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We dedicate this book to the memory of Prof. Jind�rich Ne�cas (December 14,
1929 { December 5, 2002), an outstanding Czech mathematician and a world-
renowned authority in the �eld of partial di�erential equations and modern
functional analysis.

Prof. Jind�rich Ne�cas contributed substantially to the development of
modern functional analytic methods of solution to elliptic partial di�eren-
tial equations in his famous monograph Les m�ethodes directes en th�eorie des
�equations elliptiques (1967). He followed the modern Italian and French school
and enhanced it with important results, for example, by a new \algebraic"
proof of general inequalities of Korn's type and generalized regularity results.
A few years later, in 1973, he published with collaborators the monograph
Spectral Analysis of Nonlinear Operators, which aroused great interest. Prof.
Ne�cas was always intrigued by the problem of regularity of solutions. Out-
standing results in this �eld appeared in his book Introduction to the Theory
of Nonlinear Elliptic Equations (1983, 1986).
From the very beginning Prof. Ne�cas devoted great e�ort to applications

in mathematical physics and engineering. In 1967 he established a semi-
nar on problems of continuum mechanics that continues to the present day.
From this seminar came the monographs Mathematical Theory of Elastic and
Elastoplastic Bodies: An Introduction (1981, 1983) and Solution of Variational
Inequalities in Mechanics (1982). The latter book was translated into Rus-
sian (1986) and English (1988). Both these monographs also were directed
toward numerical methods of solution based on the �nite element method.
This prompted P.G. Ciarlet and J. L. Lions to invite Prof. Ne�cas to write an
article, \Numerical Methods for Unilateral Problems in Solid Mechanics," for
their Handbook of Numerical Analysis (1996).
During the last two decades of his life Prof. Ne�cas' �eld of interest changed

from solid to uid mechanics, in particular to problems of transsonic ow.
Using the method of entropic compacti�cation and the method of viscosity, he
achieved remarkable results that he published in his monograph �Ecoulements
de uide: Compacit�e par entropie (1989). Recent results of Prof. Ne�cas and
his collaborators have been collected in the book Weak and Measure Valued
Solutions to Evolutionary PDE's (1996).
Besides the above-mentioned monographs, Prof. Ne�cas initiated and pub-

lished more than 180 papers in outstanding mathematical journals and con-
ference proceedings.
An excellent teacher, Prof. Ne�cas inuenced many students and colleagues

with his never-ending enthusiasm. He organized lectures, seminars and two
series of summer schools, and guided many students on the way to their diplo-
mas and Ph.D. theses. They all will remember him with gratitude.

Both P. �Sol��n and K. Segeth were, at di�erent times, students of J. Ne�cas.
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Preface

The �nite element method is one of the most popular tools for the numerical
solution of engineering problems formulated in terms of partial di�erential
equations. The latest developments in this �eld indicate that its future lies in
adaptive higher-order methods, which successfully respond to the increasing
complexity of engineering simulations and satisfy the overall trend of simul-
taneous resolution of phenomena with multiple scales.
Among various adaptive strategies for �nite elements, the best results can

be achieved using goal-oriented hp-adaptivity. Goal-oriented adaptivity is
based on adaptation of the �nite element mesh with the aim of improving
the resolution of a speci�c quantity of interest (instead of minimizing the er-
ror of the approximation in some global norm), and hp-adaptivity is based
on the combination of spatial re�nements (h-adaptivity) with simultaneous
variation of the polynomial order of approximation (p-adaptivity). There
are nonacademic examples where the goal-oriented hp-adaptivity turned out
to be the only way to resolve the problem on a required level of accuracy
(see, e.g., [185]). Automatic hp-adaptivity belongs to the most advanced top-
ics in the higher-order �nite element technology and it is subject to active
ongoing research. We refer the reader to works by Demkowicz et al. (see
[162, 64, 62, 8, 122, 149, 172, 191] and references therein). The goal of this
book is more modest { we present the basic principles of higher-order �nite
element methods and the technology of conforming discretizations based on
hierarchic elements in spaces H1, H(curl) and H(div). An example of an ef-
�cient and robust strategy for automatic goal-oriented hp-adaptivity is given
in Chapter 6.
In the introductory Chapter 1 we review the aforementioned function spaces

and their basic properties, de�ne unisolvency of �nite elements, formulate con-
formity requirements for �nite elements in these spaces, introduce the basic
steps in the �nite element procedure, and present several families of orthogo-
nal polynomials. Section 1.3 is devoted to the solution of a one-dimensional
model problem on a mesh consisting of elements of arbitrary polynomial or-
der. The technical simplicity of the one-dimensional case gives the reader
the opportunity to encounter all the important features of higher-order �nite
element discretization at the same time.
A database of scalar and vector-valued hierarchic master elements of ar-

bitrary order on the most commonly used reference domains in 2D and 3D
is provided in Chapter 2. This chapter contains many formulae of higher-
order shape functions and is intended for reference rather than for systematic
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viii

reading. Chapter 3 discusses the basic principles of higher-order �nite element
methods in two and three spatial dimensions that the reader was �rst exposed
to in Section 1.3. We begin with generalizing the standard nodal interpola-
tion to higher-order hierarchic elements, and describe the design of reference
maps based on the trans�nite interpolation technique as well as their polyno-
mial isoparametric approximation. We discuss an approach to the treatment
of constrained approximations (approximations comprising \hanging nodes")
and mention selected software-technical aspects at the end of this chapter.
Chapter 4 is devoted to higher-order numerical quadrature in two and three

spatial dimensions. Numerical quadrature lies at the heart of higher-order �-
nite element codes and its proper implementation is crucial for their optimal
performance. In particular the construction of integration points and weights
for higher-order Gaussian numerical quadrature is not at all trivial, since they
are not unique and the question of their optimal selection is extremely diÆ-
cult. For illustration, each newly explored order of accuracy usually means
a new paper in a journal of the numerical quadrature community. Tables of
integration points and weights for all reference domains up to the order of
accuracy p = 20 are available on the CD-ROM that accompanies this book.
Chapter 5 addresses the numerical solution of algebraic and ordinary diffe-

rential equations resulting from the �nite element discretization. We present
an overview of contemporary direct and iterative methods for the solution of
large systems of linear algebraic equations (such as matrix factorization, pre-
conditioning by classical and block-iterative methods, multigrid techniques),
and higher-order one-step and multistep schemes for evolutionary problems.
Chapter 6 presents several approaches to automatic mesh optimization and

automatic h-, p- and hp-adaptivity based on the concept of reference solutions.
Reference solutions are approximations of the exact solution that are sub-
stantially more accurate than the �nite element approximation itself. We use
reference solutions as robust error indicators to guide the adaptive strategies.
We also �nd it useful to recall the basic principles of goal-oriented adaptivity
and show the way goal-oriented adaptivity can be incorporated into standard
adaptive schemes. The mathematical aspects are combined with intuitive ex-
planation and illustrated with many examples and �gures.

We assume that the reader has some experience with the �nite element
method { say that he/she can solve the Poisson equation (�4u = f) in two
spatial dimensions using piecewise-linear elements on a triangular mesh. Since
it is our goal to make the book readable for both engineers and applied re-
searchers, we attempt to avoid unnecessarily speci�c mathematical language
whenever possible. Usually we prefer giving references to more diÆcult proofs
rather than including them in the text. A somewhat deeper knowledge of
mathematics (such as Sobolev spaces, embedding theorems, basic inequali-
ties, etc.) is necessary to understand the theoretical results that accompany
some of the �nite element algorithms, but some of these can be skipped if the
reader is interested only in implementation issues.
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Chapter 1

Introduction

As stated in the preface, we assume that the reader knows the basic concepts
of the �nite element method (see, e.g., [11, 39, 46, 47, 119, 178, 180, 191]).
Nevertheless, let us review at least the most commonly used concepts { scalar
and vector-valued Hilbert spaces, trivia of �nite elements in these spaces,
basic principles of the discretization of time-independent and evolutionary
problems and a few additional topics that will be important for higher-order
�nite element technology.

1.1 Finite elements

DEFINITION 1.1 (Finite element) Finite element in the sense of Ciarlet
[47] is a triad K = (K;P;�), where

� K is a domain in IRd { we will con�ne ourselves to intervals (d = 1),
triangles and quadrilaterals (d = 2), and tetrahedra, bricks and prisms
(d = 3).

� P is a space of polynomials on K of dimension dim(P ) = NP .

� � = fL1; L2; : : : ; LNP
g is a set of linear forms

Li : P ! IR; i = 1; 2; : : : ; NP : (1.1)

The elements of � are called degrees of freedom (and often abbreviated as
DOF).

1.1.1 Function spaces H1, H(curl) and H(div)

Let 
 � IRd be a bounded domain with Lipschitz-continuous boundary, d
being the spatial dimension. The scalar Hilbert space of functions

1
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2 Higher-Order Finite Element Methods

H1 = fu 2 L2(
); @u=@xi 2 L2(
); 1 � i � dg (1.2)

is the basic and most commonly used Sobolev space. Recall that the partial
derivatives in (1.2) are understood in the sense of distributions. The Hilbert
spaces

H(curl) = fu 2 [L2(
)]d; curlu 2 [L2(
)]dg (1.3)

and

H(div) = fu 2 [L2(
)]d; divu 2 L2(
)g (1.4)

of vector-valued functions (de�ned for d = 2; 3) appear in variational formu-
lations of problems rooted, e.g., in Maxwell's equations, mixed formulations
in elasticity and acoustics.
Notice that the spaces H(curl) and H(div) fall between the spaces L2 and

H1 in the sense that only some combinations of the partial derivatives need
to be square-integrable.

1.1.2 Unisolvency of �nite elements

De�nition 1.2 introduces unisolvency as another expression for compatibility
of the set of degrees of freedom � with the polynomial space P .

DEFINITION 1.2 (Unisolvency of �nite elements) The �nite element
K = (K;P;�) is said to be unisolvent if for every function g 2 P it holds

L1(g) = L2(g) = : : : = LNP
(g) = 0 ) g = 0: (1.5)

In other words, every vector of numbers

L(g) = (L1(g); L2(g); : : : ; LNP
(g))

T
2 IRNP

uniquely identi�es a polynomial g in the space P .

De�nition 1.3 together with Theorem 1.1 o�er a useful characterization of
unisolvency of �nite elements.

DEFINITION 1.3 (Æ-property) Let K = (K;P;�), dim(P ) = NP , be a
�nite element. We say that a set of functions B = f�1; �2; : : : ; �NP

g � P has
the Æ-property if

Li(�j) = Æij for all 1 � i; j � NP : (1.6)

Here Æij is the standard Kronecker delta, Æij = 1 if i = j and Æij = 0 otherwise.
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Introduction 3

THEOREM 1.1 (Characterization of unisolvency)
Consider a �nite element K = (K;P;�), dim(P ) = NP . The �nite element K
is unisolvent if and only if there exists a unique basis B = f�1; �2; : : : ; �NP

g �
P satisfying the Æ-property.

PROOF First assume that the �nite element K is unisolvent. We take an
arbitrary basis fg1; g2; : : : ; gNP

g � P and express each sought function �j ,
j = 1; : : : ; NP , as

�j =

NPX
k=1

akjgk:

To satisfy the Æ-property, we require that

Li(�j) = Li

 
NPX
k=1

akjgk

!
=

NPX
k=1

akjLi (gk) = Æij ; 1 � i; j � NP ; (1.7)

which yields a system of NP linear equations for each j. Summarized, these
linear systems give a matrix equation

LA = I ;

where L = fLi(gk)g
NP

i;k=1, I = fÆijg
NP

i;j=1 is the canonical matrix and the un-

known matrix A = fakjg
NP

k;j=1 contains in its rows coeÆcients corresponding
to the functions �1; �2; : : : ; �NP

, respectively. Let us assume that the columns
of L are linearly dependent, i.e., that there exists a nontrivial set of coeÆcients
�1; �2; : : : ; �NP

such that

NPX
k=1

�kLi(gk) = Li

 
NPX
k=1

�kgk

!
= 0 for all i = 1; 2; : : : ; NP : (1.8)

Since
PNP

k=1 �kgk is a nontrivial function, (1.8) is in contradiction with unisol-
vency of the element K. Hence, the matrix L is invertible and the functions
�1; �2; : : : ; �NP

are uniquely identi�ed by the coeÆcients

A = L�1I :

It remains to be shown that the functions �1; �2; : : : ; �NP
are linearly indepen-

dent, i.e., that

NPX
j=1

�j�j = 0 ) �i = 0 for all i = 1; 2; : : : ; NP :
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4 Higher-Order Finite Element Methods

Obviously this is true since

0 = Li

0
@NPX

j=1

�j�j

1
A =

NPX
j=1

�jLi(�j) = �i

for all i = 1; 2; : : : ; N . Therefore the functions �1; �2; : : : ; �NP
constitute a

basis in the space P , which by (1.7) has the Æ-property.
The other implication is also easy to verify: Let B = f�1; �2; : : : ; �NP

g be a
basis of the space P satisfying the Æ-property. Every function g 2 P can be
expressed as

g =

NPX
j=1

j�j :

Assuming that
L1(g) = L2(g) = : : : = LNP

(g) = 0;

we immediately conclude that

0 = Li(g) = Li

0
@NPX

j=1

j�j

1
A = i for all i = 1; 2; : : : ; NP :

Hence necessarily g = 0 and the �nite element is unisolvent.

REMARK 1.1 (Checking unisolvency) The proof to Theorem 1.1 o�ers
a simple procedure to check the unisolvency of a �nite element: one considers
an arbitrary basis of the polynomial space P and constructs the matrix L by
applying the linear forms L1; L2; : : : ; LNP

2 � to the basis functions. If the
matrix L is invertible, one knows that the element is unisolvent, and moreover
L�1 yields the basis functions satisfying the Æ-property. If the matrix L is
not invertible, the element is not unisolvent.

REMARK 1.2 (Nodal, hierarchic and dual basis) The expression node
has in the �nite element analysis several di�erent meanings. To begin with, by
nodal some authors denote the unique basis B � P that satis�es the Æ-property
(1.6). We will work with nodal and hierarchic bases of the space P which both
satisfy the Æ-property. De�nitions will be given when appropriate. Existence
and uniqueness of a basis B � P satisfying the Æ-property is equivalent to
the condition that the linear forms L1; : : : ; LNP

form a dual basis to B in the

space P 0 of linear forms over P .

Example 1.1 (A nonunisolvent element)
Consider a square domain K = (�1; 1)2, polynomial space

P = spanf1; x1; x2; x1x2g
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Introduction 5

and a set of degrees of freedom � consisting of linear forms Li : P ! IR
associated with function values at points [�1; 0], [1; 0], [0;�1] and [0; 1], as
shown in Figure 1.1.

����

�
�
�
�

����

�
�
�
�

x
2

x
1

−1 1

−1

1
K

FIGURE 1.1: An example of a nonunisolvent �nite element.

Hence, the degrees of freedom Li are de�ned by

L1(g) = g(�1; 0);

L2(g) = g(1; 0);

L3(g) = g(0;�1);

L4(g) = g(0; 1);

and the matrix L corresponding to the functions 1; x1; x2; x1x2 has the form

L =

0
BB@
1 �1 0 0
1 1 0 0
1 0 �1 0
1 0 1 0

1
CCA :

Obviously the matrix L is singular and therefore the �nite element (K;P;�)
is not unisolvent. It can be easily checked that the �nite element becomes
unisolvent after using the vertices instead of edge midpoints.

Example 1.2 (Unisolvent nodal elements)
Consider, for example, the interval Ka = (�1; 1) and a space Pa = P p(Ka)
of polynomials of the order at most p over Ka. Let us cover Ka with NP =
p + 1 points (geometrical nodes) �1 = X1 < X2 < : : : < XNP

= 1. These
points have to be chosen carefully since their distribution determines the basis
functions and consequently the conditioning of the discrete problem. De�ne
the set of degrees of freedom �a = fL1; L2; : : : ; LNP

g, Li : Pa ! IR by

Li(g) = g(Xi) for all g 2 Pa and i = 1; 2; : : : ; NP : (1.9)
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6 Higher-Order Finite Element Methods

Obviously the forms Li are linear. Since every polynomial g 2 Pa satis�es

g(X1) = g(X2) = : : : = g(XNP
) = 0 ) g = 0;

the �nite element Ka = (Ka; Pa;�a) is unisolvent. It is easy to construct a
basis of the space Pa that satis�es the Æ-property { in 1D one does not even
have to solve systems of linear equations since the Lagrange interpolation
polynomial can be exploited (see Section 1.3, formula 1.76).

Nodal elements in higher spatial dimensions are constructed in the same
way. Consider, for instance, an equilateral triangle T , diam(T ) = 2 and a
space PT = P p(T ) of polynomials of the order at most p over T . One may
cover T (for example) with NP = (p + 1)(p + 2)=2 Gauss-Lobatto points
X1; X2; : : : ; XNP

as shown in Figure 1.2. Basis functions satisfying the Æ-
property are constructed by inverting the NP �NP matrix L as described in
Remark 1.1.

FIGURE 1.2: Nodal points in the equilateral triangle based on Gauss-
Lobatto points for p = 2 (6 points), p = 4 (15 points) and p = 6 (28 points)
with optimized interpolation properties. For the construction and properties
of these geometrical nodes see, e.g., [109].

Finite elements based on nodal values are popular in connection with h-
adaptive methods (see, e.g., [109, 111, 110, 112] and others).

Example 1.3 (Unisolvent hierarchic elements)

Application of hierarchic shape functions represents another major approach
to the design of �nite elements. Consider a domain K and a space P of
polynomials of the order at most p of dimension NP . Consider a hierarchic
basis Bp = f�1; �2; : : : ; �Np

g in the space P . By hierarchic we mean that

Bp � Bp+1

for every p. Every polynomial g 2 P can be uniquely expressed as a linear
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Introduction 7

combination

g =

NpX
i=1

�i�i =

NpX
i=1

Li(g)�i; (1.10)

where �i are real coeÆcients and Li(g) = �i linear forms

Li : P ! IR; i = 1; 2; : : : ; Np: (1.11)

Obviously the choice � = fL1; L2; : : : ; LNP
g yields a unisolvent �nite element

(K; P;�), and by de�nition the hierarchic basis B has the Æ-property (1.6).
Hierarchic elements allow for locally nonuniform distribution of the order

of polynomial approximation more easily than nodal elements, which makes
them suitable for p- and hp-adaptivity. We will pursue the hierarchic approach
in this book.

REMARK 1.3 (Selection of �nite elements) The choice of a �nite
element (or their combination) depends upon the problem solved and upon
the expectations that we put into the �nite element scheme. Obviously it
has a crucial e�ect on the behavior of the �nite element scheme (see, for
example, comparison of conditioning properties of various types of elements
in Section 1.3). Several examples of standard as well as exotic �nite elements
were collected in [38].

1.1.3 Finite element mesh

We assume that the bounded domain 
 with a Lipschitz-continuous bound-
ary, where the underlying problem is investigated, is approximated by a com-
putational domain 
h whose boundary is piecewise-polynomial.

DEFINITION 1.4 (Finite element mesh) Finite element mesh Th;p =

fK1;K2; : : : ;KMg over a domain 
h � IRd with a piecewise-polynomial bound-
ary is a geometrical division of 
h into a �nite number of nonoverlapping
(curved) open polygonal cells Ki such that


h =

M[
i=1

Ki:

Each cell Ki, 1 � i �M is equipped with a polynomial order 1 � p(Ki) = pi.

DEFINITION 1.5 (Hybrid mesh) If various types of cells are combined,
the mesh is called hybrid.
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8 Higher-Order Finite Element Methods

DEFINITION 1.6 (Regular mesh) The mesh is called regular if for any
two elements Ki and Kj, i 6= j only one of the following alternatives holds:
- Ki [Kj is empty,
- Ki [Kj is a single common vertex,
- Ki [Kj is a single (whole) common edge,
- Ki [Kj is a single (whole) common face.

By assuming that the mesh is regular we avoid hanging nodes, the existence
of which substantially complicates the discretization procedure. In this book
we will use the word node as an abstraction for vertices, edges, faces and
element interiors (the reasons for this soon become clear). Basically, hanging
nodes can be grid vertices which lie in the interior of an edge or face of
another cell, grid edges which lie in the interior of an edge or of a face of
another cell, and grid faces which lie in the interior of a face of another cell.
The constrained approximation technique in 2D and 3D will be discussed in
more detail in Section 3.6. Various constellations involving hanging nodes are
illustrated in Figure 1.3.

A) C)B)

FIGURE 1.3: Examples of hanging nodes. A) Single hanging vertex and
two edges in a 2D mesh. B) Five hanging vertices, twelve edges and four faces
in a 3D mesh. C) Single hanging edge and two faces in a 3D hybrid mesh.

We will consider all of the most commonly used types of cells: one-dimensional
elements, triangles and quadrilaterals in two spatial dimensions and tetrahe-
dra, prisms and hexahedra in 3D.

1.1.4 Finite element interpolants and conformity

In Paragraph 1.1.2 we introduced unisolvency of the �nite element (K;P;�)
as another expression for the compatibility of the set of degrees of freedom �
with the polynomial space P . Now we will address the compatibility of �nite
elements with spaces of functions where they will be used for approximation
purposes { their conformity to these spaces.
The notion of conformity of �nite elements to spaces of functions is tightly
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Introduction 9

connected with their interpolation properties in these spaces.

Finite element interpolant

In the beginning let us assume that the degrees of freedom L1; L2; : : : ; LNP

of the �nite element (K;P;�) are de�ned in a larger Hilbert space V (K),
P � V (K).

DEFINITION 1.7 (Finite element interpolant) Given a unisolvent �-
nite element (K;P;�), let B = f�1; �2; : : : ; �NP

g be the unique basis of the
space P satisfying the Æ-property (1.6). Let v 2 V , where P � V , be a func-
tion for which all the linear forms L1; L2; : : : ; LNP

are de�ned. We de�ne the
(local) interpolant as

IK(v) =

NPX
i=1

Li(v)�i: (1.12)

It follows immediately from the linearity of the forms Li that the interpolation
operator IK : V ! P is linear.

PROPOSITION 1.1
Let (K;P;�) be a unisolvent �nite element and let v 2 V , P � V be a function
for which all the linear forms L1; L2; : : : ; LNP

are de�ned. Then

Li(IK(v)) = Li(v); 1 � i � NP : (1.13)

PROOF It follows immediately from De�nition 1.7 and the Æ-property (1.6)
that

Li

0
@NPX

j=1

Lj(v)�j

1
A =

NPX
j=1

Lj(v)Li(�j) = Li(v):

PROPOSITION 1.2
Let (K;P;�) be a unisolvent �nite element. The �nite element interpolation
operator IK is idempotent,

I2K = IK : (1.14)

PROOF It follows immediately from Proposition 1.1 that

IK(v) = v; v 2 P: (1.15)
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10 Higher-Order Finite Element Methods

Hence, for all v 2 V , where P � V , it is

IK(IK(v)| {z }
2P

) = IK(v)

which was to be shown.

Conformity of �nite elements to spaces of functions

Let V (
h) be a general Hilbert space of functions and let the computational
domain 
h be covered with a �nite element mesh Th;p. Global �nite element
interpolant I is de�ned elementwise by means of local element interpolants
IKi

,

I(v)jKi
� IKi

for all i = 1; 2; : : : ;M: (1.16)

It is natural to request that for all functions v 2 V also I(v) 2 V whenever
I(v) is de�ned.
Most commonly used de�nitions of conformity cover neither �nite element

meshes that comprise various types of �nite elements nor hierarchic elements
which are the main issue in this book. Therefore we will speak about the
conformity of �nite elements in the sense of conformity of whole �nite element
meshes. This notion naturally reduces to the standard conformity of �nite
elements if all the �nite elements in the mesh are of the same type.

DEFINITION 1.8 (Conformity of �nite elements) Let Th;p be a �-
nite element mesh consisting of M unisolvent �nite elements (Ki; Pi;�i), i =
1; 2; : : : ;M . Let V (
h) be a Hilbert space of functions and IKi

: V (Ki)! Pi
the (local) �nite element interpolation operators. We say that the �nite el-
ement mesh Th;p is conforming to the space V if and only if there exists a
subspace V �(
h) � V (
h), which is dense in V (i.e., V � = V ), such that for
each function v 2 V �(
h) the corresponding global interpolant I(v) is de�ned
and lies in the space V (
h).

Global conformity requirements for the most commonly used Hilbert spaces
H1, H(curl) and H(div) are formulated in the following Lemmas 1.1 { 1.3
(see also, e.g., [143, 166, 159]).

LEMMA 1.1 (Conformity requirements of the space H1)
Consider a domain 
h � IRd covered with a �nite element mesh Th;p. A
function v : 
h ! IR belongs to H1(
h) if and only if

1. vjK 2 H1(K) for each element K 2 Th;p,

2. for each common face f = K1 \ K2, K1;K2 2 Th;p the trace of vjK1

and vjK2
on f is the same.
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PROOF Using 1., de�ne the functions wj 2 L2(
h), j = 1; 2; : : : ; d as

wj jK = Dj(vjK)

for all K 2 Th;p. We will show that v 2 H1(
h) by simply verifying that
wj = Djv.
Using the Green theorem we have for every ' 2 D(
h)Z


h

wj' =
X

K2Th;p

Z
K

wj' = �
X
K

Z
K

(vjK)Dj'+
X
K

Z
@K

vjK'�K;j ;

where �K is the outward normal vector to K on @K. The symbol D(
h)
stands for the space of distributions over 
h, where distributions are in�nitely
smooth functions ' : IRd ! IR whose support lies within the domain 
h.
Since ' is vanishing on @
h and �K1

= ��K2
= � on the common face f , we

have by 2.

Z

h

wj' = �

Z

h

vDj'+
X

f;f=K1\K2;K1;K22Th;p

Z
f

(vjK1
� vjK2

)'�j

= �

Z

h

vDj';

and thus wj = Djv.
Conversely, if we assume that v 2 H1(
h), it follows at once that 1. holds.

Using further wj = Djv, in the same way as before we obtain that

X
f;f=K1\K2;K1;K22Th;p

Z
f

(vjK1
� vjK2

)'�j = 0

for all ' 2 D(
h), j = 1; 2; : : : ; d. Hence, 2. is satis�ed.

LEMMA 1.2 (Conformity requirements of the space H(div))
Consider a domain 
h � IRd covered with a �nite element mesh Th;p. Con-

sider a function v : 
h ! IRd such that

1. vjK 2 [H1(K)]d for each element K 2 Th;p,

2. for each common face f = K1 \ K2, K1;K2 2 Th;p the trace of the
normal component n � vjK1

and n � vjK2
on f is the same (here n is a

unique normal vector to the face f).

Then v 2H(div). On the other hand, if v 2H(div) and 1. holds, then 2. is
satis�ed.
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12 Higher-Order Finite Element Methods

PROOF De�ne w 2 L2(
h) by

wjK = div(vjK)

for all K 2 Th;p. The Green formula implies for every ' 2 D

(divv; ') = �

Z

h

v � r' = �
X

K2Th;p

Z
K

(vjK) � r'

=
X

K2Th;p

Z
K

div(vjK)'

�
X

f;f=K1\K2; K1;K22Th;p

Z
f

(n � vjK1
� n � vjK2

)' =

Z

h

w'

and therefore divv = w.
Conversely, if v 2 H(div), we have w = divv. Since vjK 2 [H1(
h)]

d, the
trace on f is well de�ned and we obtainX

f;f=K1\K2;K1;K22Th;p

Z
f

(n � vjK1
� n � vjK2

)' = 0

for all ' 2 D. Hence 1. holds.

LEMMA 1.3 (Conformity requirements of the space H(curl))
Consider a domain 
h � IRd covered with a �nite element mesh Th;p. Con-

sider a function v : 
h ! IRd such that

1. vjK 2 [H1(K)]d for each element K 2 Th;p,

2. for each common face f = K1 \ K2, K1;K2 2 Th;p the trace of the
tangential component n � vjK1

and n � vjK2
on f is the same (again,

n is a unique normal vector to the face f).

Then v 2 H(curl). On the other hand, if v 2 H(curl) and 1. holds, then 2.
is satis�ed.

PROOF Similar to the previous case.

REMARK 1.4 Although the conditions declared in Lemmas 1.2 and 1.3
are weaker than those associated with the space H1, their algorithmic re-
alization is more demanding. More about H(curl)- and H(div)-conforming
approximations will follow.

REMARK 1.5 (Conformity requirements of the space L2) There
are no continuity requirements on interelement boundaries in L2-conforming
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approximations. See, e.g., [143, 166, 159] for additional conformity properties
of �nite elements.

REMARK 1.6 (Interpolation on hierarchic elements) Notice that
De�nition 1.7 says nothing about the interpolation on hierarchic elements
since the degrees of freedom Li (coeÆcients �i in (1.10)) are unde�ned when
v 62 P . De�nition of local interpolation operators on hierarchic elements
requires deeper mathematical analysis. Since the standard Lagrange inter-
polation has to be combined with projection onto hierarchically constructed
subspaces of the space P , sometimes the technique is called projection-based
interpolation. We �nd it appropriate to postpone the discussion of this issue
to Chapter 3 where relevant machinery will be in place. The reader does not
need to worry in the meantime since, of course, the projection-based interpo-
lation operators will be compatible with the global conformity requirements
presented in Lemmas 1.1 { 1.3.

Example 1.4 (A conforming and a nonconforming element)
We �nd it useful to present a very simple example where all ideas presented in
this paragraph can be �xed. Let us consider linear triangular �nite elements
of the (i) Lagrange and (ii) Crouzeix-Raviart type (for the latter see [56]).
Both of them are de�ned on a triangular domain K, using the space of linear
polynomials P (K). The degrees of freedom L1; L2; : : : ; LNP

are associated
with (i) element vertices a; b; c and (ii) midpoints d; e;f of the edges (as
shown in Figure 1.4).

�
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�
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(i) (ii)

a

b

e

f

d

c

FIGURE 1.4: Nodal points for (i) linear Lagrange and (ii) Crouzeix-
Raviart elements.

In both cases dim(P ) = 3. For the Lagrange element the degrees of freedom
Li : P ! IR are de�ned as

L1(g) = g(a); L2(g) = g(b); L3(g) = g(c);
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14 Higher-Order Finite Element Methods

and unisolvency check (see Remark 1.1) yields a matrix L in the form

LLagr =

0
@1 a1 a2
1 b1 b2
1 c1 c2

1
A : (1.17)

Analogously, in the Crouzeix-Raviart case we have the linear forms

L1(g) = g(d); L2(g) = g(e); L3(g) = g(f) (1.18)

and

LC�R =

0
@1 d1 d2
1 e1 e2
1 f1 f2

1
A : (1.19)

Obviously both the matrices LLagr;LC�R are regular unless the triangle K
is degenerated (and this is forbidden since K is a domain in IR2).
Consider now a �nite element mesh Th;p = fK1;K2g consisting of two

elements as illustrated in Figure 1.5.

x
1

0

x
2

1

2

21

K K1 2

−1−2

FIGURE 1.5: Sample mesh consisting of two triangular elements.

In the Lagrange case, the corresponding two sets of basis functions that
satisfy the Æ-property (1.6) are obtained after inverting the matrices LLagr

K1

and LLagr
K2

(see Remark 1.1). We obtain

�
(1)
1 = �x1=2; �

(1)
2 = (x1 � x2 + 2)=2; �

(1)
3 = x2=2;

�
(2)
1 = (2� x1 � x2)=2; �

(2)
2 = x1=2; �

(2)
3 = x2=2:

Hence the interpolation operators ILagrK1
: V (K1) ! P (K1) and ILagrK2

:

V (K2)! P (K2) (De�nition 1.7 with V = H1 and V � = C) have the form

ILagrK1
(v) = v(�2; 0)�

(1)
1 + v(0; 0)�

(1)
2 + v(0; 2)�

(1)
3 ;

ILagrK2
(v) = v(0; 0)�

(2)
1 + v(2; 0)�

(2)
2 + v(0; 2)�

(2)
3 :

© 2004 by Chapman & Hall/CRC



Introduction 15

Analogously in the Crouzeix-Raviart case the inversion of the matrices LC�R
K1

and LC�R
K2

yields the nodal bases

�
(1)
1 = 1� x2; �

(1)
2 = x1 + 1; �

(1)
3 = �(x1 � x2 + 1);

�
(2)
1 = 1� x2; �

(2)
2 = x1 + x2 � 1; �

(2)
3 = 1� x1

and the local interpolation operators

IC�RK1
(v) = v(�1; 0)�

(1)
1 + v(0; 1)�

(1)
2 + v(�1; 1)�

(1)
3 ;

IC�RK2
(v) = v(1; 0)�

(2)
1 + v(1; 1)�

(2)
2 + v(0; 1)�

(2)
3 :

Consider now a function

v(x1; x2) = (x1 � x2)
2 2 C(K1 [K2):

The pair of the corresponding piecewise-linear global interpolants are depicted
in Figures 1.6 and 1.7.

4

0 1 2

1
22

x

x

1

2

−2

−2 −1

FIGURE 1.6: Continuous piecewise-linear Lagr. interpolant on K1 [K2.

4

0 1 2

1
22

x

x

1

2

−2

−2 −1

FIGURE 1.7: Discontinuous piecewise-linear Crouzeix-Raviart interpolant
on K1[K2. This �gure illustrates that the �nite element of Crouzeix-Raviart
does not conform to the space H1.
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16 Higher-Order Finite Element Methods

Obviously one example is not enough to prove conformity { one has to
consider each pair of adjacent elements Ki;Kj 2 Th;p and show that the
interpolant of all functions v 2 V (Ki [Kj) still lies in the space V (Ki [Kj),
using global conformity requirements of the space V (see Lemmas 1.1 { 1.3).
In the linear Lagrange case, the coincidence of values of the function v at the
pair of shared vertices together with the linearity of the local interpolant on
element edges imply the continuity along the whole shared edge of Ki;Kj .
Hence,

v 2 V (K1 [K2) ) ILagr(v) 2 V (K1 [K2)

holds for all v 2 H1(K1 [K2), therefore the linear Lagrange �nite element is
conforming to the space H1(K1 [K2).

REMARK 1.7 (Nonconforming elements) For selected types of prob-
lems, nonconforming �nite elements are used with excellent results. We refer
to [45, 56, 90, 106, 121, 124, 125, 165] to mention at least a couple of examples.
In this book we con�ne ourselves to conforming �nite element approximations
only.

REMARK 1.8 (Interpolation error estimates) At this point the next
logical step would be to introduce local element interpolation error estimates.
However, for all standard types of nodal elements this can be found in stan-
dard �nite element textbooks. Relevant for our purposes are projection-based
interpolation error estimates for hierarchic elements in spaces H1, H(curl)
and H(div). We will address them in Chapter 3.

1.1.5 Reference domains and reference maps

For piecewise-linear approximation, degrees of freedom are usually associ-
ated with the solution values at the grid vertices (here the nodal and hierar-
chic approaches coincide), and the variational formulation can be evaluated
directly in the grid.

The situation changes dramatically with higher-order �nite elements since
they use a large amount of overlapping information, whose eÆcient manage-
ment requires more structure to be imposed. For example, while �rst-order
numerical quadrature can be implemented using coordinates of grid vertices
only, higher-order quadrature schemes require many integration points per
element (the actual amount depends on the order of accuracy, and in 2D and
3D it easily achieves several hundred). Both storing these values (d spatial
coordinates and a weight per point) in all elements as well as reconstructing
them periodically from a reference con�guration would be extremely ineÆ-
cient. The situation is analogous for higher-order basis functions.
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Introduction 17

Therefore, for higher-order �nite element discretizations the mesh cellsKi 2
Th;p are mapped onto a reference domain K̂ by means of smooth bijective
reference maps

xKi
: K̂ ! Ki: (1.20)

The maps xK , together with polynomial spaces on the reference domain K̂,
will be used for the de�nition of the space of functions Vh;p(
h) where the
�nite element solution will be sought. An example of a reference map in the
quadrilateral case in 2D is illustrated in Figure 1.8.

ξ

ξ
2

1

K
q

1

−1

−1 0 1

K

x
K

x1

x
2

FIGURE 1.8: Reference map for a quadrilateral element.

The design of reference maps for all standard types of reference domains will
be discussed in detail in Chapter 3. There we also show how one uses them to
transfer the integrals over elements Ki from the variational formulation to the
reference domains. The higher-order �nite element discretization is performed
almost exclusively on the reference domains.

1.1.6 Finite element discretization

Consider a bounded domain 
 � IRd with Lipschitz-continuous boundary,
a partial di�erential equation (PDE) to be solved, and a set of conventional
boundary conditions. Multiplying the PDE with a test function v from a
suitable function space V , integrating over the domain 
, applying the Green's
theorem and incorporating the boundary conditions, one obtains a variational
formulation

L(u� + �u; v) = f(v) for all v 2 V: (1.21)

Both the forms L and f are assumed linear in v. If nonhomogeneous Dirichlet
conditions are present, the solution u = u� + �u is sought in an aÆne func-
tion space which is di�erent from V (functions satisfying nonhomogeneous

© 2004 by Chapman & Hall/CRC



18 Higher-Order Finite Element Methods

Dirichlet boundary conditions obviously cannot constitute any linear function
space). The lift function u� is chosen to satisfy nonhomogeneous Dirichlet
conditions. Only the unknown component �u satisfying homogeneous Dirichlet
boundary conditions is sought. All functions v 2 V vanish on any Dirichlet
part of the boundary @
.

Neumann and Newton (Robin) boundary conditions are enforced by substi-
tuting them directly into boundary integrals in (1.21) over the corresponding
part of the boundary @
. See any basic �nite element textbook for more de-
tails. An example of higher-order �nite element discretization in 1D involving
nonhomogeneous Dirichlet boundary conditions will be given in Section 1.3.

Approximation of weak forms and discretization

The �nite element discretization of (1.21) is done in the following standard
steps:

Step 1: Approximate the domain 
 with another domain 
h which is more
convenient for meshing and computation.

Step 2: Cover the domain 
h with a �nite element mesh Th;p. Choose ap-
propriate reference domains for all geometrical types of elements and for each
K 2 Th;p construct a smooth bijective reference map xK .

Step 3: Approximate the space V , using appropriate polynomial spaces on
the reference domains and the reference maps, by a suitable subspace Vh;p =
span(v1; v2, :::; vN ).

REMARK 1.9 (Variational crimes) Let us remark that in reality usually
Vh;p 6� V since the domains 
 and 
h di�er, and moreover often even 
h 6�

. Hence this step is sometimes classi�ed as a variational crime in the FE
community.

Step 4: Approximate the form L by another form Lh;p, replacing the exact
integration over 
 and @
 by numerical integration over 
h and @
h. Notice
that boundary conditions are shifted from @
 to @
h in this step. The ques-
tion of an optimal choice of quadrature schemes will be addressed in Chapter 4.

Step 5: Approximate the linear form f by another linear form fh;p in the
same way as in Step 4.

Step 6: We arrive at a new, approximate variational formulation: The solu-
tion uh;p is sought in the form uh;p = u�h;p + �uh;p, �uh;p 2 Vh;p, satisfying

Lh;p(u
�
h;p + �uh;p; vh;p) = fh;p(vh;p); (1.22)
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for all vh;p 2 Vh;p. The function u�h;p is a suitable piecewise polynomial
(usually a simple piecewise-linear) approximation of the lift function u� from
(1.21).

Step 7: Express the function �uh;p as a linear combination of the basis func-
tions vi of the space Vh;p with unknown coeÆcients yi,

uh;p(x) = u�h;p(x) + �uh;p(x) = u�h;p(x) +

NX
j=1

yjvj(x): (1.23)

Step 8: Insert the construction (1.23) into the approximate weak form (1.22)
and select vh;p := vi, i = 1; 2; : : : ; N . This turns (1.22) into a system of
algebraic equations

Lh;p

0
@u�h;p + NX

j=1

yjvj ; vi

1
A = fh;p(vi); i = 1; 2; :::; N: (1.24)

If the form Lh;p is bilinear, (1.24) represents a system of linear algebraic
equations which can be written in a matrix form SY = F ,

NX
j=1

Lh;p (vj ; vi)| {z }
Sij

yj|{z}
Y j

= fh;p(vi)� Lh;p
�
u�h;p

�| {z }
F i

; i = 1; 2; :::; N:

Otherwise the algebraic system (1.24) is nonlinear.

Step 9: Solve the system (1.24) for the unknown coeÆcients Y of �uh;p with
a suitable numerical scheme. Retrieve the approximate solution uh;p using
(1.23). Numerical methods for the treatment of discrete problems will be
discussed in Chapter 5.

1.1.7 Method of lines for evolutionary problems

The method of lines (MOL) is one of the most popular tools for the solution
of evolutionary PDEs. The basic idea is to perform the discretization in
space only while keeping the time-variable continuous. This is achieved by
expressing the approximate solution uh;p(x; t) in a form analogous to (1.23),
with time-dependent coeÆcients yi = yi(t):

uh;p(x; t) = u�h;p(x) + �uh;p(x; t) = u�h;p(x) +

NX
j=1

yj(t)vj(x): (1.25)

Thus, instead of a system of algebraic equations (1.24) we end up with a
system of ordinary di�erential equations.
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20 Higher-Order Finite Element Methods

For details on the MOL itself as well as for error estimates for evolutionary
problems solved by this method see, e.g., [13, 16, 78, 79, 80, 144, 155, 174,
175, 182, 194, 201, 198] and others.

1.2 Orthogonal polynomials

Orthogonal polynomials �nd applications in diverse �elds of mathematics,
both for theoretical and numerical issues. In our case they will play an essen-
tial role in the design of optimal higher-order shape functions. For additional
information on orthogonal polynomials see, e.g., [192], which is usually re-
ferred to as a basic textbook on this subject.

1.2.1 The family of Jacobi polynomials

The class of Jacobi polynomials,

Pn;�;�(x) =
(�1)n

2nn!
(1� x)��(1 + x)��

dn

dxn
�
(1� x)�+n(1 + x)�+n

�
; (1.26)

holds the prominent position among orthogonal polynomials. It satis�es the
Jacobi di�erential equation

(1�x2)
d2

dx2
Pn;�;�+(����(�+�+2)x)

d

dx
Pn;�;�+n(n+�+�+1)Pn;�;� = 0

(1.27)
(�; � > �1 are real parameters). Let L2

�;�(I), where I = (�1; 1), denote the
space of all functions which are square integrable in I with the weight

w�;�(x) = (1� x)�(1 + x)� (1.28)

and with the corresponding norm

kuk2L2
�;�

=

Z 1

�1

juj2w�;�dx: (1.29)

Then every u 2 L2
�;�(I) can be expanded into the series

u(x) =
1X
n=0

cnPn;�;�(x) satisfying lim
k!1

ku�
kX

n=0

cnPn;�;�kL2
�;�

(I) = 0:

(1.30)
Orthogonality of the Jacobi polynomials is exactly speci�ed by
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Z 1

�1

Pn;�;�Pm;�;�(1� x)�(1 + x)�dx =

8<
:
en;�;� for n = m;

0 otherwise
(1.31)

where

en;�;� =
2�+�+1

2n+ �+ � + 1

�(�+ n+ 1)�(� + n+ 1)

�(n+ 1)�(�+ � + n+ 1)
: (1.32)

Here � is the standard �-function. The coeÆcients cn are computed using the
relation

cn =
1

en;�;�

Z 1

�1

(1� x)�(1 + x)�Pn;�;�(x)u(x) dx: (1.33)

We have the relation

dk

dxk
Pn;�;�(x) = 2�k

�(n+ k + �+ � + 1)

�(n+ �+ � + 1)
Pn�k;�+k;�+k : (1.34)

Ultraspherical polynomials

The ultraspherical polynomials are a special case of the Jacobi polynomials,
de�ned by

Un;� = Pn;�;�; n = 0; 1; 2: : : : (1.35)

They inherit all basic properties from the Jacobi polynomials (1.26).

Gegenbauer polynomials

Putting � = � = � � 1=2 in (1.26), the Jacobi polynomials come over to
the Gegenbauer polynomials

G�
n(x) =

�(n+ 2�)�(� + 1=2)

�(2�)�(n+ � + 1=2)
Pn;��1=2;��1=2(x); (1.36)

which again inherit all basic properties of the Jacobi polynomials.

Chebyshev polynomials

The Chebyshev polynomials are another special case of the Jacobi polyno-
mials (1.26) and inherit all of their basic properties. Putting � = � = �1=2
we obtain

Cn(x) =
22n(n!)2

(2n!)
Pn;�1=2;�1=2(x): (1.37)
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22 Higher-Order Finite Element Methods

1.2.2 Legendre polynomials

Of special importance among the descendants of the Jacobi polynomials
Pn;�;� are the Legendre polynomials, de�ned as

Ln(x) = Pn;0;0(x): (1.38)

They form an orthonormal basis of the space L2(I). Originally, they were
constructed by means of the Gram-Schmidt orthogonalization process, and
later many useful properties of these polynomials were found. For all of them
let us mention, e.g., that their roots are identical with integration points for
higher-order Gauss quadrature rules in one spatial dimension. They satisfy
the Legendre di�erential equation

(1� x2)
d2y

dx2
� 2x

dy

dx
+ k(k + 1)y = 0: (1.39)

There are several ways to de�ne them, among which probably the most use-
ful for the implementation of higher-order shape functions is the recurrent
de�nition

L0(x) = 1; (1.40)

L1(x) = x;

Lk(x) =
2k � 1

k
xLk�1(x) �

k � 1

k
Lk�2(x); k = 2; 3; : : : ;

but they can be de�ned also by the di�erential relation

Lk(x) =
1

2kk!

dk

dxk
�
x2 � 1

�k
; for k = 0; 1; 2; : : : : (1.41)

Their orthogonality is exactly speci�ed by

Z 1

�1

Lk(x)Lm(x)dx =

8><
>:

2

2k + 1
for k = m;

0 otherwise:

(1.42)

Each consequent triad of Legendre polynomials obeys the relation

Ln(x) =

�
d

dx
Ln+1(x) �

d

dx
Ln�1(x)

�
; n � 1; (1.43)

and all of them satisfy

Ln(1) = 1; Ln(�1) = (�1)n; n � 0: (1.44)
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The Legendre expansion of a function u 2 L2(I) has the form

u(x) =
1X
n=0

cnLn(x); (1.45)

which is understood as

lim
k!1

ku�

kX
n=0

cnLn(x)kL2(I) = 0: (1.46)

The coeÆcients cn are computed using the relation

cn =
2n+ 1

2

Z 1

�1

u(x)Ln(x): (1.47)

It is not diÆcult to obtain explicit formulae for Legendre and also other sets of
orthogonal polynomials up to very high orders using standard mathematical
software. Let us list a few Legendre polynomials as a reference for computer
implementation.

L0(x) = 1; (1.48)

L1(x) = x;

L2(x) =
3

2
x2 �

1

2
;

L3(x) =
1

2
x(5x2 � 3);

L4(x) =
1

8
(35x4 � 30x2 + 3);

L5(x) =
1

8
x(63x4 � 70x2 + 15);

L6(x) =
1

16
(231x6 � 315x4 + 105x2 � 5);

L7(x) =
1

16
x(429x6 � 693x4 + 315x2 � 35);

L8(x) =
1

128
(6435x8 � 12012x6 + 6930x4 � 1260x2 + 35);

L9(x) =
1

128
x(12155x8 � 25740x6 + 18018x4 � 4620x2 + 315);

L10(x) =
1

256
(46189x10 � 109395x8 + 90090x6 � 30030x4 + 3465x2 � 63):

The functions L0; L1; : : : ; L9 are illustrated in Figures 1.9 { 1.13.
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FIGURE 1.9: Legendre polynomials L0; L1.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

FIGURE 1.10: Legendre polynomials L2; L3.
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FIGURE 1.11: Legendre polynomials L4; L5.
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FIGURE 1.12: Legendre polynomials L6; L7.
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FIGURE 1.13: Legendre polynomials L8; L9.
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1.2.3 Lobatto shape functions

Let us de�ne functions

l0(x) =
1� x

2
; l1(x) =

x+ 1

2
; (1.49)

lk(x) =
1

kLk�1k2

Z x

�1

Lk�1(�) d�; 2 � k;

where kLk�1k2 =
p
2=(2k � 1) from (1.42). Obviously lk(�1) = 0, k =

2; 3; : : :. It follows from the orthogonality of higher-order Legendre polynomi-
als Lk to L0 � 1, Z 1

�1

Lk(x) dx = 0; k � 1; (1.50)

that also lk(1) = 0, k = 2; 3; : : :. The Lobatto shape functions l0; l1; l2; : : : ; lp
form a complete basis of the space Pp(�1; 1) of polynomials of the order of at
most p in the interval (�1; 1). Let us list some of them for reference:

l2(x) =
1

2

r
3

2
(x2 � 1); (1.51)

l3(x) =
1

2

r
5

2
(x2 � 1)x;

l4(x) =
1

8

r
7

2
(x2 � 1)(5x2 � 1);

l5(x) =
1

8

r
9

2
(x2 � 1)(7x2 � 3)x;

l6(x) =
1

16

r
11

2
(x2 � 1)(21x4 � 14x2 + 1);

l7(x) =
1

16

r
13

2
(x2 � 1)(33x4 � 30x2 + 5)x;

l8(x) =
1

128

r
15

2
(x2 � 1)(429x6 � 495x4 + 135x2 � 5);

l9(x) =
1

128

r
17

2
(x2 � 1)(715x6 � 1001x4 + 385x2 � 35)x;

l10(x) =
1

256

r
19

2
(x2 � 1)(2431x8 � 4004x6 + 2002x4 � 308x2 + 7):

The Lobatto shape functions will play an essential role in the design of hier-
archic shape functions in Chapter 2. Some of them are illustrated in Figures
1.14 { 1.18 (notice the di�erent scales).
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FIGURE 1.14: Lobatto shape functions l0; l1.
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FIGURE 1.15: Lobatto shape functions l2; l3.
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FIGURE 1.16: Lobatto shape functions l4; l5.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1 -0.5 0 0.5 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1 -0.5 0 0.5 1

FIGURE 1.17: Lobatto shape functions l6; l7.
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FIGURE 1.18: Lobatto shape functions l8; l9.
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1.2.4 Kernel functions

For future use it is convenient to decompose the higher-order Lobatto shape
functions l2; l3; : : : into products of the form

lk(x) = l0(x)l1(x)�k�2(x); 2 � k: (1.52)

Since all functions lk, 2 � k vanish at �1, the kernel functions �k�2, k =
2; 3; : : : are polynomials of the order k � 2. Let us list the following,

�0(x) = �2

r
3

2
; (1.53)

�1(x) = �2

r
5

2
x;

�2(x) = �
1

2

r
7

2
(5x2 � 1);

�3(x) = �
1

2

r
9

2
(7x2 � 3)x;

�4(x) = �
1

4

r
11

2
(21x4 � 14x2 + 1);

�5(x) = �
1

4

r
13

2
(33x4 � 30x2 + 5)x;

�6(x) = �
1

32

r
15

2
(429x6 � 495x4 + 135x2 � 5);

�7(x) = �
1

32

r
17

2
(715x6 � 1001x4 + 385x2 � 35)x;

�8(x) = �
1

64

r
19

2
(2431x8 � 4004x6 + 2002x4 � 308x2 + 7);

...

The kernel functions �0; �1; : : : will be used for the de�nition of higher-order
hierarchic shape functions on triangular, tetrahedral and prismatic elements
in Chapter 2.

1.2.5 Horner's algorithm for higher-order polynomials

An attempt to implement the formulae (1.48), (1.51) and (1.53) in the same
form as they are written on paper could cause signi�cant roundo� errors for
higher polynomial orders. Here is a simple explanation of what would happen.
Recall that a oating point operand is stored in the form of a mantisa and

exponent. As long as the number of decimal digits does not exceed the length
of mantisa, no information is lost. Therefore we can have both extremely large
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and extremely small numbers stored exactly. However, problems arise when
summation is involved, as operands are set to have the same exponent, and
digits stored in the mantisa are shifted (to the right if exponent is increased, or
to the left if it is decreased). In either case digits get lost when the di�erence
between the exponents is large.
For the evaluation of higher-order polynomials this means that we should

avoid direct summation of contribution of the form axn, bxm where the powers
m and n signi�cantly di�er. One of the standard ways to avoid these problems
(sometimes called Horner's algorithm) is to transform the polynomials into
the form

MX
n=0

anx
n = a0 + x(a1 + x(a2 + x(a3 + : : :))): (1.54)

A simple concrete example would be

a0 + a1x
2 + a2x

4 + a3x
6 = a0 + x2(a1 + x2(a2 + a3x

2)): (1.55)

Moreover, computer summation takes less time than computer multiplication
and is therefore a more eÆcient means to evaluate higher-order polynomials.

1.3 A one-dimensional example

The technical simplicity of the one-dimensional situation allows us to present
the higher-order discretization procedure in detail. Let us begin with the for-
mulation of a simple model problem.

1.3.1 Continuous and discrete problem

Consider an interval I = (a; b) � IR and a load function f 2 L2(I). We will
solve the Poisson equation

�u00(x) = f(x) (1.56)

in I , equipped with nonhomogeneous Dirichlet boundary conditions

u(a) = ga; (1.57)

u(b) = gb:

We proceed according to Paragraph 1.1.6. First notice that functions satis-
fying conditions (1.57) cannot constitute a vector space. This would be the
case with zero Dirichlet boundary conditions; however, now the sum of two
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functions satisfying (1.57) does not satisfy it anymore. Therefore we have to
decompose the sought function u into

u(x) = u�(x) + �u(x); (1.58)

where the Dirichlet lift u� 2 H1(a; b) satis�es the boundary conditions (1.57),

u�(a) = ga; (1.59)

u�(b) = gb;

and the function �u, satisfying homogeneous Dirichlet boundary conditions

�u(a) = �u(b) = 0; (1.60)

is the unknown part of the solution u. The function �u already can be sought
in a linear function space, namely

V = H1
0 (a; b): (1.61)

Hence, the task is to �nd a function �u 2 V satisfying the variational formula-
tion

Z b

a

[u�(x) + �u(x)]0v0(x)dx =

Z b

a

f(x)v(x)dx for all v 2 V: (1.62)

This is the same as

Z b

a

(u�)0(x)v0(x)dx+

Z b

a

(�u)0(x)v0(x)dx =

Z b

a

f(x)v(x)dx for all v 2 V

(1.63)
and as

Z b

a

(�u)0(x)v0(x)dx =

Z b

a

f(x)v(x) � (u�)0(x)v0(x)dx for all v 2 V: (1.64)

Discretization of (1.64)

In the next step we specify a �nite element mesh Th;p = fK1;K2; : : : ;KMg
of elements with arbitrary polynomial orders 1 � p1; p2; : : : ; pM . We choose
a reference domain Ka = (�1; 1) and for each element Ki = (xi; xi+1), i =
1; 2; : : : ;M we de�ne an aÆne reference map xKi

: Ka ! Ki,

xKi
(�) = c

(i)
1 + c

(i)
2 �; (1.65)

xKi
(�1) = xi;

xKi
(1) = xi+1:
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Hence it is

c
(i)
1 =

xi + xi+1

2
; c

(i)
2 = JKi

=
xi+1 � xi

2
: (1.66)

The space V is approximated by a subspace

Vh;p = fv 2 V ; vjKi
Æ xKi

2 P pi(Ka) for all i = 1; 2; : : : ;Mg; (1.67)

where (f Æ g)(x) � f(g(x)), of the dimension

N = dim(Vh;p) = M � 1| {z }
�rst�order part

+
MX
i=1

(pi � 1)

| {z }
higher�order part

= �1 +
MX
i=1

pi: (1.68)

Hence, the approximate variational formulation (discrete problem) is

Z b

a

(�uh;p)
0(x)v0h;p(x)dx =

Z b

a

f(x)vh;p(x) � (u�h;p)
0(x)v0h;p(x)dx (1.69)

for all vh;p 2 Vh;p.

Choice of the lift function u�

It is natural to require that the solution uh;p = u�h;p + �uh;p is a polynomial
of the order pi on each element Ki, i = 1; 2; : : : ;M . Since �uh;p 2 Vh;p, this
only can be achieved if the lift function u�h;p is a polynomial of the order pi on
each element Ki as well. In practice one usually selects u�h;p to be as simple
as possible, i.e., as a continuous piecewise-linear function that vanishes in all
interior elements (see Figure 1.19).

xbxx
2 M

a = x
1

g

g

a

b

FIGURE 1.19: Example of a Dirichlet lift function for 1D problems.

In the following we will describe an algorithm that turns (1.69) into a system
of linear algebraic equations.
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1.3.2 Transformation to reference domain

The �rst step toward an eÆcient element-by-element assembly of the dis-
crete problem is to transform the approximate variational formulation (1.69)
elementwise from the mesh Th;p to the reference domain Ka.

Transformation of function values

By �u
(i)
h;p(�) we denote the approximate solution �uh;p, transformed from the

element Ki to the reference domain Ka, i.e.,

�u
(i)
h;p(�) � (�uh;p Æ xKi

)(�) = �uh;p(x)jx=xKi (�): (1.70)

In other words, the function value of �u
(i)
h;p at a reference point � 2 Ka has to

be the same as the function value of �uh;p at its image xKi
(�) 2 Ki.

Transformation of derivatives

One has to be a little more careful when transforming derivatives. The
chain rule yields

[�u
(i)
h;p(�)]

0 = (uh;p Æ xKi
)0(�) = u0h;p(x)jx=xKi (�)JKi

: (1.71)

This means that

[�uh;p]
0(x) =

1

JKi

[�u
(i)
h;p]

0(�); (1.72)

i.e., the derivative of �uh;p at the physical point x = xKi
(�) 2 Ki is expressed

as the derivative of the new function �u
(i)
h;p at the corresponding reference point

� 2 Ka divided by the Jacobian JKi
(which obviously for the aÆne map xKi

is constant).

Transformation of integrals from the variational formulation

The test functions vh;p and their derivatives are transformed analogously.
Using the Substitution Theorem (that produces a factor JKi

behind the inte-
gral sign), it is easy to conclude that

Z
Ki

[�uh;p]
0(x)v0h;p(x)dx =

Z
Ka

1

JKi

[�u
(i)
h;p]

0(�)[�v
(i)
h;p]

0(�) d� for all i = 1; 2; : : : ;M:

(1.73)
The right-hand side is transformed analogously,Z

Ki

f(x)vh;p(x)� (u�h;p)
0(x)v0h;p(x)dx (1.74)

=

Z
Ka

JKi
f (i)(�)v

(i)
h;p(�)�

1

JKi

[u
�(i)
h;p ]

0(�)[v
(i)
h;p]

0(�) d�;
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where f (i)(�) = (f Æ xKi
)(�) and so on.

1.3.3 Higher-order shape functions

Basic ideas of the design of nodal and hierarchic elements were revisited in
Paragraph 1.1.2. The one-dimensional model problem o�ers a good chance
to look in more detail at both the nodal and hierarchic shape functions and
their conditioning properties.

Nodal higher-order shape functions

Consider an element Ki of the polynomial order pi. For simplicity we
distribute the nodal points equidistantly, i.e., we de�ne

Xj+1 = �1 +
2j

pi
2 Ka; j = 0; 1; : : : ; pi: (1.75)

Exploiting the Lagrange interpolation polynomial and the Æ-property (1.6),
we obtain the pi + 1 nodal functions of the order pi of the form

�i(�) =

Y
1�j�pi+1;j 6=i

(� �Xj)

Y
1�j�pi+1;j 6=i

(Xi �Xj)
: (1.76)

For piecewise linear approximations (pi = 1) there are two points X1 = �1,
X2 = 1, and the two linear (aÆne) shape functions have the form

�1(�) =
1� �

2
; �2(�) =

� + 1

2
: (1.77)

Complete sets of nodal shape functions for pi = 2 and pi = 3 are illustrated
in Figures 1.20 and 1.21.

ξ

2 31
1

0 1−1

θ θ θ

FIGURE 1.20: Quadratic nodal shape functions.
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ξ

1 2 3 4
1θ θ θ θ

1−1

FIGURE 1.21: Cubic nodal shape functions.

These shape functions are advantageous from the point of view that the cor-
responding unknown coeÆcients, obtained from the solution of the discrete
problem, directly represent the value of the approximate solution uh;p at the
geometrical nodes Xi. On the other hand they are not hierarchic and thus
one has to replace the whole set of shape functions when increasing the poly-
nomial order of elements. Further, in higher spatial dimensions it is diÆcult
to combine nodal elements with various polynomial orders in the mesh and
therefore they are not suitable for p- and hp-adaptivity. With simple choices
of nodal points these shape functions yield ill-conditioned sti�ness matrices.

Hierarchic higher-order shape functions

As mentioned in Paragraph 1.1.2, by hierarchic we mean that the basis
Bp+1 of the polynomial space Pp+1(Ka) is obtained from the basis Bp of the
polynomial space Pp(Ka) by adding new shape functions only. Particularly
in 1D we add always a single (p + 1)th-order shape function to the previous
basis only. This is essential for p- and hp-adaptive �nite element codes since
one does not have to change his shape functions completely when increasing
the order of polynomial approximation. Among hierarchic shape functions,
one of the most popular choices is Lobatto shape functions (integrated Legen-
dre polynomials) l0; l1; : : : that we introduced in Section 1.2. Their excellent
conditioning properties are rooted in the fact that their derivatives are (nor-
malized) Legendre polynomials, and thus that their H1

0 -product satis�es

Z 1

�1

l0i�1(�)l
0
j�1(�) d� = 0 whenever i > 2 or j > 2; i 6= j: (1.78)

DEFINITION 1.9 (Master element sti�ness matrix) Let �1, �2, : : :,
�p+1 be a basis in the polynomial space P p(Ka). Then the master element
sti�ness matrix of order p corresponding to the problem (1.56), i.e., to the
Laplace operator in 1D, is a (p+ 1)� (p+ 1) matrix of the form
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Ŝ = fŝijg
p+1
i;j=1; ŝij =

Z
Ka

�0i(�)�
0
j(�) d�: (1.79)

REMARK 1.10 (Role of master element sti�ness matrix) It was
shown in Paragraph 1.3.2 that sti�ness integrals from the variational formu-
lation, transformed from an element Ki 2 Th;p to the reference interval Ka,
keep their original form up to the multiplication by an element-dependent
constant (which was the inverse Jacobian of the aÆne map xKi

). Thus, all
integrals, which are needed for the assembly of the global sti�ness matrix, are
available in the master element sti�ness matrix. This essentially reduces the
cost of the computation.

Unfortunately the master element sti�ness matrix cannot be exploited in
this way when the operator in the variational formulation is explicitly space-
dependent (consider, e.g., the operator ~L(u) = ((1 + x)u0)0 instead of the
Laplace operator L(u) = u00).

Master element sti�ness matrices can also be utilized in the same way in 2D
and 3D when the reference maps are aÆne. Sti�ness contributions of elements
which are equipped with other than aÆne reference maps must be physically
integrated on every mesh element.

The relation (1.78) implies that the master element sti�ness matrix Ŝ of
the order p for the Lobatto shape functions l0; l1; : : : ; lp looks like

Ŝ =

0
BBBBBBBB@

ŝ11 ŝ12 0 0 : : : 0

ŝ21 ŝ22 0 0
...

0 0 ŝ33 0

0 0 0
. . .

... 0
0 : : : 0 ŝp+1;p+1

1
CCCCCCCCA
: (1.80)

The only nonzero nondiagonal entries correspond to products of the �rst-order
shape functions l0; l1. This sparse structure is what makes the Lobatto shape
functions so popular for the discretization of problems involving the Laplace
operator.

DEFINITION 1.10 (Condition number) Let M be a regular n � n
matrix. The product

{(M ) = kMkkM�1k; (1.81)

where k : k is a matrix norm, is called the condition number of the matrix M
(relative to the norm k : k).
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REMARK 1.11 (Spectral condition number) The matrix norm k : k in
De�nition 1.10 can be chosen in many di�erent ways. Most commonly used
are the Euclidean (Frobenius) norm

kMk =

vuut nX
i=1

nX
j=1

m2
ij (1.82)

and the spectral norm

kMk =

q
�(MMT ); (1.83)

where �(MMT ) is the spectral radius (i.e., the largest eigenvalue) of the
symmetric positive de�nite matrix MMT .
Using the spectral norm (1.83), one arrives at the frequently used spectral

(Todd) condition number

1 � {
�(M ) =

max�2�(M ) j�j

min�2�(M ) j�j
; (1.84)

(see, e.g., [195]) where �(M ) is the spectrum (set of all eigenvalues) of the
matrix M . It holds

{
�(M) � {(M )

for any other matrix norm. It is a widely known fact that the performance of
solvers for systems of linear algebraic equations improves in accordance with
lower condition numbers of the solved matrices.

Example 1.5 (Conditioning properties of various types of shape functions)
Conditioning of the master element sti�ness matrix is used as an orientation
factor for the selection of optimal shape functions. Let us return to the Laplace
operator in one spatial dimension. To illustrate the importance of a good
choice of shape functions, in addition to the nodal shape functions (1.76) and
Lobatto shape functions (1.49) consider a set of hierarchic shape functions of
the simple form

�1(�) =
1� �

2
; (1.85)

�2(�) =
1 + �

2
;

�k(�) =
(1� �)k�1(1 + �)

4
:

Figure 1.22 compares the conditioning of the corresponding master element
sti�ness matrices. More precisely, for p = 2; 3; : : : ; 10 we depict the spectral

© 2004 by Chapman & Hall/CRC



36 Higher-Order Finite Element Methods

condition number of the submatrix of the master element sti�ness matrix,
corresponding to the bubble functions only (the master element sti�ness ma-
trix itself corresponds to the solution of the original problem using one single
element and no boundary conditions, and obviously it is singular).

1

100

10000

1e+06

1e+08

1e+10

1e+12

2 3 4 5 6 7 8 9 10

’SIMPLE’
’NODAL’

’INT-LEGENDRE’
’LOBATTO’

FIGURE 1.22: Conditioning of master element sti�ness matrices for the
simple shape functions (1.85), nodal shape functions (1.76), integrated Legen-
dre polynomial (without normalization) and �nally Lobatto shape functions
(1.49), in this order. Notice that the scale is decimal logarithmic.

For the sake of completeness let us add that, unfortunately, conditioning pro-
perties of bubble functions get worse in higher spatial dimensions. The case
{ � 1 is idealistic and only true for the Lobatto shape functions in 1D.

REMARK 1.12 (Invariance of the condition number) The condition
numbers of (bubble-submatrices of) the master element sti�ness matrices,
shown in Figure 1.22, are invariant with respect to permutation of indices of
bubble functions. To see this, it is suÆcient to consider a permutation that
exchanges the indices k; l in a pair of bubble functions �k and �l only. In this
case it easily follows from the de�nition that all eigenvalues of the new matrix
will be the same, and the new eigenvectors will be obtained from the original
ones by switching their kth and lth components.
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1.3.4 Design of basis functions

Both sets of the nodal and hierarchic higher-order shape functions that we
have introduced in Paragraph 1.3.3 consist of vertex and bubble shape func-
tions. The vertex shape functions are nonzero at one of the endpoints of the
reference interval Ka = (�1; 1) and vanish at the other (in the hierarchic case
these are l0 and l1, in the nodal case �1 and �p+1). The rest are bubble shape
functions that vanish at both endpoints. Accordingly, the basis functions of
the space Vh;p will be split into vertex and bubble functions.

Vertex basis functions

The vertex functions are related to grid points and their support consists
of two neighboring elements. Consider a grid point xi+1 and the adjacent ele-
mentsKi;Ki+1. In the hierarchic case the corresponding vertex basis function
vi is de�ned as

vi(x) =

8<
:
(l1 Æ x

�1
Ki
)(x); x 2 Ki;

(l0 Æ x
�1
Ki+1

)(x); x 2 Ki+1:
(1.86)

These functions are sometimes called \hat functions" (see Figure 1.23).

a x x
i i+1 KK

i i+1
i+2

v
i

xbx

FIGURE 1.23: Vertex basis functions vi of the space Vh;p in the hierarchic
case.

In the context of nodal elements the vertex basis functions are de�ned as

vi(x) =

8<
:
(�p+1 Æ x

�1
Ki
)(x); x 2 Ki;

(�1 Æ x
�1
Ki+1

)(x); x 2 Ki+1:
(1.87)

Here p is the polynomial order associated with both the elements Ki and
Ki+1. An example of a quadratic nodal vertex basis function is depicted in
Figure 1.24.
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b x

i
v

i+2
i+1i

K Ki+1i
xxxa

FIGURE 1.24: Vertex nodal basis functions vi of the space Vh;p for
piecewise-quadratic approximations.

Bubble basis functions

Bubble basis functions for an element Ki of pth order are de�ned analo-
gously as a composition of bubble shape functions and the inverse map x�1Ki

.
In the hierarchic case one uses the bubble shape functions l2; l3; : : : ; lp, and
in the nodal case the bubble shape functions �2; �3; : : : ; �p. Examples of hi-
erarchic quadratic and cubic bubble functions are shown in Figures 1.25 and
1.26.

i
K

i
x ba

i+1
x x

FIGURE 1.25: An example of a hierarchic quadratic bubble basis function.

i
K x

i+1i
x ba x

FIGURE 1.26: An example of a hierarchic cubic bubble basis function.
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1.3.5 Sparsity structure and connectivity

It is widely known that when indexing the grid points in the interval
I = (a; b) consecutively from the left to the right, the global sti�ness ma-
trix for piecewise-linear approximations is tridiagonal, analogously to �nite
di�erence schemes. This analogy between �rst-order �nite elements and �-
nite di�erences extends to 2D and 3D when using Cartesian grids. However,
higher-order �nite elements in 1D and already �rst-order FE discretizations
on unstructured meshes in 2D and 3D yield general sparse structures.

Enumeration of basis functions of Vh;p

The sparsity structure of the sti�ness matrix is uniquely determined by the
ordering of the basis functions of the space Vh;p. Generally one is free to in-
dex the basis functions in any way she/he wishes; however, from the point of
view of compatibility between �rst- and higher-order approximations it is rea-
sonable to put the vertex functions according to consecutively denumerated
grid points �rst. After that, all higher-order basis functions can be denumer-
ated consecutively within elements according to their polynomial order, one
element at a time.

Connectivity information

The connectivity information is a data construction which for each element
Ki links the master element shape functions l0; l1; l2; : : : to the basis functions
v1; v2; : : : ; vN � Vh;p in the �nite element mesh (let us work with Lobatto
shape functions for instance). These data are stored elementwise and their
actual amount depends on the needs (and sophistication) of the assembling
algorithm. The simplest option, which surely is not the most eÆcient one
possible, is to store for each mesh element Ki an integer index array ci of the
length pi + 1, where pi is the order of approximation on Ki. This array is
�lled with the indices of basis functions of Vh;p, which are related to shape
functions l0; l1; : : : ; lpi on Ki:

l0 : : : ci;1

l1 : : : ci;2

l2 : : : ci;3

... (1.88)

lpi : : : ci;pi+1

We may use here, e.g., �1 instead of an index in order to indicate that
a shape function is not related to any basis function because of a Dirichlet
boundary condition.
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Example 1.6 (Connectivity information)

Consider a mesh Th;p consisting of three elements K1;K2 and K3 of polyno-
mial orders p1 = 3, p2 = 4 and p3 = 2. Let us look at connectivity data
for a discretization with zero Dirichlet boundary conditions on both interval
endpoints.
In this case the dimension of the space Vh;p is N = 8 and the element

connectivity arrays look like the following:

K1 : : : c1 = f�1; 1; 3; 4g;

K2 : : : c2 = f1; 2; 5; 6; 7g;

K3 : : : c3 = f2;�1; 8g:

The components of these index arrays are related to the shape functions
l0; l1; l2; : : : in this order. In this case c1;1 = c3;2 = �1 means that the shape
function l0 on element K1 and shape function l1 on element K3 are not used
due to the Dirichlet boundary conditions.

Let us show a general algorithm that de�nes connectivity information in 1D
for various types of boundary conditions at the interval endpoints x1 = a
and xM+1 = b, and for an arbitrary distribution of the polynomial orders pi,
i = 1; 2; : : : ;M .

ALGORITHM 1.1 (Preparing connectivity data in 1D)

1. counter := 1
2. First-order basis functions of the element K1:
if(Dirichlet boundary condition at a) then c1;1 := �1
else c1;1 := counter; counter := counter + 1
Shape function l1 for K1 corresponds to vcounter:
c1;2 := counter
3. Loop over elements K2;K3; : : : ;KM�1 indexing hat functions:
for(k = 2 to M � 1) do f
(global index for l0:) ck;1 := counter; counter := counter + 1
(global index for l1:) ck;2 := counter

g
4. First-order basis functions of the element KM :
Shape function l0 for KM corresponds to vcounter:
cM;1 := counter; counter := counter + 1
if(Dirichlet boundary condition at b) then cM;2 := �1
else cM;2 := counter; counter := counter + 1
5. Loop over all elements indexing higher-order basis functions:
for(k = 1 to M) do f
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for(p = 2 to pk) do f
(global index for lp:) ck;p+1 := counter; counter := counter + 1

g
g

Treatment of connectivity information in higher spatial dimensions will be
discussed in detail in Chapter 3.

1.3.6 Assembling algorithm

In higher spatial dimensions we need to store a ag for each element spec-
ifying whether it lies on the boundary or not, and a link to the appropriate
boundary data. This is not necessary in 1D since we know that if �1 is the
�rst entry in the connectivity array, we are on element K1, and we are on
element KM if �1 is its second entry. The algorithm consists basically of
one single loop over all mesh elements K1;K2; : : : ;KM . This is an essential
di�erence with respect to �rst-order discretizations where it is suÆcient to
loop over grid vertices { the �rst-order approach indeed does not generalize
to higher-order schemes.

ALGORITHM 1.2 (Assembling algorithm)

Evaluate the master element sti�ness matrix Ŝ corresponding to the highest
polynomial order in the mesh. If this is not possible, for example because
the operator is explicitly space-dependent, one will have to integrate sti�ness
terms analogous to (1.79) on each mesh element.
Store the Jacobian of the reference map xKi

for each element in the mesh.
Set the matrix S = fsijg

N
i;j=1 zero.

Set the right-hand side vector F = (F1; F2; : : : ; FN )
T zero.

(element loop:) for k = 1; 2; : : : ;M do f
(�rst loop over shape (test) functions:) for i = 1; 2; : : : ; pk + 1 do f
(second loop over shape (basis) functions:) for j = 1; 2; : : : ; pk + 1 do f
put m1 = ck;i (if not �1, this is the global index of a test function

vm1
2 Vh;p, i.e., row in the global sti�ness matrix)
put m2 = ck;j (if not �1, this is the global index of a basis function

vm2
2 Vh;p, i.e., column in the global sti�ness matrix)
if(m1 6= �1 and m2 6= �1) then put sm1;m2

= sm1;m2
+ 1

JKk
ŝi;j

else f (beginning of treatment of Dirichlet bdy. conditions)
if(m1 6= �1 and m2 == �1) then f (the condition m2 == �1

means that the shape functions l0; l1 can represent the Dirichlet lift u�h;p. By
m1 6= �1 we do not allow them to represent test functions from the space
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Vh;p { recall that all functions from the space Vh;p � H1
0 (a; b) must respect

homogeneous Dirichlet bdy. conditions)
if(j == 1) then f (we are on K1 and use gal0(�) for the trans-

formed Dirichlet lift)
put Fm1

= Fm1
�
R
Ka

1
JK1

gal
0
0(�)l

0
i�1(�) d� = Fm1

� 1
JK1

gaŝ1;i

(extra contribution to the right-hand side)
g
else f (now j == 2, we are on KM and use gbl1(�) for the trans-

formed Dirichlet lift)
put Fm1

= Fm1
�
R
Ka

1
JKM

gbl
0
1(�)l

0
i�1(�) d� = Fm1

� 1
JK1

gbŝ2;i

(extra contribution to the right-hand side)
g

g
g (end of treatment of Dirichlet bdy. conditions)

g (end of second loop over shape (basis) functions)
if(m1 6= �1) then put Fm1

= Fm1
+
R
Ka

JKk
~f (k)(�)li�1(�) d� (regular

contribution to the right-hand side)
g (end of �rst loop over shape (test) functions)

g (end of element loop)
(where again ~f (k)(�) = f(xKk

(�))).

The assembling algorithm for 2D and 3D approximations will be introduced
in Chapter 3.

1.3.7 Compressed representation of sparse matrices

There is a well-established compressed format for the representation of
sparse matrices (Compressed Sparse Row (CSR): see, e.g., [72, 156, 169, 193]).
Once one adapts to this format, she/he will be able to �nd many software
packages that will precondition and solve the discrete problem. Let N be the
rank of the matrix S (i.e., the number of unknown coeÆcients of the discrete
problem) and by NNZ denote the number of nonzero entries in S. Virtually
all sparse matrix solvers require that the matrix S is written in the form of
three arrays:

1. Array A of length NNZ: this is a real-valued array containing all
nonzero entries of the matrix S listed from the left to the right, starting
with the �rst and ending with the last row.

2. Array IA of length N+1: this is an integer array, IA[1] = 1. IA[k+1] =
IA[k] + nnzk where nnzk is the number of nonzero entries in the kth
row.

3. Array JA of length NNZ: this is an integer array containing the row-
positions of all entries from array A.
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Chapter 2

Hierarchic master elements
of arbitrary order

The �rst step in the technology of hierarchic higher-order �nite element meth-
ods is to design suitable master elements of arbitrary polynomial order. We
will consider the most commonly used reference domains, equip them with
appropriate scalar and vector-valued polynomial spaces and de�ne hierarchic
higher-order shape functions. Some of the constructions are actually quite ex-
citing, particularly in vector-valued spaces in higher spatial dimensions, but
in each case this chapter is intended merely as a database of formulae rather
than information for systematic study. The reader may �nd it interesting to
read about the De Rham diagram (Section 2.1) which relates the spaces H1,
H(curl), H(div) and L2 by means of di�erential operators, since �nite ele-
ments in these spaces have to respect the diagram as well. Then she/he may
visit a paragraph that discusses a particular �nite element of interest.
The procedure of design of hierarchic elements is a little dull, but one has

to go through the exercise once. The hierarchic shape functions form families
that have to be constructed separately for each reference domain and each
function space, and each time one has to make sure that the shape functions
really constitute a basis. Although very interesting relations among some of
these families exist (see [115]), we con�ne ourselves to our goal, which is to
provide a database of formulae suitable for computer implementation (see also
[183, 184]).

