jackson, M., Nuseibeh, B.: Composing requirements
using problem frames. In: Proceedings of the 4th International Conference
on Requirements Engineering (RE), pp. 122–131. Press (2004)

[164] Lee, K., Kang, K.C.: Usage Context as Key Driver for Feature Selection.
In: Proceedings of the 14th International Conference on Software Product
Lines: going beyond: going beyond (SPLC), pp. 32–46. Springer (2010)

[165] Lencastre, M., Botelho, J., Clericuzzi, P., Araújo, J.: A Meta-model for the
Problem Frames Approach. In: Proceedings of the 4th Workshop in Soft-
ware Modeling Engineering (WiSME) (2005)

[166] Li, Y., Kobro Runde, R., Stølen, K.: A meta-model approach to the funda-
mentals for a pattern language for context elicitation. In: Proceedings of the
20th Conference on Pattern Languages of Programs (PLOP) (2013)

[167] Lin, L., Nuseibeh, B., Ince, D., Jackson, M.: Using abuse frames to bound
the scope of security problems. In: Proceedings of the 12th IEEE Interna-
tional Requirements Engineering Conference, pp. 354–355 (2004)

[168] Lin, L., Nuseibeh, B., Ince, D., Jackson, M., Moffett, J.: Introducing abuse
frames for analysing security requirements. In: Requirements Engineer-
ing Conference, 2003. Proceedings. 11th IEEE International, pp. 371–372
(2003)

[169] Lindvall, M., Tvedt, R., Costa, P.: An Empirically-Based Process for Soft-
ware Architecture Evaluation. Empirical Software Engineering 8(1), 83–
108 (2003)

[170] Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann,
W.: Specification and Analysis of System Architecture Using Rapide. IEEE
Trans. Softw. Eng. 21(4), 336–355 (1995)

[171] Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed soft-
ware architectures. In: W. Schäfer, P. Botella (eds.) Proceedings of the Euro-
pean Software Engineering Conference (ESEC), Lecture Notes in Computer
Science, vol. 989, pp. 137–153. Springer Berlin Heidelberg (1995)

[172] Marew, T., Lee, J.S., Bae, D.H.: Tactics based approach for integrating non-
functional requirements in object-oriented analysis and design. J. Syst.
Softw. 82(10), 1642–1656 (2009)

[173] Matinlassi, M.: Comparison of software product line architecture design
methods: COPA, FAST, FORM, KobrA and QADA. In: Proceedings of the

494 REFERENCES

26th International Conference on Software Engineering (ICSE), pp. 127–
136 (2004)

[174] May, N.: A survey of software architecture viewpoint models. In: The Sixth
Australasian Workshop on Software and System Architec- tures (AWSA),
pp. 13–24 (2005)

[175] Mehta, N.R., Medvidovic, N.: Composing Architectural Styles from Archi-
tectural Primitives. In: Proceedings of the 9th European Software Engi-
neering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ESEC/FSE-11, pp.
347–350. ACM, New York, NY, USA (2003)

[176] Mirakhorli, M., Carvalho, J., Cleland-Huang, J., Mader, P.: A domain-
centric approach for recommending architectural tactics to satisfy quality
concerns. In: Twin Peaks of Requirements and Architecture (TwinPeaks),
2013 3rd International Workshop on the, pp. 1–8 (2013)

[177] Mirakhorli, M., Cleland-Huang, J.: Traversing the twin peaks. IEEE Soft-
ware 30(2), 30–36 (2013)

[178] Modugno, F., Leveson, N., Reese, J., Partridge, K., Sandys, S.: Integrated
safety analysis of requirements specifications. Requirements Engineering
pp. 65–78 (1997)

[179] Montero, F., Navarro, E.: Atrium: Software architecture driven by require-
ments. In: Engineering of Complex Computer Systems, 2009 14th IEEE
International Conference on, pp. 230–239 (2009)

