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Foreword

This is the second book devoted to a state-of-the-art overview of multi-agent pro-
gramming within five years. This in itself tells us something. To begin with, it
gives us the definite negative answer to the question Michael Wooldridge raises in
his foreword of the first book, viz. whether that book would be the final word on
agent-oriented programming... It was not!

The area of Multi-Agent Systems (MAS) in general is rapidly expanding: wit-
ness the attention the subject receives at prestigious international conferences
and numerous workshops. The expansion is even more accentuated in the sub-
area concerned with programming MAS using dedicated languages, platforms and
tools. Researchers are struggling to find the best way to program these highly com-
plex but potentially very useful systems! In fact, by a very bold kind of induction
(1, 2, many!), I dare forecast that the present volume will not be the final word on
this matter either. It is my strong conviction that, as with so many things in life,
including programming in a broad sense, there is no unique best way to program
MAS, no unique language or platform that is evidently the optimal choice for ev-
ery situation, and that, in the end, the best choice of language to use will heavily
depend on the application at hand.

What we see in this volume is on the one hand new proposals for generic
agent modeling and programming languages and tools. Here I use generic in the
sense that these languages and tools are not aimed at particular applications. But,
of course, they are not generic in the sense that they should be used for pro-
gramming any possible system; as the term itself indicates, (multi) agent-oriented
programming concerns programming where certain special ‘agent-like’ cognitive
or social notions are taken as pivotal, such as goal-directedness, autonomy or, in
particular for MAS, coordination, and so this kind of programming is evidently
not meant to be used for just any conceivable application. On the other hand, we
see in this volume also a framework for a particular application.

Despite my remark about agent programming not being the panacea for pro-
gramming all possible systems, I believe there are many potential applications for
creating intelligent systems where key agent notions do play a role! My predic-
tion is that we will see in the future both more variants of the ‘generic’ type of
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vi Foreword

languages and tools, and more application-dedicated ones. (A next overview may
contain topics such as tools for MAS verification, organization-based program-
ming and programming normative MAS, to mention just a few developments.)
This is due to the natural dynamics of this area, and shows the field is alive and
kicking! It is gradually building up an array of methods, techniques, models, lan-
guages and tools to design MAS. This book is the proof of this, and provides the
community with an overview of new developments. I believe that a dynamic field
such as multi-agent programming is served a great deal by such an overview.

Utrecht, The Netherlands, John-Jules Ch. Meyer
March 2009 Intelligent Systems Group

Department of Information and Computing Sciences
Utrecht University



Preface

Agent technology currently plays an important role in complex software devel-
opment. The underlying paradigm offers a large repertoire of original concepts,
architectures, interaction protocols, and methodologies for the analysis and the
specification of complex systems built as Multi-Agent Systems (MAS). In partic-
ular, MAS technology offers sensible alternatives for the design of distributed,
open, intelligent systems. Several efforts, originating from academia, industry,
and several standardisation consortia, have been made in order to provide new
tools, methods, and frameworks aiming at establishing the necessary standards
for widening the use of multi-agent systems techniques.

Beyond the standards, the significant level of maturity of MAS concepts and
approaches has allowed the MAS research community to combine them in ho-
mogeneous frameworks so as to bridge the gap between theory and practice. As
a result, practitioners have now at their disposal several efficient tools (such as
languages and platforms) to build concrete systems and applications using MAS
technology. Consequently, both the development and the deployment of MAS
are today effective including at industrial level.

This book is the second volume in a series of books on Multi-Agent Program-
ming (MAP) being co-edited by us; the first volume1 was published in 2005. The
aim of this series of books is to provide and maintain an updated state of the
art related to programming multi-agent systems as well as presenting the main
languages that contributed to its historical evolution (and are still themselves ac-
tively evolving). In fact, over the last few years — since around 2003, following
a Dagstuhl Seminar (http://www.dagstuhl.de/02481) — we started a number
of important initiatives aimed at providing both practitioners and researchers in
the MAS field with the latest advances in the domain of programming languages
and tools particularly target at MAS development. This effort includes, for ex-
ample, the ProMAS workshop series (http://www.cs.uu.nl/ProMAS/) as well
as an AgentLink III Technical Forum Group on Programming Multi-Agent Sys-

1 Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. Multi-Agent Programming: Lan-
guages, Platforms and Applications. Springer (2005).
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viii Preface

tems (http://www.agentlink.org/activities/al3-tf/), two Dagstuhl sem-
inars (http://www.dagstuhl.de/06261; http://www.dagstuhl.de/08361),
and other related activities such the Multi-Agent Contest (http://www.
multiagentcontest.org/) and the series of LADS workshops (LADS’07 and
LADS’09) which take place with the MALLOW federated workshops event.

One of the driving motivations for promoting these activities related to Pro-
gramming Multi-Agent Systems was the observation that the area of autonomous
agents and multi-agent systems had grown into a promising technology and that
the next step in furthering the achievement of the multi-agent systems project was
irrevocably associated with the development of programming languages and tools
that can effectively support multi-agent programming, including the implemen-
tation of key notions in multi-agent systems in a unified framework. We hope
that this second volume in the Multi-Agent Programming series will contribute
to enrich the panorama of languages, platforms and applications (as given also in
the first volume), now with addition of tools to support MAS development, thus
adding a new contribution towards surveying both state of the art and the history
of agent programming.