Symbol Description

In the following we will encounter numerous shape functions related to
various types of reference domains and function spaces. It seems that the
only reasonable way to keep this number of de�nitions clear is to establish
a consistent index notation, which is generous enough to cover all signi�cant
di�erences. Sometimes we will have to attach multiple upper and lower indices
to a single symbol. This is done consistently throughout the chapter and the
rest of the book.

K reference domain,

K master element (�nite ele-
ment on a reference domain),

� aÆne coordinates,

' H1-hierarchic scalar shape
functions,

43
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44 Higher-Order Finite Element Methods

 H(curl)-hierarchic vector-
valued shape functions,

 H(div)-hierarchic vector-
valued shape functions,

! scalar shape functions for
L2-conforming approximations,

t unitary tangential vector,

n unitary normal vector,

P scalar polynomial space on
reference domains Ka;Kt;KT (re-
lated to one-dimensional, triangular
and tetrahedral elements),

Q scalar polynomial space on
reference domains Kq ;KB (related
to quadrilateral and brick elements),

W scalar polynomial space
on master elements (H1-conforming
case),

Q vector-valued polynomial
space on master elements (H(curl)-
conforming case),

V vector-valued polynomial
space on master elements (H(div)-
conforming case),

X scalar polynomial space
on master elements (L2-conforming
case).

Indices { letters:

a indicates relation to the ref-
erence interval Ka,

t indicates relation to the ref-
erence triangle Kt,

q indicates relation to the ref-
erence quadrilateral Kq,

T indicates relation to the ref-
erence tetrahedron KT ,
B indicates relation to the ref-
erence brick KB (unless speci�ed
otherwise),
P indicates relation to the ref-
erence prism KP ,
v1; v2; v3 indicates relation to ref-
erence domain vertices,
e1; e2; e3 indicates relation to ref-
erence domain edges,
s1; s2; s3 indicates relation to ref-
erence domain faces,
b indicates relation to ref-
erence domain interior.

Indices { numbers:
1; 2; 3 in the lower index: direc-
tion of approximation,
n (one single number) in the
lower index: enumeration of aÆne
coordinates �, accompanied by an-
other index indicating the element
type,
n (one single number) in the
lower index: polynomial order iden-
tifying a shape function if there is ex-
actly one shape function for each n,
n1; n2 (two numbers) in the lower
index: numbers identifying a shape
function if there are more of them
for each order,
n1; n2; n3 (three numbers) in the
lower index: numbers identifying a
shape function if there are more of
them for each order.

Basic terminology

By locally nonuniform distribution of order of polynomial approximation
we mean that mesh elements adjacent to each other carry di�erent orders of
polynomial approximation. A necessary condition for the implementation of
this feature, which is essential for hp-adaptivity, is the separation of degrees
of freedom into internal (associated with element interior) and external (as-
sociated with element interfaces), and their hierarchic structure. This feature
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makes an essential di�erence with respect to nodal higher-order elements (see
Example 1.3).
Anisotropic p-re�nement of an element means a p-re�nement that results

in di�erent orders of polynomial approximation in various directions. This
will be relevant for quadrilaterals, bricks and prisms (our only elements with
product structure). If the solution, transformed to the reference domain,
exhibits major changes in one axial direction, it is not necessary to increase
both directional orders of approximation { this feature allows for eÆcient
resolution of boundary and internal layers.
By constrained approximation we mean approximation on irregular meshes

(meshes with hanging nodes in the sense of Paragraph 1.1.3). In combination
with anisotropic p-adaptivity, constrained approximation capability is essen-
tial for eÆcient implementation of automatic hp-adaptivity. An introduction
to automatic hp-adaptivity will be given in Chapter 6.

2.1 De Rham diagram

The De Rham diagram is a scheme that relates the function spaces H1,
H(curl), H(div) and L2, as well as �nite elements in these spaces, by means
of di�erential operators. Its essential importance for �nite element methods in
the spacesH(curl) andH(div) has been noticed only recently { �rst probably
by Bossavit [33]. In addition to its role in the design of vector-valued �nite
elements, the diagram forms a mathematical foundation for stability and con-
vergence analysis for Maxwell's equations, problems of acoustics and various
mixed formulations. In particular, there is a strong connection between the
good behavior of edge and face elements and the commuting properties of the
diagram. The diagram has the form

H1 r�!H(curl)
r��! L2; (2.1)

or, alternatively,

H1 r��! H(div)
r��! L2; (2.2)

and extends to

H1 r�!H(curl)
r��! H(div)

r��! L2 (2.3)

in three spatial dimensions.

REMARK 2.1 (Operator r) We use the operator r (nabla) in the
standard sense,
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r =rx =

�
@

@x1
; : : : ;

@

@xd

�T
; (2.4)

where d is the spatial dimension. Recall that

� the inner product of nabla with a vector function v (denoted by r � v)
yields the divergence of v (a scalar quantity),

� r applied to a scalar function v yields its gradient (a vector quantity),

� the cross product of nabla with a vector function v (denoted by r�v)
yields its curl (a vector in 3D and a scalar @v2=@x1 � @v1=@x2 in 2D).

In addition, in 2D we also de�ne the vector-valued curl of a scalar function
v as curl =r� v = (�@v=@�2; @v=@�1).

In the diagram, the range of each of the operators exactly coincides with the
null space of the next operator in the sequence, and the last map is a sur-
jection. All the above versions of the diagram can be restricted to functions
satisfying the homogeneous Dirichlet conditions. In reality the scheme is even
more complex, relating the exact sequences of spaces H1, H(curl), H(div)
and L2 on both continuous and discrete levels by means of appropriate in-
terpolation operators �1, �curl, �div and P (P is simply an L2-projection),
which we will introduce later in Section 3.1.
Recent results by Demkowicz and others [61, 67, 59, 68] show that �nite

elements have to be understood in a more general sense, as sequences of scalar
and vector-valued elements satisfying the De Rham diagram on the discrete
level. Commutativity of the diagram between the continuous and discrete
levels therefore has an essential inuence on stability of �nite element dis-
cretizations in vector-valued spaces.
The De Rham diagram will be discussed in more detail in Chapter 3, when

all the necessary machinery is in place. However, the di�erential operators
from the diagram will be used already in Sections 2.3 and 2.4 to design higher-
order shape functions for H(curl)- and H(div)-conforming �nite elements.

2.2 H1-conforming approximations

The construction of �nite elements of arbitrary order for H1-conforming
approximations is relatively well known, and various options of hierarchic
shape functions for all commonly used reference domains can be found in
several textbooks (see, e.g., [18, 122, 191]) and numerous articles ([8, 20,
22, 15, 19, 21, 67, 62, 66, 64, 162, 185] and others). However, the question
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of the optimal design of shape functions is extremely diÆcult (already the
formulation of optimality criteria is not at all trivial), and very few results
stating any kind of optimality are available. The conditioning of the master
element sti�ness and/or mass matrix is a good indicator of quality of the
shape functions, and we will adopt the same approach in our case as well.
Another reason why we revisit the construction of scalar hierarchic shape

functions once again is that they play an important role in several parts
of the higher-order �nite element technology { they will facilitate the de-
sign of vector-valued �nite elements of arbitrary order in spaces H(curl) and
H(div), we will exploit them in Chapter 3 to give a comprehensive de�nition
of projection-based interpolation operators on hp-meshes, they will be used for
the construction of reference maps, etc. Moreover, we �nd it useful to provide
the reader with some graphic and geometric intuition, which standard journal
papers do not usually include.

2.2.1 One-dimensional master element K1
a

Let us recall the one-dimensional reference interval Ka = (�1; 1) we dealt
with in Section 1.3. In this case the only relevant local order of approximation
is the order 1 � pb in element interior. The master element K1

a = (Ka;Wa;�
1
a)

will be equipped with polynomial space

Wa = Ppb(Ka): (2.5)

By Pp(e) we denote the space of polynomials of the order of at most p, de�ned
on a one-dimensional interval e. The hierarchic basis in Wa consists of vertex
functions

'v1a (�) = �2;a(�) = l0(�); (2.6)

'v2a (�) = �1;a(�) = l1(�);

where �1;a and �2;a are one-dimensional aÆne coordinates, and bubble func-
tions

'bk;a = lk; 2 � k � pb (2.7)

that were de�ned in (1.49). For future reference let us mention that the bubble
functions can be written in the form

'bk;a = �1;a�2;a�k�2(�1;a � �2;a); k = 2; 3; : : : ; pb; (2.8)

using the kernel functions �0; �1; : : : de�ned in (1.52). The latter version will
extend more naturally to triangles and tetrahedra, while (2.7) will be more
suitable for quadrilaterals and bricks. Prisms will require a combination of
both.
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PROPOSITION 2.1
Both sets of functions de�ned in (2.6), (2.8), and in (2.7) represent a hierar-
chic basis for the space Wa, de�ned in (2.5).

PROOF The Lobatto shape functions l0; l1; : : : are linearly independent and
their number is equal to the dimension of the polynomial space.

2.2.2 Quadrilateral master element K1
q

In this paragraph we will design a master element of arbitrary order K1
q on

the reference quadrilateral domain

Kq = f� 2 IR2;�1 < �1; �2 < 1g; (2.9)

depicted in Figure 2.1.

e

2

v
1

e
3

4
e

1

e
2

4
v

v
2

v
3

1

ξ

ξ

1

0 1−1

−1

FIGURE 2.1: The reference quadrilateral Kq.

The reason for the choice (2.9) is that [�1; 1] is the natural interval of de�-
nition of Jacobi polynomials. We will use one-dimensional aÆne coordinates
�j;q , j = 1; : : : ; 4 of the form

�1;q(�1; �2) =
�1 + 1

2
; �2;q(�1; �2) =

1� �1
2

; (2.10)

�3;q(�1; �2) =
�2 + 1

2
; �4;q(�1; �2) =

1� �2
2

:
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To allow for anisotropic p-re�nement of quadrilateral elements, we consider
two local directional polynomial orders of approximation pb;1; pb;2 in element
interior, corresponding to axial directions �1 and �2, respectively. The edges
e1; : : : ; e4 will be assigned local orders of approximation pe1 ; : : : ; pe4 .
The local orders of approximation pb;1; pb;2; pe1 ; : : : ; pe4 originate in the

physical mesh, where they obey the minimum rule for H1-conforming ap-
proximations (the polynomial order assigned to an edge e in the physical
mesh is equal to the minimum of appropriate directional orders in the interior
of adjacent elements).

REMARK 2.2 (Minimum rule for H1-conforming approximations)
The minimum rule splits the global piecewise-polynomial space Vh;p from the
discrete variational formulation (1.22) into a set of local polynomial spaces of
order pi = p(Ki) on all �nite elements Ki 2 Th;p. The polynomial order of
these subspaces coincides with the order of approximation in element interiors.
This is essential, since only in this way can one speak about local polynomial
spaces on �nite elements independently of a concrete choice of shape functions.
Let us be satis�ed with this brief motivation for now { we will return to the
minimum rules in more detail in Paragraph 3.5.5.

On the reference domain the minimum rule imposes that

pe1 ; pe2 � pb;2 and pe3 ; pe4 � pb;1:

These local orders of approximation determine that a �nite element of the
form K1

q = (Kq;Wq ;�
1
q) has to be equipped with a polynomial space

Wq =
�
w 2 Qpb;1;pb;2 ; wjej 2 Ppej (ej); j = 1; : : : ; 4

	
; (2.11)

where

Qp;q = span
n
�i1�

j
2; (�1; �2) 2 Kq; i = 0; : : : ; p; j = 0; : : : ; q

o
: (2.12)

The set of degrees of freedom �1
q will be uniquely identi�ed by the choice of

a basis in Wq .

REMARK 2.3 (Conformity requirements and structure of shape
functions) The space H1 imposes the most severe conformity requirements
{ global continuity of approximation. This constrains the values of approx-
imation at both the element vertices and on the edges. Only functions that
vanish entirely on the element boundary are unconstrained (interior). There-
fore, the hierarchic basis of Wq will be composed of vertex, edge and bubble

functions.
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Vertex functions 'v1q ; : : : ; '
v4
q are assigned to vertices v1; : : : ; v4: '

vj
q is equal

to one at vj and it vanishes at all remaining vertices. These functions are
chosen bilinear in the form

'v1q (�1; �2) = l0(�1)l0(�2); (2.13)

'v2q (�1; �2) = l1(�1)l0(�2);

'v3q (�1; �2) = l1(�1)l1(�2);

'v4q (�1; �2) = l0(�1)l1(�2);

as illustrated in Figure 2.2.

FIGURE 2.2: Vertex functions 'v1q ; : : : ; '
v4
q .

Next we add to the basis of Wq edge functions '
ej
k;q , k = 2; : : : ; pej , j =

1; : : : ; 4. Each function '
ej
k;q is associated with the corresponding (oriented)

edge ej in such a way that a) its trace on ej exactly coincides with the Lobatto
shape function lk and b) its trace vanishes on all remaining edges. We de�ne
them as

'e1k;q(�1; �2) = l0(�1)lk(�2); 2 � k � pe1 ; (2.14)

'e2k;q(�1; �2) = l1(�1)lk(�2); 2 � k � pe2 ;

'e3k;q(�1; �2) = lk(�1)l0(�2); 2 � k � pe3 ;

'e4k;q(�1; �2) = lk(�1)l1(�2); 2 � k � pe4 :

REMARK 2.4 (Decoupling of polynomial orders) This remark is re-
lated to Remark 2.2. Notice that the order of edge functions is limited by the
local orders of approximation pe1 ; : : : ; pe4 assigned to edges (i.e., neither by
pb;1 nor by pb;2). Hence the hierarchic structure of shape functions decouples
the orders of polynomial approximation in the element interior and on the
edges, and adjacent �nite elements in the mesh will be allowed to coexist with
di�erent polynomial orders.

Edge functions present in the basis of the spaceWq when all p
e1 = : : : = pe4 =

6 are depicted in Figures 2.3 { 2.7.
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FIGURE 2.3: Quadratic edge functions 'e12;q; : : : ; '
e4
2;q .

FIGURE 2.4: Cubic edge functions 'e13;q ; : : : ; '
e4
3;q.

FIGURE 2.5: Fourth-order edge functions 'e14;q ; : : : ; '
e4
4;q .

FIGURE 2.6: Fifth-order edge functions 'e15;q ; : : : ; '
e4
5;q.

FIGURE 2.7: Sixth-order edge functions 'e16;q; : : : ; '
e4
6;q .
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REMARK 2.5 The present choice of orientation of edges, following [64], is
advantageous since it minimizes the number of sign factors in the formulae for
edge functions. However, any choice of orientation of edges would be equally
good from the point of view of computer implementation.

REMARK 2.6 In Chapter 3 we will introduce reference maps, which ge-
ometrically relate the reference element with quadrilaterals in the physical
mesh. Each physical mesh edge will then be assigned a unique orientation,
and all edges of physical mesh quadrilaterals will be equipped with an ori-
entation ag, indicating whether the image of the corresponding edge of the
reference domain through the reference map has the same or opposite orien-
tation. Orientation issues both in 2D and 3D will be discussed in more detail
in Chapter 3.

The hierarchic basis of Wq will be completed by adding bubble functions

'bn1;n2;q(�1; �2) = ln1(�1)ln2(�2); 2 � n1 � pb;1; 2 � n2 � pb;2; (2.15)

that vanish everywhere on the boundary of the reference domain. A few
examples of bubble functions are shown in Figures 2.8 { 2.12.

FIGURE 2.8: Quadratic bubble function 'b2;2;q.

FIGURE 2.9: Cubic bubble functions 'b2;3;q , '
b
3;2;q, '

b
3;3;q.
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FIGURE 2.10: Fourth-order bubble functions 'b2;4;q , '
b
4;2;q , '

b
3;4;q, '

b
4;3;q ,

'b4;4;q .

FIGURE 2.11: Fifth-order bubble functions 'b2;5;q, '
b
5;2;q, '

b
3;5;q , '

b
5;3;q ,

'b4;5;q , '
b
5;4;q, '

b
5;5;q .

FIGURE 2.12: Sixth-order bubble functions 'b2;6;q, '
b
6;2;q, '

b
3;6;q , '

b
6;3;q ,

'b4;6;q , '
b
6;4;q, '

b
5;6;q , '

b
6;5;q , '

b
6;6;q.
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Numbers of scalar hierarchic shape functions associated with the master quadri-
lateral K1

q are summarized in Table 2.1.

TABLE 2.1: Scalar hierarchic shape functions of K1
q .

Node Polynomial Number of Number of
type order shape functions nodes

Vertex always 1 4
Edge 2 � pej pej � 1 4

Interior 2 � pb;1; pb;2 (pb;1 � 1)(pb;2 � 1) 1

PROPOSITION 2.2
Shape functions (2.13), (2.14) and (2.15) constitute a hierarchic basis of the
space Wq, de�ned in (2.11).

PROOF Although this is a very simple case, let us introduce a proof for
future reference. All functions (2.13), (2.14) and (2.15) are obviously linearly
independent. Consider a function u 2 W . It is our aim to �nd a unique set
of coeÆcients identifying u as a linear combination of these functions. First,
construct vertex interpolant

uv =
4X
i=1

�vi'viq ;

such that uv(vi) = u(vi) for all i = 1; : : : ; 4. The coeÆcients �vi are unique.
Obviously, (u�uv) vanishes at all vertices, and its trace (u�uv)jej 2 Ppej (ej)
for all j = 1; : : : ; 4.

Next construct edge interpolants

uej =

p
ejX

k=2

�
ej
k;q'

ej
k;q ;

such that uej jej = (u�uv)jej , for all j = 1; : : : ; 4. This is easy because traces
of edge functions '

ej
k;q , 2 � k � pej generate the space Ppej ;0(ej) (space of

one-dimensional polynomials vanishing at endpoints of ej). The coeÆcients
�
ej
k;q are again unique for all k = 2; : : : ; pej , j = 1; : : : ; 3. De�ne the �nal edge

interpolant ue, summing up edge contributions,

ue =

4X
j=1

uej :
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The di�erence u� uv � ue vanishes on all edges. The de�nition (2.11) of the
spaceWq implies that u�uv�ue can be uniquely expressed in terms of bubble
functions 'bn1;n2;q,

u� uv � ue =

pb;1X
n1=2

pb;2X
n2=2

�bn1;n2;q'
b
n1;n2;q

;

which concludes the proof.

REMARK 2.7When the distribution of order of polynomial approximation
in the �nite element mesh is uniform, we have p = pb;1 = pb;2 = pe1 = : : : =
pe4 , and the above introduced basis of Wq reduces to a basis of the standard

space Qp;p: li(�1)lj(�2); 0 � i; j � p, of cardinality card(Qp;p) = (p+ 1)2.

REMARK 2.8 It is easy to write all shape functions in terms of aÆne
coordinates �1;q ; : : : ; �4;q , introduced in (2.10), using the transformation

�1 = �1;q � �2;q ; �2 = �3;q � �4;q :

The advantage of shape functions formulated in terms of aÆne coordinates
rather than by means of spatial variables is that they are invariant with respect
to aÆne transformations of the reference domain. In other words, we do not
need to change the shape functions when adjusting the reference geometry.
In the case of product geometries (quadrilateral, brick) this applies to one-
dimensional aÆne changes in the axial directions only. This aspect becomes
more strongly pronounced in the case of n-simplices (in our case triangles,
tetrahedra).

2.2.3 Triangular master element K1
t

Next in our series of master elements of arbitrary order, K1
t , will be associ-

ated with the reference triangular domain

Kt = f� 2 IR2; �1 < �1; �2; �1 + �2 < 0g; (2.16)

shown in Figure 2.13.

REMARK 2.9 Although other reasonable choices exist (e.g., triangles [0; 0];
[1; 0]; [0; 1] and [�1; 0]; [1; 0]; [0;p3=2]), we prefer (2.16) since it respects the
interval of de�nition of the Jacobi polynomials in both axial directions. The
fact that the geometry contains two edges which are perpendicular to each
other will be advantageous in the H(curl)- and H(div)-conforming cases,
where tangential and normal vectors to edges are part of vector-valued shape
functions.
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FIGURE 2.13: The reference triangle Kt.

The reference geometry (2.16) is equipped with aÆne coordinates

�1;t(�1; �2) =
�2 + 1

2
; �2;t(�1; �2) = ��1 + �2

2
; �3;t(�1; �2) =

�1 + 1

2
: (2.17)

Anisotropic p-re�nement of triangular elements has no practical application,
and therefore we consider one local order of approximation pb in the ele-
ment interior only. Edges e1; : : : ; e3, will be assigned local polynomial orders
pe1 ; : : : ; pe3 . Again, these nonuniform local orders of approximation origi-
nate in the physical mesh, where they have to obey the minimum rule for
H1-conforming approximations (Remark 2.2), which on the reference domain
translates into

pej � pb; j = 1; : : : ; 3:

The local orders pb; pe1 ; : : : ; pe3 , suggest that a �nite element of the form
K1
t = (Kt;Wt;�

1
t ) should carry a polynomial space

Wt =
�
w 2 Ppb(Kt); wjej 2 Ppej (ej); j = 1; : : : ; 3

	
; (2.18)

where

Pp(Kt) = span
n
�i1�

j
2; (�1; �2) 2 Kt; i; j = 0; : : : ; p; i+ j � p

o
: (2.19)

Again the set of degrees of freedom �1
t will be uniquely identi�ed by a choice

of basis of the space Wt. Hierarchic basis of Wt will consist of vertex, edge
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and bubble functions.

Vertex functions 'v1t ; : : : ; '
v3
t are assigned to vertices v1; : : : ; v3: '

vj
t is equal

to one at vj and it vanishes at the remaining two vertices. These functions
are chosen linear in the form illustrated in Figure 2.14,

'v1t (�1; �2) = �2;t(�1; �2); (2.20)

'v2t (�1; �2) = �3;t(�1; �2);

'v3t (�1; �2) = �1;t(�1; �2):

FIGURE 2.14: Vertex functions 'v1t ; : : : ; '
v3
t .

Next we de�ne edge functions '
ej
k;q , k = 2; : : : ; pej , j = 1; : : : ; 3. Again,

traces of edge functions '
ej
k;q , k = 2; : : : ; pej , will coincide with the Lobatto

shape functions l2; l3; : : : on the edge ej , and vanish on all remaining edges.
We can write them in the form

'e1k;t = �2;t�3;t�k�2(�3;t � �2;t); 2 � k � pe1 ; (2.21)

'e2k;t = �3;t�1;t�k�2(�1;t � �3;t); 2 � k � pe2 ;

'e3k;t = �1;t�2;t�k�2(�2;t � �1;t); 2 � k � pe3 :

REMARK 2.10 Here we arrive at a point where the de�nition of the ker-
nel functions �0; �1; : : : from (1.52) is motivated { they make the edge func-
tions coincide exactly with the Lobatto shape functions l2; l3; : : : on the edges,
and keep them constant along lines parallel to the line connecting the edge-
midpoint with the opposite vertex. The product of the two vertex functions
keeps the Lobatto shape functions zero on the remaining edges.
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A few examples of edge functions are shown in Figures 2.15 { 2.19.

FIGURE 2.15: Quadratic edge functions 'e12;t; : : : ; '
e3
2;t.

FIGURE 2.16: Cubic edge functions 'e13;t; : : : ; '
e3
3;t.

FIGURE 2.17: Fourth-order edge functions 'e14;t; : : : ; '
e3
4;t.

FIGURE 2.18: Fifth-order edge functions 'e15;t; : : : ; '
e3
5;t.

FIGURE 2.19: Sixth-order edge functions 'e16;t; : : : ; '
e3
6;t.

© 2004 by Chapman & Hall/CRC



Hierarchic master elements of arbitrary order 59

REMARK 2.11 Traces of vertex and edge functions, associated with the
master elementsK1

q andK1
t , coincide in both cases with the functions l0; l1; l2; : : :

from (1.49). This allows for the combination of quadrilateral and triangular
elements in hybrid meshes in Chapter 3.

The hierarchic basis ofWt will be completed by de�ning bubble functions that
vanish entirely on the element boundary. These functions are internal, and
their choice does not a�ect the compatibility of triangular elements with other
element types in hybrid meshes. A standard approach is to simply combine
aÆne coordinates with varying powers,

'bn1;n2;t = �1;t(�2;t)
n1(�3;t)

n2 ; 1 � n1; n2; n1 + n2 � pb � 1: (2.22)

These bubble functions, up to the sixth order, are shown in Figures 2.20 {
2.21.

FIGURE 2.20: Standard cubic bubble function 'b1;1;t, given by (2.22),

and fourth-order bubble functions 'b1;2;t and '
b
2;1;t from (2.22).

FIGURE 2.21: Standard �fth-order bubble functions 'b1;3;t, '
b
2;2;t and

'b3;1;t given by (2.22).

REMARK 2.12 The reader may notice that bubble functions (2.22) are
constructed in a similar way as the simple hierarchic shape functions (1.85)
in 1D. Their conditioning properties are similarly bad, as we show in Figure
2.25.
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This fact motivates us to de�ne a new set of bubble functions

'bn1;n2;t = �1;t�2;t�3;t�n1�1(�3;t � �2;t)�n2�1(�2;t � �1;t); (2.23)

1 � n1; n2; n1 + n2 � pb � 1. We use the kernel functions (1.52) in order
to incorporate the Lobatto shape functions into their shape. The bubble
functions (2.23) are depicted in Figures 2.22 { 2.24, and the conditioning
properties of the two mentioned sets of bubble functions are compared in
Figure 2.25.

FIGURE 2.22: New cubic bubble function (same as standard) and new
fourth-order bubble functions (2.23) with improved conditioning properties.

FIGURE 2.23: New �fth-order bubble functions (2.23) with improved con-
ditioning properties.

FIGURE 2.24: New sixth-order bubble functions (2.23) with improved
conditioning properties.
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FIGURE 2.25: Conditioning of master element sti�ness matrix (of the
Laplace operator) for the standard bubble functions (2.22) and the new bub-
ble functions (2.23) in decimal logarithmic scale. The curve in between cor-
responds to the new bubble functions, using integrated Legendre polynomials
instead of the Lobatto shape functions (i.e., with the normalization constant
in (1.49) neglected). The curve indicates that the role of the normalization
becomes signi�cant as the polynomial order grows.

REMARK 2.13 For future reference, let us mention that the bubble func-
tions (2.23) can also be viewed as oriented. They can be written as

'bn1;n2;t = �A�B�C�n1�1(�B � �A)�n2�1(�A � �C);

1 � n1; n2; n1+n2 � pb�1, where �A; �B ; �C are aÆne coordinates, ordered
in such a way that �A(v1) = �B(v2) = �C(v3) = 1. Such orientation will be
imposed to triangular faces in 3D, in order to facilitate the construction of
globally conforming basis functions in physical tetrahedral and hybrid tetra-
hedral/prismatic meshes. Algorithmic treatment of orientation information
will be discussed in more detail in Chapter 3.

Table 2.2 quanti�es numbers of hierarchic shape functions in the basis of the
space Wt.

PROPOSITION 2.3
Shape functions (2.20), (2.21) and (2.23) provide a hierarchic basis of the
space Wt, de�ned in (2.18).
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TABLE 2.2: Scalar hierarchic shape functions of K1
t .

Node Polynomial Number of Number of
type order shape functions nodes

Vertex always 1 3
Edge 2 � pej pej � 1 3

Interior 3 � pb (pb � 1)(pb � 2)=2 1

PROOF The proof is very similar to the previous quadrilateral case. Verify

1. that all shape functions are linearly independent,

2. that they all belong to the space Wt,

3. and �nally that their number matches the dimension of the space Wt.

This accomplishes the proof.

2.2.4 Brick master element K1
B

The �rst three-dimensional master element of arbitrary order, K1
B , will be

associated with the reference brick domain

KB = f� 2 IR3; �1 < �1; �2; �3 < 1g; (2.24)

depicted in Figure 2.26.
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FIGURE 2.26: The reference brick KB .
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REMARK 2.14 This geometry is convenient for our purposes since it re-
spects the interval of de�nition of the Jacobi polynomials in all three spatial
directions. The one-dimensional aÆne coordinates appropriate for the geom-
etry (2.24) have the form

�1;B(�1; �2; �3) =
�1 + 1

2
; �2;B(�1; �2; �3) =

1� �1
2

; (2.25)

�3;B(�1; �2; �3) =
�2 + 1

2
; �4;B(�1; �2; �3) =

1� �2
2

;

�5;B(�1; �2; �3) =
�3 + 1

2
; �6;B(�1; �2; �3) =

1� �3
2

:

To allow for anisotropic p-re�nement of brick elements, we consider local direc-
tional orders of approximation pb;1; pb;2; pb;3 in element interior (in directions
�1; �2 and �3, respectively).
In 3D there is the added possibility of anisotropic p-re�nement of faces,

for which we need to assign two local directional orders of approximation
psi;1; psi;2 to each face si, i = 1; : : : ; 6. These directional orders are associ-
ated with a local two-dimensional system of coordinates on each face, which
matches an appropriate pair of global coordinate axes in lexicographic order.
With this choice, based on [63], local coordinate axes on faces have the same
orientation as the corresponding global ones, which simpli�es sign-related is-
sues in the formulae for face functions. Edges will be equipped as usual with
local orders of approximation pe1 ; : : : ; pe12 , and their orientation will be used
for the construction of edge functions only.

REMARK 2.15 (Minimum rules in 3D) In 3D the minimum rule (Re-
mark 2.2) limits the local orders of approximation on both edges and faces.
Local (directional) orders on mesh faces are not allowed to exceed the mini-
mum of the (appropriate directional) orders of approximation associated with
the interior of the adjacent elements. Local orders of approximation on mesh
edges are limited by the minimum of all (appropriate directional) orders cor-
responding to faces sharing that edge.

The local orders pb;1; : : : ; pb;3, psi;1; psi;2, i = 1; : : : ; 6, and pe1 ; : : : ; pe12 suggest
that a �nite element of the form K1

B = (KB ;WB ;�
1
B) will be equipped with

polynomial space

WB =
�
w 2 Qpb;1;pb;2;pb;3 ; wjsi 2 Qpsi;1;psi;2 ; wjej 2 Ppej (ej); (2.26)

i = 1; : : : ; 6; j = 1; : : : ; 12g :
Here,
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Qp;q;r = span
n
�i1�

j
2�

k
2 ; (�1; �2; �3) 2 KB ; (2.27)

i = 0; : : : ; p; j = 0; : : : ; q; k = 0; : : : ; rg :

The set of degrees of freedom �1
B will be uniquely identi�ed by a concrete

choice of basis in WB . H1-conformity requirements, constraining function
values at vertices, on edges and on faces, dictate that the hierarchic basis of
space WB will have to comprise vertex, edge, face and bubble functions.

Vertex functions '
vj
B , j = 1; 2; : : : ; 8, are associated with element vertices, and

they provide the complete basis of a spaceWB for lowest-order approximation.
Recall functions l0; l1; : : : from (1.49). Vertex functions will be chosen in a
conventional way, i.e., trilinear in the form

'
vj
B = ld1(�1)ld2(�2)ld3(�3); (2.28)

where

d = (d1; d2; d3) (2.29)

is a vector index, whose components are related to axial directions �1, �2 and
�3, respectively. It is de�ned as follows: consider edges ej1 ; ej2 ; ej3 , containing
the vertex vj , and lying in axial directions �1; �2; �3, respectively. We put
dk = 0 if vj lies on the left of edge ejk (with respect to the axial direction
�k), and dk = 1 otherwise. Notice that the vertex functions '

vj
B are equal to

one at the vertex vj , and vanish at all seven remaining vertices. Their traces
are linear on all edges. The construction of vertex functions is illustrated in
Figure 2.27.

Edge functions '
ej
k;B , j = 1; : : : ; 12, k = 2; 3; : : : ; pej , will be designed in

such a way that the traces of '
ej
k;B to the edge ej match the Lobatto shape

functions l2; : : : ; lpej (representing a basis of polynomial space Ppej ;0(ej)), and
vanish on all remaining edges. Consider a polynomial order k, 2 � k � pej ,
and de�ne index d = (d1; d2; d3) as follows: Put dm = k, where �m is the axis
parallel to ej . The remaining two components are set to either zero or one,
depending on whether the edge lies on the left or right side of the reference
brick, with respect to the remaining two axial directions. An edge function
'
ej
k;B of order k is de�ned by

'
ej
k;B = ld1(�1)ld2(�2)ld3(�3); (2.30)

as illustrated in Figure 2.28.

Face functions 'sin1;n2;B , 2 � n1 � psi;1, 2 � n2 � psi;2, corresponding
to a face si, i = 1; : : : ; 6, will be constructed to have a trace of directional
polynomial orders n1; n2 on the face si (with respect to its local coordinate
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FIGURE 2.27: Vertex function 'v1B = l0(�1)l0(�2)l0(�3), associated with
the vertex v1 (in this case d = (0; 0; 0)), equals one at v1. It vanishes com-
pletely on the faces s2, s4 and s6, and thus in particular at all remaining
vertices as well.
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FIGURE 2.28: Edge function 'e1n;B = ln(�1)l0(�2)l0(�3), n � 2, associated
with edge e1 (in this case d = (n; 0; 0)), coincides with the Lobatto shape
function ln(�1) on the edge e1. It vanishes completely on faces s1, s2, s4, s6,
and thus in particular also on all remaining edges.
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system speci�ed above), and to vanish on the �ve remaining faces. Appropri-
ate components of the index d = (d1; d2; d3) now contain directional orders
n1; n2, and the remaining component is set to either zero or one, depending
on whether the face si lies on the left or right side of the reference brick with
respect to the remaining axial direction. We de�ne

'sin1;n2;B = ld1(�1)ld2(�2)ld3(�3); (2.31)

and illustrate the construction in Figure 2.29.
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FIGURE 2.29: Consider the face s3, and local orders of approximation
2 � n1; n2, in directions �1; �3. To s3 we attach a local coordinate system,
speci�ed by axial directions �1; �3. In this case it is d = (n1; 1; n2). The trace
of the face function 's3n1;n2;B is nonzero on the face e1, and vanishes on all
remaining faces (and obviously on all edges and vertices).

REMARK 2.16 Notice that all face functions sharing the same face sj are
linearly independent, and obviously linearly independent of face functions cor-
responding to other faces. Moreover, all of the aforementioned face functions
are linearly independent of edge and vertex functions.

Bubble functions are the last ones to be added into the hierarchic basis of
the space WB . They generate the space Qpb;1;pb;2;pb;3;0 of polynomials of di-

© 2004 by Chapman & Hall/CRC



Hierarchic master elements of arbitrary order 67

rectional orders at most pb;j in axial directions �j , j = 1; : : : ; 3, that vanish
everywhere on the boundary of the reference brick KB ,

'bn1;n2;n3;B = ld1(�1)ld2(�2)ld3(�3); 2 � dj � pb;j ; j = 1; : : : ; 3: (2.32)

Numbers of hierarchic shape functions in the basis of the space WB are pre-
sented in Table 2.3.

TABLE 2.3: Scalar hierarchic shape functions of K1
B .

Node Polynomial Number of Number of
type order shape functions nodes

Vertex always 1 8
Edge 2 � pej pej � 1 12
Face 2 � psi;1; psi;2 (psi;1 � 1)(psi;2 � 1) 6

Interior 2 � pb;1; pb;2; pb;3 (pb;1 � 1)(pb;2 � 1)(pb;3 � 1) 1

PROPOSITION 2.4
Shape functions (2.28), (2.30), (2.31) and (2.32) constitute a hierarchic basis
of the space WB , de�ned in (2.26).

PROOF All functions given by (2.28), (2.30), (2.31) and (2.32) are obviously
linearly independent. It is easy to see that they generate the space WB .
Consider a function u 2WB , and express it as a unique linear combination of
the basis functions. In other words, begin with constructing a unique vertex
interpolant uv, followed by a unique edge interpolant ue of u� uv, and then
a unique face interpolant us of u � uv � ue. Finally, show that function
u � uv � ue � us can be uniquely expressed by means of bubble functions
(2.32).

REMARK 2.17When the distribution of order of polynomial approximation
in the �nite element mesh is uniform (p = pb;i = psj ;k = pem for all i; j; k;m),
the above introduced basis of WB reduces to a basis

ld1(�1)ld2(�2)ld3(�3); 0 � d1; d2; d3 � p;

of the standard space Qp;p;p of cardinality card(Qp;p;p) = (p+ 1)3.
All of the above hierarchic shape functions can be expressed in terms of

aÆne coordinates (2.25), using the transformation �1 = �1;B � �2;B ; �2 =

�3;B � �4;B ; �3 = �5;B � �6;B .
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2.2.5 Tetrahedral master element K1
T

Next we design a master element of arbitrary order K1
T on the reference

tetrahedral domain

KT = f� 2 IR3; �1 < �1; �2; �3; �1 + �2 + �3 < �1g; (2.33)

shown in Figure 2.30.
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FIGURE 2.30: The reference tetrahedron KT .

REMARK 2.18 The reference geometry (2.33) is optimal from the point of
view that its faces s2, s3 and s4 exactly match the geometry of the reference
triangle Kt (Figure 2.13), and, moreover, are perpendicular to each other.
Corresponding aÆne coordinates have the form

�1;T (�1; �2; �3) =
�2 + 1

2
; (2.34)

�2;T (�1; �2; �3) = �1 + �1 + �2 + �3
2

;

�3;T (�1; �2; �3) =
�1 + 1

2
;

�4;T (�1; �2; �3) =
�3 + 1

2
:
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Consider a local order of approximation pb in the element interior, local poly-
nomial orders psi , i = 1; : : : ; 4, associated with each face, and standard local
orders pej , j = 1; : : : ; 6, associated with each edge. These nonuniform local
orders of approximation again have to be compatible with the minimum rule
for H1-conforming approximations in 3D introduced in Paragraph 2.2.4.
The local orders pb; ps1 ; : : : ; ps4 ; pe1 ; : : : ; pe4 , suggest that a �nite element

of the form K1
T = (KT ;WT ;�

1
T ) will be equipped with polynomial space

WT =
�
w 2 Ppb(KT ); wjsi 2 Ppsi (si); wjej 2 Ppej (ej); (2.35)

i = 1; : : : ; 4; j = 1; : : : ; 6g ;

where

Pp(KT ) = span
n
�i1�

j
2�

k
3 ; i; j; k = 0; : : : ; p; i+ j + k � p

o
: (2.36)

The set of degrees of freedom �1
T will be uniquely identi�ed by a choice of

basis of the space WT . Recall aÆne coordinates �1;T ; : : : ; �4;T from (2.34),
functions l0; l1; : : : from (1.49), and kernel functions �0; �1; : : :, de�ned in
(1.52). Hierarchic basis of WT will again comprise vertex, edge, face and
bubble functions.

Vertex functions 'v1T ; : : : ; '
v4
T are associated with the vertices v1; : : : ; v4: '

vj
T

is equal to one at the vj and vanishes at the remaining three vertices. These
functions are chosen linear in the form

'
vj
T = �j1;T ; j = 1; : : : ; 4: (2.37)

The index j1 corresponds to the only face sj1 that does not contain the vertex
vj . Traces of vertex functions are linear both on the reference tetrahedron
faces and edges, and their construction is illustrated in Figure 2.31.

Edge functions '
ej
k;T , k = 2; : : : ; pej , j = 1; : : : ; 6, appear in the basis of WT

if 2 � pej , and as usual will be constructed so that their traces match the Lo-
batto shape functions l2; : : : ; lpej on edge ej , and vanish on the �ve remaining
edges. Orientation of edges will be incorporated into their de�nition. Let us
consider an oriented edge ej = vi1vi2 . By sj1 ; sj2 , denote faces of the reference
domain that share with the edge ej a single vertex vi1 and vi2 , respectively,
and de�ne

'
ej
k;T = �j1 ;T�j2;T�k�2(�j1 ;T � �j2;T ); 2 � k � pej : (2.38)

The construction of edge functions is illustrated in Figure 2.32.
Face functions associated with faces si, i = 1; : : : ; 4, will be present in the

basis of WT if 3 � psi . They will be constructed to have nonzero traces of
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FIGURE 2.31: Vertex function 'v4T (a) is equal to one at the vertex v4,
and (b) vanishes everywhere on the face s4 (and thus in particular at vertices
v1; v2; v3).
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FIGURE 2.32: Edge functions 'e5n;T , 2 � n, (a, b) vanish on the faces
s4; s3 (�4;T�3;T � 0 on s3; s4), and thus in particular also along all edges
except for e5.

polynomial orders 3 � k � psi on si, and to vanish on all remaining faces.
Before dealing with faces, however, we need to de�ne for each of them a unique
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orientation (which will be independent of the orientation of the edges). This
can be done, e.g., by de�ning a triad of vertices vA; vB ; vC 2 si (�rst, second
and third vertex of face si) in such a way that vA, vC have the lowest and
highest local index, respectively.

This also means that for each face si we have three aÆne coordinates
�A; �B ; �C , such that �A(vA) = �B(vB) = �C(vC) = 1, and can de�ne
(psi � 2)(psi � 1)=2 (oriented) face functions

'sin1;n2;T = �A�B�C�n1�1(�B � �A)�n2�1(�A � �C); (2.39)

1 � n1; n2; n1 + n2 � psi � 1. According to Remark 2.13, traces of these
functions coincide with bubble functions of the master triangle K1

t (possibly
up to an aÆne transformation). Their construction is illustrated in Figure
2.33.
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FIGURE 2.33: Face functions 's1n1;n2;T , 1 � n1; n2; (a, b, c) vanish on
faces s4; s2; s3 (�A�B�C � 0 on s2; s3; s4, where �A = �2;T ; �B = �3;T ; �C =
�4;T ). They have nonzero traces on the face s1.

Bubble functions, vanishing everywhere on the boundary of the reference
tetrahedron, appear in the basis of WT if 4 � pb. The simplest way to obtain
them is as products of vertex functions with varying powers,

'bn1;n2;n3;T = �1;T�
n1
2;T�

n2
3;T�

n3
4;T ;
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1 � n1; n2; n3; n1+n2+n3 � pb�1. However, similarly to the triangular case,
we can improve the conditioning properties of bubble functions by choosing

'bn1;n2;n3;T = �n1�1(�1;T ��2;T )�n2�1(�3;T ��2;T )�n3�1(�4;T ��2;T )
4Y

i=1

�i;T ;

(2.40)
1 � n1; n2; n3; n1 + n2 + n3 � pb � 1 (we refer back to Figure 2.25).

REMARK 2.19 (Nonsymmetry of bubble functions) The fact that
the bubble functions are not symmetric with respect to vertices is widely
known, and we have observed this already in the triangular case. This e�ect
is obviously not very pleasant from the algorithmic point of view, but it does
not inuence the approximation properties of the shape functions.

Numbers of scalar hierarchic shape functions in the basis of the spaceWT are
summarized in Table 2.4.

TABLE 2.4: Scalar hierarchic shape functions of K1
T .

Node Polynomial Number of Number of
type order shape functions nodes

Vertex always 1 4
Edge 2 � pej pej � 1 6
Face 3 � psi (psi � 2)(psi � 1)=2 4

Interior 4 � pb (pb � 3)(pb � 2)(pb � 1)=6 1

PROPOSITION 2.5
Shape functions (2.37), (2.38), (2.39) and (2.40) constitute a hierarchic basis
of the space WT , de�ned in (2.35).

PROOF The same as in the previous cases. Perform three steps: verify that
all shape functions lie in the space WT , that they are linearly independent,
and that their number is equal to the dimension of WT .

REMARK 2.20 Traces of edge functions corresponding to master elements
K1
B and K1

T on edges of the corresponding reference domains KB and KT in
both cases coincide with the Lobatto shape functions l2; l3; : : : given by (1.49).
This, together with the linearity of vertex functions along element edges, is
a good starting point for combining bricks and tetrahedra in hybrid meshes.
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However, still missing is an additional �nite element capable of matching
both quadrilateral and triangular faces. This will be presented in the next
paragraph.

2.2.6 Prismatic master element K1
P

Prismatic elements are most commonly used to connect bricks and tetra-
hedra in hybrid meshes. We choose a reference prismatic geometry in the
product form KP = Kt �Ka,

KP = f� 2 IR3; �1 < �1; �2; �3; �1 + �2 < 0; �3 < 1g; (2.41)

shown in Figure 2.34.
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FIGURE 2.34: The reference prism KP .

REMARK 2.21 The corresponding two- and one-dimensional aÆne coordi-
nates have the form

�1;P (�1; �2; �3) =
�2 + 1

2
; �2;P (�1; �2; �3) = ��1 + �2

2
; (2.42)

�3;P (�1; �2; �3) =
�1 + 1

2
; �4;P (�1; �2; �3) =

�3 + 1

2
;
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�5;P (�1; �2; �3) =
1� �3
2

;

with �1;P ; : : : ; �3;P compatible with �1;t; : : : ; �3;t from the triangular case.

We consider the possibility of anisotropic p-re�nement of prismatic elements,
and therefore assign two local directional orders of approximation pb;1; pb;2 to
the element interior. The order pb;1 corresponds to the plane �1�2 (we will
designate this the planar direction), and pb;2 to the vertical direction �3. There
are three quadrilateral faces si, i = 1; : : : ; 3, which will be equipped with
local directional orders of approximation psi;1; psi;2 (in planar and vertical
direction, respectively). Triangular faces s4; s5 come with one local order
of approximation psi only, i = 4; 5, and local polynomial orders pe1 ; : : : ; pe9

are assigned to edges. As usual, let us mention that these local orders of
approximation originate in the physical mesh, and have to obey the minimum
rule for H1-conforming approximations.
These local orders suggest that a �nite element of the form K1

P = (KP ;WP ;
�1
P ) will be assigned polynomial space

WP =
�
w 2 Rpb;1;pb;2(KP ); wjsi 2 Qpsi;1;psi;2(si) for i = 1; 2; 3; (2.43)

wjsi 2 Ppsi (si) for i = 4; 5; wjej 2 Ppej (ej); j = 1; : : : ; 9g :

Here

Rm1;m2
(KP ) = span f�n11 �n22 �n33 ; (�1; �2; �3) 2 Kt �Ka; (2.44)

0 � n1; n2; n1 + n2 � m1; 0 � n3 � m2g :

Vertex, edge, face and bubble functions will be used to de�ne a suitable H1-
hierarchic basis in the space WP .

Vertex functions '
vj
P , j = 1; 2; : : : ; 6, are, as usual, associated with element

vertices, and they provide a complete basis of WP for lowest-order approxi-
mation. This time we de�ne them as

'
vj
P = �j1;P�j2;P : (2.45)

The indices j1; j2 correspond to the only two faces sj1 ; sj2 of the reference
prism KP that do not contain the vertex vj (recall that an aÆne coordinate
is associated with the face where it entirely vanishes). In the standard sense,
vertex functions '

vj
P are equal to one at vj and vanish at all remaining vertices.

Their traces are linear on all edges. Construction of the vertex functions is
illustrated in Figure 2.35.
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FIGURE 2.35: Vertex function 'v1P is equal to one at the vertex v1, and
vanishes entirely on the faces s2, s5. Thus it vanishes at all remaining vertices.

Edge functions '
ej
k;P , j = 1; : : : ; 9, k = 2; : : : ; pej , will be designed to coin-

cide with the Lobatto shape functions l2; : : : ; lpej on edges ej , j = 1; 2; : : : ; 9,
and will vanish on all remaining edges. Let us choose an (oriented) edge
ej = vi1vi2 . By sj1 ; sj2 we denote the faces of the reference domain KP that
share a single vertex vi1 or vi2 with the edge ej , respectively. Further by sj3
we denote the only face of KP that does not share any vertex with the edge
ej . We add to the basis of WP (oriented) edge functions

'
ej
k;P = �j1;P�j2;P�k�2(�j1;P � �j2;P )�j3;P ; 2 � k � pej : (2.46)

Use relation (1.52) to recognize the Lobatto shape functions in this de�nition.
Construction of the edge functions is illustrated in Figure 2.36.

Triangular face functions, associated with faces si, i = 4; 5, will be designed
to have on si a nonzero trace of local polynomial order k, 3 � k � psi , 1 �
n1; n2; n1+n2 = k�1, and will vanish on all remaining faces. The construction
is practically the same as for tetrahedra. First we equip each triangular face
with a local orientation { we select three vertices vA; vB ; vC 2 si in such a way
that vA; vC have the lowest and highest local index, respectively. For each face
si we therefore have three aÆne coordinates �A; �B ; �C , such that �A(vA) =
�B(vB) = �C(vC) = 1. By �D we denote aÆne coordinate corresponding to
the other triangular face sD , and write (psi � 2)(psi � 1)=2 face functions

'sin1;n2;T = �A�B�C�n1�1(�B � �A)�n2�1(�A � �C)�D ; (2.47)
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FIGURE 2.36: Traces of edge functions 'e1n;P , 2 � n, coincide with the
Lobatto shape functions l2; l3; : : : on the edge e1, and vanish identically on
all faces where the edge e1 is not contained. Thus they also vanish along all
remaining edges.

1 � n1; n2; n1 + n2 � psi � 1.

Quadrilateral face functions, corresponding to faces si, i = 1; : : : ; 3, will
be constructed to have on si a trace of local directional polynomial orders
n1; n2, 2 � n1 � psj ;1, 2 � n2 � psj ;2, and will vanish on all remaining faces.
Local coordinate axes on the faces are now chosen to share direction with the
corresponding horizontal and vertical edges (see Figure 2.34).

There is a unique pair of edges belonging to the face si, both of which
are parallel to the plane �1�2. From this pair we select the (oriented) edge
ej = vj1vj2 belonging to the bottom face s4. Further, by si1 ; si2 we denote the
pair of faces that share a single vertex vj1 or vj2 with the edge ej , respectively.

We can de�ne face functions

'sin1;n2;P = �i1 ;P�i2;P�4;P�5;P�n1�2(�i1;P ��i2;P )�n2�2(�4;P ��5;P ); (2.48)

2 � n1 � psi;1, 2 � n2 � psi;2. The construction of face functions is illus-
trated in Figure 2.37.

Bubble functions as usual vanish everywhere on the boundary of the reference
domain. It will probably come as no surprise that we construct them as
products of bubble functions corresponding to the master triangle K1

t , and
the Lobatto shape functions l2; l3; : : : ; lpb;2 in �3:
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FIGURE 2.37: Quadrilateral face functions 's1n1;n2;P , 2 � n1; n2 are
nonzero on the face s1 and in the element interior. They vanish on all faces
except for s1 and obviously on all edges and vertices as well.

'bn1;n2;n3;P = �1;P�2;P�3;P�n1�1(�3;P � �2;P )�n2�1(�2;P � �1;P )ln3(�3);

(2.49)

1 � n1; n2; n1 + n2 � pb;1 � 1; 2 � n3 � pb;2. Hence the number of bubble
functions is

(pb;1 � 2)(pb;1 � 1)(pb;2 � 1)=2: (2.50)

Numbers of scalar hierarchic shape functions in the basis of the space WP are
summarized in Table 2.5.

PROPOSITION 2.6
Shape functions (2.45), (2.46), (2.47), (2.48) and (2.49) constitute a hierar-
chic basis of the space WP , de�ned in (2.43).

PROOF Analogous as in the previous cases.

REMARK 2.22 Edge functions associated with master elements K1
B , K1

T

and K1
P , restricted to edges of these elements, coincide with the Lobatto shape
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TABLE 2.5: Scalar hierarchic shape functions of K1
P .

Node Polynomial Number of Number of
type order shape functions nodes

Vertex always 1 6
Edge 2 � pej pej � 1 9

Triangular face 3 � psi (psi � 2)(psi � 1)=2 2
Quadrilateral face 2 � psi;1; psi;2 (psi;1 � 1)(psi;2 � 1) 3

Interior 3 � pb;1; 2 � pb;2 (2.50) 1

functions l2; l3; : : : from (1.49). Quadrilateral face functions of K1
P are com-

patible with face functions of K1
B , and triangular face functions of K1

P match
these of K1

T . Hence, prismatic elements can be used as interfaces between the
hexahedral and tetrahedral element in hybrid meshes. Construction of hybrid
meshes, in both two and three spatial dimensions, will be discussed in more
detail in Chapter 3.

2.3 H(curl)-conforming approximations

H(curl)-conforming �nite elements attracted the attention of the Maxwell's
computational community after it turned out that vector-valued �nite el-
ements, whose components span H1-conforming polynomial subspaces, are
inappropriate (see, e.g, [35, 107, 138, 141, 142, 189]). This has led to the
application of Whitney elements [204] that constitute a lowest-order approxi-
mation over the element with constant tangential components on the edges.
However, there is an increasingly widespread interest in the use of higher-

order �nite element schemes. Cubic �nite elements were constructed in [4,
89, 202] for triangular meshes. A basis that allows for arbitrary order of
approximation on triangles and tetrahedra can be found in [203]. Other two-
dimensional �nite elements of variable order have been proposed in [160]. For
a more theoretical discussion of degrees of freedom on hybrid meshes with
uniform order of approximation see [115, 116, 139]. The problem of deriving
bases for arbitrary order approximation ofH(curl) andH(div) was addressed
mainly in more recent works [5, 6, 67, 65, 183].
To our knowledge the �rst three-dimensional hp-adaptive code for electro-

magnetics, based on hexahedral elements of variable order, has been presented
in [161]. There is an ongoing research e�ort by Prof. U. Langer's group in
Linz aimed at coupling hp-FEM with parallel multigrid algorithms (see [103]
and other recent papers).
In this section we will present an overview of H(curl)-conforming �nite el-

ements of arbitrary order associated with reference domains Kq;Kt;KB;KT

and KP . As in the previous section, attention will be paid to the possibility
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of a locally nonuniform distribution of the order of polynomial approxima-
tion and anisotropic p-re�nement. All master elements will be constructed
in harmony with the De Rham diagram, i.e., as descendants of appropriate
H1-conforming elements.

2.3.1 De Rham diagram and �nite elements in H(curl)

The relation

H1 r�!H(curl);

which is present in both the 2D and 3D versions of the De Rham diagram,
indicates that everyH(curl)-conforming element Kcurl = (K;Q;�curl) should
be understood as a descendant of an appropriate scalar �nite element K1 =
(K;W;�1), such that

W
r�! Q:

If the ancestor element K1 cannot be found and this relation cannot be estab-
lished, the �nite element scheme inH(curl) will not work properly. As a par-
ticular consequence of compatibility with the De Rham diagram, the �nite el-
ement space Q must respect conformity requirements for H(curl)-conforming
approximations (continuity of tangential component across element interfaces:
see Lemma 1.3 in Paragraph 1.1.4).

REMARK 2.23 (Reduced conformity requirements in H(curl)) In
comparison with the space H1 where the requirement of global continuity of
approximation constrained the function values at the vertices and on edges and
faces, the spaceH(curl) has reduced conformity requirements (see Paragraph
1.1.4). This appropriately simpli�es the hierarchic structure of master element
shape functions { there will be no vertex functions in Q, as function values
at vertices are not constrained in H(curl).

Recall that scalar edge functions from the previous section, restricted to edges
of scalar H1-conforming elements, coincide with the Lobatto shape functions
lk, k = 2; 3; : : :. We needed scalar edge functions to vanish at vertices, in
order not to interfere there with values of vertex functions. In the H(curl)-
conforming case, tangential components of edge functions do not have to van-
ish at element vertices anymore, and thus it will be suÆcient to use Legendre
polynomials L0; L1; : : : to generate the corresponding polynomial subspaces.
Legendre polynomials are a natural choice suggested also by the De Rham
diagram, as they appear in tangential components of gradients of scalar edge
functions.
Another agreeable aspect of using Legendre polynomials to generate the

tangential components on edges is that the �rst Legendre polynomial, L0 � 1,
elegantly incorporates Whitney functions into the hierarchy of edge functions.
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As in the previous H1-conforming case, a �nite element will be understood,
in the sense of [47], as a triad Kcurl = (K;Q;�curl), where K is a geometrical
domain, Q a �nite-dimensional vector-valued polynomial space, and �curl a
set of degrees of freedom.

2.3.2 Quadrilateral master element Kcurl
q

Let us start with the simplest master element of arbitrary order Kcurl
q on

the reference quadrilateral domain Kq (Figure 2.1).
To allow for its anisotropic p-re�nement, we consider local directional orders

pb;1; pb;2 in the element interior. There are usual local orders of approximation
pe1 ; : : : ; pe4 , associated with its edges e1; : : : ; e4.

REMARK 2.24 (Minimum rules in H(curl)) These nonuniform local
orders of approximation come from a physical mesh element, and at this time
they have to obey the minimum rule for H(curl)-conforming approximations
(polynomial orders of tangential components of approximation on physical
mesh edges are not allowed to exceed the corresponding local directional orders
in interior of adjacent elements).

REMARK 2.25 Notice the speci�c way,

�i+1
1 �j+1

2

r�!
�
(i+ 1)�i1�

j+1

2 ; (j + 1)�i+1
1 �j2

�
;

in which the gradient operatorr transforms scalar monomials from the space
Wq to vector-valued ones.

It follows from Remark 2.25 that in order to �t into the De Rham diagram, a
�nite element of the form Kcurl

q = (Kq ;Qq;�
curl
q ) needs to be associated with

polynomial space

Qq =
�
E 2 Qpb;1;pb;2+1 �Qpb;1+1;pb;2 ; E � tjej 2 Ppej (ej); j = 1; : : : ; 4

	
;

(2.51)
which is a natural descendant of the scalar polynomial space (2.11),

Wq =
�
w 2 Qpb;1+1;pb;2+1; wjej 2 Ppej+1(ej); � = 1; : : : ; 4

	
: (2.52)

What remains to be done is to de�ne a suitable hierarchic basis of the local
polynomial space Qq. To follow H(curl)-conformity requirements, we split
the hierarchic shape functions into edge functions and bubble functions.

Edge functions  
ej
k;q , associated with edges ej , j = 1; : : : ; 4, with k = 0; : : : ; pej ,

will be de�ned simply as
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 e1k;q = l0(�1)Lk(�2)�2; 0 � k � pe1 ; (2.53)

 e2k;q = l1(�1)Lk(�2)�2; 0 � k � pe2 ;

 e3k;q = Lk(�1)l0(�2)�1; 0 � k � pe3 ;

 e4k;q = Lk(�1)l1(�2)�1; 0 � k � pe4 ;

where �1; �2 are canonical vectors corresponding to axes �1 and �2, respec-
tively. Notice that the trace of the tangential component of the functions  

ej
k;q

coincides with the Legendre polynomials L0; : : : ; Lpej on edge ej , and vanishes
on all remaining edges. As in the scalar case, these functions are implicitly
oriented accordingly to the corresponding edges (recall Figure 2.1).
The lowest-order functions  

ej
0;q, j = 1; : : : ; 4, whose tangential components

are constant on all edges ej , form a complete element (Whitney element,
[204]), and are often called Whitney functions. The construction is illustrated
in Figure 2.38.
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FIGURE 2.38: Tangential components of edge functions  e3k;q , k =
0; : : : ; pe3 , coincide with the Legendre polynomials on the edge e3, and vanish
on all remaining edges; (a) l0(�2) � 0 on e4, and (b), (c) �1 � t � 0 on e1; e2.

REMARK 2.26 (Intuition for the design of bubble functions) Notice
that tangential components of gradients of the scalar bubble functions (2.15),
restricted to edges, are nothing but their tangential derivatives along edges.
Hence it is clear that gradients of scalar bubble functions are bubble func-
tions in the H(curl)-conforming sense. An analogous intuition relates scalar
edge functions (2.14) and vector-valued edge functions (2.53). It is however
not suÆcient to take gradients of scalar bubble functions as bubble functions
for Qq , because the space H(curl) is larger than r(H1). Observe that gra-
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dients of scalar bubble functions (2.15) (of the form li(�1)lj(�2), 2 � i; j),
corresponding to the ancestor space (2.52), can be written as

r (li(�1)lj(�2)) = Li�1(�1)lj(�2)�1 + li(�1)Lj�1(�2)�2:

We de�ne vector-valued bubble functions by

 b;1n1;n2;q = Ln1(�1)ln2(�2)�1; 0 � n1 � pb;1; 2 � n2 � pb;2 + 1; (2.54)

 b;2n1;n2;q = ln1(�1)Ln2(�2)�2; 2 � n1 � pb;1 + 1; 0 � n2 � pb;2:

REMARK 2.27 Notice that the shape functions (2.54) are internal in the
H(curl)-conforming sense, i.e., they are not restricted by the minimum rule
and their polynomial order climbs up all the way to the local directional orders
of approximation pb;1; pb;2 in element interior.

Numbers of vector-valued shape functions in the hierarchic basis of the space
Qq are summarized in Table 2.6.

TABLE 2.6: Vector-valued hierarchic shape functions of Kcurl
q .

Node Polynomial Number of Number of
type order shape functions nodes

Edge always pej + 1 4
Interior 1 � pb;1 or 1 � pb;2 (pb;1 + 1)pb;2 + pb;1(pb;2 + 1) 1

PROPOSITION 2.7
Vector-valued shape functions (2.53) and (2.54) constitute a hierarchic basis
of the space Qq, de�ned in (2.51).

PROOF It is easy to see that all the functions in (2.53) and (2.54) lie in the
space Qq , and that they are linearly independent. We conclude by verifying
that the number of edge functions, (pe1 +1)+ (pe2 +1)+ (pe3 +1)+ (pe4 +1),
plus the number of bubble functions, (pb;1+1)(pb;2)+(pb;1)(pb;2+1), is equal
to the dimension of space Qq , (p

b;1+1)(pb;2+2)+(pb;1+2)(pb;2+1)� (pb;2�
pe1)� (pb;2 � pe2)� (pb;1 � pe3)� (pb;1 � pe4).
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REMARK 2.28 For uniform distribution of order of approximation in phys-
ical mesh we have p = pb;1 = pb;2 = pe1 = : : : = pe4 , and the basis from
Proposition 2.7 reduces to a basis of the space Qp;p+1 �Qp+1;p,

Li(�1)lj(�2)�1;

lj(�1)Li(�2)�2;

i = 0; : : : ; p, j = 0; : : : ; p+1. This basis has been analyzed in [7], and exhibited
very good conditioning properties for Maxwell's equations.

REMARK 2.29The basis from Proposition 2.7 can again easily be expressed
in terms of aÆne coordinates (2.10), using relations

�1 = �1;q � �2;q ;

�2 = �3;q � �4;q :

2.3.3 Triangular master element Kcurl
t

Next on our list of vector-valued master elements of arbitrary order is Kcurl
t ,

associated with the reference triangular domain Kt (Figure 2.13).
We consider a local order of approximation pb in element interior, and usual

local orders pej for edges ej , j = 1; : : : ; 3. The minimum rule for H(curl)-
conforming approximations, enforced in the physical mesh, locally on the
reference domain translates into pej � pb for all j = 1; : : : ; 3.
The polynomial space Ppb+1(Kt) of the form (2.19) does not have a product

structure that would allow the gradient operatorr to degrade the polynomials
in one direction at a time. Hence, the right polynomial space for a �nite
element of the form Kcurl

t = (Kt;Qt;�
curl
t ) is now simpler,

Qt =
�
E 2 (Ppb)2(Kt); E � tjej 2 Ppej (ej); j = 1; : : : ; 3

	
: (2.55)

In the sense of the De Rham diagram (2.1), an appropriate scalar ancestor
space is

Wt =
�
w 2 Ppb+1(Kt); wjej 2 Ppej+1(ej); j = 1; : : : ; 3

	
:

REMARK 2.30 Recall the relation between aÆne coordinates �1;t; : : : ; �3;t,
and unitary normal vectors to edges,

ni;t =
r�i;t
jr�i;tj ; i = 1; : : : ; 3: (2.56)

© 2004 by Chapman & Hall/CRC



84 Higher-Order Finite Element Methods

Hierarchic basis of Qt will comprise again edge and bubble functions.

Edge functions  
ej
k;t, j = 1; : : : ; 3, k = 0; : : : ; pej , will be constructed so that

traces of their tangential component coincide with the Legendre polynomials
L0; L1; : : : ; Lpej on the edge ej , and vanish on all remaining edges. We start
with Whitney functions,

 e10;t =
�3;tn2;t

n2;t � t1;t +
�2;tn3;t

n3;t � t1;t ; (2.57)

 e20;t =
�1;tn3;t

n3;t � t2;t +
�3;tn1;t

n1;t � t2;t ;

 e30;t =
�2;tn1;t

n1;t � t3;t +
�1;tn2;t

n2;t � t3;t ;

which are always present in the basis of Qt, and form a complete basis for
lowest-order approximations (Whitney element). To get some intuition for
these formulae, consider for a moment only the second term (�2;tn3;t)=(n3;t �
t1;t) in the de�nition of function  e10;t, and look at Figure 2.39.
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FIGURE 2.39: Trace of the tangential component of (�2;tn3;t)=(n3;t � t1;t)
on edge e1 matches �2;t, and vanishes (a) on edge e2 (�2;t � 0), and (b) on
edge e3 (n3;t � t3;t � 0).

Thus traces of tangential components of the functions (�3;tn2;t)=(n2;t � t1;t)
and (�2;tn3;t)= (n3;t �t1;t) coincide with the values of (scalar vertex) functions
�3;t and �2;t on edge e1, respectively. Now we see that when summed up, these
two parts give rise to a Whitney function (�3;t+�2;t � 1 on e1). Analogously
we proceed when constructing linear edge functions  

ej
1;t, j = 1; : : : ; 3,
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 e11;t =
�3;tn2;t

n2;t � t1;t �
�2;tn3;t

n3;t � t1;t ; pe1 � 1; (2.58)

 e21;t =
�1;tn3;t

n3;t � t2;t �
�3;tn1;t

n1;t � t2;t ; pe2 � 1;

 e31;t =
�2;tn1;t

n1;t � t3;t �
�1;tn2;t

n2;t � t3;t ; pe3 � 1:

The trace of the tangential component of the function  
ej
1;t on edge ej matches

the Legendre polynomial L1(�) = � on ej (� 2 (�1; 1) being the parametriza-
tion of this edge), and vanishes on all remaining edges. Linear edge functions
are present in the basis of the space Qt only if the corresponding local order
pej , associated with edge ej , is equal to at least one. They form, together
with the Whitney functions (2.57), a complete basis of Qt for linear approxi-
mations.
Higher-order edge functions appear in the basis of Qt if some of the local

orders pej associated with edges are greater than or equal to two. They can
be de�ned by exploiting the recurrent de�nition of Legendre polynomials from
(1.40),

L0(�) = 1;

L1(�) = �;

Lk(�) =
2k � 1

k
�Lk�1(�) � k � 1

k
Lk�2(�); k = 2; 3; : : : ;

which, after incorporating Whitney and linear edge functions, translates into

 e1k;t =
2k � 1

k
Lk�1(�3;t � �2;t) 

e1
1;t �

k � 1

k
Lk�2(�3;t � �2;t) 

e1
0;t; (2.59)

2 � k � pe1 ;

 e2k;t =
2k � 1

k
Lk�1(�1;t � �3;t) 

e2
1;t �

k � 1

k
Lk�2(�1;t � �3;t) 

e2
0;t;

2 � k � pe2 ;

 e3k;t =
2k � 1

k
Lk�1(�2;t � �1;t) 

e3
1;t �

k � 1

k
Lk�2(�2;t � �1;t) 

e3
0;t;

2 � k � pe3 :

The trace of the tangential component of the function  
ej
k;t on edge ej now

matches the higher-order Legendre polynomial Lk(�) (� 2 (�1; 1) being the
parametrization of this edge as before) and vanishes on all other edges.

REMARK 2.31 Notice that the edge functions (2.57), (2.58) and (2.59)
already suÆce to generate tangential component of the approximation up to
the orders pe1 ; : : : ; pe3 on edges.
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Bubble functions, whose tangential components vanish everywhere on the el-
ement boundary, can be split (see, e.g., [203]) into two groups:

� edge-based bubble functions (sometimes called normal functions), which
vanish everywhere on the boundary except for one edge, by the normal
vector to which they are multiplied,

� genuine bubble functions, which vanish on all edges.

A quick way to de�ne edge-based bubble functions  
b;ej
k;t , k = 2; : : : ; pb, would

be to multiply scalar edge functions '
ej
k;t by normal vector nj;t to the corre-

sponding edge ej ,

 
b;ej
k;t = '

ej
k;tnj;t; k = 2; : : : ; pb:

However, it is advantageous to explicitly involve Legendre polynomials, in
order to improve conditioning properties of the hierarchic basis. We de�ne

 b;e1k;t = �3;t�2;tLk�2(�3;t � �2;t)n1;t; 2 � k � pb; (2.60)

 b;e2k;t = �1;t�3;tLk�2(�1;t � �3;t)n2;t; 2 � k � pb;

 b;e3k;t = �2;t�1;tLk�2(�2;t � �1;t)n3;t; 2 � k � pb:

The geometrical intuition behind this construction is given in Figure 2.40.
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FIGURE 2.40: Multiplied by the normal vector n2;t, the functions
�1;t�3;tLk�2(�1;t � �3;t), 2 � k � pb, give rise to edge-based bubble func-

tions  b;e2k;t , that (a) completely vanish on edges e1; e3 (�1;t�3;t � 0), and (b)
have a tangential component zero on the edge e2 (n2;t � t2;t = 0).

Finally we design genuine bubble functions  b;in1;n2;t, k = 2; : : : ; pb, i = 1; 2,

1 � n1; n2; n1 + n2 � pb � 1. Again, an easy way to de�ne them would be to
multiply scalar bubble functions 'bn1;n2;t, by canonical vectors �1; �2:
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 b;1n1;n2;t = 'bn1;n2;t�1;

 b;2n1;n2;t = 'bn1;n2;t�2;

but for the same reason as before we de�ne

 b;1n1;n2;t = �1;t�2;t�3;tLn1�1(�3;t � �2;t)Ln2�1(�2;t � �1;t)�1; (2.61)

 b;2n1;n2;t = �1;t�2;t�3;tLn1�1(�3;t � �2;t)Ln2�1(�2;t � �1;t)�2;

1 � n1; n2; n1 + n2 � pb � 1.
Numbers of vector-valued shape functions in the hierarchic basis of the

space Qt are summarized in Table 2.7.

TABLE 2.7: Vector-valued hierarchic shape functions of Kcurl
t .

Node Polynomial Number of Number of
type order shape functions nodes

Edge always pej + 1 3
Edge-based interior 2 � pb 3(pb � 1) 1
Genuine interior 3 � pb (pb � 1)(pb � 2) 1

PROPOSITION 2.8
Whitney functions (2.57), linear edge functions (2.58), higher-order edge func-
tions (2.59), and bubble functions (2.60), (2.61), constitute a hierarchic basis
of the space Qt, de�ned in (2.55).

PROOF It is a little tedious to compute that the number of the shape func-
tions is equal to the dimension of space Qt, but it is easy to see that they all
belong to the spaceQt, and that they are linearly independent. We encourage
the reader to do this exercise by herself/himself, in order to get familiar with
the structure of the hierarchic basis.

REMARK 2.32 Notice that only edge functions determine the compatibil-
ity of two-dimensional H(curl)-conforming elements. In our case, traces of
tangential components of edge functions to both master elements Kcurl

q and

Kcurl
t are nothing but the Legendre polynomials L0; L1; : : :. Therefore, the

presented hierarchic bases of the spaces Qq , Qt are convenient for combina-
tion of quadrilateral and triangular elements in hybrid H(curl)-conforming
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quadrilateral-triangular meshes. Bubble functions, whose tangential compo-
nents vanish everywhere on the element boundary, have no inuence on their
compatibility.

2.3.4 Brick master element Kcurl
B

Cartesian geometry of the reference brick KB will be used to simplify the
discussion in this paragraph. As in the H1-conforming case, we want to allow
for anisotropic p-re�nement of brick elements, and therefore consider local
directional orders of approximation pb;1; pb;2 and pb;3 in the element interior.
Local directional orders psi;1; psi;2 are assigned to faces si, i = 1; : : : ; 6, and
usual local orders of approximation pe1 ; : : : ; pe12 to edges. The local polyno-
mial orders on faces are understood in local systems of coordinates, attached
to each face, as described in Paragraph 2.2.4. Again, the local polynomial or-
ders of approximation have to obey the minimum rule forH(curl)-conforming
approximations (Remark 2.24).

REMARK 2.33 The gradient operatorr, representing an adequate portion
of the De Rham diagram (2.3), acts on product monomials from the spaceWB

one spatial variable (one direction) at a time,

�i+1
1 �j+1

2 �k+1
3

r�!
�
(i+ 1)�i1�

j+1

2 �k+1
3 ; (j + 1)�i+1

1 �j2�
k+1
3 ; (k + 1)�i+1

1 �j+1

2 �k3

�
:

According to Remark 2.33, the De Rham diagram suggests that a �nite ele-
ment of the form Kcurl

B = (KB ;QB ;�
curl
B ) should be equipped with polynomial

space

QB =
�
E 2 Qpb;1;pb;2+1;pb;3+1 �Qpb;1+1;pb;2;pb;3+1 �Qpb;1+1;pb;2+1;pb;3 ;

Etjsi 2 Qpsi;1;psi;2+1(si)�Qpsi;1+1;psi;2(si);

E � tjej 2 Ppej (ej); i = 1; : : : ; 6; j = 1; : : : ; 12g ; (2.62)

where Etjsi = E�ni(E �ni) is the projection of the vector E on the face si.
The ancestor space has the form

WB =
�
w 2 Qpb;1+1;pb;2+1;pb;3+1; wjsi 2 Qpsi;1+1;psi;2+1(si); (2.63)

wjej 2 Ppej+1(ej); i = 1; : : : ; 6; j = 1; : : : ; 12g :

To follow H(curl)-conformity requirements, we split hierarchic shape func-
tions, which will form a basis of the space QB , into edge, face and bubble
functions. All of them will be written in the form of a product of Legendre
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polynomials L0; L1; : : :, and the Lobatto shape functions l0; l1; : : :, similarly
as in the quadrilateral case.
Traces of tangential components of edge functions  

ej
k;B , j = 1; : : : ; 12,

k = 0; : : : ; pej , will as usual vanish on all edges except for an edge ej with
which they are associated, and will coincide with the Legendre polynomials
L0; L1; : : : ; Lpej on ej . Probably the best way to de�ne them is simply to list
them all. Recall enumeration and orientation of edges from Figure 2.26:

Edges parallel to �1:

 e1k;B = Lk(�1)l0(�2)l0(�3)�1; 0 � k � pe1 ; (2.64)

 e3k;B = Lk(�1)l1(�2)l0(�3)�1; 0 � k � pe3 ;

 e9k;B = Lk(�1)l0(�2)l1(�3)�1; 0 � k � pe9 ;

 e11k;B = Lk(�1)l1(�2)l1(�3)�1; 0 � k � pe11 :

Edges parallel to �2:

 e2k;B = l1(�1)Lk(�2)l0(�3)�2; 0 � k � pe2 ; (2.65)

 e4k;B = l0(�1)Lk(�2)l0(�3)�2; 0 � k � pe4 ;

 e10k;B = l1(�1)Lk(�2)l1(�3)�2; 0 � k � pe10 ;

 e12k;B = l0(�1)Lk(�2)l1(�3)�2; 0 � k � pe12 :

Edges parallel to �3:

 e5k;B = l0(�1)l0(�2)Lk(�3)�3; 0 � k � pe5 ; (2.66)

 e6k;B = l1(�1)l0(�2)Lk(�3)�3; 0 � k � pe6 ;

 e7k;B = l1(�1)l1(�2)Lk(�3)�3; 0 � k � pe7 ;

 e8k;B = l0(�1)l1(�2)Lk(�3)�3; 0 � k � pe8 :

Twelve Whitney functions, corresponding to k = 0, again form a complete
lowest-order element.
In the next step we add to the basis of space QB face functions whose

tangential component vanishes, in the usual sense, on all faces but one. There
will be two sets of linearly independent face functions for each face, associated
with two corresponding linearly independent tangential axial directions (local
coordinate axes on the face). Face functions related to the face s1 can be
written as

 s1;1n1;n2;B
= l0(�1)Ln1(�2)ln2(�3)�2; (2.67)

0 � n1 � ps1;1; 2 � n2 � ps1;2 + 1;
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 s1;2n1;n2;B
= l0(�1)ln1(�2)Ln2(�3)�3;

2 � n1 � ps1;1 + 1; 0 � n2 � ps1;2;

and we leave the rest to the reader as an easy exercise. The number of face
functions associated with a face si is

(psi;1 + 1)psi;2 + psi;1(psi;2 + 1): (2.68)

Notice that traces of tangential components of these face functions exactly
match the scalar face functions from (2.31).
Finally we design bubble functions, whose tangential components vanish

everywhere on the boundary of the reference brick KB. Gradients of scalar
shape functions li(�1)lj(�2)lk(�3), 2 � i; j; k, corresponding to the ancestor
space (2.63), have the form

r (li(�1)lj(�2)lk(�3))

= Li�1(�1)lj(�2)lk(�3)�1 + li(�1)Lj�1(�2)lk(�3)�2 + li(�1)lj(�2)Lk�1(�3)�3:

Therefore, the most natural way to de�ne vector-valued bubble functions for
the basis of the space QB , is

 b;1n1;n2;n3;B = Ln1(�1)ln2(�2)ln3(�3)�1; (2.69)

0 � n1 � pb;1; 2 � n2 � pb;2 + 1; 2 � n3 � pb;3 + 1;

 b;2n1;n2;n3;B = ln1(�1)Ln2(�2)ln3(�3)�2;

2 � n1 � pb;1 + 1; 0 � n2 � pb;2; 2 � n3 � pb;3 + 1;

 b;3n1;n2;n3;B = ln1(�1)ln2(�2)Ln3(�3)�3;

2 � n1 � pb;1 + 1; 2 � n2 � pb;2 + 1; 0 � n3 � pb;3:

Counting them up, we obtain

(pb;1 + 1)pb;2pb;3 + pb;1(pb;2 + 1)pb;3 + pb;1pb;2(pb;3 + 1): (2.70)

Numbers of vector-valued shape functions in the hierarchic basis of the space
QB are summarized in Table 2.8.