[180] Navarro, E.: Architecture traced from requirements by applying a unified
methodology. Ph.D. thesis, Computing Systems Department, University of
Castilla-La Mancha (2007)

[181] Niknafs, A., Berry, D.M.: The impct of domain knowledge on the effective-
ness of requirements idea generation during requirements elicitation. In:
Proceedings of the 20th IEEE International Conference on Requirements
Engineering, pp. 181–190 (2012)

[182] Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE
Computer 34(3), 115–117 (2001)

[183] Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A Roadmap. In:
Proceedings of the Conference on The Future of Software Engineering,
ICSE, pp. 35–46. ACM, New York, NY, USA (2000)

[184] Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In:
Proceedings of the 22nd International Conference on Software Engineering
(ICSE) on The Future of Software Engineering, pp. 35–46. ACM (2000)

[185] Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.: Knowledge
based quality-driven architecture design and evaluation. Inf. Softw. Technol.
52(6), 577–601 (2010)

REFERENCES 495

[186] Ozkaya, I., Bass, L., Nord, R., Sangwan, R.: Making practical use of quality
attribute information. Software, IEEE 25(2), 25–33 (2008)

[187] Pandey, R.K.: Architectural description languages (adls) vs uml: A review.
ACM SIGSOFT Software Engineering Notes 35(3), 1–5 (2010)

[188] Patidar, A., Suman, U.: A survey on software architecture evaluation meth-
ods. In: Proceedings of the 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), pp. 967–972 (2015)

[189] Peng, X., Lee, S., Zhao, W.: Feature-oriented nonfunctional requirement
analysis for software product line. Journal of Computer Science and Tech-
nology 24(2) (2009)

[190] Pérez, J., Ali, N., Carsı́, J.A., Ramos, I.: Designing software architectures
with an aspect-oriented architecture description language. In: I. Gorton,
G. Heineman, I. Crnković, H.W. Schmidt, J.A. Stafford, C. Szyperski,
K. Wallnau (eds.) Component-Based Software Engineering, LNCS 4063,
pp. 123–138. Springer Berlin Heidelberg (2006)

[191] Perovich, D., Bastarrica, M., Rojas, C.: Model-driven approach to software
architecture design. In: Sharing and Reusing Architectural Knowledge,
2009. SHARK ’09. ICSE Workshop on, pp. 1–8 (2009)

[192] Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture.
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

[193] Pohl, K.: Requirement Engineering: Fundamentals, Principles, and Tech-
niques. Springer (2010)

[194] Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer (2005)

[195] Pohl, K., Sikora, E.: Structuring the co-design of requirements and archi-
tecture. In: Proceedings of the 13th International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ), pp.
48–62. Springer-Verlag, Berlin, Heidelberg (2007)

[196] Pomerol, J., Barba-Romero, S.: Multicriterion Decision in Management:
Principles and Practice. Int. series in operations research & management
science: ISOR. Kluwer (2000)

[197] Prieto-Dı́az, R.: Domain analysis: an introduction. SIGSOFT Softw. Eng.
Notes 15(2), 47–54 (1990)

[198] Probst, G.J.B.: Practical Knowledge Management: A Model that Works.
Prism (1998)

[199] Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of as-
pectual requirements. In: Proceedings of the 2nd International Conference
on Aspect-oriented Software Development (AOSD), pp. 11–20. ACM, USA
(2003)

496 REFERENCES

[200] Remero, G., Tarruell, F., Mauri, G., Pajot, A., Alberdi, G., Arzberger, M.,
Denda, R., Giubbini, P., Rodrı́guez, C., Miranda, E., Galeote, I., Morgaz,
M., Larumbe, I., Navarro, E., Lassche, R., Haas, J., Steen, A., Cornelissen,
P., Radtke, G., Martáinez, C., Orcajada, A., Kneitinger, H., Wiedemann, T.:
D1.1 Requ. of AMI. Tech. rep., OPEN meter proj. (2009)