In this second volume of the MAP book series, we have invited several research
groups to report on their work on programming languages and tools for MAS, as
well as on multi-agent systems applications. Most importantly, as for the first vol-
ume, we have explicitly asked the authors of chapters on agent-oriented program-
ming languages to follow a particular chapter structure, according to a template
we provided. More than that, we asked them to answer several key questions pro-
viding a summary of the main features of each agent development framework
(these can be found in the appendix of this book).

With this structure, and the appendix with brief summaries of the main fea-
tures of each language, we aimed at providing the readers with a good basis for
comparison among the reported frameworks. The result is a book that can be
used to guide the choice of a particular framework for developing real-world
multi-agent systems or for teaching purposes and assigning practical coursework
when teaching multi-agent systems. This book has a sufficient level of detail to
introduce the reader to the use of some of the most prominent working agent
development frameworks currently available.

The Structure of Contributed Chapters

Chapters describing Programming Languages and their platforms discuss the func-
tionality of the languages, the communication mechanisms they provide, their
underlying execution model or interpreters, their expressiveness and verification
possibilities, and the software engineering principles that they follow. These chap-
ters discuss also the characteristics of the platforms that support these program-
ming languages. The issues related to the platforms are: system deployment and
portability, any standards with which they comply, their extensibility, the tools
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they provide, their technical interoperability, and their performance. Finally, each
of these chapters explains which applications can be supported and implemented
by the presented languages and their corresponding platforms. They discuss the
typical application examples and any target application domains.

Chapters describing Tools cover different sorts of development tools such as
debugging tools, testing tools, environment artifacts, integrated development en-
vironments (IDEs), modelling tools, etc. These chapters provide the necessary
background to introduce the proposed tool, then describe it in some detail, and
finally evaluate the tool. Because different types of development tools require dif-
ferent chapter structures, there is no single structure followed by all these chap-
ters; each chapter discusses different important aspects of current techniques for
MAS development.

There is also one chapter dedicated to the description of a specific applica-
tion providing a multi-agent environment for negotiation. This chapter presents
the application domain and explains the added value of multi-agent systems for
this domain. It presents how the target multi-agent system has been designed and
specified. Moreover, this chapter discusses which main features of agents were
used in the applications, which methodology was used to design the agents, and
how the designed agents were implemented. The chapter also discusses how the
interaction between agents and their external shared environment are modelled
and implemented. Finally, it presents some experimental results obtained using
the application.

The Selected Frameworks and the Structure of the Book

The selection of the agent programming languages in this book is, of course, a
matter of taste and reflects our own viewpoint. In the first volume, an important
characteristic of all selected languages was that all of them had working implemen-
tations that users could download and use to develop their own applications. This
time, we chose two languages that played an important role in the history of agent
programming and are still being actively developed (METATEM and IndiGolog),
languages that have been widely used in industrial applications (Brahms, JIAC,
and Agent Factory), as well as a more recent agent programming language that
we selected because it promotes understanding of the most important concepts of
agent programming (GOAL).

As, we could not incorporate in the first book all frameworks and applications
we considered interesting (that would be an encyclopedic task given the number
of agent programming languages that appeared in the literature recently), we now
present a sequel for the first book, and a third book is already in our plans, in
which we shall survey and compare other existing agent programming languages
and their platforms, as well as other industrial-strength applications. We hope to
have started, in the first two books, with some useful material for researchers,
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students, and practitioners interested in theoretical aspects of agent frameworks
as well as their application for practical purposes.

The book is structured in three parts, each described in detail below.

Part I: Languages

The first part of this book is dedicated to agent-oriented programming languages.
Through six chapters, it presents a wide range of languages which, together with
the ones in the first volume, provide a good overview of the main developments
in the area of Multi-Agent Programming.

The first chapter in Part I, entitled “Executing Logical Agent Specifications”,
proposes an approach to capture, explicitly, the dynamic nature of agents. The
approach presented here by Michael Fisher and Anthony Hepple is different from
most agent-oriented programming languages which are based on Prolog-like log-
ical goal-reduction techniques. In their work, the basic computational approach
is that of model building for logical formulæ, but the underlying formalism is a
temporal logic. In addition, the temporal basis allow them to consider multiple
active goals and being able to achieve several at once. As in most agent-oriented
languages, deliberation is used to choose between goals when not all can be sat-
isfied at once. The basic execution of temporal formulæ provides the foundation
for agent programming in the METATEM approach. In order to deal with multi-
agent systems in an equally straightforward way, a simple and flexible model of
organisational structuring has been incorporated into METATEM.