PROPOSITION 2.9
Vector-valued shape functions (2.64) { (2.66), (2.67) and (2.69) represent a
hierarchic basis of the space QB, de�ned in (2.62).

PROOF Using the product structure, it is easy to see that the above basis
functions are linearly independent, and that they all lie in the space QB . The
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TABLE 2.8: Vector-valued hierarchic shape functions of Kcurl
B .

Node Polynomial Number of Number of
type order shape functions nodes

Edge always pej + 1 12
Face 1 � psi;1 or 1 � psi;2 see (2.68) 6

Interior 1 � pb;i; pb;j ; i 6= j see (2.70) 1

calculation of the dimension of QB , and the veri�cation that it is the same as
the number of basis functions, is left to the reader as an exercise.

REMARK 2.34 For uniform distribution of order of approximation in phys-
ical mesh we have p = pb;i = psj ;k = pel for each of i; j; k; l, and the basis
from Proposition 2.9 reduces to a basis of the standard space Qp;p+1;p+1 �
Qp+1;p;p+1 �Qp+1;p+1;p,

Li(�1)lj(�2)lk(�3)�1;
lj(�1)Li(�2)lk(�3)�2;
lj(�1)lk(�2)Li(�3)�3;

9=
; i = 0; : : : ; p; j; k = 0; : : : ; p+ 1: (2.71)

This basis has been analyzed in [7] with very good conditioning results for the
discretization of Maxwell's equations.

2.3.5 Tetrahedral master element Kcurl
T

Next let us design a master element of arbitrary order Kcurl
T on the reference

tetrahedral domain KT (Figure 2.30).

This time we return to a single local polynomial order of approximation pb

in element interior, single local orders psi , i = 1; : : : ; 4 on faces, and standard
local polynomial orders pej , j = 1; : : : ; 6, for edges.

REMARK 2.35 The minimum rule forH(curl)-conforming approximations
(2.24) yields that, locally on the reference domain, orders of approximation
associated with faces are lower than or equal to pb, and polynomial orders
on edges are limited from above by polynomial orders associated with both
adjacent faces.

The local orders pb; ps1 ; : : : ; ps4 ; pe1 ; : : : ; pe6 suggest that a �nite element of
the form Kcurl

T = (KT ;QT ;�
curl
T ) needs to be equipped with polynomial space

QT =
�
E 2 (Ppb)3(KT ); Etjsi 2 (Ppsi )2(si); (2.72)

E � tjej 2 Ppej (ej); i = 1; : : : ; 4; j = 1; : : : ; 6g ;
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where again Etjsi = E � ni(E � ni) is the projection of the vector E on the
face si. Based on the De Rham diagram (2.3), the appropriate ancestor space
is

WT =
�
w 2 Ppb+1(KT ); wjsi 2 Ppsi+1(si); wjej 2 Ppej+1(ej);

i = 1; : : : ; 4; j = 1; : : : ; 6g :
The set of degrees of freedom �curl

T will be uniquely identi�ed by a choice of
basis of the spaceQT . Recall aÆne coordinates �1;T ; : : : ; �4;T from (2.34), the
Lobatto shape functions l0; l1; : : : from (1.49), and kernel functions �0; �1; : : :,
de�ned in (1.52). Again we have a relation between aÆne coordinates and
unitary normal vectors to faces,

ni;T =
r�i;T
jr�i;T j ; i = 1; : : : ; 4: (2.73)

Edge functions will be constructed, as usual, in such a way that traces of
their tangential components vanish on all edges except for the particular one
they are assigned to. Recall enumeration and orientation of edges from Figure
2.30. Consider an (oriented) edge ej = vAvB , j = 1; : : : ; 6, and a pair of aÆne
coordinates �A; �B , such that �A(vA) = �B(vB) = 1. Notice that �A vanishes
on all edges except for ej and another pair of edges eA;1; eA;2. These three
edges uniquely identify a face sA. Analogously, �B yields a face sB . nA and
nB denote unitary normal vectors to these two faces.
Now we can easily de�ne linear vertex-based edge functions

 
ej
A =

�AnA
nA � tj;T ; (2.74)

 
ej
B =

�BnB
nB � tj;T ;

where tj;T is a unitary tangential vector to the oriented edge ej . Tangential
components of both functions obviously vanish on all edges except for ej (see
Figure 2.41), and on ej we have

( 
ej
A � tj;T )jej = �Ajej ;

( 
ej
B � tj;T )jej = �B jej :

Thus we can de�ne for the edge ej a Whitney function,

 
ej
0;T =  

ej
A +  

ej
B ; (2.75)

and a linear edge function,

 
ej
1;T =  

ej
B �  

ej
A : (2.76)
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FIGURE 2.41: Consider the edge e4 = v1v4 and aÆne coordinates �A =
�2;T and �B = �4;T . Notice that �4;T vanishes on all edges except for e4, e5
and e6. The edges e5 and e6 uniquely identify a face s2. Hence, multiplied
by normal vector n2;T , the aÆne coordinate �4;T yields a vertex-based edge
function  e44 . This function (a) vanishes completely on face s4, and (b) its
tangential component also vanishes everywhere on the face s2. Thus, the
tangential component vanishes on all edges except for e4.

These functions satisfy

( 
ej
0;T � tj;T )jej � 1 = L0(�B � �A);

( 
ej
1;T � tj;T )jej � � = L1(�B � �A);

where � 2 (�1; 1) is a parametrization of the edge ej . Exploiting the recurrent
de�nition of Legendre polynomials (1.40),

L0(�) = 1;

L1(�) = �;

Lk(�) =
2k � 1

k
�Lk�1(�) � k � 1

k
Lk�2(�); k = 2; 3; : : : ;

similarly as in the triangular case, we can write (oriented) higher-order edge
functions

 
ej
k;T =

2k � 1

k
Lk�1(�B � �A) 

ej
1;T �

k � 1

k
Lk�2(�B � �A) 

ej
0;T ; (2.77)
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2 � k � pej ; j = 1; : : : ; 6:

The tangential component of functions  
ej
k;T now matches higher-order Legen-

dre polynomials Lk(�) on the edge ej , and vanishes on all other edges. In this
way we add into the basis of QT edge functions for all edges ej , j = 1; : : : ; 6,
up to the corresponding local order of approximation pej .
Face functions, whose tangential components vanish in the standard sense

on all faces but one, will be split into edge-based and genuine.
Recall the construction of local orientations on faces from the scalar case

in Paragraph 2.2.5 { for each face we select a vertex vA with the lowest local
index, and by vB ; vC denote its two remaining vertices in increasing order.
For each face si, these three vertices determine aÆne coordinates �A; �B ; �C ,
such that �A(vA) = �B(vB) = �C(vC) = 1.
Let us forget about the original local orientation of edges for the construc-

tion of face functions. Consider a face si. Starting with its edge ej = vAvB ,
shared by faces si; sD, the product of the two corresponding aÆne coordinates
�A; �B vanishes on all faces except for si; sD, and gives a quadratic trace on
the edge ej . This trace can be extended to kth-order polynomials by mul-
tiplying it with Lk�2(�B � �A), k = 2; 3; : : : ; psi . Multiplying this product
further by the normal vector nD to the face sD, we eliminate its tangential
component from sD, and obtain the edge-based face functions

 
si;ej
k;T = �A�BLk�2(�B � �A)�inD; k = 2; 3; : : : ; psi ; (2.78)

j = 1; 2; : : : ; 6. The real coeÆcient �i is chosen in such a way that projection
of the normal vector �inD, to a plane corresponding to the face si, has a
unitary length. This normalization is necessary for future compatibility with
triangular faces of prismatic elements. We proceed in the same way for the
remaining two edges of the face si. The construction is illustrated in Figure
2.42.
Using the same notation, we also can easily de�ne genuine face functions,

which vanish identically on all faces but one:

 si;1n1;n2;T
= �A�B�CLn1�1(�B � �A)Ln2�1(�A � �C)tAB ; (2.79)

 si;2n1;n2;T
= �A�B�CLn1�1(�B � �A)Ln2�1(�A � �C)tCA;

1 � n1; n2; n1 + n2 � psi � 1. The symbols tAB , tAC stand for unitary
tangential vectors to the edges eAB = vAvB , eCA = vCvA, respectively. The
construction is illustrated in Figure 2.43.

Hierarchic basis of the space QT will be completed by adding bubble func-
tions, whose tangential component vanishes everywhere on the surface of
the reference domain KT . They will be again split into two groups { face-
based and genuine. Face-based bubble functions are constructed in the same
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FIGURE 2.42: Consider the face si = s1, and its edge e5 = v2v4 (= vBvC
locally on s1). It is �B = �3;T , �C = �4;T . In addition to s1, the edge e5 also
belongs to the face sD = s2. Multiplied by the normal vector nD = n2;T and
normalized by a real coeÆcient �i, the product �B�CLk�2(�C � �B) yields
a set of (oriented) edge-based face functions  s1;e5k;T , 2 � k � ps1 : (a),(b)
it vanishes completely on faces s3; s4 (�3;T�4;T � 0 on s3; s4), and (c) its
tangential component also vanishes everywhere on the face s2 (n2;T � t � 0 on
s2).

way as genuine face functions, except that the product �A�B�CLn1�1(�B �
�A)Ln2�1(�A � �C) is now multiplied by the normal vector ni;T to the face
si, eliminating the only nonzero tangential component from the surface of the
reference domain:

 b;sin1;n2;T
= �A�B�CLn1�1(�B � �A)Ln2�1(�A � �C)ni;T ; (2.80)

1 � n1; n2; n1 + n2 � pb � 1, as depicted in Figure 2.44. Notice that the
orientation of the faces no longer matters for bubble functions.

Finally, to the basis of QT we add genuine bubble functions

 b;mn1;n2;n3;T = 'bn1;n2;n3;T �m; (2.81)

1 � n1; n2; n3; n1 + n2 + n3 � pb � 1; m = 1; : : : ; 3, where 'bn1;n2;n3;T are
scalar bubble functions de�ned in (2.40).
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FIGURE 2.43: Consider the face s3 = v1v3v4. Locally on this face, vA =
v1; vB = v3, vC = v4, �A = �2;T , �B = �1;T and �C = �4;T . The product
�2;T�1;T�4;TLn1�1(�1;t � �2;T )Ln2�1(�2;T � �4;T ), multiplied by tangential
vectors tAB and tCA, respectively, yields (oriented) genuine face functions
 s3;1n1;n2;T

and  s3;2n1;n2;T
: (a, b, c) they vanish completely on the faces s1; s2; s4

(�2;T�1;T�4;T � 0 on s1; s2; s4).

Numbers of vector-valued shape functions in the hierarchic basis of the
space QT are summarized in Table 2.9.

TABLE 2.9: Vector-valued hierarchic shape functions of Kcurl
T .

Node Polyn.. Number of Number of
type order shape functions nodes

Edge always pej + 1 6
Edge-based face 2 � psi 3(psi � 1) 4
Genuine face 3 � psi 2(psi � 2)(psi � 1)=2 4

Face-based interior 3 � pb 4(pb � 2)(pb � 1)=2 1
Genuine interior 4 � pb d(pb � 3)(pb � 2)(pb � 1)=6 1

PROPOSITION 2.10
Edge functions (2.75), (2.76), (2.77), face functions (2.78), (2.79), and bubble
functions (2.80), (2.81), provide a complete basis of the space QT , de�ned in
(2.72).
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FIGURE 2.44: Consider the face s3. The product �2;T�4;T�1;TLn1�1(�4;t
��2;T )Ln2�1(�2;T � �1;T ), multiplied by the normal vector n3;T , yields face-

based bubble functions  b;s3n1;n2;T
: (a, b, c) they vanish completely on the faces

s1; s2; s4; (d) their tangential component also vanishes everywhere on the face
s3.

PROOF The proof is left to the reader as an exercise. Follow the standard
scheme { �rst check that all of the functions belong to the space QT , then
show that they are linearly independent, and �nally that their number is equal
to the dimension of QT .

2.3.6 Prismatic master element Kcurl
P

The last H(curl)-conforming master element of arbitrary order Kcurl
P will

be associated with the reference prismatic domain KP (Figure 2.34).
As in the scalar case, we allow for anisotropic p-re�nement of prismatic

elements, and therefore consider local directional orders of approximation
pb;1; pb;2 in the interior. The order pb;1 corresponds to the plane �1�2 (we
will designate this the horizontal direction), and pb;2 to the vertical direction
�3. We have three quadrilateral faces si, i = 1; : : : ; 3, which will be equipped
with local directional orders of approximation psi;1; psi;2 (in horizontal and
vertical directions, respectively). Triangular faces s4; s5 come with one local
order of approximation psi per face only. Standard local polynomial orders
pe1 ; : : : ; pe9 will be assigned to edges.
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REMARK 2.36 Analogously as in the previous cases, all these nonuniform
local orders of approximation come from a physical mesh element, and have to
obey the minimum rule forH(curl)-conforming approximations from Remark
2.24.

A �nite element of arbitrary order on the reference domain KP will be con-
structed in the conventional way as a triad Kcurl

P = (KP ;QP ;�
curl
P ). We

saw in Paragraph 2.2.6 that scalar polynomials ' on the reference prism
KP = Kt � Ka have a product form ' 2 Rm1;m2

(KP ), de�ned in (2.44).
The way the gradient operator r acts on a space of this form,

Rm1+1;m2+1(KP )
r�! Rm1;m2+1(KP )�Rm1;m2+1(KP )�Rm1+1;m2

(KP );
(2.82)

determines the choice of an appropriate ancestor space

WP =
�
w 2 Rpb;1+1;pb;2+1(KP ); wjsi 2 Qpsi;1+1;psi;2+1(si) for i = 1; 2; 3;

wjsi 2 Ppsi+1(si) for i = 4; 5; wjej 2 Ppej+1(ej); j = 1; : : : ; 9g ;

and suggests that a �nite element of the form Kcurl
P = (KP ;QP ;�

curl
P ) should

be equipped with polynomial space

QP =
�
E 2 Rpb;1;pb;2+1(KP )�Rpb;1;pb;2+1(KP )�Rpb;1+1;pb;2(KP );

Etjsi 2 Qpsi;1;psi;2+1(si)�Qpsi;1+1;psi;2(si) for i = 1; : : : ; 3;

Etjsi 2 (Ppsi )2(si) for i = 4; 5;

E � tjej 2 Ppej (ej); j = 1; : : : ; 9g : (2.83)

Here again Etjsi = E � ni(E � ni) is the projection of the vector E on the
face si.

REMARK 2.37 The product geometry KP = Kt � Ka will facilitate the
procedure in which the hierarchic shape functions are de�ned. Relation (2.82)
suggests that the �rst two vector components may be constructed using prod-
ucts  t(�1; �2)l(�3) of shape functions associated with the master triangleKcurl

t

in �1; �2, and the Lobatto shape functions in �3. The third vector component
will be constructed in the form of products 't(�1; �2)L(�3) of scalar shape func-
tions associated with the master triangle K1

t in �1; �2, and original Legendre
polynomials in �3. To simplify the notation, we will view all two-dimensional
vectors corresponding to the master triangles K1

t and Kcurl
t (normal and tan-

gential vectors to its edges, vector-valued shape functions, etc.) as three-
dimensional vectors with zero third component. These vectors will obviously
be perpendicular to the third canonical vector �3. We will also use the fact
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that for each quadrilateral face si there is a unique matching edge ei of the
reference triangle Kt.

Edge functions  
ej
k;P , j = 1; : : : ; 9, k = 0; : : : ; pej , will as usual be designed

so that the tangential component of  
ej
k;P vanishes on all edges except for ej ,

where it matches the Legendre polynomials L0; L1; : : : ; Lpej . Recall reference
triangle aÆne coordinates �1;t; : : : ; �3;t from (2.17), scalar vertex functions
'
vj
t de�ned in (2.20), and H(curl)-conforming edge functions  

ej
k;t, given by

(2.57), (2.58) and (2.59).
Using our simpli�ed notation, edge functions corresponding to edges e1; : : : ;

e3 (bottom of the reference prism KP ) can be written as

 
ej
k;P (�1; �2; �3) =  

ej
k;t(�1; �2)l0(�3); j = 1; : : : ; 3; 0 � k � pej (2.84)

(ej is used here both for edges of the reference prismKP and reference triangle
Kt). For vertical edges e4; : : : ; e6 we have edge functions

 e4k;P (�1; �2; �3) = 'v1t (�1; �2)Lk(�3)�3; 0 � k � pe4 ; (2.85)

 e5k;P (�1; �2; �3) = 'v2t (�1; �2)Lk(�3)�3; 0 � k � pe5 ;

 e6k;P (�1; �2; �3) = 'v3t (�1; �2)Lk(�3)�3; 0 � k � pe6 :

The last three edges e7; : : : ; e9, corresponding to the top face s5, are equipped
with edge functions

 
ej
k;P (�1; �2; �3) =  

ej�6
k;t (�1; �2)l1(�3); j = 7; : : : ; 9; 0 � k � pej : (2.86)

REMARK 2.38 Notice that edge functions corresponding to horizontal
edges contribute only to the �rst two vector components, and edge functions
associated with vertical edges only to the third one. All of them are linearly
independent. As usual, nine lowest-order edge functions (corresponding to
k = 0) form a complete lowest-order (Whitney) element.

Next we add to the basis of QP face functions. The primary function of
prismatic elements is to connect hexahedral and tetrahedral elements in hy-
brid meshes, and therefore face functions associated with quadrilateral and
triangular faces will be designed to be compatible with master elements Kcurl

B

and Kcurl
T , respectively. Recall the de�nition of local coordinate systems for

quadrilateral and triangular faces from the scalar case.

Face functions for quadrilateral faces:
In the �rst step we generate face functions, the tangential component of

which is nonzero only on a single quadrilateral face si, and only in the hori-
zontal direction. We de�ne
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 si;1n1;n2;P
=  ein1;t(�1; �2)ln2(�3); 0 � n1 � psi;1; 2 � n2 � psi;2 + 1: (2.87)

Here we use the same symbol for two matching edges ei of the reference
triangle and prism. These functions completely vanish on both triangular
faces s4 and s5, since the Lobatto shape functions li(�1) = 0, i = 2; 3; : : :. The
tangential component of functions  si;1n1;n2;P

in the vertical direction �3 vanishes
everywhere due to their zero third vector component. The rest immediately
follows from properties ofH(curl)-conforming edge functions  ein1;t associated
with the master triangle.

Remaining face functions for quadrilateral faces will be designed to have a
nonzero tangential component only on a single quadrilateral face si, and only
in the vertical direction:

 si;2n1;n2;P
= 'ein1;t(�1; �2)Ln2(�3)�3; 2 � n1 � psi;1+1; 0 � n2 � psi;2: (2.88)

Scalar edge functions on the master triangle K1
t , '

ei
n1;t

(�1; �2), were de�ned

in (2.21). These functions make  si;2n1;n2;P
vanish completely on the remain-

ing vertical faces, and �3 ensures that their tangential components vanish
moreover on horizontal faces s4; s5.

REMARK 2.39 Notice that tangential components of face functions belong-
ing to the above two sets (2.87), (2.88) exactly match appropriate tangential
components of face functions (2.67), corresponding to the master brick Kcurl

B .
Use relation (1.52) and de�nition of scalar triangular edge functions (2.21).
Also the numbers of face functions are the same, when identical directional
orders of approximation are considered. Notice, too, that limits of directional
polynomial orders of functions de�ned in (2.87), (2.88) exactly correspond to
the de�nition (2.83) of the space QP . Hence the face functions are suitable
for the design of hybrid tetrahedral-hexahedral meshes.

Face functions for triangular faces s4; s5 will be constructed in a similar way
to those for the master tetrahedron Kcurl

T . First we assign to these faces the
same local orientation as in the scalar case in Paragraph 2.2.6.

There are three edge-based triangular face functions for each face si, i = 4; 5:
Put l(�3) = l0(�3) if i = 4, and l(�3) = l1(�3) otherwise. Let us begin with
an edge ej = vAvB of the face si, which is also shared by another face sD.
The product �A�Bl(�3), �A(vA) = �B(vB) = 1 vanishes on all faces except
for si; sD, and gives a quadratic trace on ej . This trace is again extended to
kth-order polynomials by multiplying it with Lk�2(�B��A), k = 2; 3; : : : ; psi .
We use the normal vector nD to eliminate the tangential component from the
face sD, and de�ne
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si;ej
n1;P

= �A�BLn1�2(�B � �A)l(�3)nD; n1 = 2; 3; : : : ; psi : (2.89)

The construction is illustrated in Figure 2.45.
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FIGURE 2.45: Consider the triangular face s4 and its edge e1, which
matches edge e1 of the reference triangle Kt. Multiplied by l0(�3), the edge
functions  e1n1;t, 2 � n1 � ps4 , yield a set of edge-based face functions  s4;e1n1;P

,
2 � n1 � ps4 : (a), (b), (c) they vanish completely on faces s2; s3 ( 

e1
n1;t

� 0
on s2; s3) and s5 (l0(1) = 0); (d) the tangential component vanishes also on
face s1.

Genuine triangular face functions will also be constructed in a way similar
to the tetrahedral case:

 si;1n1;n2;P
= �A�B�CLn1�1(�B � �A)Ln2�1(�A � �C)l(�3)tAB ; (2.90)

 si;2n1;n2;P
= �A�B�CLn1�1(�B � �A)Ln2�1(�A � �C)l(�3)tCA;

1 � n1; n2; n1 + n2 � psi � 1. The symbols tAB , tCA stand for unitary
tangential vectors to the edges eAB = vAvB , eCA = vCvA, respectively. The
construction is illustrated in Figure 2.46.

REMARK 2.40 Notice that tangential components of face functions, be-
longing to the above two sets (2.89), (2.90), exactly match corresponding tan-
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FIGURE 2.46: Again consider face s4. Multiplied by tangential vectors
tAB and tCA, the product �A�B�CLn1�1(�B��A)Ln2�1(�A��C)l0(�3) gives
rise to genuine face functions  s4;1n1;n2;P

;  s4;2n1;n2;P
, respectively: (a, b, c, d) they

vanish completely on all faces except for s4; (e, f) their tangential component
is generally nonzero on face s4.

gential components of face functions (2.78), (2.79) of the master tetrahedron
Kcurl
T . Recall the role of the real parameter �i, which was introduced in (2.78).

In Chapter 3 we will describe in detail how prismatic elements are used to
connect tetrahedra and bricks in hybrid H(curl)-conforming meshes.

The basis of the spaceQP will be completed by adding bubble functions, whose
tangential component vanishes everywhere on the surface of the reference
prism KP .
First let us complete the part of the basis corresponding to the two �rst

vector components. This is done by multiplying edge-based and genuine bub-
ble functions associated with the master triangle Kcurl

t by the Lobatto shape
functions in �3. Thus we obtain quadrilateral-face-based bubble functions

 b;sin1;n2;P
=  b;ein1;t

(�1; �2)ln2(�3); i = 1; : : : ; 3; (2.91)

2 � n1 � pb;1, 2 � n3 � pb;2 + 1, and genuine bubble functions

 b;mn1;n2;n3;P =  b;mn1;n2;t(�1; �2)ln3(�3); (2.92)

1 � n1; n2; n1 + n2 � pb;1 � 1; 2 � n3 � pb;2 + 1; m = 1; 2.
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Finally we design triangular-face-based bubble functions, which are only
nonzero in their third component. This can be done by multiplying scalar
bubble functions associated with the master triangle K1

t in �1; �2 by original
Legendre polynomials in �3:

 b;3n1;n2;n3;P = 'bn1;n2;t(�1; �2)Ln3(�3)�3; (2.93)

1 � n1; n2, n1 + n2 � pb;1, 0 � n3 � pb;2. With this, the basis of the space
QP is complete, and design of the �nite element Kcurl

P �nished.

Numbers of vector-valued shape functions in the hierarchic basis of the space
QP are summarized in Table 2.10.

TABLE 2.10: Vector-valued hierarchic shape functions of Kcurl
P .

Node Polynomial Number of Num. of
type order shape functions nodes

Edge always pej + 1 9
Quad. face horiz. 1 � psi;2 (psi;1 + 1)psi;2 3
Quad. face vert. 1 � psi;1 (psi;2 + 1)psi;1 3
Tri. edge face 2 � psi 3(psi � 1) 2

Tri. face genuine 3 � psi (psi � 1)(psi � 2) 2
Quad. face bubble 2 � pb;1; 1 � pb;2 3(pb;1 � 1)pb;2 1
Genuine bubble 3 � pb;1; 1 � pb;2 (pb;1 � 1)(pb;1 � 2)pb;2 1
Tri. face bubble 2 � pb;1 (pb;1 � 1)pb;1(pb;2 + 1)=2 1

PROPOSITION 2.11
Edge functions (2.84), (2.85), (2.86), face functions (2.87), (2.88), (2.89),
(2.90), and bubble functions (2.91), (2.92) and (2.93) constitute a hierarchic
basis of the space QP de�ned in (2.83).

PROOF Let us devote more attention to this case, as the master prism Kcurl
P

is one of the more complicated master elements that we deal with.
It is easy to see that all of the aforementioned shape functions belong to

the vector-valued polynomial space QP .
Next we verify that all shape functions are linearly independent. Edge

functions associated with horizontal edges have a zero third component, while
edge functions belonging to vertical edges only have a nonzero third com-
ponent. Further, edge functions corresponding to horizontal edges e1; e2; e3
on the bottom completely vanish on the top face s5 and vice versa. Thus,
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functions from these three groups are linearly independent, and so are func-
tions within each group, since traces of their tangential components match
Legendre polynomials on appropriate edges.

Horizontal quadrilateral face functions (2.87) are linearly independent of
the vertical ones, de�ned by (2.88), since they again reside in di�erent vector-
components. Linear independence within each group follows from the linear
independence of the functions used for their de�nition.

Edge-based triangular face functions are linearly independent of the gen-
uine ones because the latter vanish completely on all quadrilateral faces, with
obvious results. Also, linear independence of bubble functions follows logi-
cally from the properties of scalar and vector-valued functions used for their
de�nition.

The tedious step, as always, is to verify that the number of basis functions
exactly matches the dimension of the space QP . Let us start with a simpli�ed
situation, in which the element is generally anisotropically p-re�ned, but local
orders of approximation on faces and edges are not reduced by local nonuniform
distribution of the order of approximation in the physical mesh. Thus we have
pb;1 = ps1;1 = : : : = ps3;1 = ps4 = ps5 = pe1 = : : : = pe3 = pe7 = : : : = pe9 ,
and pb;2 = ps1;2 = : : : = ps3;2 = pe4 = : : : = pe6 . After a brief computation,
we obtain that

dim (QP ) = (pb;1 + 1)(pb;1 + 2)| {z }
A

(pb;2 + 2)| {z }
B

+
(pb;1 + 2)(pb;1 + 3)

2| {z }
C

(pb;2 + 1)| {z }
D

;

where A is the dimension of polynomial space associated with the master
triangle Kcurl

t of order pb;1, B is the number of the Lobatto shape functions
l0; : : : ; lpb;2+1, C is the dimension of scalar polynomial space associated with
the master triangle K1

t of order pb;1 + 1, and �nally, D corresponds to the
dimension of one-dimensional polynomial space generated by Legendre poly-
nomials L0; : : : ; Lpb;2 . Notice that numbers A;B correspond to functions with
zero third components, and C;D to functions whose two �rst components are
zero. Now let us compute the basis functions:

1. Functions with zero third component:

(a) Horizontal edges contribute 2 � 3(pb;1 + 1) edge functions (2.84),
(2.86),

(b) quadrilateral faces yield 3(pb;1 + 1)pb;2 (horizontal) face functions
(2.87),

(c) and we have 2 � 3(pb;1 � 1) edge-based triangular face functions
(2.89).

(d) Further there are 3(pb;1 � 1)pb;2 quadrilateral face-based bubble
functions (2.91),
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(e) 2(pb;1 � 1)(pb;1 � 2) genuine triangular face functions (2.90), and
�nally

(f) (pb;1 � 1)(pb;1 � 2)pb;2 genuine bubble functions (2.92).

2. Functions whose two �rst components are zero:

(a) Vertical edges contribute 3(pb;2 + 1) edge functions (2.85),

(b) quadrilateral faces yield 3(pb;1 + 1)pb;2 (vertical) face functions
(2.88),

(c) and there are (pb;1�1)pb;1(pb;2+1)=2 triangular face-based bubble
functions (2.93).

Summing up entries in the the �rst part, we arrive at

(pb;1 + 1)(pb;1 + 2)(pb;2 + 2):

The second part involves

(pb;1 + 2)(pb;1 + 3)

2
(pb;2 + 1)

shape functions. Thus, the number of shape functions exactly matches the
dimension of the space QP .
All that remains to be done is to verify that this is also valid when local

orders of approximation on edges and faces reduce. This can already be easily
seen, taking one local order of approximation after another, reducing it and
observing that the reduction of dimension of the spaceQP exactly corresponds
to the reduction of the number of corresponding shape functions. With this,
the proof is complete.

2.4 H(div)-conforming approximations

With the experience that we gained during the construction of H(curl)-
conforming �nite elements of arbitrary order in the previous section, the design
of H(div)-conforming elements will be a simple exercise.

2.4.1 De Rham diagram and �nite elements in H(div)

Also inH(div) we will consider the �nite elements within the general frame-
work of the De Rham diagram (2.2),

H1 r��! H(div)
r��! L2 (2D form);
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and (2.3),

H1 r�!H(curl)
r��! H(div)

r��! L2 (3D form):

Conformity requirements reduce to continuity of normal component of ap-
proximation across element interfaces.

REMARK 2.41 (Similarity of spaces H(curl) and H(div) in 2D) Due
to the similarity of operatorsr� = (�@=@�2; @=@�1) andr = (@=@�1; @=@�2)
in 2D, the spaces H(curl) and H(div) have much in common. In particular,
normal direction is (up to the sign factor) the unique complementary direction
to the tangential one and vice versa. Therefore, H(div)-conforming shape
functions can easily be derived from the appropriateH(curl)-conforming ones
by switching these two directions.

REMARK 2.42 (Reduced conformity requirements in 3D) In three
spatial dimensions the situation will be easier than in theH(curl)-conforming
case, since neither vertices nor edges are constrained by conformity require-
ments in the space H(div) (see Paragraph 1.1.4). Hierarchic vector-valued
shape functions will contain neither vertex nor edge functions.

2.4.2 Quadrilateral master element Kdiv
q

Let us begin with the simplest master element of arbitrary order, Kdiv
q , on

the reference quadrilateral domain Kq (Figure 2.1).

As usual, we allow for its anisotropic p-re�nement, and therefore consider lo-
cal directional orders of approximation pb;1; pb;2 in the element interior (corre-
sponding to axial directions �1 and �2, respectively). Local orders p

e1 ; : : : ; pe4 ,
are assigned to edges e1; : : : ; e4.

REMARK 2.43 (Minimum rules in H(div)) These nonuniform local
orders of approximation come from a physical mesh element, and at this time
they have to obey the minimum rule for H(div)-conforming approximations:
polynomial orders of normal components of approximation on physical mesh
edges must not exceed appropriate local directional orders in the interior of
adjacent elements.

Locally on the reference domain Remark 2.43 yields that

pe1 ; pe2 � pb2 ;

pe3 ; pe4 � pb1 :
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REMARK 2.44 The curl operator r�, representing an adequate portion
of the De Rham diagram (2.2), transforms scalar monomials from the space
Wq by

�i+1
1 �j+1

2

r��!
�
�(j + 1)�i+1

1 �j2; (i+ 1)�i1�
j+1

2

�
:

According to Remark 2.44 the De Rham diagram suggests that a �nite element
of the form Kdiv

q = (Kq;Vq;�
div
q ) needs to be equipped with polynomial space

Vq =
�
v 2 Qpb;1+1;pb;2 �Qpb;1;pb;2+1; v � njej 2 Ppej (ej); j = 1; : : : ; 4

	
:

(2.94)
The ancestor scalar �nite element space is the same as in the H(curl)-con-
forming case, namely

Wq =
�
w 2 Qpb;1+1;pb;2+1; wjej 2 Ppej+1(ej); j = 1; : : : ; 4

	
:

As usual let us now accomplish the design of the �nite element Kdiv
q by iden-

tifying the set of degrees of freedom �div
q via a suitable hierarchic basis of

the space Vq . We will see that the connection of this case with the two-
dimensionalH(curl)-conforming case is straightforward. The hierarchic basis
will again comprise edge and bubble functions.
Traces of normal component of edge functions eik;q will coincide with Leg-

endre polynomials Lk, k = 0; : : : ; pei on the appropriate edge ei, i = 1; : : : ; 4,
and vanish on all remaining ones,

e1k;q = l0(�1)Lk(�2)�1; 0 � k � pe1 ; (2.95)

e2k;q = l1(�1)Lk(�2)�1; 0 � k � pe2 ;

e3k;q = Lk(�1)l0(�2)�2; 0 � k � pe3 ;

e4k;q = Lk(�1)l1(�2)�2; 0 � k � pe4 ;

while bubble functions will be designed in such a way that their normal com-
ponent vanishes on all edges,

b;1n1;n2;q = ln1(�1)Ln2(�2)�1; 2 � n1 � pb;1 + 1; 0 � n2 � pb;2; (2.96)

b;2n1;n2;q = Ln1(�1)ln2(�2)�2; 0 � n1 � pb;1; 2 � n2 � pb;2 + 1:

REMARK 2.45 Perhaps it is worth mentioning that the edge functions are
oriented according to canonical vectors �1; �2. This fact will be used for the
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design of globally H(div)-conforming edge functions in the physical mesh in
Chapter 3.

The four lowest-order edge functions e10;q; : : : ; 
e4
0;q, (Whitney functions) again

complete a lowest order element. All of the above shape functions are obvi-
ously linearly independent.
Numbers of vector-valued shape functions in the hierarchic basis of the

space Vq are summarized in Table 2.11.

TABLE 2.11: Vector-valued hierarchic shape functions of Kdiv
q .

Node Polynomial Number of Number of
type order shape functions nodes

Edge always pej + 1 4
Interior 1 � pb;1 or 1 � pb;2 (pb;2 + 1)pb;1 + pb;2(pb;1 + 1) 1

PROPOSITION 2.12
Vector-valued shape functions (2.95) and (2.96) constitute a hierarchic basis
of the space Vq, de�ned in (2.94).

PROOF The same as in the H(curl)-conforming case.

2.4.3 Triangular master element Kdiv
t

In this paragraph we will design a master element of arbitrary order Kdiv
t

on the reference triangular domain Kt (Figure 2.13).
Consider a local order of approximation pb in element interior, and local

orders pej on edges, j = 1; : : : ; 3.

REMARK 2.46 The minimum rule for H(div)-conforming approximation
(Remark 2.43) yields that pei � pb for all i = 1; : : : ; 3.

In harmony with the De Rham diagram (2.2), a �nite element of the form
Kdiv
t = (Kt;Vt;�

div
t ) will be equipped with polynomial space

Vt =
�
v 2 (Ppb)2(Kt); v � njej 2 Ppej (ej); j = 1; : : : ; 3

	
: (2.97)

The ancestor space Wt is the same as in the H(curl)-conforming case,

Wt =
�
w 2 Ppb+1(Kt); wjej 2 Ppej+1(ej) j = 1; : : : ; 3

	
:
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REMARK 2.47 Recall the relation

ni;t =
r�i;t
jr�i;tj ; i = 1; : : : ; 3; (2.98)

de�ning unitary normal vectors to edges.

Exchanging tangential and normal direction in the de�nition of functions
(2.57) from the H(curl)-conforming case, we easily arrive at Whitney func-
tions

e10;t =
�3;tt2;t
t2;t � n1;t

+
�2;tt3;t
t3;t � n1;t

; (2.99)

e20;t =
�1;tt3;t
t3;t � n2;t

+
�3;tt1;t
t1;t � n2;t

;

e30;t =
�2;tt1;t
t1;t � n3;t

+
�1;tt2;t
t2;t � n3;t

;

(whose normal component vanishes on all edges except for the one where it
coincides with the Legendre polynomial L0 � 1). Analogously we obtain
linear edge functions

e11;t =
�3;tt2;t
t2;t � n1;t

� �2;tt3;t
t3;t � n1;t

; pe1 � 1; (2.100)

e21;t =
�1;tt3;t
t3;t � n2;t

� �3;tt1;t
t1;t � n2;t

; pe2 � 1;

e31;t =
�2;tt1;t
t1;t � n3;t

� �1;tt2;t
t2;t � n3;t

; pe3 � 1:

Higher-order edge functions

e1k;t =
2k � 1

k
Lk�1(�3;t � �2;t)

e1
1;t �

k � 1

k
Lk�2(�3;t � �2;t)

e1
0;t;

2 � k � pe1 ; (2.101)

e2k;t =
2k � 1

k
Lk�1(�1;t � �3;t)

e2
1;t �

k � 1

k
Lk�2(�1;t � �3;t)

e2
0;t;

2 � k � pe2 ;

e3k;t =
2k � 1

k
Lk�1(�2;t � �1;t)

e3
1;t �

k � 1

k
Lk�2(�2;t � �1;t)

e3
0;t:

2 � k � pe3 ;

are again composed from Whitney and linear edge functions, using the recur-
rent de�nition of Legendre polynomials (1.40).
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Bubble functions, whose normal component vanishes on all edges, will be con-
structed as edge-based and genuine. Edge-based bubble functions will have
the form

b;e1k;t = �3;t�2;tLk�2(�3;t � �2;t)t1;t; 2 � k � pb; (2.102)

b;e2k;t = �1;t�3;tLk�2(�1;t � �3;t)t2;t; 2 � k � pb;

b;e3k;t = �2;t�1;tLk�2(�2;t � �1;t)t3;t; 2 � k � pb;

analogous to (2.60), and genuine bubble functions will be written as

b;1n1;n2;t = �1;t�2;t�3;tLn1�1(�3;t � �2;t)Ln2�1(�2;t � �1;t)�1; (2.103)

b;2n1;n2;t = �1;t�2;t�3;tLn1�1(�3;t � �2;t)Ln2�1(�2;t � �1;t)�2;

1 � n1; n2; n1 + n2 � pb � 1, as suggested by (2.61).
Numbers of vector-valued shape functions in the hierarchic basis of the

space Vt are summarized in Table 2.7.

TABLE 2.12: Vector-valued hierarchic shape functions of Kdiv
t .

Node Polynomial Number of Number of
type order shape functions nodes

Edge always pej + 1 3
Edge-based interior 2 � pb 3(pb � 1) 1
Genuine interior 3 � pb (pb � 1)(pb � 2) 1

PROPOSITION 2.13
Whitney functions (2.99), linear edge functions (2.100), higher-order edge
functions (2.101), and bubble functions (2.102), (2.103), constitute a hierar-
chic basis of the space Vt, de�ned in (2.97).

PROOF The same as in the H(curl)-conforming case.

REMARK 2.48 Notice that traces of normal components of both the edge
functions (2.95) associated with the master quadrilateral Kdiv

q , and edge func-

tions (2.99), (2.100) and (2.101) of the master triangle Kdiv
t match the Leg-

endre polynomials L0; L1; : : :. Hence, as in the H(curl)-conforming case, the
hierarchic bases of master elements Kdiv

q and Kdiv
t o�er the possibility of com-
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bining quadrilateral and triangular elements in hybrid meshes. This issue will
be discussed in more detail in Chapter 3.

2.4.4 Brick master element Kdiv
B

In this paragraph we will present a master element of arbitrary order Kdiv
B

on the reference brick domain KB (Figure 2.26).
To allow for anisotropic p-re�nement of brick elements, we consider stan-

dard local orders of approximation pb;1; pb;2 and pb;3 in the element interior
(corresponding to coordinate axes in lexicographic order). Local directional
orders psi;1; psi;2 are assigned to faces si, i = 1; : : : ; 6. No local orders for
edges are relevant, as edges are not constrained by H(div)-conformity rules.

REMARK 2.49 The minimum rule for H(div)-conforming approximations
(Remark 2.43) yields that directional polynomial orders of normal compo-
nents of approximation on physical mesh faces are limited by corresponding
directional orders in the interior of adjacent elements.

REMARK 2.50 Observe how the operatorr� acts on vector-valued mono-
mials from the product space QB :

(a �i1�
j+1

2 �k+1
3 ; b �i+1

1 �j2�
k+1
3 ; c �i+1

1 �j+1

2 �k3 )

r��!
�
c(j + 1)�i+1

1 �j2�
k
3 � b(k + 1)�i+1

1 �j2�
k
3 ;

a(k + 1)�i1�
j+1

2 �k3 � c(i+ 1)�i1�
j+1

2 �k3 ;

b(i+ 1)�i1�
j
2�

k+1
3 � a(j + 1)�i1�

j
2�

k+1
3

�
:

Remark 2.50 explains why the De Rham diagram requires that a �nite element
of the form Kdiv

B = (KB ;VB ;�
div
B ) is equipped with polynomial space

VB =
�
v 2 Qpb;1+1;pb;2;pb;3 �Qpb;1;pb;2+1;pb;3 �Qpb;1;pb;2;pb;3+1;

v � njsi 2 Qpsi;1;psi;2(si); i = 1; : : : ; 6g ; (2.104)

which is a natural descendant of the vector-valued space QB of the form
(2.62),

QB =
�
E 2 Qpb;1;pb;2+1;pb;3+1 �Qpb;1+1;pb;2;pb;3+1 �Qpb;1+1;pb;2+1;pb;3 ;

Etjsi 2 Qpsi;1;psi;2+1(si)�Qpsi;1+1;psi;2(si);

E � tjej 2 Ppej (ej); i = 1; : : : ; 6; j = 1; : : : ; 12g :
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Recall the local coordinate systems for faces s1; : : : ; s6 de�ned in Paragraph
2.2.4.
The hierarchic basis of space VB will consist of face functions, whose normal

component vanishes in the standard sense on all faces but one, and bubble
functions, whose normal component vanishes identically on all faces. The
construction of both of these types of functions will be very much analogous
to the H(curl)-conforming case.
Face functions for the faces s1 and s2 (see Figure 2.26) are de�ned as

s1n1;n2;B = l0(�1)Ln1(�2)Ln2(�3)�1;

0 � n1 � ps1;1; 0 � n2 � ps1;2; (2.105)

s2n1;n2;B = l1(�1)Ln1(�2)Ln2(�3)�1;

0 � n1 � ps2;1; 0 � n2 � ps2;2;

leaving the rest to the reader as an easy exercise. Notice that with n1 = n2 =
0, the above de�nition encompassesWhitney functions, whose nonzero normal
component is in the standard sense equal to one. Whitney functions again
provide a complete basis for a lowest-order element. For future reference let us
mention that all face functions are oriented according to the canonical vector
involved in their speci�c formulae.
Bubble functions are considered in the form

 b;1n1;n2;n3;B = ln1(�1)Ln2(�2)Ln3(�3)�1;

2 � n1 � pb;1 + 1; 0 � n2 � pb;2; 0 � n3 � pb;3; (2.106)

 b;2n1;n2;n3;B = Ln1(�1)ln2(�2)Ln3(�3)�2;

0 � n1 � pb;1; 2 � n2 � pb;2 + 1; 0 � n3 � pb;3;

 b;3n1;n2;n3;B = Ln1(�1)Ln2(�2)ln3(�3)�3;

0 � n1 � pb;1; 0 � n2 � pb;2; 2 � n3 � pb;3 + 1:

The number of bubble functions (2.106) is

pb;1(pb;2+1)(pb;3+1)+(pb;1+1)pb;2(pb;3+1)+(pb;1+1)(pb;2+1)pb;3: (2.107)

Numbers of vector-valued shape functions in the hierarchic basis of the space
VB are summarized in Table 2.13.

PROPOSITION 2.14
Vector-valued shape functions (2.105) and (2.106) represent a hierarchic basis
of the space VB, de�ned in (2.104).

© 2004 by Chapman & Hall/CRC



Hierarchic master elements of arbitrary order 113

TABLE 2.13: Vector-valued hierarchic shape functions of Kdiv
B .

Node Polynomial Number of Number of
type order shape functions nodes

Face always (psi;1 + 1)(psi;2 + 1) 6
Interior 1 � pb;m for some m see (2.107) 1

PROOF Consider vector components one at a time. It is easy to see that
all functions belong to the space VB , and that they are linearly independent.
Counting them up, we obtain the dimension of the space VB ,

dim (VB) =

6X
i=1

(psi;1 + 1)(psi;2 + 1) + pb;1(pb;2 + 1)(pb;3 + 1)

+(pb;1 + 1)pb;2(pb;3 + 1) + (pb;1 + 1)(pb;2 + 1)pb;3;

which �nishes the proof.

2.4.5 Tetrahedral master element Kdiv
T

Next we design a master element of arbitrary order Kdiv
T , associated with

the reference tetrahedral domain KT (Figure 2.30). This time we consider
one local order of approximation pb in the element interior only, and one local
order psi per face, i = 1; : : : ; 4.

REMARK 2.51 The minimum rule for H(div)-conforming approximations
(Remark 2.43) in this case, locally on the reference domain, translates into

psi � pb:

It follows from the De Rham diagram (2.3) that a �nite element of the form
Kdiv
T = (KT ;VT ;�

div
T ) should carry a vector-valued polynomial space

VT =
�
v 2 (Ppb)3(KT ); v � njsi 2 Ppsi (si); i = 1; : : : ; 4

	
: (2.108)

This space is a natural descendant of the space QT ,

QT =
�
E 2 (Ppb+1)

3(KT ); Etjsi 2 (Ppsi+1)
2(si);

E � tjej 2 Ppej+1(ej); i = 1; : : : ; 4; j = 1; : : : ; 6; g

that was de�ned in (2.72).
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This time, face functions will be split into Whitney, linear, edge-based and
genuine. Before constructing them, recall the relation (2.73),

ni;T =
r�i;T
jr�i;T j ; i = 1; : : : ; 4;

de�ning unitary normal vectors to faces s1; : : : ; s4. We will also exploit ori-
entation of faces introduced in Paragraph 2.2.5 (recall that for each face we
selected a vertex vA with lowest local index, and by vB ; vC denoted its two
remaining vertices in increasing order. For each face si this choice determines
three aÆne coordinates �A; �B ; �C , such that �A(vA) = �B(vB) = �C(vC) =
1).
Whitney face functions will be composed from elementary vertex-based face

functions. Consider a face si, and by vD denote the element-opposite vertex.
Denote eA = vAvD, eB = vBvD , eC = vCvD, and construct unitary tangential
vectors

tA =
vA � vD
jvA � vDj ; tB =

vB � vD
jvB � vD j ; tC =

vC � vD
jvC � vDj :

Notice that the normal component of functions

�AtA
tA � ni;T ;

�BtB
tB � ni;T ;

�CtC
tC � ni;T ; (2.109)

exactly coincides with �A; �B and �C on the face si, respectively, and vanishes
on all other faces, as illustrated in Figure 2.47.
Now it is easy to de�ne a Whitney function,

si
0;T =

�AtA
tA � ni;T +

�BtB
tB � ni;T +

�CtC
tC � ni;T ; (2.110)

whose normal component is equal to one on the face si and vanishes on all
other faces. Four Whitney functions, associated with faces s1; : : : ; s4, form a
complete lowest-order element. Elementary functions (2.109) can be further
combined to produce linear face functions,

si;1
1;T =

�BtB
tB � ni;T � �AtA

tA � ni;T ; (2.111)

si;2
1;T =

�AtA
tA � ni;T �

�CtC
tC � ni;T :

Together with Whitney functions, these functions form a complete �rst-order
element.
Next we construct edge-based face functions. Consider an oriented edge ej =

vEvF , lying in the face si, and aÆne coordinates �E ; �F , such that �E(vE) =
�F (vF ) = 1. The product �E�F vanishes everywhere on the element surface,

© 2004 by Chapman & Hall/CRC



Hierarchic master elements of arbitrary order 115

��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

1

3

6
e

v
1

e v
2

e
5e

3
v

e
4

4
s

v
4

(a)

(b)

3
s

C

e
2

s
2

s
1

t

FIGURE 2.47: Consider the face si = s3, and its vertex vC = v4 For this
face it is vD = v2. The elementary vertex-based face function �CtC=(tC �
ni;T ) (a) vanishes completely on the face s4 (�C � 0 on s4), (b) its normal
component vanishes also on each face s1; s2 (n1;T � tC = n2;T � tC = 0). Thus,
the normal component is nonzero only on the face s3, where it coincides with
�4;T .

except for two faces si; sD. We eliminate the normal component from the
face sD in the standard way, exploiting a suitable tangential direction. This
task can be done by, for example, a unitary tangential vector to its edge eD,
eD 6= ej , which follows after ej in the local orientation associated with the face
sD. Hence we obtain a set of linearly independent edge-based face functions


si;ej
k;T = �E�FLk�2(�F � �E)

tD

tD � ni;T ; 2 � k � psi : (2.112)

The real coeÆcient 1=(tD � ni;T ) is introduced for future compatibility with
prismatic elements.
H(curl)-conforming face-based bubble functions (2.80), whose construction

was shown in Figure 2.44, will play the role of genuine face functions in the
basis of VT :

sin1;n2;T =  b;sin1;n2;T
; 1 � n1; n2; n1 + n2 � psi � 1: (2.113)

What remains to be done now is to design bubble functions whose normal
component vanishes on all faces. As in [6], we will split them into three
groups { edge-based, face-based and genuine.
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Consider an oriented edge ej = vEvF , and aÆne coordinates �E ; �F , such
that �E(vE) = �F (vF ) = 1. Edge-based bubble functions, associated with the
edge ej , have the form


b;ej
n1;T

= �E�FLn1�2(�F � �E)tj;T ; 2 � n1 � pb: (2.114)

The construction is illustrated in Figure 2.48.
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FIGURE 2.48: Consider the edge ej = e5. Edge-based bubble functions

b;e5k;T (a), (b) vanish completely on faces s3; s4 (�E�F � 0), and (c) their
normal component vanishes also on each face s1; s2 (t5;T �n1;T = t5;T �n2;T =
0).

H(curl)-conforming genuine face functions (2.79), whose construction was
illustrated in Figure 2.43, can be used as face-based bubble functions,

b;si;1n1;n2;T
=  si;1n1;n2;T

; (2.115)

b;si;2n1;n2;T
=  si;2n1;n2;T

;

1 � n1; n2; n1 + n2 � pb � 1.
Also genuine bubble functions can be chosen in the same way as in the

H(curl)-conforming case,

b;mn1;n2;n3;T =  b;mn1;n2;n3;T ; (2.116)
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1 � n1; n2; n3; n1 + n2 + n3 � pb � 1; m = 1; : : : ; 3.

Numbers of vector-valued shape functions in the hierarchic basis of the
space VT are summarized in Table 2.14.

TABLE 2.14: Vector-valued hierarchic shape functions of Kdiv
T .

Node Polyn. Number of Num. of
type order shape functions nodes

Whitney always 1 4
Linear face 1 � psi 2 4

Edge-based face 2 � psi 3(psi � 1) 4
Genuine face 3 � psi (psi � 2)(psi � 1)=2 4

Edge-based bubble 2 � pb 6(pb � 1) 1
Face-based bubble 3 � pb 4(pb � 2)(pb � 1) 1
Genuine bubble 4 � pb d(pb � 3)(pb � 2)(pb � 1)=6 1

PROPOSITION 2.15
Whitney face functions (2.110), linear face functions (2.111), edge-based face
functions (2.112), genuine face functions (2.113), and bubble functions (2.114),
(2.115) and (2.116), provide a complete basis of the space VT , de�ned in
(2.108).

PROOF In the standard way: �rst verify that all shape functions belong to
the space VT . It is easy to see that they are linearly independent, and that
they generate the whole space VT .

2.4.6 Prismatic master element Kdiv
P

Our last master element of arbitrary order, Kdiv
P , will be associated with

the reference prismatic domain KP (Figure 2.34).
Consider local directional orders of approximation pb;1; pb;2 in the element

interior. The order pb;1 corresponds to the plane �1�2 (again, we will des-
ignate this the horizontal direction), and pb;2 to the vertical direction �3.
Quadrilateral faces si, i = 1; : : : ; 3, are assigned local directional orders of
approximation psi;1; psi;2 (in horizontal and vertical direction, respectively).
Triangular faces s4; s5 come with one local order of approximation psi only,
i = 4; 5. Edges are not constrained by H(div)-conformity requirements. The
minimum rule for H(div)-conforming approximations (Remark 2.43) applies.
The De Rham diagram (2.3) suggests that a �nite element of the form

Kdiv
P = (KP ;VP ;�

div
P ) should be equipped with a vector-valued polynomial
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space

VP =
�
v 2 Rpb;1 ;pb;2(KP )�Rpb;1;pb;2(KP )�Rpb;1�1;pb;2+1(KP );

v � njsi 2 Qpsi;1;psi;2(si) for i = 1; : : : ; 3;

v � njsi 2 Ppsi (si) for i = 4; 5g ; (2.117)

which is de�ned only if pb;1 � 1. The appropriate ancestor space has the form
(2.83),

QP =
�
E 2 Rpb;1;pb;2+1(KP )�Rpb;1;pb;2+1(KP )�Rpb;1+1;pb;2(KP );

Etjsi 2 Qpsi;1;psi;2+1(si)�Qpsi;1+1;psi;2(si) for i = 1; : : : ; 3;

Etjsi 2 (Ppsi )2(si) for i = 4; 5;

E � tjej 2 Ppej (ej); j = 1; : : : ; 9g :

The design of the �nite element Kdiv
P will be accomplished by de�ning a

suitable hierarchic basis of the space VP .

REMARK 2.52 Similarly as in theH(curl)-conforming case, we will exploit
the product geometry KP = Kt �Ka to simplify the construction. The De
Rham diagram indicates that the �rst two vector components of the shape
functions should be constructed as products of shape functions associated
with the master element Kdiv

t in �1; �2 (again formally extended to 3D by
adding zero third component), and Legendre polynomials in �3, while the
third vector component should have the form of a product of scalar shape
functions of the master element K1

t in �1; �2, and Legendre polynomials in �3.
The construction of shape functions for the master elements K1

t and Kdiv
t was

described in Paragraphs 2.2.3 and 2.4.3.

The basis of the space VP will comprise face functions whose normal compo-
nent vanishes in the standard sense on all faces but one, and bubble functions
whose normal component vanishes on all faces. Face functions for quadri-
lateral and triangular faces will be constructed to be compatible with face
functions of the master brick Kdiv

B and master tetrahedron Kdiv
T , respectively.

Simplifying the notation as explained in Remark 2.52, face functions for
quadrilateral faces si, i = 1; : : : ; 3, can be written as

sin1;n2;P (�1; �2; �3) = ein1;t(�1; �2)Ln2(�3); 0 � n1 � psi;1; 0 � n2 � psi;2;
(2.118)

where two-dimensional edge functions ein1;t have been de�ned in (2.99), (2.100)
and (2.101). The compatibility of face functions (2.118) with face functions
(2.105) of the master brick Kdiv

B is an immediate e�ect of the fact that nonzero
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normal components of 2D edge functions ein1;t are the Legendre polynomials
L0; L1; : : :.
Face functions for triangular faces s4 and s5 will reside only in the third

vector component. Their construction is very similar as their local orientations
are the same as that of the master triangle Kdiv

t . Let us consider the face s5
�rst. To be compatible with the master tetrahedron Kdiv

T , �rst we need a
Whitney triangular face function, whose normal component on the face s5
would be equal to one. Such a function will always be present in the basis of
VP , and we can de�ne it as

s5
0;P (�1; �2; �3) =

3X
k=1

'vkt (�1; �2)

| {z }
�1

l1(�3)n5;T ; (2.119)

where 'vkt , k = 1; : : : ; 3, are scalar vertex functions of the master triangle K1
t .

Similarly we de�ne for the face s5 linear triangular face functions

s5;1
1;P (�1; �2; �3) = ('v2t � 'v1t ) (�1; �2)l1(�3)n5;P ; (2.120)

s5;2
1;P (�1; �2; �3) = ('v1t � 'v3t ) (�1; �2)l1(�3)n5;P ;

which are present in the basis of VP if ps5 � 1. They are compatible with linear
face functions (2.111) of the master tetrahedron Kdiv

T . Edge-based triangular
face functions related to the face s5 can be written as


s5;ej
k;T = '

ej
k;t(�1; �2)l1(�3)n5;P ; 2 � k � ps5 ; j = 7; 8; 9: (2.121)

Notice, again, that their normal components have the same form as those of
the edge-based face functions (2.112) of the master tetrahedron Kdiv

T . The last
group of face functions for the face s5 are genuine triangular face functions,

s5n1;n2;T = 'b;1n1;n2;t(�1; �2)l1(�3)n5;P ; (2.122)

1 � n1; n2; n1+n2 � ps5�1, whose nonzero normal components match those
of genuine face functions (2.113) of the master tetrahedron Kdiv

T .
As for face s4, we only use l0(�3) instead of l1(�3) to let the functions vanish

on the opposite triangular face s5 and exchange n5;P for n4;P .

At this point we need only bubble functions to complete the basis of the space
VP . Let us begin with functions that are only nonzero in their �rst two vector
components. We have horizontal bubble functions of the form

b;1n1;n2;n3;P = bt (�1; �2)Ln3(�3); 0 � n3 � pb;2; (2.123)
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where bt stands for edge-based and genuine bubble functions (2.102) and
(2.103) of the master triangle Kdiv

t up to the order pb;1 (recall that in this
case pb;1 � 1). Their number is

�
3(pb;1 � 1) + (pb;1 � 1)(pb;1 � 2)

�
(pb;2 + 1): (2.124)

Vertical bubble functions whose third vector component is the only one that
is nonzero are de�ned as

b;2n1;n2;n3;P = 't(�1; �2)l0(�3)l1(�3)Ln3�2(�3)�3; 2 � n3 � pb;2 + 1; (2.125)

where 't stands for all scalar shape functions up to the order pb;1 � 1, asso-
ciated with the master triangle K1

t . Scalar shape functions are here under-
stood in the above sense, i.e., involving one constant lowest-order function
'v1t + 'v2t + 'v3t , two linear functions and standard higher-order edge and
bubble functions.
Numbers of vector-valued shape functions in the hierarchic basis of the

space VP are summarized in Table 2.15.

TABLE 2.15: Vector-valued hierarchic shape functions of Kdiv
P .

Node Polynomial Number of Number of
type order shape functions nodes

Quad. face (i = 1; 2; 3) always (psi;1 + 1)(psi;2 + 1) 3
Tri. face (i = 4; 5) always (psi + 1)(psi + 2)=2 2
Horizontal bubble 2 � pb;1 see (2.124) 1
Vertical bubble 1 � pb;2 pb;1(pb;1 + 1)pb;2=2 1

PROPOSITION 2.16
Quadrilateral face functions (2.118), triangular face functions (2.119), (2.120),
(2.121) and (2.122), and bubble functions (2.123) and (2.125) constitute a hi-
erarchic basis of the space VP , de�ned in (2.117).

PROOF It is easy to see that all shape functions belong to the space VP , and
their product structure easily reveals their linear independence. Finally we
have to verify that their number is equal to the dimension of the space VP . In
this case the computation is easy, looking separately at basis functions with a
zero third vector component (2.119), (2.120), (2.121), (2.122) and (2.125), and
at basis functions with zero �rst two vector components (2.118) and (2.123).
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2.5 L2-conforming approximations

In the last section of this chapter we will briey discuss the design of L2-
conforming �nite elements of arbitrary order on the reference domains Kq,
Kt, KB, KT and KP .

2.5.1 De Rham diagram and �nite elements in L2

The space L2 stands at the end of the De Rham diagram (2.1), (2.2) and
(2.3), and therefore the hierarchy of shape functions for L2-conforming ap-
proximations is simpler than in the spaces H1, H(curl) and H(div). Since
no conformity restrictions are imposed on vertices, edges and faces, all shape
functions are bubble functions. Obviously there are no minimum rules for
L2-conforming approximations. The design of master elements is very simple
this time.

2.5.2 Master elements for L2-conforming approximations

The L2-conforming case is not exceptional in the sense that a master �nite
element will be constructed as a triad KL2

= (K;X;�L2

), where K stands for

a reference domain, X is a �nite dimensional space, and �L2

represents a set
of degrees of freedom, which will be uniquely identi�ed by a choice of basis of
the space X .

Quadrilateral master element KL2

q

Consider using local directional polynomial orders of approximation pb;1; pb;2

in the element interior to allow for anisotropic p-re�nement. The basis of the
space

Xq = Qpb;1;pb;2 ; (2.126)

where Qp;q was introduced in (2.12), consists of (pb;1 + 1)(pb;2 + 1) bubble
functions

!bn1;n2;q = Ln1(�1)Ln2(�2); 0 � n1 � pb;1; 0 � n2 � pb;2: (2.127)

PROPOSITION 2.17
Shape functions (2.127) form a basis of the space Xq, de�ned in (2.126).
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Triangular master element KL2

t

Consider local polynomial order of approximation pb in the element interior.
The basis of the space

Xt = Ppb(Kt); (2.128)

where Pp(Kt) was de�ned in (2.19), consists of (pb + 1)(pb + 2)=2 bubble
functions

!bn1;n2;t = Ln1(�3;t��2;t)Ln2(�2;t��1;t); 0 � n1; n2; n1+n2 � pb: (2.129)

PROPOSITION 2.18
Shape functions (2.129) form a basis of the space Xt, de�ned in (2.128).

Brick master element KL2

B

Consider using local directional polynomial orders of approximation pb;1; pb;2,
pb;3 in the element interior to allow for anisotropic p-re�nement. The basis of
the space

XB = Qpb;1;pb;2;pb;3 ; (2.130)

consists of (pb;1 + 1)(pb;2 + 1)(pb;3 + 1) bubble functions

!bn1;n2;n3;B = Ln1(�1)Ln2(�2)Ln3(�3); (2.131)

0 � n1 � pb;1; 0 � n2 � pb;2; 0 � n3 � pb;3.

PROPOSITION 2.19
Shape functions (2.131) form a basis of the space XB, de�ned in (2.130).

Tetrahedral master element KL2

T

Consider local polynomial order of approximation pb in the element interior.
The basis of the space

XT = Ppb(KT ); (2.132)

where

Pp(KT ) = span
n
�i1�

j
2�

k
3 ; i; j; k = 0; : : : ; p; i+ j + k � p

o
;

consists of (pb + 1)(pb + 2)(pb + 3)=6 bubble functions

!bn1;n2;n3;T = Ln1(�3;T � �2;T )Ln2(�2;T � �1;T )Ln3(�4;T � �2;T ); (2.133)
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0 � n1; n2; n3; n1 + n2 + n3 � pb:

PROPOSITION 2.20
Shape functions (2.133) form a basis of the space XT , de�ned in (2.132).

Prismatic master element KL2

P

Consider local directional polynomial orders of approximation pb;1; pb;2 in
the element interior (pb;1 in horizontal direction �1�2, and p

b2 in the vertical
direction �3 as before). Anisotropic p-re�nement of this element is allowed
only in the vertical direction. The basis of the space

XP = Rpb;1;pb;2(KP ); (2.134)

(meaning of this symbol is the same as before) consists of (pb;1 + 1)(pb;1 +
2)(pb;2 + 1)=2 bubble functions

!bn1;n2;n3;P = Ln1(�3;t � �2;t)Ln2(�2;t � �1;t)Ln3(�3); (2.135)

0 � n1; n2; n1 + n2 � pb;1; 0 � n3 � pb;2:

PROPOSITION 2.21
Shape functions (2.135) form a basis of the space XP , de�ned in (2.134).

As a simple exercise, the reader may try to �nd ancestors of the aforemen-
tioned �nite element spaces in the De Rham diagram.
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Chapter 3

Higher-order �nite element
discretization

With a database of scalar and vector-valued hierarchic master elements of
variable order on all reference domains in hand, we can proceed to the dis-
cussion of the higher-order �nite element technology in two and three spatial
dimensions. The reader should be prepared that although the methodology
stays basically the same as in 1D, many of its particular aspects become more
technical. Therefore we encourage her/him to be truly familiar with the one-
dimensional model example from Section 1.3 before reading this chapter.

We will begin with the projection-based interpolation technique that extends
the standard nodal interpolation to hierarchic higher-order elements. Section
3.3 is devoted to the construction of reference maps for all reference domains.
In Section 3.5 we will design hierarchic higher-order elements in the physical
domain by means of master element shape functions and the reference maps
(or, in other words, we transfer the variational formulation from physical mesh
elements to the reference domain). Presentation of the assembling algorithm
accomplishes the discretization on regular meshes. An approach to the treat-
ment of constrained approximation (discretization on 1-irregular meshes) will
be presented in Section 3.6, and selected issues related to computer imple-
mentation of hierarchic higher-order �nite element methods and automatic
hp-adaptivity will be discussed in Section 3.7.

3.1 Projection-based interpolation on reference domains

Projection-based interpolation on hierarchic elements is a nontrivial tech-
nique that forms an essential part of higher-order �nite element methods.
Recall from Section 1.1 that in contrast to nodal higher-order elements, the
degrees of freedom L1; L2; : : : ; LNP

for hierarchic elements are not de�ned
outside of the local polynomial space P (K). This means that De�nition 1.7
cannot be used to design local interpolation operators for hierarchic elements.
Hence one needs to combine the standard nodal (Lagrange) interpolation with
projection on higher-order polynomial subspaces.

Given a suÆciently regular function u 2 V (
h), it is our aim to �nd an

125
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appropriate piecewise-polynomial interpolant uh;p 2 Vh;p(
h), Vh;p � V . For

every element K 2 Th;p with aÆne reference map xK : K̂ ! K this is equi-
valent to the interpolation of the function ujK ÆxK on the reference domain.
Therefore we will stay on the reference domain for a while. Extension to
physical mesh elements, which in the case of nonaÆne maps consists of an
additional adjustment of metric on the reference domain, will be discussed in
Section 3.4.

Properties of projection-based interpolation operators

In order that the projection-based interpolation � is algorithmically eÆ-
cient, conforming and compatible with convergence theory, we request the
following properties:

1. Locality. The projection-based interpolant �u of a function u is con-
structed elementwise. Therefore we request that within an element, �
uses function values of u from this element only.

2. Global conformity. For every function u 2 V 0, V 0 = V , the projection-
based interpolant uh;p = �u still lies in the space V . Recall global
conformity requirements from Paragraph 1.1.4:

(a) continuity across element interfaces for V = H1,

(b) continuity of tangential component across element interfaces for
V =H(curl), and

(c) continuity of normal component across element interfaces for V =
H(div).

3. Optimality. The interpolant uh;p 2 Vh;p must have the minimum dis-
tance from the interpolated function u 2 V in an appropriate norm.
The choice of a suitable norm in the spaces H1, H(curl) and H(div) is
a nontrivial mathematical question that also will be addressed.

3.1.1 H1-conforming elements

Consider the one-dimensional master element K1
a of a polynomial order

pb � 1, i.e., equipped with a polynomial space of the form (2.5),

Wa = fw; w 2 Ppb(Ka)g:

Consider further a function u 2 H1(Ka). Recall that hierarchic shape func-
tions in one spatial dimension comprise vertex functions 'v1a , 'v2a de�ned
in (2.6), and bubble functions 'bk;a, k = 2; 3; : : : ; pb, de�ned in (2.8). The

projection-based interpolant uh;p = �1
au 2 Wa is constructed as a sum of a

vertex and bubble interpolants,
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uh;p = uvh;p + ubh;p:

Vertex interpolant uvh;p 2 Wa is a linear function that matches u at both
endpoints,

uvh;p(�1) = u(�1):

Thus it can be expressed as a linear combination of vertex functions 'v1a , 'v2a ,
as illustrated in Figure 3.1.

ξ ξ ξ

u − u

uu
h,p
v

h,p
v

1−1 −1 1 −1 1

FIGURE 3.1: Decomposition of u into a vertex interpolant uvh;p and a
residual u� uvh;p which vanishes at the endpoints.

Bubble interpolant ubh;p 2 Wa is obtained by projecting the residual u � uvh;p
on the space Ppb;0(Ka) (of polynomials of the order at most p

b that vanish at
interval endpoints) in the H1-seminorm,

ju� uvh;p � ubh;pjH1 ! min : (3.1)

Since the space Ppb;0(Ka) is generated by the bubble functions 'bk;a, k =

2; 3; : : : ; pb, the bubble interpolant ubh;p can be expressed as

ubh;p =

pbX
m=2

�bm'
b
m;a:

Hence the discrete minimization problem (3.1) is equivalent to a system of
pb � 1 linear algebraic equationsZ

Ka

(u� uvh;p � ubh;p)
0('bk;a)

0 = 0; k = 2; 3; : : : ; pb;

for the unknown coeÆcients �bm.
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REMARK 3.1 (Uniqueness of the interpolant) The vertex interpolant
uvh;p does not have to be linear. As long as it is chosen to be a polynomial of

order lower than or equal to pb, the function ubh;p, and consequently the �nal

interpolant uh;p, are uniquely de�ned.

Master triangle K1
t

Let the master element K1
t be equipped with local polynomial orders pej ,

j = 1; 2; 3 on its edges and with an order pb in the interior. The minimum rule
for H1-conforming discretizations requires that pej � pb for all j = 1; : : : ; 3.
The master element polynomial space has the form

Wt = fw; w 2 Ppb(Kt); wjej 2 Ppej (ej); j = 1; 2; 3g:

Consider a suÆciently regular function u : Kt ! IR (theory requires that
u 2 H1+�(Kt), � > 0, which is usually satis�ed in practical computations).
Recall that hierarchic shape functions on the master triangle K1

t comprise ver-
tex functions 'v1t , : : :, 'v3t de�ned in (2.20), edge functions 'e1t ; : : : ; '

e3
t from

(2.21), and bubble functions 'bn1;n2;t, 1 � n1; n2, n1 + n2 � pb � 1, de�ned in
(2.23).

The projection-based interpolant uh;p = �1
tu 2Wt is constructed as a sum of

a vertex, edge and bubble interpolants,

uh;p = uvh;p + ueh;p + ubh;p: (3.2)

Vertex interpolant uvh;p 2 Wt is a linear function matching u at vertices,

uvh;p(vj) = u(vj); j = 1; 2; 3:

Similarly as in the one-dimensional case, one can write uvh;p as a linear com-
bination of vertex shape functions { see Figure 3.2.

FIGURE 3.2: Decomposition of u (left) into a vertex interpolant uvh;p (mid-
dle) and residual u � uvh;p (right), which vanishes at the vertices. (Notice
di�erent scaling.)
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Edge interpolant ueh;p 2Wt is constructed as a sum of contributions from the
element edges,

ueh;p =

3X
j=1

u
ej
h;p:

By the locality and conformity arguments, the value of ueh;p along an edge
ej must depend on the values of the function u on the edge only { the only
information shared by the corresponding pair of neighboring elements. The
approximation theory suggests that the distance between the residual u�uvh;p
and the edge interpolant ueh;p is minimized on edges ej , j = 1; 2; 3, in the norm

H
1
2

00(ej) .
This is a nontrivial norm. To understand it, choose one of the element edges

ej and consider the space

H
1
2

00(ej) =
n
~wjej ; ~w 2 H 1

2 (@Kt); ~w � 0 on @Kt n ej
o
;

where H
1
2 (@Kt) is the space of traces of functions from H1(Kt) to the bound-

ary @Kt. For a function ~w from this space de�ne

k ~wk
H

1
2
00
(ej )

= kwkH1(Kt) = krwkL2(Kt);

where w 2 H1(Kt) is the minimum energy extension of ~w into the element in-
terior, i.e., 4w = 0 in Kt, w � ~w on ej and w � 0 on remaining edges. Indeed
it is diÆcult to evaluate this norm exactly, and in practice one approximates
it with a weighted H1

0 norm [64],

k ~wk2
H

1
2
00
(ej )

� k ~wk2ej =
Z
ej

�
d ~w

ds

�2�
ds

d�

��1

ds =

Z 1

�1

�
d ~w

d�

�2

d�; (3.3)

where x = x(�), � 2 (�1; 1) is the parametrization of the edge ej , and

ds

d�
=

vuut dX
i=1

�
dxi
d�

�2

:

Notice that this weighted H1
0 norm scales with the length of the edge ej in

the same way as the H
1
2

00 norm. The di�erence between these two norms was
studied in [64] with the conclusion that it is, at least for orders p < 10,

insigni�cant. In the following we will still refer to the norm as to H
1
2

00 despite
its appropriate nature upon implementation.
We proceed one edge at a time, solving three discrete minimization problems
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k~u� ~uvh;p � ~u
ej
h;pk

H
1
2
00
(ej )

! min; j = 1; : : : ; 3 (3.4)

(here a tilde over a function denotes its trace). The resulting functions u
ej
h;p are

obtained as (any suÆciently regular) extensions of functions ~u
ej
h;p to element

interior, vanishing always along the two remaining edges. In practice one uses
the shape functions '

ej
k;t, k = 2; : : : ; pej , for this purpose.

On each edge ej the trace ~u
ej
h;p can be written as a linear combination of

traces of the edge functions,

~u
ej
h;p =

pejX
m=2

�ejm ~'
ej
m;t;

and the minimization problem (3.4) transforms into a system of pej � 1 linear
equations

(~u� ~uvh;p � ~u
ej
h;p; ~'

ej
k;t)

H
1
2
00

= 0; k = 2; 3; : : : ; pej ;

for the unknown coeÆcients �
ej
m . The situation is depicted in Figure 3.3.

FIGURE 3.3: Decomposition of u � uvh;p (left) into edge interpolant ueh;p
(middle) and residual u � uvh;p � ueh;p (right). The residual vanishes at the
vertices, but generally it does not completely vanish on edges. (Again notice
di�erent scaling.)

Bubble interpolant ubh;p 2Wt is obtained by projecting the residual u�uvh;p�
ueh;p on the polynomial space Ppb;0, generated by the bubble functions 'bn1;n2;t,
1 � n1; n2, n1 + n2 � pb � 1 in H1-seminorm. Since supports of the bub-
ble shape functions lie in element interior, this operation is obviously local.
De�ning

ubh;p =

pb�2X
n1=1

pb�n1�1X
n2=1

�bn1;n2'
b
n1;n2;t;

the corresponding discrete minimization problem,
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ju� uvh;p � ueh;p � ubh;pjH1 ! min;

translates into a system of (pb � 2)(pb � 1)=2 linear algebraic equationsZ
Kt

r(u� uvh;p � ueh;p � ubh;p) � r'bn1;n2;t dx = 0;

for unknown coeÆcients �bn1;n2 . This is illustrated in Figure 3.4.

FIGURE 3.4: Decomposition of u�uvh;p�ueh;p (left) into bubble interpolant
ubh;p (middle) and residual u� uvh;p � ueh;p � ubh;p (right).

REMARK 3.2 (Uniqueness of the interpolant) Notice that the �nal
interpolant uh;p is uniquely de�ned despite many possibilities of choice of
vertex interpolant uvh;p and extensions u

ej
h;p as long as they lie in the polynomial

space Wt. Nonuniqueness of extensions u
ej
h;p is compensated by the bubble

interpolant ubh;p.

REMARK 3.3 (Master quadrilateral K1
q) The interpolant uh;p = �1

qu

is constructed as a sum uvh;p + ueh;p + ubh;p of a vertex, edge and bubble inter-
polants.
First one constructs the standard bilinear interpolant uvh;p 2 Wq that

matches the function u at vertices v1; : : : ; v4, exploiting the four vertex func-
tions. The edge interpolant ueh;p 2 Wq of the di�erence u�uvh;p is constructed
one edge at a time, computing the projection of the trace ~u� ~uvh;p in the H

1
2

00

norm of the edge, and then extending it into the element interior. In this case
one has to solve four systems of linear algebraic equations. In the last step
one computes the bubble interpolant ubh;p 2 Wq by projecting the di�erence
u � uvh;p � ueh;p on the polynomial space generated by the bubble functions

'bn1;n2;q , 2 � n1 � pb;1, 2 � n1 � pb;2 in the H1 seminorm. The functions

~u
ej
h;p and the �nal interpolant uh;p are uniquely de�ned.
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PROPOSITION 3.1 ([61])
Operators �1

t : H1+�(Kt) ! Wt and �1
q : H1+�(Kq) ! Wq, � > 0, are well

de�ned and bounded, with the norm independent of orders pb, pej .

PROOF The original result related to a reference triangular domain

T =

�
(x1; x2); x2 > 0; x2 <

p
3

�
x1 +

1

2

�
; x2 < �

p
3

�
x1 � 1

2

��
;

based on the polynomial extension theorem [20, 22] and the Poincar�e inequal-
ity, extends naturally to the master elements K1

t ;K1
q .

THEOREM 3.1 (H1-conforming interpolation error estimate [61])
Consider the master triangle K1

t . There exists a constant C, dependent upon
� but independent of the polynomial orders pb and pej , j = 1; : : : ; 3, such that

ku��1
tukH1(Kt) � C inf

Wt

ku� vkH1+�(Kt) � C(min
j
pej )�(r��)kukH1+r(Kt);

for every r > 1 and 0 < � < r.

PROOF The proof is based on the best approximation result for polynomial
spaces [22].

Master tetrahedron K1
T

Let the master tetrahedron K1
T be equipped with local orders of approxima-

tion pej on edges, psk on faces and pb in the interior, satisfying the minimum
rule for H1-conforming discretizations. The master element polynomial space
has the form

WT = fw; w 2 Ppb(KT ); wjsi 2 Ppsi (si); wjej 2 Ppej (ej)g:

Consider a suÆciently regular function u de�ned in KT (the theory requires
that u 2 H3=2+�, � > 0, see [68]). Recall that hierarchic shape functions on
the master tetrahedron K1

T comprise vertex functions 'v1T , : : :, 'v4t de�ned
in (2.37), edge functions 'e1T ; : : : ; '

e6
T from (2.38), face functions 'sn1;n2;T ,

n1 + n2 � psj � 1, 1 � n1; n2 from (2.39) and bubble functions 'bn1;n2;n3;T ,

1 � n1; n2; n3, n1 + n2 + n3 � pb � 1, de�ned in (2.40).