[201] Remero, G., Tarruell, F., Mauri, G., Pajot, A., Alberdi, G., Arzberger, M.,
Denda, R., Rodrı́guez, C., Larumbe, I., Navarro, E., Lassche, R., Haas, J.,
Martáinez, C., Orcajada, A.: D1.2 Report on regulatory requirements. Tech.
rep., OPEN meter project (2009)

[202] Robillard, P.N.: The Role of Knowledge in Software Development. Com-
mun. ACM 42, 87–92 (1999)

[203] Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction
management. ACM Comput. Surv. 35, 132–190 (2003)

[204] Rozanski, N., Woods, E.: Software Systems Architecture. Addison-Wesley
(2005)

[205] Saaty, T.: The analytic hierarchy and analytic network processes for the
measurement of intangible criteria and for decision-making. In: Multiple
Criteria Decision Analysis: State of the Art Surveys, pp. 345–408. Springer
(2005)

[206] Salifu, M., Nuseibeh, B., Rapanotti, L., Tun, T.T.: Using Problem Descrip-
tions to Represent Variabilities For Context-Aware Applications. In: Va-
MoS’07, pp. 149–156 (2007)

[207] Sánchez, P., Magno, J., Fuentes, L., Moreira, A., Araújo, J.a.: Towards mdd
transformations from ao requirements into ao architecture. In: Proceedings
of the Third European Conference on Software Architecture, EWSA’06, pp.
159–174. Springer-Verlag, Berlin, Heidelberg (2006)

[208] Sangwan, R., Neill, C., Bass, M., Houda, Z.E.: Integrating a software
architecture-centric method into object-oriented analysis and design. Jour-
nal of Systems and Software 81(5), 727 – 746 (2008). Software Process and
Product Measurement

[209] Schmidt, H., Hatebur, D., Heisel, M.: Software Engineering for Secure Sys-
tems: Academic and Industrial Perspectives, pp. 32–74. IGI Global (2011)

[210] Schmidt, H., Wentzlaff, I.: Preserving Software Quality Characteristics
from Requirements Analysis to Architectural Design. In: Proceedings of the
3rd European Workshop on Software Architecture (EWSA), LNCS 4344,
pp. 189–203. Springer (2006)

[211] Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F.,
Sommerlad, P.: Security patterns: integrating security and systems engineer-
ing. John Wiley & Sons (2005)

REFERENCES 497

[212] Seater, R., Jackson, D., Gheyi, R.: Requirement progression in problem
frames: deriving specifications from requirements. Requirements Engineer-
ing 12(2), 77–102 (2007)

[213] Shaw, M., Clements, P.: The golden age of software architecture. Software,
IEEE 23(2), 31–39 (2006)

[214] Shaw, M., DeLine, R., Klein, D., Ross, T., Young, D., Zelesnik, G.: Ab-
stractions for software architecture and tools to support them. Software
Engineering, IEEE Transactions on 21(4), 314–335 (1995)

[215] Shaw, M., Garlan, G.: Software Aechitecture: Perspectives on an emerging
discipline. Prentice Hall (1996)

[216] Sikora, E.: Ein modellbasierter Ansatz zur verzahnten Entwicklung von
Anforderungen und Architektur über mehrere Abstraktionsstufen hinweg.
Ph.D. thesis, Institut für Informatik und Wirtschaftsinformatik (2009)

[217] Silva, F., Lucena, M., Lucena, L.: STREAM-AP: A process to systematize
architectural patterns choice based on NFR. In: 3rd International Workshop
on the Twin Peaks of Requirements and Architecture (TwinPeaks), pp. 27–
34 (2013)

[218] Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.
Requir. Eng. 10(1), 34–44 (2005)

[219] Smith, C., Williams, L.: Software performance engineering. In: L. Lavagno,
G. Martin, B. Selic (eds.) UML for Real, pp. 343–365. Springer US (2004)

[220] Smith, C.U., Williams, L.G.: Performance solutions, a practical guide to
creating responsive, scalable software. Addison-Wesley (2001)