The second chapter, “IndiGolog: A High-Level Programming Language for
Embedded Reasoning Agents”, was written by Giuseppe De Giacomo, Yves
Lespérance, Hector J. Levesque, and Sebastian Sardina. The authors discuss in that
chapter the IndiGolog language, its implementation, and applications that have
been realised with it. IndiGolog allows the programming of autonomous agents
that sense their environment and do planning as they operate. It supports high-
level program execution: the programmer provides a high-level nondeterministic
program involving domain-specific actions and tests so as to execute the agents’
tasks. The IndiGolog interpreter then reasons about the preconditions and effects
of the actions in the program to find a (legal) terminating execution. Program-
mers provide a declarative specification of the domain using the Situation Calcu-
lus formalism and can control the amount of nondeterminism in the program.
The language provides support for concurrent programming.

The third chapter presents “Brahms”, a language currently used at NASA. In
that chapter, Maarten Sierhuis, William J. Clancey, and Ron J. J. van Hoof report on
an agent-oriented language for work practice simulation and multi-agent systems
development. Brahms is a multi-agent modelling language for simulating human
work practice that emerged from work processes in human organisations. The
same Brahms language can be used to implement and execute distributed multi-
agent systems, based on models of work practice that were first simulated. Brahms
demonstrates how a multi-agent belief-desire-intention language, symbolic cog-



Preface xi

nitive modelling, traditional business process modelling, activity and situated-
cognition theories are all brought together in a coherent approach for analysis
and design of organisations and human-centred systems.

The fourth chapter, “Programming Rational Agents in GOAL” by Koen V. Hin-
driks, proposes the language GOAL as a high-level language to program rational
agents that derive their choice of action from their beliefs and goals. The language
provides a set of programming constructs that allow and facilitate the manipu-
lation of an agent’s beliefs and goals and to structure its decision-making. The
chapter also provides a formal semantics for the GOAL programming constructs.

The fifth chapter, “Merging Agents and Services — the JIAC Agent Platform”
by Benjamin Hirsch, Thomas Konnerth, and Axel Heßler, presents a Java-based
agent framework with an emphasis on industrial requirements such as software
standards, security, management, and scalability. It has been developed within
industry- and government-funded projects during the last two years. JIAC com-
bines agent technology with a service-oriented approach. The chapter describes
the main features of the framework, with focus on the language and the service-
matching capabilities of JIAC V.

The sixth and final chapter of Part I is entitled “Towards Pervasive Intelli-
gence: Reflections on the Evolution of the Agent Factory Framework”. In that
chapter, Conor Muldoon, Gregory M. P. O’Hare, Rem W. Collier, and Michael J.
O’Grady report on Agent Factory framework, a cohesive framework for the devel-
opment and deployment of multi-agent systems. The development of the frame-
work started in the mid 1990s, but has gone through a significant redevelopment
whereby several new extensions, revisions, and enhancements have been made.
The chapter provides a discussion of the incremental developments in Agent Fac-
tory and provides motivations as to why such changes were necessary. The frame-
work provides a practical and efficient approach to the development of intentional
agent-oriented applications. This is combined with a methodology, integrated de-
velopment environment support, and a suite of tools that aid the agent develop-
ment process.

Part II: Tools

The second part of this book comprises three chapters describing tools for multi-
agent programming. Development of real-world software applications requires a
variety of tools, and it only recently that mature development tools are becoming
available for practitioners. The chapters in this part provide a good overview of
some such tools.

The first chapter in Part II, by David Poutakidis, Michael Winikoff, Lin
Padgham, and Zhiyong Zhang, is entitled “Debugging and Testing of Multi-Agent
Systems using Design Artefacts”. It presents two tools: one for generating test
cases for unit testing of agent-based systems, and one for debugging agent pro-
grams by monitoring a running system. Both tools are based on the idea that
design artefacts can be valuable resources in testing and debugging. An empirical
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evaluation that was performed with the debugging tool showed that the debug-
ging tool was useful to developers, providing a significant improvement in the
number of bugs that were fixed, and in the amount of time taken.

The second chapter in Part II reports on “Environment Programming in
CArtAgO”. In that chapter, Alessandro Ricci, Michele Piunti, Mirko Viroli, and
Andrea Omicini describe CArtAgO, a platform and infrastructure that provide a
general-purpose programming model for building shared computational worlds
(called ‘work environments’) that agents, possibly belonging to heterogeneous
agent platforms, can exploit to work together within a Multi-Agent System. Be-
ing based on the Agents and Artifacts conceptual model, CArtAgO work environ-
ments are modelled and engineered in terms of set of artifacts programmed by
MAS designers, collected in workspaces. From the agent viewpoint, artifacts are
first-class entities representing resources and tools that agents can dynamically in-
stantiate, share, and use to support their individual and collective activities. The
chapter also provides an example using Jason as a reference platform for MAS
programming.

Finally, the third chapter in Part II, by Alexander Pokahr and Lars Braubach,
presents a “Survey of Agent-oriented Development Tools”. As we mentioned be-
fore, development tools represent an important addition for the practical realisa-
tion of software applications, mainly because they help automating development
activities and are able to hide some of the complexity so as to facilitate the tasks
of the developers. In that chapter, the authors analyse the tool requirements for
the various tasks that need to be performed in the different development phases.
These requirements are the foundation for a detailed investigation of the land-
scape of available agent-oriented development tools. In order to assess the variety
of tools systematically, existing surveys and evaluations have been used to isolate
three important categories of tools, which are treated separately: modelling tools,
IDEs, and phase-specific tools. For each of these categories, specific requirements
are elaborated, an overview of existing tools is given, and one representative tool
is presented in more detail.