The projection-based interpolant uh;p 2 WT is constructed as a sum of a
vertex, edge, face and bubble interpolants,

uh;p = uvh;p + ueh;p + ush;p + ubh;p:
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Vertex interpolant uvh;p 2 WT is a linear function that matches u at all vertices,

uvh;p(vj) = u(vj); j = 1; : : : ; 4:

It is easily obtained as a linear combination of vertex shape functions 'v1T , : : :,
'v4T .

Edge interpolant ueh;p 2WT is constructed as a sum of contributions from the
element edges,

ueh;p =
6X

j=1

u
ej
h;p:

Locality and conformity arguments imply that the value of ueh;p along an
edge ej must depend on the values of function u on the edge only. The
approximation theory says that the right norm for the edge interpolant is the
L2 norm (the trace of functions from the space H1(KT ) to faces lies in the

space H
1
2 (@KT ), and the trace of the latter ones to edges loses the additional

portion of regularity).
Thus, on each edge ej one projects the trace of the di�erence u � uvh;p on

the one-dimensional polynomial space Ppej ;0(ej) on the edge ej (generated by
traces of edge functions '

ej
k;T , k = 2; : : : ; pej ) in the L2 norm. We proceed one

edge at a time, solving six discrete minimization problems

k~u� ~uvh;p � ~u
ej
h;pkL2(ej) ! min; j = 1; : : : ; 6: (3.5)

Again a tilde over a function denotes its trace to the edge. The resulting
functions u

ej
h;p are obtained as (any suÆciently regular) extensions of ~u

ej
h;p

to element interior, vanishing along the remaining edges. In practice it is
convenient to construct the extension using the shape functions '

ej
k;T , k =

2; : : : ; pej . When putting

~u
ej
h;p =

pejX
m=2

�ejm ~'
ej
m;T ;

for each edge ej , j = 1; : : : ; 6 the problem (3.5) is equivalent to a system of
pej � 1 linear equations

(~u� ~uvh;p � ~u
ej
h;p; ~'

ej
m;T )L2(ej) = 0

for the unknown coeÆcients �
ej
m .

Face interpolant ush;p 2 WT is constructed as a sum of contributions from
the element faces,

ush;p =

4X
i=1

usih;p:
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By locality and conformity requirements, the value of ush;p on a face si must
depend on the values of function u on si only. Here the projection is done
in the H

1
2 norm. This norm is evaluated approximately (in the same way as

the H
1
2

00 norm that was discussed in the triangular case). This time one solves
four minimization problems

k~u� ~uvh;p � ~ueh;p � ~usih;pkH 1
2 (si)

! min; i = 1; : : : ; 4 (3.6)

(now the tilde stands for traces to faces). Functions usih;p are obtained as (any
suÆciently regular) extensions of ~usih;p to element interior that vanishes on all
remaining faces. In practice one uses the shape functions 'sin1;n2;T , 1 � n1; n2,
n1 + n2 � psi � 1 to extend the traces ~usih;p to element interior.
Expressing

~usih;p =

psi�2X
n1=1

psi�n1�1X
n2=1

�sin1;n2 ~'
si
n1;n2;T

;

for each face si, i = 1; : : : ; 4, the problem (3.6) yields a system of (psi �
2)(psi � 1)=2 linear equations

(~u� ~uvh;p � ~ueh;p � ~usih;p; ~'
si
n1;n2;T

)
H

1
2 (si)

= 0

for the unknown coeÆcients �sin1;n2 .

Bubble interpolant ubh;p 2WT is obtained by projecting the residual u�uvh;p�
ueh;p�ush;p on the polynomial space Ppb;0(KT ) (generated by the bubble func-

tions 'bn1;n2;n3;T , 1 � n1; n2; n3, n1 + n2 + n3 � pb � 1) in the H1 seminorm.
With the substitution

ubh;p =

pb�3X
n1=1

(pb�n1�2)X
n2=1

(pb�n1�n2�1)X
n3=1

�bn1;n2;n3'
b
n1;n2;n3;T ;

the corresponding discrete minimization problem,

j(u� uvh;p � ueh;p � ush;p)� ubh;pjH1(KT ) ! min;

yields a �nal system of (pb � 3)(pb � 2)(pb � 1)=6 linear algebraic equations,Z
KT

r(u� uvh;p � ueh;p � ush;p � ubh;p) � r'bn1;n2;n3;T dx = 0;

for the unknown coeÆcients �bn1;n2;n3 .

REMARK 3.4 (Master elements K1
B and K1

P ) The interpolants �1
Bu

and �1
Pu on master elements K1

B and K1
P are constructed exactly in the same
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way. They comprise a vertex, edge, face and bubble interpolants uvh;p, u
e
h;p,

ush;p and u
b
h;p. The projection is done in L2 norm on edges, H

1
2 on faces and

in H1 seminorm in element interior.

Let us mention a few theoretical results [68] for the tetrahedral projection-
based interpolation operator �1

T , based on a few conjectures, suitable poly-
nomial extension theorems and on the Poincar�e inequality.

PROPOSITION 3.2 ([68])
Operator �1

T : H3=2+�(KT ) ! WT , � > 0, is well de�ned and bounded, with
the norm independent of orders pb, psi and pej .

Conjecture 3.1 (Polynomial extension map [68]) There exists a poly-
nomial extension map,

A : Pp(@KT )! Pp(KT ); (Au)j@KT
= u 8u 2 Pp(@KT );

such that

jjAujjH1 ;KT
� Cjjujj

H
1
2 ;@KT

;

with constant C independent of p.

REMARK 3.5 In Conjecture 3.1, Pp(@KT ) stands for the space of continu-
ous functions de�ned on the boundary of @KT , whose restrictions to element
faces reduce to polynomials of order p. The conjecture postulates a 3D equiv-
alent of the 2D result established in [61].

Conjecture 3.2 (Polynomial extension map [68]) There exists a poly-
nomial extension map,

A : Pp(@s)! Pp(s); (Au)j@s = u 8u 2 Pp(@s);

such that

jjAujj
H

1
2
+�;s

� CjjujjH�;@s;

with constant C independent of p.

REMARK 3.6 In Conjecture 3.2, Pp(@s) stands for the space of continuous
functions de�ned on face boundary @s, whose restriction to the face edges
reduce to polynomials of order p.

© 2004 by Chapman & Hall/CRC



136 Higher-Order Finite Element Methods

LEMMA 3.1 ([68])
Let I = (�1; 1). For a given u 2 H1(I), let up denote the L2-projection of
function u on space Pp;0 of polynomials of order p, vanishing at the endpoints.
Then, for every � > 0, there exists a constant C = C(�), dependent upon �,
but independent of polynomial order p and function u, such that

jju� upjjL2;I � C

p1��
jjujjH1;I :

THEOREM 3.2 (H1 interpolation error estimate [68])
Given the above Conjectures 3.1, 3.2 on the polynomial extension, we have

jju��1
TujjH1;KT

� C(�)pr��jjujjHr ;KT
;

where C(�) > 0 and p is the minimum order of approximation for the element
interior, the element faces and the element edges.

3.1.2 H(curl)-conforming elements

Let us now turn our attention to projection-based interpolation operators
forH(curl)-conforming approximations. We will use the symbols P and P for
spaces of scalar and vector-valued polynomials, respectively. The procedure
will be presented for the reference triangle Kt in 2D and for the reference
tetrahedron KT in three spatial dimensions. The generalization to other ele-
ment types is straightforward.

Master triangle Kcurl
t

Let the triangular master element Kcurl
t be equipped with local orders of

approximation pb in the interior and pej , j = 1; 2; 3, on edges. The �nite
element space Qt has the form (2.55),

Qt = fE; E 2 Ppb(Kt);

E � tj jej 2 Ppej (ej); pej � pb; j = 1; 2; 3g:
Here tj stands for the unitary tangential vector to the oriented edge ej .
Consider a suÆciently regular function E de�ned in Kt (theory requires

that E 2 H� \H(curl), � > 0). Recall that H(curl)-hierarchic shape func-
tions on the master triangle Kcurl

t comprise edge functions  
ej
n;t, 0 � n � pej ,

given by (2.57), (2.58) and (2.59), and (edge-based and genuine) bubble func-
tions (2.60), (2.61).

Projection-based interpolant Eh;p = �curl
t E 2 Qt is constructed as a sum of

Whitney, higher-order edge and bubble interpolants,
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Eh;p = Ew
h;p +E

e
h;p +E

b
h;p:

The Whitney interpolant Ew
h;p 2 Qt is de�ned as

Ew
h;p =

3X
j=1

 Z
ej

(E � tj) ds
!
 
ej
0;t;

where  
ej
0;t are the Whitney shape functions (2.57).

Edge interpolant Ee
h;p 2 Qt is constructed as a sum of edge contributions

E
ej
h;p, j = 1; : : : ; 3. The construction of the Whitney interpolant yields that

the trace of tangential component (E �Ew
h;p) � tj has zero average over each

edge ej . This means that for each edge ej one can introduce a scalar function
�ej , de�ned on ej , which vanishes at its endpoints and satis�es

@�ej
@s

= (E �Ew
h;p) � tj :

Next one constructs projection �p+1
ej of the function �ej on the polynomial

space Ppej+1;0(ej) in the H
1
2

00 norm. This yields a discrete minimization prob-
lem,

k�p+1
ej � �ejk

H
1
2
00
(ej)

! min;

which translates into a system of pej linear equations�
�p+1
ej � �ej ; ~'

ej
k;t

�
H

1
2
00
(ej)

= 0; k = 2; : : : ; pej + 1;

(one can use traces ~'
ej
k;t of scalar edge shape functions to generate the poly-

nomial space) for the unknown coeÆcients �m,

�p+1
ej =

pej+1X
m=2

�m ~'
ej
m;t:

See Paragraph 3.1.1, triangular case, for the approximate evaluation of the

norm H
1
2

00. One takes any polynomial extension �p+1
ej ;ext 2 Ppb+1;pej+1(Kt),

�p+1
ej ;extjej � �p+1

ej of the projection �p+1
ej , which vanishes along the two remain-

ing edges. The vector-valued edge interpolant E
ej
h;p is �nally constructed as a

gradient of this extension,

E
ej
h;p = r�p+1

ej ;ext 2 Qt:
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Bubble interpolant Eb
h;p 2 Qt is sought in the space P pb;0(Kt) of vector-valued

polynomials of order lower than or equal to pb in Kt, with traces of tangential
component vanishing on the edges ej , j = 1; : : : ; 3. This leads to the discrete
minimization problem

kcurl(Eb
h;p � (E �Ew

h;p �Ee
h;p))kL2 = kcurl(Eb

h;p � (E �Ew
h;p))kL2 ! min

(recall that Ee
h;p is a gradient, and therefore curl(Ee

h;p) = 0), with the
Helmholtz decomposition constraint,

(Eb
h;p � (E �Ew

h;p �Ee
h;p);r'bn1;n2;t) = 0;

1 � n1; n2, n1 + n2 � pb. Here 'bn1;n2;t are scalar bubble functions spanning

the space Ppb+1;0(Kt) of polynomials of order lower than or equal to pb + 1
that vanish on the boundary @Kt.

PROPOSITION 3.3 ([61])
Operator �curl

t : H� \H(curl) ! Qt is well de�ned and bounded, with the
norm independent of orders pb, pej .

THEOREM 3.3 (H(curl) interpolation error estimate [61])
Consider the master triangle Kcurl

t . There exists a constant C > 0, dependent
upon � but independent of pb; pej , j = 1; : : : ; 3, such that

kE ��curl
t EkH(curl) � C inf

F2Q
t

�kE � F k2H� + kcurl(E � F )k2L2
� 1
2

� C( min
j=1;:::;3

pej )�(r��)
�kEk2Hr + kcurlEk2Hr

� 1
2 ;

for every 0 < r < 1 and 0 < � < r.

Master tetrahedron Kcurl
T

Local projection-based interpolation operators for H(curl)-conforming el-
ements in 3D were �rst introduced in [68]. Consider the master tetrahedron
Kcurl
T from Paragraph 2.2.3, with local orders of approximation pb in its inte-

rior, psi , i = 1; : : : ; 4 on faces, and pej , j = 1; : : : ; 6 on edges. The polynomial
space QT has the form (2.72),

QT =
�
E 2 (Ppb)3(KT ); Etjsi 2 (Ppsi )2(si);
E � tjej 2 Ppej (ej); i = 1; : : : ; 4; j = 1; : : : ; 6g :

The theory requires that the projected function E satis�es regularity assump-

tions E 2H 1
2
+�;r�E 2H�, � > 0.
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The projection-based interpolant Eh;p = �curl
T E 2 QT is constructed as a

sum of Whitney, higher-order edge, face and bubble interpolants,

Eh;p = Ew
h;p +E

e
h;p +E

s
h;p +E

b
h;p:

Let si be a face of the reference domain KT . For E 2 H�(si), curlsiE 2
H� 1

2
+�, the restriction of the tangential component Et to face boundary @s

belongs to the space H� 1
2
+�. Here

curlsiE = ni � (r�E)
is the surface curl-operator. Hence the edge averagesZ

ej

E � tjde;

j = 1; : : : ; 6, are well de�ned, and one can construct the Whitney interpolant
Ew
h;p 2 QT as

Ew
h;p =

6X
j=1

 Z
ej

(E � tj) ds
!
 
ej
0;T ;

where  
ej
0;T are the Whitney shape functions  

ej
0;T (2.75).

Similarly as in two dimensions, for each edge ej one introduces a scalar po-

tential �ej 2 H
1
2
+�(ej), vanishing at its endpoints, such that

@�ej
@s

= (E �Ew
h;p) � tj :

One projects the potential in H�-norm on the polynomial spaces Ppej+1;0(ej),
solving discrete minimization problems

k�p+1
ej � �ejkH�(ej) ! min;

for the projections �p+1
ej on edges. The �nal edge interpolant Ee

h;p 2 QT is
constructed as a sum

Ee
h;p =

6X
j=1

E
ej
h;p;

where the edge contributions E
ej
h;p are obtained as gradients of an extension

�p+1
ej ;ext of the scalar potential �

p+1
ej , such that �p+1

ej ;extjek � 0 for all k 6= j, into
the element interior,

E
ej
h;p = r�p+1

ej ;ext 2 QT :
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Face interpolant: on each face si one solves the discrete minimization problem

kcurlsi(Esi
h;p � (E �Ew

h;p �Ee
h;p))kcurl;� 1

2
+�;si = (3.7)

kcurlsi(Esi
h;p � (E �Ew

h;p))kcurl;� 1
2
+�;si ! min

(recall that Ee
h;p is a gradient), where the face interpolant E

si
h;p 2 P psi ;0(si).

Here P psi ;0(si) stands for the space of vector-valued polynomials, de�ned
on the face si, whose tangential components vanish on the boundary @si.
Expression (3.7) is minimized with the Helmholtz decomposition constraint,

(Esi
h;p � (E �Ew

h;p �Ee
h;p);r'sin1;n2;T )curl;� 1

2
+�;si = 0;

1 � n1; n2, n1 + n2 � psi . Here 'sin1;n2;T are scalar face functions, whose
traces span the space Ppsi+1;0(si) of polynomials of order lower than or equal
to psi + 1 on the face si, vanishing on the boundary @si. The right norm for
the minimization (see [68]) is

kEk2curl;� 1
2
+�;si

= kEk2
� 1

2
+�;si

+ kn � (r�E)k21
2
+�;si

:

Face interpolant Es
h;p 2 QT is obtained in a standard way using polynomial

extensions of Esi
h;p into the element interior with tangential component van-

ishing on all other faces.

Finally, the bubble interpolant Eb
h;p is obtained as a solution of constrained

minimization problem

kcurl(Eb
h;p � (E �Ew

h;p �Ee
h;p �Es

h;p))kL2;KT
= (3.8)

kcurl(Esi
h;p � (E �Ew

h;p �Es
h;p))kL2;KT

! min :

The bubble interpolant Eb
h;p now lies in the space QT;0. In the same way as

before, one has to solve simultaneously the constraint

(Eb
h;p � (E �Ew

h;p �Ee
h;p �Es

h;p);r'bn1;n2;n3;T )L2;KT
= 0;

1 � n1; n2; n3, n1+n2+n3 � pb. Here 'bn1;n2;n3;T are scalar bubble functions,
which span the space Ppb+1;0(KT ) of polynomials of order lower than or equal
to pb + 1, vanishing on the boundary @KT . Herewith, the projection-based
interpolation operator �curl

T is de�ned. Let us mention an error estimate for
this operator from [68].

Conjecture 3.3 (2D discrete Friedrichs inequality [68]) Let si be a face
of the reference tetrahedron KT . There exists constant C > 0, independent of
p, such that

kEkcurl;� 1
2
+�;@si � Ckr�Ekcurl;� 1

2
+�;@si
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for all polynomials E such that

E 2 P psi ;0(si) and (E;r')curl;� 1
2
+�;@si = 0; for all ' 2 Ppsi+1;0:

THEOREM 3.4 (3D discrete Friedrichs inequality [68])
There exists constant C > 0, independent of p, such that

kEkL2;KT
� Ckr�EkL2;KT

for all polynomials E such that

E 2 P pb;0(KT )

and
(E;r') = 0 for all ' 2 Ppb+1;0(KT );

where Ppb+1;0(KT ) is the space of scalar polynomials of order at most pb + 1
which entirely vanish on the element boundary.

THEOREM 3.5 (H(curl) interpolation error estimate [68])
Given the above Conjectures 3.1, 3.2 on the polynomial extension, and Con-
jecture 3.3 on discrete Friedrichs inequality in H� 1

2
+� norm on a triangle, we

have

jjE ��curl
KT

Ejjcurl;0;KT
� C(�)p�(r��)jjEjjcurl;r;KT

;

where C(�) > 0.

Operators �curl
B , �curl

P for the master elements Kcurl
B and Kcurl

P are constructed
analogously, taking into account relevant directional order of approximation
associated with the element interior and quadrilateral faces.

3.1.3 H(div)-conforming elements

As mentioned before, the space H(div) is in reality not much di�erent
from the space H(curl) in 2D. This applies also to the projection-based in-
terpolation operators { they will be de�ned exactly in the same way as in
the H(curl)-conforming case in Paragraph 3.1.2, only that the tangential and
normal directions on edges will be switched.

Master triangle Kdiv
t

We con�ne ourselves to the master triangleKdiv
t in 2D. Consider local orders

of approximation pb in its interior, and pej , j = 1; 2; 3, on edges. Now the
�nite element space V t has the form (2.97),
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V t = fv; v 2 Ppb(Kt); v � nj jej 2 Ppej (ej); pej � pb; j = 1; 2; 3g;

where nj stands for unitary outer normal vector to the edge ej .
Recall thatH(div)-hierarchic shape functions comprise edge functions 

ej
n;t,

0 � n � pej , given by (2.99), (2.100) and (2.101), and (edge-based and gen-
uine) bubble functions (2.102), (2.103).

Projection-based interpolant vh;p = �div
t v 2 V t of a suÆciently regular func-

tion v is constructed as a sum of Whitney, higher-order edge and bubble
interpolants,

vh;p = vwh;p + v
e
h;p + v

b
h;p:

Whitney interpolant vwh;p 2 V t is de�ned as

vwh;p =
3X

j=1

 Z
ej

(v � nj) ds
!

ej
0;t:

Edge interpolant veh;p 2 V t is constructed one edge at a time,

veh;p =

3X
j=1

v
ej
h;p:

The trace of normal component (v�vwh;p) �nj has zero average over each edge
ej , which means that for each edge ej one can introduce a scalar function �ej ,
de�ned on ej , which vanishes at its endpoints and satis�es

@�ej
@s

= (v � vwh;p) � nj :

Next one constructs projection �p+1
ej of the function �ej on the polynomial

space Ppej+1(ej), and its extension �
p+1
ej ;ext into element interior, exactly in the

same way as in Paragraph 3.1.2.
This time at the end one takes curl of the extension,

v
ej
h;p = curl(�p+1

ej ;ext) 2 V t

(recall from Remark 2.1 that curl(a) = (�@a=@x2; @a=@x1)).

Bubble interpolant vbh;p 2 V t is sought in the space P pb;0(Kt) of vector-valued

polynomials of order lower than or equal to pb in Kt, with traces of normal
component vanishing on the edges ej , j = 1; : : : ; 3. One solves the discrete
minimization problem,
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kdiv(vbh;p � (v � vwh;p � veh;p))kL2 = kdiv(vbh;p � (v � vvh;p))kL2 ! min

(recall that veh;p is a curl, and therefore div(veh;p) = 0), with the constraint,

(vbh;p � (v � vvh;p � veh;p); curl('bn1;n2;t)) = 0;

1 � n1; n2, n1 + n2 � pb. Here 'bn1;n2;t are scalar bubble functions spanning
the space Ppb+1(Kt).

Master tetrahedron Kdiv
T

Finally let us construct the projection-based interpolation operator �div
T ,

�rst introduced in [68]. We will project a function v 2 Hr(KT ), r > 0,
r � v 2 L2(KT ), whose trace of the normal component v � nj@KT

belongs to

the scalar space H� 1
2
+�(@KT ). Consider local order of approximation pb in

element interior and local orders ps1 ; : : : ; ps4 on faces.
Let us begin with the face interpolant vs 2 V T . Consider a face si �

@KT . Trace of the normal component of the face interpolant v
si
n 2 Ppsi (si) is

constructed using H� 1
2
+� projection on the face si, i.e., solving the discrete

minimization problem

kn � (v � vsi)jsik� 1
2
+�;si ! min;

where vsi is sought as a linear combination of genuine and edge-based face
functions corresponding to the local order of approximation psi on the face si
of the master element Kdiv

T . The face interpolant vs is obtained as a sum of
contributions over all element faces.

Bubble interpolant vb 2 V T is constructed by solving the discrete minimiza-
tion problem

kr � (v � vb � vs)kL2;KT
! min;

with the constraint

(v � (vb + vs);r�  ) = 0; for all  2 P pb+1;0;0;

where P pb+1;0;0 is the space of vector-valued polynomials of the order at most
pb, whose tangential component vanishes entirely on the boundary @KT .

THEOREM 3.6 (\Friedrichs inequality" for the r� operator [68])
There exists constant C > 0, independent of p, such that

kvkL2;KT
� Ckr � vkL2;KT
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for all polynomials v such that

v 2 P pb;0(KT )

and
(v;r�  ) = 0 for all  2 P pb+1;0;0(KT );

where P pb;0(KT ) is the space of vector-valued polynomials of order at most
pb whose normal component vanishes on the whole element boundary, and
Ppb+1;0;0(KT ) is the space of vector-valued polynomials of order at most pb+1
whose tangential component vanishes entirely on the element boundary.

Finally let us postulate another conjecture on polynomial extension, and men-
tion an error estimate for the operator �div

T .

Conjecture 3.4 (Polynomial extension [68]) There exists a polynomial
extension map,

A : Pp(@KT )! P p(KT ); n � (Av)j@KT
= u for all u 2 Pp(@KT );

such that

jjAvjjdiv;0;KT
� Cjjvjjdiv;0;KT

;

with constant C independent of p.

THEOREM 3.7 (H(div) interpolation error estimate [68])
Given the above Conjecture 3.4 and Theorem 3.6, we have

jjv ��div
KT
vjjdiv;0;KT

� C(�)p�(r��)jjvjjdiv;r;KT
;

where C(�) > 0.

Operators �div
B , �div

P for the master elements Kcurl
B and Kcurl

P are constructed
analogously.

3.2 Trans�nite interpolation revisited

After de�ning the projection-based interpolation operators on reference do-
mains in the previous section, the next logical step in the presentation of
the higher-order �nite element technology would be to design the reference
maps. However, before we do so, let us take a short excursion into the �eld of
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trans�nite interpolation techniques. Bivariate and trivariate trans�nite inter-
polation schemes are extensively used in �nite element codes for the de�nition
of parametrizations of two- and three-dimensional curved domains based on
the known parametrization of their surfaces. However, not everyone seems to
know that there is more to the trans�nite interpolation than the notoriously
known formulae.
Trans�nite interpolation technique was �rst introduced by Steven A. Coons

[55] in the 1960s, became very popular and was quickly extended into many
directions (see, e.g., [97, 99, 98, 83, 84, 95] and references therein). In his
original paper, Coons described a class of methods for constructing an inter-
polatory surface which coincides with arbitrary prescribed curves (and normal
derivatives, if desired) on the boundary of the unit square. Since the preci-
sion set of this class of interpolation formulae (i.e., the set of points on which
the interpolant exactly matches the interpolated function) is nondenumerable,
these methods were later referred to as trans�nite.
The \Coons surfaces" have been widely used in connection with problems of

computer aided design and numerical control production of free-form surfaces
such as ship hulls, airplane fuselages and automobile exteriors [83, 84, 95].
In addition to such geometric applications these approximation formulae pro-
vided the basis for development of new numerical schemes for the approximate
integration of multivariate functions in [96]. The details of some of these meth-
ods, based upon polynomial blending, have been investigated in [27]. Other
applications to multivariate data smoothing and to the approximate solution
of integral equations, partial di�erential equations and variational problems
are addressed in [93].

3.2.1 Projectors

The trans�nite interpolation technique relies on sophisticated algebraic the-
ory of multivariate approximation (see [94] and references therein). Although
this theory lies beyond the scope of this book, we �nd it useful to introduce
at least the notion of projectors, which give a general framework to trans�nite
interpolation formulae that we will utilize.
Consider a scalar continuous function f of two independent variables, de-

�ned (for example) in the reference domain Kq in the �-plane. We seek

approximations ~f � f , which interpolate f on certain (denumerable or non-
denumerable) point sets contained in Kq. By a projector IP we mean an
idempotent (IP Æ IP = IP) linear operator from the linear space L = C(Kq)

onto a closed subspace ~L � L. For example, let ~L be a space of continuous
functions in Kq, such that their �1-derivative exists in Kq and is constant.

The appropriate projector IP : L ! ~L is then de�ned as

IP(f) =
1� �1
2

f(�1; �2) + �1 + 1

2
f(1; �2): (3.9)
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Intuitively speaking, the projector IP keeps the function unchanged along the
vertical edges e1 and e2 of the reference domainKq, and interpolates its values
between �1 = �1 and �1 = 1 linearly along each horizontal line �2 = const (see
Figure 3.5). The reader is right when she/he recognizes the Lobatto shape
functions l0 and l1 in (3.9).

FIGURE 3.5: Example function f in Kq (left) and its projection IP(f)
using the projector (3.9) (right).

It is easy to see that IP is both linear

IP(f + g) = IP(f) + IP(g)

and idempotent

(IP Æ IP)(f) = 1� �1
2

IP(f)(�1; �2) + �1 + 1

2
IP(f)(1; �2)

=
1� �1
2

f(�1; �2) + �1 + 1

2
f(1; �2) = IP(f):

Projector (3.9) can easily be generalized to interpolate the function f exactly
along m+ 1 vertical lines �1 = si, �1 = s0 < s1 : : : < sm = 1:

IPv(f) =

mX
i=0

f(si; �2)�
v
i (�1); (3.10)

where

�vi (�1) =

Q
j 6=i(�1 � sj)Q
j 6=i(si � sj)

;

i = 0; 1; : : : ;m, are the fundamental (cardinal) functions for Lagrange poly-
nomial interpolation [58]. In the context of trans�nite interpolation, the func-
tions �vi are called the blending functions [97]. Since for both operators (3.9)
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and (3.10) IP(f) and IPv(f) coincides with f at a nondenumerable number of
points, they are simple examples of trans�nite interpolation schemes.

3.2.2 Bipolynomial Lagrange interpolation

Probably the best-known class of formulae for bivariate interpolation-app-
roximation are the (tensor product) bipolynomial Lagrange interpolation for-
mulae. Consider a formula analogous to (3.10) for horizontal lines �2 = tj ,
�1 = t0 < t1 : : : < tn = 1:

IPh(f) =
nX
j=0

f(�1; tj)�
h
j (�2); (3.11)

where

�hj (�2) =

Q
j 6=i(�2 � ti)Q
j 6=i(tj � ti)

;

j = 0; 1; : : : ; n. This class of formulae is obtained as a product of the above
projectors IPv and IPh:

(IPh Æ IPv)(f) =
mX
i=0

nX
j=0

f(si; tj)�
v
i (�1)�

h
j (�2): (3.12)

The product operator IPv Æ IPh is itself a projector, and (IPv Æ IPh)(f) interpo-
lates the function f exactly at (m+ 1)(n+ 1) points (si; tj), i = 0; 1; : : : ;m,
j = 0; 1; : : : ; n. As the precision set of the operator IPv Æ IPh consists of these
(m+ 1)(n+ 1) points only, this is not a trans�nite interpolation.

3.2.3 Trans�nite bivariate Lagrange interpolation

There is, however, a second and stronger way to compound the projectors
IPv and IPh, resulting in a trans�nite interpolation operator the precision set of
which contains the whole lines �1 = si, �2 = tj , i = 0; 1; : : : ;m, j = 0; 1; : : : ; n.
The Boolean sum [94]

IPv � IPh = IPv + IPh � IPv Æ IPh (3.13)

serves as a basis for the following result [99]:

THEOREM 3.8
Let the operators IPv and IPh be de�ned as above. Then (IPv � IPh)(f) inter-
polates the function f exactly along the lines �1 = si, �2 = tj , i = 0; 1; : : : ;m,
j = 0; 1; : : : ; n.

PROOF Use the expressions (3.10), (3.11) and (3.13) to verify that
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(IPv � IPh)(f)(si; �2) = f(si; �2); 0 � i � m;

(IPv � IPh)(f)(�1; tj) = f(�1; tj); 0 � j � n:

The result follows immediately.

Various extensions and generalizations of Theorem 3.8 are immediate. For
example, the theorem remains valid if the projector IPv is taken to be the
cubic spline interpolation projector in the variable �1 and IPh is taken to be a
trigonometric polynomial interpolation projector [94]. All that is really essen-
tial is that the functions �vi (�1) and �

h
j (�2) satisfy the cardinality conditions

�vi (sk) = Æik; 0 � i; k � m;

�hj (tk) = Æjk; 0 � j; k � n:

After presenting the basic ideas of the trans�nite interpolation, let us now
turn our attention to its application to the �nite element technology.

3.3 Construction of reference maps

Now we will de�ne suitable parametrizations for edges and faces of (gene-
rally arbitrarily curved) elements K 2 Th;p, and apply the trans�nite interpo-
lation technique from the previous section in order to design reference maps
XK(�) : K̂ ! K (where K̂ is an appropriate reference domain). For this
purpose we will extend the projectors IPv and IPh from the previous section
naturally to vector-valued functions.
Moreover, as we will see in Example 3.2, the reference maps XK(�) are

nonpolynomial (when the edges or faces are parametrized by nonpolynomial
functions). As long as they are smooth and one-to-one, this is not a prob-
lem and in principle one can use them in the �nite element code anyway.
However, usually one prefers to construct their isoparametric approximations
xK(�) � XK(�), which are polynomial maps de�ned in terms of master ele-
ment shape functions. Isoparametric maps can be easily stored and handled
in the computer code. This will be the next logical step in Paragraph 3.3.6.

3.3.1 Mapping (curved) quad elements onto Kq

Consider a quadrilateral K 2 Th;p, with its edges ~e1; : : : ; ~e4 parametrized
by continuous curves Xe1(�); : : : ; Xe4(�) � IR2, � 2 [�1; 1]. We also will
discuss situations when such parametrizations are not available.
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In order to �t into the trans�nite interpolation context from Section 3.2, we
de�ne a vector-valued function XK on the boundary of the reference domain
Kq such that

XK(�1; �2) � Xe1(�2); (3.14)

XK(1; �2) � Xe2(�2);

XK(�1;�1) � Xe3(�1);

XK(�1; 1) � Xe4(�1):

It is essential to preserve the continuity of @Kq and the orientation of edges
e1; : : : ; e4 � @Kq (as illustrated in Figure 2.1). In other words, the function
XK must satisfy

XK(�1;�1) = x1; XK(1;�1) = x2; XK(1; 1) = x3; XK(�1; 1) = x4;

where x1; : : : ;x4 are vertices of the physical element K obeying the same
ordering as vertices v1; : : : ; v4 of the reference domain Kq.
Now the trans�nite interpolation comes into the picture. Consider projec-

tors IPv and IPh from (3.10), (3.11) with m = n = 1, and thus s0 = �1; s1 =
1; t0 = �1 and t1 = 1. Assume any continuous extension of the function
XK(�) from the boundary @Kq into element interior, for simplicity denoted
by the same symbol XK(�). Applying the Boolean sum IPv � IPh from Theo-
rem 3.8 to XK(�) satisfying (3.14) on @Kq, we obtain the simplest, but very
useful, vector-valued bilinearly blended map

XK(�) =

�
XK;1(�)
XK;2(�)

�
(3.15)

=
1� �1
2

f(�1; �2) + �1 + 1

2
f(1; �2)

+
1� �2
2

f(�1;�1) + �2 + 1

2
f(�1; 1)� (1� �1)

2

(1� �2)

2
f(�1;�1)

� (1� �1)

2

(�2 + 1)

2
f(�1; 1)� (1� �2)

2

(�1 + 1)

2
f(1;�1)

� (�2 + 1)

2

(�1 + 1)

2
f(1; 1):
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REMARK 3.7 (A drawback of trans�nite interpolation) By construc-
tion XK(�) maps @Kq onto @K. If we could establish that also the Jacobian
det(DXK=@�) is nonzero in Kq, then we could conclude thatXK is bijective.
However, a serious drawback of trans�nite interpolation schemes is that this is
generally not true. There may be two or more points in the reference domain
which map onto the same point in K. This de�ciency was pointed out by
Zienkiewicz [209]. We refer to [98] for a heuristic approach to cure this prob-
lem, which is guided by geometric intuition and analysis, and accomplished
by visual inspection.

Example 3.1 (When edge parametrizations are not available)
The parametrizations Xe1 ; : : : ;Xe4 : [�1; 1] ! IR2 are in the optimal case
provided explicitly as a part of the output of a mesh generator. If this is
not the case, one has to use other information to de�ne the parametrizations.
For example, let us consider a physical mesh edge e = xAxB . If the edge is
straight, we put Xe(�1) = xA, X

e(1) = xB , and the parametrization has a
simple form

Xe(�) =
1� �

2
xA +

1 + �

2
xB ; � 2 [�1; 1]:

With additional information about (for example) the midpoint xC = Xe(0)
of the edge e, one can construct a quadratic parametrization of the form

Xe(�) = a�2 + b� + c; � 2 [�1; 1];
where a; b; c are vector-valued coeÆcients, as depicted in Figure 3.6.

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

e

ζ=−1

x
C

ζ=0 x
B

ζ=1

A
x

FIGURE 3.6: Construction of a quadratic parametrization based on an
additional point xC =Xe(0).

This leads to two systems of three linear algebraic equations for the �rst and
second component of the unknown coeÆcients, respectively. The quadratic
case has a straightforward generalization to pth-order curves based on p � 1
additional points.
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Example 3.2
To �x ideas, consider a simple example: let the parametrization of edges of a
deformed quadrilateral be given by

XK(�1; �2) � Xe1(�2) =

�
0; a+ b

(�2 + 1)

2

�
; (3.16)

XK(1; �2) � Xe2(�2) =

�
a+ b

(�2 + 1)

2
; 0

�
;

XK(�1;�1) � Xe3(�1) =

�
a cos

(�1 + 1)�

2
; a sin

(�1 + 1)�

2

�
;

XK(�1; 1) � Xe4(�1) =

�
(a+ b) cos

(�1 + 1)�

2
; (a+ b) sin

(�1 + 1)�

2

�
;

where a; b > 0 are two real parameters, as illustrated in Figure 3.7.

2

1

a

a

a+b

a+b

x

x0

FIGURE 3.7: Sample deformed quadrilateral K.

The bilinearly blended map (3.15) in this very simple case reduces to

XK(�1; �2) =

�
a+ b

(�2 + 1)

2

�0B@ cos
(�1 + 1)�

4

sin
(�1 + 1)�

4

1
CA :

It is easy to con�rm thatXK(�) is univalent and that the Jacobian det(DXK=
@�) is nonzero in Kq. It is easy to see that lines �1 = const. and �2 = const.
transform to radial lines and circular arcs, joining corresponding points on
opposite boundaries of the region K, respectively.
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3.3.2 Mapping (curved) triangular elements onto Kt

Assume that edges of a triangle K 2 Th;p are parametrized by continuous
curves Xej (�); � 2 [�1; 1], j = 1; : : : ; 3, such that

Xe1(1) = Xe2(�1) = x2;

Xe2(1) = Xe3(�1) = x3;

Xe3(1) = Xe1(�1) = x1;

where x1; : : : ;x3 are vertices of the physical element K, ordered counter-
clockwise in the same way as the vertices v1; : : : ; v3 of the reference domain
Kt (depicted in Figure 2.13).
Trans�nite interpolation schemes can be formulated in terms of projectors,

which are in this case constructed in the form of triple Boolean sums analogous
to (3.13) { see, e.g., [9, 28]. Without going into algebraic details, a simple but
very useful trans�nite interpolation scheme has the form

XK(�) =Xv
K(�) +X

e
K(�); � 2 Kt; (3.17)

where the aÆne part

Xv
K(�) =

3X
i=1

xi'
vj
t (�)

can be expressed by means of the physical mesh vertices xi and scalar vertex
functions (2.20). The higher-order part of the parametrizationsXej translates
into the two-dimensional map by virtue of the second term

Xe
K(�) =

3X
j=1

X
ej
int(�B(�)� �A(�))�A(�)�B(�); (3.18)

which vanishes if all edges ~ej of the physical mesh element happen to be
straight. Here for each (oriented) reference edge ej = vAvB the aÆne coordi-
nates �A; �B are such that �A(vA) = �B(vB) = 1, and the function

X
ej
int(�) =

X
ej
0 (�)�

1� �

2

��
� + 1

2

� ; � 6= �1; (3.19)

is de�ned by eliminating roots �1 simultaneously from both vector compo-
nents of the bubble part X

ej
0 of the parametrizations Xej ,

X
ej
0 (�) =Xej (�)�Xej (�1)1� �

2
�Xej (1)

� + 1

2
: (3.20)

Geometrically, (3.20) corresponds to subtracting the straight part from the
(curved) edge ~ej . Notice that we never need to physically divide by zero, since
we de�ne Xe

K(�) = 0 at vertices in (3.18) instead of using (3.19). Recall that
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a scalar version of the same trick { elimination of roots �1 by division by the
product (1 + �)(1 � �)=4 { was used for the construction of master triangle
edge functions (2.21).
The reader may �nd it useful to verify by himself that

XK(�)jej =Xej (�B(�)� �A(�))jej
for each edge ej , j = 1; : : : ; 3, using the fact that � = (�B(�) � �A(�))jej 2
[�1; 1] parametrizes the edge ej .

3.3.3 Mapping (curved) brick elements onto KB

Let the edges ~ej , j = 1; : : : ; 12, of a brick K 2 Th;p be parametrized by
continuous curves Xej (�) � IR3; � 2 [�1; 1]. As usual the parametrization
of edges has to be compatible with the orientation of edges of the reference
domain KB (depicted in Figure 2.26). In other words,

Xe1(1) = Xe2(�1) = Xe6(�1) = x2; (3.21)

Xe2(1) = Xe3(1) = Xe7(�1) = x3;

Xe3(�1) = Xe4(1) = Xe8(�1) = x4;

Xe4(�1) = Xe1(�1) = Xe5(�1) = x1

and so on. Here x1; : : : ;x8 are vertices of the physical element K, ordered
compatibly with the vertices v1; : : : ; v8 of the reference domain KB.
New in 3D are parametrizations Xsi(�1; �2); � 2 [�1; 1]2 for the faces ~si �

@K, i = 1; : : : ; 6. Recall that local coordinate axes �1; �2 attached to each
face (see Paragraph 2.2.4) are oriented accordingly to the coordinate axes
�1; �2; �3, following their lexicographic order. An essential new issue in 3D is
the compatibility of face parametrizations Xsi(�1; �2) with parametrizations
of edges. For example, for the face s1 this translates into the compatibility
conditions

Xs1(�;�1) = Xe4(�); � 2 [�1; 1]; (3.22)

Xs1(�; 1) = Xe12(�); � 2 [�1; 1];
Xs1(�1; �) = Xe5(�); � 2 [�1; 1];
Xs1(1; �) = Xe8(�); � 2 [�1; 1]:

Notice that compatibility conditions (3.22) together with conditions (3.21)
yield compatibility of parametrizations of faces with vertices:

Xs1(�1;�1) = x1;

Xs1(1;�1) = x4;

Xs1(1; 1) = x8;

Xs1(�1; 1) = x5;

...
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The trans�nite interpolation scheme will be de�ned using a vertex, edge and
face contribution,

XK(�) =Xv
K(�) +X

e
K(�) +X

s
K(�); � 2 KB : (3.23)

The vertex part Xv
K(�) is de�ned by combining the physical mesh vertex

coordinates xi and scalar vertex functions (2.28),

Xv
K(�) =

8X
i=1

xi'
vj
B (�):

Consider a reference edge ej = vAvB and the parametrization Xej of the
corresponding physical mesh edge ~ej . Its bubble part

X
ej
0 (�) =Xej (�) �Xej (�1)1� �

2
�Xej (1)

� + 1

2
; � 2 [�1; 1];

is bilinearly blended,

X
ej
K (�) =X

ej
0 (�B(�)� �A(�))�C(�)�D(�); (3.24)

and used for the de�nition of the edge part

Xe
K(�) =

12X
j=1

X
ej
K (�)

of the trans�nite interpolant XK(�). For each edge ej the aÆne coordinates
in (3.24) are chosen so that �A; �B vanish on faces perpendicular to ej and
are ordered so that �A(vA) = �B(vB) = 1. The aÆne coordinates �C ; �D
vanish on the faces sC ; sD � @KB, which do not share any vertex with the
edge ej , respectively.
In the same way, for each face si we �rst construct the bubble part

Xsi
0 (�) =Xsi(�)�Xe

K jsi(�)�Xv
K jsi(�);

of the parametrization Xsi(�), which entirely vanishes on the boundary of
the face si. Functions Xsi

0 (�) are further linearly blended into the element
interior,

Xsi
K(�) =Xsi

0 (�B(�)� �A(�); �D(�)� �C(�))�E(�); (3.25)

and contribute to the face part

Xs
K(�) =

6X
i=1

Xsi
K(�)

of the trans�nite interpolant XK(�).
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The aÆne coordinates in (3.25) are chosen taking into account the local
coordinate system on the face si: �A; �B correspond to faces perpendicular to
the local axis �1 and �A(eA) = �B(eB) = 1 where the edges eA; eB correspond
to �1 = �1 and �1 = 1 on the face si, respectively. Similarly �C ; �D are chosen
for the second local exial direction �2. The aÆne coordinate �E vanishes on
the element-opposite face sE .

3.3.4 Mapping (curved) tetrahedral elements onto KT

Let the edges ~ej , j = 1; : : : ; 6 of a tetrahedron K 2 Th;p be parametrized by
continuous curves Xej (�) � IR3; � 2 [�1; 1], and let the parametrizations be
compatible with the orientation of the edges ej � @KT (as depicted in Figure
2.30). This translates into compatibility conditions

Xe1(1) = Xe2(�1) = Xe5 (�1) = x2; (3.26)

Xe2(1) = Xe3(�1) = Xe6 (�1) = x3;

Xe3(1) = Xe1(�1) = Xe4 (�1) = x1;

Xe4(1) = Xe5(1) = Xe6(1) = x4;

where x1; : : : ;x4 are vertices of the physical element K, ordered compatibly
with the vertices v1; : : : ; v4 � @KT .
For simplicity assume that the faces ~si � @KT , i = 1; : : : ; 4, are pa-

rametrized by continuous surfaces Xsi(�); � 2 Kt (i.e., �1 2 [�1; 1], �2 2
[�1;��1]). Recall that each face is assigned a unique orientation (de�ned in
Paragraph 2.2.5), given by a selection of its vertices vA; vB ; vC such that vA
has the lowest local index and the vector product (vB�vA)�(vC�vA) points
outside of KT . Compatibility of face and edge parametrizations Xsi(�) and
Xej (�) is requested in the same way as in the previous case (parametrization
of a face, restricted to the boundary of Kt, must match parametrization of
the corresponding edge), i.e.,

Xs1(�;�1) = Xe1(�); � 2 [�1; 1]; (3.27)

Xs1(��; �) = Xe5(�); � 2 [�1; 1];
Xs1(�1; �) = Xe4(�); � 2 [�1; 1];

for the face s1 and so on.
The parametrization of the boundary @K will be extended into the ele-

ment interior using again the trans�nite interpolation technique, with the
trans�nite interpolant XK(�), � 2 KT , composed from vertex, edge and face
contributions Xv

K(�), X
e
K(�) and X

s
K(�). The vertex part Xv

K(�),

Xv
K(�) =

8X
i=1

xi'
vj
T (�);

is again obtained simply as a combination of coordinates of the physical ele-
ment vertices xi and the scalar vertex functions (2.37). The edge partX

e
K(�)
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(vanishing if all edges ~ej of the physical mesh element are straight) is con-
structed edgewise as

Xe
K(�) =

6X
j=1

X
ej
int(�B(�)� �A(�))�A(�)�B(�): (3.28)

Here for each (oriented) reference edge ej = vAvB the aÆne coordinates
�A; �B are such that �A(vA) = �B(vB) = 1, and the function

X
ej
int(�) =

X
ej
0 (�)�

1� �

2

��
� + 1

2

� ; � 6= �1; (3.29)

is de�ned by eliminating roots �1 simultaneously from all three vector com-
ponents of the bubble part X

ej
0 of the parametrization of the edge ej ,

X
ej
0 (�) =Xej (�)�Xej (�1)1� �

2
�Xej (1)

� + 1

2
: (3.30)

Again, we do not use (3.29) at � = �1, since (3.28) is zero at vertices. Next
we compute for each face si the bubble part Xsi

0 (�) of its parametrization
Xsi(�), vanishing on its boundary:

Xsi
0 (�) =Xsi(�)�Xe

K jsi(�)�Xv
K jsi(�):

In order to vanish on all remaining faces sA; sB and sC , the face contributions
Xsi

K(�) to the trans�nite interpolant have to contain the product of aÆne
coordinates �A; �B and �C , corresponding to these faces. Therefore we again
�rst need to divide the function Xsi

0 (�) by the trace of this product to the
face si,

Xsi
int(�) =

Xsi
0 (�)

�A�B�C jsi(�)
; � 62 @si;

(this relation is not used on edges, where Xsi
K(�) � 0) and then multiply it

by the same product extended to the whole element interior,

Xsi
K(�) =Xsi

int(�B(�)� �A(�); �C(�)� �A(�))�A(�)�B(�)�C(�):

The face part of the trans�nite interpolant XK(�) is �nally de�ned by sum-
ming up the face contributions,

Xs
K(�) =

4X
i=1

Xsi
K(�):

The trans�nite interpolant XK(�) is de�ned by summing up the vertex, edge
and face contributions,

XK(�) =Xv
K(�) +X

e
K(�) +X

s
K(�); � 2 KT : (3.31)
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3.3.5 Mapping (curved) prismatic elements onto KP

Let the edges ~ej , j = 1; : : : ; 9, of a prismatic element K 2 Th;p be paramet-
rized by continuous curves Xej (�) � IR3; � 2 [�1; 1], whose orientations are
compatible with orientations of the edges ej � KP (depicted in Figure 2.34).
Compatibility conditions analogous to (3.26) must be satis�ed.
In analogy to the previous cases we assume that the quadrilateral faces

~si � @K, i = 1; : : : ; 3, are parametrized by continuous surfaces Xsi(�); � 2
Kq, and that the triangular faces s4; s5 are parametrized by continuous sur-
faces Xsi(�); � 2 Kt. Recall the orientation of faces from Paragraph 2.2.6 {
each quadrilateral face is assigned a local coordinate system whose horizontal
and vertical axes are parallel to its horizontal and vertical edges, respectively.
Triangular faces are assigned local orientations in the same way as in the tetra-
hedral case. Again, compatibility of face and edge parametrizations Xsi(�)
and Xej (�) in the usual sense is requested.
The trans�nite interpolant XK(�), � 2 KP , will comprise vertex, edge and

face contributions Xv
K(�), X

e
K(�) and X

s
K(�). The vertex part Xv

K(�) is
de�ned as a combination of coordinates of the physical element vertices xi
and the scalar vertex functions (2.45),

Xv
K(�) =

6X
i=1

xi'
vj
P (�): (3.32)

The edge partXe
K(�) of the trans�nite interpolant XK(�) is constructed one

edge at a time,

Xe
K(�) =

9X
j=1

X
ej
K (�):

For each edge e1; : : : ; e3 and e7; : : : ; e9 we construct the bubble partX
ej
0 (�) of

its parametrization by subtracting the trace of the vertex interpolant (3.32)
in the standard way, and eliminating the roots �1 in the same way as in
the tetrahedral case. The result is �nally blended using a product of three
aÆne coordinates �A; �B and �C such that the �rst two of them vanish on
quadrilateral faces sA; sB, sharing with the edge ej a single vertex, and �C
vanishes on the other triangular face. Contributions of edges e4; : : : ; e6 are
easier to obtain { one only calculates the bubble part of the parametrizations
of these edges, and blends it by a single aÆne coordinate �A that vanishes on
the element-opposite face sA.
The face part Xs

K(�) of the trans�nite interpolant is constructed one face
at a time,

Xs
K(�) =

5X
i=1

Xsi
K(�):

For each quadrilateral and triangular face si we need to compute the bubble
part of its parametrization Xsi

0 (�) by subtracting the traces of the vertex

© 2004 by Chapman & Hall/CRC



158 Higher-Order Finite Element Methods

and edge interpolants (Xv
K + Xe

K)jsi . Contributions Xsi
0 (�) of triangular

faces s4; s5 are blended linearly using the aÆne coordinate vanishing on the
element-opposite triangular face.

The situation for the quadrilateral faces s1; : : : ; s3 is similar to the tetrahe-
dral case. For each of these faces by �A; �B denote aÆne coordinates which
vanish on the remaining two quadrilateral faces, respectively, and compute the
bubble part of their parametrizationsXsi

0 (�) as usual. On each quadrilateral
face si we divide the function Xsi

0 (�) for � 62 @si by the product �A�B jsi ,
and blend the result bilinearly into the element interior, multiplying it by the
same product �A(�)�B(�) in the whole element interior. The �nal trans�nite
interpolant is de�ned as

XK(�) =Xv
K(�) +X

e
K(�) +X

s
K(�); � 2 KP :

3.3.6 Isoparametric approximation of reference maps

The reference maps XK(�) : K̂ ! K are generally nonpolynomial (as
illustrated in Example 3.2). In order to facilitate their computer implemen-
tation, people usually further approximate them by polynomial isoparametric
maps xK(�) � XK(�) that for each element K 2 Th;p are de�ned as a lin-
ear combination of scalar (H1-conforming) master element shape functions
with vector-valued coeÆcients (geometrical degrees of freedom). Isoparamet-
ric maps are easy to store and to deal with { in particular their values and
partial and inverse derivatives can be calculated eÆciently.
The original notion of isoparametric elements, �rst introduced by Erga-

toudis, Irons and Zienkiewicz in [77, 210], is based upon the use of the same
set of shape functions for the de�nition of the reference maps and the approx-
imate solution of the �nite element problem. Despite the popularity of this
method the reader should be aware of the fact that the mappings and the
approximation problem have in general no relation to each other.
The right tool for the construction of isoparametric maps is the projection-

based interpolation technique on the reference domains (H1-conforming case),
which was introduced in Section 3.1.

Reference quadrilateral Kq

Since the procedure is simple and analogous for all geometrical element
types, let us describe it for quadrilateral elements only. Let K 2 Th;p be a
quadrilateral element and K1

q the corresponding master element with local

directional orders of approximation pb;1; pb;2 in the element interior and local
polynomial orders pe1 ; : : : ; pe4 on edges. The isoparametric element reference
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map xK(�) �XK(�) is sought in the form

xK(�) =
4X

j=1

�
vj
K'

vj
q (�) +

4X
j=1

pejX
k=2

�
ej
K;k'

ej
k;q(�) +

pb;1X
n1=2

pb;2X
n2=2

�b
K;n1;n2'

b
n1;n2;q(�)

(3.33)
(one is free to consider higher polynomial orders than those currently used
to approximate the solution). The symbols '

vj
q ; '

ej
k;q and 'bn1;n2;q stand for

scalar master element vertex, edge and bubble functions (2.13), (2.14) and
(2.15) de�ned in Paragraph 2.2.2.
Since each component of the original map XK(�) is nothing other than a

continuous scalar function de�ned on the reference domain Kq, projection-
based interpolation is applied to XK(�) in the standard way, one component
at a time.

REMARK 3.8 (Application of the projection-based interpolation)
Recall that the technique works hierarchically: �rst one computes the geo-
metrical degrees of freedom associated with the vertex functions 'v1q ; : : : ; '

v4
q

(those are nothing other than the coordinates of the vertices of the element K
{ see Paragraph 3.3.7 for details). If one is interested in higher-order maps, in
the next step the vertex interpolant is subtracted from the projected function
and edge interpolant is constructed. Finally, the design of a higher-order map
is accomplished by subtracting both the vertex and edge interpolants from the
processed component of XK(�) and projecting the residual in the H1-norm
at the polynomial space generated by the master element bubble functions.

Three-dimensional isoparametric maps are constructed in the same way.

3.3.7 Simplest case { lowest-order reference maps

Due to the hierarchy of H1-conforming shape functions, the simplest refer-
ence map that is based on vertex functions only maps all vertices of the mesh
element K exactly. In other words, all higher-order shape functions (i.e.,
edge, face and bubble functions) vanish at the vertices of reference domains
and therefore they do not contribute to the values of the map at vertices.
Hence, when x1;x2; : : : ;xm are coordinates of vertices of a mesh element K,
it is suÆcient to de�ne

�
vj
K := xj ; j = 1; 2; : : : ;m (3.34)

in (3.33), set the higher-order part of the map to zero, and the simplest
working reference map is born. One only has to be careful to enumerate the
vertices of K accordingly to the ordering of vertices of the reference domain
K̂ in order to avoid violation of geometry that would result in a zero Jacobian
of the reference map somewhere inside of K̂.
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The details of this paragraph obviously apply to all types of reference do-
mains Ka, Kq, Kt, KB , KT and KP .

3.3.8 Inversion of reference maps

Inversion of the reference maps xK(�) : K̂ ! K, where K is a physical
mesh element and K̂ is the corresponding reference domain, is only required
if we need to locate a geometrical point �� 2 K̂, given its image

x� = xK(�
�) 2 K 2 Th;p: (3.35)

This might be the case, for example, when the user asks the value of the
approximate solution at some speci�c point x in the computational domain.

AÆne case

If the Jacobi matrix DxK=D� of the map xK is constant (i.e., K is either
a triangle or tetrahedron with linear edges and/or faces), we have

DxK
D�

(v1)(�
� � v1) = x� � xK(v1);

which yields

�� = v1 �
�
DxK
D�

��1

(v1)(xK(v1)� x�):

Here v1 is (for example the �rst) vertex of the reference domain Kt or KT

and xK(v1) is the corresponding vertex of the physical mesh element K.

Numerical inversion using the Newton-Raphson technique

The Newton-Raphson technique is a generalization of the standard Newton
method to a system of nonlinear algebraic equations. The implicit equation
(3.35) for the unknown geometrical point �� 2 K̂ can be reduced to the
standard problem of �nding a zero root ��; FK(�

�) = 0, of a nonlinear
vector-valued function FK : K̂ ! IRd,

FK(�) = xK(�)� x�;
where d is the spatial dimension. The procedure is standard (see Figure 3.8):
After choosing an initial guess �0 2 K̂, which for higher-order maps can be
the solution corresponding to the �rst-order part of the map only, we iterate

�j+1 = �j �
�
DFK

D�

��1

(�j)FK(�j):

Similarly as above, the symbol DFK=D� stands for the Jacobi matrix of the
function FK , and we assume that the reference map xK(�) is constructed in
such a way that DFK=D� is not singular in K̂. The procedure is repeated
until suÆcient precision is reached.
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FIGURE 3.8: Schematic picture of the Newton-Raphson technique.

3.4 Projection-based interpolation on physical mesh
elements

With the reference maps xK in hand, we can return to the projection-based
interpolation operators �1, �curl and �div, de�ned on master elements in
Paragraphs 3.1.1, 3.1.2 and 3.1.3, and extend them to physical mesh elements.
Recall that the basic property of projection-based interpolation is locality:
given a suÆciently regular function u in the physical mesh, the interpolant �u
must be constructed elementwise, without any information from neighboring
elements, and still it must conform to the global �nite element space.

In general it is not enough to transform the projected function from the
physical mesh element to the appropriate reference domain and apply pro-
cedures described in Paragraphs 3.1.1, 3.1.2 and 3.1.3. The only case where
this is possible is when the Jacobi matrix DxK is constant. In all other
cases we have to adjust the norms incorporated into the de�nition of the
projection-based interpolation operators on the reference domains in order to
yield correct results for the physical mesh elements. For simplicity, let us
demonstrate the procedure in the case of H1-conforming approximations in
two spatial dimensions (see, e.g., [60]).

Consider a suÆciently regular function u given in the physical mesh, a
triangular mesh element K, for example, and a reference map xK such that

K = xK(Kt)

(the reference triangular domain Kt was introduced in Paragraph 2.2.3). The
projection-based interpolant consists, as in (3.2), of a vertex, edge and bubble
part

uh;p = uvh;p + ueh;p + ubh;p 2 Vh;p;
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where Vh;p � H1 is the corresponding global piecewise polynomial �nite ele-
ment space. The vertex interpolant does not require any extra treatment and
is de�ned simply as

uvh;pjK =

3X
k=1

avk'vkt Æ x�1
K ; (3.36)

where the coeÆcients avk are chosen such that uvh;p matches the original func-
tion u at vertices v1; v2; v3 of the mesh element K.
We must be more careful with the edge interpolant. First let us introduce

a parametrization xej (�), � 2 [�1; 1], for each edge ej , j = 1; : : : ; 3 of the
reference domain Kt, consistent with the local orientation of the edges. These
are

xe1 = (�;�1); xe2 = (��; �); xe3 = (�1;��):
The H1

0 product on a physical mesh edge e � @K transforms after an appro-
priate change of variables and application of the chain rule to

(u; v)H1
0
;e =

Z
e

du

ds

dv

ds
ds =

Z 1

�1

dû

ds

dv̂

ds

�
ds

d�

��1

d�

(recall the role of this weighted H1
0 product for the approximation of the norm

H
1
2

00 from (3.3)), where again

ds

d�
=

vuut dX
i=1

�
dxi
d�

�2

:

We see that without the additional weight, unless ds=d� is constant (the edge
is rectilinear), H1

0 projection done on the reference domain edge would yield
results di�erent from the projection on the physical element edge e � @K.
The di�erence becomes even more pronounced in the transformation rule for
the H1

0 product over the whole element:

(u; v)H1
0
;K =

Z
K

2X
k=1

@u

@xk

@v

@xk
dx =

Z
Kt

2X
i=1

2X
j=1

gij(�)
@û

@�k

@v̂

@�k
d�1d�2;

with a new metric gij given by

gij =

2X
k=1

@�i
@xk

@�j
@xk

det(DxK);

where det(DxK) is the Jacobian of the reference map xK . In other words,
projection-based interpolation done on physical mesh elements is still per-
formed on the appropriate reference domains, but with di�erent edge and
element metrics d�/ds, gij .
Both edge and bubble interpolants in the physical mesh are obtained as a

composition of the master element interpolants and the inverse reference map
in the same way as in (3.36).
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3.5 Technology of discretization in two and three
dimensions

So far we have designed hierarchic shape functions on master elements and
exploited the projection-based and trans�nite interpolation techniques to con-
struct polynomial reference maps. What remains to be done in this section
is to turn the approximate variational formulation (1.22) into a system of
algebraic equations (or ordinary di�erential equations in the case of time-
dependent problems, as mentioned in Paragraph 1.1.7).

REMARK 3.9 To avoid confusion with basis functions that generate poly-
nomial spaces on the reference domains (master element shape functions), we
use global basis functions to mean the basis functions of the space Vh;p.

The reader can identify many aspects of the one-dimensional methodology
from Section 1.3 in the following outline:

3.5.1 Outline of the procedure

1. We begin with a step that was not present in the 1D scheme. Recall that
in Chapter 2 it was necessary to equip the edges and faces of the reference
domains with unique orientations in order to make the de�nitions of
master element edge and face functions unique. In the same way one has
to assign unique (global) orientations to edges and faces in the mesh Th;p
in order to ensure the uniqueness of basis functions of the space Vh;p. Let
xK be a smooth bijective reference map corresponding to an element
K 2 Th;p, and let K̂ be the appropriate reference domain. Since the
reference and global orientations have been chosen independently, indeed
the orientations of the edges and faces of the (geometrically identical)
domains K and xK(K̂) are generally mismatched.

This problem has to be resolved in order to ensure global conformity of
edge and face basis functions. For each element K 2 Th;p one has to
adjust the basis of the master element polynomial space in an algorith-
mically simple way, such that that the space itself stays unchanged. We
will discuss the procedure in Paragraph 3.5.2.

2. Master elements were designed in Chapter 2 in such a way that they
are compatible with the De Rham diagram on the reference domains.
It is essential for good performance of �nite elements schemes that the
�nite elements conserve this compatibility on the physical mesh level
as well. Therefore the master element polynomial spaces need to be
transformed into the physical mesh in a sophisticated way, by means
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of transforms that are di�erent for H1-, H(curl)-, H(div)- and L2-
conforming elements. We will derive them in Paragraph 3.5.3.

3. With these transforms in hand, global basis functions will be built by
\gluing together" various constallations of images of the orientation-
adjusted master element shape functions in Paragraph 3.5.4.

4. In Paragraph 3.5.5 we will present minimum rules that uniquely identify
local polynomial orders for all edges and faces in the �nite element mesh,
based on the distribution of the polynomial order in element interiors. In
other words, at this point the total number of unknowns in the discrete
problem will be known.

5. In Paragraph 3.5.6 connectivity information will be established in the
same way as in Section 1.3. Links from master element shape functions
to the appropriate global basis functions will be constructed, which al-
lows the assembling algorithm to access the correct entries in the global
sti�ness matrix and in the global load vector from the reference domain.

6. Transformation of the variational formulation to the reference domain is
a simple operation since one can exploit relations from Paragraph 3.5.3.
We demonstrate this briey on a model equation in Paragraph 3.5.7.

7. In Paragraph 3.5.8 the assembling algorithm will be presented. We pro-
ceed in one local and one global step. First one constructs local element
sti�ness matrices and load vectors by means of orientation-adjusted mas-
ter element shape functions. Here the situation is more complicated that
in 1D { the �rst signi�cant di�erence is that already the lowest-order
reference maps on some element types are not aÆne, and thus one gener-
ally cannot take full advantage of precomputed master element sti�ness
integrals. In the global step one exploits the connectivity information
in order to distribute entries of the local matrices and vectors to appro-
priate positions in the global discrete system.

3.5.2 Orientation of master element edge and face functions

Let K 2 Th;p be a mesh element, K̂ the appropriate reference domain and

xK : K̂ ! K a smooth bijective reference map. At the beginning of Para-
graph 3.5.1 we explained that the orientation of the master element edge and
face functions has to be adjusted in order to compensate for the di�erence
between the unique orientation of edges and faces of the element K, and the
unique orientation of edges and faces of the transformed reference domain
xK(K̂).

Local orientation of edges and faces of reference domains: Local orientation
of edges for the reference domains Kq;Kt;KB ;KT and KP can be found in
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Figures 2.1, 2.13, 2.26, 2.30 and 2.34, respectively. Local orientations of faces
of 3D reference domains, which were also de�ned in Chapter 2, are depicted
in Figure 3.9.
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FIGURE 3.9: Local orientation of faces of the reference domains KB , KT

and KP .

Global orientation of edges and faces in the mesh: Each edge and face in the
initial mesh needs to be assigned a unique orientation. These orientations
do not have to be stored explicitly as they can easily be retrieved from a
unique global enumeration of vertices. In adaptive algorithms, re�ned nodes
may inherit the orientation of their parents (more details will be given in
Paragraph 3.7.1).
Edges are oriented according to the enumeration of their vertices (for ex-

ample) in increasing order, as illustrated in Figure 3.10.

�
�
�
�

��
��
��
��

A

B

FIGURE 3.10: Global orientation of mesh edges based on a unique enu-
meration of vertices (here index(A) < index(B)).

For each quadrilateral face s we select its vertex A with the lowest index
and two edges AB and AC such that index(A) < index(B) < index(C).
Triangular faces are oriented in the same way, except that they do not have
the product form of the quadrilateral ones, as illustrated in Figure 3.11.

© 2004 by Chapman & Hall/CRC



166 Higher-Order Finite Element Methods

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

A
B

C D

A
B

C

II’

I’

FIGURE 3.11: Global orientation of quadrilateral and triangular faces,
index(A) < index(B) < index(C); the vertex A has the lowest index among
all vertices of the face.

Transformation of master element edge functions in 2D: Consider an oriented
edge e0 = v0iv

0
j � @K, K 2 Th;p, reference domain K̂ such that K = xK(K̂)

and oriented edge e = vivj � @K̂ such that xK(e) = e0 (up to the orientation).
The edge e needs to be equipped with an orientation ag o(e) = �1 that
indicates whether its image xK(e) has the same or opposite orientation with
respect to the edge e0. In other words,

o(e) =

8<
:

1 if xK(vi) = v0i; xK(vj) = v0j ;

�1 if xK(vi) = v0j ; xK(vj) = v0i:
(3.37)

REMARK 3.10 (Storing edge orientation ags) Let us remark that the
edge orientation ags must be stored elementwise for all edges, for adaptive
algorithms at least on the coarse mesh level. One may come up with various
compression formats { for instance, up to eight edges can be stored in a single
1B variable (type char in C++) etc.

If o(e) = 1 then all master element edge functions associated with e stay
unchanged. Otherwise we have to transform them using a suitable bijective
map xoe : K̂ ! K̂, which inverts the parametrization of the edge e. This
is done very easily as follows: One may start with the reference triangle Kt

and its identical mapping It : Kt ! Kt, which can be expressed as a linear
combination of vertex shape functions 'vkt and vertex coordinates vk,

It(�1; �2) =

3X
k=1

'vkt (�1; �2)vk: (3.38)

We arrive at xoe by switching in (3.38) the vertex functions corresponding to
the vertices vi; vj of the edge e. For example, the map x

o
e1 , after exchanging

'v1t and 'v2t in (3.38), has the form
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xoe1 (�1; �2) = 'v2t (�1; �2)v1 + 'v1t (�1; �2)v2 + 'v3t (�1; �2)v3:

The de�nition of the vertex functions (2.20),

'v1t (�1; �2) = �2;t(�1; �2); '
v2
t (�1; �2) = �3;t(�1; �2); '

v3
t (�1; �2) = �1;t(�1; �2);

together with the de�nition of the scalar edge functions (2.21),

'e1k;t = �2;t�3;t�k�2(�3;t � �2;t); 2 � k � pe1 ;

'e2k;t = �3;t�1;t�k�2(�1;t � �3;t); 2 � k � pe2 ;

'e3k;t = �1;t�2;t�k�2(�2;t � �1;t); 2 � k � pe3 ;

yield that the exchange of the two vertex functions is equivalent to the change
of sign of the argument of the kernel functions �k�2.

REMARK 3.11 (General nature of kernel functions) Kernel functions
analogous to (1.52) can be constructed for any set of orthogonal polynomials,
and they can be de�ned in many other ways. They do not even have to be
symmetric or antisymmetric with respect to the midpoint of the interval where
they are de�ned. However, many aspects simplify when the kernel functions
satisfy the condition (3.39).

If the kernel functions satisfy the condition

�k�2(�y) = (�1)k�k�2(y); k = 2; 3; : : : ; (3.39)

then the adjustment of orientation of scalar edge functions reduces to a change
of sign of odd-order functions,

'ek;t Æ xoe =
8<
:

'ek;t; k = 2; 3; : : : ; if o(e) = 1;

(�1)k'ek;t; k = 2; 3; : : : ; if o(e) = �1:
(3.40)

For the particular choice of Lobatto shape functions (1.52) the condition (3.39)
is equivalent to

lk(�y) = (�1)klk(y); k = 2; 3; : : : ; (3.41)

and therefore (3.39) is satis�ed. Using o(e) directly as a sign factor, (3.40)
can be written simply as

'ek;t Æ xoe = ok(e)'ek;t; k = 2; 3; : : : (3.42)
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REMARK 3.12 (H(curl)- and H(div)-conforming approximations)
The trace of the tangential component of the H(curl)-conforming edge func-
tions (2.57), (2.58), (2.59) as well as the trace of the normal component of the
H(div)-conforming edge functions (2.99), (2.100) and (2.101) coincide with
the Legendre polynomials. Therefore the condition

Lk(�y) = (�1)kLk(y); k = 0; 1; : : : (3.43)

holds.

We proceed in the same way for all the remaining reference domains. Con-
cerning the reference quadrilateral Kq , the identity Iq : Kq ! Kq reads

Iq(�1; �2) =

4X
k=1

'vkq (�1; �2)vk: (3.44)

When inverting the orientation of the edge e = vivj , obviously one has to
switch in (3.44) not only the vertex functions associated with the vertices vi
and vj , but also the other two vertices associated with the element-opposite
edge ~e, in order to obtain a bijective map. For the edges e1 and e2 this means
that �3;q becomes �4;q and vice versa, and analogously �1;q is switched with
�2;q if e = e3 or e = e4. It follows from the de�nition of edge functions (2.14)
that under the condition (3.41) we arrive at the same simpli�cation as above,

'ek;q Æ xoe = ok(e)'ek;q ; k = 2; 3; : : : (3.45)

Thus once again, if o(e) = �1, it is suÆcient to multiply all odd-order edge
functions associated with the edge e by a sign factor �1, unless one deals with
some rare set of shape functions that are not compatible with the conditions
(3.41) or (3.43). The situation is illustrated in Figure 3.12.
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FIGURE 3.12: Local transformation xoe of edge functions for the reference
quadrilateral Kq and reference triangle Kt if o(e) = �1.
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Transformation of master element edge functions in 3D is done exactly in
the same way as in 2D. For each mesh element K, xK(K̂) = K, each edge
e = vivj � @K̂ is equipped with an orientation ag o(e) = �1, which is
based on an algorithmic check of the condition (3.37). For all standard types
of scalar shape functions compatible with (3.41), (3.43) we arrive at a result
equivalent to (3.42) and (3.45) also for the reference domains KB;KT and
KP . Also in 3D the result naturally extends to the H(curl)-conforming edge
functions due to the fact that the trace of their tangential component coincides
with the Legendre polynomials (Remark 3.12).

Transformation of quadrilateral master element face functions: Consider an
oriented quadrilateral mesh face s0 = v0iv

0
jv

0
kv

0
l � @K, K 2 Th;p, reference

domain K̂ such that K = xK(K̂) and oriented face s = vivjvkvl � @K̂ such
that xK(s) = s0 (up to the orientation). The eight di�erent situations that
may occur are illustrated in Figure 3.13.
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FIGURE 3.13: Eight possible combinations of global directions I0, II0 of
the face s0 and the transformed local directions I, II of the face xK(s).

Hence, the face s needs to be equipped with three orientation ags om =
�1;m = 1; : : : ; 3. The ag o3(s) indicates whether the transformed local axes
I, II match the global axes I0 and II0 in this order or not. If o3(s) = 1, the
ag o1(s) indicates if the transformed local direction I matches the global
direction I0, and the ag o2(s) indicates if the transformed local direction II
matches the global direction II0. At last, if o3(s) = �1, the ag o1(s) indicates
if the transformed local direction I matches the global direction II0, and the
ag o2(s) indicates if the transformed local direction II matches the global
direction I0.
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If o1(s) = o2(s) = o3(s) = 1 then all master element face functions asso-
ciated with the face s stay unchanged. Otherwise, in the same way as with
edge functions in 2D, we have to transform the face functions using a suitable
bijective map xos : K̂ ! K̂. Again we start from the identical mapping that,
for instance for the reference brick KB , reads

IB(�1; �2; �3) =

8X
k=1

'vkB (�1; �2; �3)vk : (3.46)

First assume that o3(s) = 1. If o1(s) = �1, we obtain the transformation xos
by switching in (3.46) vertex functions in all four pairs of vertices correspond-
ing to edges lying in the �rst local direction. The situation for the faces s1
and s2 is illustrated in Figure 3.14.
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FIGURE 3.14: Construction of the local transformation xos from (3.46) if
o1(s1) = �1 and o2(s1) = o3(s1) = 1.

The same occurs with the ag o2(s) and the second local direction II.

Returning now to the de�nition (2.31) of scalar face functions for KB, we
realize that under the condition (3.41) the transformation simpli�es to the
same �1 sign factors as for the edge functions above,

'sn1;n2;B Æ xos = on11 on22 'sn1;n2;B ; n1 = 2; 3; : : : ; n2 = 2; 3; : : : ; if o3(s) = 1:
(3.47)

In the case that o3(s) = �1 the situation is similar except that indices n1 and
n2 in the de�nition of the face functions must be switched,
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'sn1;n2;B Æ xos = on11 on22 'sn2;n1;B ; n1 = 2; 3; : : : ; n2 = 2; 3; : : : ; if o3(s) = �1:
(3.48)

The same conclusion holds, up to the compatibility with conditions (3.41)
and (3.43), also for quadrilateral face functions for H(curl)- and H(div)-
conforming approximations. The reader can now easily �gure out the proce-
dure for scalar and vector-valued quadrilateral face functions associated with
the prismatic reference domain KP { also in this case, multiplication by �1
sign factors and eventually switching of the indices n1; n2 is suÆcient.

Transformation of triangular master element face functions: Now the situa-
tion becomes more interesting since triangular face functions are not invariant
with respect to the enumeration of vertices. Recall that one of the vertices
plays a special role in the de�nition of orientations for both the reference do-
main and physical mesh faces (for both we selected a vertex with the lowest
index).
Consider an oriented triangular mesh face s0 = v0iv

0
jv

0
k � @K (index(v0i) <

index(v0j) < index(v0k)), reference domain K̂ such that K = xK(K̂) and

oriented face s = vAvBvC � @K̂ (A < B < C) such that xK(s) � s0 (up to
the orientation). The six di�erent situations that may occur are illustrated in
Figure 3.15.
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FIGURE 3.15: Six possible combinations of the global orientation of the
triangular mesh face s0 (black arrow) and the transformed local orientation of
the face xK(s).

It is natural to equip the face s with two orientation ags o1(s) 2 f0; 1; 2g
and o2(s) = �1 indicating the position of xK(vA) with respect to v0A and
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compatibility of orientations of the faces s0 and s, respectively. If o1(s) = 0
and o1(s) = 1 then all master element face functions associated with the face
s stay unchanged. Otherwise, analogously as before, we have to transform
them by means of a suitable bijective map xos : K̂ ! K̂. This time let us use
the reference tetrahedron KT for demonstration purposes. The corresponding
identical mapping IT : KT ! KT can be written as

IT (�1; �2; �3) =

4X
k=1

'vkT (�1; �2; �3)vk: (3.49)

We select three barycentric coordinates �A; �B and �C such that �A(vA) =
�B(vB) = �C(vC) = 1. If o2(s) = 1 and o1(s) = 1, the map xos cyclically
rotates the vertices vA; vB and vC by one in the backward direction, i.e., to
vB ; vC and vA. This is done by the corresponding rotation of vertex functions
associated with these vertices in (3.49). If o2(s) = 1 and o1(s) = 1, the vertices
are rotated backward by two, i.e., to vC ; vA and vB . Now let o2(s) = �1. If
o1(s) = 0, the map xos only switches the vertices vB and vC . If o1(s) = 1,
the vertices vB and vC are switched and moreover the vertices vA; vC and vB
are rotated by one backward, i.e., to vC ; vB and vA. Finally, if o1(s) = 2, the
orientation vA; vB ; vC is changed to vB ; vA; vC .

Recall the de�nition of scalar face functions for KT (2.39),

'sn1;n2;T = �A�B�C�n1�1(�B � �A)�n2�1(�A � �C); (3.50)

1 � n1; n2; n1 + n2 � ps � 1. What remains to be done is to compose these
shape face functions with the mapping xos. This is done easily by rotating the
barycentric coordinates �A; �B and �C in (3.50) in the way described above.
For example, for o1(s) = 2 and o2(s) = �1, the new face functions have the
form

'sn1;n2;T Æ xos = �B�A�C�n1�1(�A � �B)�n2�1(�B � �C):

Analogously we proceed for triangular faces of the reference prism KP and
for vector-valued approximations.

3.5.3 Transformation of master element polynomial spaces

Before one can design basis functions of the space Vh;p, master element
polynomial spaces have to be transformed elementwise to the physical mesh
Th;p. This operation was simple in 1D since no orientation-related issues were
relevant and since the reference maps were by de�nition aÆne (see Section
1.3). The transformation rule is well known for H1-conforming approxima-
tions (see below); however, in the H(curl)- and H(div)-conforming case one
must be careful to preserve the commutativity of the De Rham diagram (2.1),
(2.2) and (2.3) between the reference domain and physical mesh level. It turns
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out that the master element polynomial spaces have to be transformed dif-
ferently for H1, H(curl)- and H(div)-conforming approximations (see, e.g.,
[57, 71, 179, 160, 67]).