[221] Smith, C.U., Williams, L.G.: Five steps to establish software performance
engineering. In: Int. CMG Conference, pp. 507–516 (2006)

[222] Smolander, K., Hoikka, K., Isokallio, J., Kataikko, M., Mäkelä, T.: What
is included in software architecture? a case study in three software organi-
zations. In: Proceedings of the 9th Annual IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems, pp. 131–
138 (2002)

[223] Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice
Guide, 1st edn. John Wiley & Sons, Inc. (1997)

[224] Sommerville, I., Sawyer, P., Viller, S.: Viewpoints for requirements elici-
tation: A practical approach. In: International Conference on RE: Putting
Requirements Engineering to Practice, pp. 74–81. IEEE Computer Society
(1998)

[225] Svahnberg, M., Wohlin, C.: Consensus Building when Comparing Software
Architectures. In: M. Oivo, S. Komi-Sirviö (eds.) Product Focused Software
Process Improvement, Lecture Notes in Computer Science, vol. 2559, pp.
436–452. Springer Berlin Heidelberg (2002)

498 REFERENCES

[226] Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A method for un-
derstanding quality attributes in software architecture structures. In: Pro-
ceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering, SEKE ’02, pp. 819–826. ACM, New York, NY,
USA (2002)

[227] Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A Quality-Driven
Decision Support Method for Identifying Software Architecture Candi-
dates. International Journal of Software Engineering and Knowledge Man-
agement 13(5), 547–573 (2003)

[228] Svensson, R., Host, M., Regnell, B.: Managing quality requirements: A
systematic review. In: Software Engineering and Advanced Applications
(SEAA), 2010 36th EUROMICRO Conference on, pp. 261–268 (2010)

[229] Tang, A., Aleti, A., Burge, J., van Vliet, H.: What makes software design
effective? Design Studies 31(6), 614 – 640 (2010). Special Issue Studying
Professional Software Design

[230] Tang, A., Babar, M.A., Gorton, I., Han, J.: A survey of architecture design
rationale. Journal of Systems and Software 79(12), 1792 – 1804 (2006)

[231] Tawhid, R., Petriu, D.: Integrating performance analysis in the model driven
development of software product lines. In: Proceedings of the 11th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
MoDELS ’08, pp. 490–504. Springer (2008)

[232] ”UML Revision Task Force”: UML Profile for Schedulability, Performance,
and Time Specification (2005). Http://www.omg.org/spec/SPTP/1.1/PDF

[233] UML Revision Task Force: UML Profile for MARTE: Mod-
eling and Analysis of Real-Time Embedded Systems (2009).
Http://www.omg.org/spec/MARTE/1.0/PDF

[234] ”UML Revision Task Force”: Meta Object Facility (MOF) Query/View/-
Transformation (2011). Http://www.omg.org/spec/QVT/1.1/PDF/

[235] ”UML Revision Task Force”: OMG Unified Mod-
eling Language (UML), Superstructure (2011).
Http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

[236] ”UML Revision Task Force”: Object Constraint Language Specification
(2014). Http://www.omg.org/spec/OCL/2.0/PDF

[237] van der Ven, J., Jansen, A., Nijhuis, J., Bosch, J.: Design decisions: The
bridge between rationale and architecture. In: A. Dutoit, R. McCall,
I. Mistrı́k, B. Paech (eds.) Rationale Management in Software Engineering,
pp. 329–348. Springer Berlin Heidelberg (2006)

[238] Vetterli, C., Brenner, W., Uebernickel, F., Petrie, C.: From Palaces to Yurts:
Why Requirements Engineering Needs Design Thinking. IEEE Internet
Computing pp. 91–94 (2013)

REFERENCES 499

[239] Whalen, M., Gacek, A., Cofer, D., Murugesan, A., Heimdahl, M.,
Rayadurgam, S.: Your ”What” Is My ”How”: Iteration and Hierarchy in
System Design. IEEE Software 30(2), 54–60 (2013)