Part III: Applications

The third part of this book comprises one chapter describing an interesting ap-
plication; the chapter is entitled “A Multi-Agent Environment for Negotiation”.
In that chapter, Koen V. Hindriks, Catholijn M. Jonker, and Dmytro Tykhonov in-
troduce the System for Analysis of Multi-Issue Negotiation (SAMIN). SAMIN
offers a negotiation environment that supports and facilitates the setup of various
negotiation setups. The environment has been designed to analyse negotiation
processes between human negotiators, between human and software agents, and
between software agents. It offers a range of different agents, domains, and other
options useful for defining a negotiation setup. The environment has been used
to test and evaluate a range of negotiation strategies in various domains, where
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one can play against other negotiating agents as well as humans. The chapter also
discusses some of the experimental results.

Finally, we provide, in an appendix, the summaries of each of the six agent
programming languages presented in the book. Appendix A starts with a section
showing the criteria we consider appropriate for comparing agent platforms; they
are introduced in the form of objective questions we posed to the authors. Each
of the following sections after that contains the short answers, provided by the
contributing authors, relative to each of the programming languages (and their
platforms) presented in the book.
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Chapter 1
Executing Logical Agent Specifications

Michael Fisher and Anthony Hepple

Abstract Many agent-oriented programming languages are based on the Prolog-
like logical goal reduction approach where rules are used to reduce, in a depth-first
way, a selected goal. The ability of agents to change between goals means that such
languages often overlay the basic computational engine with a mechanism for dy-
namically changing which goal is selected.

Our approach is different. The basic computational approach we use is that of
model building for logical formulae, but the underlying formulae are temporal.
This allows us to capture the dynamic nature of the agent explicitly. In addition,
the temporal basis provides us with ways of having multiple active ‘goals’ and
being able to achieve several at once. As in most agent-oriented languages deliber-
ation is used to choose between goals when not all can be satisfied at once.

This basic execution of temporal formulae provides us with the foundation for
agent programming. In order to deal with multi-agent systems in an equally
straightforward way we also incorporate a very simple, but flexible, model of
organisational structuring.

These two aspects provide the core of the language implemented. There are, how-
ever, many extensions that have been proposed, some of which have been imple-
mented, and all of which are mentioned in this article. These include varieties
of agent belief, resource-bounded reasoning, the language’s use as a coordination
language, and the use of contextual constraints.
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1.1 Motivation

What does an agent do? It has a number of choices of how to proceed, most simply
represented by a finite-state machine, for example:

Here the agent begins in the ‘EAT’ state and can take any transition to move to
another state. But the agent also has choices. In the example above, when the agent
is in the ‘WORK’ state it can then either move to the ‘REST’ state or to the ‘SHOP’
state. How shall the agent decide what to do at these choice states? The agent
could act randomly, effectively tossing a coin to see which branch to take. Or
we could fix the order in which choices are made, effectively modifying the state
machine to capture a fixed set of choices, for example:

EAT

WORK

 REST

SHOP

EAT

WORK

REST

SHOP

REST

SHOP
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Here, we are restricted about which choices to take, for example being disallowed
from following the sequence

EAT −→ WORK −→ REST −→ EAT −→ WORK −→ REST −→ EAT −→ . . .

which was allowed in the original state machine. Not only is this prescription of
choices against the spirit of agent-oriented computing, where choices are made
dynamically based on the prevailing conditions, but this is also very inflexible.
State machines become large and complex if we try to capture all possible legal
sequences of choices within them.
Thus, agents, particularly rational agents, have various motivational attitudes such
as goals, intentions, or desires, which help them make choices at any point in
their computation. These motivations not only help direct an agent’s choices,
but are dynamic themselves with new motivations being able to be added at any
time. Thus, if we consider the first state machine and provide some additional
motivations (let us call them goals here) then we can avoid ‘bad’ sequences just by
using these goals to direct our choice. If the agent’s main goals are to REST and
SHOP then, at the WORK state the most important goal will direct the choice of
next state. For example, let us say we move to the REST state. When we again
come back to the WORK state, we still have a goal to SHOP, and so we may well
choose that branch. And so on. Each time we visit the WORK state, the current
goals modify which choices we take.
This is not only a simple view, but it is also a very flexible one. These ideas are at
the heart of, for example, BDI languages where the desires and intentions act as
motivations for choosing between options [29, 30].
We choose to use a formal logic to capture exactly this fundamental choice. This
simple view allows us to describe both the potential choices and the agent motiva-
tions. If we recall the first state machine above, then we can actually capture what
is happening via a set of logical formulae, as follows.