Consider a reference domain K̂, physical mesh elementK 2 Th;p, suÆciently
smooth bijective reference map

xK(�) : K̂ ! K

and the four appropriate types of master elements:

1. H1 master element K1 = (K̂; Ŵ ;�1),

2. H(curl) master element Kcurl = (K̂; Q̂;�curl),

3. H(div) master element Kdiv = (K̂; V̂ ;�div) and

4. L2 master element K̂L2 = (K̂; X̂;�L2).

H1-conforming elements

The situation is conventional in theH1-conforming case, where the mapping
�1
K from the master element space Ŵ (K̂) to the corresponding space W (K)

on the element K,

Ŵ (K̂)??y�1
K

W (K);

(3.51)

requires that the function value of the master element shape function ŵ at
each reference point � 2 K̂ coincides with the value of the transformed shape
function w at its image x = xK(�) 2 K. Hence the transformation rule reads

w = �1
K(ŵ) = ŵ Æ x�1

K ; (3.52)

or, in other words,

w(x) = ŵ(�) where x = xK(�): (3.53)

The polynomial space on the mesh element K has the form

W = �1
K(Ŵ ): (3.54)

In the following we will need the reference map to be at least C2-smooth.
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H(curl)-conforming elements

The transform �curl
K of the master element space Q̂(K̂) has to be designed

in such a way that the H1 �H(curl) part of the De Rham diagram,

Ŵ (K̂)
r��! Q̂(K̂)??y�1

K

??y�curl
K

W (K)
rx�! Q(K);

(3.55)

commutes (the symbol r was described in Remark 2.1). This means that
starting with a scalar shape function ŵ 2 Ŵ (K̂), one arrives at the same
vector-valued function E 2 Q(K) either way. In other words,

rx(ŵ Æ x�1
K ) = �1

K(r�ŵ) (3.56)

has to hold for all ŵ 2 Ŵ (K̂).
It is not diÆcult to �nd �curl

K : use the chain rule to di�erentiate

rx(ŵ Æ x�1
K )(x) =

�
DxK
D�

(�j�=x�1
K

(x))

��T
r�ŵ(�j�=x�1

K
(x)) (3.57)

=

"�
DxK
D�

��T
r�ŵ

#
Æ x�1

K (x):

Hence, the H(curl) transformation rule reads

E = �curl
K (Ê) =

"�
DxK
D�

��T
Ê

#
Æ x�1

K ; (3.58)

and the master element polynomial space Q̂ transforms to

Q = �curl
K (Q̂): (3.59)

This conclusion holds both in 2D and 3D (see also [71, 57]).

REMARK 3.13 (Transformation of gradients for H1-conforming ap-
proximations) Relation (3.57) has another interesting interpretation: the
gradient operator rx in the physical mesh can be written by means of the
gradient r� on the reference domain as follows,

rx =

�
DxK
D�

��T
r� : (3.60)
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We will exploit this fact later for the transformation of variational formulations
in the space H1 to the reference domain.

The following Remark 3.14 delivers an analogous message for H(curl)-con-
forming approximations:

REMARK 3.14 (Transformation of the curl operator) It has been
shown in [71] that the curl operator rx� in the physical mesh can be written
by means of the curl operator r�� on the reference domain as follows,

rx �E = J�1
K (r� � Ê): (3.61)

As usual we use the symbol

JK(�) = det

�
DxK
D�

�
for the Jacobian of the reference map xK , which is assumed to be always
positive.

H(div)-conforming elements

The divergence section of the De Rham diagram is di�erent in 2D and 3D
(recall that it relates H1 with H(div) in 2D and H(curl) with H(div) in
3D). Therefore let us begin with the 2D case. In the same way as above it is
necessary that the diagram

Ŵ (K̂)
r���! V̂ (K̂)??y�1

K

??y�div
K

W (K)
rx��! V (K);

(3.62)

commutes, i.e., that

rx � (ŵ Æ x�1
K ) = �curl

K (r� � ŵ) (3.63)

holds for all ŵ 2 Ŵ (K̂). Recall that in 2D curl� =r�� = (�@=@�2; @=@�1).
Applying the operator r�� to the expression

ŵ(�) = (w Æ xK)(�);
we obtain 0

B@�
@ŵ

@�2
@ŵ

@�1

1
CA =

0
B@

@xK;2
@�2

�@xK;1
@�2

�@xK;2
@�1

@xK;1
@�1

1
CA
0
B@�

@w

@x2
@w

@x1

1
CA :
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Standard identity on inverse matrices (also see Remark 3.26) yields that

0
B@

@xK;2
@�2

�@xK;1
@�2

�@xK;2
@�1

@xK;1
@�1

1
CA
�1

=

�
DxK
D�

�T
J�1
K :

Hence the H(div) transformation rule reads

v = �div
K (v̂) =

"�
DxK
D�

�T
J�1
K v̂

#
Æ x�1

K ; (3.64)

and the master element polynomial space V̂ transforms to

V = �div
K (V̂ ): (3.65)

REMARK 3.15 Notice that in analogy to the H(curl)-conforming case,
where the vector-valued shape functions were transformed as gradients, the
H(div)-conforming vector-valued shape functions transform as curls.

The result (3.64) holds in unchanged form also in 3D, where we look at the
H(curl)�H(div) section of the De Rham diagram,

Q̂(K̂)
r���! V̂ (K̂)??y�curl
K

??y�div
K

Q(K)
rx��! V (K)

(3.66)

(also see [71, 57]).

L2-conforming elements

Finally we come to the H(div)� L2 part of the De Rham diagram,

V̂ (K̂)
r� ��! X̂(K̂)??y�div

K

??y�L2

K

V (K)
rx��! X(K);

(3.67)

which dictates that H(div)-conforming master element shape functions have
to be transformed as the divergence. Thus the transformation rule reads
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! = �L2

K (!̂) = [J�1
K !̂] Æ x�1

K : (3.68)

Standard identity on determinants,

@JK
@�j

=
X
i;k

�
DxK
D�

��1

ki

@

@�j

�
DxK
D�

�
ik

;

is used for the derivation of (3.68). The master element polynomial space
X̂(K̂), transformed to the physical mesh, becomes

X = �L2

K (X̂): (3.69)

3.5.4 Design of global basis functions

In Paragraph 3.5.2 the orientation of master element edge and face func-
tions was elementwise adjusted in order to make them compatible with the
unique orientation of edges and faces in the physical mesh Th;p. Recall that
these adjustments did not alter the master element polynomial spaces. In
Paragraph 3.5.3 one has described the transformation of master element poly-
nomial spaces to physical mesh elements by means of reference maps and their
derivatives. The basis functions of the space Vh;p can easily be de�ned now.

REMARK 3.16 (Role of global basis functions in 2D and 3D) In
Section 1.3 the global basis functions were used to de�ne unique connectivity
information arrays for all elements. In 2D and 3D their additional function
is to determine the orientation information for all elements. The connectivi-
ty and orientation data structures are essential for the assembling algorithm.
Once they are de�ned, one translates the approximate variational formulation
(1.22) elementwise from the physical mesh to the reference domain, and dis-
cretizes it by means of master element shape functions. In the same way as
in 1D, assembling of the resulting discrete system takes place exclusively on
the reference domain.

The conformity requirements of the spaces H1, H(curl), H(div) and L2 dic-
tate to split the global basis functions in the same fashion as we did for master
element shape functions (Table 3.1).
In the following we will de�ne the way globally conforming basis functions

on element patches are constructed using the master element shape functions
and orientation adjustments xe0 and xs0 de�ned in Paragraph 3.5.2. Some of
the de�nitions are similar for the spaces H1, H(curl) and H(div), but we
prefer to introduce them separately for the sake of clarity.

DEFINITION 3.1 (Vertex basis function) Let the space V from the vari-
ational formulation be a subspace of H1(
) and let Vh;p be a �nite-dimensional
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TABLE 3.1: Hierarchic basis functions
in various function spaces.

H1 H(curl) H(div) L2

2D vertex edge edge bubble
edge bubble bubble
bubble

3D vertex edge face bubble
edge face bubble
face bubble
bubble

approximation of V on 
h. Vertex function w 2 Vh;p, associated with a grid
vertex vk, is a continuous function de�ned in 
h which equals to one at vk
and vanishes outside of a patch Sk formed by all elements that share the vertex
vk. Restricted to each element Km 2 Sk,

wjKm
= �1

Km
(ŵ); (3.70)

where v = x�1
Km

(vk) is the corresponding vertex of the reference domain, ŵ

is a master element vertex function associated with the vertex v and the H1

transformation �1
Km

was de�ned in (3.52).

REMARK 3.17 (Vertex functions in hybrid meshes) Recall that lin-
earity of vertex shape functions along the edges of reference domains Kt and
Kq allows for the de�nition of vertex basis functions in hybrid meshes in
2D. Analogously, their linearity on edges together with linearity on triangular
faces and bilinearity on quadrilateral faces of the reference domains KB ;KT

and KP allow us to construct vertex basis functions in hybrid 3D meshes.

Vertex functions have in 2D the form of the traditional \hat functions" related
to grid vertices, as shown in Figure 3.16. The 3D situation is illustrated in
Figure 3.17.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

FIGURE 3.16: Vertex basis functions on quadrilateral, triangular and hy-
brid meshes in 2D.
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FIGURE 3.17: Element patches for vertex basis functions on hexahedral,
tetrahedral and hybrid meshes in 3D (to keep the last �gure clear, we consider
that the vertex lies on the boundary).

DEFINITION 3.2 (H1-conforming edge basis function) Let the space
V from the variational formulation be a subspace of H1(
), and let Vh;p be
a �nite-dimensional approximation of V on 
h. Edge function w 2 Vh;p,
associated with a mesh edge ek, is a continuous function de�ned in 
h which
vanishes outside of a patch Sk formed by all elements that share the edge ek.
Restricted to each element Km 2 Sk,

wjKm
= �1

Km
(ŵ Æ xe0); (3.71)

where e = x�1
Km

(ek) is the corresponding edge of the reference domain, ŵ is a
master element edge function associated with the edge e, xe0 is the orientation
adjustment de�ned in Paragraph 3.5.2 and the H1 transformation �1

Km
was

de�ned in (3.52).

DEFINITION 3.3 (H(curl)-conforming edge basis function) Let the
space V from the variational formulation be a subspace of H(curl)(
), and
let Vh;p be a �nite-dimensional approximation of V on 
h. Edge function
E 2 Vh;p, associated with a mesh edge ek, is a vector-valued function de�ned
in 
h which vanishes outside of a patch Sk formed by all elements that share
the edge ek. The tangential component of E has to be continuous on all edges
of the patch Sk. Restricted to each element Km 2 Sk,

EjKm
= �curl

Km
(Ê Æ xe0); (3.72)

where e = x�1
Km

(ek) is the corresponding edge of the reference domain, Ê is a
master element edge function associated with the edge e, xe0 is the orientation
adjustment de�ned in Paragraph 3.5.2 and the H(curl) transformation �curl

Km

was de�ned in (3.58).
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DEFINITION 3.4 (H(div)-conforming edge basis function) This de�-
nition is relevant in 2D only. Let the space V from the variational formulation
be a subspace of H(div)(
), and let Vh;p be a �nite-dimensional approxima-
tion of V on 
h. Edge function v 2 Vh;p, associated with a mesh edge ek, is
a vector-valued function de�ned in 
h which vanishes outside of a patch Sk
formed by all elements that share the edge ek. The normal component of v
has to be continuous on all edges of the patch Sk. Restricted to each element
Km 2 Sk,

vjKm
= �div

Km
(v̂ Æ xe0); (3.73)

where e = x�1
Km

(ek) is the corresponding edge of the reference domain, v̂ is a
master element edge function associated with the edge e, xe0 is the orientation
adjustment de�ned in Paragraph 3.5.2 and the H(div) transformation �div

Km

was de�ned in (3.64).

REMARK 3.18 (Edge functions in hybrid meshes) Recall from Chap-
ter 2 that edge functions on reference domains Kt and Kq in two spatial
dimensions as well as edge functions on reference domains KB ;KT and KP

in 3D for H1-,H(curl)- andH(div)-conforming discretizations were designed
in such a way that globally conforming edge functions could be constructed
in hybrid meshes.

Examples of element patches related to mesh edges are shown in Figures 3.18
and 3.19.

FIGURE 3.18: Edge functions on quadrilateral, triangular and hybrid
meshes in 2D: the �gure represents either their function values in the H1-
conforming case, or their tangential component (to the dashed edge) in the
H(curl)-conforming case, or their normal component (to the dashed edge) in
the H(div)-conforming case.

DEFINITION 3.5 (H1-conforming face basis function) Let the space
V from the variational formulation be a subspace of H1(
), 
 � IR3, and
let Vh;p be a �nite-dimensional approximation of V on 
h. Face function
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FIGURE 3.19: Element patches for edge functions on hexahedral, tetra-
hedral and hybrid meshes in 3D.

w 2 Vh;p, associated with a mesh face sk, is a continuous function de�ned in

h which vanishes outside of a patch Sk formed by all elements that share the
face sk. Restricted to each element Km 2 Sk,

wjKm
= �1

Km
(ŵ Æ xs0); (3.74)

where s = x�1
Km

(sk) is the corresponding face of the reference domain, ŵ is a
master element face function associated with the face s, xs0 is the orientation
adjustment de�ned in Paragraph 3.5.2 and the H1 transformation �1

Km
was

de�ned in (3.52).

DEFINITION 3.6 (H(curl)-conforming face basis function) Let the
space V from the variational formulation be a subspace of H(curl)(
), 
 �
IR3, and let Vh;p be a �nite-dimensional approximation of V on 
h. Face
function E 2 Vh;p, associated with a mesh face sk, is a vector-valued function
de�ned in 
h which vanishes outside of a patch Sk formed by all elements that
share the face sk. The tangential component of E has to be continuous on all
edges and faces of the patch Sk. Restricted to each element Km 2 Sk,

EjKm
= �curl

Km
(Ê Æ xs0); (3.75)

where s = x�1
Km

(sk) is the corresponding edge of the reference domain, Ê is a
master element face function associated with the face s, xs0 is the orientation
adjustment de�ned in Paragraph 3.5.2 and the H(curl) transformation �curl

Km

was de�ned in (3.58).

DEFINITION 3.7 (H(div)-conforming face basis function) Let the
space V from the variational formulation be a subspace ofH(div)(
), 
 � IR3,
and let Vh;p be a �nite-dimensional approximation of V on 
h. Face function
v 2 Vh;p, associated with a mesh face sk, is a vector-valued function de�ned
in 
h which vanishes outside of a patch Sk formed by all elements that share
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the face sk. The normal component of v has to be continuous on all faces of
the patch Sk. Restricted to each element Km 2 Sk,

vjKm
= �div

Km
(v̂ Æ xs0); (3.76)

where s = x�1
Km

(sk) is the corresponding edge of the reference domain, v̂ is a
master element face function associated with the face s, xs0 is the orientation
adjustment de�ned in Paragraph 3.5.2 and the H(div) transformation �div

Km

was de�ned in (3.64).

REMARK 3.19 (Face functions in hybrid meshes) Recall that (tri-
angular) face functions on reference domains KT and KP as well as (quadri-
lateral) face functions on reference domains KB and KP for H1-, H(curl)-
and H(div)-conforming discretizations were in Chapter 2 designed in such a
way that globally conforming face functions could be constructed in hybrid
meshes.

DEFINITION 3.8 (H1-conforming bubble basis functions) Let the
space V from the variational formulation be a subspace of H1(
) and let Vh;p
be a �nite-dimensional approximation of V on 
h. Bubble function w 2 Vh;p,
associated with an element Km, is a continuous function de�ned in 
h that
vanishes outside of the element Km such that

wjKm
= �1

Km
(ŵ); (3.77)

where ŵ is a master element bubble function and the H1 transformation �1
Km

was de�ned in (3.52).

DEFINITION 3.9 (H(curl)-conforming bubble basis functions) Let
the space V from the variational formulation be a subspace of H(curl)(
) and
let Vh;p be a �nite-dimensional approximation of V on 
h. Bubble function
E 2 Vh;p, associated with an element Km, is a vector-valued function de�ned
in 
h that vanishes outside of the element Km. The tangential component of
E has to vanish on all edges and faces of Km and

EjKm
= �curl

Km
(Ê); (3.78)

where Ê is a master element bubble function and the H(curl) transformation
�curl
Km

was de�ned in (3.58).

DEFINITION 3.10 (H(div)-conforming bubble basis functions)
Let the space V from the variational formulation be a subspace of H(div)(
)
and let Vh;p be a �nite-dimensional approximation of V on 
h. Bubble func-
tion v 2 Vh;p, associated with an element Km, is a vector-valued function

© 2004 by Chapman & Hall/CRC



Higher-order �nite element discretization 183

de�ned in 
h that vanishes outside of the element Km. The normal compo-
nent of v has to vanish on all mesh faces, and

vjKm
= �div

Km
(v̂); (3.79)

where v̂ is a master element bubble function and the H(div) transformation
�div
Km

was de�ned in (3.64).

DEFINITION 3.11 (L2-conforming bubble basis functions) Let the
space V from the variational formulation be a subspace of L2(
) and let Vh;p
be a �nite-dimensional approximation of V on 
h. Bubble function ! 2 Vh;p,
associated with an elementKm, is a scalar function de�ned in 
h that vanishes
outside of the element Km, and

!jKm
= �L2

Km
(!̂); (3.80)

where !̂ is a master element bubble function and the L2 transformation �L2

Km

was de�ned in (3.68).

3.5.5 Minimum rules for higher-order FE discretizations

The minimum rules are speci�c for hierarchic �nite elements and we encoun-
tered them already in Chapter 2. Recall from Remark 2.2 that the minimum
rule for H1-conforming approximations says that the (directional) order of ap-
proximation along each edge (face) in the �nite element mesh is equal to the
minimum of the (directional) polynomial orders associated with all adjacent
elements, as illustrated in Figure 3.20.

p pmin(   ,    )

p
i

i j

= p(K )i

p
j
= p(K )j

FIGURE 3.20: Minimum rule for two-dimensional approximations.

The function of the minimum rule is to split the global �nite element space
Vh;p from the variational formulation (1.22) into a set of local polynomial
spaces of order pi on all �nite elements Ki 2 Th;p { it guarantees that the
polynomial order of any shape function associated with the element Ki does
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not exceed its order of approximation pi = p(Ki). This is the only way one
can speak about the �nite element approximation in terms of function spaces,
independently of their concrete realization. In other words, with the minimum
rule one can exchange the shape functions and as long as the polynomial or-
ders associated with all elements stay the same, the approximation uh;p will
not change. This would not be the case, for example, with a maximum rule
(that would de�ne the polynomial order for each edge as the maximum of the
polynomial orders of all adjacent elements) { with any change of higher-order
edge or face functions the approximate solution uh;p would also change.
The minimum rule works analogously in the spaces H(curl) and H(div),

adapted to di�erent conformity requirements { in H(curl) it only applies to
tangential components of edge functions in 2D and to the tangential compo-
nents of both edge and face functions in 3D. In H(div) it only restricts the
normal component of edge functions in 2D and the normal component of face
functions in 3D. No minimum rule applies to L2-conforming approximations
where no conformity restrictions on element interfaces are imposed.

3.5.6 Enumeration of functions and connectivity arrays

In two and three spatial dimensions the element connectivity arrays play
the same role as in the 1D model problem (Section 1.3) { for each element

K 2 Th;p they provide each master element shape function �̂ with the (global)
index of the corresponding basis function � 2 Vh;p. The connectivity ar-
ray corresponding to element K has the length Ndof;K where Ndof;K is the
number of master element shape functions (determined by the local orders of
approximation on the element K). These element arrays allow the assembling
algorithm (Paragraph 3.5.8, Algorithm 3.1) to access appropriate entries in
the global sti�ness matrix and the appropriate components of the global load
vector.
The element connectivity arrays generally do not have to be stored explicitly

in the element data structure. Optimality of the treatment of connectivity
information strongly depends upon the data structure for the representation
of hp-meshes, and the level of sophistication of the data structure depends
upon the expectations that we put into the �nite element code. In general,
the design of optimal data structures for hp-adaptivity is a diÆcult issue. We
will mention a few of its aspects in Paragraph 3.7.1.

Unique enumeration of master element shape functions

This is the easy part of the enumeration scheme. In Chapter 2, the master
element shape functions were split into hierarchic nodes according to their
construction and properties (for instance, for H1-conforming approximations
in 3D there are a vertex node, edge node, face node and interior node). Unique
enumeration of master element shape functions is achieved by enumerating
uniquely these nodes and the shape functions in these nodes.
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Unique enumeration of global basis functions

To preserve the compatibility with �rst-order approximations, it is conve-
nient to enumerate vertex functions �rst, following a unique global enumera-
tion of grid vertices. One leaves out vertices lying on a Dirichlet boundary.

After that, higher-order global basis functions are added. Unique enumera-
tion of elements, together with unique enumeration of higher-order nodes on
the master element and unique enumeration of shape functions in these nodes,
determine a unique enumeration of basis functions of the space Vh;p. See
Remark 3.28 for eÆcient enumeration of elements in adaptive algorithms. The
algorithm for the enumeration of higher-order global basis functions consists of
three loops: �rst (outer) loop over elements, second loop over master element
higher-order nodes and third loop over shape functions in these nodes. If the
shape function does not form part of a Dirichlet lift, and if the corresponding
global basis function was not yet visited, its index is set and the value of a
counter increased.

Storing versus reconstructing element connectivity arrays

The simplest working alternative, at least from the point of view of the
assembling procedure, would be (in the same way as in Section 1.3) to store
the element connectivity arrays elementwise. In this case the overlapping
information may be quite memory-intensive if �nite elements of higher poly-
nomials orders are used. Advanced hp-adaptive �nite element codes (see, e.g.,
[64, 63]) prefer to construct the element connectivity arrays in each element
step of the assembling algorithm, before calculating the element sti�ness ma-
trix and element load vector.

3.5.7 Variational formulation on the reference domain

The reader knows from the 1D model problem in Section 1.3 that the
assembling algorithm needs the approximate variational formulation (1.22)
translated elementwise from the physical mesh to the reference domain. Let
us demonstrate this operation briey in the case of the Poisson equation
�4u = f :

Let Ki 2 Th;p be a mesh element, K̂ the appropriate reference domain, and

xK : K̂ ! Ki a smooth bijective reference map. Without loss of generality
we assume that the Jacobian of xKi

is positive. The corresponding element
integral from the approximate variational formulation has the form

Z
Ki

ruh;p �rvh;p dx: (3.81)

Using the Substitution Theorem together with the relation (3.60) from Re-
mark 3.13, (3.81) can be written as
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Z
K̂

JKi
(�)

"�
DxKi

D�

��T
r~u

(i)
h;p

#
�
"�

DxKi

D�

��T
r~v

(i)
h;p

#
d�; (3.82)

where

~u
(i)
h;p(�) = (uh;p Æ xKi

)(�); ~v
(i)
h;p(�) = (vh;p Æ xKi

)(�):

In the same way as in the 1D model example, the transformed functions

~u
(i)
h;p; ~v

(i)
h;p will be expressed by means of master element shape functions.

In the assembling algorithm we will need to calculate explicitly the partial
derivatives of the inverse reference map x�1

Ki
. Let us denote them by

�
DxKi

D�

��1

=

�
@�i
@xj

�d
i;j=1

:

We can rewrite (3.82) further as

dX
m=1

Z
K̂

JKi
(�)

 
dX

s=1

@~u(i)

@�s

@�s
@xm

! 
dX

r=1

@~v(i)

@�r

@�r
@xm

!
d�: (3.83)

At this point we decide whether (3.83) can be further simpli�ed, i.e., whether

1. the reference map xKi
is aÆne (i.e., all of its partial derivatives and the

Jacobian JKi
are constant),

2. the operator Lh;p in the approximate variational formulation (1.22) does
not depend explicitly on space. Obviously the Laplace operator in the
model equation �4u = f does not, but this is not the general case {
imagine, for instance, the stationary heat-transfer equation with spa-
tially dependent material parameters.

If the answer to at least one of these questions is no, the assembling algorithm
has to consider the element sti�ness integrals in the general form (3.83). If
the answer to both of them is yes, one further rewrites (3.83) as

dX
m=1

JKi

dX
s=1

@�s
@xm

dX
r=1

@�r
@xm

Z
K̂

@~u(i)

@�s

@~v(i)

@�r
d�: (3.84)

REMARK 3.20 (Choice of the assembling algorithms) The essential
di�erence between (3.83) and (3.84) is that in the former case the assembling
algorithm has to perform numerical quadrature on all mesh elements Ki 2
Th;p, while in the latter case it only has to perform the numerical integration
of sti�ness terms corresponding to all relevant combinations of master element
shape functions once on the reference domain.
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REMARK 3.21 (Number of precomputed values for (3.84)) To illus-
trate, the number of precomputed master element sti�ness integrals for (3.84)
is (dNdof;max)

2, where d is the spatial dimension and Ndof;max the number of
shape functions corresponding to element with the highest polynomial order
in the mesh.

Boundary integrals corresponding to Neumann boundary conditions are eva-
luated analogously. Concerning the right-hand side, one transformsZ

Ki

f(x)vh;p(x) dx =

Z
K̂

~f (i)(�)~v
(i)
h;p(x) dx; (3.85)

where

~f (i)(�) = (f Æ xKi
)(�):

Since f generally depends on the spatial variable, numerical quadrature in
(3.85) has to be performed on all mesh elements.

3.5.8 Local and global assembling procedures

The construction of the discrete problem is typically performed in two steps.
First one evaluates local (element) matrices and load vectors on the reference
domain using orientation-adjusted master element shape functions (Paragraph
3.5.2). In the second (global) step one uses the connectivity information (Para-
graph 3.5.6) to distribute the entries of the local element sti�ness matrices
and load vectors into the global sti�ness matrix and load vector. For the sake
of simplicity, let us still stay with the Poisson equation �4u = f .

Local step: calculation of element matrices and load vectors

We �nd it useful to begin with the more general version of the assembling
algorithm that also will work for spatially dependent operators and general
polynomial reference maps (Remark 3.20). Remark 3.24 describes how Al-
gorithm 3.1 can be simpli�ed when master element sti�ness integrals can be
precomputed (relation (3.84)). The algorithm is quite standard and can be
found, e.g., in [60]. Hence, for each elementK 2 Th;p we perform the following
steps:

ALGORITHM 3.1 (Local assembling step)

1. By Ndof;K denote the number of shape functions associated with the ele-
mentK. Include shape functions that represent a Dirichlet lift (Dirichlet
boundary conditions will be incorporated in the global step). Initiate the
element matrix SK (type Ndof;K �Ndof;K) and the element load vector
fK (length Ndof;K) with zeros.
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2. Retrieve element geometry degrees of freedom GK (elementwise stored
real matrices of the type d � Ndof;K where d is the spatial dimension)
that de�ne the reference map xK . Recall that there are d real coeÆcients
for each scalar shape function involved in the de�nition of xK .

3. Retrieve orientation information relevant for all edges and faces of the
element K.

4. Evaluate the volume integrals in the variational formulation as follows:
In a loop over all integration points �i 2 K̂ do

(a) Evaluate the (orientation-adjusted) master element shape functions

�̂k(�i), k = 1; : : : ; Ndof;K and their derivatives [@�̂k=@�m](�i), m =
1; : : : ; d, using the orientation information from Step 3.

(b) Compute the physical coordinates of the integration point xi =
xK(�i) and the derivatives [@xK=@�s](�i), s = 1; : : : ; d as follows:

i. Initiate xi and [@xK=@�s](�i), s = 1; : : : ; d with zeros.

ii. In a loop over all shape functions �̂k do

A. xi := xi +GK;k �̂k(�i),

B. [@xK=@�s](�i) := [@xK=@�s](�i) +GK;k[@�̂k=@�s](�i), s =
1; : : : ; d.

End of loop through scalar master element shape functions.

(c) Evaluate the magnitude of Jacobian JK(�i) = jdet(DxK=D�)(�i)j
as described in Remark 3.25 below.

(d) Evaluate derivatives of the inverse map x�1
K at the point xi by in-

verting the Jacobi matrix DxK=D� as described in Remark 3.26 be-
low. We denote the derivatives of the inverse map by [@�s=@xm](xi).

(e) Evaluate derivatives of the transformed shape functions �k at the
point xi = xK(�i) with respect to the physical coordinates. Re-
call that di�erent transformation rules are used for H1-, H(curl)-,
H(div)- and L2-conforming discretizations (see Paragraph 3.5.3).
In the H1-conforming case we execute the chain rule

@�k
@xm

(xi) =

dX
s=1

@�̂k
@�s

(�i)
@�s
@xm

(xi): (3.86)

(f) Compute the integration weight wi at �i as

wi := ŵiJK(�i); (3.87)

where ŵi is the original Gaussian weight at the point �i.

(g) Evaluate the right-hand side f at the point xi.
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(h) Fill the element sti�ness matrix SK and load vector fK as follows:
In an outer loop over all shape functions �k, k = 1; : : : ; Ndof;K do

i. fKk := fKk + f(xi)�k(xi)wi.

ii. In an inner loop over all shape functions �l, l = 1; : : : ; Ndof;K

do

SKk;l := SKk;l +

dX
m=1

@�k
@xm

@�l
@xm

wi: (3.88)

(Notice that (3.88) exactly corresponds to (3.83).)
End of the inner loop over shape functions.

End of the outer loop over shape functions.

End of loop through integration points.

5. Evaluate the surface integrals in the variational formulation.

REMARK 3.22 (Storage of element sti�ness matrices and load vec-
tors) Indeed it is not mandatory to store the element sti�ness matrices and
element load vectors for all elements K1;K2; : : : ;KM 2 Th;p in the memory
simultaneously. The way one does it depends on whether she/he wants to
use them for other (e.g., preconditioning) purposes or not. Otherwise it is
possible to distribute their entries into the global sti�ness matrix each time
as soon as an element is �nished.

REMARK 3.23 (Evaluation of surface integrals) The boundary in-
tegrals are evaluated analogously, in a loop over all edges (or faces in 3D)
lying on the Neumann boundary. We begin from the parametrization of the
edge (face), and for all 1D (2D) Gaussian integration points execute a similar
procedure as above.

REMARK 3.24 (Simpli�cation of Algorithm 3.1 relevant for (3.84))
Since the load function f = f(x), one still has to perform the quadrature on
every mesh element K in order to construct the element load vector. Hence,
calculations of element matrix and load vector have to be split.

As for the construction of the element sti�ness matrix on K: one eliminates
the numerical integration by leaving out the loop over integration points �i.
The outer and inner loop over shape functions will stay. Derivatives and
inverse derivatives of the reference map xK are only evaluated once for each
element K. For each pair of shape functions �k; �l one has to perform an
operation corresponding to (3.84), i.e., to evaluate the integral
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SKk;l := SKk;l +

dX
m=1

JK

dX
s=1

@�s
@xm

dX
r=1

@�r
@xm

Z
K̂

@�̂k
@�s

(�)
@�̂l
@�r

(�) d�| {z }
precomputed value Iklsr

: (3.89)

Hence we see that it is suÆcient to store a single set of precomputed integrals
Iklsr , 1 � k; l � Ndof;K , 1 � s; r � d.

REMARK 3.25 (Calculation of determinants) In 2D, the determinant
det(DxK=D�)(�i) has the form

det

�
DxK
D�

�
(�i) = det

0
B@
@xK;1
@�1

(�i)
@xK;1
@�2

(�i)

@xK;2
@�1

(�i)
@xK;2
@�2

(�i)

1
CA = det

�
a b
c d

�
= ad� bc:

(3.90)
The following expansion rule can be used for the computation of determinants
of larger matrices of the type n� n (for instance det(DxK=D�)(�i) in 3D):

det(A) =

nX
j=1

(�1)i+jaijdet
�
A(ij)

�
: (3.91)

Here A(ij) stands for a matrix of the type (n � 1)� (n� 1) that is obtained
by leaving out the ith row and the jth column out of the original matrix A.
See any basic textbook on linear algebra.

REMARK 3.26 (Inversion of matrices) It is convenient to invert the
Jacobi matrix [DxK=D�](�i) using another basic rule of linear algebra: Let
A be a regular n�n matrix. Then, the entries �aij of the inverse matrix A

�1

are de�ned by

�aij = (�1)i+j
det
�
A(ij)

�
det (A)

; 1 � i; j � n: (3.92)

The meaning of the symbol A(ij) is the same as in Remark 3.25.

Global step: assembly of the resulting discrete system

The most important factor in this step is the connectivity information,
which was discussed in Paragraph 3.5.6. In this step Dirichlet boundary con-
ditions will be incorporated into the global discrete problem. The idea of the
algorithm is identical to what it was in 1D (see Section 1.3).
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One proceeds in a single loop over all elements (Remark 3.22 applies). For
each element Kk 2 Th;p one establishes the element connectivity array ci of
length Ndof;Kk

, where Ndof;Kk
is the number of all relevant master element

shape functions (including the ones used for the Dirichlet lift). The order of
entries in this array corresponds to the unique enumeration of master element
shape functions (also de�ned in Paragraph 3.5.6), and the entries are indices of
global basis functions that are related to the master element shape functions.
Again one may use, e.g., a negative index �1 in order to distinguish master
element shape functions which do not correspond to any global basis function
since they form part of a Dirichlet lift.

ALGORITHM 3.2 (Global assembling step)
...
(element loop:) for k = 1; 2; : : : ;M do f
(1st loop over shape (test) functions:) for i = 1; 2; : : : ; Ndof;Kk

do f
(2nd loop over shape (basis) functions:) for j = 1; 2; : : : ; Ndof;Kk

do f
put m1 = ck;i (if not �1, this is global index of a test function

vm1
2 Vh;p, i.e., row in the global sti�ness matrix S)
put m2 = ck;j (if not �1, this is global index of a basis function

vm2
2 Vh;p, i.e., column in the global sti�ness matrix S)

if(m1 6= �1 and m2 6= �1) then put sm1;m2
= sm1;m2

+ s
(k)
i;j

else f (beginning of treatment of Dirichlet bdy. conditions)

if(m1 6= �1 and m2 == �1) then put Fm1
= Fm1

� s
(k)
i;j (contri-

bution to the right-hand side f from the Dirichlet lift u�h;p)
g (end of treatment of Dirichlet bdy. conditions)

g (end of 2nd loop over shape (basis) functions)

if(m1 6= �1) then put Fm1
= Fm1

+ F
(k)
i (regular contribution to the

right-hand side F )
g (end of 1st loop over shape (test) functions)

g (end of element loop)

Above, SKk = fs(k)i;j g and fKk = (F
(k)
1 ; : : : ; F

(k)
Ndof;Kk

)T stand for the element

matrix and the load vector corresponding to element Kk, respectively.

3.5.9 Static condensation of internal DOF

This procedure is a great tool for the parallelization of p and hp �nite
element codes for linear problems. It consists of three steps:

1. reduction of the size of the discrete problem by leaving out all bubble
functions,

2. solution of the reduced linear system and
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3. calculation of the remaining coeÆcients for the bubble functions by solv-
ing elementwise local linear problems.

Since in 2D and 3D the more complicated structure of shape functions works
against the clarity of the presentation, let us explain the basic idea using a
simple 1D example (see also, e.g., [172]).
The global degrees of freedom associated with basis functions that are

nonzero within single mesh elements (bubble functions) are viewed as in-
ternal, while the remaining DOF (associated with basis functions that are
nonzero within more than one mesh element) are by de�nition external. This
splitting translates naturally into the structure of the physical element shape
functions: Consider a one-dimensional element Ki, 1 � i �M , and an appro-
priate smooth bijective reference map xKi

: Ka ! Ki, Ka = [�1; 1]. We may
consider an additional condition

@xKi

@�
> 0 for all 1 � i �M and � 2 Ka; (3.93)

to make the maps unique. Let Ki be equipped with a polynomial order of
approximation pi, i = 1; : : : ;M . For each element Ki there are two external
shape functions

'
(i)
ext;1 = 'v1a Æ x�1

Ki
; '

(i)
ext;2 = 'v2a Æ x�1

Ki
;

and pi � 1 internal shape functions

'
(i)
int;k = 'bk+1;a Æ x�1

Ki
; k = 1; : : : ; pi � 1:

The functions uh;p and vh;p in the approximate variational formulation (1.22),
which is in fact equivalent to a discrete problem, can be expressed on the
elementKi as linear combinations of the external and internal shape functions
with real (complex) coeÆcients,

uh;pjKi
=

2X
k=1

u
(i)
ext;k'

(i)
ext;k +

pi�1X
k=1

u
(i)
int;k'

(i)
int;k = [u

(i)
ext]

T'
(i)
ext + [u

(i)
int]

T'
(i)
int;

(3.94)
and

vh;pjKi
= [v

(i)
ext]

T'
(i)
ext + [v

(i)
int]

T'
(i)
int: (3.95)

It is worth noticing that the zero Dirichlet boundary conditions together with
(3.93) determine that

u
(1)
ext;1 = u

(M)
ext;2 = v

(1)
ext;1 = v

(M)
ext;2 = 0:

Inserting the relations (3.94) and (3.95) into the approximate variational for-
mulation (1.22) on the element Ki, we obtain
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Lh;p(uh;p; vh;p)jKi
=

 
v
(i)
ext

v
(i)
int

!T  
L
(i)
ext;ext L

(i)
int;ext

L
(i)
ext;int L

(i)
int;int

! 
u
(i)
ext

u
(i)
int

!
(3.96)

= [v
(i)
ext]

TL
(i)
ext;extu

(i)
ext + [v

(i)
int]

TL
(i)
int;intu

(i)
int

+[v
(i)
ext]

TL
(i)
int;extu

(i)
int + [v

(i)
int]

TL
(i)
ext;intu

(i)
ext;

and

fh;p(vh;p)jKi
= [v

(i)
ext]

Tf
(i)
ext + [v

(i)
int]

Tf
(i)
int; (3.97)

where the relation  
L
(i)
ext;ext L

(i)
int;ext

L
(i)
ext;int L

(i)
int;int

!
= LKi

represents a partition of the element sti�ness matrix with respect to the ex-
ternal and internal degrees of freedom and

(f
(i)
ext;f

(i)
int) = fKi

is the accordingly partitioned element load vector.
Now we arrive at the basic observation: when testing (1.22) on the element

Ki with the bubble functions '
(i)
int;k, k = 1; : : : ; pi� 1 only, we obtain a linear

system that decouples the matrices L
(i)
ext;int and L

(i)
int;int,

L
(i)
ext;intu

(i)
ext +L

(i)
int;intu

(i)
int = f

(i)
int:

This means that once we know the coeÆcients u
(i)
ext associated with the ex-

ternal DOF, the remaining coeÆcients u
(i)
int can be calculated elementwise

from

u
(i)
int = [L

(i)
int;int]

�1
�
f
(i)
int �L(i)

ext;intu
(i)
ext

�
: (3.98)

What remains to be done is to eliminate the internal degrees of freedom from
the discrete problem (1.22). We write it elementwise and insert (3.98) into
it, after decomposing it into components corresponding to the external and
internal DOF using (3.96) and (3.97). We end up with a condensed linear
system

MX
i=1

[v
(i)
ext]

T �L
(i)
extu

(i)
ext =

MX
i=1

[v
(i)
ext]

T �f
(i)
ext;

where the condensed element sti�ness matrices �L
(i)
ext, de�ned by
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�L
(i)
ext = L

(i)
ext;ext �L(i)

int;ext[L
(i)
int;int]

�1L
(i)
ext;int;

are Schur complements of the original element sti�ness matrices LKi
with

respect to the internal degrees of freedom, and the load vectors �f
(i)
ext are given

by the relation

�f
(i)
ext = f

(i)
ext �L(i)

int;ext[L
(i)
int;int]

�1f
(i)
int:

Notice that the computation of element sti�ness matrices and load vectors
as well as the condensation step are local for all elements Ki, i = 1; : : : ;M ,
and therefore suitable for parallelization. The e�ect of the procedure becomes
more remarkable as the number of bubble functions in the discretization in-
creases.

3.6 Constrained approximation

The constrained approximation technique has long been used for �rst-order
elements in various applications. To our knowledge, for higher-order elements
it was �rst introduced by Demkowicz, Oden et al. in [66]. It is necessary for
an eÆcient resolution of phenomena that require a high local concentration of
degrees of freedom { those are typically boundary and internal layers, regions
with steep gradients, singularities, etc. Attempts to resolve these features
with regular meshes can lead to ineÆcient distribution of degrees of freedom
and even can spoil the convergence of the �nite element scheme.
Hence, the main idea is to employ irregular meshes (i.e., meshes with hang-

ing nodes in the sense of Paragraph 1.1.3) in such a way that the approx-
imation still satis�es global conformity requirements { continuity of the ap-
proximation across element interfaces for H1-conforming approximations, and
continuity of the tangential and normal component forH(curl)- and H(div)-
conforming approximations, respectively. Perhaps the easiest way to under-
stand the constrained approximation is to view it in terms of change of basis
in a given polynomial space.

3.6.1 Continuous constrained approximation in 2D

Let us begin with the simplest case of H1-conforming constrained approxi-
mation in two spatial dimensions. Since bubble functions are local in element
interiors, all the action will take place along element edges, involving vertex
and edge functions only. Let us assume a setting depicted in Figure 3.21,
involving three elements K1;K3 and K4. The small elements K3;K4 are de-
scendants (sons) of an elementK2, which was a neighbor ofK1 at the previous
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re�nement level. Recall from Paragraph 3.5 that each unconstrained physical
mesh edge is equipped with a unique orientation given by the enumeration of
its vertices. The edges e2 = v1v3, e3 = v3v2 are sons of the edge e1 = v1v2
and by de�nition they inherit its orientation.
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FIGURE 3.21: Constrained continuous approximation in two spatial di-
mensions. For triangular elements or hybrid meshes the situation is analogous.

In Figure 3.21 it is

v1 = xe1(A);

v2 = xe1(B);

v3 = xe1(C);

xe1 : [A;B] ! IR2 being a polynomial parametrization of the edge e1. This
parametrization has to be compatible with the reference mapping xK1

ob-
tained by means of projection-based interpolation of a trans�nite interpolant
based on the original, possibly nonpolynomial parametrization of the edge e1.
The original and the resulting polynomial parametrization of edges should not
be confused; recall the construction of reference mappings from Section 3.3.

We assume that the edge e1 is equipped with a local polynomial order of
approximation p = pe1 � 1. By de�nition, the sons e2; e3 of e3 will inherit
this local polynomial order of approximation. Let us take a closer look at the
relations between unconstrained and constrained DOF from Figure 3.21. In
the following, coeÆcients corresponding to basis functions of the space Uh;p
that are associated with constrained DOF will be called constrained, too.
Hence,

� unconstrained (constraining) are: the vertex coeÆcients �v1 ; �v2 and
edge coeÆcients �e1k , 2 � k � p.

� Constrained are: the vertex coeÆcient �v3 and edge coeÆcients �e2k ; �
e3
k ,

2 � k � p.
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Consider the space V p
AB of scalar polynomials of the order p or lower de�ned

in the interval AB and by V p
AC and V p

CB denote the spaces of polynomials
of the order p or lower de�ned in the subintervals AC and CB, respectively.
Restrictions of a function � 2 V p

AB (representing the trace of the �nite element
approximation to the edge e1) to the subintervals AC, CB obviously lie in
the polynomial spaces V p

AC and V p
CB , respectively. The space V

p
AB is equipped

with the polynomial basis

BpAB = flABj gpj=0 =

�
lk

�
�1 + 2

� �A

B �A

�
; � 2 [A;B]; k = 0; : : : ; p

�
;

obtained by transforming the one-dimensional shape functions l0; l1; : : :, given
by (2.6) and (2.8), to the interval AB. Recall from Chapter 2 that these
basis functions match the traces of two-dimensional shape functions associated
with the physical mesh element K1 (which can be either a quadrilateral or a
triangle). In the same way we equip the spaces V p

AC and V p
CB with the bases

BpAC = flACj gpj=0 = flLj gpj=0 =

�
lk

�
�1 + 2

� �A

C �A

�
; k = 0; : : : ; p

�
;

� 2 [A;C] and

BpCB = flCBj gpj=0 = flRj gpj=0 =

�
lk

�
�1 + 2

� � C

B � C

�
; k = 0; : : : ; p

�
;

� 2 [C;B]. Notice that the sets

BpABjAC = f�jAB ; � 2 BpABg

and

BpAB jCB = f�jCB ; � 2 BpABg;

obtained by restricting the long interval basis BpAB to the subintervals AC
and CB, also constitute bases of the spaces V p

AC and V p
CB , respectively.

Now trivia of the linear algebra enter the picture { consider the transition
matrices

Mp
L : BpAB jAC ! BpAC ;

Mp
R : BpAB jCB ! BpCB;

de�ning linear transformations that perform the change of basis in the polyno-
mial spaces V p

AC and V p
CB , respectively. Recall that in our case the transition
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matrices are (p+1)� (p+1) matrices that have in their columns coeÆcients
of original basis functions expressed in terms of the new basis.
De�ne a set of \long edge" coeÆcients

�e1 = (�v1 ; �v2 ; �e12 ; : : : ; �
e1
p )

and write the function � in the form

� = �v1 lAB0 + �v2 lAB1 +

pX
k=2

�e1k l
AB
k 2 V p

AB :

The constrained \short edge" coeÆcients �e2 = (�v1 ; �v3 ; �e22 ; : : : ; �
e2
p ) and

�e3 = (�v3 ; �v2 , �e32 ; : : : ; �
e3
p ) are �nally obtained from the relations

�e2 = Mp
L�

e1 ; (3.99)

�e3 = Mp
R�

e1 :

In the constrained approximation treatment of the orientation information is
an essential issue. Recall from Section 3.5 how the global (physical mesh)
DOF are represented on the master elements.
There are basically two algorithmic ways to handle the additional algebraic

relations (3.99). One way is to treat the approximation as discontinuous along
the constrained edges during the process of construction of the discrete prob-
lem. In this case the extra equations (3.99) are added to the resulting discrete
system. It is convenient to have them eliminated prior to preconditioning and
solving the discrete problem, which can be done easily with a suitable sparse
matrix representation.
Another possibility is to use the relations (3.99) already during the as-

sembling of the discrete system (see, e.g., [64] and other papers from this
series). When evaluating the variational formulation, integral contributions
corresponding to the constrained degrees of freedom are immediately trans-
ferred to the right-hand side. Hence, one spends more time during the assem-
bling but saves on the solution of the discrete problem.
Although these two approaches are fully equivalent mathematically, they

are not at all equivalent from the point of view of computer implementation.
We prefer the �rst option as it increases the modularity of the code with
respect to the construction and solution of the discrete problem.

Properties and evaluation of the transition matrices Mp
L, M

p
R

There are a few nice properties of the transition matricesMp
L and Mp

R that
simplify the implementation of the constrained approximation. First, they
depend on the position of the point C within the interval AB, but they are
independent of the length of AB. Second, with a hierarchic selection of one-
dimensional shape functions (in our case l0; l1; : : :) the matrices are hierarchic

© 2004 by Chapman & Hall/CRC



198 Higher-Order Finite Element Methods

{ Mp+1
L and Mp+1

R are obtained by adding one new row and one new column
to the matrices Mp

L and Mp
R, respectively. Thus in principle it is suÆcient to

precompute and store two real matrices only that correspond to the maximum
polynomial order of approximation.
Let us assume that the point C lies in the middle of the interval AB. Since

the transition matrices are independent of the length of the interval AB, we
can choose, for example, A := �1, B := 1 and C := 0. This choice simpli�es
things because

lABk = lk; k = 0; 1; : : :

with the 1D hierarchic shape functions l0; l1; : : : given by (2.6), (2.8). Basis
functions for the right-hand side subinterval CB have the form

lR0 = 1� x; (3.100)

lR1 = x;

lR2 = 2x2 � 2x;

lR3 = 4x3 � 6x2 + 2x;

lR4 = 10x4 � 20x3 + 12x2 � 2x;

...

It is not diÆcult to compute

l0jCB =

�
1

2
; 0

�
� �lR0 ; lR1 �T ;

l1jCB =

�
1

2
; 1

�
� �lR0 ; lR1 �T ;

which means that

M1
R =

�
1=2 1=2
0 1

�
:

For quadratic elements we have

l2jCB =

�
�1

2
; 0;

1

4

�
� �lR0 ; lR1 ; lR2 �T

and thus

M2
R =

0
@1=2 1=2 �1=2

0 1 0
0 0 1=4

1
A :
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The relation

l3jCB =

�
0;
1

2
;
3

8
;
1

8

�
� �lR0 ; lR1 ; lR2 ; lR3 �T

yields

M3
R =

0
BB@
1=2 1=2 �1=2 0
0 1 0 1=2
0 0 1=4 3=8
0 0 0 1=8

1
CCA

and so on.
Analogously the basis functions

lL0 = �x; (3.101)

lL1 = x+ 1;

lL2 = 2x2 + 2x;

lL3 = 4x3 + 6x2 + 2x;

lL4 = 10x4 + 20x3 + 12x2 + 2x;

...

corresponding to the left-hand side subinterval AC, yield

l0jAC =

�
1;
1

2

�
� �lL0 ; lL1 �T ;

l1jAC =

�
0;
1

2

�
� �lL0 ; lL1 �T ;

l2jAC =

�
0;�1

2
;
1

4

�
� �lL0 ; lL1 ; lL2 �T ;

l3jAC =

�
0; 0;�3

8
;
1

8

�
� �lL0 ; lL1 ; lL2 ; lL3 �T ;

...

Hence, the resulting hierarchic transition matrix M3
L for (at most) cubic ap-

proximation reads

M3
L =

0
BB@

1 0 0 0
1=2 1=2 �1=2 0
0 0 1=4 �3=8
0 0 0 1=8

1
CCA :

© 2004 by Chapman & Hall/CRC



200 Higher-Order Finite Element Methods

3.6.2 Vector-valued constrained approximation in 2D

The situation will be very similar to the scalar case that we discussed in
the previous paragraph. Since the whole procedure including the resulting
transition matrices is the same for both the spaces H(curl) and H(div) in
2D, we will con�ne ourselves to the H(curl)-conforming case only. Hence
it will be our task to preserve the continuity of the trace of the tangential
component of the approximation across element interfaces. We will consider
the same setting as in the previous paragraph that was depicted in Figure
3.21. Also the symbols V p

AB , V
p
AC and V p

CB will have the same meaning as
before.
Recall from Chapter 2 that in both the H(curl)- and H(div)-conforming

cases the traces of the tangential and normal component of master element
shape functions coincide with the Legendre polynomials L0; L1; : : :, given by
(1.48). This is di�erent from the scalar continuous case where we dealt with
the functions l0; l1; : : : based on integrated Legendre polynomials. Therefore,
an appropriate choice for the polynomial basis of the space V p

AB is now

BpAB = fLABj gpj=0 =

�
Lk

�
�1 + 2

� �A

B �A

�
; � 2 [A;B]; k = 0; : : : ; p

�
:

(3.102)
These basis functions correspond to the traces of the tangential component
of the edge functions associated with the element K1. Again everything will
also hold for triangular elements and hybrid meshes.
The polynomial bases for the spaces V p

AC and V p
CB are written as

BpAC = fLACj gpj=0 = fLLj gpj=0 =

�
Lk

�
�1 + 2

� �A

C �A

�
; k = 0; : : : ; p

�
;

� 2 [A;B], and

BpCB = fLCBj gpj=0 = fLRj gpj=0 =

�
Lk

�
�1 + 2

� � C

B � C

�
; k = 0; : : : ; p

�
;

� 2 [C;B]. In the same way as before, notice that the sets

BpABjAC = f�jAB ; � 2 BpABg
and

BpAB jCB = f�jCB ; � 2 BpABg;
obtained by restricting the long interval basis BpAB to the subintervals AC
and CB, also represent bases in the spaces V p

AC and V p
CB , respectively. We

de�ne a set of \long edge" coeÆcients

�e1 = (�e10 ; �
e1
1 ; �

e1
2 ; : : : ; �

e1
p )
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and write the function � in the form

� =

pX
k=0

�e1k L
AB
k 2 V p

AB :

The constrained \short edge" coeÆcients �e2 = (�e20 ; �
e2
1 ; �

e2
2 ; : : : ; �

e2
p ) and

�e3 = (�e30 ; �
e3
1 ; �

e3
2 , : : : ; �e3p ) are given by

�e2 = Mp
L�

e1 ; (3.103)

�e3 = Mp
R�

e1 :

The transition matrices Mp
L and Mp

R are di�erent from the previous scalar
continuous case. Recall that vertex functions are present neither among the
H(curl) nor among the H(div) shape functions. Thus all components of the
coeÆcient vectors �e2 ;�e3 correspond to edge functions associated with the
edges e2 and e3 of the small elements.
For illustration purposes let us make a choice A := �1, B := 1 and C := 0,

leading to

LABk = Lk; k = 0; 1; : : : :

Transforming the Legendre polynomials to the right-hand side subinterval
CB, we obtain the basis functions

LR0 = 1;

LR1 = 2x� 1;

LR2 = 6x2 � 6x+ 1;

LR3 = 20x3 � 30x2 + 12x� 1;

...

Expressing the long interval lowest-order basis function L0 in terms of the
local ones,

L0jCB = LR0 ;

we obtain the lowest-order transition matrix

M0
R = 1

of the size 1 � 1. Thus, the issue of constrained approximation is extremely
simple when dealing with lowest-order approximation only. For �rst-order
approximation we use the relation
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L1jCB =

�
1

2
;
1

2

�
� �LR0 ; LR1 �T

to �nd that the transition matrix has the form

M1
R =

�
1 1=2
0 1=2

�
:

For quadratic elements we have

L2jCB =

�
0;
3

4
;
1

4

�
� �LR0 ; LR1 ; LR2 �T

which means that

M2
R =

0
@1 1=2 0
0 1=2 3=4
0 0 1=4

1
A :

The relation

L3jCB =

�
�1

8
;
3

8
;
5

8
;
1

8

�
� �LR0 ; LR1 ; LR2 ; LR3 �T

yields

M3
R =

0
BB@
1 1=2 0 �1=8
0 1=2 3=4 3=8
0 0 1=4 5=8
0 0 0 1=8

1
CCA

and so on.
Transforming the Legendre polynomials L0; L1; : : : to the subinterval AC,

we obtain the basis functions

LL0 = 1;

LL1 = 2x+ 1;

LL2 = 6x2 + 6x+ 1;

LL3 = 20x3 + 30x2 + 12x+ 1;

...

that lead to the hierarchic transition matrix

M3
L =

0
BB@
1 �1=2 0 1=8
0 1=2 �3=4 3=8
0 0 1=4 �5=8
0 0 0 1=8

1
CCA

good for cubic �nite elements.
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Exercise 3.1 Extend the matrices Mp
L, M

p
R to p � 4 for both the continuous

and vector-valued approximations.

Exercise 3.2 Find the relation between the matrices Mp
L and Mp

R. Consider
�rst the vector-valued, then the continuous approximation.

3.6.3 Continuous constrained approximation in 3D

While the mathematical issues related to the constrained approximation
technique in 3D are at a similar level of complexity as in two spatial dimen-
sions, its algorithmic aspects become signi�cantly more pronounced. In the
same way as in 2D it is highly recommended that the reader be familiar with
the H1-conforming case before dealing with vector-valued approximations,
since the extension is straightforward. Moreover, the less tight structure of
master element shape functions in the spaces H(curl) and H(div) does not
complicate the situation.
Naturally, for continuous approximations our task is to handle hanging

nodes in such a way that continuity of the approximation across element
interfaces is preserved. Thus the entire action will take place on mesh edges
and faces and it will involve the vertex, edge and face functions only. There
are basically four situations we may �nd it useful to consider:

1. two quadrilateral faces constrained by one quadrilateral face,

2. four quadrilateral faces constrained by one quadrilateral face,

3. four triangular faces constrained by one triangular face and

4. two triangular faces constrained by one quadrilateral face.

(The triangular faces may belong to prisms and/or tetrahedra.) The �rst
three cases are quite standard { we will discuss only Case 1 in more detail
and leave Cases 2 and 3 to the reader as an exercise. Case 4 represents a
less known but advantageous alternative for joining higher-order bricks and
tetrahedra in hybrid meshes without prismatic elements.

Case 1: Two quadrilateral faces constrained by another quadrilat-
eral face

Let us consider the model situation depicted in Figure 3.22. In Section
3.5 we assigned a unique global orientation to all mesh edges and triangular
and quadrilateral faces based on a unique enumeration of vertices. Hence,
assume that the edges v1v2 and v1v4 specify the global orientation of the face
s1. The same orientation, by de�nition, is inherited by the small faces s2
and s3, respectively (or, more precisely, with the only change that the edge
v1v4 is replaced by its sons v1v5 and v5v4). The face s1 comes with two local
directional orders of approximation ps1;1, corresponding to the �rst direction
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v1v2, and p
s1;2, associated with the other direction v1v4. By de�nition, these

directional polynomial orders are inherited by the small faces s2 and s3.
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FIGURE 3.22: Constrained continuous approximation 3D. Case 1: small
quadrilateral faces s2; s3 constrained by a big quadrilateral face s1.

The local orders of approximation on the edges e1; : : : ; e4 are denoted by
pe1 ; : : : ; pe4 , respectively. Each of these edges comes with a unique global
orientation that is independent of the orientation of the face s1. The edges
e5; e7 and e6; e8 inherit local orders from the edges e1 and e2, respectively.
Recall that the minimum rule guarantees that pe3 � ps1;1, pe4 � ps1;1. Hence,
by de�nition, the edge e9 is equipped with the directional order ps1;1 on the
face s1. In summary, we have

ps2;1 = ps3;1 = ps1;1 (3.104)

ps2;2 = ps3;2 = ps1;2

pe5 = pe7 = pe1 ;

pe6 = pe8 = pe2 ;

pe9 = ps1;1:

Now one could strictly copy the 2D procedure, i.e., construct for each face
s2 and s3 a transition matrix that converts the coeÆcients corresponding
to DOF associated with the face s1 to coeÆcients related to faces s2 and
s3, respectively. In Cases 3 and 4 this may be the most convenient solution.
However, in Cases 1 and 2, due to the product structure of quadrilateral faces,
these transition matrices would contain almost exclusively zeros. In other
words, the number of constraining relations is dramatically less than mbms

where mb and ms stand for the total number of DOF associated with the big
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(constraining) and small (constrained) face, respectively. Thus especially in
Cases 1 and 2 it is convenient to go deeper into the structure of the shape
functions in order to avoid unnecessary extra algebraic equations.

REMARK 3.27 Notice that the transition matrices are of the type ms�mb

where generally ms 6= mb. In our Case 1, the inequality occurs for s2 if
ps1;1 6= pe4 and for s3 if p

s1;1 6= pe3 .

More to the point, the coeÆcients �v5 ; �e5k ; �
e7
k , 2 � k � pe1 correspond-

ing to the vertex v5 and edges e5; e7 are only constrained by the coeÆcients
�v1 ; �v4 ; �e1k , 2 � k � pe1 associated with the edge e1. Notice that this is ex-
actly the same situation as in the 2D continuous case discussed in Paragraph
3.6.1. Therefore the transition matrices Mpe1

L , Mpe1

R represent the algebraic
relations between these coeÆcients. The global orientation of the edge e1 can
be either v1v4 or v4v1. Depending on this we relate the matrices Mpe1

L , Mpe1

R

to the edges e5; e7 in this or reverse order.
In the same way we proceed once more with the vertex v6 and edges e6; e8

and e2, expressing the short edge coeÆcients �v6 ; �e6k ; �
e8
k , 2 � k � pe2 by

means of the long edge coeÆcients �v2 ; �v3 ; �e2k , 2 � k � pe2 by means of the

transition matrices Mpe2

L , Mpe2

R .
The higher-order coeÆcients �e9k , 2 � k � ps1;1 and �s2n1;n2 , �

s3
n1;n2 , 2 �

n1 � ps1;1, 2 � n2 � ps1;2 are only constrained by the higher-order edge
coeÆcients �e3k , 2 � k � pe3 and �e4l , 2 � l � pe3 , and by the higher-order
face coeÆcients �s1n1;n2 , 2 � n1 � ps1;1, 2 � n2 � ps1;2. Without loss of
generality let us assume the following compatibility between the edge and
face parametrizations:

� The face s1 is parametrized by a smooth bijective mapping from a master
face ŝq = [�1; 1]2,

xs1 : ŝq ! IR3:

� The edges e3; e4 and e9 are parametrized by smooth bijective maps from
a master edge ê = [�1; 1],

xej : ê! IR3; j = 3; 4; 9;

such that

xe3(oe3�) = xs1(�;�1) 8� 2 [�1; 1]; (3.105)

xe4(oe4�) = xs1(�; 1) 8� 2 [�1; 1];
xe9(�) = xs1(�; 0) 8� 2 [�1; 1];
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where oe3 ; oe4 are �1 orientation factors that compensate for the incon-
sistency between the orientations of the edges e3; e4 and the orientation
of the face s1. The edge e9 is, by de�nition, oriented in harmony with
the orientation of its father, the face s1.

All operations are done on the quadrilateral reference face ŝq as shown in
Figure 3.23. This is a natural setting since the global orientation of the face
s1 depends on the global enumeration of grid vertices only.
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FIGURE 3.23: Quadrilateral reference face ŝq = [�1; 1]2, s1 = (xs1)(ŝq).

On the reference face ŝq , the higher-order part of the trace of the approxima-
tion reads

pe3X
k=2

oe3�e3k lk(�1)l0(�2)| {z }
contribution of e3�edge functions

+

pe4X
k=2

oe4�e4k lk(�1)l1(�2)| {z }
contribution of e4�edge functions

(3.106)

+

ps1;1X
k=2

ps1;2X
n2=2

�s1k;n2 lk(�1)ln2(�2)| {z }
contribution of s1�face functions

(recall the de�nition of edge and face functions for the master brick K1
B from

Chapter 2). Restricted to the edge (xs1)�1(e9), (3.106) yields
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ps1;1X
k=2

�e9k lk(�1) =

pe3X
k=2

oe3�e3k lk(�1)l0(0) +

pe4X
k=2

oe4�e4k lk(�1)l1(0)

+

ps1;1X
k=2

ps1;2X
n2=2

�s1k;n1 lk(�1)ln2(0) 8� 2 [�1; 1]:

Thus it is easy to write down the relations for all constrained higher-order
edge coeÆcients for the edge e9,

�e9k = oe3�e3k l0(0)+ o
e4�e4k l1(0)+

ps1;2X
n2=2

�s1k;n1 ln2(0); k = 2; : : : ; ps1;1: (3.107)

What remains to be done is to calculate the constrained higher-order coeÆ-
cients �s2n1;n2 ; �

s3
n1;n2 , 2 � n1 � ps1;1, 2 � n2 � ps1;2, corresponding to face

functions on the small faces s2; s3.
Again it is the minimum rule that ensures that pe3 � ps1;1 and pe4 � ps1;1,

allowing us to simplify the summation in (3.106) to

ps1;1X
k=2

lk(�1)

0
@oe3�e3k l0(�2) + oe4�e4k l1(�2) +

ps1;2X
n2=2

�s1k;n2 ln2(�2)

1
A (3.108)

(the �'s with newly introduced indices are zero). The expression in the brack-
ets is already something that we know from the 2D situation in Paragraph
3.6.1. Hence, for each k = 0; : : : ; ps1;1 we de�ne a vector coeÆcient

�k = (oe3�e3k ; o
e4�e4k ; �

s1
k;0; : : : ; �

s1
k;ps1;2

)

corresponding to the \long edge" basis functions l0; l1; : : : ; lps1;2 . The vector

�L
k = (oe3�e3k ; �

e9
k ; �

s2
k;0; : : : ; �

s2
k;ps1;2

)

corresponding to the \short edge" basis functions lL0 ; l
L
1 ; : : : ; l

L
ps1;2 (de�ned in

(3.101)) is obtained as

�L
k =Mps1;2

L �k:

Analogously for all k = 0; : : : ; ps1;1 the vector

�R
k = (�e9k ; o

e4�e4k ; �
s3
k;0; : : : ; �

s3
k;ps1;2

);

corresponding to the \short edge" basis functions lR0 ; l
R
1 ; : : : ; l

R
ps1;2 (de�ned in

(3.100)), is obtained as

�R
k =Mps1;2

R �k:
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Exercise 3.3 Perform in detail the procedure of deriving the algebraic rela-
tions between the constraining and constrained coeÆcients for Cases 2 and
3.

Case 4: Two triangular faces constrained by a quadrilateral face

This situation is less standard than Cases 1, 2 and 3, and therefore we �nd
it useful to outline the technique in more detail. As mentioned before, this
is an alternative way to join bricks and tetrahedra in higher-order meshes
without having to use prismatic elements.

Consider the model situation illustrated in Figure 3.24: a quadrilateral face
s1 with vertices v1; : : : ; v4 constrains two triangular faces s2, s3 with vertices
v1; v2; v3 and v1; v3; v4, respectively. Without loss of generality assume that
index(v1) is lowest on the face s1 and that index(v2) < index(v4). Thus the
global orientation of the face s1, according to Paragraph 3.5.2, is speci�ed by
two directions v1v2 and v1v4 on that face.
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FIGURE 3.24: Case 4: two triangular faces s2; s3 constrained by a quadri-
lateral face s1, with a single hanging edge.

In order to make life easier, we will orient the faces s2 and s3 in a di�erent
way than described in Paragraph 3.5.2. Recall that the only reason to have
mesh faces (that do not lie on the boundary of the computational domain)
globally oriented is to make the traces of the corresponding face basis functions
unique because of contributions coming from di�erent mesh elements, and
that we are free to orient mesh faces in any way we wish as long as this
goal is reached. In the standard situation with two adjacent elements sharing
a common triangular face s, that we discussed in Paragraph 3.5.2, it was
suÆcient to orient s by selecting its vertex A with the lowest global index
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and determining the direction of its boundary as the direction AB where B
was the vertex with the second lowest index on s. Recall that traces of the
face functions associated with s are in general not invariant with respect to
rotation of the vertices, and the vertex A with the lowest index plays a special
role in their de�nition.

In fact, Figure 3.24 does not tell the whole truth, since two di�erent con�g-
urations can occur, depending on whether the vertex v1 with the lowest global
index on the face s1 belongs to the diagonal edge e5 or not. New de�nitions of
the global orientation for the faces s2 and s3 in both these cases are illustrated
in Figure 3.25. The vertex that is closest to the arrow now takes the role of
the lowest-index vertex A from Paragraph 3.5.2.
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FIGURE 3.25: New de�nition of the global orientation for triangular faces
constrained by a quadrilateral face. A) edge e5 contains the vertex v1 with
the lowest index. B) the vertex v1 does not belong to the edge e5.

One has to take care of both the con�gurations A) and B) separately;
however, fortunately they are not much di�erent. From now on it is suÆcient
to work in the corresponding reference con�gurations on the quadrilateral
reference face ŝq = [�1; 1]2, shown in Figure 3.26, from which the face s1 is
parametrized. The cases A) and B) are related to the cases A) and B) in
Figure 3.26 where the diagonal lines correspond to the two di�erent positions
of the edge e5 within the faces s1. As for the global orientation of the edge e5,
we de�ne it in the standard sense following the global enumeration of vertices,
i.e., e5 = v1v3 in case A and e5 = v2v4 in case B.

Without loss of generality, let us assume the following compatibility between
parametrizations of the edges and faces:

� The face s1 is parametrized by a smooth bijective map
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FIGURE 3.26: Reference con�gurations corresponding to Figure 3.25.

xs1 : ŝq ! s1:

� The faces s2; s3 are parametrized by smooth bijective maps

xs2 : ŝt ! s2 and x
s3 : ŝt ! s3;

where ŝt = Kt stands for the triangular reference face.

� In case A,

xs2(��1; �2) = xs1(�1; �2) 8� 2 ŝq such that �2 < �1; (3.109)

xs3(�1;��2) = xs1(�1; �2) 8� 2 ŝq such that �1 < �2:

� In case B,

xs2(�1; �2) = xs1(�1; �2) 8� 2 ŝq such that �2 < ��1;
xs3(��1;��2) = xs1(�1; �2) 8� 2 ŝq such that � �1 < �2:

� The edges e1; : : : ; e5 are parametrized by smooth bijective maps

xej : [�1; 1]! IR3

such that
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xe1(oe1�) = xs1(�1; �) 8� 2 [�1; 1]; (3.110)

xe2(oe2�) = xs1(1; �) 8� 2 [�1; 1];
xe3(oe3�) = xs1(�;�1) 8� 2 [�1; 1]; (3.111)

xe4(oe4�) = xs1(�; 1) 8� 2 [�1; 1];

xe5(�) =

8<
:
xs1(�; �) 8� 2 [�1; 1] in case A;

xs1(��; �) 8� 2 [�1; 1] in case B:

Here again oe1 ; : : : ; oe4 are �1 orientation factors that compensate for
the generally di�erent orientations of the edges e1; : : : ; e4 and the orien-
tation of the face s1.

Let the edges e1; : : : ; e4 be equipped with local orders of approximation
1 � pe1 ; : : : ; pe4 . The face s1 comes with two local directional orders 1 �
ps1;1 and 1 � ps1;2 in the appropriate local directions I and II. In order
that the discussed version of the constrained approximation technique can be
performed, the local orders of approximation associated with the edge e5 and
with the faces s2; s3 must satisfy the following conditions:

pe9 � ps1;1 + ps1;2; (3.112)

ps2 � ps1;1 + ps1;2; (3.113)

ps3 � ps1;1 + ps1;2: (3.114)

The reason for the necessary conditions (3.112) { (3.114) lies in the di�erent
structure of the polynomial spaces Qps1;1;ps1;2(ŝq) and Pps2 (ŝt) (see relations
(2.12) and (2.19) for their de�nition).
In other words, one has to increase the local orders of approximation on

the edge e5 and on the faces s2; s3 quite signi�cantly in order to allow the
polynomial spaces on the faces s1; s2 and s3 to �t together. In addition, it is
important to notice that theminimum rule forH1-conforming approximations
(see Paragraph 3.5.5) enforces the order of approximation in the interiors of
both of the elements containing the faces s2 and s3 to be at least equal to
ps2 and ps3 , respectively. This can be considered the price for leaving out
prismatic elements from hybrid tetrahedral/hexahedral meshes.
The rest { construction of the algebraic relations between the constraining

DOF associated with the face s1 and the constrained DOF related to the edge
e9 and faces s2; s3 { is easy. First of all, the coeÆcients related to vertex
functions associated with the vertices v1; : : : ; v4, and of edge functions related
to the edges e1; : : : ; e4, stay unchanged (i.e., these DOF are not constrained).
The remaining relations depend on the position of the edge e5 in the face s1.
The higher-order DOF associated with the edge e5 are constrained by the

vertex DOF related to the vertices v2; v4 (case A) or vertices v1; v3 (case B),
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by all higher-order DOF associated with the edges e1; : : : ; e4 and moreover by
all face DOF of s1. Hence, the transition matrix is in both cases A and B of
the type m1 �m2 where

m1 = pe5 � 1

and

m2 = 2 +

4X
k=1

(pek � 1) + (ps1;1 � 1)(ps1;2 � 1):

The explicit form of this matrix is not diÆcult to obtain thanks to the product
structure of the traces of the shape functions associated with the face s1, using
the change of variables (3.109) and (3.110).
Finally, the face DOF associated with the faces s2 and s3 are constrained

by the face DOF related to the face s1 and by the higher-order DOF of the
edge e5 only. The explicit form of the transition matrices is again an easy
exercise in basic algebraic calculus.

Exercise 3.4 Perform in detail the procedure of deriving the algebraic rela-
tions between the constraining and constrained coeÆcients for Case 4 (two
triangular faces constrained by one quadrilateral face).

3.6.4 Vector-valued constrained approximation in 3D

The generalization of the constrained approximation procedure from scalar
continuous discretizations to the vector-valued case is straightforward. The
�rst and essential step toward its understanding is to become familiar with
Paragraph 3.6.3. One might �nd it useful to solve Exercises 3.3 and 3.4 prior
to proceeding.
Let us begin with the simpler case { in theH(div)-conforming situation one

has to guarantee the continuity of the normal component of the approxima-
tion on interelement faces only. The procedure described in Paragraph 3.6.3
applies, instead of function values, to the normal component of the approxi-
mation in almost unchanged form. The only signi�cant di�erence is that while
in the continuous case the trace was based on the integrated Legendre polyno-
mials, now the original Legendre polynomials will be used. See Chapter 2 for
the exact de�nition of theH(div)-conforming master element shape functions
and the de�nition of polynomial spaces for their normal components.
The H(curl)-conforming case is more delicate in the sense that one has to

guarantee the continuity of the trace of the tangential component of the ap-
proximation on both the interelement faces and edges. On both the edges and
faces (recall that there are two linearly independent directions per face) the
tangential component is based on the integrated Legendre polynomials. See
Chapter 2 for the exact de�nition of the H(curl)-conforming master element
shape functions and the polynomial spaces for their tangential components
both on the edges and faces.
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3.7 Selected software-technical aspects

Readers who have some experience with adaptive schemes (not necessa-
rily �nite elements) will con�rm that the amount of stored mesh-dependent
information often determines the distribution of complexity between the solver
and the mesh division algorithm. The total complexity of hp-adaptive schemes
is such that its optimal management is a crucial issue on which the success
or failure of the whole implementation can depend. Of special importance
are questions where and in which manner to store the information about
element neighbors, and how to incorporate the connectivity and orientation
information into the data structure.

3.7.1 Data structure for hp-adaptivity

A signi�cant contribution to the development and testing of data structures
for hp-adaptivity was done in FORTRAN by Demkowicz et al. (see, e.g.,
[66, 63, 60] and other papers in this series). We �nd it useful to extract
from these studies the basic principles that on the one hand can help the
reader to avoid beginner's mistakes, but on the other hand leave her/him
enough freedom to use her/his own programming experience to design suitable
data structures, and algorithms operating over these data structures, in a
way she/he prefers. We are aware of the fact that it is diÆcult to �nd an
equilibrium that would satisfy all readers at once { in each case a lot of
concrete details, including prints of parts of FORTRAN codes with concrete
data structures and algorithms, can be found in the papers above.

Basic principles

� The complexity of hp mesh-division algorithms is such that minimum
mesh-dependent data should be stored.

� It is advantageous to always start the adaptivity from a regular initial
mesh (i.e., from a mesh with no hanging nodes).

� Initial mesh. The regular initial mesh plays a special role in the data
structure since obviously all elements, faces, edges and vertices result-
ing from consequent hp-re�nements are descendants of initial mesh el-
ements, faces and edges. It is advantageous to view all objects in the
hp-mesh, i.e., the initial mesh elements, re�ned elements, vertices, edges
and faces, as abstract nodes in the sense of Paragraph 1.1.3. Vertices,
edges, faces and elements of the initial mesh may be stored in indepen-
dent arrays. The information about element neighbors as well as the
orientation and connectivity information may be stored for the initial
mesh elements only. More precisely, initial mesh elements may contain
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links to their edge-neighbors (2D), face-neighbors (3D), vertex nodes,
edge nodes, face nodes and the mid-element node, as well as the infor-
mation about orientation of edges and faces as discussed in Paragraph
3.5.2. This implies that some work has to be done for each re�ned node
in order to determine its orientation information, indices of the appropri-
ate node neighbors and other necessary horizontal information; however,
this essentially simpli�es the hp mesh-division algorithm. Demkowicz
[63] suggests storing initial mesh elements, all vertices and all higher-
order nodes in three separate arrays.

� Sequences of hp-meshes. Sequences of hp-meshes obtained by conse-
quent re�nement of the initial mesh can be stored in the form of trees of
nodes growing independently from initial mesh edge nodes, initial mesh
face nodes and initial mesh mid-element nodes. It turns out that view-
ing these entities in the initial mesh as independent is in harmony with
the mathematical theory and the nature of hierarchic hp-algorithms.

� Re�nement of nodes. Both in 2D and 3D the h-re�nement of an edge
produces three new nodes: one new vertex and two new edges. For
simplicity we call the new nodes children of the edge and the edge their
parent node. In the same way, h-re�nement of a triangular face into four
yields seven new nodes: three new edges and four new faces (notice that
the new vertices are children of the edges) as illustrated in Figure 3.27.

face 1

edge 1 edge 2

edge 3

face 4

face 2

face 3

FIGURE 3.27: Seven nodes (children) resulting from a 4-re�nement of a
triangular face. The scheme obviously is the same for a 4-re�nement of a
triangular element with the only exception that new elements instead of new
faces appear.

It is important to understand the relations between parents and children
correctly { children of an edge e are not children of faces or elements
where the edge e is contained and so on. Each child has, in this abstract
sense, one single parent only.

The trees are frequently climbed and descended in the vertical direction
while, except for the initial mesh, no horizontal information is stored.
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Therefore, each parent node may store pointers to all of its children and
each child may store a pointer to its parent.

In an object-oriented programming language vertex nodes, edge nodes,
face nodes and mid-element nodes may be de�ned as descendant types of
a single basic class that contains, for example, a single variable identify-
ing the node type only. All other variables can be chosen independently
for various descendants.

REMARK 3.28 (Natural order of elements) In Paragraph 3.5.6 we
have shown that the enumeration of vertices and elements together determine
a unique enumeration of basis functions of the space Vh;p. With many levels
of re�nement, the question of optimal enumeration of elements becomes more
pronounced. A sophisticated enumeration scheme, based on natural order of
elements, is used in [60]. One enumerates elements in the re�nement trees
rowwise as illustrated in Figure 3.28.

1 2 3 4 5

6 7 8 9

10 11 12 13

14 15

(initial mesh)

(2nd refinement level)

(3rd refinement level)

(1st refinement level)

FIGURE 3.28: Natural order of elements, in this case 1, 6, 14, 15, 11, 3,
12, 13, 9, 5.

This approach is advantageous due to its additivity (newly created elements
do not force the old ones to change their indices) and simplicity of computer
implementation.