[240] Wiegers, K.: Software Requirements, 2 edn. Microsoft Press (2003)
[241] Williams, L.G., Smith, C.U.: Information requirements for software per-

formance engineering. In: Proceedings of the International Conference on
Modeling Techniques and Tools for Computer Performance Evaluation, pp.
86–101. Springer (1995)

[242] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,
A.: Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers, Norwell, MA, USA (2000)

[243] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering. Springer (2012)

[244] Wojcik, R., Bachmann, F., Bass, L., Clements, P.C., Merson, P., Nord, R.,
Wood, W.G.: Attribute-Driven Design (ADD), Version 2.0. Tech. rep., Soft-
ware Engineering Institute (2006)

[245] Woods, E., Rozanski, N.: The system context architectural viewpoint.
In: Proceedings of the Joint Working IEEE/IFIP Conference on Soft-
ware Architecture, European Conference on Software Architecture (WIC-
SA/ECSA), pp. 333–336 (2009)

[246] Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer,
J.: Performance by unified model analysis (puma). In: Proceedings of the
5th International Workshop on Software and Performance, WOSP ’05, pp.
1–12. ACM (2005)

[247] Yacoub, S.M., Ammar, H.H.: A methodology for architecture-level reliabil-
ity risk analysis. IEEE Trans. Softw. Eng. 28(6), 529–547 (2002)

[248] Yskout, K., Heyman, T., Scandariato, R., Joosen, W.: A system of security
patterns. Report CW 469, K.U.Leuven, Department of Computer Science
(2006)

[249] Yu, E.: Towards modelling and reasoning support for early-phase require-
ments engineering. In: Proceedings of the 3rd IEEE International Sympo-
sium on Requirements Engineering (RE), pp. 226–235 (1997)

[250] Yu, Y., do Prado Leite, J.C.S., Lapouchnian, A., Mylopoulos, J.: Config-
uring Features with Stakeholder Goals. In: Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC), pp. 645–649. ACM (2008)

[251] Yusop, N., Zowghi, D., Lowe, D.: The impact of non-functional require-
ments in web system projects. International Journal of Value Chain Man-
agement 2(1), 18–32 (2008)

[252] Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM
Trans. Softw. Eng. Methodol. 6, 1–30 (1997)

500 REFERENCES

[253] Zdun, U.: Systematic pattern selection using pattern language grammars and
design space analysis. Softw. Pract. Exper. 37(9), 983–1016 (2007)

[254] Zhang, H., Babar, M.A., Tell, P.: Identifying relevant studies in software
engineering. Inf. Softw. Technol. 53(6), 625–637 (2011)

[255] Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Software
Product Lines. In: PFE’03, pp. 129–139. Springer (2003)

[256] Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Soft-
ware Product Lines. In: F. Linden (ed.) Software Product-Family Engineer-
ing, Lecture Notes in Computer Science, vol. 3014, pp. 129–139. Springer
(2004)

[257] Zuo, H., Mannion, M., Sellier, D., Foley, R.: An Extension of Problem
Frame Notation for Software Product Lines. In: Proceedings of the 12th
Asia-Pacific Software Engineering Conference (APSEC), pp. 499–505.
IEEE Computer Society (2005)

	Foreword
	Preface
	Acknowledgements
	Contents
	Acronyms
	1Introduction
	1.1 Problem Statement
	1.2 Research Questions & Contribution
	1.2.1 Research Questions
	1.2.2 Contribution

	1.3 Outline

	2Background
	2.1 Requirements Engineering
	2.1.1 Quality Requirements
	2.1.2 Problem Frames

	2.2 Software Architecture Concepts
	2.2.1 Definition of Software Architecture
	2.2.2 Difference between Architecture and Design
	2.2.3 Architectural Patterns
	2.2.4 Quality-specific Mechanisms and Tactics
	2.2.5 Viewpoint Models
	2.2.6 Architecture Description Languages vs UML
	2.2.7 Architecture Evaluation