EAT ⇒ gWORK
WORK ⇒ g(REST ∨ SHOP)
REST ⇒ gEAT
SHOP ⇒ gEAT

These are actually temporal logic formulae, with the temporal operator ‘ g’ mean-
ing “at the next moment in time”. As you can see from the formulae above, we can
treat these as being ‘rules’ telling us what to do next. However, we can go beyond
just simple modelling of finite-state machines. (Note that, to precisely model the
state machine we also need to add rules ensuring that exactly one of EAT, WORK,
REST, or SHOP is true at any moment in time.) As we have the full power of
temporal logic (propositional temporal logic, in this case) we can define additional
propositions and use them to define other aspects of the computation. For exam-
ple, rather than

WORK ⇒ g(REST ∨ SHOP)

we might instead have
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(WORK ∧ tired) ⇒ gREST
(WORK ∧ ¬tired ∧ rich) ⇒ gSHOP

(WORK ∧ ¬tired ∧ ¬rich) ⇒ g(REST ∨ SHOP)

Importantly, all of tired , SHOP, etc., are propositions within the language.
As described above, as well as the basic structure of choices, a core component
of agent computation is some representation of motivations such as goals. Fortu-
nately, temporal logic provides an operator that can be used to give a simple form
of motivation, namely the “sometime in the future” operator ‘♦’. This operator
is used to ensure that some property becomes true at some point in the future;
possibly now, possibly in the next moment, possibly in 5 moments time, possibly
in 400 moments time, but it will definitely happen. Consider again our original
example, but now with such eventualities added:

WORK ⇒ ♦REST
WORK ⇒ ♦SHOP
WORK ⇒ g(REST ∨ SHOP)

These formulae describe the fact that there is still a choice between REST or SHOP,
once the WORK state is reached, but also ensures that eventually (since we keep on
visiting the WORK state) REST will become true and eventually SHOP will become
true. Importantly, we can never take the same choice forever.
Thus, the above is the basic motivation for our agent language. There are clearly
many other aspects involved in the programming of rational agents (and, indeed,
we will discuss these below) but the use of temporal logic formulae of the above
form to describe computation, and the execution of such formulae in order to
implement agents, is the underlying metaphor.

1.2 Language

The basic ‘METATEM’ approach was developed many years ago as part of research
into formal methods for developing software systems [2]. Here, the idea is to exe-
cute a formal specification by building a concrete model for the specification; since
the specifications are given in temporal logic, model-building for temporal formu-
lae was developed. Throughout, the imperative future view was followed [24, 1],
essentially comprising forward chaining from initial conditions and building the
future state by state.

1.2.1 Syntactical Aspects

Thus, the core language we use is essentially that of temporal logic [11, 17]. This is
a formal logic based on the idea that propositions/predicates can be true/false de-
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pending on what moment in time they are evaluated. Thus, the temporal structure
linking moments in time is important. While there are many different possibil-
ities for such temporal structures [17], we adopt one of the simplest, namely a
linear sequence of discrete moments in time with a distinguished ‘start’ moment
(finite past).

This sequence of moments can go on for ever. Importantly, the basic proposi-
tions/predicates within the language can have different truth values at different
moments. Thus, a proposition ‘hungry ’ might be false in the ‘start’ moment, true
in moment 1, true in moment 2, false in moment 3, etc.
Obviously we need a language to be able to describe such situations. Again, there
are many varieties of temporal language, even for the simple model above. So, we
choose a basic, but flexible, variety involving the logical operators:

‘ g’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “in the next moment in time”;
‘ ’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “at every future moment”;
‘♦’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “at some future moment”.

These operators give us useful expressive power and, even with such a simple
temporal logic as a basis, we are able to describe both an agent’s individual dy-
namic behaviour, and also (see later) how an agent’s beliefs or goals evolve. As
is demonstrated by the following simple example of conversational behaviour,
which captures a subtle preference for listening over speaking by allowing models
with repeated listening states but preventing uninterrupted speaking!

(SPEAK ∨ LISTEN)
¬(SPEAK ∧ LISTEN)

LISTEN ⇒♦SPEAK
SPEAK ⇒ gLISTEN

"start" moment 2 moment 3

........

moment 1
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1.2.1.1 Basic Execution

Given a temporal description, using the above language, we adopt the following
basic execution approach:

• transform the temporal specification into a normal form [13];
• from the initial constraints, forward chain through the set of temporal rules

constraining the next state of the agent; and
• constrain the execution by attempting to satisfy eventualities (aka goals), such

as ♦g (i.e. g eventually becomes true). (This, in turn, involves some strategy
for choosing between such eventualities, where necessary.)

The basic normal form, called Separated Normal Form (SNF) [13], essentially
categorises formulae into 3 varieties: initial rules, of the form start ⇒ ϕ, which
indicate properties of the initial state; step rules, of the form ψ ⇒ gϕ, which
indicate properties of the next state; and sometime rules, of the form ψ ⇒ ♦φ,
which indicate properties of the future. In each case ϕ is a disjunction of literals,
ψ is a conjunction of literals and φ is a positive literal. In summary, the transfor-
mation to this normal form ensures that all negations apply only to literals, that
all temporal operators other than gand♦ are removed, and that all occurrences
of the♦ operator apply only to literals.
Since we allow first-order predicates, implied quantification of variables, and non-
temporal rules, the specific normal form used is more complex. Below, we provide
the normal form of each rule type implemented, a corresponding example in first-
order temporal logic and, with the implied quantification, an equivalent example
in the implemented METATEM syntax.