3.7.2 One-irregular mesh division algorithms

The treatment of constrained approximations was described in Section 3.6.
Recall that meshes are called one-irregular if the parent of a constrained node
cannot be further constrained. The mesh 1-irregularity rule translates into
the condition that an element can be re�ned only if all of its edges and vertices
are unconstrained. If an element has a constrained edge or vertex, one �rst
has to identify the coarse element sharing the constrained edge, and subdivide
it before one can re�ne the smaller element. This is realized by means of a
waiting list, where the smaller element is put while re�nement of the coarse
element is attempted:

© 2004 by Chapman & Hall/CRC



216 Higher-Order Finite Element Methods

ALGORITHM 3.3 (1-irregular mesh division algorithm)
As input assume a list of elements selected for h-re�nement
(with corresponding anisotropic ags for quadrilaterals).
Do f
Take the �rst element from the list.
For all edges of the element do f
Determine neighbors sharing the edge.
If a neighbor lies at coarser level (thus the edge is
constrained) f
Add the coarse element to the end of the waiting list
(if not yet there).
Set on its re�nement ag indicating requested
re�nement (in the direction of the edge for quads).
g

g
If some edges were constrained f
Do not break the element, move it at the end of
list.

g
else f
Break the element (triangles into four only, quads
according to their anisotropic ags either to two or
four).
Remove the element from the list.

g
g while the list is not empty.

See [63] for a three-dimensional version of this algorithm. Notice that enforce-
ment of the 1-irregularity rule during the execution of the mesh re�nement
algorithm can result in (unwanted) re�nement of additional mesh elements,
as illustrated in Figure 3.29.

Element to be refined

FIGURE 3.29: Unwanted re�nements enforced by the 1-irregularity rule.
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Chapter 4

Higher-order numerical quadrature

The numerical quadrature technique (sometimes referred to as cubature in
three spatial dimensions) lies at the heart of all higher-order �nite element
codes. When evaluating the approximate variational formulation (1.22) on the
reference element, one has to numerically integrate higher-order shape func-
tions and their products, their derivatives, sometimes nonlinearities coming
from the reference maps and other higher-order terms. The order of accuracy
of the numerical integration should correspond to the highest polynomial order
that appears behind the integral sign, otherwise one risks a loss of accuracy
of the whole scheme and other disagreeable side-e�ects. Sometimes exact in-
tegration is not possible (e.g., because the variational formulation contains
nonpolynomial terms) { in such cases one has to be very careful and choose
the order of accuracy of the quadrature a little higher rather than a little
lower.

We recommend the utmost care in the evaluation of matrices that have to
be inverted: the safest way is to evaluate them exactly, which often means to
use quadrature formulae at least twice as accurate as the polynomial order
of the �nite elements. When one underestimates the precision of evaluation
of these matrices, their inversion can produce unexpected errors or they even
may become singular.

In this chapter we introduce several types of higher-order quadrature schemes
related to the reference domains Ka;Kq;Kt;KB;KT and KP from Chapter
2. In our implementations we usually prefer the Gauss quadrature because of
its eÆciency but we will also mention other standard techniques.

Judgment of quality of quadrature schemes is a risky business { generally
it cannot be said that one of the quadrature rules is better than the oth-
ers. Obviously, results for polynomials up to the order n obtained by various
quadrature schemes of the same order of accuracy n are by de�nition the same.
But we may obtain dramatically di�erent results by applying the same rules
to polynomials of order higher than n, nonpolynomial functions or, in the
worst case, to functions that oscillate. A limited-order numerical integration
of oscillating functions may give arbitrary results. It is the responsibility of
everyone to choose quadrature rules that �t as well as possible the nature of
the solved problem.

All tables of integration points and weights that will be presented in the
following can also be found on the companion CD-ROM, including many more
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that were too long to be included here. All of them are suÆcient for polynomi-
als of the order p = 20 or higher, except for economical Gauss quadrature on
the reference brick KB (where to the best of our knowledge the highest known
order of accuracy is p = 19). Still higher (in fact almost unlimited) order of
accuracy can be achieved by means of product rules based on one-dimensional
Gauss quadrature.

4.1 One-dimensional reference domain Ka

The basic ideas of the numerical quadrature will be illustrated on one-
dimensional schemes. Let g(y) be a function continuous in interval [a,b],
a < b. The numerical quadrature of order n on this interval is de�ned as

Z b

a

g(y)dy �

nX
k=0

An;kg(yn;k); (4.1)

where the symbols An;k and yn;k, k = 0; 1; : : : ; n denote the quadrature coef-
�cients and nodes, respectively. The nodes yn;k, k = 0; 1; : : : ; n are assumed
distinct. Putting

y = c� + d; c =
b� a

2
; d =

b+ a

2
; (4.2)

substituting into (4.1) and rearranging, we get a formula corresponding to the
one-dimensional reference domain Ka = (�1; 1),

Z 1

�1

f(�)d� �
nX

k=0

wn;kf(�n;k) (4.3)

where f(�) = g(c� + d) and wn;k = An;k=c. Symbols wn;k are called weights.
There are a number of possibilities for choosing suitable weights wn;k and

nodes �n;k for the numerical quadrature of the function f(�). Speci�c charac-
teristics will be discussed in the following.

Selection of shape functions

The problem of determining the integration points and weights is crucial
for all types of quadrature rules. In general we can use various systems of
linearly independent functions (not only polynomials) whose integrals can be
determined analytically. The choice of such functions usually does not matter
as long as the order of accuracy is reasonably small. In this case probably the
easiest choice is the monomials �i. For higher-order monomials, however, the
inversion of the system matrix becomes problematic. The reason is roundo�
errors in the evaluation of higher-order monomials for arguments close to zero.
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Probably the most natural choice is to use either the Legendre polynomials
or H1-hierarchic shape functions.

4.1.1 Newton-Cotes quadrature

The quadrature rules of the Newton-Cotes type are generally based on the
summation of weighted function values at equidistantly distributed integra-
tion points. The (n + 1)-point Newton-Cotes closed quadrature formula (of
accuracy n) for polynomials of the n-th order is given by (4.3), where

�n;k = �1 + khn; k = 0; 1; : : : ; n; (4.4)

hn = 2=n and n > 0.
The integration weights may be determined by several di�erent methods

based, for example, on the Taylor expansion of f(�), Lagrange polynomials
or Vandermonde matrix. We will illustrate the last method.
Let P (�) be a polynomial of order n expressed as

P (�) =
nX

k=0

pn;k�
k (4.5)

and let us put

Z 1

�1

P (�)d� =

nX
k=0

pn;k
k + 1

[1� (�1)k+1] =

nX
k=0

wn;kP (�n;k): (4.6)

Comparison of terms on both sides of (4.6) containing the individual coeÆ-
cients pn;k leads to a system of linear algebraic equations of the form

wn;0 + wn;1 + : : :+ wn;n = [1� (�1)1]=1 = 2; (4.7)

wn;0�n;0 + wn;1�n;1 + : : :+ wn;n�n;n = [1� (�1)2]=2 = 0;

...

wn;0�
k
n;0 + wn;1�

k
n;1 + : : :+ wn;n�

k
n;n = [1� (�1)k+1]=k + 1;

...

wn;0�
n
n;0 + wn;1�

n
n;1 + : : :+ wn;n�

n
n;n = [1� (�1)n+1]=n+ 1:

After rearranging the system and using substitution (4.4) for �n;k we obtain

0
BBB@

1 1 1 : : : 1
0 1 2 : : : n
0 12 22 : : : n2

: : : : : : : : : : : : : : :
0 1n 2n : : : nn

1
CCCA
0
BBB@
wn;0

wn;1

wn;2

: : :
wn;n

1
CCCA =

0
BBB@

2n0=1
2n1=2
2n2=3
: : :

2nn=(n+ 1)

1
CCCA : (4.8)
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The system is characterized by the Vandermonde matrix that is regular and,
thus, invertible. Moreover, the weights wn;k; k = 0; : : : ; n depend only on
parameter n. On the other hand, the Vandermonde matrix is not well-
conditioned and for n > 7 some weights are negative, which can lead to round-
o� problems during the evaluation of the right-hand side of (4.6). Therefore,
the closed Newton-Cotes formulae are mostly used only for low values of n.
Integration points and weights for lower values of n are shown in Tables 4.1

{ 4.7. As the integration points are symmetric with respect to zero, we list
only the positive ones. Notice that in one dimension the (n+ 1)-point closed
Newton-Cotes quadrature rule has the order of accuracy n. In general, each
closed Newton-Cotes formula is exact for all polynomials whose order is by
one degree less than the order of the derivative in its error term. For even
values of n the integration is exact for all polynomials of order n+ 1.

TABLE 4.1: Closed Newton-Cotes
quadrature on Ka, order n = 1
(trapezoidal rule).
Point # � �-Coordinate Weight

1. 1 1

TABLE 4.2: Closed Newton-Cotes
quadrature on Ka, order n = 2
(Simpson's 1/3 rule).

Point # � �-Coordinate Weight

1. 1 1/3
2. 0 4/3

TABLE 4.3: Closed Newton-Cotes
quadrature on Ka, order n = 3
(Simpson's 3/8 rule).

Point # � �-Coordinate Weight

1. 1 1/4
2. 1/3 3/4
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TABLE 4.4: Closed Newton-Cotes
quadrature on Ka, order n = 4 (Bode's
rule).
Point # � �-Coordinate Weight

1. 1 7/45
2. 1/2 32/45
3. 0 12/45

TABLE 4.5: Closed Newton-Cotes
quadrature on Ka, order n = 5.

Point # � �-Coordinate Weight

1. 1 19/144
2. 3/5 75/144
3. 1/5 50/144

TABLE 4.6: Closed Newton-Cotes
quadrature on Ka, order n = 6.

Point # � �-Coordinate Weight

1. 1 41/420
2. 2/3 216/420
3. 1/3 27/420
4. 0 272/420

TABLE 4.7: Closed Newton-Cotes
quadrature on Ka, order n = 7.
Point # � �-Coordinate Weight

1. 1 751/8640
2. 5/7 3577/8640
3. 3/7 1323/8640
4. 1/7 2989/8640

In a similar way one can obtain open Newton-Cotes quadrature formulae

approximating the integral only by function values at internal points of the
interval [a; b] (i.e., at the points �n;1; �n;2; : : : ; �n;n�1), while the points �n;0 = a
and �n;n = b are omitted. These formulae can be used, for example, when
values f(a) and f(b) are unavailable. As their errors are much greater than
errors of the closed Newton-Cotes formulae, we will not discuss them in detail.
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4.1.2 Chebyshev quadrature

The quadrature rules of the Chebyshev type are based on the summation of
equally weighted function values at nonequidistantly distributed integration
points. The (n+1)-point Chebyshev quadrature rule for the one-dimensional
reference domain Ka = (�1; 1) reads

Z 1

�1

f(�)d� �
2

n

nX
k=1

f(�n;k): (4.9)

Notice that the uniform weight 2=n is determined from the integration of
constant functions. The integration points (abscissas) are obtained after in-
serting suÆciently many linearly independent functions with known integrals
(e.g., the Legendre polynomials or the one-dimensional H1-hierarchic shape
functions for reasons mentioned earlier) into (4.9) and resolving the resulting
system of nonlinear algebraic equations. It can be shown that these abscis-
sas may be obtained by using terms up to yn in the Maclaurin series of the
function

sn(z) = exp
nn
2

�
�2 + ln[(1� z2)(1� z�2)]

�o
: (4.10)

Then the abscissas are determined as roots of the function

Cn(�) = �nsn

�
1

�

�
: (4.11)

The roots are all real only for n < 8 and n = 9. These values of n represent
the only permissible orders for the Chebyshev quadrature. The corresponding
functions Cn(�) follow:

C2(�) =
1

3
(3�2 � 1) (4.12)

C3(�) =
1

2
(2�3 � �)

C4(�) =
1

45
(45�4 � 30�2 + 1)

C5(�) =
1

72
(72�5 � 60�3 + 7�)

C6(�) =
1

105
(105�6 � 105�4 + 21�2 � 1)

C7(�) =
1

6480
(6480�7 � 7560�5 + 2142�3 � 149�)

C9(�) =
1

22400
(22400�9 � 33600�7 + 15120�5 � 2280�3 + 53�)

In the one-dimensional case the n-point Chebyshev quadrature rules achieve
(n+ 1)-th order of accuracy.
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Let us list the integration points for the permitted values of n calculated
using Mathematica (and compared with [170]) in Tables 4.8 { 4.14. As the
integration points are symmetric with respect to zero, again we list only the
positive ones.

TABLE 4.8: Chebyshev quadrature on Ka,
order n+ 1 = 3.

Point # � �-Coordinate Weight

1. 0.57735 02691 89625 76450 91488 1

TABLE 4.9: Chebyshev quadrature on Ka,
order n+ 1 = 4.

Point # � �-Coordinate Weight

1. 0.70710 67811 86547 52440 08444 2/3
2. 0.00000 00000 00000 00000 00000 2/3

TABLE 4.10: Chebyshev quadrature on Ka,
order n+ 1 = 5.

Point # � �-Coordinate Weight

1. 0.79465 44722 91766 12295 55309 1/2
2. 0.18759 24740 85079 89986 01393 1/2

TABLE 4.11: Chebyshev quadrature on Ka,
order n+ 1 = 6.

Point # � �-Coordinate Weight

1. 0.83249 74870 00981 87589 25836 2/5
2. 0.37454 14095 53581 06558 60444 2/5
3. 0.00000 00000 00000 00000 00000 2/5
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TABLE 4.12: Chebyshev quadrature on Ka,
order n+ 1 = 7.

Point # � �-Coordinate Weight

1. 0.86624 68181 07820 59138 35981 1/3
2. 0.42251 86537 61111 52911 85464 1/3
3. 0.26663 54015 16704 72033 15346 1/3

TABLE 4.13: Chebyshev quadrature on Ka,
order n+ 1 = 8.
Point # � �-Coordinate Weight

1. 0.88386 17007 58049 03570 42241 2/7
2. 0.52965 67752 85156 81138 50475 2/7
3. 0.32391 18105 19907 63751 96731 2/7
4. 0.00000 00000 00000 00000 00000 2/7

TABLE 4.14: Chebyshev quadrature on Ka,
order n+ 1 = 10.

Point # � �-Coordinate Weight

1. 0.91158 93077 28434 47366 49486 2/9
2. 0.60101 86553 80238 07142 81279 2/9
3. 0.52876 17830 57879 99326 01816 2/9
4. 0.16790 61842 14803 94306 80319 2/9
5. 0.00000 00000 00000 00000 00000 2/9

REMARK 4.1 Expressions of the type

f(�)p
1� �2

(4.13)

can be integrated by means of the Gauss-Chebyshev explicit formula

Z 1

�1

f(�)p
1� �2

d� �
�

n

nX
i=1

f

�
cos

�
(2i� 1)�

2n

��
: (4.14)

4.1.3 Lobatto (Radau) quadrature

The quadrature rules of the Lobatto (Radau) type are based on the summa-
tion of weighted function values at nonequidistantly distributed integration
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points containing the endpoints of the interval of integration.
The n-point Lobatto (Radau) quadrature rule for the one-dimensional ref-

erence domain Ka = (�1; 1) reads

Z 1

�1

f(�)d� � wn;1f(�1) +

n�1X
i=2

wn;if(�n;i) + wn;nf(1): (4.15)

Analogously as for the Chebyshev rules, the integration points and weights are
obtained after inserting suÆciently many linearly independent functions with
known integrals into (4.15) and resolving the resulting system of nonlinear
algebraic equations. Notice that for the n-point rule we have n� 2 unknown
points and n weights. Thus we need 2n� 2 equations and consequently this
quadrature rule achieves in one spatial dimension only the order of accuracy
2n� 3.

The unknown abscissas �n;i are the roots of the polynomial L
0

n�1(�), where
Ln�1(�) is the Legendre polynomial of order n�1. The weights of the unknown
abscissas are expressed by

wn;k =
2

n(n� 1)L2
n�1(�i)

; k = 2; : : : ; n� 1 (4.16)

while the weights at the endpoints are

wn;1 = wn;n =
2

n(n� 1)
: (4.17)

In Tables 4.15 { 4.20 we show the integration points and weights for a few
selected orders of accuracy computed using Mathematica (and compared with
[126]). As the integration points are symmetric with respect to zero, we list
only the positive ones, with the corresponding weights. The weights for sym-
metric integration points are equal. Additional Lobatto (Radau) quadrature
rules up to the order p = 21 can be found on the companion CD-ROM.

TABLE 4.15: Lobatto (Radau) quadrature on Ka, order 2n�3 = 3.

Point # � �-Coordinate Weight

1. 1.00000 00000 00000 00000 00000 0.33333 33333 33333 33333 33333
2. 0.00000 00000 00000 00000 00000 1.33333 33333 33333 33333 33333
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TABLE 4.16: Lobatto (Radau) quadrature on Ka, order 2n�3 = 5.

Point # � �-Coordinate Weight

1. 1.00000 00000 00000 00000 00000 0.16666 66666 66666 66666 66667
2. 0.44721 35954 99957 93928 18347 0.83333 33333 33333 33333 33333

TABLE 4.17: Lobatto (Radau) quadrature on Ka, order 2n�3 = 7.

Point # � �-Coordinate Weight

1. 1.00000 00000 00000 00000 00000 0.10000 00000 00000 00000 00000
2. 0.65465 36707 07977 14379 82925 0.54444 44444 44444 44444 44444
3. 0.00000 00000 00000 00000 00000 0.71111 11111 11111 11111 11111

TABLE 4.18: Lobatto (Radau) quadrature on Ka, order 2n�3 = 9.

Point # � �-Coordinate Weight

1. 1.00000 00000 00000 00000 00000 0.06666 66666 66666 66666 66667
2. 0.76505 53239 29464 69285 10030 0.37847 49562 97846 98031 66128
3. 0.28523 15164 80645 09631 41510 0.55485 83770 35486 35301 67205

TABLE 4.19: Lobatto (Radau) quadrature on Ka, order
2n� 3 = 11.

Point # � �-Coordinate Weight

1. 1.00000 00000 00000 00000 00000 0.04761 90476 19047 61904 76190
2. 0.83022 38962 78566 92987 20322 0.27682 60473 61565 94801 07004
3. 0.46884 87934 70714 21380 37719 0.43174 53812 09862 62341 78710
4. 0.00000 00000 00000 00000 00000 0.48761 90476 19047 61904 76190

TABLE 4.20: Lobatto (Radau) quadrature on Ka, order
2n� 3 = 13. See the companion CD-ROM for additional Lobatto
(Radau) quadrature rules up to the order p = 21.

Point # � �-Coordinate Weight

1. 1.00000 00000 00000 00000 00000 0.03571 42857 14285 71428 57143
2. 0.87174 01485 09606 61533 74457 0.21070 42271 43506 03938 29921
3. 0.59170 01814 33142 30214 45107 0.34112 26924 83504 36476 42407
4. 0.20929 92179 02478 86876 86573 0.41245 87946 58703 88156 70530
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4.1.4 Gauss quadrature

The quadrature rules of the Gauss type are based on the summation of
weighted function values on nonequidistantly distributed integration points.
The n-point Gauss quadrature rule for the one-dimensional reference domain
Ka = (�1; 1) reads

Z 1

�1

f(�)d� �

nX
i=1

wn;if(�n;i) (4.18)

Analogously as for the Chebyshev and Lobatto (Radau) rules, the integration
points and weights can be obtained after inserting suÆciently many linearly
independent functions with known integrals and resolving the resulting system
of nonlinear algebraic equations. Since we have 2n unknown parameters at our
disposal (n integration points �n;i and n weights wn;i), the resulting formula
will be accurate for all polynomials of order 2n� 1 and lower.

It can be shown that the integration points are roots of the Legendre poly-
nomials Ln(�), whose values are suÆciently well tabulated. Hence, the com-
plexity of the problem reduces to the level of Newton-Cotes quadrature rules,
since with known points the nonlinear system comes over to a system of lin-
ear algebraic equations. The analysis leads even further; it is known that the
weights wn;i can be expressed as

wn;i =
2

(1� �2n;i)L
0

n(�)
2
; i = 1; : : : ; n (4.19)

Let us list the integration points and weights for a few selected n-point rules,
which again were computed in Mathematica and compared with [1], in Tables
4.21 { 4.35. As the integration points are symmetric with respect to zero,
we list only the positive ones. As usual, symmetric integration points have
identical weights. Additional Gauss quadrature rules up to the order p = 127
can be found on the companion CD-ROM.

TABLE 4.21: Gauss quadrature on Ka, order 2n� 1 = 3.
Point # � �-Coordinate Weight

1. 0.57735 02691 89625 76450 91488 1.00000 00000 00000 00000 00000

TABLE 4.22: Gauss quadrature on Ka, order 2n� 1 = 5.

Point # � �-Coordinate Weight

1. 0.00000 00000 00000 00000 00000 0.88888 88888 88888 88888 88889
2. 0.77459 66692 41483 37703 58531 0.55555 55555 55555 55555 55556
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TABLE 4.23: Gauss quadrature on Ka, order 2n� 1 = 7.

Point # � �-Coordinate Weight

1. 0.33998 10435 84856 26480 26658 0.65214 51548 62546 14262 69361
2. 0.86113 63115 94052 57522 39465 0.34785 48451 37453 85737 30639

TABLE 4.24: Gauss quadrature on Ka, order 2n� 1 = 9.
Point # � �-Coordinate Weight

1. 0.00000 00000 00000 00000 00000 0.56888 88888 88888 88888 88889
2. 0.53846 93101 05683 09103 63144 0.47862 86704 99366 46804 12915
3. 0.90617 98459 38663 99279 76269 0.23692 68850 56189 08751 42640

TABLE 4.25: Gauss quadrature on Ka, order 2n� 1 = 11.

Point # � �-Coordinate Weight

1. 0.23861 91860 83196 90863 05017 0.46791 39345 72691 04738 98703
2. 0.66120 93864 66264 51366 13996 0.36076 15730 48138 60756 98335
3. 0.93246 95142 03152 02781 23016 0.17132 44923 79170 34504 02961

TABLE 4.26: Gauss quadrature on Ka, order 2n� 1 = 13.

Point # � �-Coordinate Weight

1. 0.00000 00000 00000 00000 00000 0.41795 91836 73469 38775 51020
2. 0.40584 51513 77397 16690 66064 0.38183 00505 05118 94495 03698
3. 0.74153 11855 99394 43986 38648 0.27970 53914 89276 66790 14678
4. 0.94910 79123 42758 52452 61897 0.12948 49661 68869 69327 06114

TABLE 4.27: Gauss quadrature on Ka, order 2n� 1 = 15.
Point # � �-Coordinate Weight

1. 0.18343 46424 95649 80493 94761 0.36268 37833 78361 98296 51504
2. 0.52553 24099 16328 98581 77390 0.31370 66458 77887 28733 79622
3. 0.79666 64774 13626 73959 15539 0.22238 10344 53374 47054 43560
4. 0.96028 98564 97536 23168 35609 0.10122 85362 90376 25915 25314
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TABLE 4.28: Gauss quadrature on Ka, order 2n� 1 = 17.
Point # � �-Coordinate Weight

1. 0.00000 00000 00000 00000 00000 0.33023 93550 01259 76316 45251
2. 0.32425 34234 03808 92903 85380 0.31234 70770 40002 84006 86304
3. 0.61337 14327 00590 39730 87020 0.26061 06964 02935 46231 87429
4. 0.83603 11073 26635 79429 94298 0.18064 81606 94857 40405 84720
5. 0.96816 02395 07626 08983 55762 0.08127 43883 61574 41197 18922

TABLE 4.29: Gauss quadrature on Ka, order 2n� 1 = 19.

Point # � �-Coordinate Weight

1. 0.14887 43389 81631 21088 48260 0.29552 42247 14752 87017 38930
2. 0.43339 53941 29247 19079 92659 0.26926 67193 09996 35509 12269
3. 0.67940 95682 99024 40623 43274 0.21908 63625 15982 04399 55349
4. 0.86506 33666 88984 51073 20967 0.14945 13491 50580 59314 57763
5. 0.97390 65285 17171 72007 79640 0.06667 13443 08688 13759 35688

TABLE 4.30: Gauss quadrature on Ka, order 2n� 1 = 21.

Point # � �-Coordinate Weight

1. 0.00000 00000 00000 00000 00000 0.27292 50867 77900 63071 44835
2. 0.26954 31559 52344 97233 15320 0.26280 45445 10246 66218 06889
3. 0.51909 61292 06811 81592 57257 0.23319 37645 91990 47991 85237
4. 0.73015 20055 74049 32409 34163 0.18629 02109 27734 25142 60980
5. 0.88706 25997 68095 29907 51578 0.12558 03694 64904 62463 46940
6. 0.97822 86581 46056 99280 39380 0.05566 85671 16173 66648 27537

TABLE 4.31: Gauss quadrature on Ka, order 2n� 1 = 23.

Point # � �-Coordinate Weight

1. 0.12523 34085 11468 91547 24414 0.24914 70458 13402 78500 05624
2. 0.36783 14989 98180 19375 26915 0.23349 25365 38354 80876 08499
3. 0.58731 79542 86617 44729 67024 0.20316 74267 23065 92174 90645
4. 0.76990 26741 94304 68703 68938 0.16007 83285 43346 22633 46525
5. 0.90411 72563 70474 85667 84659 0.10693 93259 95318 43096 02547
6. 0.98156 06342 46719 25069 05491 0.04717 53363 86511 82719 46160

TABLE 4.32: Gauss quadrature on Ka, order 2n� 1 = 31.

Point # � �-Coordinate Weight

1. 0.09501 25098 37637 44018 53193 0.18945 06104 55068 49628 53967
2. 0.28160 35507 79258 91323 04605 0.18260 34150 44923 58886 67637
3. 0.45801 67776 57227 38634 24194 0.16915 65193 95002 53818 93121
4. 0.61787 62444 02643 74844 66718 0.14959 59888 16576 73208 15017
5. 0.75540 44083 55003 03389 51012 0.12462 89712 55533 87205 24763
6. 0.86563 12023 87831 74388 04679 0.09515 85116 82492 78480 99251
7. 0.94457 50230 73232 57607 79884 0.06225 35239 38647 89286 28438
8. 0.98940 09349 91649 93259 61542 0.02715 24594 11754 09485 17806
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TABLE 4.33: Gauss quadrature on Ka, order 2n� 1 = 39.
Point # � �-Coordinate Weight

1. 0.07652 65211 33497 33375 46404 0.15275 33871 30725 85069 80843
2. 0.22778 58511 41645 07808 04962 0.14917 29864 72603 74678 78287
3. 0.37370 60887 15419 56067 25482 0.14209 61093 18382 05132 92983
4. 0.51086 70019 50827 09800 43641 0.13168 86384 49176 62689 84945
5. 0.63605 36807 26515 02545 28367 0.11819 45319 61518 41731 23774
6. 0.74633 19064 60150 79261 43051 0.10193 01198 17240 43503 67501
7. 0.83911 69718 22218 82339 45291 0.08327 67415 76704 74872 47581
8. 0.91223 44282 51325 90586 77524 0.06267 20483 34109 06356 95065
9. 0.96397 19272 77913 79126 76661 0.04060 14298 00386 94133 10400
10. 0.99312 85991 85094 92478 61224 0.01761 40071 39152 11831 18620

TABLE 4.34: Gauss quadrature on Ka, order 2n� 1 = 47.

Point # � �-Coordinate Weight

1. 0.06405 68928 62605 62608 50431 0.12793 81953 46752 15697 40562
2. 0.19111 88674 73616 30915 86398 0.12583 74563 46828 29612 13754
3. 0.31504 26796 96163 37438 67933 0.12167 04729 27803 39120 44632
4. 0.43379 35076 26045 13848 70842 0.11550 56680 53725 60135 33445
5. 0.54542 14713 88839 53565 83756 0.10744 42701 15965 63478 25773
6. 0.64809 36519 36975 56925 24958 0.09761 86521 04113 88826 98807
7. 0.74012 41915 78554 36424 38281 0.08619 01615 31953 27591 71852
8. 0.82000 19859 73902 92195 39499 0.07334 64814 11080 30573 40336
9. 0.88641 55270 04401 03421 31543 0.05929 85849 15436 78074 63678
10. 0.93827 45520 02732 75852 36490 0.04427 74388 17419 80616 86027
11. 0.97472 85559 13094 98198 39199 0.02853 13886 28933 66318 13078
12. 0.99518 72199 97021 36017 99974 0.01234 12297 99987 19954 68057

TABLE 4.35: Gauss quadrature on Ka, order 2n� 1 = 63. See the
companion CD-ROM for additional Gauss quadrature rules up to the
order p = 127.

Point # � �-Coordinate Weight

1. 0.04830 76656 87738 31623 48126 0.09654 00885 14727 80056 67648
2. 0.14447 19615 82796 49348 51864 0.09563 87200 79274 85941 90820
3. 0.23928 73622 52137 07454 46032 0.09384 43990 80804 56563 91802
4. 0.33186 86022 82127 64977 99168 0.09117 38786 95763 88471 28686
5. 0.42135 12761 30635 34536 41194 0.08765 20930 04403 81114 27715
6. 0.50689 99089 32229 39002 37475 0.08331 19242 26946 75522 21991
7. 0.58771 57572 40762 32904 07455 0.07819 38957 87070 30647 17409
8. 0.66304 42669 30215 20097 51152 0.07234 57941 08848 50622 53994
9. 0.73218 21187 40289 68038 74267 0.06582 22227 76361 84683 76501
10. 0.79448 37959 67942 40696 30973 0.05868 40934 78535 54714 52836
11. 0.84936 76137 32569 97013 36930 0.05099 80592 62376 17619 61632
12. 0.89632 11557 66052 12396 53072 0.04283 58980 22226 68065 68787
13. 0.93490 60759 37739 68917 09191 0.03427 38629 13021 43310 26877
14. 0.96476 22555 87506 43077 38119 0.02539 20653 09262 05945 57526
15. 0.98561 15115 45268 33540 01750 0.01627 43947 30905 67060 51706
16. 0.99726 38618 49481 56354 49811 0.00701 86100 09470 09660 04071
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4.2 Reference quadrilateral Kq

In this section we present selected higher-order quadrature rules for the
reference quadrilateral domain Kq.

4.2.1 Composite Gauss quadrature

Let us start with a technique that is easiest to implement { quadrature
formulae based on the Cartesian product of two one-dimensional quadrature
rules in the axial directions �1 and �2. Consider the formula

Z
Ka

f(�)d� �

MaX
i=1

wga;if(yga;i); (4.20)

where yga;i; wga;i are Gauss integration points and weights on the one-dimen-
sional reference domain Ka = (�1; 1) that integrate exactly all polynomials
of the order p and lower. It is easy to see that the product formula

Z
Ka

Z
Ka

g(�1; �2)d�1d�2 �

MaX
i=1

MaX
j=1

wga;iwga;jg(yga;i; yga;j) (4.21)

is of the order p for polynomials of two independent variables �1; �2.

REMARK 4.2 In addition to its simple implementation, the product formula
(4.21) has one more advantage { it can easily be generalized to polynomials
with di�erent orders of approximation in the axial directions �1 and �2. Such
polynomials may appear naturally as a consequence of p-anisotropic re�ne-
ments of quadrilateral elements, that may occur, e.g., within boundary and
internal layers. Recall that in Chapter 2 the master element shape functions
for the reference quadrilateral domain were designed to allow for p-anisotropy.

However, for complete polynomials of order p (with generally n = (p+1)(p+
2)=2 nonzero terms), much more eÆcient formulae are known. We introduce
them in Paragraph 4.2.2.

4.2.2 Economical Gauss quadrature

In this paragraph we introduce Gauss quadrature rules that require fewer in-
tegration points than their product counterparts from Paragraph 4.2.1. Some
of them are even known to require the minimum number of integration points.
For this reason sometimes one calls these quadrature rules economical. We
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design them for complete polynomials only, starting from the symmetry of
the reference quadrilateral Kq.
First let us have a look at the integralZ 1

�1

Z 1

�1

�j
1
�k2 d�2 d�1; (4.22)

where j and k are nonnegative integers. As long as j or k is odd, the integral
is equal to zero and the corresponding terms need not be taken into account
for calculation. If j and k are zero or even, its value is 4=(j + 1)=(k + 1).
Moreover, due to the symmetry of the reference domain Kq with respect to
the axes �1 = �2 and �1 = ��2, it is suÆcient to consider only terms in which
j � k.
To give an example, the analysis of complete polynomials of an even order p

requires us to consider only the terms 1; �21 ; : : : ; �
p
1 ; �

2
1�

2
2 ; : : : ; �

p�2
1 �22 ; �

4
1�

4
2 ; : : : ;

�p�41 �42 ; : : :, etc. Denoting the reduced number of terms by m, for p = 4 we
have m = 4 while n = (p+ 1)(p+ 2)=2 = 15. For p = 6 we have m = 6 while
n = 28, for p = 20 it is m = 36 while n = 231. We see that the symmetry
considerations are essential.

4.2.3 Tables of Gauss quadrature points and weights

Dunavant [73] provides a useful overview of minimum numbers of Gaussian
quadrature points for quadrilaterals in Table 4.36.

TABLE 4.36: Minimum numbers of quadrature points for the
Gauss quadrature over quadrilaterals.

Polyn. Minimum num. Minimum num. Achieved num.
order of nonsym. points of sym. points of sym. points

1 1 1 1
2 3 4 4
3 4 4 4
4 6 8 8
5 7 8 8
6 10 12 12
7 12 12 12
8 15 20 20
9 17 20 20
10 21 25 25
11 24 25 25
12 28 36 36
13 31 36 36
14 36 44 45
15 40 44 45
16 45 56 60
17 49 56 60
18 55 68 72
19 60 68 72
20 65 84 88
21 71 84 88
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Dunavant divides the integration points into four groups with di�erent num-
bers of unknowns and tests their best choices. The results obtained by solving
the corresponding systems of nonlinear equations are given in Tables 4.37 {
4.40 below. Additional economical Gauss quadrature rules up to the order
p = 21 can be found on the companion CD-ROM.

TABLE 4.37: Gauss quadrature on Kq, order p = 0; 1.

Point # �1-Coordinate �2-Coordinate Weight

1. 0.00000 00000 00000 0.00000 00000 00000 4.00000 00000 00000

TABLE 4.38: Gauss quadrature on Kq, order p = 2; 3.

Point # �1-Coordinate �2-Coordinate Weight

1. 0.57735 02691 89626 0.57735 02691 89626 1.00000 00000 00000
2. 0.57735 02691 89626 -0.57735 02691 89626 1.00000 00000 00000
3. -0.57735 02691 89626 0.57735 02691 89626 1.00000 00000 00000
4. -0.57735 02691 89626 -0.57735 02691 89626 1.00000 00000 00000

TABLE 4.39: Gauss quadrature on Kq, order p = 4; 5.

Point # �1-Coordinate �2-Coordinate Weight

1. 0.68313 00510 63973 0.00000 00000 00000 0.81632 65306 12245
2. -0.68313 00510 63973 0.00000 00000 00000 0.81632 65306 12245
3. 0.00000 00000 00000 0.68313 00510 63973 0.81632 65306 12245
4. 0.00000 00000 00000 -0.68313 00510 63973 0.81632 65306 12245
5. 0.88191 71036 88197 0.88191 71036 88197 0.18367 34693 87755
6. 0.88191 71036 88197 -0.88191 71036 88197 0.18367 34693 87755
7. -0.88191 71036 88197 0.88191 71036 88197 0.18367 34693 87755
8. -0.88191 71036 88197 -0.88191 71036 88197 0.18367 34693 87755

TABLE 4.40: Gauss quadrature on Kq, order p = 6; 7. See the
companion CD-ROM for additional economical Gauss quadrature rules
up to the order p = 21.

Point # �1-Coordinate �2-Coordinate Weight

1. 0.92582 00997 72551 0.00000 00000 00000 0.24197 53086 41975
2. -0.92582 00997 72551 0.00000 00000 00000 0.24197 53086 41975
3. 0.00000 00000 00000 0.92582 00997 72551 0.24197 53086 41975
4. 0.00000 00000 00000 -0.92582 00997 72551 0.24197 53086 41975
5. 0.80597 97829 18599 0.80597 97829 18599 0.23743 17746 90630
6. 0.80597 97829 18599 -0.80597 97829 18599 0.23743 17746 90630
7. -0.80597 97829 18599 0.80597 97829 18599 0.23743 17746 90630
8. -0.80597 97829 18599 -0.80597 97829 18599 0.23743 17746 90630
9. 0.38055 44332 08316 0.38055 44332 08316 0.52059 29166 67394
10. 0.38055 44332 08316 -0.38055 44332 08316 0.52059 29166 67394
11. -0.38055 44332 08316 0.38055 44332 08316 0.52059 29166 67394
12. -0.38055 44332 08316 -0.38055 44332 08316 0.52059 29166 67394
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4.3 Reference triangle Kt

In this section we present selected higher-order quadrature techniques for
the reference triangular domain Kt. Algorithmically simpler but less eÆcient
schemes are mentioned in Paragraphs 4.3.1 and 4.3.2. More eÆcient are of
course economical Gauss quadrature rules that we introduce in Paragraph
4.3.3.

4.3.1 Translation of quadrature to the ref. quadrilateral Kq

This is probably the easiest way to perform numerical quadrature on Kt

with practically unlimited order of accuracy. The idea of the technique con-
sists in a transformation of the integrated function to the reference quadrilat-
eral Kq and consequent application of the composite Gauss quadrature rules
discussed in Paragraph 4.2.1. One can improve the eÆciency of this type of
quadrature by using the economical Gauss quadrature on Kq (see Paragraph
4.2.2) instead of the product rules.
Consider a function g de�ned on Kt. Intuitively the procedure can be

viewed as \stretching" the function g to be de�ned on Kq so that the volume
under g is conserved. The following proposition de�nes the technique precisely.

PROPOSITION 4.1

Let g(�) be a continuous bounded function de�ned on the reference triangle

Kt. Then

Z
Kt

g(�) d� =

Z
Kq

1� y2
2

g

�
�1 +

1� y2
2

(y1 + 1); y2

�
dy: (4.23)

PROOF Consider the (degenerate) mapping

�(y) : y ! �(y) =

 
�1 +

1� y2
2

(y1 + 1)

y2

!

that transforms Kq to Kt. Its Jacobian

det

�
D�

Dy

�
=

1� y2
2

is positive except for the upper edge y2 = 1 where it vanishes. In spite of
this the standard Substitution Theorem can be applied, and (4.23) follows
immediately.
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REMARK 4.3 Notice that the transformation �(y) produces an additional
linear factor (1 � y2)=2 behind the integral sign. Hence, one has to increase
the order of integration in the y2-direction by one.

4.3.2 Newton-Cotes quadrature

The idea behind the construction of the Newton-Cotes quadrature rules
for the reference triangle is the same as it was for the one-dimensional refer-
ence domain Ka { summation of weighted function values on equidistributed
integration points.

Let us consider an integer number n � 2. The n(n + 1)=2 equidistributed
integration points �n;k1;k2 = [�1;n;k1;k2 ; �2;n;k1;k2 ]; k1 = 1; 2; : : : ; n; k2 =
1; 2; : : : ; n+ 1� k1, can be chosen as

�1;n;k1;k2 = �1 + (k1 � 1)hn; (4.24)

�2;n;k1;k2 = �1 + (k2 � 1)hn;

where hn = 2=(n� 1). The distribution of integration points is illustrated for
n = 2; 3; 5 in Figure 4.1.

ξ

ξ
2

1

1

−1

−1 0 1 ξ
1

ξ
2

1

−1

−1 0 1

ξ

ξ

2

1

1

−1

−1 0 1

FIGURE 4.1: Newton-Cotes integration points for the reference triangle
Kt, n = 2; 3; 5.

The [n(n+1)=2]-point Newton-Cotes quadrature rule for the reference triangle
Kt reads

Z 1

�1

Z 1��1

�1

f(�1; �2) d�2 d�1 �

nX
k1=1

n+1�k1X
k2=1

wn;k1;k2f(�1;n;k1;k2 ; �2;n;k1;k2)

(4.25)
with the coordinates of the integration points de�ned in (4.24).
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Thus, we have n(n+ 1)=2 unknown integration weights wn;k1;k2 which can
be computed by inserting n(n + 1)=2 linearly independent polynomials fk
of the order k, k = 0; 1; : : : ; n � 1, into (4.25) and by solving the resulting
linear system. One can use, e.g., the H1-hierarchic shape functions de�ned in
Paragraph 2.2.3. Notice that the [n(n+1)=2]-point Newton-Cotes quadrature
rule has the order of accuracy n� 1.

REMARK 4.4 Conditioning of the linear system for the integration weights
can be improved by a choice of more sophisticated nodal points. Instead
of the equidistributed points shown in Figure 4.1, one may want to use the
Gauss-Lobatto points (see Figure 1.2).

4.3.3 Gauss quadrature

We have seen already in Paragraph 4.2.2 that although the Gauss quadra-
ture rules in 2D are designed following the same principles as in one spatial
dimension, the calculation of the corresponding integration points and weights
is much more diÆcult.
The fundamental equation for the construction of the integration points

and weights for the reference triangle Kt reads

Z 1

�1

Z 1��1

�1

f(�1; �2) d�2 d�1 �

mX
k=1

wkf(�1;k; �2;k); (4.26)

wherem denotes the number of integration points. Each point is characterized
by three unknowns: wk, �1;k and �2;k. In order to illustrate complications we
have to face when determining their values, let us briey analyze the formula
for complete polynomials of the order p = 1 and p = 2.
The �rst-order polynomial f(�1; �2) = a0 + a1�1 + a2�2 does not cause any

diÆculties yet. In this case m = 1 and we easily obtain three equations,

w1 = 2; w1�1;1 = �2=3; w1�2;1 = �2=3; (4.27)

the solution of which is

w1 = 2; �1;1 = �1=3; �2;1 = �1=3: (4.28)

The number of terms of complete quadratic polynomial is 6 and the minimum
number of the Gaussian points is 2 (leading to 6 unknowns). The system of
equations for the coordinates and weights now reads

w1 + w2 = 2; (4.29)

w1�1;1 + w1�1;2 = �2=3;
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w1�2;1 + w1�2;2 = �2=3;

w1�1;1�2;1 + w1�1;2�2;2 = 0;

w1�
2
1;1 + w1�

2
1;2 = 2=3;

w1�
2
2;1 + w1�

2
2;2 = 2=3:

These equations, unfortunately, are not independent and an unambiguous
solution does not exist. That is why at least three points instead of two have
to be chosen to ensure that (4.26) is valid.
The same holds for polynomials of higher degrees. Moreover, the number

n of terms of a complete polynomial of order p is often not divisible by three.
For p = 3, for example, n = (p+ 1)(p+ 2)=2 = 10, so that we have to use at
least four Gaussian points.
DiÆculties of this kind are common for problems associated with solution

of systems of nonlinear algebraic equations, and make the calculation of the
integration points and weights for higher values of p practically infeasible by
standard methods or mathematical software.
Lyness [133] proposed a sophisticated algorithm based on determining the

points and weights within an equilateral triangle in polar coordinates, taking
advantage of its multiple symmetries. The algorithm provides the minimum
number of Gaussian points for any polynomial order p and strongly reduces
the size of the nonlinear system. Dunavant [74] extended the algorithm and
calculated the points and weights up to the order p = 20 (some weights being
negative and some points lying outside the triangle). Position of integration
points and values of the weights corresponding to other triangles can be ob-
tained by a simple aÆne transformation.
The fact that some of the weights are negative means that the stability of

the quadrature will tend to decrease when integrating oscillatory functions
whose polynomial behavior exceeds the order of accuracy of the quadrature
formulae. In this case the schemes still can be used, but one has to combine
them with spatial re�nements of the reference element. If oscillations (or
other excessive nonlinearities) in the integrated functions are expected, an
application of adaptive formulae that compare results from several re�nement
levels may be a good idea.

4.3.4 Tables of Gauss integration points and weights

Dunavant [74] provides an overview of minimum numbers of quadrature
points for Gaussian quadrature over triangles in Table 4.41.
Tables 4.42 { 4.48 give an overview of Gaussian integration points and

weights calculated in [133, 74] and transformed to the reference triangle Kt.
Additional Gauss quadrature rules up to the order p = 20 can be found on
the CD-ROM included with this book. A survey of numerical quadrature over
triangles can be found in [132].
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TABLE 4.41: Minimum numbers of quadrature points for
the Gauss quadrature over triangles.

Polyn. Known min. Predicted min. Achieved
order num. of points num. of points num. of points

1 1 1
2 3 3
3 4 4
4 6 6
5 7 7
6 12 12
7 13 13
8 16 16
9 19 19
10 24 25
11 27 27
12 33 33
13 36 37
14 40 42
15 45 48
16 51 52
17 55 61
18 63 70
19 67 73
20 73 79

TABLE 4.42: Gauss quadrature on Kt, order p = 1.

Point # �1-Coordinate �2-Coordinate Weight

1. -0.33333 33333 33333 -0.33333 33333 33333 2.00000 00000 00000

TABLE 4.43: Gauss quadrature on Kt, order p = 2.

Point # �1-Coordinate �2-Coordinate Weight

1. -0.66666 66666 66667 -0.66666 66666 66667 0.66666 66666 66667
2. -0.66666 66666 66667 0.33333 33333 33333 0.66666 66666 66667
3. 0.33333 33333 33333 -0.66666 66666 66667 0.66666 66666 66667

TABLE 4.44: Gauss quadrature on Kt, order p = 3.

Point # �1-Coordinate �2-Coordinate Weight

1. -0.33333 33333 33333 -0.33333 33333 33333 -1.12500 00000 00000
2. -0.60000 00000 00000 -0.60000 00000 00000 1.04166 66666 66667
3. -0.60000 00000 00000 0.20000 00000 00000 1.04166 66666 66667
4. 0.20000 00000 00000 -0.60000 00000 00000 1.04166 66666 66667

TABLE 4.45: Gauss quadrature on Kt, order p = 4.
Point # �1-Coordinate �2-Coordinate Weight

1. -0.10810 30181 68070 -0.10810 30181 68070 0.44676 31793 56022
2. -0.10810 30181 68070 -0.78379 39636 63860 0.44676 31793 56022
3. -0.78379 39636 63860 -0.10810 30181 68070 0.44676 31793 56022
4. -0.81684 75729 80458 -0.81684 75729 80458 0.21990 34873 10644
5. -0.81684 75729 80458 0.63369 51459 60918 0.21990 34873 10644
6. 0.63369 51459 60918 -0.81684 75729 80458 0.21990 34873 10644
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TABLE 4.46: Gauss quadrature on Kt, order p = 5.

Point # �1-Coordinate �2-Coordinate Weight

1. -0.33333 33333 33333 -0.33333 33333 33333 0.45000 00000 00000
2. -0.05971 58717 89770 -0.05971 58717 89770 0.26478 83055 77012
3. -0.05971 58717 89770 -0.88056 82564 20460 0.26478 83055 77012
4. -0.88056 82564 20460 -0.05971 58717 89770 0.26478 83055 77012
5. -0.79742 69853 53088 -0.79742 69853 53088 0.25187 83610 89654
6. -0.79742 69853 53088 0.59485 39707 06174 0.25187 83610 89654
7. 0.59485 39707 06174 -0.79742 69853 53088 0.25187 83610 89654

TABLE 4.47: Gauss quadrature on Kt, order p = 6.

Point # �1-Coordinate �2-Coordinate Weight

1. -0.50142 65096 58180 -0.50142 65096 58180 0.23357 25514 52758
2. -0.50142 65096 58180 0.00285 30193 16358 0.23357 25514 52758
3. 0.00285 30193 16358 -0.50142 65096 58180 0.23357 25514 52758
4. -0.87382 19710 16996 -0.87382 19710 16996 0.10168 98127 40414
5. -0.87382 19710 16996 0.74764 39420 33992 0.10168 98127 40414
6. 0.74764 39420 33992 -0.87382 19710 16996 0.10168 98127 40414
7. -0.37929 50979 32432 0.27300 49982 42798 0.16570 21512 36748
8. 0.27300 49982 42798 -0.89370 99003 10366 0.16570 21512 36748
9. -0.89370 99003 10366 -0.37929 50979 32432 0.16570 21512 36748
10. -0.37929 50979 32432 -0.89370 99003 10366 0.16570 21512 36748
11. 0.27300 49982 42798 -0.37929 50979 32432 0.16570 21512 36748
12. -0.89370 99003 10366 0.27300 49982 42798 0.16570 21512 36748

TABLE 4.48: Gauss quadrature on Kt, order p = 7. See the
companion CD-ROM for additional Gauss quadrature rules up to the
order p = 20.

Point # �1-Coordinate �2-Coordinate Weight

1. -0.33333 33333 33333 -0.33333 33333 33333 -0.29914 00889 35364
2. -0.47930 80678 41920 -0.47930 80678 41920 0.35123 05148 66416
3. -0.47930 80678 41920 -0.04138 38643 16160 0.35123 05148 66416
4. -0.04138 38643 16160 -0.47930 80678 41920 0.35123 05148 66416
5. -0.86973 97941 95568 -0.86973 97941 95568 0.10669 44712 17676
6. -0.86973 97941 95568 0.73947 95883 91136 0.10669 44712 17676
7. 0.73947 95883 91136 -0.86973 97941 95568 0.10669 44712 17676
8. -0.37426 90079 90252 0.27688 83771 39620 0.15422 75217 80514
9. 0.27688 83771 39620 -0.90261 93691 49368 0.15422 75217 80514
10. -0.90261 93691 49368 -0.37426 90079 90252 0.15422 75217 80514
11. -0.37426 90079 90252 -0.90261 93691 49368 0.15422 75217 80514
12. 0.27688 83771 39620 -0.37426 90079 90252 0.15422 75217 80514
13. -0.90261 93691 49368 0.27688 83771 39620 0.15422 75217 80514
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4.4 Reference brick KB

This section is devoted to higher-order numerical quadrature on the ref-
erence brick domain KB. The product geometry of KB is analogous to the
geometry of the reference quadrilateral Kq, and therefore also the quadra-
ture schemes exhibit common features. Again we will mention a simple and
less eÆcient product scheme with practically unlimited order of accuracy, and
several more economical Gaussian quadrature rules.

4.4.1 Composite Gauss quadrature

The simplest quadrature rules can be constructed by combining one-di-
mensional Gauss formulae in the three axial directions �1; �2; �3. Let the
quadrature rule

Z
Ka

f(�) d� �

MaX
i=1

wga;if(yga;i); (4.30)

where yga;i; wga;i are Gauss integration points and weights corresponding to
the one-dimensional reference domain Ka introduced in Paragraph 4.1.4, in-
tegrate exactly all polynomials of the order p and lower. It is easy to see that
the formula

Z
K3
a

g(�1; �2; �3) d�1 d�2 d�3 �

MaX
i=1

MaX
j=1

MaX
k=1

wga;iwga;jwga;kg(yga;i; yga;j ; yga;k)

(4.31)
has the order of accuracy p for functions of three independent variables �1; �2; �3
de�ned in KB . The formula (4.31) can easily be generalized to polynomials
with di�erent directional orders of approximation.
Similarly as for quadrilaterals, more eÆcient formulae can be used when

integrating complete polynomials of the order p (with generally n = (p+1)(p+
2)(p + 3)=6 nonzero terms). The formulae that we are going to introduce in
the next paragraph were derived in [75].

4.4.2 Economical Gauss quadrature

The construction of economical Gauss quadrature rules for complete poly-
nomials starts from the manifold symmetry of the reference brick KB (nine
symmetry planes). Let us �rst have a look at the integral

Z 1

�1

Z 1

�1

Z 1

�1

�j1�
k
2 �

l
3 d�3 d�2 d�1; (4.32)
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where j, k and l are positive integers. As long as j, k or l is odd, the integral is
equal to zero. Moreover, due to the symmetry with respect to various planes
it is suÆcient to consider terms in which j � k and k � l only.

4.4.3 Tables of Gauss integration points and weights

Dunavant [75] provides an overview of minimum numbers of quadrature
points for odd polynomial orders in Table 4.49.

TABLE 4.49: Minimum numbers of quadrature points for
the Gaussian quadrature over bricks.

Polyn. Min. num. of Min. num. of Achieved num. of
order nonsym. points sym. points sym. points

1 1 1 1
3 4 6 6
5 10 14 14
7 20 27 27
9 35 52 53
11 56 77 89
13 84 127 151
15 120 175 235
17 165 253 307
19 220 333 435

Dunavant divides the integration points into seven groups with di�erent num-
bers of unknowns and tests to determine the best choice. The results obtained
by solving the corresponding systems of nonlinear equations are given in Ta-
bles 4.50 { 4.53. A list of economical Gauss quadrature rules up to the order
p = 19 with �ve more decimal digits can be found on the CD-ROM included
with this book.

TABLE 4.50: Gauss quadrature on KB , order p = 0; 1.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. 0.00000 00000 0.00000 00000 0.00000 00000 8.00000 00000

TABLE 4.51: Gauss quadrature on KB , order p = 2; 3.
Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. 1.00000 00000 0.00000 00000 0.00000 00000 1.33333 33333
2. -1.00000 00000 0.00000 00000 0.00000 00000 1.33333 33333
3. 0.00000 00000 1.00000 00000 0.00000 00000 1.33333 33333
4. 0.00000 00000 -1.00000 00000 0.00000 00000 1.33333 33333
5. 0.00000 00000 0.00000 00000 1.00000 00000 1.33333 33333
6. 0.00000 00000 0.00000 00000 -1.00000 00000 1.33333 33333
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TABLE 4.52: Gauss quadrature on KB , order p = 4; 5.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. 0.79582 24257 0.00000 00000 0.00000 00000 0.88642 65927
2. -0.79582 24257 0.00000 00000 0.00000 00000 0.88642 65927
3. 0.00000 00000 0.79582 24257 0.00000 00000 0.88642 65927
4. 0.00000 00000 -0.79582 24257 0.00000 00000 0.88642 65927
5. 0.00000 00000 0.00000 00000 0.79582 24257 0.88642 65927
6. 0.00000 00000 0.00000 00000 -0.79582 24257 0.88642 65927
7. 0.75878 69106 0.75878 69106 0.75878 69106 0.33518 00554
8. 0.75878 69106 -0.75878 69106 0.75878 69106 0.33518 00554
9. 0.75878 69106 0.75878 69106 -0.75878 69106 0.33518 00554
10. 0.75878 69106 -0.75878 69106 -0.75878 69106 0.33518 00554
11. -0.75878 69106 0.75878 69106 0.75878 69106 0.33518 00554
12. -0.75878 69106 -0.75878 69106 0.75878 69106 0.33518 00554
13. -0.75878 69106 0.75878 69106 -0.75878 69106 0.33518 00554
14. -0.75878 69106 -0.75878 69106 -0.75878 69106 0.33518 00554

TABLE 4.53: Gauss quadrature on KB , order p = 6; 7. See the
companion CD-ROM for additional economical Gauss quadrature rules up
to the order p = 19.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. 0.00000 00000 0.00000 00000 0.00000 00000 0.78807 34827
2. 0.84841 80014 0.00000 00000 0.00000 00000 0.49936 90023
3. -0.84841 80014 0.00000 00000 0.00000 00000 0.49936 90023
4. 0.00000 00000 0.84841 80014 0.00000 00000 0.49936 90023
5. 0.00000 00000 -0.84841 80014 0.00000 00000 0.49936 90023
6. 0.00000 00000 0.00000 00000 0.84841 80014 0.49936 90023
7. 0.00000 00000 0.00000 00000 -0.84841 80014 0.49936 90023
8. 0.65281 64721 0.65281 64721 0.65281 64721 0.47850 84494
9. 0.65281 64721 -0.65281 64721 0.65281 64721 0.47850 84494
10. 0.65281 64721 0.65281 64721 -0.65281 64721 0.47850 84494
11. 0.65281 64721 -0.65281 64721 -0.65281 64721 0.47850 84494
12. -0.65281 64721 0.65281 64721 0.65281 64721 0.47850 84494
13. -0.65281 64721 -0.65281 64721 0.65281 64721 0.47850 84494
14. -0.65281 64721 0.65281 64721 -0.65281 64721 0.47850 84494
15. -0.65281 64721 -0.65281 64721 -0.65281 64721 0.47850 84494
16. 0.00000 00000 1.10641 28986 1.10641 28986 0.03230 37423
17. 0.00000 00000 -1.10641 28986 1.10641 28986 0.03230 37423
18. 0.00000 00000 1.10641 28986 -1.10641 28986 0.03230 37423
19. 0.00000 00000 -1.10641 28986 -1.10641 28986 0.03230 37423
20. 1.10641 28986 0.00000 00000 1.10641 28986 0.03230 37423
21. -1.10641 28986 0.00000 00000 1.10641 28986 0.03230 37423
22. 1.10641 28986 0.00000 00000 -1.10641 28986 0.03230 37423
23. -1.10641 28986 0.00000 00000 -1.10641 28986 0.03230 37423
24. 1.10641 28986 1.10641 28986 0.00000 00000 0.03230 37423
25. -1.10641 28986 1.10641 28986 0.00000 00000 0.03230 37423
26. 1.10641 28986 -1.10641 28986 0.00000 00000 0.03230 37423
27. -1.10641 28986 -1.10641 28986 0.65281 64721 0.03230 37423
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4.5 Reference tetrahedron KT

In this paragraph we introduce several higher-order quadrature schemes for
the reference tetrahedral domain KT . Of course we are mostly interested in
economical Gauss quadrature rules, but for higher polynomial orders (p > 9)
their design is extremely diÆcult. In Paragraph 4.5.2 we will present the best
selection of optimal and suboptimal Gauss quadrature rules that we found.
Frequently used product rules, which are based on a degenerate mapping

fromKB toKT and the Substitution Theorem, will be described in Paragraph
4.5.1. This time we will not address explicitly the Newton-Cotes quadrature
formulae which can be constructed analogously as in the triangular case (Para-
graph 4.3.2).

4.5.1 Translation of quadrature to the reference brick KB

This approach is relevant for extremely high orders of accuracy where bet-
ter quadrature rules are not available. One also can use it as a quick �x for
debugging purposes or when for another reason the eÆciency of quadrature
procedures is not important.
Transforming the integrated function to the reference brick KB and ap-

plying either the composite or economical Gauss quadrature formulae (Para-
graphs 4.4.1 and 4.4.2), one ends up with simple quadrature rules for KT .
The idea of the degenerate transform is the same as it was in 2D with the
reference quadrilateral Kq and the reference triangle Kt.

PROPOSITION 4.2

Let g(�) be a continuous bounded function de�ned on the reference tetrahedron

KT . Then

Z
KT

g(�) d� =

Z
KB

(1� y2)(1� y3)
2

8
g

0
BBB@
�1 +

(1� y2)(1� y3)

4
(y1 + 1)

�1 +
(1 + y2)(1� y3)

2
y3

1
CCCA dy:

(4.33)

PROOF Consider the (degenerate) mapping

�(y) : y ! �(y) =

0
BBB@
�1 +

(1� y2)(1� y3)

4
(y1 + 1)

�1 +
(1 + y2)(1� y3)

2
y3

1
CCCA
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that transforms KB to KT . Its Jacobian

det

�
D�

Dy

�
=

(1� y2)(1� y3)
2

8

is positive except for faces y2 = 1; y3 = 1 where it vanishes. Hence, (4.33)
immediately follows from the Substitution Theorem.

REMARK 4.5 Notice that the transformation �(y) produces an additional
polynomial factor (1� y2)(1 � y3)

2=2. One has to increase the order of inte-
gration by one and two in the y2- and y3-direction, respectively.

4.5.2 Economical Gauss quadrature

Economical Gauss quadrature formulae for complete polynomials of the or-
der p � 9 (with generally n = (p + 1)(p + 2)(p + 3)=6 nonzero terms) have
been derived for tetrahedra in [123] and others.
The construction of Gauss quadrature points and weights is based on topo-

logical symmetries within the tetrahedron with vertices w1 = [0; 0; 0], w2 =
[1; 0; 0], w3 = [0; 1; 0], w4 = [0; 0; 1]. We transform the results found in the
literature to the reference tetrahedron KT . The transform � = �(y) is given
by

�1 = 2y1 � 1; �2 = 2y2 � 1; �3 = 2y3 � 1; (4.34)

where y = (y1; y2; y3) and � = (�1; �2; �3) stand for the original and new
coordinates, respectively. The corresponding Jacobian is constant,

det

�
D�

Dy

�
= 8:

The quadrature rules for p � 7 are presented in Tables 4.55 { 4.61.
The complexity of the problem increases rapidly as p > 9. For odd p � 11

one may construct suboptimal Gaussian rules based on combinatorial for-
mulae of variable order for n-simplices derived in [101]. We evaluated these
formulae by Mathematica using a notebook that the reader can utilize to ob-
tain quadrature rules for high odd p's. The parameters t1 and t2 at its end
are set to the polynomial orders for which we evaluate the integration points
and weights. For example, for polynomial orders 1, 3, 5, . . . , 21 we set t1 :=

1 and t2 := 11, i.e., s = 2t - 1, where s is the polynomial order and t is a
counter from t1 to t2. The notebook as well as the tabulated data (with �ve
more decimal digits) are provided on the CD-ROM included with this book.
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4.5.3 Tables of Gauss integration points and weights

Table 4.54 gives an overview of numbers of integration points for the Gauss-
ian quadrature over tetrahedra.

TABLE 4.54: Minimum numbers of quadrature
points for the Gauss quadrature over tetrahedra.

Polynomial Known minimum Achieved
order number of points number of points

1 1 1
2 4 4
3 5 5
4 11 11
5 14 14
6 24 24
7 28 31
8 40 43
9 52 53
10 68
11 126
12
13 210
14
15 330
16
17 495
18
19 715

TABLE 4.55: Gauss quadrature on KT , order p = 1.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. -0.50000 00000 -0.50000 00000 -0.50000 00000 1.33333 33333

TABLE 4.56: Gauss quadrature on KT , order p = 2.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. -0.72360 67977 -0.72360 67977 -0.72360 67977 0.33333 33333
2. 0.17082 03932 -0.72360 67977 -0.72360 67977 0.33333 33333
3. -0.72360 67977 0.17082 03932 -0.72360 67977 0.33333 33333
4. -0.72360 67977 -0.72360 67977 0.17082 03932 0.33333 33333
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TABLE 4.57: Gauss quadrature on KT , order p = 3.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. -0.50000 00000 -0.50000 00000 -0.50000 00000 -1.06666 66666
2. -0.66666 66666 -0.66666 66666 -0.66666 66666 0.60000 00000
3. -0.66666 66666 -0.66666 66666 0.00000 00000 0.60000 00000
4. -0.66666 66666 0.00000 00000 -0.66666 66666 0.60000 00000
5. 0.00000 00000 -0.66666 66666 -0.66666 66666 0.60000 00000

TABLE 4.58: Gauss quadrature on KT , order p = 4.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. -0.50000 00000 -0.50000 00000 -0.50000 00000 -0.10524 44444
2. -0.85714 28571 -0.85714 28571 -0.85714 28571 0.06097 77777
3. -0.85714 28571 -0.85714 28571 0.57142 85714 0.06097 77777
4. -0.85714 28571 0.57142 85714 -0.85714 28571 0.06097 77777
5. 0.57142 85714 -0.85714 28571 -0.85714 28571 0.06097 77777
6. -0.20119 28476 -0.20119 28476 -0.79880 71523 0.19911 11111
7. -0.20119 28476 -0.79880 71523 -0.20119 28476 0.19911 11111
8. -0.79880 71523 -0.20119 28476 -0.20119 28476 0.19911 11111
9. -0.20119 28476 -0.79880 71523 -0.79880 71523 0.19911 11111
10. -0.79880 71523 -0.20119 28476 -0.79880 71523 0.19911 11111
11. -0.79880 71523 -0.79880 71523 -0.20119 28476 0.19911 11111

TABLE 4.59: Gauss quadrature on KT , order p = 5.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. -0.81452 94993 -0.81452 94993 -0.81452 94993 0.09799 07241
2. 0.44358 84981 -0.81452 94993 -0.81452 94993 0.09799 07241
3. -0.81452 94993 0.44358 84981 -0.81452 94993 0.09799 07241
4. -0.81452 94993 -0.81452 94993 0.44358 84981 0.09799 07241
5. -0.37822 81614 -0.37822 81614 -0.37822 81614 0.15025 05676
6. -0.86531 55155 -0.37822 81614 -0.37822 81614 0.15025 05676
7. -0.37822 81614 -0.86531 55155 -0.37822 81614 0.15025 05676
8. -0.37822 81614 -0.37822 81614 -0.86531 55155 0.15025 05676
9. -0.09100 74082 -0.09100 74082 -0.90899 25917 0.05672 80277
10. -0.09100 74082 -0.90899 25917 -0.09100 74082 0.05672 80277
11. -0.90899 25917 -0.09100 74082 -0.09100 74082 0.05672 80277
12. -0.09100 74082 -0.90899 25917 -0.90899 25917 0.05672 80277
13. -0.90899 25917 -0.09100 74082 -0.90899 25917 0.05672 80277
14. -0.90899 25917 -0.90899 25917 -0.09100 74082 0.05672 80277
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TABLE 4.60: Gauss quadrature on KT , order p = 6.

Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. -0.57079 42574 -0.57079 42574 -0.57079 42574 0.05323 03336
2. -0.28761 72275 -0.57079 42574 -0.57079 42574 0.05323 03336
3. -0.57079 42574 -0.28761 72275 -0.57079 42574 0.05323 03336
4. -0.57079 42574 -0.57079 42574 -0.28761 72275 0.05323 03336
5. -0.91865 20829 -0.91865 20829 -0.91865 20829 0.01343 62814
6. 0.75595 62487 -0.91865 20829 -0.91865 20829 0.01343 62814
7. -0.91865 20829 0.75595 62487 -0.91865 20829 0.01343 62814
8. -0.91865 20829 -0.91865 20829 0.75595 62487 0.01343 62814
9. -0.35532 42197 -0.35532 42197 -0.35532 42197 0.07380 95753
10. -0.93402 73408 -0.35532 42197 -0.35532 42197 0.07380 95753
11. -0.35532 42197 -0.93402 73408 -0.35532 42197 0.07380 95753
12. -0.35532 42197 -0.35532 42197 -0.93402 73408 0.07380 95753
13. -0.87267 79962 -0.87267 79962 -0.46065 53370 0.06428 57142
14. -0.87267 79962 -0.46065 53370 -0.87267 79962 0.06428 57142
15. -0.87267 79962 -0.87267 79962 0.20601 13295 0.06428 57142
16. -0.87267 79962 0.20601 13295 -0.87267 79962 0.06428 57142
17. -0.87267 79962 -0.46065 53370 0.20601 13295 0.06428 57142
18. -0.87267 79962 0.20601 13295 -0.46065 53370 0.06428 57142
19. -0.46065 53370 -0.87267 79962 -0.87267 79962 0.06428 57142
20. -0.46065 53370 -0.87267 79962 0.20601 13295 0.06428 57142
21. -0.46065 53370 0.20601 13295 -0.87267 79962 0.06428 57142
22. 0.20601 13295 -0.87267 79962 -0.46065 53370 0.06428 57142
23. 0.20601 13295 -0.87267 79962 -0.87267 79962 0.06428 57142
24. 0.20601 13295 -0.46065 53370 -0.87267 79962 0.06428 57142
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TABLE 4.61: Gauss quadrature on KT , order p = 7. See the
companion CD-ROM for additional Gauss quadrature rules up to the order
p = 21.
Point # �1-Coordinate �2-Coordinate �3-Coordinate Weight

1. 0.00000 00000 0.00000 00000 -1.00000 00000 0.00776 01410
2. 0.00000 00000 -1.00000 00000 0.00000 00000 0.00776 01410
3. -1.00000 00000 0.00000 00000 0.00000 00000 0.00776 01410
4. -1.00000 00000 -1.00000 00000 0.00000 00000 0.00776 01410
5. -1.00000 00000 0.00000 00000 -1.00000 00000 0.00776 01410
6. 0.00000 00000 -1.00000 00000 -1.00000 00000 0.00776 01410
7. -0.50000 00000 -0.50000 00000 -0.50000 00000 0.14611 37877
8. -0.84357 36153 -0.84357 36153 -0.84357 36153 0.08479 95321
9. -0.84357 36153 -0.84357 36153 0.53072 08460 0.08479 95321
10. -0.84357 36153 0.53072 08460 -0.84357 36153 0.08479 95321
11. 0.53072 08460 -0.84357 36153 -0.84357 36153 0.08479 95321
12. -0.75631 35666 -0.75631 35666 -0.75631 35666 -0.50014 19209
13. -0.75631 35666 -0.75631 35666 0.26894 07000 -0.50014 19209
14. -0.75631 35666 0.26894 07000 -0.75631 35666 -0.50014 19209
15. 0.26894 07000 -0.75631 35666 -0.75631 35666 -0.50014 19209
16. -0.33492 16711 -0.33492 16711 -0.33492 16711 0.03913 14021
17. -0.33492 16711 -0.33492 16711 -0.99523 49866 0.03913 14021
18. -0.33492 16711 -0.99523 49866 -0.33492 16711 0.03913 14021
19. -0.99523 49866 -0.33492 16711 -0.33492 16711 0.03913 14021
20. -0.80000 00000 -0.80000 00000 -0.60000 00000 0.22045 85537
21. -0.80000 00000 -0.60000 00000 -0.80000 00000 0.22045 85537
22. -0.80000 00000 -0.80000 00000 0.20000 00000 0.22045 85537
23. -0.80000 00000 0.20000 00000 -0.80000 00000 0.22045 85537
24. -0.80000 00000 -0.60000 00000 0.20000 00000 0.22045 85537
25. -0.80000 00000 0.20000 00000 -0.60000 00000 0.22045 85537
26. -0.60000 00000 -0.80000 00000 -0.80000 00000 0.22045 85537
27. -0.60000 00000 -0.80000 00000 0.20000 00000 0.22045 85537
28. -0.60000 00000 0.20000 00000 -0.80000 00000 0.22045 85537
29. 0.20000 00000 -0.80000 00000 -0.60000 00000 0.22045 85537
30. 0.20000 00000 -0.80000 00000 -0.80000 00000 0.22045 85537
31. 0.20000 00000 -0.60000 00000 -0.80000 00000 0.22045 85537
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4.6 Reference prism KP

Finally we will deal with numerical quadrature on the reference prism KP .
To the best of our knowledge, no economical Gauss quadrature rules related to
complete higher-order polynomials for this type of domain are known. There-
fore we have to stay with product formulae combining the triangular and
one-dimensional Gauss quadrature rules.

4.6.1 Composite Gauss quadrature

Let the quadrature rule

Z
Ka

f(�)d� �

MaX
i=1

wga;if(yga;i); (4.35)

where yga;i; wga;i are Gauss integration points and weights on the one-dimen-
sional reference domain Ka = (�1; 1), integrate exactly all polynomials of the
order p and lower. Further, let the quadrature rule

Z
Kt

g(�1; �2) d�1 d�2 �

MtX
i=1

wgt;ig(ygt;1;i; ygt;2;i); (4.36)

where Ygt;i = [ygt;1;i; ygt;2;i] are Gauss integration points and weights for the
reference triangle Kt, integrate exactly all polynomials of the order p and
lower. It is easy to see that the formula

Z
Ka

Z
Kt

h(�1; �2; �3) d�1 d�2 d�3 �

MaX
i=1

MtX
j=1

wga;iwgt;jh(ygt;1;j ; ygt;2;j ; yga;i)

(4.37)
integrates exactly all polynomials (of three independent variables �1; �2; �3) of
the order p and lower on the reference prism KP .
Notice that we can also use other higher-order quadrature rules for the

reference domains Ka and Kt in order to produce composite quadrature rules
for the reference prism KP in the way presented.
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Chapter 5

Numerical solution of �nite element
equations

Discretization of the boundary or initial-boundary value problem means the
approximation of the original problem by a �nite dimensional problem. This
resulting problem is, however, nonlinear if the original problem was nonlinear.
In the case of an elliptic problem, the necessary linearization can be applied
to the original problem or to the �nite dimensional problem. In both cases
we �nally obtain a system of linear algebraic equations. We are concerned
with such real-valued systems in this chapter. Most methods presented can
be applied to complex-valued systems, too, after proper modi�cation.

The resulting system is usually sparse, i.e., its matrix has a very small
number of nonzero entries. It is advantageous to take this special property
of the matrix into account when solving the system since it can yield storage
as well as computer time savings. On the other hand, the order of such a
matrix may be even several million and the matrix and the system are called
large. In some cases, the resulting matrix is symmetric and, moreover, positive
de�nite. This feature as well as some other particular properties of the matrix
of the system can also be utilized when the system is solved. (Note that if
the matrix of the system is complex-valued then the property corresponding
to the symmetry of the real-valued matrix is that the matrix be Hermitian.)

Numerical methods for solving linear algebraic systems can be split into
two large groups, namely the direct and the iterative methods. Direct methods
yield { if all computations were carried out without roundo� { the true solution
of the system after a �nite number of arithmetic operations that is known in
advance. They are discussed in Section 5.1. Iterative methods start with some
initial approximation (initial guess) to the solution and construct a sequence
of approximations that converges to the true solution. Some basic methods
of this kind are presented in Section 5.2. An important part of the analysis
of convergence is then also the choice of eÆcient stopping criteria.

If the original problem is not elliptic but time-dependent, it can be �rst
discretized only in the space variable(s). This approach, called the method

of lines, is presented briey in Paragraph 5.4.1. It results in an initial value

problem for a system of ordinary di�erential equations, i.e., a problem that
must be further discretized in the time variable in the next step. This is
carried out by methods for approximate solving initial value problems. The

251
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process mentioned also implicitly includes solving linear algebraic equations
and is the subject of Section 5.4.
We focus on some typical and frequently used methods and their available

software implementation in this chapter. In general, we refer to the websites
gams.nist.gov (Guide to Available Mathematical Software of the National
Institute of Standards and Technology, U.S.A.) or netlib.bell-labs.com

(Repository of Mathematical Software) with several mirrors (e.g., netlib.no)
where there is a very comprehensive list of related software. Moreover, we also
refer, e.g., to books [10, 24, 37, 158] with the corresponding software available
on the web.
Some sections of this chapter are of an introductory nature only. It is, for

example, hard to explain special elimination software for solving sparse linear
systems without recalling the Gaussian elimination in its general form.

5.1 Direct methods for linear algebraic equations

Most direct methods for the solution of linear algebraic equations are based
on the well-known principle of the Gaussian elimination or the algorithmi-
cally equivalent matrix factorization procedure described briey in Paragraph
5.1.1. There are some particular implementations of the general algorithm for
systems of special properties or special forms shown in the rest of this section.
The conjugate gradient method is also a direct method but it is used in

practice as an iterative method, cf. Paragraph 5.2.2.

5.1.1 Gaussian elimination and matrix factorization

Throughout Sections 5.1 to 5.3 we consider the system of n linear algebraic
equations

Ax = b (5.1)

with a real-valued nonsingular square matrix A, right-hand part b and un-
known vector x. Most methods presented in what follows can, however, also
be implemented with complex-valued quantities.
The aim of the Gaussian elimination can be described as �nding a matrix

factorization

A = LU; (5.2)

where L is a lower and U an upper triangular matrix. The system (5.1) is
then rewritten as

LUx = b

© 2004 by Chapman & Hall/CRC



Numerical solution of �nite element equations 253

and solved in two steps,

Ly = b; Ux = y: (5.3)

These systems are triangular and can be solved very easily, the �rst from top
to bottom (forward substitution), the other one from bottom to top (backsub-
stitution), using altogether O(n2) arithmetic operations.
In the traditional Gaussian elimination, the matrix factorization is looked

for in n � 1 steps in an implicit way: If a11 6= 0 the �rst row successively
multiplied by a proper number is subtracted from rows 2 to n (including
the right-hand part components) to replace the subdiagonal entries of the
�rst column of the matrix A by zeros. If the entry in position (2; 2) in this
new matrix is nonzero the second row successively multiplied by a proper
number is subtracted from rows 3 to n, etc. Finally, we get just the upper
triangular matrix U and the individual multipliers constructed form the lower
triangular matrix L. The right-hand part b is replaced by the vector y. We
thus have constructed the factorization (5.2) and, at the same time, solved
the lower tringular system Ly = b. It remains to solve the upper triangular
system Ux = y. The Gaussian elimination just described is algorithmically
equivalent to the matrix factorization approach and both the methods are
interchangeable in theoretical considerations.
We have not yet said what to do if, e.g., a11 = 0. However, let us �rst

present formulae for the matrix factorization. The factorization is unique
if some further condition is added, e.g., the condition that all the diagonal
entries of L are 1's. These diagonal entries thus need not be stored. The
version of the factorization that builds successively the columns of L follows
but is not the only possibility.

u11 = a11;
li1 = ai1=u11; i = 2; : : : ; n;
u1r = a1r;

uir = air �

i�1X
j=1

lijujr; i = 2; : : : ; r;

lir =
1

urr

0
@air �

r�1X
j=1

lijujr

1
A; i = r + 1; : : : ; n;

for r = 2; : : : ; n:

(5.4)

Notice that it is not necessary to use an extra storage for the matrices L and
U since they successively replace the entries of A that are not further needed.
In general, we need O(n3) arithmetic operations to solve the system (5.1).
The procedure (5.4) fails if the entry urr we want to divide by is zero. The

easy solution is to interchange row r with some row that follows, i.e., a row
between r + 1 and n. It can be shown that if the matrix A is nonsingular
there exists such a row with a nonzero entry in column r.
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Moreover, the accumulation of roundo� error depends on the condition

number of the matrix A and can be minimized [205] if we choose, for the
elimination in step r, such a row among rows r; : : : ; n, say row k, whose entry
in column r is maximal in magnitude. Such an entry is called the pivot and
the procedure is called the partial pivoting. It apparently requires O(n2)
additional arithmetic operations if applied in each step of the factorization.
The factorization procedure can equivalently be partially pivoted looking for
the maximal in magnitude pivot in some column of row r and interchanging
the related columns. In addition, complete pivoting can be carried out in such
a way that the pivot is looked for in the whole submatrix consisting of rows
as well as columns r; : : : ; n. This complete pivoting, however, requires O(n3)
arithmetic operations and is used rather rarely. In no case is any interchange
of rows and/or columns carried out in the storage. It is suÆcient to keep the
row and column index permutations in the corresponding integer vectors.

For algorithmic reasons, the factorization (5.2) is often replaced by the
factorization

A = LDU; (5.5)

where D is a diagonal matrix. We have to solve a system with a diagonal
matrix in addition to the systems (5.3) but solving a diagonal system needs
only O(n) arithmetic operations.