	2.3 UML Profiles
	2.3.1 UML profile for Problem Frames
	2.3.2 Architecture Profile
	2.3.3 Dependability Profile
	2.3.4 MARTE Profile

	2.4 Life-Cycle Expressions
	2.5 Variability Modeling
	2.6 Case Study Smart Grid
	2.6.1 Description of Smart Grids
	2.6.2 Functional Requirements
	2.6.3 Security Requirements
	2.6.4 Performance Requirements

	3Framework for Identifying Meta-Requirements
	3.1 Introduction
	3.2 Meta-Requirement Derivation
	3.2.1 Essential Meta-Requirements
	3.2.2 Recommended Meta-Requirements
	3.2.3 Optional Meta-Requirements
	3.2.4 Method Characteristics

	3.3 The Evaluation Framework NIMSAD
	3.3.1 Methodology Context
	3.3.2 Methodology User
	3.3.3 Methodology Contents
	3.3.4 Evaluation

	3.4 Our Proposed Evaluation Framework
	3.5 Related Review
	3.6 Research Method
	3.6.1 Planning Phase
	3.6.2 Conducting Phase

	3.7 Results and Discussion
	3.7.1 Description of Selected Methods
	3.7.2 Results of the SLR

	3.8 Comparative Evaluation
	3.8.1 Value Assignment Schema
	3.8.2 Framework Application

	3.9 Threats to Validity
	3.10 Contributions

	4Phase 1: Context Elicitation & Problem Analysis
	4.1 Introduction
	4.2 UML4PF Extension for Quality Requirements
	4.3 Method for Problem-oriented Requirement Analysis
	4.4 Related Work
	4.5 Contributions

	5Phase 2: Architectural Pattern Selection & Application
	5.1 Introduction
	5.2 Artifacts and their Relations
	5.3 External Input for the Process
	5.3.1 Question Catalog (Questions)
	5.3.2 Question Catalog (Indicator Questions)
	5.3.3 Relations between Problem Frames and Questions
	5.3.4 Benefits and Liabilities of Architectural Patterns
	5.3.5 Architectural Pattern Catalog

	5.4 The Pattern Selection Process
	5.5 Application to the Case Study Smart Grid
	5.6 Derivation of Initial Architecture
	5.6.1 Design Desicion regarding Architectural Pattern Selection
	5.6.2 Design Desicion regarding Gateway Physical Boundary
	5.6.3 Further Iterations - Problem Diagram Splitting
	5.6.4 Method for Deriving Initial Architecture

	5.7 Related Work
	5.8 Contributions

	6Phase 3: Domain Knowledge Analysis
	6.1 Introduction
	6.2 Structured Meta-Process
	6.3 Structured Object-Process
	6.4 Related Work
	6.5 Contributions

	7Phase 4: Requirements Interaction Analysis
	7.1 Introduction
	7.2 Functional Requirements Interaction Detection
	7.2.1 Sunblind Example
	7.2.2 Method for Functional Requirements Interaction Detection
	7.2.3 Application to the Case Study Smart Grid

	7.3 Method for Quality Requirements Interaction Detection
	7.4 Method for Performance Requirements Analysis
	7.5 Method for Generating Requirement Alternatives
	7.6 Related Work
	7.6.1 Related work with respect to Requirements Interaction
	7.6.2 Related work with respect to Performance Analysis

	7.7 Contributions

	8 Phase 5: Quality-specific Pattern Analysis
	8.1 Introduction
	8.2 Problem-oriented Security Patterns
	8.2.1 UML4PF Extension for Problem-oriented Security Patterns
	8.2.2 Structure of the Problem-oriented Security Patterns
	8.2.3 Problem-oriented Symmetric Encryption Pattern
	8.2.4 Problem-oriented MAC Pattern
	8.2.5 Problem-oriented RBAC Pattern
	8.2.6 Problem-oriented Digital Signature Pattern
	8.2.7 Problem-oriented Asymmetric Encryption Pattern