START RULE:

General start ⇒ ∃x.
a∨

i=1

pi(x)

Example start ⇒ ∃x.[p(x) ∨ q(x)]

Code start => p(X) | q(X);

STEP RULE:

General ∀x.
[[ a∧

i=1

pi(x) ∧ ∃y.
b∧

j=0

qj(y, x)
]
⇒ g∃z. c∨

k=1

rk(z, x)
]

Example ∀x.
[[
p(x) ∧ ∃y.q(y, x)

]
⇒ g∃z.[r(z, x) ∨ s(z, x)]]

Code p(X) & q(Y,X) => NEXT r(Z,X)|s(Z,X);
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SOMETIME RULE:

General ∀x.
[[ a∧

i=1

pi(x) ∧ ∃y.
b∧

j=0

qj(y, x)
]
⇒ ♦∃z.r(z, x)

]
Example ∀x.

[[
p(x) ∧ ∃y.q(y, x)

]
⇒ ♦∃z.r(z, x)

]
Code p(X) & q(Y,X) => SOMETIME r(Z,X);

NON-TEMPORAL (PRESENT-TIME) RULE:

General ∀x.
[[ a∧

i=1

pi(x) ∧ ∃y.
b∧

j=0

qj(y, x)
]
⇒

c∨
k=1

rk(x)
]

Example ∀x.
[[
p(x) ∧ ∃y.q(y)

]
⇒

[
r(x) ∨ s(x)

]]
Code p(X) & q(y) => r(X) | s(X);

We are able to omit explicit quantification symbols from the program code by
making the following interpretations.

• Any variable appearing positively in the antecedents is universally quantified.
• Any variables that remain after substitution of matching, and removal of non-

matching, universal variables are existentially quantified.
• Of the existentially quantified variables, those that appear only negatively in

the antecedents are ignored.
• Existential variables in the consequent of an otherwise grounded rule, which

cannot be matched are grounded by Skolemisation.

Existentially quantified variables are not allowed in the consequent of a present-
time rule, preventing circumstances in which present-time rules fire repeatedly
(possibly infinitely) as a result of new terms generated by repeated grounding by
Skolemisation.
Next, we consider a number of examples, exhibiting the basic execution mecha-
nism.

Examples of Basic Execution

We now consider several basic examples, describing how execution of such scenar-
ios occurs.

Example 1

Consider a machine capable of converting a raw material into useful widgets, that
has a hopper for its raw material feed which, when empty, prevents the machine
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from producing widgets. A simple specification for such a machine, presented
in the normal form described above, is as follows (each rule is followed by an
informal description of its meaning):

start => hopper_empty;

The hopper is initially empty.

true => power;

The machine has uninterrupted power.

hopper_empty => NEXT fill_hopper;

If the hopper is empty, then it must be refilled in the next moment in time.

fill_hopper => NEXT ( material | hopper_empty ) ;

Filling the hopper is not always successful.

( material & power ) => NEXT widget;

If the machine has power and raw material then, in the next moment
in time a widget will be produced.

Execution begins with the construction of an initial state which is constrained by
the start rules and any present-time rules. Thus, in the start state our machine has
an empty hopper and power:

hopper_empty
power

start

The interpretation of each state is used to derive constraints on the next state. Ap-
plying the above rules to this initial state produces the constraint fill_hopper,
which must be true in any successor state. The METATEM execution algorithm
now attempts to build a state that satisfies this constraint and is logically consis-
tent with the agent’s present-time rules. In this example we have only one present-
time rule, which does not contradict our constraints but does introduce another
constraint, hence state 1 is built:

hopper_empty
power power

fill_hopper

start 1

State 1 provides the METATEM agent with its first choice point. Evaluation of the
agent’s rules constrains the next state to satisfy the disjunction

((material ∧ power) ∨ (hopper_empty ∧ power)).

Without any preferences or goals to guide its decision, the METATEM agent is
able to choose either alternative and makes a non-deterministic choice between
disjuncts. For this example we will assume that material is made true in state 2:
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hopper_empty
power power

fill_hopper

2

material
power

start 1

In this state, our machine has both the power and material necessary to produce
a widget in the next state:

hopper_empty
power power

fill_hopper

2

material
power

3

widget
power

start 1

Note. Without explicit rules, be they temporal or non-temporal, the machine no
longer believes it has its raw material. Hence, evaluation of the agent’s temporal
rules with the interpretation of state 3 produces no constraints and the agent will
produce no further states.

Example 2

This example illustrates the backtracking nature of the METATEM algorithm
when it encounters a state that has no logically consistent future. Staying with
our widget machine, we modify its non-temporal rule and provide an additional
rule:

true => power | ~power;

Power can now be switched ‘on’ or ‘off’.

( fill_hopper & power ) => NEXT false;

Filling the hopper with the power switched on causes irrecoverable
problems in the next state!