Moreover, if the matrix A is symmetric the factorization (5.2) can have the
form (Choleski factorization)

A = LLT or A = LDLT ; (5.6)

where T denotes the transpose. We must, however, drop the requirement
that the matrix L has 1's on its diagonal. We can save almost one half of
the arithmetic operations in this way. But if the real-valued matrix A is not
positive de�nite this factorization may lead to complex-valued entries of L.
No pivoting can be applied since it would destroy the symmetry of the matrix.

Notice that as soon as we have computed the factorization (5.2) we can use
it for solving the system (5.1) with more than one right-hand part via the
equations (5.3) whose solution requires O(n2) arithmetic operations only.

No matter what method is used, the numerical solution of a linear algebraic
system is, in general, more or less inuenced or even destroyed by roundo�
error that may accumulate in the course of the computation. The backward
analysis [205] is used to study the error caused by roundo� in algebraic pro-
cesses.

If necessary it is usually feasible to improve the computed solution x0 of
the system (5.1) by a simple iterative process requiring O(n2) arithmetic op-
erations in each step [69]. Denote by r0 = b�Ax0 the residual of the system.
If we could solve the system
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Az = r0 (5.7)

exactly then the vector x0 + z would be the true solution of the system (5.1)
since A(x0 + z) = Ax0 +Az = Ax0 + r0 = b.

Let us solve the system (5.7) numerically with the help of the same factor-
ization (5.2) we used for solving the system (5.1). We need O(n2) arithmetic
operations only, namely for solving the triangular systems (5.3). Denote by
z0 the computed solution of the system (5.7). If the loss of accuracy is not
fatal the vector x1 = x0 + z0 is an improved and more accurate solution of
the system (5.1). We can continue this procedure as long as the norm of the
residual decreases.

In general, we start with the initial approximation x0 and compute succes-
sively

xk = xk�1 + zk�1;

where zk�1 is the numerically computed solution of the system Az = rk�1
and

rk�1 = b�Axk�1 (5.8)

is the numerically computed residual. Since we expect components of the
residual rk�1 to be small and since they are computed as a di�erence of the
corresponding components of the vectors b and Axk�1 of almost the same
magnitude it is sometimes recommended to calculate the residual (5.8) more
precisely (cf. [69]). If the two or three iteration steps just described are not
enough to improve the solution it usually means that the accumulation of
roundo� error is fatal (the matrix A of the system is ill-conditioned) and the
iterative procedure described cannot be eÆcient. Notice, however, that the
error of the solution of the system (5.1) may be large even if the corresponding
residual is small.

If the matrix A of the system (5.1) is symmetric positive de�nite, i.e., if

(Aw;w) > 0

for any nonzero vector w, then no pivoting can improve the accumulation of
roundo� error [205] and, moreover, the Gaussian elimination can be carried
out in an arbitrary order of rows and columns. (Naturally, any permutation
of rows should have been accompanied by the same permutation of columns
and vice versa. Otherwise the matrix would lose its symmetry.)

Further, if the matrix A of the system (5.1) is symmetric positive de�nite
(or Hermitian positive de�nite in the complex-valued case) several iterative
methods of Section 5.2 can be used to obtain the solution of the system in a
very eÆcient way.
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5.1.2 Banded systems

In the �nite element discretization of 1D problems, the resulting matrix of
the linear algebraic system is often symmetric and tridiagonal. This section
is, in general, devoted to banded systems (systems with a banded matrix).
The matrix is called banded of bandwidth 2m+ 1 if

aij = 0 for ji� jj > m: (5.9)

This de�nition of a bandmatrix certainly does not exclude the situation when
there are some zero entries inside the band.
A special case is a diagonal matrix with m = 0. To solve the system (5.1)

with a diagonal matrix is a particularly easy task: it apparently requires
O(n) arithmetic operations only. For tridiagonal matrices (with m = 1),
there is a straightforward modi�cation of the Gaussian elimination (matrix
factorization) that operates on nonzero entries of the matrix only and it only
stores these nonzero entries concentrated on the three parallel diagonals of
the matrix A as three vectors of n components and, in addition, two auxiliary
vectors � and �. Such a special elimination procedure is usually called the
double sweep method, requires O(n) arithmetic operations only (as compared
with O(n3) operations needed in general), and consists of the evaluation of
the formulae

�1 = �a12=a11; �1 = b1=a11;

�i = �
ai;i+1

ai;i�1�i�1 + aii
; i = 2; : : : ; n� 1;

�i =
bi � ai;i�1�i�1
ai;i�1�i�1 + aii

; i = 2; : : : ; n;

(5.10)

for the factorization and forward substitution, and

xn = �n;
xi = �ixi+1 + �i; i = n� 1; : : : ; 1;

(5.11)

for the backsubstitution.
We do not perform pivoting in the formulae (5.10) and (5.11) since inter-

changes of rows or columns of A would destroy its tridiagonal structure. It
may thus happen that division by zero occurs in the course of the computa-
tion even when A is nonsingular or when the solution of the system computed
is unfavorably inuenced by roundo�. The conditions for feasibility of the
algorithm are presented, e.g., in [92, 199]. An example of such a condition is
the positive de�niteness of A.
The method (5.10), (5.11) can be generalized even to systems whose ma-

trices have nonzero entries located on more than three diagonals (see, e.g.,
[171]). The number of operations required to solve the system (5.1) is again
O(n) if the bandwidth 2m+ 1 is independent of n.
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A method for solving the system (5.1) of n equations is called fast if it
needs at most O(n logn) arithmetic operations to yield the solution. The
logarithmic factor inuences the number of operations weakly if n is large.
The term \fast algorithm" is used in other branches of numerical analysis, too
(cf., e.g., the fast Fourier transform [51]). The factorization method (5.10) and
(5.11) for a tridiagonal system is thus fast in this sense. In general, if A is a
bandmatrix of order n then the triangular matrices L and U computed by the
matrix factorization (Paragraph 5.1.1) are also bandmatrices with the samem
(i.e., lij = 0 for i� j > m and uij = 0 for j� i > m). This property is used to
construct special algorithms that require O(m2n) arithmetic operations and
storage of size (2m + 1)n when the system (5.1) is solved. Pivoting is not
possible in this case, either.
In the next section we are concerned with the fact that even if there are

some zero entries in the band of the matrix A many of them change to nonzero
entries in the bands of the matrices L and U .
Diagonal and tridiagonal matrices and bandmatrices are simple examples

where sparsity can be exploited. Further standard types are, e.g., pro�le
matrices [82] and many others [158].
The discretization of 1D boundary value problems often leads to tridiagonal

matrices while the discretization of 2D and 3D problems on simple structured
grids usually results in bandmatrices.

5.1.3 General sparse systems

The discretization of 2D and 3D problems on unstructured grids and adap-
tively locally re�ned or coarsened grids leads to matrices A that are large but
sparse. Unfortunately, they have no regular zero-nonzero structure like, e.g.,
bandmatrices have. We will be concerned with solving such systems by direct
methods in this section.
There are heuristic algorithms (see, e.g., [82, 156]) that transform the matrix

A of the system { with more or less success { into a bandmatrix with a band
as narrow as they can reach. We saw in the previous section that solving
banded systems is very eÆcient.
Implementation of the matrix factorization for sparse matrices whose non-

zero entries are placed in no regular pattern is somewhat more diÆcult. In
the course of the factorization, nonzero entries may appear in the matrices
L and U in places where the corresponding entry of A is zero. The sum
of the numbers of nonzero entries of the matrices L and U , from which the
number of nonzero entries of the original matrix A is subtracted, is called
the �ll-in. Heuristic methods that perform suitable permutations of rows of
A (and in case of A symmetric also the same permutations of columns to
preserve the symmetry) and are capable of minimizing (to some extent) this
�ll-in are applied before the factorization step (see, e.g., [82, 156, 193]). As a
consequence, the number of required arithmetic operations is minimized, too,
since the algorithm operates on nonzero entries only. Moreover, it is necessary
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to ensure in a proper way that only nonzero entries of A, L and U are stored
(see, e.g., [156], cf. also Paragraph 1.3.5).

Let us demonstrate with a simple example the importance of proper permu-
tations of rows and columns of a sparse matrix for the eÆciency of the solution
process [72, 82, 137, 156]. As the individual numerical values of nonzero en-
tries are not important in this step of the algorithm we denote them by crosses
and do not show zero entries at all in the following schemes.

Solving a system with the matrix

A =

2
66664

� � � � �
� �
� �
� �
� �

3
77775

of order 5 by the Gaussian elimination, we naturally start with elimination
of the �rst unknown from all the equations except for the �rst one, which is
just used for this elimination step (cf. Paragraph 5.1.1). The result is that the
�rst column of the matrix contains zeros in all the rows except for the �rst
one, i.e.,

2
66664

� � � � �
� � � �
� � � �
� � � �
� � � �

3
77775

whose �ll-in is now maximal. Further elimination steps lead �nally to the
�lled upper triangular matrix

2
66664

� � � � �
� � � �
� � �
� �
�

3
77775 :

Try another approach. The notion of symmetric matrix can be generalized in
a natural way. We say that the matrix A possesses the symmetric structure
when aij 6= 0 holds if and only if aji 6= 0. Therefore, every symmetric matrix
has symmetric structure.

Before elimination, we thus carry out such a permutation of rows and (to
preserve the symmetry of its structure) columns of A that transforms the
order f1; 2; 3; 4; 5g of rows and columns into the order f5; 4; 3; 2; 1g. We get
the matrix
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2
66664

� �
� �
� �
� �

� � � � �

3
77775 :

The same �rst elimination step as before now gives the matrix
2
66664

� �
� �
� �
� �

� � � �

3
77775

with no �ll-in. After the next elimination steps we �nally obtain the upper
triangular matrix

2
66664

� �
� �
� �
� �
�

3
77775

with no �ll-in at all.
The above-mentioned permutations are not performed with matrix rows

and columns in the storage. The order in which the Gaussian elimination
(matrix factorization) is to be carried out is stored in an auxiliary integer
vector of length n.
A simple application of the theory of directed graphs yields the description

of �ll-in in the course of the Gaussian elimination [156] and heuristic methods
to minimize the �ll-in (e.g., the minimum degree ordering, reverse Cuthill-
McKee algorithm, Gibbs, Pool, and Stockmayer algorithm) are based on this
graph theory description.
The eÆciency of solving a system depends on the way of storing nonzero en-

tries and on the particular elimination or factorization algorithm that employs
this storing system and, moreover, minimizes the �ll-in as much as possible.
In computer memory, only nonzero entries of A as well as of L and U (includ-
ing �ll-in) are stored. A simple (but rather ineÆcient) model is to store a real
value of the entry together with two integer values, i.e., its row and column
indices, in three computer words.
The less the �ll-in is, the fewer entries of the matrices L and U are computed,

the fewer arithmetic operations are carried out, and the less storage is needed.
Moreover, the fewer operations carried out, the less the inuence of roundo�.
This is the philosophy of very general program packages for solving large
sparse systems of linear algebraic equations by direct methods described, e.g.,
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in [72] or used, e.g., in [24]. They proceed in three steps: (1) Analyze, (2)
Factorize, (3) Operate (or Solve). Let us briey characterize these steps.
The Analyze step precedes the factorization. It carries out the minimization

of �ll-in and its result is a permutation of rows (and possibly also columns for
the matrix of symmetric structure). In this step, we need neither numerical
values of the entries of the matrix A of the system nor the components of the
right-hand part. If our task is to solve several systems with matrices of the
same zero-nonzero structure this Analyze step is performed only once.
If it is advantageous for the storage method for the nonzero entries of L and

U the next part of Analyze step may be also the symbolic factorization whose
aim is to �nd the exact positions of new nonzero entries after factorization
(that correspond to the �ll-in) and reserve memory for them in the storage
scheme.
The next step is Factorize, i.e., the numerical factorization. Now the numer-

ical values of the entries of A are needed (but not the values of the components
of the right-hand part yet). The results of the step are factors L and U stored
in some particular way in the memory. If we solve several systems with the
same matrix A and di�erent right-hand parts we can use the factorization
obtained in this step several times.
The last step is Operate, i.e., solving the systems (5.3) or systems with

the factors resulting from (5.5). Numerical values of the right-hand part
components are now needed.
The aim of the Analyze/Factorize/Operate procedure is to save computer

time as well as memory. Unfortunately, the Analyze step may be very time-
consuming and, therefore, it pays to use procedures of this sort only when
we are to solve a large number of systems with the same matrix and di�erent
right-hand parts or at least with matrices of the same zero-nonzero structure.
This may be, e.g., the situation when the Newton method is used to linearize
a nonlinear problem.

5.1.4 Fast methods for special systems

There are special direct methods that can provide the solution of a system
if its matrix has a particular form. These methods are fast in the sense we
introduced in Paragraph 5.1.2. In the �nite element method, matrices of
systems are rather rarely Vandermonde, Toeplitz, etc. Nevertheless, special
direct algorithms for these matrices can be found, e.g., in [158].
On structured 2D grids, the discretization can lead to such a matrix that

satis�es the conditions necessary for the use of the cyclic reduction method

briey described in what follows. It is a fast direct method that, for some
discretizations, can also be used as part of some iterative process converging
to the solution of the discrete problem.
Let us solve the system (5.1) now in the notation

Bu = v (5.12)
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and let it be written in the block form

2
666664

A �T
�T A �T

. . .
. . .

. . .

�T A �T
�T A

3
777775

2
666664

u1
u2
...
uN�1
uN

3
777775
=

2
666664

v1
v2
...
vN�1
vN

3
777775
: (5.13)

Zero (null) blocks are not shown in the matrix B. It has N block rows as well
as columns and blocks A and T are square matrices of order M where both
M and N are integers. The square matrix B is called block tridiagonal and
its \pointwise" order is n =MN here. We assume that

N = 2s+1 � 1 (5.14)

with a suitable integer s for the same reason as in the fast Fourier transform
[51].
There are further necessary conditions for feasibility of the cyclic reduction

[69, 190]. The strongest of them is that the matrices A and T commute, i.e.,

AT = TA: (5.15)

This condition is ful�lled, e.g., in the trivial case T = I that is rather frequent
in discretizations. Some further conditions on A and T (their sparsity) are
needed [190] in order that the algorithm be fast. If they are satis�ed the
number of arithmetic operations of the algorithm is O(n logn) as compared
with O(n3) in the standard Gaussian elimination.
The derivation of the cyclic reduction algorithm follows the idea of the

derivation of the fast Fourier transform. It consists of successive and system-
atic Gaussian elimination in the block system (5.13) that reduces the number
of unknowns by about half in each algorithm step and that can also be split
into the elimination and backsubstitution procedures.
Let us turn back to solving the system (5.13). Introduce formally the vectors

u0 = 0 and uN+1 = 0

of M components. Then we can rewrite the odd block rows of the system
(5.13) as

�Tu2j +Au2j+1 � Tu2j+2 = v2j+1; (5.16)

j = 0; : : : ; 2s � 1. As soon as we know the values of vectors u2j and u2j+2 we
can calculate u2j+1 from (5.16) in such a way that we solve the block equation

Au2j+1 = Tu2j + v2j+1 + Tu2j+2; (5.17)

j = 0; : : : ; 2s � 1. The block equation (5.17) is, if considered \pointwise," a
system of M linear algebraic equations for M unknown components of the
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vector u2j+1 that can be solved, e.g., by the Gaussian elimination. We will,
therefore, assume that the matrix A is nonsingular in what follows. We will
discuss the procedure for solving (5.17) later.
Let us now write down an even block row and two odd rows that precede

and follow it. We then have the system of three block equations

� Tu2j�2 + Au2j�1 � Tu2j = v2j�1;
� Tu2j�1 + Au2j � Tu2j+1 = v2j ;

� Tu2j + Au2j+1 � Tu2j+2 = v2j+1;

j = 1; : : : ; 2s � 1. We multiply the �rst equation by the matrix T , the second
one by the matrix A, and the third one by the matrix T again, every time
from the left. We then get

� T 2u2j�2 + TAu2j�1 � T 2u2j = Tv2j�1;
� ATu2j�1 + A2u2j � ATu2j+1 = Av2j ;

� T 2u2j + TAu2j+1 � T 2u2j+2 = Tv2j+1;

j = 1; : : : ; 2s � 1. Adding the �rst and third equations to the second one and
employing the commutativity property (5.15) we �nally get

�T 2u2j�2 + (A2 � 2T 2)u2j � T 2u2j+2 = Tv2j�1 +Av2j + Tv2j+1; (5.18)

j = 1; : : : ; 2s � 1. The block equations (5.18) serve for the calculation of the
unknown vectors u2j with even indices and their number is about one half
compared with the original number of equations N = 2s+1 � 1. If we write
down the matrix of the system we have just obtained we have

2
666664

A2 � 2T 2 �T 2

�T 2 A2 � 2T 2 �T 2

. . .
. . .

. . .

�T 2 A2 � 2T 2 �T 2

�T 2 A2 � 2T 2

3
777775
:

Apparently, this matrix has the same form as the matrix (5.13) of the sys-
tem and satis�es the conditions for performing the next elimination step. If
we proceed further in this way we obviously obtain, after s elimination (or
reduction) steps, a single (block) equation for a single unknown vector. If we
solve this equation we can, with the help of equations of the form (5.17), start
the backsubstitution ending with all the unknown vectors u1; : : : ; uN found.
Since the steps of the algorithm are carried out cyclically we call this the
cyclic reduction method.
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Formally, the cyclic reduction method can be described by recurrent formulae
for the computation of sequences of matrices Ti and Ai, and vectors uij and

vij . We set

T0 = T ; A0 = A; u0j = uj ; v0j = vj ; j = 1; : : : ; 2s+1 � 1; (5.19)

and, in the forward course, we successively compute

Ti = T 2
i�1;

Ai = A2
i�1 � 2T 2

i�1;

uij = ui�12j ; j = 1; : : : ; 2s+1�i � 1;

vij = Ti�1v
i�1
2j�1 +Ai�1v

i�1
2j + Ti�1v

i�1
2j+1; j = 1; : : : ; 2s+1�i � 1;

(5.20)

for i = 1; : : : ; s. The third of the above equations represents the renumbering
of vectors of the unknowns only.
After s steps we obtain a single block equation

Asu
s
1 = vs1; (5.21)

i.e., a system of M equations for M unknowns. We solve the equation (5.21)
and carry out the backsubstitution. In each step, we successively renumber
the unknown vectors

ui2j = ui+1j ; j = 1; : : : ; 2s�i � 1;

put formally

ui0 = ui2s+1�i = 0

and solve systems of order M

Aiu
i
2j+1 = Tiu

i
2j + vi2j+1 + Tiu

i
2j+2; j = 0; : : : ; 2s�i � 1; (5.22)

this time for i = s � 1; : : : ; 1; 0. We assume that all the matrices Ai, i =
0; : : : ; s, are nonsingular to be able to solve the systems (5.21) and (5.22).
We will discuss the numerical stability of this process later.
The most time-consuming components of the algorithm just presented are

the computation of the right-hand parts in the last equation of (5.20) and
in (5.22), and solution of the systems (5.21) and (5.22). Considering the
recurrence formulae for the computation of Ti and Ai in (5.20), we see that if
T = T0 is diagonal then Ti is diagonal, too. However, it is easy to verify that
if A = A0 is tridiagonal (which is the simplest practical 2D case) then A2

0 has
�ve nonzero diagonals (it is banded with bandwidth m = 2, cf. (5.9)), A2

1 has
seven nonzero diagonals, etc. Moreover, for a �xed M and suÆciently large
N there exists a number K such that the matrices Ai, i � K, are completely
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�lled. Solving the system with the matrix Ai then requires O(M3) arithmetic
operations. The same number of operations in order is needed for computation
of the right-hand parts.
However, it can be shown that there exist factorizations

Ti = T 2i ;

Ai =

2iY
r=1

�
A� 2 cos

(2r � 1)�

2i+1
T

�
:

(5.23)

Apparently, if A is a bandmatrix of bandwidth 2mA + 1 and T that of band-
width 2mT+1 then the factors of Ai in (5.23) have bandwidth 2maxfmA;mT g
+1 and those of Ti the same bandwidth as T , i.e., 2mT + 1.
We use the factorization formulae (5.23) for the computation of the right-

hand parts in (5.20) and (5.22) in an obvious way. We employ the factorization
of A given in (5.23) in the same way as the factorization (5.2) was used in (5.3)
to solve (5.1). Each of the systems is solved by the double sweep method and
requires thus O(M) arithmetic operations. Taking into account the number

22
i

of factors, the number s of steps of the algorithm, and the assumption
(5.14), an easy calculation shows that if A as well as T are bandmatrices then
the number of operations needed is O(MN logN). The base of the logarithm
should be 2 but because we are interested only in the order of the number of
operations the base of the logarithm can be arbitrary.
Therefore, the cyclic reduction method is a fast direct method in the sense

of our de�nition in Paragraph 5.1.2. This direct method belongs to a wide
class of block methods that usually are iterative (cf. Paragraph 1.2.5). The
given system (5.13) is never needed in memory in the complete general form.
We successively operate on M �M blocks only. This is advantageous with
respect to the architecture of both serial and parallel computers where several
\small" systems can even be solved at the same time.
It can be shown that the algorithm just described is, unfortunately, numer-

ically unstable. There is a simple remedy to this drawback. It is suÆcient to
calculate, instead of the sequence vij , two sequences, pij and qij , such that

vij = Aip
i
j + qij

and replace the initial condition (5.19) by its obvious generalization (see, e.g.,
[171]). We now need twice the number of arithmetic operations to carry out
the algorithm (we even have to solve a new sequence of linear algebraic equa-
tions with matrices Ai), but the order of the number of operations remains
unchanged, i.e., O(MN logN).
There are several generalizations of the elliptic problem solved, boundary

conditions imposed, and the assumption (5.14) leading to a more complex
algorithm but, nevertheless, preserving the order of the number of arithmetic
operations, cf., e.g., [190].
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All the algorithms for the cyclic reduction method are available in [190] and
also on the web as freeware mentioned in the introduction to this chapter.

5.2 Iterative methods for linear algebraic equations

Iterative methods for solving linear algebraic systems have become a classic
part of numerical analysis and are treated in a vast literature (see, e.g., [120,
82, 92, 100, 127, 137, 159, 163, 169, 196, 199]). We only present some basic
iterative methods useful for solving large sparse systems. The procedures
given in Paragraphs 5.2.1 to 5.2.3 provide Krylov subspace approximations,
i.e., approximations xk having the property

xk 2 spanfb; Ab; : : : ; Ak�1bg: (5.24)

We show later in Paragraphs 5.2.4 to 5.2.6 how a proper combination of iter-
ative and direct methods (e.g., preconditioning) may lead to the acceleration
of convergence of iterative methods.
In general, the number of arithmetic operations needed for solving a sparse

system of equations iteratively depends on the number of operations required
for the computation of the product Ay where y is some vector (for a single
iteration step) and also on the number of iteration steps to be performed to
reach the accuracy prescribed.
We do not consider roundo� error in this section. A detailed treatment of

this subject can be found, e.g., in [100].
Any practical computation can involve a �nite number of arithmetic oper-

ations only. It would thus be suitable to stop the iterative process in the kth
step if kxk�xtk < " for some tolerance " chosen in advance. We, however, do
not know the true solution xt and thus choose stopping (termination) criteria
mostly in the form

kxk+1 � xkk < "

or

krk+1k < ";

where rk+1 is the residual (5.8).

5.2.1 ORTHOMIN and steepest descent methods

One-point matrix iterative methods for solving the system (5.1) of n equa-
tions consist of the following procedure: We choose an arbitrary initial ap-
proximation x0 and compute further approximations by the formula
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xk+1 = Bkxk + Ckb; k = 0; 1; : : : ;

where Bk and Ck are square matrices of order n constructed in an appropriate
way from A. A new approximation xk+1 is thus computed from the last
preceding approximation xk only. If the method converges and is consistent
(see further) then

lim
k!1

xk = xt; (5.25)

where xt is the true solution of (5.1) and the limit (5.25) is to be understood
in the sense of certain metric, e.g.,

lim
k!1

kxk � xtk = 0;

where

kyk =
p
(y; y)

is the Euclidean norm of an n component vector y.
The iterative procedure

xk+1 = Bxk + Cb; k = 0; 1; : : : ; (5.26)

where x0 is an arbitrary initial approximation, and B and C are square ma-
trices of order n (independent of k), is called a stationary one-point matrix

iterative method for solving the system (5.1). We say that this method is
consistent with the system (5.1) if

CA+B = I;

where I is the identity matrix and B is called the iteration matrix.
Consistency of the method ensures that the convergent sequence of approx-

imations xk tends to the true solution xt. In fact, the iteration formula (5.26)
is transformed into an identity after substituting xt for both xk and xk+1.
The simplest stationary one-point matrix iterative method is obtained from

(5.1) by adding x to both parts of the equation. Then

x = (I �A)x + b; (5.27)

and now putting xk+1 instead of x on the left-hand part of (5.27) and xk
instead of x on the right-hand part, we arrive at the formula

xk+1 = (I �A)xk + b (5.28)

or
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xk+1 = xk + (b�Axk): (5.29)

This procedure is usually called the simple iteration method and is obviously
consistent.
A natural generalization of the procedure (5.29) consists of multiplying the

term b � Axk on the right-hand part by an inverse to a nonsingular matrix
M . We obtain the preconditioned simple iteration method

xk+1 = xk +M�1(b�Axk) (5.30)

that is the basis for deriving several classic iterative methods to be described
in Paragraph 5.2.4.
Let us now consider elementary attempts to improve the simple iteration

(5.29) by introducing dynamically computed parameters into the iteration.
Put

xk+1 = xk + ak(b�Axk); (5.31)

where ak is a real parameter. Multiplying the equation (5.31) by �A and
adding b to both its parts, we �nd out that the residual rk+1 (cf. (5.8))
satis�es

rk+1 = rk � akArk :

Moreover, introducing the error

ek = xt � xk = A�1b� xk;

we similarly �nd out that

ek+1 = ek � akrk : (5.32)

A standard optimization procedure applied to the minimization of krk+1k
gives

ak =
(rk ; Ark)

(Ark ; Ark)
:

If we choose ak in this way the method produces a residual rk+1 that is
obviously equal to rk minus its projection onto Ark. It follows that krk+1k �
krkk with equality if and only if rk is already orthogonal to Ark. This is the
reason why this procedure is called the ORTHOMIN method.
Let us now assume that the matrix A is symmetric positive de�nite. Intro-

ducing the A-norm (energy norm)

kykA =
p
(y;Ay)
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of an n-component vector, we can consider the minimization of the error (5.32)
in this norm. The same reasoning as above now gives

ak =
(ek; Ark)

(rk; Ark)
=

(rk ; rk)

(rk ; Ark)
:

The procedure (5.31) with this choice of ak is called the steepest descent

method since the problem (5.1) can then be identi�ed with the problem of
minimizing the quadratic functional

1
2 (x;Ax) � (b; x); (5.33)

whose minimum is xt. A simple calculation shows that the negative gradient
or direction of the steepest descent of this functional at x = xk is rk = b�Axk.
We can show the behavior of the steepest descent method on a simple

example. We consider the 2� 2 system (cf. [177])

�
3 2
2 6

� �
x1
x2

�
=

�
2
�8

�
(5.34)

with the true solution (2;�2)T . In Figure 5.1, contour lines of the quadratic
form (5.33) corresponding to the model system (5.34) and the course of the
steepest descent algorithm are shown. Note the zigzag path that appears as
each gradient is orthogonal to the previous gradient.

x
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x
t

x
1

x
2

2 4 6−2−4

2

4

−2
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FIGURE 5.1: Steepest descent method. Contour lines of the quadratic
form (5.33) corresponding to the model system (5.34) are shown. The initial
approximation is x0 = (�2;�2)T , the true solution is xt = (2;�2)T .
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Both the speci�c methods just presented, the ORTHOMIN and the steepest
descent method, are mostly of theoretical use. We refer to them in the next
sections when developing some further practical iterative methods. The con-
vergence and detailed error analysis of the above two methods can be found,
e.g., in [11, 100, 159].

5.2.2 Conjugate gradient and biconjugate gradient methods

In the �rst part of this section we again assume that A is a symmetric pos-
itive de�nite matrix of the system (5.1). The iterations (5.31) of the steepest
descent method then can be rewritten in the form

xk+1 = xk + akpk;

where the direction vectors pk are constructed from the residual vectors rk to
be A-orthogonal (A-conjugate), i.e.,

(pk; Apk) = 0:

The residual and error vectors then satisfy

rk+1 = rk � akApk; ek+1 = ek � akpk;

where the coeÆcient ak is chosen so that ek+1 is A-orthogonal to pk, i.e.,
(ek+1; Apk) = 0. We then can modify the steepest descent method so that
it eliminates the A-projection of the error in a direction that is already A-
orthogonal to the previous direction vector, i.e., in the direction

~pk = rk �
(rk ; Apk�1)

(pk�1; Apk�1)
pk�1:

Then we have

(ek+1; A~pk) = (ek+1; Apk�1) = 0

and the A-norm of the error is minimized over the two-dimensional aÆne

space (manifold) ek + spanfrk; pk�1g where spanfy1; : : : ; ylg is the set of all
linear combinations of the vectors y1; : : : ; yl for some l positive. The algorithm
that does this is called the conjugate gradient or CG method �rst proposed
by Hestenes and Stiefel [108] more than 50 years ago. It is implemented with
an initial approximation x0 and several equivalent coeÆcient formulae, cf.
[11, 100, 137], one of which is
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r0 = b�Ax0;
p0 = r0;

ak�1 =
(rk�1; rk�1)

(pk�1; Apk�1)
;

xk = xk�1 + ak�1pk�1;
rk = rk�1 � ak�1Apk�1;

bk�1 =
(rk ; rk)

(rk�1; rk�1)
;

pk = rk + bk�1pk�1; k = 1; 2; : : : :

(5.35)

If the conjugate gradient algorithm is only used with symmetric positive
de�nite matrices A the coeÆcients are always de�ned and it can be shown
[100] that the A-norm of the error is minimized over the aÆne space e0 +
spanfp0; p1; : : : ; pkg. The algorithm then generates the exact solution to the
linear system (5.1) in n steps at the most. The error, residual, and direction
vectors generated before the exact solution is reached are de�ned and satisfy

(ek+1; Apj) = (pk+1; Apj) = (rk+1; rj) = 0 for all j � k:

It follows [100] that of all vectors in the aÆne space

e0 + spanfAe0; A
2e0; : : : ; A

k+1e0g;

ek+1 has the smallest A-norm. Obviously the coeÆcients in the conjugate
gradient algorithm are not de�ned if the residual vector is zero, in which case
the exact solution has been found.
The conjugate gradient method can also be derived as a method for min-

imizing the quadratic functional (5.33). In Figure 5.2, contour lines of the
quadratic form (5.33) corresponding to the model system (5.34) and the course
of the conjugate gradient algorithm are shown. Note that in this case of two
equations the second step of the algorithm gives the exact solution.
However, the conjugate gradient method is not important as a direct method

giving the exact solution in n steps at the most. The analysis of convergence
of the method shows [92, 100] that for large classes of �nite element systems
a suÆciently accurate solution can be obtained in far fewer steps. The rate
of convergence of the method depends, in general, on the condition number

{(A) = kAkkA�1k (spectral condition number) and it increases with decreas-
ing {(A) [100, 159]. (Note that the condition number cannot be less than 1.)
The method is most eÆcient for large well-conditioned matrices A.
The algorithm can be carried out even for matrices that are not symmet-

ric positive de�nite, but it can then fail any time (pk�1; Apk�1) is zero. For
such matrices, the biconjugate gradient or BiCG method was derived. While
the conjugate gradient method can also be used for complex Hermitian pos-
itive de�nite matices the biconjugate gradient method is easily applicable to
complex non-Hermitian matrices, too. We present, however, its real version.
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FIGURE 5.2: Conjugate gradient method. Contour lines of the quadratic
form (5.33) corresponding to the model system (5.34) are shown. The initial
approximation is x0 = (�2;�2)T , the true solution is xt = (2;�2)T .

Given x0, we compute

r0 = b�Ax0;
p0 = r0:

We choose r̂0 such that (r0; r̂0) 6= 0, set p̂0 = r̂0, and calculate

ak�1 =
(rk�1; r̂k�1)

(Apk�1; p̂k�1)
;

xk = xk�1 + ak�1pk�1;
rk = rk�1 � ak�1Apk�1;
r̂k = r̂k�1 � ak�1A

T p̂k�1;

bk�1 =
(rk ; r̂k)

(rk�1; r̂k�1)
;

pk = rk + bk�1pk�1;
p̂k = r̂k + bk�1p̂k�1; k = 1; 2; : : : :

(5.36)

Even this algorithm for a nonsymmetric matrix A of the system (5.1) may
fail but there is a way to restart it, see, e.g., [100, 159]. If the matrix A of
the system is symmetric positive de�nite the biconjugate gradient algorithm
is apparently identical to the conjugate gradient algorithm.
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Note that both the algorithms (5.35) and (5.36) require, as far as the matrix
A of the system (5.1) is concerned, only a procedure for computing the matrix-
vector product Ay. This provides us with great freedom in storing the large
sparse matrix A and, moreover, a possibility to economize the number of
operations in each iteration step.
The conjugate gradient method for a symmetric matrix A can also be de-

rived from the Lanczos algorithm, see, e.g., [100]. The Lanczos algorithm
starts with an arbitrary vector q1 such that kq1k = 1 and a parameter �0 = 0.
Then we calculate

~qj+1 = Aqj � �j�1qj�1;
�j = (~qj+1; qj);

~qj+1 = ~qj+1 � �jqj ;
�j = (~qj+1; ~qj+1);

qj+1 = ~qj+1=�j ; j = 1; 2; : : : :

It can be shown that the Lanczos algorithm yields an orthonormal basis for
the Krylov space (cf. (5.24)) formed by the matrix A and the vector q1.
Analogously, there exists the two-sided Lanczos algorithm for a nonsymmet-

ric (or complex-valued non-Hermitian) matrix A. We construct biorthogonal
bases for the Krylov spaces corresponding to both A and AT de�ned by a pair
of three-term recurrences, cf., e.g., [100]. This two-sided Lanczos algorithm
can be used for deriving the biconjugate gradient method. The method does
not minimize the residual, hence in practical calculation we may observe many
local peaks in the convergence curve.
There are several additional methods based on similar principles, see, e.g.,

[100, 159].

5.2.3 MINRES and GMRES methods

Returning to the case of general matrices A, the idea of minimizing over
a larger subspace can be extended, at the price of having to save and or-
thogonalize vectors against additional vectors at each step. To minimize the
Euclidean norm of the residual rk+1 over the j-dimensional aÆne space

rk+spanfApk; Apk�1; : : : ; Apk�j+1g = rk+spanfArk; Apk�1; : : : ; Apk�j+1g;

we set

pk = rk �

j�1X
l=1

b
(k)
k�lpk�l; b

(k)
k�l =

(Ark ; Apk�l)

(Apk�l; Apk�l)
: (5.37)

This de�nes the ORTHOMIN(j) procedure. Unfortunately, the algorithm can
fail. The possibility of failure can be eliminated by replacing rk in (5.37) with
Apk�1. This algorithm is known as ORTHODIR(j).
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In the case of Hermitian matrices the ORTHODIR(3) algorithm minimizes
the Euclidean norm of the residual over the entire aÆne space

r0 + spanfAp0; Ap1; : : : ; Apkg = r0 + spanfAr0; A
2r0; : : : ; A

kr0g: (5.38)

This provides an implementation of the minimal residual or MINRES algo-
rithm for Hermitian matrices [100].
Given x0, we compute

r0 = b�Ax0;
p0 = r0;
s0 = Ap0:

We then calculate for k = 1; 2; : : :

ak�1 =
(rk�1; sk�1)

(sk�1; sk�1)
;

xk = xk�1 + ak�1pk�1;
rk = rk�1 � ak�1sk�1;
pk = sk�1;
sk = Ask�1;

b
(k)
k�l =

(sk; sk�l)

(sk�l; sk�l)
;

pk  pk � b
(k)
k�lpk�l;

sk  sk � b
(k)
k�lsk�l; l = 1; 2:

Unfortunately, roundo� error accumulation may cause the vectors sk, which
are supposed to be equal toApk, to di�er. This could be corrected occasionally
by setting sk = Apk explicitly at the cost of a matrix-vector multiplication.
For general matrices, if j = n the ORTHODIR(n) algorithm minimizes

the Euclidean norm of the residual over the aÆne space (5.38) at each step
k. Therefore, the exact solution is obtained in at most n iteration steps (if
there is no roundo� error) but at the cost of storing up to n search direc-
tions pk (as well as auxiliary vectors sk = Apk) and orthogonalizing against
k direction vectors at each step k = 1; : : : ; n. It can be shown [100] that
the ORTHODIR(n) algorithm then requires O(n2) storage and O(n3) work,
i.e., it has the same requirements as the Gaussian elimination with a dense
(nonsparse) matrix. The advantage of the method is that, at each step, the
residual norm is minimized over the space (5.38) and an acceptable approxi-
mate solution can be hoped to be obtained in far fewer than n steps.
There is another way to compute the approximation xk for which the norm

of rk is minimized over the space (5.38). It is the GMRES method that is a pro-
jection method and has better numerical properties and more favorable storage
requirements. The method uses a particular form of the Gram-Schmidt or-
thogonalization process (see, e.g., [92, 137, 196]) to construct an orthonormal
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basis for the Krylov space spanfr0; Ar0; : : : ; A
kr0g. In practice, the method

is usually employed in its restarted version.
This modi�cation is called the Arnoldi algorithm. It starts with choosing

q1, kq1k = 1. We then compute for j = 1; 2; : : :

~qj+1 = Aqj ;
hij = (~qj+1; qi);

~qj+1  ~qj+1 � hijqi; i = 1; 2; : : : ; j;
hj+1;j = k~qj+1k;
qj+1 = ~qj+1=hj+1;j :

The GMRES algorithm can be briey described in terms of the Arnoldi
algorithm and QR factorization algorithm (see, e.g., [92, 100, 163, 169]). Form
an n � k matrix Qk of the orthonormal basis vectors q1; : : : ; qk and a k � k
matrix Hk with the entry (i; j) equal to hij for j = 1; : : : ; k, i = 1; : : : ;minfj+
1; kg, and zero otherwise (upper Hessenberg matrix). Given x0 and a unit
column vector � = (1; 0; : : : ; 0) of k + 1 components, we compute

r0 = b�Ax0;
� = kr0k;
q1 = r0=�:

We then carry out the following two steps for k = 1; 2; : : :.

(1) Calculate qk+1 and hik, i = 1; : : : ; k + 1, by the Arnoldi algorithm.
(2) Calculate xk = x0 + Qkyk, where yk is the solution to the least squares
problem miny k��1 �Hk+1;kyk.

Here Hk is the upper Hessenberg matrix with the (i; j)-entry equal to hij
for j = 1; : : : ; k; i = 1; : : : ;minfj + 1; kg, and all other entries zero. The
(k+1)�k matrix Hk+1;k is the matrix whose top k�k block is Hk and whose
last row is zero except for the (k + 1; k)-entry which is hk+1;k .
A standard method for solving the least squares problem miny k��1 �

Hk+1;kyk employs the QR factorization of the matrix Hk+1;k accomplished
using plane rotations [92, 163]. However, the (full) GMRES algorithm just
described may be impractical because of increasing storage and work require-
ments if the number of iterations needed to solve the original linear system
(5.1) is large. The GMRES(j) algorithm is de�ned by restarting GMRES
every j steps, using the last iterate as the initial guess for the next GMRES
computation. The convergence of full and restarted GMRES is analyzed in
[100] in detail.

5.2.4 Classical iterative methods and preconditioning

We reconsider the simple iteration method (cf. Paragraph 5.2.1) and some
Krylov subspace methods in this section to show that there are ways to im-
prove the convergence of an iterative method by preconditioning. The rate
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of convergence of a matrix iterative method (5.26) depends on the spectral
radius of the iteration matrix B [100] or, with the Krylov subspace methods
treated in the previous sections, on the condition number of B [100]. We only
present elementary examples of preconditioned iterative methods based on the
di�erence between the formulae (5.29) and (5.30). The procedures that carry
out the preconditioning, the preconditioners, i.e., the choice of the matrix M
(or M�1), are represented here by the simplest ones only.
The conclusion of this section should be a general rule: Iterative methods

are always to be used with preconditioning only. We will show some very
simple and very cheap ways of preconditioning that can be used for all systems.
There are, certainly, also more sophisticated methods of preconditioning very
eÆcient for special classes of linear algebraic systems.
Let us �rst present some \classic" iterative methods [92, 100, 137].
Considering the simple iterative method in the form (5.26), we can show

[169] that the process is convergent with any initial approximation x0 if and
only if �(B) < 1, where

�(B) = max
i=1;:::;n

j�ij

is the spectral radius of the iteration matrix B and �i are eigenvalues of
B. A stronger but practically veri�able condition for the convergence is that
kBk < 1 for some matrix norm since then �(B) < 1 follows. The rate of
convergence increases with decreasing �(B).
Let us rewrite the matrix A of the system (5.1) in the form

A = D �E � F;

whereD is a diagonal matrix, E is a lower triangular matrix with zero diagonal
and F is an upper triangular matrix with zero diagonal. If all diagonal entries
of A are nonzero we can substitute into (5.1), obtaining

Dx = (E + F )x+ b;

from where consistency follows, and further

x = D�1(E + F )x+D�1b:

Finally, we have the iteration formula

xk+1 = D�1(E + F )xk +D�1b

with an arbitrary x0, known as the Jacobi method. For individual components

(the components of xk are denoted by x
(k)
i )

x
(k+1)
i = �

1

aii

nX
j=1

j 6=i

aijx
(k)
j +

bi
aii

; i = 1; : : : ; n; (5.39)
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which means that the ith component of xk+1 is calculated from the ith equa-
tion of the system (5.1) in which we have substituted the components of xk
for all the other components of x.
If we again calculate the ith component of xk+1 from the ith equation like

in (5.39) but now also use the components x
(k+1)
j , j < i, of the new approxi-

mation that have just been computed we obtain the Gauss-Seidel method

x
(k+1)
i = �

1

aii

0
@i�1X

j=1

aijx
(k+1)
j +

nX
j=i+1

aijx
(k)
j

1
A+

bi
aii

; i = 1; : : : ; n; (5.40)

or, in matrix notation,

xk+1 = (D �E)�1Fxk + (D �E)�1b:

It is easy to prove that the Gauss-Seidel method converges for an arbitrary
initial approximation if the matrix A is positive de�nite.
The successive overrelaxation (SOR)method is an improvement of the Gauss-

Seidel method. It includes, in addition, a real relaxation parameter !. The
corresponding formula is

x
(k+1)
i = �!

1

aii

0
@i�1X

j=1

aijx
(k+1)
j +

nX
j=i+1

aijx
(k)
j + bi

1
A + (1� !)x

(k)
i ;

i = 1; : : : ; n;

(5.41)

or, in the matrix notation,

xk+1 = (D � !E)�1((1� !)D + !F )xk + !(D � !E)�1b:

If ! = 1 the method coincides with the Gauss-Seidel method. For some
classes of matrices, the SOR method converges for a certain range of values
of ! and it is (at least theoretically) possible to �nd an optimal value !0 that
minimizes the spectral radius of the iteration matrix (and thus maximizes the
rate of convergence) through a fairly sophisticated eigenvalue analysis, see,
e.g., [11, 92, 100, 199, 207]. There is also a symmetrized version of the SOR
method called symmetric successive overrelaxation method (SSOR).
We have mentioned the conditions for convergence and the estimates of

rate of convergence for Krylov subspace methods as well as methods of this
section. We wish to show now how to increase the rate of convergence (to
precondition an iterative method) at the cost of solving an auxiliary system
of n linear algebraic equations in each step of the iterative method.
Let us solve the system of n equations (5.1) by an iterative method. Choose

a nonsingular matrix M of order n with the following two properties:
M1. The system
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Mx = c (5.42)

can be solved by an eÆcient (preferably fast) direct method, cf. Paragraph
5.1.2.
M2. M is in some sense close to the matrix A of the system (5.1) solved.

Setting

E =M �A; (5.43)

\closeness" can mean that kEk is small or that the product M�1A is close to
the identity matrix, i.e., that kI �M�1Ak is small.
Apparently, the choice ideal from the viewpoint of Property M1 would be

M = I . This, however, is no preconditioning since, e.g., (5.30) then coincides
with the original form (5.29). From the viewpoint of Property M2, the ideal
choice is M = A. But M also has to possess Property M1, i.e., we must be
able to solve (5.42) fast, and there is no reason to solve a system with the
matrix A by an iterative method if a fast direct method can be applied.
Let us �rst consider stationary iterative methods. We have presented the

simple iteration method in the preconditioned form (5.30) where the corre-
sponding iteration matrix is I �M�1A, i.e.,

Mxk+1 = (M � A)xk + b: (5.44)

The formula (5.44) is a system of n equations with the matrixM and a known
right-hand part. The new approximation xk+1 is obtained as a solution of this
system. According to Property M1, the system (5.44) can be solved by a fast
direct method and the order of the number of arithmetic operations required
is thus not increased by preconditioning. Naturally, the aim is to increase the
rate of convergence, i.e., to decrease the number of iteration steps needed.
We thus now have the iteration matrix B = I �M�1A and the method

converges if �(I �M�1A) < 1. The rate of convergence increases with the
decreasing spectral radius �(I �M�1A). The iterative method (5.30) is an
example of a preconditioned iterative method.
A straightforward computation shows [100] that all the three classical it-

erative methods are particular cases of the preconditioned simple iteration
(5.30). We obtain the Jacobi method for M = D, the Gauss-Seidel method
forM = D�E, and the successive overrelaxation method forM = !�1D�E.
We recall that all these three matrices are triangular (D is even diagonal).
They thus do not increase the order of the number of arithmetic operations in
the respective iterative processes. The process of the solution of the system
(5.42) is implicitly included in the formulae (5.39), (5.40), (5.41).
We can precondition other classical iterative methods and Krylov subspace

iterative methods, e.g., the conjugate gradient method, as well. Now let M
be a symmetric positive de�nite matrix and let it possess Properties M1 and
M2. Then there exists a unique symmetric positive de�nite matrix M�1=2
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such that M�1=2M�1=2 = M�1 (see, e.g., [92]). Let us apply the conjugate
gradient method (5.35) to the system

M�1=2AM�1=2(M1=2x) =M�1=2b (5.45)

obtained from (5.1). Carrying out simple substitutions, we can achieve the
result that the output of the �nal iterative process is the solution x of (5.1)
sought. We thus choose an initial approximation x0 and compute

r0 = b�Ax0;
p0 = M�1r0;

ak�1 =
(rk�1;M

�1rk�1)

(pk�1; Apk�1)
;

xk = xk�1 + ak�1pk�1;
rk = rk�1 � ak�1Apk�1;

bk�1 =
(rk;M

�1rk)

(rk�1;M�1rk�1)
;

pk = M�1rk + bk�1pk�1; k = 1; 2; : : : :

(5.46)

As compared with the original method (5.35), we have to �nd the vector
y = M�1rk in each step of the preconditioned method (5.46). We compute
it as the solution of an auxiliary system My = rk (cf. Property M1). By
the conjugate gradient method, we solve the system (5.45) with the matrix
M�1=2AM�1=2 = I �M�1=2EM�1=2 = I � ~E (see (5.43)), that is similar to
M�1A, instead. Due to positive de�niteness, its condition number is then

{(M�1=2AM�1=2) =
�max(I � ~E)

�min(I � ~E)
:

It is thus close to 1 if �max( ~E) is small (Property M2) since �min(I � ~E) =
1� �max(I � ~E).
The biconjugate gradient method of Paragraph 5.2.2 can also be precondi-

tioned in the same way.
There is also a preconditioner based on one step of the SSOR method

(mostly used with the CG algorithm) [11, 137].
We have seen some particular examples of the preconditionerM . The choice

M = D is very general and it is eÆcient for many iterative methods and
many classes of linear algebraic systems. Another choice of a preconditioner
is possible if the matrix A of the system di�ers only negligibly from a matrix
M that satis�es the assumptions for the application of the cyclic reduction
method described in Paragraph 5.1.4. The process of solving the system (5.42)
is then fast.
We further present a very often used preconditioning method called incom-

plete factorization [137]. Let the matrix A of order n of our model system
have the structure schematically shown in Figure 5.3, i.e., let it be sparse with
nonzero entries placed on �ve diagonals. Such a matrix arises, e.g., from the
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FIGURE 5.3: LU factorization of a sparse matrix A. Nonzero entries of
A lie on the shown �ve diagonals only, nonzero entries of L and U in the
indicated bands. The other entries of the matrices are zero.

discretization of a second-order di�erential problem on a rectangular domain
in a regular rectangular grid. Considering A as a bandmatrix of bandwidth
2m+ 1 (where m depends on n, cf. Paragraph 5.1.2), we obtain, by the fac-
torization from Paragraph 5.1.1, the triangular bandmatrices L and U that
are �lled. They are also shown in Figure 5.3. In general, all entries in their
bands may be nonzero.

FIGURE 5.4: Incomplete factorization. Nonzero entries of the factors ~L
and ~U lie on the shown diagonals but the product ~A = ~L ~U di�ers from the
original matrix A.

Conversely, we will now start with the desired form of the factors (Figure
5.4). Let nonzero entries of these factors (denoted by ~L and ~U) be located
only in places where there are nonzero entries of A (and only in the lower
and upper triangle of the respective factor). We keep the assumption that the
diagonal of ~L consists of 1's only. Multiplying ~L and ~U , we obtain a matrix
~A di�erent from A. In our particular case, nonzero entries of ~A are placed on
seven diagonals. The product ~A = ~L ~U is called the incomplete factorization
of A.
The factors ~L and ~U are determined from A by the standard factorization
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algorithm of Paragraph 5.1.1 but we only compute their entries that were
declared nonzero in advance. The other entries of ~L and ~U involved in the
formulae (5.4) are not computed but set equal to zero. The result of incom-
plete factorization may naturally depend on the order in which the operations
are carried out. The formula (5.4) is the \columnwise" version of complete
factorization. There is also a \rowwise" version that gives identical results in
the case of complete factorization but results of this version used for incom-
plete factorization may be completely di�erent.
The computation of the incomplete factorization of the matrix considered

requires of order n arithmetic operations, the solution of the systems ~Ly = c
and ~Ux = y also of order n operations. Putting M = ~A = ~L ~U , we have the
\complete" factorization of M and we thus can solve (5.42) by a fast direct
method. Therefore, the matrix M possesses Property M1 required for pre-
conditioning.
In general, we usually know very little about the matrix E of (5.43) from

the theoretical point of view. Regardless, the preconditioning based on the
incomplete factorization is used very often and its e�ect is, as a rule, very
good. We may admit even more nonzero entries in ~L and ~U than in the
above example to make the norm of E smaller. We can also factorize general
sparse matrices incompletely or, if the matrix A is symmetric, construct an
incomplete Choleski factorization (cf. (5.6)). There are also procedures that
compensate neglected entries of the matrices ~L and ~U on the diagonal of the
matrix ~U in some way (modi�ed incomplete factorization) [11, 100].

5.2.5 Block iterative methods

For several reasons, it may be advantageous to split the matrix A of the
system (5.1) into blocks (and the vectors of the right-hand part and unknowns
in the corresponding way, too). In fact, we used this approach (cf. equation
(5.12) in Paragraph 5.1.4) in the explanation of the cyclic reduction method.
The splitting of the matrix B of the system (5.12) into blocks may be use-

ful not only with direct methods as in the case of cyclic reduction. There
are a lot of iterative methods in which an iteration step can be carried out
very eÆciently if the matrix of the system is split and considered as a block
matrix. This treatment of the matrix of the system may even enable us to
perform the individual steps of an iterative method in a parallel way if such
a computer architecture is available [137, 169, 197]. Some software packages
take this fact into account, see, e.g., [10].
As an example, we present the successive line overrelaxation method inves-

tigated in [199] that is based on the Gaussian elimination for a tridiagonal
system (double sweep method, see Paragraph 5.1.2). Let us consider equation
(5.12) where now its block form is
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2
666664

A1 B1

C2 A2 B2

. . .
. . .

. . .

CN�1 AN�1 BN�1

CN AN

3
777775

2
666664

u1
u2
...
uN�1
uN

3
777775
=

2
666664

v1
v2
...
vN�1
vN

3
777775
:

The square diagonal blocks Aj are of the order Mj where Mj corresponds
to the number of grid nodes in the jth horizontal grid line of a discretization
of an elliptic problem in a regular grid on a rectangular domain.
Let us derive the successive line overrelaxation method as a block analog of

the SOR method (5.41). Start with the Jacobi method (5.39). Since it can be
obtained from the simple iteration method (5.30) by setting the preconditioner
M equal to the diagonal of the matrix A of the system, let us now setM equal
to the block diagonal of the matrix of the system,

M =

2
666664

A1

A2

. . .

AN�1

AN

3
777775
:

We then get the block iteration matrix in the form

I �M�1A =

2
666664

0 A�11 B1

A�12 C2 0 A�12 B2

. . .
. . .

. . .

A�1N�1CN�1 0 A�1N�1BN�1

A�1N CN 0

3
777775
:

Introducing the relaxation parameter !, we arrive at the block form of

the SOR method. Choosing arbitrary initial vectors u
(0)
j , j = 1; : : : ; N , we

compute for k = 0; 1; : : :

u
(k+1)
j = !A�1j (�Cju

(k+1)
j�1 �Bju

(k)
j+1+vj�Aju

(k)
j )+u

(k)
j for j = 1; : : : ; N;

or, algorithmically more conveniently,

Ajw
(k+1)
j = �Cju

(k+1)
j�1 �Bju

(k)
j+1 + vj ; for j = 1; : : : ; N; (5.47)

and

u
(k+1)
j = !(w

(k+1)
j � u

(k)
j ) + u

(k)
j ; for j = 1; : : : ; N:
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Obviously, the algorithm involves solving the family of systems (5.47) with
the matrices Aj . If these matrices are tridiagonal and the matrices Cj and Bj

are sparse, this process is fast, i.e., each iteration step is fast. It is possible
to show [199] that the convergence rate can be improved for some classes of
matrices by the application of a block iterative method.

5.2.6 Multigrid methods

Multigrid methods are a very general and eÆcient way of solving bound-
ary and initial-boundary value problems for partial di�erential equations and
some additional problems. They can be applied to linear as well as nonlinear
problems. It is a particular case of multilevel adaptive techniques that can be
characterized as a combination of the process of discretization of the problem
and the process of solving the discrete problem, i.e., the corresponding system
of linear algebraic equations.
We show the basic principle of the multigrid method in the case of two grids.

We only introduce the very essential facts about the method and try to explain
the foundations of a very general algebraic multigrid method. For the multigrid
method, discretizations on several grids with di�erent grid steps carried out by
the �nite element or �nite di�erence methods are typical, see, e.g., [104]. It is
an iterative method and its �nal result is an approximation of the solution of
the continuous problem on the �nest grid. The method employs the fact that
approximate solutions constructed on di�erent grids have a common property:
they more or less exactly approximate the true solution. An advantage of
this approach is that computational work is gradually moved to coarser and
coarser grids where fewer operations are needed. If the multigrid method is
considered as a way of solving linear algebraic systems it is a fast method.

An important phenomenon that has led to the idea of the multigrid method
was the observation that classical matrix iterative methods of Paragraph 5.2.4
converge very fast in several �rst iterations and the error decreases rapidly.
Then the convergence slows down and the error stagnates. The conclusion
is that classical iterative methods are very eÆcient when used to smooth the
error. Moving to a coarser grid, we can again use a classical iterative method
to smooth the error eÆciently there.

There is a vast literature about the multigrid method, e.g., [11, 24, 69, 100,
104, 134, 137, 159]. We con�ne ourselves to the principal algorithm of the
two-grid method which will be used for an adaptive �nite element strategy in
Chapter 6, and we do not study its convergence.
We demonstrate the essence of the two-grid method on a simple model

example of a boundary value problem for a partial di�erential equation

Lu = f; (5.48)

where L is a linear elliptic di�erential operator, in a plane domain 
 with the
corresponding boundary conditions. We discretize the problem (5.48) by the
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�nite element (or �nite di�erence) method on two grids, the �ne grid with a
characteristic discretization parameter h and the coarse one with a parameter
H , h < H . Characteristic parameter of the grid is, e.g., the maximum length
of a triangle side in the triangulation of the domain. We arrive at two discrete
problems,

Lhuh = fh; (5.49)

LHuH = fH ; (5.50)

and assume that the discrete operators (matrices) Lh and LH also include
the discretized form of the boundary conditions. The equations (5.49), (5.50)
are then systems of linear algebraic equations, and Lh and LH are square
matrices whose order will be denoted by n and m, n > m. Further, uh and
fh are n-component vectors, and uH and fH m-component vectors.
The multigrid method consists of three basic procedures. The �rst, smooth-

ing (or relaxation) on the individual levels, is usually represented by several
steps of some classical iterative method, very often the Gauss-Seidel method.

As we move from a �ne grid to a coarse one and back during the multigrid
process we need an operator that maps a grid function de�ned on the �ne grid
to a grid function de�ned on the coarse grid and an operator that reversely
maps a function on the coarse grid to the �ne one. The �rst operator is
r : Rn ! Rm and is called a restriction. A simple example of the restriction
is the injection that can be easily employed if the set of nodes of the coarse
grid is a subset of nodes of the �ne grid. Then it is suÆcient to take, for
the value of the grid function at a node of the coarse grid, the value of the
function, de�ned on the �ne grid, at the same node.
Better properties are possessed by the restriction called the averaging that

takes for the value of a grid function at a node of the coarse grid an average
of values of the function at neighboring nodes of the �ne grid calculated in
some way. The operator r is apparently a rectangular m� n matrix.
The operator p : Rm ! Rn that assigns a grid function de�ned on the �ne

grid to the function de�ned on the coarse grid is called the prolongation or
interpolation. In practice, the operator p is usually some interpolation of the
values of the grid function at the nodes of the coarse grid. The operator p is
apparently a rectangular n�m matrix.
The choice of the particular operators r and p may inuence the perfor-

mance of the multigrid method signi�cantly. The choice p = rT , i.e., the
prolongation as an adjoint operator to the restriction, is used very frequently.
The two-grid method is an iterative method for the calculation of the un-

known vector uh. It starts from an initial approximation u0h (e.g., equal to
zero). We describe now one step of the two-grid method that computes a new
approximation ui+1h to the solution from the old approximation uih. The iter-
ation step presented here is used for linear problems and has to be modi�ed
if the problem is nonlinear. The procedure is shown in Figure 5.5.
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ui
h −→ ũi

h = S(ui
h) ↘

−→ dh = Lhũ
i
h − fh

−→ ui+1
h = S

(
˜̃u

i

h

)

vh = pvH −→ ˜̃u
i

h = ũi
h − vh ↗

↓ ↑
dH = rdh −→ LHvH = dH

FIGURE 5.5: One iteration step of the two-grid method.

We start on the �ne grid. We �rst apply a few relaxation steps that smooth
the error and that are symbolically written in the form ~uih = S(uih). On the
�ne grid, we then compute the vector

dh = Lh~u
i
h � fh; (5.51)

called the defect of the solution. In fact, it is, except for the sign, the residual
of the linear algebraic system solved.

If the defect is zero the system is solved exactly. We thus try to calculate
the correction, i.e., the vector that subtracted from ~uih gives an approximate
solution with minimum defect. The ideal situation would be to compute the
exact correction vh from the equation

Lhvh = dh (5.52)

as we can easily verify that substituting the vector ~uih � vh into the original
equation (5.49), we obtain the exact solution since we have Lh(~u

i
h � vh) =

dh + fh � dh = fh from (5.51), (5.52). However, to solve the equation (5.52)
is as time consuming as solving the original equation (5.49). This is thus the
reason to move to a coarse grid and approximate the correction on this coarse
grid using fewer arithmetic operations.
The transfer to a coarse grid is denoted in Figure 5.5 by the arrow pointing

downward. All the operations on the coarse grid are presented on the bottom
line of the scheme. This is a widely used convention in the multigrid method.
On the coarse grid, we �rst establish a restriction of the defect dH = rdh and
then compute the correction vH on the coarse grid as a solution of the system
of m linear algebraic equations

LHvH = dH : (5.53)

The matrix LH of the system is given by the discretization (5.50) of the
problem on the coarse grid. However, the system (5.53) possesses the right-
hand part dH (defect) and we look for the vector vH (correction).

The arrow pointing upward represents the return to the �ne grid. To this
end, we have to prolong the correction vh = pvH and subtract it from the
actual approximation of the solution on the �ne grid. We obtain an improved
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approximation ~~u
i

h = ~uih � vh. Finally we smooth the error of this approxima-
tion since the transfer of the correction from the coarse to the �ne grid again
introduced high-frequency components of the error to be removed. The new

approximation to the solution is then ui+1h = S(~~u
i

h).
We have just described an iteration step of the two-grid method that con-

sists of the computation of the defect on the �ne grid, its restriction to the
coarse grid, computation of the correction on the coarse grid, and its prolon-
gation to the �ne grid. In the beginning as well as the end of the iteration
step, moreover, the approximate solution is relaxed, i.e., the error smoothed.
It is substantial that in this relaxation, only very few steps of classical ma-
trix iterative methods are performed (say, one or two) since the aim of this
procedure is to smooth the error, not to minimize it.
The procedure shown is not the only possibility. Since it is based on the

computation of the correction it is called the correction scheme. Its algorithm
in Figure 5.5 employs the linearity of the operator L. In the nonlinear case,
it is also necessary to restrict the approximate solution ~uih to the coarse grid
(full approximation scheme).
In the multigrid method, it is necessary to solve a linear algebraic system for

the correction, whose matrix arises in discretization of the continuous problem,
on the coarser grid (lower level). This system can again be solved with the
help of the two-grid procedure; however, we need another, still coarser grid
and a discretization on it.
If we employ more than two grids we move from �ne to coarser grids and

back from coarse to �ner grids. This procedure is called cycling and can be
carried out in di�erent ways. We usually start with an approximation of the
solution on the �nest grid and �nally obtain such an approximation of the
continuous solution on the �nest grid that possesses the accuracy required.

FIGURE 5.6: V-cycle on three grids.

We briey describe the simplest cycling called V-cycle on three grids (Figure
5.6). We apply several relaxation steps to the initial approximation to the
solution on the �nest grid (the highest level 3 in the �gure), compute the
defect of the solution and restrict it to the coarser grid (level 2) to solve
the equation for the correction of the solution. We apply several relaxation
steps to the initial approximation to the correction of the solution, compute
the defect of the correction of the solution and restrict it to next coarser
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grid (level 1) that is in Figure 5.6 the coarsest one. We compute here the
correction of the correction (solve the corresponding system (5.53)) either
by a direct method or, e.g., by the same iterative method we employ as a
relaxation (this time, however, we carry out the full number of iteration steps
needed to get a good approximation). This operation is denoted by a square
in Figure 5.6 while current operations on the individual levels are denoted by
a circle.

The correction of the correction is prolonged to the �ner grid (level 2) and
subtracted from the correction of the solution. This improved correction of
the solution is relaxed, prolonged to a �ner (in our case already the �nest)
grid (level 3) and subtracted from the solution. Finally, we apply several
relaxation steps to the solution just obtained.

The procedure described above resembles the letter V in Figure 5.6 and this
is the reason for its name. Just one V-cycle is usually enough for obtaining
a suÆciently accurate solution of a very large class of systems (5.49). If we
need a more accurate solution we can carry out a further V-cycle. For linear
problems, we can use the zero initial approximation.

FIGURE 5.7: W-cycle on three grids.

A little bit more complicated strategy of the multigrid method is shown for
three grids in Figure 5.7. When we �rst time move to level 1 and return to
level 2 we immediately move back to level 1 and compute the correction there
again. The rest of the cycle is the same as in the previous case. This strategy
is called the W-cycle, again because of the resemblance of the �gure to the
letter W. It is easy to derive the W-cycle for more than three grids. The W-
cycle requires more arithmetic operations than the V-cycle but its eÆciency
is substantially better. There are further strategies that include the return
to the lowest level (i.e., to the coarsest grid) even more frequently than the
W-cycle; they could be called \triple-V-cycle," etc.

If we look for an initial approximation to the solution on the �nest grid it
is quite natural to start with an initial approximation on a coarser grid and
prolong it to the �nest grid. If we start with an initial approximation on a
grid that is several levels lower we can improve it gradually on the way to the
�nest grid by using standard multigrid steps. This idea �nally leads to the
full multigrid method and it is shown in Figure 5.8.

We start with an initial approximation on the coarsest grid and gradually
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carry out longer and longer cycles until we reach the �nest grid. Usually, the
solution of the system (5.49) is then accurate enough. If not, we can continue
by cycling on the sequence of grids we have used up to now or construct the
next, even �ner, grid and add it to this sequence.

FIGURE 5.8: Full multigrid method on four grids.

We explained the multigrid method as a procedure that originates in a
boundary value problem and its several discretizations on a sequence of grids.
The reverse approach is also possible. We can start from a sparse linear al-
gebraic system, consider it as a discretization of a continuous boundary value
problem, and employ the multigrid method based on it. The computational
process need not explicitly include any sequence of discretization levels (grids).
The only aim of this process is to solve a linear algebraic system and its name
is the algebraic multigrid method [100].

There are several strategies of the algebraic multigrid method, too. The
three procedures included in the algebraic multigrid method are the same
as in the previous case: relaxation, restriction, and prolongation. The usual
restriction and prolongation methods are the aggregation and disaggregation

of unknowns. The aggregation r is an analog of averaging the values of the
solution at neighboring nodes. The disaggregation is then an analog of the
interpolation and is often given by the transpose p = rT [100].

A good and reliable example of multigrid software is the PLTMG (Piece-
wise Linear Triangular MultiGrid) package [24] available on the web. It solves
a boundary value problem for a second-order nonlinear elliptic partial di�er-
ential equation on a 2D domain. The package is written in FORTRAN. The
boundary value problem is (if necessary) linearized by the damped Newton
method [25] and then discretized by the �nite element method using triangu-
lar elements and piecewise linear approximation. The package computes an a
posteriori estimate of the error of the solution calculated and can construct
�ner grids adaptively. The grid is made �ner or coarser only locally, where
the error estimator shows. This is the way to establish a sequence of grids for
the multigrid method eÆciently. The �nal output of the PLTMG package is
the approximate solution on the �nest grid constructed.
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5.3 Choice of the method

Matrices of the systems that are most often met in practical problems fall
into one of two large classes:
1. Full (�lled or dense) matrices of moderate order (say, n < 100).
2. Sparse matrices of high and very high order (n equal to several hundred,

several thousand, even several million is no exception).
Solving �nite element problems, we naturally arrive at matrices of the sec-

ond class. There is no simple rule for the choice of the method in this case. It
may be hard to store a sparse matrix of order 1 000 or 1 000 000 (including its
zero entries) and thus the use of both direct and iterative methods is usually
accompanied by certain programming tricks.
When software for the solution of large linear algebraic systems is selected

some quality criteria should be applied. Programs used for solving such linear
systems, the characteristics of which are not completely and exactly known
in advance, have to be highly robust. They have to be able to recognize
ill-conditioned or numerically singular systems and provide the user with ad-
equate information (condition and/or accuracy estimates, etc.).

EÆciency is of such great importance when solving very large linear al-
gebraic systems that often the practical solvability of a problem depends on
the degree of exploitation of the computer resources available. For very large
sparse matrices, not only the computational eÆciency but also the storage
eÆciency is of critical importance.

Usability of the software available is worth considering. Software for solv-
ing linear algebraic systems (e.g., LAPACK programs [10]) is generally quite
user-friendly. Only some kinds of problems and classes of algorithms can
cause diÆculties. For example, programs designed for the iterative solution
of large sparse systems are not suitable for \black box" applications as the
user must have preliminary knowledge of initial approximations, parameters
of the algorithm, or preconditioning.

The highest possible degree of portability together with good eÆciency dis-
tinguish the programs of LAPACK whose excellent qualities make it the best
software product for standard use. For large sparse linear algebraic systems,
portability is provided primarily by the di�erent storage schemes (cf. Para-
graph 5.1.3).

If some fast direct method (Paragraphs 5.1.2, 5.1.4) is applicable then it
certainly pays. EÆcient employment of the LU factorization to sparse matri-
ces with nonzero entries placed at random (Paragraph 5.1.3) has to consist
of three steps: minimization of the �ll-in (it is done once for a particular
zero-nonzero structure), factorization of the matrix (it is performed once for
particular numerical values of entries), and solution of the system (it is carried
out for every right-hand part). This procedure as a whole is relatively time
consuming. It may be advantageous if the result of minimizing the �ll-in can
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be exploited for more matrices of the same zero-nonzero structure or if we
solve several systems that di�er in right-hand parts only.
All iterative methods involve the risk of terminating the process too early

and thus getting a solution that is not accurate enough. However, this may
be, in some cases, an asset. If we are interested in a less accurate solution
(e.g., in its two signi�cant digits), with iterative methods we need not expend
unnecessary labor on solving the system accurately (except for roundo� error)
by a direct method. We must be very cautious if we use iterative methods
in which a parameter or parameters to be chosen occur. Taking a wrong
value of parameter (substantially di�erent from the optimal value), we may
decelerate the convergence of the method. In some cases (cf. the SOR method
in Paragraph 5.2.4) the determination of the optimal iteration parameter may
lead to a more complex problem than solving the linear algebraic system.
The CG method can be recommended for symmetric positive de�nite sys-

tems while the restarted GMRES method is widely used for general systems.
The conjugate and biconjugate gradient method (Paragraph 5.2.2), GMRES

method (Paragraph 5.2.3) as well as classical iterative methods (Paragraph
5.2.4) should never be used without preconditioning. The incomplete factori-
zation preconditioner (Paragraph 5.2.4) can practically always be constructed
and it requires relatively few arithmetic operations.
There are many special iterative methods for large sparse systems obtained

from the discretization of boundary value problems for di�erential equations.
These methods are usually derived with regard to the original continuous
problem, are very sophisticated, and are not discussed here, see, e.g., [69, 120,
92, 100, 127, 197]. Their special features make them, as a rule, very eÆcient.
We recommend the multigrid method (Paragraph 5.2.6).
The user always must be aware of the danger of accumulation of roundo�

error in the individual methods. This problem usually does not occur if the
matrix of the system is positive de�nite.
Let us mention some related software. We presented some websites where

software can be found in the introduction to this chapter. Most programs and
packages are written in FORTRAN. It de�nitely pays to look for a suitable
program in the software available. In rather exceptional cases, it is necessary
to code one's own program. General numerical packages like Maple, Matlab
or Mathematica usually are not eÆcient when applied to very large sparse
systems.
A basic source of software is LAPACK (Linear Algebra Package [10]) whose

ancestor is the famous handbook [206] edited by Wilkinson and Reinsch. The
algorithms in [206] are presented in Algol 60 language. LAPACK provides
very eÆcient procedures. SPARSPAK [88] is a specialized package for sparse
positive de�nite systems. The FISHPACK package (cf. [190]) is a realization
of the cyclic reduction method (Paragraph 5.1.4). ITPACK [105] contains
software modules for the iterative solution of linear algebraic systems.
An example of the multigrid technique is PLTMG [24] already mentioned

in Paragraph 5.2.6. Numerous algorithms are included in Numerical Recipes
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[158] (not only in FORTRAN). For further software, see, e.g., [197]. New
methods have recently been developed to be used on parallel computers (see,
e.g., [92, 169, 197]).

5.4 Solving initial value problems for ordinary di�eren-
tial equations

Most tools presented in this book up to now were concerned with solving
elliptic partial di�erential equations. They may be used for solving evolu-
tionary (parabolic, hyperbolic) equations as well if they are combined with
a proper time discretization, e.g., a proper procedure for the solution of an
initial value problem for a system of ordinary di�erential equations (ODEs).
We �rst present some types of initial value ODE problems. To motivate

this section, we formulate a simple model linear parabolic problem and show
how the method of lines transforms this problem into a system of ODEs in
Paragraph 5.4.1. We then give numerical methods for its solution and the
corresponding software.
Let us consider a general formulation of an initial value problem for an ODE

system. On an interval [T0; T1], we look for the solution y(t) = (y1(t); : : :,
yN (t))

T , a vector function of N components, that ful�ls a di�erential system
on the interval (T0; T1] and, moreover, satis�es the initial condition

y(T0) = y0

at the point T0 where y0 is a given vector of N components. The system of

ordinary di�erential equations of the �rst order can be given in the simplest,
explicit form

_y(t) = f(t; y); (5.54)

where

_y(t) =
dy

dt
;

the derivative of the solution y sought, only appears on the left-hand part
whereas f on the right-hand part is a given vector function of N components.
A further, semi-implicit form

A(t; y) _y(t) = f(t; y) (5.55)

is more complex. The derivative of the solution on the left-hand part is
multiplied by a given square matrix A of order N . Finally, the most complex
is the implicit form
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F (t; y; _y) = 0; (5.56)

where F is a given vector function of N components.
The implicit form (5.56) is the most general and also includes forms (5.55)

and (5.54). The form (5.55) can be transformed into the form (5.54) if the
matrix A is nonsingular. For practical reasons, it is more advantageous to
directly employ the software available to the system in the form (5.55) in this
case. If the matrix A in (5.55) is singular and in the case (5.56) the system
is, in general, di�erential-algebraic. It is then usually called and abbreviated
DAE (di�erential-algebraic equations) [37].
In applications, it is certainly advantageous to consider the di�erential sys-

tem in the simplest possible form and to use the corresponding software since
it is less complex and thus brings time savings in practical computation.
Any system of di�erential equations of order higher than 1 can be trans-

formed into a �rst-order system (of more equations) by proper substitutions.
The �rst numerical methods successfully used to solve di�erential-algebraic

equations were linear multistep methods such as backward di�erentiation for-

mulae (BDF) treated in Paragraph 5.4.2. Recently, one-step methods such
as implicit Runge-Kutta and extrapolation methods are employed, too. We
mention one-step methods briey in Paragraph 5.4.3.

5.4.1 Method of lines

We consider a linear one-dimensional parabolic partial di�erential equation

_u(x; t) = (A(x)u0(x; t))0 �B(x)u(x; t) + f(x; t); 0 < x < 1; 0 < t � T
(5.57)

for some �xed T > 0, where x is called space variable and t time variable. We
further prescribe the following conditions:

u(0; t) = u(1; t) = 0; 0 � t � T (5.58)

is the boundary condition and

u(x; 0) = u0(x); 0 < x < 1 (5.59)

the initial condition. We use the notation

u0(x; t) =
@u

@x
(x; t); _u(x; t) =

@u

@t
(x; t)

for space and time derivatives. A nonlinear parabolic eqution can be treated
in an analogous way.
We assume that the above problem is parabolic, i.e., that A(x) � A > 0 is

a positive smooth function and B(x) � 0 a nonnegative one.
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We employ the usual Sobolev spaces H1(0; 1) and H1
0 (0; 1), and introduce

a weak solution of the model problem. We set

a(v; w) =

Z 1

0

(v0A(x)w0 + vB(x)w) x.

and denote the usual L2 inner product of functions v, w by (v; w). We then
say that a function u(x; t) is the weak solution of the problem (5.57), (5.58),
(5.59) if it belongs, as a function of the variable t, in H1([0; T ]; H1

0 (0; 1)), if
the identity

( _u; v) + a(u; v)� (f; v) = 0

holds for each t 2 (0; T ] and all functions v = v(x) 2 H1
0 , and if the identity

a(u; v) = a(u0; v)

holds for t = 0 and all functions v 2 H1
0 . Note that time t is considered a

parameter in this formulation as well as in what follows.
There are three possibilities to carry out the discretization of the parabolic

problem considered. Full discretization (i.e., simultaneously in space as well as
time) is often used with the help of many various numerical procedures. The
two remaining possibilities start with semidiscretizations: �rst a discretiza-
tion in time, and then application of a numerical method to solve the resulting
space dependent problem (the Rothe method) or �rst a discretization in space,
and then application of a numerical method to solve the resulting time de-
pendent problem (the method of lines [198, 194], cf. also Paragraph 1.1.7).
We use the method of lines approach to solve the parabolic problem in what
follows.
Finite element solutions of the model problem are then constructed from

the weak formulation. Fixing a positive integer p, we can introduce �nite
dimensional subspaces SN;p

0 � H1
0 of hierarchic basis functions (used as test

functions as well) where p is the maximal degree of the piecewise polynomial
basis functions and N is the total number of these basis functions.
We say that a function

U(x; t) =

NX
j=1

Uj(t)'j(x) (5.60)

is the semidiscrete �nite element approximate solution of the model problem if
it belongs, as a function of the variable t, into H1([0; T ]; SN;p

0 ), if the identity

( _U; V ) + a(U; V )� (f; V ) = 0 (5.61)

holds for each t 2 (0; T ] and all functions V 2 SN;p
0 , and if the identity

a(U; V ) = a(u0; V ) (5.62)
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holds for t = 0 and all functions V 2 SN;p
0 .

Substituting (5.60) into (5.61) and (5.62), we get an initial value problem
for a system of N ODEs for the N unknown functions Uj(t) with the initial
condition given by a system of linear algebraic equations. The procedure just
described is the method of lines mentioned above. This resulting ODE system
is of the form (5.55) and is sti� (cf., e.g., [37]). In practice, it is solved by
proper numerical software, i.e., a proper ODE solver. The error tolerance for
the time integration required by the user makes the solver proceed from a time
level to another one. These time levels are called natural time levels. We can
a posteriori evaluate the space discretization error of the approximate solution
and employ an adaptive procedure for updating space mesh on each natural
time level. The process can be carried out for linear as well as nonlinear
initial-boundary value parabolic problems.
It is usually assumed that the \time" error tolerance is set so low that

we need not consider this time discretization error as compared with the
space discretization one. Recently, papers also taking into account the time
discretization error have appeared (see, e.g., [201]).