	8.3 Problem-oriented Performance Patterns
	8.3.1 UML4PF Extension for Problem-oriented Performance Patterns
	8.3.2 Structure of the Problem-oriented Performance Patterns
	8.3.3 Problem-oriented First Things First (FTF) Pattern
	8.3.4 Problem-oriented Flex Time (FT) Pattern
	8.3.5 Problem-oriented Master-Worker (MW) Pattern
	8.3.6 Problem-oriented Load Balancer (LB) Pattern

	8.4 Discussion
	8.5 Mapping Requirements to Quality Solutions
	8.5.1 UML4PF Extension for Mapping Requirements to their Solution Alternatives
	8.5.2 Problem-Solution Diagram

	8.6 Related Work
	8.6.1 Related work with respect to Security and Performance
	8.6.2 Related work with respect to Variability

	8.7 Contributions

	9Phase 6: Quality-specific Pattern Selection & Application
	9.1 Introduction
	9.2 Method for Selecting & Applying Quality-specific Patterns
	9.3 Contributions

	10Phase 7: Software Architecture Alternatives Derivation
	10.1 Introduction
	10.2 Method for Deriving Implementable Architecture Alternatives
	10.3 Related Work
	10.4 Contributions

	11Phase 8: Software Architecture Alternatives Evaluation
	11.1 Introduction
	11.2 Identification of Software Architecture Evaluation Methods
	11.2.1 Research Method
	11.2.2 Results

	11.3 Comparative Framework for Software Architecture Evaluation Methods
	11.4 Selection of Software Architecture Evaluation Methods
	11.4.1 Requirements on the Evaluation Method
	11.4.2 Application of the Comparative Framework

	11.5 Evaluation of Architecture Alternatives using ATAM
	11.5.1 Application of ATAM to Smart Grid’s Architecture Alternatives
	11.5.2 Discussion of the results

	11.6 Related Work
	11.7 Contributions

	12Validation of the QuaDRA Framework
	12.1 Introduction
	12.2 Evaluation Framework
	12.3 Value Assignment Schema
	12.4 Comparative Evaluation of the QuaDRA Framework
	12.4.1 Value Assignment
	12.4.2 Comparison of QuaDRA with the State-of-the-Art Methods

	12.5 Contributions

	13Extending Problem-Oriented Requirements Engineering for SPL
	13.1 Introduction
	13.2 Alarm System Example
	13.3 UML4PF Extension for Modeling Variability
	13.4 PREVISE Method and its Application
	13.4.1 Product Line Requirement Model Creation
	13.4.2 Deriving a Concrete Product Requirement Model

	13.5 Related Work
	13.6 Contributions

	14Conclusions
	14.1 Summary
	14.2 Answer to Research Questions
	14.3 Future Research
	14.3.1 Risk Analysis for Deriving Security Requirements
	14.3.2 Integrating Tactics into the Process of Architectural Pattern Selection
	14.3.3 Aspect-oriented Requirements Engineering with Problem Frames
	14.3.4 Providing Support for SPL in the Architecture Phase
	14.3.5 Architecture Views
	14.3.6 Tool Support

	Appendix A OCL Expressions related to the UML profileExtension for Quality Requirements
	Appendix BArchitectural Pattern Selection
	B.1 Problem Frames Catalog
	B.2 Question Catalog
	B.3 Relations between Problem Frames and Questions
	B.4 Benefits and Liabilities
	B.5 Architectural Pattern Catalog
	B.6 Initial Architecture - Port Types

	Appendix CQuality-specific Pattern Selection & Application
	C.1 Problem-oriented Security Pattern Template for A1
	C.2 Problem-oriented Security Pattern Template for A2
	C.3 Problem-oriented Security Pattern Template for A3

	Appendix DQuality-based Architecture
	Appendix EArchitecture Evaluation Methods
	References