Execution now begins in one of two states,

(hopper_empty ∧ power) or (hopper_empty ∧¬power)

due to the conjunction introduced by the modified present-time rule. Let us as-
sume that the former is chosen, though it is inconsequential to our example. Again
our agent has a choice when constructing the next state, it can fill the hopper with
the power on or with the power off. Each of these choices has a consistent present
but only one has a consistent future! Let us assume that the ‘wrong’ choice is made
and the ‘correct’ choice is retained for future exploration;
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1

fill_hopper
power

hopper_empty
power

start

fill_hopper
~power

Now, evaluation of state 1’s interpretation constrains all future states to include
false — this state has no future. It is at this point, when no consistent choices
remain, that METATEM backtracks to a previous state in order to explore any re-
maining choices1. Execution then completes in much the same way as the previous
example:

1 3

fill_hopper
power

fill_hopper

widget
power

material
power

2

hopper_empty
power

start

~power

At this point it should be emphasised that the above executions are, in each case,
only one of many possible models that satisfy the given temporal specification. In-
deed, many models exist that produce no widgets at all. To ensure the productivity
of our widget machine we must introduce a goal in the form of an eventuality. For
the next example we return to our conversational agent to demonstrate the use of
temporal eventualities.

Example 3

For this example, we re-write the specification presented at the end of Section 1.2.1
into the executable normal form, removing all necessity operators ( ), and con-
junctions from the consequents of all rules. The result of which is:

true => NEXT ( speak | listen );

Always speaking or listening...

1 In this example, the agent’s ability to fill its hopper is considered to be internal and reversible.
However, the current METATEM implementation does distinguish between internal and external
(those that cannot be reversed and hence cannot be backtracked over) abilities. The sending of
messages is an important example of an external ability.



1 Executing Logical Agent Specifications 13

speak => ~listen;

listen => ~speak

...but never at the same time.

listen => SOMETIME speak;

Eventually speak after listening.

speak => NEXT listen;

Always pause to listen, after speaking.

The model resulting from execution of this specification is one which alternates
between listening and speaking in successive states;

start 1

speak

2 3

speaklisten listen

4

Although intuitively we may expect to see multiple listening states between each
speaking state, the METATEM algorithm endeavours to satisfy outstanding even-
tualities at the earliest opportunity. That is, providing it is logically consistent to do
so, an eventuality (such as “♦speak”) will be made true without being explicitly
stated in the consequents of a next rule. There are no conflicting commitments
and therefore there is no need to delay its achievement.

1.2.1.2 Strategies and Deliberation

Where there are multiple outstanding eventualities, and where only a subset of
these can be satisfied at the same time, then some strategy for deciding which
eventualities to satisfy now, and which to hold over until future states, is re-
quired. As we have seen in the previous section, we are not able to require both
speak and listen to be true at the same point in time. Thus, if we require
both “sometime listen” and “sometime speak” to be made true many
times, then we must decide when to make speak true, when to make listen
true, and when to make neither true.
The basic strategy for deciding between conflicting eventualities is provided di-
rectly by the original METATEM execution algorithm. This is to choose to satisfy
the eventuality that has been outstanding (i.e. needing to be satisfied, but as yet
unsatisfied) the longest. This has the benefit that it ensures that no eventuality
remains outstanding forever, unless it is the case that the specification is unsatisfi-
able [1].
There are, however, a number of other mechanisms for handling such strategies
that have been developed. The most general is that described in [14]. To explain
this, let us view the outstanding eventualities at any moment in time as a list. The
eventualities will then be attempted in list-order. Thus, in the basic METATEM case
we would order the list based on the age of the eventuality. When an eventuality
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is satisfied, it is removed from the list; when a new eventuality is generated, we
add this to the end of the list.
With this list view, our strategy for deciding which eventualities to satisfy next is
just based on the order of eventualities within a list. Thus, if the agent can re-order
this list between states then it can have a quite sophisticated strategy for delibera-
tion, i.e. for dynamically choosing what to tackle next. This approach is discussed
further in [14, 18] but, unless we put some constraints on the re-ordering we
might apply, then there is a strong danger that the completeness of the execution
mechanism will be lost [18].
In the current implementation, rather than using this quite strong, but dangerous,
approach we adopt simpler, and more easily analysable, mechanisms for control-
ling (or at least influencing) the choice of eventuality to satisfy. These mechanisms
are characterised by the predicates/directives atLeast, atMost and prefer.
The atLeast predicate places a minimum constraint on the number of instances
of positive predicates, whilst atMost places a maximum constraint on the number
of instances of positive predicates in a given temporal state, in the style of the
capacity constraints described by [10]. Besides providing the developer with the
ability to influence an agent’s reasoning, when applied judiciously atMost and
atLeast can simplify the fragment of the logic considered and hence can increase
the execution performance of a METATEM agent.
As an example of the use of predicate constraints we provide some code snippets
from an example included with the METATEM download, which specifies the be-
haviour of a lift. The lift responds to calls from floors above and below it and,
when more than one call remains outstanding, must decide which call to serve
first, changing direction if necessary. Each discrete moment in time of our tempo-
ral model denotes the lift’s arrival at a floor and the transition between temporal
states is analogous to the lift’s transition between floors. The following rules spec-
ify that the lift starts at the ground floor and must satisfy all calls before it can
achieve the waiting state:

start => atFloor(0);

true => SOMETIME waiting;

call(X) => ~waiting;