5.4.2 Multistep methods

Historically, the �rst general technique for the numerical solution of DAEs
was proposed by Gear [87] in 1971 and is based on the BDF idea. It has been
extended to any implicit system (5.56), cf. [198, 37, 157].
The simplest �rst-order BDF method is the implicit Euler method that

consists of replacing the derivative in (5.56) by a backward di�erence

F

�
tn; yn;

yn � yn�1
h

�
= 0;

where h = tn � tn�1. The resulting system of nonlinear equations for yn
on each time level is then usually solved by the Newton method. The k-
step (constant stepsize) BDF consists of replacing _y by the derivative of the
polynomial, which interpolates the computed solution on k + 1 time levels
tn; tn�1; : : : ; tn�k, evaluated at tn. This yields

F
�
tn; yn;

�yn
h

�
= 0;

where

�yn =

kX
i=0

�iyn�i

and �i, i = 0; 1; : : : ; k, are the coeÆcients of the BDF method. It can be
shown [37] that the k-step BDF method is stable for ODEs for k < 7.
Following the paper by Gear [87], several codes implementing the BDF

methods were written in the 1970s. A second generation of BDF implemen-
tations began to emerge in the early 1980s, along with a growing recognition
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of the importance of DAEs in many scienti�c and engineering applications.
These are the codes DASSL [154] and LSODI [114].
Any method to be used in applications has to �rst be implemented in codes

that are eÆcient, robust, user-friendly, portable, and well documented. The
most widely used production codes for di�erential-algebraic (and ordinary
di�erential) equations are based on BDF methods. A detailed description of
the DASSL code designed for solving initial value problems of the form (5.56),
including theoretical considerations, is contained in [37].
The software mentioned also includes, as an input parameter, the error tol-

erance required for the approximate solution and tries, employing a posteriori
error estimates and decreasing the stepsize h if necessary, to yield the solu-
tion as accurately as prescribed. If this is impossible the user is provided with
the corresponding information. Many problems have been successfully solved
using the codes mentioned, thereby encouraging the BDF approach.

5.4.3 One-step methods

The order, stability, and convergence properties of one-step methods when
applied to the system (5.56) are studied in [37]. Implicit Runge-Kutta (IRK)
methods are of particular interest.
An M -stage IRK method applied to the equation (5.56) is given by

F

0
@tn�1 + cih; yn�1 + h

MX
j=1

aij _Yj ; _Yi

1
A = 0; i = 1; 2; : : : ;M (5.63)

and

yn = yn�1 + h

MX
i=1

bi _Yi; (5.64)

where h = tn � tn�1. The quantities _Yi in (5.63), (5.64) are estimates for
_y(tn�1 + cih) and are called stage derivatives. Estimates for y(tn�1 + cih)
may be obtained by de�ning intermediate Yis as

Yi = yn�1 + h

MX
j=1

aij _Yj :

Recently, IRK methods have been the focus of increasing interest for the
numerical solution of sti� ODEs. Due to their one-step nature, IRK methods
are potentially more eÆcient because multistep methods have to be restarted
at low order after every discontinuity, e.g., after the change of grid in adaptive
procedures. Just IRK methods are often used to generate accurate starting
values for higher-order BDF methods. Another potential advantage of RK
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methods applied to ODEs lies in the fact that, in contrast to the case of
linear multistep methods, it is possible to construct high order A-stable IRK
formulae (cf., e.g., [37]).
When solving a system by an IRK method, it is important to choose a class

of methods that can be implemented eÆciently. In the most general IRK
method, when the square matrix A = (aij) of orderM is completely dense and
the method is applied to the system of N ODEs, we obtain a system of MN
nonlinear algebraic equations that has to be solved for the stage derivatives at
each integration step. Compared to the expense of a multistep method, the
amount of work per step has to be reduced signi�cantly before IRK methods
can be competitive. Therefore, we are interested in particular classes of IRK
formulae that can be implemented more eÆciently than the general case.
If A is a lower triangular matrix the system of nonlinear equations to be

solved at each step can be broken into M sets of N equations to be solved
consecutively. IRK methods of this type are called semi-implicit. Diagonally
implicit IRK methods or DIRK methods [37] are semi-implicit methods with
equal diagonal entries in A. Finally, if the matrix A has one (real) eigenvalue
of multiplicity M it has been shown that IRK can be implemented almost as
eÆciently as the DIRK methods. Such methods are called singly implicit IRK
methods or SIRK methods [37].
Extrapolation methods may be viewed as IRK methods. They are thor-

oughly treated in [37].
Program packages for solving initial value problems for ODEs by IRK meth-

ods are not very common. We mention at least [70].
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Chapter 6

Automatic mesh optimization,
reference solutions and hp-adaptivity

Assuming that the reader is familiar with the basic principles of higher-order
�nite element discretization that were presented in Chapters 2 and 3, we can
proceed now to more advanced topics related to automatic mesh optimization
and adaptivity.

In this chapter we present a class of automatic goal-oriented h-, p-, and
hp-adaptive strategies based on automatic optimization of the �nite element
mesh. This methodology was �rst proposed in [162] and further elaborated
in [64, 62, 65]. Recently it was coupled with goal-oriented adaptivity in [185]
with very promising results. The adaptivity is guided by a robust error in-
dicator based on the di�erence uref � uh;p where uh;p is the solution on the
current (coarse) mesh Th;p and uref is a suitable reference solution on Th;p
(reference solutions are very accurate approximations of the exact solution
on coarse grids based, e.g., on sophisticated postprocessing techniques, or
obtained in some other \inexpensive" way). Our approach to the design of
reference solutions will be discussed in Paragraph 6.2.1. The point is that by
omitting conventional equation-speci�c error indicators the adaptive strategy
is less sensitive to particular types of solved problems. The adaptive strategy
itself is then based on automatic construction of a next optimal mesh via
minimization of projection-based interpolation error of the reference solution
uref . Projection-based interpolation operators introduced in Chapter 3 play
an essential role in this kind of adaptive strategy.

It has been stated in [162, 64] and con�rmed also by other sources (e.g.,
[19, 117, 185]) that the method is capable of delivering optimal convergence
rates not only in the asymptotic sense, but also more importantly in the
preasymptotic range of error. This is important for the solution of real en-
gineering problems, since due to generally limited means (human resources,
time, computing equipment...) one always achieves results on some limited
level of accuracy only. The asymptotic level h ! 0, where various unknown
constants C in theoretical convergence rates do not matter anymore, is never
reached in practice.

Almost all commercial applications of hp-adaptive �nite element schemes
use a priori information about corner and edge singularities [15, 172] or bound-
ary layers [135, 172] to design advantageous initial meshes. After this, either
uniform or adaptive p-re�nements are made. Such methods are very eÆcient
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if the nature of the singularities of the solution is known in advance, and can
lead to exponential rates of convergence even without the use of higher-order
discretizations (see, e.g., [118]).
However the situation changes if we do not have at our disposal a priori

information about the solution. It is known that general initial meshes can
lead p-adaptive schemes to less satisfactory results than standard h-adaptive
methods. For many practical problems, quadratic elements combined with
h-adaptivity o�er a favorable balance between the quality of results and the
complexity of implementation. Recall that with p = 2 in the H1-conforming
case we do not have bubble functions on triangles, tetrahedra and prisms,
and only one bubble function appearing on quadrilaterals and hexahedra is
orientation-independent.
There have been several attempts to correct inoptimal initial meshes by h-

re�nements, which lead to methods proposed in [62, 149, 147] performing h-
and p-re�nements interchangeably. But still, in general, the resulting meshes
do not lead to optimal results.
We hope that this brief survey illustrated why we are convinced that a

fully automatic method that works without any a priori information about
the solution is a real breakthrough in the adaptive �nite element solution of
engineering problems.
We present the method in a mathematically precise but at the same time

also intuitive way, in order to provide the reader with a deep understanding
that he/she can use in his/her own applications. We con�ne ourselves to H1-
conforming schemes in this presentation, as for edge and face elements the
principles are the same. It is convenient to split the presentation into several
successive steps:
First, we introduce algorithms capable of automatic adjustment of the �nite

element mesh toward an a priori given, �xed function u (mesh optimization
algorithms) in Section 6.1. This automatic adaptivity will be performed o�-
line, independently of the �nite element scheme.

Next, in Section 6.2 we incorporate the automatic mesh optimization
algorithms into the �nite element scheme, utilizing the concept of reference
solutions. Goal-oriented adaptivity will be implemented into the automatic
adaptive strategies in Section 6.4, and the whole methodology will be ex-
tended into two spatial dimensions in Section 6.5.

6.1 Automatic mesh optimization in one dimension

In this section we will deal with a class of automatic h-, p- and hp-mesh op-
timization strategies capable of progressive minimization of projection-based
interpolation error
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errk = ku��k
h;pukH1

0
(6.1)

of a function u 2 H1(
), where 
 is a one-dimensional domain, by means of
a sequence of �nite element meshes T k

h;p, k = 1; 2; : : : (the one-dimensional
projection-based interpolation operator �h;p was introduced in Section 3.1).
Depending on the type of adaptivity that one selects, the sequence of op-
timal meshes T k

h;p, k = 1; 2; : : : will be obtained by successive h-, p- or hp-
re�nements.
We begin with an initial �nite element mesh T 0

h;p = fK1;K2; : : : ;KN(0)g,
consisting of N (0) disjoint subintervals Ki such that


 =

N(0)[
i=1

Ki:

Each element Ki is assigned an order of polynomial approximation 1 � pi =
p(Ki).

6.1.1 Minimization of projection-based interpolation error

The basic idea of the algorithm is to determine the next optimal mesh in
such a way that a controlled increase in the number of degrees of freedom
brings the maximum decrease of the projection-based interpolation error. We
proceed in two steps.

Step 1 { determining the optimal re�nement type for all elements

The �rst step is local, done for each element independently of the rest of
the mesh.

Step 1, h-adaptivity:

There are, of course, many possible ways a one-dimensional element can
be h-re�ned. We con�ne ourselves only to subdivision into two equally long
subelements, which generalizes most naturally into two and three spatial di-
mensions. With this simpli�cation, we end up with only one re�nement option
per element.
By �coarse;iu = �h;iu we denote the projection-based interpolant of the

function u on a coarse mesh element Ki. According to Section 3.1, this is a
p(Ki)th order polynomial matching the values of u at the endpoints of the
element Ki. Similarly we de�ne the projection-based interpolant �fine;iu =
�h=2;iu on the h-re�ned element as a function that matches u at both end-
points of Ki and at its midpoint, and which is a polynomial of the order p(Ki)
on both the element sons. We compute the projection-based interpolation er-
ror decrease rate
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4erri = ku��coarse;iukH1
0 ;Ki

� ku��optimal;iukH1
0 ;Ki

with �optimal;i = �fine;i (obviously the single re�nement option is optimal).
As in this case polynomial spaces corresponding to the coarse and re�ned
element are nested (h-re�nement produces a polynomial space that contains
the whole polynomial space corresponding to the original coarse element), this
reduces to

4erri = k�fine;iu��coarse;iukH1
0 ;Ki

: (6.2)

Decrease of projection-based interpolation error for h-re�nement is illustrated
in Figure 6.1.

2
x

x
1

K
i

FIGURE 6.1: Decrease of projection-based interpolation error {
h-re�nement of a linear element.

Step 1, p-adaptivity:

For the sake of simplicity, in the case of p-re�nements we also con�ne our-
selves to a single re�nement option { the order of polynomial approximation
will only be allowed to increase by one per element in each step of the algo-
rithm.
By �coarse;iu = �p;iu we denote the projection-based interpolant of the

function u onto the space of polynomials of order p or lower on the element
Ki, which is a polynomial function of order p(Ki) matching the interpolated
function u at the endpoints of Ki. Analogously, the �ne mesh interpolant
�fine;iu = �p+1;iu, de�ned in accord with Section 3.1, is a polynomial of
order p + 1 in Ki matching u at the element endpoints. Projection-based
interpolation error decrease rate is computed similarly to the previous case
using the relation

4erri = ku��coarse;iukH1
0 ;Ki

� ku��optimal;iukH1
0 ;Ki

;
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with �optimal;i = �fine;i. This again reduces to

4erri = k�fine;iu��coarse;iukH1
0 ;Ki

; (6.3)

as polynomial spaces corresponding to the coarse and re�ned element are
nested. The situation is depicted in Figure 6.2.

2
x

1
xK

i

FIGURE 6.2: Decrease of projection-based interpolation error {
p-re�nement of a linear element.

Step 1, hp-adaptivity:

The situation is much more interesting in the case of hp-re�nements. In
harmony with simpli�cations made for h- and p-re�nements we allow that the
order p may only be increased by one and the element may only be subdivided
into two equal subintervals during one step of the algorithm. Hence, we
consider a p-re�nement together with a sequence of competitive h-re�nements
(h-re�nements that result in the same increase in the number of DOF on the
mesh element). Speci�cally in 1D it means that orders pL; pR corresponding
to the element sons satisfy the condition

pL + pR = p+ 1; 1 � pL; pR;

where p is the polynomial order associated with the coarse element. Thus
we have p possible ways an element of the polynomial order p can be h-
re�ned plus one option of pure p-re�nement. For a linear element the choice
is between a quadratic element and two �rst-order subelements. A quadratic
element can either become a cubic element or two equally long subelements
with linear+quadratic or quadratic+linear polynomial orders, etc. Projection-
based interpolation error decrease rates are computed for each of these p+ 1
hp-re�nement possibilities separately using the relation

4erri = ku��coarse;iukH1
0 ;Ki

� ku��optimal;iukH1
0 ;Ki

; (6.4)
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which in this case does not simplify as the polynomial spaces corresponding
to the coarse and re�ned element are in general not nested. We choose hp-
re�nement, which brings the maximum decrease rate 4erri, and by �optimal;i

we denote the corresponding projection-based interpolation operator.

REMARK 6.1 Although the application of nonnested spaces in general com-
plicates the theoretical analysis of adaptive �nite element procedures, they are
crucial for automatic hp-adaptivity. Only in this way is the ow of degrees of
freedom in the computational domain 
 fast enough to allow for exponential
convergence of the adaptive scheme { we will have a chance to discuss this
feature in more detail and observe it in concrete examples.

Step 2 { selection of elements that will be re�ned

In this global step we compute the maximum element projection error de-
crease rate in the mesh 4errmax. Here additional information must enter the
decision process to quantify the number of elements to be re�ned. In accord
with an optimality criterion derived in [162], which corresponds to an inte-
ger version of the steepest descent method, we select elements whose error
decrease rates satisfy

4erri � 1

3
4errmax: (6.5)

Obviously this is one of many possible ways the optimization process can
be driven. It is based on the selection of candidates with most signi�cant
projection-based interpolation decrease rate. Although the criterion is opti-
mal within one step of the algorithm, due to the nonlinear nature of the op-
timization problem it is not necessarily globally optimal. Simply put, globally
optimal adaptive strategies may involve decisions that are locally nonoptimal.
Since the criterion (6.5) completely neglects the information about the ac-

tual magnitude of the interpolation error, it is practical to add one more
criterion

erri � 10erraverage: (6.6)

This criterion selects for re�nement elements whose projection-based inter-
polation error magnitude is signi�cantly larger than the average (we choose
concretely one order of magnitude in (6.6); similar to the factor 1=3 in (6.5),
this constant is somehow arbitrary). Motivation for (6.6) is illustrated in
Figure 6.3.

6.1.2 Automatic mesh optimization algorithms

Let us now summarize the contents of the previous paragraph into a mesh
optimization algorithm. We consider a suÆciently smooth function u de�ned
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2
x

1
xK

i

A

B

C

FIGURE 6.3: Motivation for the second criterion (6.6). The solid line
represents the function u on a linear mesh element Ki, p(Ki) = 1. The dashed
line shows both the coarse and �ne mesh interpolants which lie very close to
each other if the point C happens to lie close to the midpoint (A + B)=2.
Thus, 4erri = k�fine;iu � �coarse;iukH1

0 ;Ki
� 0 although the magnitude

of the projection-based interpolation error itself is large, and criterion (6.5)
leaves this element untouched.

in the domain 
 and an initial �nite element mesh T 0
h;p. The goal of the

algorithm is to construct a sequence of �nite element meshes T k
h;p, k = 1; 2; : : :,

that minimizes the projection-based interpolation error of the function u,

errk = ku��k
h;pukH1

0
: (6.7)

ALGORITHM 6.1 (Automatic mesh optimization in 1D)

1. Put k := 0 and consider a function u and an initial �nite element mesh
T k
coarse = T k

h;p.

2. Compute elementwise projection-based interpolant �k
coarseu = �k

h;pu.

3. Construct a uniformly re�ned grid T k
fine:

(a) T k
fine = T k

h=2;p (h-adaptivity),

(b) T k
fine = T k

h;p+1 (p-adaptivity),

(c) T k
fine = T k

h=2;p+1 (hp-adaptivity).

4. Compute elementwise projection-based interpolant �k
fineu corresponding

to the mesh T k
fine.

5. If the projection-based interpolation error

errk = ku��k
coarseukH1

0

satis�es a given tolerance TOL, stop.

© 2004 by Chapman & Hall/CRC



304 Higher-Order Finite Element Methods

6. Select optimal re�nement type for all elements Ki 2 T k
coarse (with our

simpli�cations the decision is nontrivial only in the case of hp-adaptivity),
and compute projection-based interpolation error decrease rates 4errki ,
using (6.2), (6.3) or (6.4). Compute maximum error decrease rate

4errkmax = max
Ki2T

k
coarse

4errki :

7. Determine which elements will be re�ned, using the values 4errk, errk,
corresponding element contributions and criteria (6.5) and (6.6).

8. Perform (optimal) re�nement of selected elements, by T k+1
coarse = T k+1

h;p

denote the new coarse mesh. Put k := k + 1.

9. Go to 2.

Let us now illustrate this mesh optimization algorithm on a few concrete
examples.

6.1.3 Automatic h-adaptive mesh optimization

Let us begin with the h-version of the above automatic mesh optimization
procedure. To challenge the algorithm, we use a function u of the form

u(x) =
exp(�500(x� 0:4)2)

2
; x 2 [0; 1] (6.8)

(depicted in Figure 6.4). By the local exponential peak we want to simulate
multiscale behavior of the solution that the automatic adaptivity (and auto-
matic mesh optimization in the �rst place) is supposed to handle. We may
choose, for example, a quite inoptimal initial mesh T 0

h;p consisting of N
(0) = 3

equally long linear elements.
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0 0.2 0.4 0.6 0.8 1

FIGURE 6.4: Example function u forming a local peak at x = 0:4.
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h-re�nements with linear elements

Figures 6.5 { 6.101 correspond to h-re�nements with linear elements. On
the left we depict the interpolant on the coarse grid (solid line) together
with the function u (dashed line). On the right we show the corresponding
decrease rates for the interpolation error that determine which elements will
be re�ned. The value err2 = ku � �k

coarseuk2H1
0
means the total projection-

based interpolation error on the coarse mesh (squared). The values of the
interpolants at the endpoints x = 0; 1 are determined by the function u.
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FIGURE 6.5: Step 1: initial mesh interpolant and projection error decrease
rates on the initial mesh; number of DOF = 2, err2 = 6:98862. Elements K1

and K2 selected for re�nement.
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FIGURE 6.6: Step 2: interpolant after one h-re�nement and corresponding
projection error decrease rates; number of DOF = 4, err2 = 6:97306. Only
element K3 selected for re�nement.

1The 1D results presented in this chapter were obtained by a C++ code MESHOPT, which
for noncommercial purposes can be downloaded free of charge from the website of the �rst
author, http://www.iee.cas.cz/staff/solin/ (or http://www.caam.rice.edu/~solin/),
together with a few additional numerical software packages related to mesh generation,
computational uid dynamics, computational electromagnetics and higher-order �nite ele-
ment methods.
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FIGURE 6.7: Step 3: interpolant after two h-re�nements and correspond-
ing projection error decrease rates; number of DOF = 5, err2 = 3:00938.
Elements K3;K4 selected for re�nement.
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FIGURE 6.8: Step 4: interpolant and error decrease rates after three h-
re�nements; number of DOF = 7, err2 = 1:51809.
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FIGURE 6.9: Step 5: interpolant and error decrease rates after four h-
re�nements; number of DOF = 8, err2 = 0:648154.
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FIGURE 6.10: Step 6: interpolant and error decrease rates after �ve h-
re�nements; number of DOF = 12, err2 = 0:280355. \Long" element K2

�nally selected for re�nement. We can observe that despite the inoptimal ini-
tial mesh the algorithm fully automatically recovers the shape of the function
u.

h-re�nements with quadratic elements

In the second example we remain with the h-version of the automatic mesh-
optimization Algorithm 6.1, but this time we apply quadratic elements. Fig-
ures 6.11 { 6.14 depict the same quantities that were shown in the previous
paragraph.
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FIGURE 6.11: Step 1: piecewise quadratic interpolant on the initial mesh
and corresponding projection error decrease rates; number of DOF = 5, err2 =
6:67628. Element K2 selected for re�nement (compare with Figure 6.5).

© 2004 by Chapman & Hall/CRC



308 Higher-Order Finite Element Methods

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

FIGURE 6.12: Step 2: piecewise quadratic interpolant after one h-
re�nement and corresponding projection error decrease rates; number of DOF
= 7, err2 = 3:94301.
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FIGURE 6.13: Step 3: piecewise quadratic interpolant after two h-
re�nements and corresponding projection error decrease rates; number of DOF
= 9, err2 = 1:20319.
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FIGURE 6.14: Step 4: piecewise quadratic interpolant after three h-
re�nements and corresponding projection error decrease rates; number of DOF
= 11, err2 = 0:171832.
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Convergence of h-adaptive version of the mesh optimization
algorithm

Convergence of the projection-based interpolation error with respect to the
invested number of degrees of freedom is an essential piece of information
about the quality of a mesh optimization algorithm. In Figure 6.15 we show
four curves corresponding to the h-version of the automatic mesh optimiza-
tion Algorithm 6.1 with linear, quadratic, cubic and fourth-order elements,
respectively, in decimal logarithmic scale. The horizontal axis represents the
number of degrees of freedom.
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FIGURE 6.15: Automatic h-adaptive mesh optimization. Convergence
of projection-based interpolation error err2 with respect to the number of
degrees of freedom for linear, quadratic, cubic and fourth-order elements.

Notice that all the presented convergence curves are monotone { this follows
from the fact that the h-version of the mesh optimization Algorithm 6.1 pro-
duces a sequence of nested �nite element spaces.
Further notice that the most signi�cant improvement of the convergence

occurs between linear and quadratic elements. This aspect, together with a
relative simplicity of the computer implementation of quadratic elements, is
the main reason for their great popularity in the framework of h-adaptive
schemes.
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6.1.4 Automatic p-adaptive mesh optimization

Next in the line is the p-version of the automatic mesh optimization Al-
gorithm 6.1. For the sake of comparison we begin with three equally long
linear mesh elements as in Paragraph 6.1.3. A few decisions of the adaptive
procedure are shown in Figures 6.16 { 6.18.
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FIGURE 6.16: Step 1: piecewise linear interpolant on the initial mesh,
projection error decrease rates and polynomial orders; number of DOF = 2,
err2 = 6:98862. Element K2 selected for re�nement (compare with Figure
6.5).

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

FIGURE 6.17: Step 4: number of DOF = 5, err2 = 3:26507. This is the
�rst time element K1 is selected for re�nement.
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FIGURE 6.18: Step 29: number of DOF = 33, err2 = 3:66016 � 10�5.
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Comparing these results with Figures 6.5 { 6.10, we observe that the simple
h-adaptive strategy works better than the p-adaptive version illustrated here.
This con�rms the well-known fact that purely p-adaptive schemes can lead
to less satisfactory results than standard h-adaptive methods when starting
from inoptimal initial meshes.

6.1.5 Automatic hp-adaptive mesh optimization

Finally, we come to an example illustrating performance of the hp-version of
the automatic mesh optimization Algorithm 6.1. Figures 6.19 { 6.25 document
some of its decisions, showing the corresponding interpolant (solid line) with
the interpolated function u (dashed line) in the background, and with the
interpolation error decrease rates and the distribution of the polynomial order
in the mesh. It is suÆcient to start with Step 3, since the �rst two steps are
identical to those of the p-version.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

FIGURE 6.19: Step 3: number of DOF = 4, err2 = 3:96569; quadratic
element K2 (second from the left) selected for genuine hp-re�nement with
pL = 2; pR = 1. Here we touch on the very origin of exponential convergence
of hp-adaptive schemes { the ow of degrees of freedom allowed by pure h-
and p-re�nements can never be this fast.
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FIGURE 6.20: Step 4: number of DOF = 5, err2 = 2:08843; elements K2

and K3 selected for pure p-re�nement.
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FIGURE 6.21: Step 5: number of DOF = 7, err2 = 0:199365 (at this
number of DOF, this result beats both the h- and p-versions by one order of
magnitude). Elements K1 and K3 selected for pure p-re�nement.
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FIGURE 6.22: Step 6: number of DOF = 9, err2 = 0:165453; again,
elements K1 and K3 selected for pure p-re�nement.
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FIGURE 6.23: Step 7: number of DOF = 11, err2 = 0:0785747; cubic
element K1 selected for genuine hp-re�nement with pL = 1, pR = 3.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

2e-11

4e-11

6e-11

8e-11

1e-10

1.2e-10

1.4e-10

1.6e-10

1.8e-10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

FIGURE 6.24: Step 26: number of DOF = 49, err2 = 7:52046 � 10�10.
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FIGURE 6.25: Step 27: number of DOF = 53, err2 = 2:63415 � 10�10.

Comparison of h-, p- and hp-adaptive mesh optimization procedures

Figure 6.26 compares the performance of h-, p- and hp-adaptive versions of
the mesh optimization Algorithm 6.1.
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FIGURE 6.26: Convergence of projection-based interpolation error err2

in decimal logarithmic scale. The horizontal axis represents the number of
degrees of freedom. The four curves correspond to the h-adaptive version
with linear and quadratic elements, and p- and hp-adaptive versions starting
from linear elements.

Notice that the convergence curve related to the p-version ends abruptly after
the polynomial order of approximation in our algorithm achieves its maxi-
mum, pmax = 23, in our code. The almost straight line corresponding to the
hp-algorithm documents its exponential convergence.
The convergence curves for the h- and p- adaptive mesh optimization pro-

cedures have to be monotone because in both cases the resulting sequence of
�nite element spaces is nested. Since for the p-adaptive scheme this is not
quite obvious, we show the appropriate values of err2 in Table 6.1.
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TABLE 6.1: Projection-based interpolation error err2 for the
p-adaptive scheme.

# DOF err2 # DOF err2 # DOF err2

2 6.98862 13 0.656073 24 0.00541498
3 6.69879 14 0.63802 25 0.00540822
4 4.74929 15 0.325973 26 0.00540527
5 3.26507 16 0.0793164 27 0.00540465
6 3.24255 18 0.0735678 29 0.00540449
7 3.21539 19 0.0301057 30 0.00142186
8 3.19222 20 0.00624085 31 0.000300026
9 3.17716 21 0.00551845 32 0.000258359
11 3.1656 22 0.00542142 33 0.000036602
12 1.80304 23 0.00542056

6.2 Adaptive strategies based on automatic mesh
optimization

In Section 6.1 we presented a strategy capable of automatic progressive
adjustment of the �nite element mesh to an a priori given function u by
adaptive minimization of its projection-based interpolation error (6.1),

errk = ku��k
h;pukH1

0
: (6.9)

The next natural step is to generalize this technique to a strategy for auto-
matic adaptive adjustment of the �nite element mesh to an unknown function
u representing the solution of an investigated variational problem.
Hence, our model problem is to �nd a solution u lying in a Hilbert space V

and satisfying the equation

b(u; v) = f(v) for all v 2 V: (6.10)

Here b is an elliptic bilinear form de�ned on V � V , and f 2 V 0. If the form
b is positive de�nite, we can de�ne the standard energy norm,

kuk2e = b(u; u) for all u 2 V: (6.11)

If the form b is not positive de�nite the situation becomes more delicate, and
we may try to split it into a positive de�nite part and a compact perturbation
that can be neglected { see, e.g., [185] for more details. Here we will assume
that b is positive de�nite.
Hence, from now on, the symbol u stands for the unknown exact solution of

the underlying variational problem. Instead of minimizing projection-based
interpolation error (6.9), we are interested in the minimization of the dis-
cretization error
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ekh;p = ku� ukh;pke; (6.12)

where ukh;p stands for approximate solutions obtained on the sequence of op-

timal �nite element meshes T k
h;p, k = 1; 2; : : :. Although obviously we cannot

provide the mesh optimization procedure with the exact solution u, at least
we can supply a good estimate. There are several ways this can be done based
on the evaluation of reference solutions (see, e.g., [64]).

6.2.1 Reference solutions

By reference solution uref we mean an approximate solution that lies sig-
ni�cantly closer to the exact solution u than the approximation uh;p on the
current (let us call it coarse) �nite element mesh. The reference solution uref
should satisfy the following requirements:

� it should be computable using only the coarse mesh, coarse mesh solu-
tion uh;p, and the data to the problem,

� its evaluation should be signi�cantly faster than the solution of the orig-
inal �nite element problem,

� the di�erence uref � uh;p should provide good approximation of the
discretization error eh;p.

Usually we are interested in reference solutions that are at least by one
order of accuracy better than the coarse mesh approximation (here we mean
in h for h-adaptive procedures, in p for p-adaptive ones, and both in h and p
for hp-adaptive algorithms).

Solution on globally uniformly re�ned grids

The situation is simpler for pure h-adaptivity where, for example, highly
accurate approximations based on Babu�ska's extraction formulae (see, e.g.,
[162]) can be used. More diÆcult are p- and hp-adaptive methods since the
extraction techniques fail for higher ps. A robust way to obtain a reference
solution originally proposed by Demkowicz [64] is to use globally uniformly
re�ned grids. For h-adaptivity this means h ! h=2 re�nement where all
edges are divided into half (and triangles and quadrilaterals are subdivided
into four subelements, hexahedra into eight, etc.). In the case of p-adaptive
schemes one increases the order of approximation in all elements by one with
no spatial re�nement. For hp-adaptive methods one performs an (h; p) !
(h=2; p + 1) re�nement. The reference solution uref = uh=2, uref = up+1 or
uref = uh=2;p+1, respectively, is then the approximate �nite element solution
on the �ne mesh.
The �ne mesh problems are usually several times larger than the original

ones. Their size rises most signi�cantly on hp-meshes that already contain a
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number of higher order elements. However, the point is that we do not need to
start from scratch to resolve the �ne mesh problem. In fact, the coarse mesh
solution already represents a lot of valuable information on lower frequencies
that we can (and have to) use. This is a textbook situation for the application
of a multigrid solver. Speci�cally in our case, as we deal only with one coarse
and one �ne grid, we need a two-grid solver (see Paragraph 5.2.6). In this way
the time needed for obtaining the �ne mesh solution becomes only a fraction
of the time that would be needed to compute it from scratch.
Moreover, since we use the �ne grid solution as an error indicator for the

adaptive algorithm only, we do not need to resolve it extremely accurately.
Recent experiments show that most of the time just a few smoothing iterations
on the �ne mesh can drive the adaptive scheme reliably.

6.2.2 A strategy based on automatic mesh optimization

Enhancing the automatic mesh optimization Algorithm 6.1 by the error
indicator obtained as the di�erence between the reference and coarse mesh
solution, we arrive at the following automatic adaptive algorithm:

ALGORITHM 6.2 (Automatic adaptivity in 1D)

1. Put k := 0 and consider an initial �nite element mesh T k
coarse = T k

h;p.

2. Compute approximation ukcoarse = uh;p on the current mesh T k
coarse.

3. Construct a uniformly re�ned grid T k
fine:

(a) T k
fine = T k

h=2;p (h-adaptivity),

(b) T k
fine = T k

h;p+1 (p-adaptivity),

(c) T k
fine = T k

h=2;p+1 (hp-adaptivity).

4. Compute approximation ukfine on the �ne mesh T k
fine, optimally using a

two-grid solver starting from the coarse mesh solution ukcoarse.

5. If the approximate discretization error errk = kukfine � ukcoarseke lies
within a given tolerance TOL, stop.

6. Replace the original (global) �nite element problem of minimizing the
discretization error,

ku� ukcoarseke; (6.13)

by (elementwise local) problems of minimizing projection-based interpo-
lation error,

ku��k
coarseuke;Ki

; 1 � i � N (k); (6.14)
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by neglecting the di�erence between the coarse mesh solution ukcoarse and
coarse mesh interpolant of the exact solution �k

coarseu,

kukcoarse ��k
coarseuke;Ki

� 0; 1 � i � N (k): (6.15)

Notice that here the locality property of the projection-based interpolation
operator turns out to be essential.

7. Replace the exact solution u by the reference solution uref , u := uref =
ukfine. Minimize elementwise contributions to the projection-based in-
terpolation error

kukfine ��k
optimalu

k
fineke;Ki

; 1 � i � N (k);

as explained in Step 1 of Paragraph 6.1.1:

� Select optimal re�nement type for all elements Ki, 1 � i � N (k).

� Compute corresponding projection-based interpolation error decrease
rates,

4erri = kukfine��k
coarse;iu

k
fineke;Ki

�kukfine��k
optimal;iu

k
fineke;Ki

;
(6.16)

for all elements Ki, 1 � i � N (k). Analogously as in Section
6.1 it is �optimal;i = �fine;i for pure h- and p-adaptivity, and the
previous relation therefore reduces to

4erri = k�k
fine;iu

k
fine ��k

coarse;iu
k
fineke;Ki

in these cases.

8. Determine which elements will be re�ned, using criteria (6.5), (6.6).

9. Re�ne selected elements, by T k+1
coarse = T k+1

h;p denote the new optimal
(coarse) mesh. Put k := k + 1.

10. Go to 2.

6.2.3 Model problem

Let us have a look at how the automatic adaptive strategies introduced
above perform in practice. In order to preserve the possibility of comparison
with results of the automatic mesh optimization procedures from Paragraphs
6.1.3 { 6.1.5, we will choose a model equation in such a way that the function
u from (6.8),

u(x) =
exp(�500(x� 0:4)2)

2
;
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which was depicted in Figure 6.4, is its exact solution. For simplicity let us
consider a positive de�nite elliptic problem

�4u+ k2u = f in 
 = (0; 1) (6.17)

with, for instance, k =
p
5. At 
 endpoints we prescribe Dirichlet conditions

that coincide with the exact solution u.

6.2.4 Automatic h-adaptivity

Figures 6.27 { 6.31 show a few �rst steps of the h-version of the adaptive
Algorithm 6.2, starting from three equally long linear elements as in the pre-
vious cases (compare with Figures 6.5 { 6.10). The value err2 means now the
total projection-based interpolation error of the �ne mesh solution ukfine with
respect to the coarse mesh interpolant (squared),

err2 = kukfine � �k
coarseu

k
finek2e:
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FIGURE 6.27: Step 1: initial coarse and �ne mesh solutions, projection
error decrease rates; number of DOF = 2, err2 = 0:0232704. Elements K1

and K2 selected for re�nement.
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FIGURE 6.28: Step 2: after one h-re�nement; number of DOF = 4, err2 =
3:97743. Element K3 selected for re�nement.
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FIGURE 6.29: Step 3: number of DOF = 5, err2 = 1:50713. Elements
K3;K4 selected for re�nement.
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FIGURE 6.30: Step 4: number of DOF = 7, err2 = 1:09153.
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FIGURE 6.31: Step 5: number of DOF = 8, err2 = 0:408867. Observe in
the last four �gures the growth of the error decrease rate of element K2 { it
will cause its re�nement in the next step.
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6.2.5 Automatic p-adaptivity

Next let us observe the performance of the p-version of the automatic adap-
tive Algorithm 6.2 applied to the problem (6.17). Figures 6.32 { 6.35 again
start from three equally long linear elements (compare with Figures 6.16 {
6.18).
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FIGURE 6.32: Step 1: coarse and �ne mesh solutions corresponding to the
initial mesh, projection error decrease rates and distribution of the polynomial
order in the coarse mesh; number of DOF = 2, err2 = 0:322116. Element K2

selected for re�nement.
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FIGURE 6.33: Step 2: number of DOF = 3, err2 = 1:97128. Element K2

selected for re�nement.
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FIGURE 6.34: Step 4: number of DOF = 5, err2 = 0:028536. Element
K1 selected for re�nement.
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FIGURE 6.35: Step 29: number of DOF = 33, err2 = 2:16267 � 10�5.
Element K2 selected for re�nement.
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6.2.6 Automatic hp-adaptivity

At last we come to the hp-version of the automatic adaptive Algorithm
6.2. The algorithm starts from the same initial mesh as in the previous cases.
Compare Figures 6.36 { 6.43 with Figures 6.19 { 6.25.
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FIGURE 6.36: Step 1: number of DOF = 2, err2 = 3:06323. Element K2

selected for pure p-re�nement.
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FIGURE 6.37: Step 2: number of DOF = 3, err2 = 4:05918. Element K2

selected for genuine hp-re�nement with pL = 2; pR = 1.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

FIGURE 6.38: Step 3: number of DOF = 4, err2 = 3:82452. Element K2

selected for genuine hp-re�nement with pL = 2; pR = 1.
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FIGURE 6.39: Step 4: number of DOF = 5, err2 = 1:9912. Elements K2,
K3 selected for pure p-re�nement.
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FIGURE 6.40: Step 5: number of DOF = 7, err2 = 0:145694. Elements
K1;K3 selected for pure p-re�nement.
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FIGURE 6.41: Step 6: number of DOF = 9, err2 = 0:144764. Elements
K1;K3 selected for pure p-re�nement.
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FIGURE 6.42: Step 7: number of DOF = 11, err2 = 0:0733345. Element
K1 selected for hp-re�nement.
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FIGURE 6.43: Step 27: number of DOF = 53, err2 = 2:62835 � 10�10.
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Comparison of performance of h-, p- and hp-adaptive strategies

Convergence curves of the approximate discretization error err2 = kukfine�
ukcoarsek2e for the h-, p- and hp-versions of the automatic adaptive Algorithm
6.2 are shown in Figure 6.44. The h-version is considered with both linear
and quadratic elements.
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FIGURE 6.44: Convergence of the approximate discretization error err2

with respect to the number of degrees of freedom in decimal logarithmic scale.

Notice that the convergence curves are not monotone { this is not in contra-
diction to the theory because we depict approximate discretization error err
instead of the true error eh;p = ku�uh;pke. Convergence curves of eh;p would
have to be monotone for the h- and p-adaptive schemes, since �nite element
subspaces in the resulting sequence are nested. Due to the nonnestedness of
genuine hp-re�nements this is not the case for hp-adaptivity.
It is interesting to compare the convergence curves of the approximate dis-

cretization error err2 shown in Figure 6.44 with the convergence curves from
Figure 6.26, related to mesh optimization schemes that \knew" the function
u in advance.
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6.3 Goal-oriented adaptivity

During the last two decades, goal-oriented adaptivity for partial di�erential
equations has been subject to ongoing scienti�c and engineering e�ort, and
several basic methodologies have been proposed (see, e.g., [29, 30, 164, 48,
152, 153, 23, 148]). In comparison with adaptivity in energy norm, which is
designed to minimize the energy of the residual of the approximate solution,
the goal-oriented approach attempts to control concrete features of the solved
problem { quantities of interest. Goal-oriented adaptive techniques achieve
precise resolution in quantities of interest with qualitatively fewer degrees of
freedom than energy-driven adaptive schemes.

6.3.1 Quantities of interest

Quantities of interest are speci�c properties of the solution, in the pre-
cise resolution of which we are interested. Often they can be represented by
bounded linear functionals of the (generally vector-valued) solution u. In �-
nite element computations it is convenient to de�ne the quantities of interest
in the form of an integral over the domain 
, since integration lies at the heart
of all �nite element codes. Boundedness of the interest functional is obviously
crucial for the success of the goal-oriented adaptive procedure.

We may be interested, e.g., in the precise resolution of the average of the
solution u in a selected subdomain 
s � 
. Then, the linear functional of
interest can be written in the form

L(u) =
1

j
sj
Z



�
s
(x)u(x)dx; (6.18)

where �
s
stands for the characteristic function of the domain 
s, i.e.,

�
s
(x) =

8<
:
1 if x 2 
s;

0 otherwise:

PROPOSITION 6.1
Let u 2 H1

0 (
). Then, the linear functional de�ned in (6.18) is bounded in
H1
0 (
).

PROOF Since u 2 H1
0 (
) and �
s

2 L2(
), using the Minkowski inequality
we obtain

jL(u)j =
���� 1

j
sj
Z



�
s
(x)u(x)dx

���� � k�
s
k0kuk0 � C0j
sjjuj1;
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where C0 is the Poincar�e constant and juj1 denotes the H1-seminorm.

For vector-valued solutions, the goal of the computation may be the ux
through the boundary of a subdomain 
s of 
, in which case the linear func-
tional of interest reads

L(u) =

Z
@
s

u(x) � n(x)dS =

Z

s

r � u(x)dx =

Z



�
s
(x)r � u(x)dx: (6.19)

It is easy to see that this linear functional is bounded in (H1
0 )

d.
In the case of vector-valued problems, our goal may be the precise resolution

of a selected solution component ui in a subdomain 
s. Then, the linear
functional of interest will have the form

L(u) =
1

j
sj
Z



�
s
(x)ui(x)dx: (6.20)

6.3.2 Formulation of the dual problem

Let us recall the basic ideas of the goal-oriented adaptivity, leading to the
formulation of the dual problem.

1. Consider a problem to �nd a solution u lying in a Hilbert space V and
satisfying the weak formulation (6.10),

b(u; v) = f(v) for all v 2 V; (6.21)

b being an elliptic bilinear form de�ned on V � V and f 2 V 0.

2. Consider the discrete problem

b(uh;p; vh;p) = f(vh;p); for all vh;p 2 Vh;p; (6.22)

where Vh;p � V is a piecewise-polynomial subspace of the space V .

3. De�ne the discretization error eh;p = u� uh;p and consider the residual
rh;p 2 V 0,

rh;p(v) = f(v)� b(uh;p; v); v 2 V: (6.23)

4. It is our aim to relate the residual rh;p to the error in the quantity of
interest, i.e., to �nd G 2 V 00 such that

G(rh;p) = L(eh;p):
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5. By reexivity, G can be identi�ed with an element v in the original space
V such that

G(rh;p) = rh;p(v):

Sometimes the function v is called the inuence function.

6. Using now (6.21), (6.22) and (6.23), we obtain

L(eh;p) = G(rh;p) = rh;p(v) = f(v)� b(uh;p; v) = b(u; v)� b(uh;p; v)

= b(eh;p; v):

Hence, the inuence function v is obtained as a solution of the following
dual problem.

7. Dual problem: Find v 2 V such that

b(u; v) = L(u); (6.24)

for all u 2 V .

Notice that the primal and dual problems di�er only in the right-hand side.
The same sti�ness matrix can be used for both the primal and dual problems.

6.3.3 Error control in quantity of interest

In goal-oriented adaptivity, it is our aim to control the error in the quantity
of interest,

eh;p = jL(u)� L(uh;p)j: (6.25)

Optimally we would like to control it by means of the discretization errors in
energy norm for both the primal and dual problem, as these error quantities
are quite easily accessible. Hence, consider the discrete dual problem

b(uh;p; vh;p) = L(uh;p) for all uh;p 2 Vh;p: (6.26)

It follows from the linearity of the functional L and (bi)linearity of the form
b that

jL(u)� L(uh;p)j = jL(u� uh;p)j = jb(u� uh;p; v)j:
Standard orthogonality property for the error of the solution (subtract (6.22)
from (6.21)) yields

jb(u� uh;p; v)j = jb(u� uh;p; v � vh;p)j:
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In the language of element contributions we can write

jb(u� uh;p; v � vh;p)j � C
X

K2�h;p

jju� uh;pjje;K jjv � vh;pjje;K ;

and thus �nally we obtain

jL(u)� L(uh;p)j � C
X

K2�h;p

jju� uh;pjje;K jjv � vh;pjje;K : (6.27)

If b(:; :) is symmetric, C = 1. In practice, if the �nite element code is suÆ-
ciently modular, it should not be very diÆcult to incorporate the solution of
the dual problem into the �nite element algorithm since we can use the same
sti�ness matrix. We only have to adjust the procedure for the discretization
of the right-hand side functional L. Dramatic changes in the code are usually
not necessary for the implementation of the calculation of the error in energy
norm for the dual problem.

When using the Gauss elimination, it is advantageous to eliminate for both
the primal and dual right-hand sides simultaneously. When using iterative
solvers, the di�erence between the consequent and simultaneous solution of
the discrete primal and dual problem is less signi�cant, depending on the
implementation of the iterative solver.

6.3.4 Selected nonlinear and unbounded functionals

Sometimes we come across quantities of interest that either are nonlinear or
that cannot be directly expressed in terms of bounded linear functionals of the
solution u. In such cases one usually attempts to linearize the nonlinear ones
by some standard technique, and to regularize the unbounded functionals.

Nonlinear quantities of interest

To give a simple example, let us choose as our goal the integral over the
domain 
 of squared magnitude of the (generally vector-valued) solution u,

N(u) =

Z

s

juj2 dx:

Error in the nonlinear quantity N(u) can be written as

N(u)�N(uh;p) =

Z

s

juj2 � juh;pj2 dx = 2

Z

s

uh;p � eh;p dx+
Z

s

jeh;pj2 dx;

where eh;p = u � uh;p is the discretization error. N(u) can be linearized
by neglecting the higher-order term in eh;p. This yields a bounded linear
functional
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L(e) = 2

Z

s

uh;p � e dx =

Z



�
s
(x)uh;p(x) � e(x) dx:

REMARK 6.2 (Starting the goal-oriented adaptivity) When using a
linearization technique based on neglecting of higher-order error terms, one
should not forget this fact in the computation, and start the goal-oriented
adaptive procedure after �rst making sure that one is suÆciently close to the
solution u in some global (e.g., energy) norm. This may be done by a switch
in the code that allows us to start the goal-oriented procedure only when the
approximate discretization error eh;p � kuref � uh;pke is smaller than a given
tolerance. The reference solution can be computed, for example, as described
in Paragraph 6.2.1.

Sometimes we may deal with nonlinear quantities of interest containing the
natural or decimal logarithm (this can be the case, for example, when working
with the decibel scale { see also, e.g., [185]). The nonlinear functional

N(u) = log10

�����
Z

s

u dx

����
�
;

de�ned if
R

s
u dx 6= 0, yields an error quantity of the form

N(u)�N(uh;p) = log10

 �����
R

s
u dxR


s
uh;p dx

�����
!
: (6.28)

When the discretization error eh;p = u� uh;p is suÆciently small, it isR

s
u dxR


s
uh;p dx

� 1;

and we can approximate

N(u)�N(uh;p) = log10

 
1 +

R

s
eh;p dxR


s
uh;p dx

!
�

R

s
eh;p dx

ln 10
R

s
uh;p dx

:

Hence the linearization of the logarithm log10 y at y = 1 leads to a bounded
linear functional

L(e) =

R

s
e dxR


s
uh;p dx

:

In this case the approximation uh;p works as a scaling parameter in the dual
problem. Before we start the goal-oriented adaptivity, it is necessary to verify
that

R

s
uh;p dx is nonzero. Moreover, according to Remark 6.2, we should

verify that eh;p � kuref � uh;pke is suÆciently small.
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Pointwise values of the solution u

A particularly important example of a computational goal is the value u(x0)
of the solution u at a selected point x0 2 
 � IRd. In one spatial dimension,
the corresponding operator

L(u) = u(x0) (6.29)

is linear and bounded (solution of the dual problem is the corresponding
Green's function). Unfortunately, this is no longer true in higher spatial
dimensions.
To overcome this obstacle we may, for example, replace the pointwise value

of the solution u(x0) with an average over a small ball B(x0; r) � 
, r > 0,
surrounding the point x0,

L(u) =
1

jB(x0; r)j
Z
B(x0;r)

u(x) dx: (6.30)

This functional of interest is bounded.
Another standard approach to the treatment of pointwise values of interest

is to apply regularizingmolli�ers (see, e.g., [148]). For � > 0 we de�ne a linear
bounded operator of the form

L(u) =

Z



k�(x� x0)u(x) dx;

where

k�(x) =

8>><
>>:
C�;x0 exp

�
�2

jxj2 � �2

�
if jxj < �;

0 otherwise:

The constant C�;x0 is chosen to satisfyZ



k�(x� x0) dx = 1:

Notice that k� is in�nitely smooth in 
. In general, the molli�er can be less
smooth to obtain a bounded functional in H1(
). In practical implementation
it is convenient to choose the value of � in such a way that the support of the
molli�er k� lies in one element only (supposed that x0 does not lie on an
element interface or at a grid vertex).

6.4 Automatic goal-oriented h-, p- and hp-adaptivity

Let us see how the goal-oriented adaptivity can be incorporated into the
automatic h-, p- and hp-adaptive schemes from Section 6.2. We shall begin
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with one-dimensional algorithms again, since the basic principles are here free
of the unavoidable technical diÆculty of higher-dimensional implementations.
The reader should indeed be aware that from the practical point of view, goal-
oriented adaptivity makes good sense mainly in higher spatial dimensions {
we will address two-dimensional schemes in more detail in Section 6.5.

6.4.1 Automatic goal-oriented adaptive strategies

The basic di�erence between the automatic h-, p- and hp-adaptive strategies
from Section 6.2 and the goal-oriented approach is that instead of minimizing
the error (6.12) in a global (energy) norm we minimize the error in the quantity
of interest,

jL(u)� L(uh;p)j: (6.31)

Returning to the estimate (6.27),

jL(u)� L(uh;p)j � C
X

K2�h;p

jju� uh;pjje;K jjv � vh;pjje;K ;

we see we will have to simultaneously minimize the discretization error in the
solution to both the primal and dual problem.

ALGORITHM 6.3 (Automatic goal-oriented adaptivity in 1D)

1. Put k := 0 and consider an initial �nite element mesh T k
coarse = T k

h;p.

2. Compute approximation ukcoarse = uh;p to the primal problem on the
current mesh T k

coarse.

3. Compute approximation vkcoarse = vh;p to the dual problem on the cur-
rent mesh T k

coarse.

4. Construct a uniformly re�ned grid T k
fine:

(a) T k
fine = T 0

h=2;p (h-adaptivity),

(b) T k
fine = T 0

h;p+1 (p-adaptivity),

(c) T k
fine = T 0

h=2;p+1 (hp-adaptivity).

5. Compute approximation ukfine to the primal problem on the �ne mesh

T k
fine, optimally using a two-grid solver and the coarse mesh solution

ukcoarse.

6. In the same way compute approximation vkfine to the dual problem on

the �ne mesh T k
fine.
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7. If the approximate error in goal jL(ukfine)�L(ukcoarse)j satis�es a given
tolerance TOL, stop.

8. Minimize elementwise contributions to the product of projection-based
interpolation errors for both the primal and dual problem,

kukfine ��k
optimalu

k
finekekvkfine ��k

optimalv
k
fineke;

analogously to how we minimized the �rst term kukfine��k
optimalu

k
fineke

in Algorithm 6.2. Now, according to (6.27) we select optimal re�ne-
ment type for all elements Ki 2 T k

coarse by maximizing the product of
projection-based interpolation error decrease rates

4erri =4errprimal;i4errdual;i; (6.32)

where

4errprimal;i = kukfine ��coarse;iu
k
fineke � kukfine ��optimal;iu

k
fineke;

and

4errdual;i = kvkfine ��coarse;iv
k
fineke � kvkfine ��optimal;iv

k
fineke:

Analogously to Algorithm 6.2 the quantities 4errprimal;i, 4errdual;i
simplify for pure h- and p-adaptivity due to the nestedness of polyno-
mial spaces corresponding to the coarse and re�ned elements.

9. Determine which elements will be re�ned using the criteria (6.5) and
(6.6).

10. Re�ne selected elements, by T k+1
coarse = T k+1

h;p denote the new coarse mesh.
Put k := k + 1.

11. Go to 2.

Let us look at some examples in the next paragraph.

6.4.2 Example: average of solution over a subdomain

To illustrate the advantages of automatic goal-oriented adaptivity, let us
return to the model equation (6.17),

�4u+ k2u = f in 
 = (0; 1): (6.33)

We use the same value of k =
p
5 and the right-hand side function f and

Dirichlet boundary conditions are chosen in such a way that the function
(6.8),

u(x) =
exp(�500(x� 0:4)2)

2
;

that we already know from Figure 6.4, is the exact solution of (6.33).
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This time, however, the goal of the computation will be the average of the
solution u in the subdomain 
s = (0:5; 0:6) of the domain 
 = (0; 1), as shown
in Figure 6.45.
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FIGURE 6.45: Goal of computation: average of the solution u over the
subdomain 
s = (0:5; 0:6).

The appropriate functional of interest has the form (6.18) from Paragraph
6.3.1,

L(u) =
1

j
sj
Z



�
s
(x)u(x)dx: (6.34)

6.4.3 Goal-oriented and energy-driven h-adaptivity

The left part of Figures 6.46 { 6.52 shows coarse and �ne mesh solutions
to the primal problem (solid and dashed lines, respectively). The midpart
shows the same quantities for the dual problem and on the right are the
corresponding projection-based interpolation error decrease rates 4erri,

4erri = kukfine ��coarseu
k
fineke;Ki

kvkfine ��coarsev
k
fineke;Ki

; (6.35)

obtained as a product of contributions from both the primal and dual prob-
lems. The symbol �coarse stands for the projection-based interpolation oper-
ator on the coarse mesh.

It is interesting to compare these �rst steps with Figures 6.27 { 6.31 (cor-
responding to energy-driven h-adaptivity). Convergence rates in the quantity
of interest will be shown in Figure 6.60.
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FIGURE 6.46: Step 1: initial coarse and �ne mesh solutions for both the
primal and dual problems (left and middle, respectively), and corresponding
error decrease rates (on the right). Only element K2 selected for re�nement.
In contrast to the energy-driven h-adaptive Algorithm 6.2, element K1 is left
unchanged.
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FIGURE 6.47: Step 2: number of DOF = 3. The product of the
projection-based interpolation error decrease rates (6.35) is negligible except
for a single element at x = 0:4. Due to this fact, element K1 is skipped again.
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FIGURE 6.48: Step 3: number of DOF = 4. ElementK1 starts to be seen;
however, the rate 4err1 does not yet exceed the critical level 4errmax=3.
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FIGURE 6.49: Step 4: number of DOF = 6. The reduction of error in
both the primal and dual problems, resulting from the previous re�nements,
�nally allows us to re�ne element K1.
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FIGURE 6.50: Step 5: number of DOF = 8. Initially slowed down by
skipping the element K1, now the goal-oriented adaptive algorithm achieves
the same resolution in goal as the energy-driven h-adaptive procedure, and it
starts to win (compare h-convergence curves in Figure 6.60).
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FIGURE 6.51: Step 6: number of DOF = 9. Only elements corresponding
to the foot of the exponential peak and the top of the solution of the dual
problem are selected for re�nement.
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FIGURE 6.52: Step 7: number of DOF = 13. From now on, the goal-
oriented algorithm invests new degrees of freedom mainly to the resolution of
the region on the right of the peak { in contrast to the standard h-adaptive
scheme, which improves the resolution equally on both its sides.
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6.4.4 Goal-oriented and energy-driven hp-adaptivity

The next series of Figures 6.53 { 6.59 documents the decisions of the hp-
version of the goal-oriented adaptive Algorithm 6.3 (again we solve problem
(6.33) from Paragraph 6.4.2). The initial mesh consists of three equally long
linear elements. Again it is interesting to compare these �gures with Figures
6.36 { 6.40. Convergence rates in the quantity of interest will be presented
later in Figure 6.60.
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FIGURE 6.53: Step 1: number of DOF = 2. Initial coarse and �ne mesh
solutions for both the primal and dual problems (left and middle, respectively)
and the corresponding error decrease rates (right). Element K2 selected for
pure p-re�nement.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.2 0.4 0.6 0.8 1

FIGURE 6.54: Step 2: number of DOF = 3. Element K2 selected for pure
p-re�nement.
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FIGURE 6.55: Step 3: number of DOF = 4. Element K2 selected for
genuine hp-re�nement. The reader may notice that in the �rst two steps,
error in the element K2 was reduced by pure p-re�nements only (compare
with Figure 6.37).
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FIGURE 6.56: Step 4: number of DOF = 5. Element K1 selected for pure
p-re�nement.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1
0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

8e-06

0 0.2 0.4 0.6 0.8 1

FIGURE 6.57: Step 5: number of DOF = 6. Elements K1, K2 selected
for pure p-re�nement.
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FIGURE 6.58: Step 6: number of DOF = 8. Element K3 selected for pure
p-re�nement. From now on, similarly as in the goal-oriented h-adaptive case,
degrees of freedom are invested mainly to the region lying on the right from
the peak.
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FIGURE 6.59: Step 7: number of DOF = 9. Element K3 selected for
pure p-re�nement. At this number of DOF, the resolution in goal is already
almost by two orders of magnitude better compared to the energy-driven hp-
adaptive scheme and four orders of magnitude better than in energy-driven
h-adaptivity.
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Comparison of performance of energy-driven and goal-oriented
strategies

Convergence in the quantity of interest of the standard (energy-driven) and
goal-oriented h- and hp-adaptive algorithms is shown in Figure 6.60. Accord-
ing to the theory, convergence in goal is not necessarily monotone.
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FIGURE 6.60: Convergence in quantity of interest (average of solution u
over interval 
s = (0:5; 0:6)) with respect to the number of degrees of freedom
for standard (energy-driven) and goal-oriented h- and hp-adaptivity in decimal
logarithmic scale.

6.5 Automatic goal-oriented hp-adaptivity in two dimen-
sions

The family of automatic goal-oriented h-, p- and hp-adaptive Algorithms 6.3
can be naturally extended into two spatial dimensions. At this point let us say
again that this approach to automatic adaptivity is, of course, not the only one
possible. The hp-adaptive �nite element methods are subject to ongoing active
research and various additional strategies are currently investigated. Some
of them are based on a posteriori error estimates in the standard sense (i.e.,
without a �nite element computation of reference solutions). To provide a few
references to the ongoing research, we mention at least [8, 122, 136, 149, 172].
Many additional references can be found therein.

The computation of reference solutions can be viewed as a special a pos-
teriori error estimation technique that, as with every other approach, has its
merits and its disadvantages. The two basic advantages, from our point of
view, are that this type of a posteriori error estimate works for a signi�cantly
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wider class of problems than standard error estimates do. But more signi�-
cantly, the reference solutions provide an approximation of the error itself, i.e.,
of its concrete shape as a function, while standard error estimates can mostly
o�er information about its magnitude only. From the point of view of auto-
matic hp-adaptivity this di�erence is essential. An automatic hp-algorithm
has to choose the best candidate from among several competitive re�nements,
and the shape of the function eh;p in element interiors does matter. The price
that we may pay for the luxury of having such an amount of information
about the error function is in many cases longer computational times.
The results presented in the following are based on the work [185] that is a

continuation of a long-term research devoted to automatic hp-adaptivity for
elliptic problems by Demkowicz et al. [62, 64, 65, 66, 151, 162, 63]. We refer
to [63] for a 3D implementation, the technicality of which exceeds the scope
of this chapter.
The basic principles of automatic goal-oriented hp-adaptivity in two spatial

dimensions are analogous to those in one dimension, and so is the goal-oriented
adaptive Algorithm 6.3. However, the mesh optimization step in 2D makes the
theory as well as the implementation much more diÆcult. For goal-oriented
adaptivity we will perform simultaneous minimization of the projection-based
interpolation error of the reference solution to both the primal and dual prob-
lems. The reader may �nd it useful to recall the projection-based interpolation
procedure introduced in Chapter 3. For the sake of simplicity, we will work
with H1-conforming approximations only.

6.5.1 Mesh optimization step in two dimensions

The mesh optimization procedure is based on elementwise minimization of
the error in goal by means of the approximate inequality (6.27),

jL(uh=2;p+1)�L(uh;p)j � C
X

K2Th;p

kuref ��h;purefke;Kkvref ��h;pvrefke;K :

(6.36)
One step of the procedure looks as follows (see [185] for more details):

Step 0. Obtain solutions to both the primal and the dual problems on the
coarse mesh Th;p and globally re�ned mesh Th=2;p+1 (simpli�cations analo-
gous to those in the one dimensional case (Algorithm 6.3) apply to pure h-
and p-adaptivity).

Step 1. Compute element contributions to estimate (6.36),

kuh=2;p+1 ��h;puh=2;p+1ke;Kkvh=2;p+1 ��h;pvh=2;p+1ke;K ; for all K 2 Th;p:
(6.37)

© 2004 by Chapman & Hall/CRC



Mesh optimization, reference solutions and hp-adaptivity 339

Step 2. Determine the element isotropy ags. This step is relevant only
for quadrilateral elements. An element is declared to be a candidate for
anisotropic re�nement if both the di�erences uh=2;p+1�uh;p and vh=2;p+1�vh;p
represent the same anisotropic behavior. First, the approximate error function
to the primal problem,

eK(x) = uh=2;p+1(x)� uh;p(x);

is transformed from a physical mesh quadrilateral K to the reference domain
Kq by means of an appropriate reference map xK(�) = (xK;1(�); xK;2(�)) :
Kq ! K. On the reference domain the error function has the form

ê(�) = e(xK(�)):

The H1
0 error on the element K,

e2K =

Z
K

jr(uh=2;p+1 � uh;p)j2 dx;

can be expressed in reference coordinates � as

ê2K =

Z
Kq

"
a11

�
@ê

@�1

�2
+ 2a12

@ê

@�1

@ê

@�1
+ a22

�
@ê

@�1

�2#
J(�) d� (6.38)

where

aij =

2X
k=1

@xK;k

@�K;i

@xk
@�j

:

The Jacobian J is computed in the standard way,

J(�) = det

�
@xK;i

@�k

�
(�):

Consider the direction �1 �rst. The solution to the primal problem is declared
to behave anisotropically in �1 if two conditions are met:

1. The error function ê(�) varies signi�cantly only in a single axial direc-
tion,

ja12j � C1(ja11j+ ja22j):
By the choice of the constant C1 > 0 we specify how signi�cant the
anisotropic behavior must be to invoke anisotropic re�nement. In the
code we set C1 := 0:01, so that anisotropic re�nements occur only if the
anisotropy of ê(�) is relatively strong. Small values of the constant C1

prefer isotropic re�nements.
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2. The anisotropic behavior occurs in the �1-direction,

ja22j � C2ja11j;

where the constant C2 := 0:01 for similar reasons as above.

Analogously we check the anisotropic behavior of the function ê(�) in the
direction �2.
For each reference direction �1; �2 the same test is also performed for the

error function vh=2;p+1(x) � vh;p(x) corresponding to the dual problem. As
mentioned above, an anisotropic re�nement occurs only if both the tests are
successful.

REMARK 6.3 Notice that anisotropic behavior of the error function is
investigated on the reference domain only. Thus the algorithm will not be able
to identify anisotropy when the physical mesh is not aligned with boundary (or
internal) layers. This is one of the few points where the user still can improve
the performance of the otherwise fully automatic adaptive algorithm.

Step 3. Determine optimal re�nement for each edge e in the current mesh
Th;p. Loop through the edges, and on each of them select the most compet-
itive re�nement (either pure p-re�nement, or h-re�nement with an optimal
redistribution of polynomial orders on the subintervals). The theory suggests

using the H
1=2
00 -norm, which we again approximate by means of a weighted

H1
0 -norm (see Section 3.1).

Step 4. Following the 1D strategy further, we determine the maximum edge
error decrease rate and identify all edges with an error decrease rate greater
than or equal to (for example) one third of the maximal one; those edges are
going to be re�ned.

Step 5. Use the information about edge h-re�nements (and the element
isotropy ags for quadrilateral elements) to make decisions about h-re�ne-
ments for all elements. A triangular element is broken into four whenever at
least one of its edges has been marked for h-re�nement. Similarly, quadrila-
terals are broken into four in the isotropic case if at least one of their edges
is h-re�ned. In the anisotropic case, the h-re�ned edges display anisotropic
behavior, and the element is going to be re�ned into two. In the hypothetical
case, when the anisotropic behavior di�ers from the anticipated re�nement
of edges (this does not often happen in practice), we perform isotropic 4-
re�nement. At this point, the topology of the new mesh is determined.

Step 6. Determine optimal orders of approximation for all element interiors,
monitoring the decrease rate of the product of the element interpolation errors
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(6.37) for the primal and the dual problem. Solve locally, one element at a
time, the discrete projection problems

sZ
K

�
r(uh=2;p+1 � ~u� uopt)

�2
dx

sZ
K

�
r(vh=2;p+1 � ~v � vopt)

�2
dx! min;

(6.39)
where ~u; ~v are lifts of already known interpolants along the optimally re�ned
edges, and the unknown bubble-parts of the projections on the optimally
re�ned element, uopt and vopt, vanish on the element boundary.
Begin the optimization process with values that are suggested by already

known orders on the element boundary and the minimum rule. Monitor the
product error decrease rate

4err = jjuh=2;p+1 � ~u� uoldjj � jjuh=2;p+1 � ~u� unewjj
ndofnew � ndofold

(6.40)

jjvh=2;p+1 � ~v � voldjj � jjvh=2;p+1 � ~v � vnew jj
ndofnew � ndofold

;

where uold; unew and vold; vnew stand for the previous and current solutions to
projection problem (6.39), and ndofold; ndofnew denote the number of degrees
of freedom in the interior of the re�ned element. The order of approxima-
tion cannot exceed the order corresponding to the globally hp-re�ned mesh
Th=2;p+1 used for the computation of the reference solutions uref = uh=2;p+1
and vref = vh=2;p+1.

The local optimization problem is viewed as resolved when two conditions are
satis�ed:

1. The product projection error (6.39) is smaller than the projection error
corresponding to the unre�ned element and the current order of approx-
imation.

2. The error decrease rate (6.40) is greater than or equal to (for example)
one third of the initial rate 4err0.

Step 7. It may happen that after the new element orders have been speci�ed,
the orders on the edges do not conform to theminimum rule (i.e., are not equal
to the minimum of the orders in the interior of the adjacent elements). In this
case, we increase the orders on the edges appropriately.

6.5.2 Example: singular solution in the L-shape domain

We consider the standard L-shape domain problem (see, e.g., [64, 185]) in
the domain 
 shown in Figure 6.61.
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FIGURE 6.61: Geometry and initial hybrid quadrilateral/triangular mesh.

The Laplace equation

�4u = 0 (6.41)

is solved in 
, with Dirichlet boundary conditions u(x) = �(x) for all x 2 @
.
Function � is chosen to be compatible with the harmonic function

u(x1; x2) = R2=3 sin (2�=3 + �=3) (6.42)

where (R; �) are standard polar coordinates. The reason why this example is
diÆcult for �nite element schemes is that the solution has singular derivatives
at the re-entrant corner. The exact solution is shown in Figure 6.62.

FIGURE 6.62: Exact solution u to the problem (6.41). The values of the
function u lie in the interval [0; 1:26].
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The goal of the computation will be, for example, the average value of the
solution u over a small neighborhood 
s of the point G = [�0:5; 0:5]. The
linear functional of interest has the form (6.18) from Paragraph 6.3.1,

L(u) =
1

j
sj
Z



�
s
(x)u(x)dx: (6.43)

The neighborhood 
s of point G is de�ned as follows: let us consider the
mesh edges ej , j = 1; 2; : : : ; 6, starting at G. For each of them we consider a
point Qj , which lies at ej and whose distance from G is

jQj �Gj = jej j
2D

; (6.44)

D = 6. The subdomain 
s is de�ned as the convex envelope of points
Q1; Q2; : : : ; Q6. This choice of the shape of neighborhood 
s has been moti-
vated by the ease of numerical integration over 
s only. Exact solution to the
dual problem is depicted in Figure 6.63.

FIGURE 6.63: Exact solution v to the dual problem corresponding to the
linear functional of interest (6.43). Its values lie in the interval [0; 0:4066].

6.5.3 Goal-oriented and energy-driven h-adaptivity

First let us have a look at the performance of the h-version of the adaptive
Algorithm 6.2 enhanced with the two-dimensional mesh optimization step
6.5.1. Numerical results presented in this and the following paragraphs are
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obtained by means of the goal-oriented hp-adaptive code [185], which is based
on the original energy-driven hp-adaptive code [64].
The computation begins from the initial mesh depicted in Figure 6.61. All

elements are quadratic (p = 2). Magnitude of the gradient r(uh=2;p � uh;p)
of the error function uh=2;p � uh;p, which guides the re�nement strategy, and
a few �rst optimal meshes are shown in Figures 6.64 { 6.67. Convergence in
the quantity of interest will be shown later in Figure 6.86.

FIGURE 6.64: Energy-based h-adaptivity. Step 1: magnitude of gradient
r(uh=2;p�uh;p) (with values in the interval [2:03�10�4; 0:5639]) corresponding
to the initial mesh (left), and the optimal mesh after the �rst mesh optimiza-
tion step (right).

FIGURE 6.65: Energy-based h-adaptivity. Step 2: magnitude of gradient
r(uh=2;p�uh;p) (with values in the interval [1:81�10�4; 0:6000]) corresponding
to the �rst optimal mesh (left), and the next optimal mesh (right).
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FIGURE 6.66: Energy-based h-adaptivity. Step 3: magnitude of gradient
r(uh=2;p�uh;p) (with values in the interval [5:48�10�5; 0:7400]) corresponding
to the second optimal mesh (left), and the next optimal mesh (right).

FIGURE 6.67: Energy-based h-adaptivity. Step 4: magnitude of gradient
r(uh=2;p�uh;p) (with values in the interval [1:56�10�5; 0:9340]) corresponding
to the third optimal mesh (left), and the next optimal mesh (right).

REMARK 6.4 The reader may notice that the optimal meshes are symmet-
ric with respect to the line x1 = x2. This is due to the fact that the exact
solution u to the original problem (6.42) and consequently the gradient of the
error functions juh=2;p�uh;pj are symmetric. Such symmetry is, of course, an

extremely helpful feature for debugging of hp-adaptive codes.
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Goal-oriented h-adaptivity

In Figures 6.68 { 6.71 we show results obtained using the h-version of the
goal-oriented Algorithm 6.3, combined with the mesh optimization step 6.5.1.
It starts from the same initial mesh as in the previous case. This time we
visualize the product jr(uh=2;p�uh;p)jjr(vh=2;p� vh;p)j. Convergence in the
quantity of interest will be shown in Figure 6.86.

FIGURE 6.68: Goal-oriented h-adaptivity. Step 1: product jr(uh=2;p �
uh;p)j jr(vh=2;p � vh;p)j (with values in the interval [0; 0:4389]) on the ini-
tial mesh (left), and the optimal mesh after the �rst mesh optimization step
(right).

FIGURE 6.69: Goal-oriented h-adaptivity. Step 2: product jr(uh=2;p �
uh;p)j jr(vh=2;p � vh;p)j (with values in the interval [0; 0:0883]) on the �rst
optimal mesh (left), and the next optimal mesh (right).
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FIGURE 6.70: Goal-oriented h-adaptivity. Step 3: product jr(uh=2;p �
uh;p)j jr(vh=2;p � vh;p)j (with values in the interval [0; 0:1294]) on the second
optimal mesh (left), and the next optimal mesh (right).

FIGURE 6.71: Goal-oriented h-adaptivity. Step 4: product jr(uh=2;p �
uh;p)j jr(vh=2;p � vh;p)j (with values in the interval [0; 0:1381]) on the third
optimal mesh (left), and the next optimal mesh (right).
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6.5.4 Goal-oriented and energy-driven hp-adaptivity

Finally, we arrive at the hp-versions of the energy-based and goal-oriented
adaptive Algorithms 6.2 and 6.3 in 2D.
An interesting new issue in 2D is the visualization of hp-meshes, for which

we will use a comprehensive color code [64], illustrated in Figure 6.72.
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FIGURE 6.72: Color code for the visualization hp-meshes in 2D. Areas
associated with the symbols pa; pb; pc and pd show the polynomial order of
corresponding edge functions. The middle section is reserved for bubble func-
tions. For quadrilateral elements the middle part is further split to visualize
directional orders of approximation.

Again we begin with the energy-driven scheme and let it start from the
initial mesh depicted in Figure 6.61 with all second-order elements. The mag-
nitude of the gradient r(uh=2;p+1�uh;p) of the error function and a few �rst
optimal meshes are shown in Figures 6.74 { 6.77.

FIGURE 6.73: Color scale for the order of polynomial approximation,
starting at p = 1 (left) and ending at p = 8.

Convergence in the quantity of interest is shown in Figure 6.86.
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FIGURE 6.74: Energy-based hp-adaptivity. Step 1: product jr(uh=2;p+1
�uh;p)j jr(vh=2;p+1 � vh;p)j (with values in the interval [1:56 � 10�4; 1:3116])
corresponding to the initial mesh (left), and the optimal mesh after the �rst
mesh optimization step (right).

FIGURE 6.75: Energy-based hp-adaptivity. Step 2: product jr(uh=2;p+1
�uh;p)j jr(vh=2;p+1 � vh;p)j (with values in the interval [4:86 � 10�5; 1:387])
corresponding to the �rst optimal mesh (left), and the next optimal mesh
(right).
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FIGURE 6.76: Energy-based hp-adaptivity. Step 3: product jr(uh=2;p+1
�uh;p)j jr(vh=2;p+1 � vh;p)j (with values in the interval [4:10 � 10�5; 1:7475])
corresponding to the second optimal mesh (left), and the next optimal mesh
(right).

FIGURE 6.77: Energy-based hp-adaptivity. Step 4: product jr(uh=2;p+1
�uh;p)j jr(vh=2;p+1 � vh;p)j (with values in the interval [2:08 � 10�5; 2:2029])
corresponding to the third optimal mesh (left), and the next optimal mesh
(right).

Goal-oriented hp-adaptivity

In this paragraph we �nally have an opportunity to see the performance
of the goal-oriented hp-adaptive Algorithm 6.3 combined with the mesh op-
timization step 6.5.1. Similarly as in the goal-oriented h-adaptive case we
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depict the product jr(uh=2;p+1 � uh;p)jjr(vh=2;p+1 � vh;p)j. We show this
quantity for the �rst two optimization steps only because it quickly vanishes
from the visible scale. Several optimal meshes are shown in Figures 6.78 {
6.83.

FIGURE 6.78: Goal-oriented hp-adaptivity. Step 1: product jr(uh=2;p+1
�uh;p)j jr(vh=2;p+1�vh;p)j (with values in the interval [0; 1:064]) correspond-
ing to the initial mesh (left), and the optimal mesh after the �rst mesh opti-
mization step (right).

FIGURE 6.79: Goal-oriented hp-adaptivity. Step 2: product jr(uh=2;p+1
�uh;p)j jr(vh=2;p+1�vh;p)j (with values in the interval [0; 0:4545]) correspond-
ing to the �rst optimal mesh (left), and the next optimal mesh (right).
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FIGURE 6.80: Goal-oriented hp-adaptivity. Meshes after third and fourth
optimization steps.

FIGURE 6.81: Goal-oriented hp-adaptivity. Meshes after �fth and sixth
optimization steps.

© 2004 by Chapman & Hall/CRC



Mesh optimization, reference solutions and hp-adaptivity 353

FIGURE 6.82: Goal-oriented hp-adaptivity. Meshes after seventh and
eighth optimization steps.

FIGURE 6.83: Goal-oriented hp-adaptivity. Meshes after ninth and tenth
optimization steps.

6.5.5 Comparison of convergence in the quantity of interest

Finally, let us compare the performance of all the adaptive approaches
presented in terms of the convergence in the quantity of interest (recall that
our goal is the average of the solution u over a small subdomain 
s of the
point G = [�0:5; 0:5]. It is interesting to select (for example) a relative error
level of 10�6 and observe how many degrees of freedom each scheme needs to
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achieve it. This is shown in Figures 6.84 and 6.85.

FIGURE 6.84: Resulting optimal meshes, h-adaptivity with quadratic el-
ements. The energy-driven scheme (left) needed 4909 DOF and 20 levels
of re�nement. The goal-oriented algorithm (right) achieved the prescribed
precision in goal with 2652 DOF and 17 re�nement levels. Notice that 20
levels of re�nement mean a reduction of h by the factor of one million.

FIGURE 6.85: Resulting optimal meshes delivered by the hp-adaptive al-
gorithms. The energy-driven scheme (left) needed 2310 DOF and 18 re-
�nement levels, the goal-oriented strategy (right) achieved the same precision
with only 1273 DOF and 13 levels of re�nement.
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Let us mention that the energy-driven hp-adaptive scheme (on the left of Fig-
ure 6.85) fully automatically reduces both the element size and the order of
polynomial approximation toward the singularity in a way that exactly cor-
responds to the theory.

Figure 6.86 shows the history of the relative error in goal for all four tested
approaches. The x-axis represents the number of degrees of freedom.
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FIGURE 6.86: Relative error in the quantity of interest with respect to
the exact solution.

A more diÆcult example related to a complex-valued elliptic problem rooted in
axisymmetric Maxwell's equations, where goal-oriented hp-adaptivity turned
out to be the only reasonable way to resolve the problem, can be found in
[185].

REMARK 6.5 The reader may ask what role the choice of the parameter D
plays in the de�nition (6.43) of the subdomain 
s. According to our experi-
ence, the inuence is not extremely signi�cant. We document this observation
by a series of computations. The �nal optimal meshes corresponding to the
choices of D = 6; 10; 15 and 20 are presented in Figures 6.87 and 6.88, and
the convergence curves in Figure 6.89.
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FIGURE 6.87: Final optimal meshes needed to obtain relative error in
goal of 10�6 for various parameters D from (6.43): D = 6 (left, 1273 DOF)
and D = 10 (right, 1444 DOF).

FIGURE 6.88: Final optimal hp-meshes needed to obtain relative error in
goal of 10�6 for various parameters D from (6.43): D = 15 (left, 1444 DOF)
and D = 20 (right, 1435 DOF).
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FIGURE 6.89: Relative error with respect to the exact solution in goal
(goal-oriented hp-adaptive scheme) for various values of the parameter D in
(6.43).

The conclusion, that the choice of the parameter D does not inuence the
adaptive procedure signi�cantly, extends to various other quantities of interest
that are similar to (6.43).
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