Clearly, it is desirable that the lift visits a floor in each state of our model. This
behaviour could be specified by the rule

true => NEXT atFloor(X);

which states that there must exist an X such that atFloor(X) is satisfied in each
moment in time. However, our lift must visit one and only one of a limited num-
ber of valid floors. The above rule is logically too general as it allows multiple
X’s in any moment in time and implies an infinite domain of X 2. Therefore our

2 Indeed, the current implementation considers existential variables on the right-hand side of
future rules on an open-world principle, implementing a form of Skolemisation by, when nec-
essary, creating new terms. In this example our lift could disappear to an imaginary floor!
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lift specification does not use the rule given immediately above, but instead em-
ploys predicate constraints. These ensures that the lift visits one and only one
floor at each moment, without introducing an existential variable. The following
declarations in an agent description file achieve this.

at_most 1 atFloor true;

at_least 1 atFloor true;

The construction of each temporal state during the execution of a METATEM spec-
ification generates a logical interpretation that is used to evaluate the antecedents
of each temporal rule. The consequents of all the rules that fire are conjoined (and
transformed into disjunctive normal form) to represent the agent’s choices for the
next temporal state, each conjunction being a distinct choice, one of which is cho-
sen and becomes the interpretation of the next temporal state, from which the
next set of choices are derived. This process is repeated, and conjunctions that are
not chosen are retained as alternative choices to be taken in the event of backtrack-
ing. As mentioned earlier, a number of fundamental properties of the formulae in
each conjunction affect the choice made. For example, an agent will always satisfy
a commitment if it is consistent to do so, and will avoid introducing commit-
ments (temporal ‘sometime’ formula) if able to, by making a choice containing
only literal predicates. These preferences are built-in to METATEM, however the
prefer construct allows the developer to modify the outcome of METATEM’s
choice procedure by re-ordering the list of choices according to a declared pair
of predicates (e.g. prefer(win,lose)) after the fundamental ordering has been
applied. We refer to the prefer construct as a deliberation meta-predicate and
the architecture of the current METATEM allows the implementation of further
deliberation meta-predicates as ‘plug-ins’.
Each of these constructs can be declared as applicable in all circumstances or as
context dependent, that is, only applicable when a given formula is true. Typi-
cally this formula might be an inContext/1 or inContent/1 predicate when one
is expressing an agent’s preferences or constraints when acting under the influ-
ence of another agent (the concept and purpose of Context/Content is explained
in Section 1.2.1.3). Furthermore, each preference is assigned an integer weight-
ing, within the (arbitrary) range of 1–99, which allows a fine-grained ordering of
preferences3.
For example, the following snippets are two alternative applications of the prefer
construct to the lift example described above, to encourage the lift to continue
moving in the same direction when appropriate;

prefer downTo to upTo when moving(down) weight 50;

prefer upTo to downTo when moving(up) weight 50;

prefer("downTo","upTo","moving(down)",50)

prefer("upTo","downTo","moving(up)",50)

3 We reserve the weighting values 0 and 100 for built-in preferences.
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The first two directives above are examples of those that appear in the pream-
ble of an agent definition file4, these preferences apply from time, t = 0. The
latter two directives are examples of meta-predicates that, when appearing in the
consequents of a temporal NEXT rule, will provide the agent with the declared
preference from the temporal state following the state in which the rule was fired.
The former type is simply a syntactic convenience for a rule of the type

start => prefer("downTo","upTo","moving(down)",50)

Once a preference is applied it is upheld for all future states and there is no mech-
anism for explicitly deleting it, instead preferences can be overriden by an oth-
erwise identical preference which declares a higher priority value or counteracted
by an opposing preference. However, the use of context dependent preferences is
encouraged as leaving a context provides the effect of deleting a preference but
with the benefit that the preference will be reinstated upon entering the relevant
context. We believe this is a natural interpretation of preferences.

1.2.1.3 Multiple Agents

METATEM supports the asynchronous, concurrent execution of multiple agents
which are able to send one another messages that are guaranteed to arrive at some
future moment in time. Each agent has its own concept of time and the duration
of each time step for an individual agent is neither fixed nor constant throughout
execution. Conceptually then, the transition of multiple agents between succes-
sive temporal states is as depicted in Fig. 1.1.

agent 2

agent 3

agent 1

agent n

...

Fig. 1.1 Typical asynchronous agent execution.

Note. The form of asynchronous execution seen in Fig. 1.1 is a little problematic
for propositional temporal logic to represent straight-forwardly. However, as de-
scribed in [12] a temporal logic based on the Real Numbers rather than the Natural
Numbers, provides an appropriate semantic basis. Importantly, the propositional
fragment of such a Temporal Logic of the Reals required still remains decidable [26].
An agent sends a message to another agent by making the action predicate
send(Recipient,Message) true in one of its own states. This guarantees that
at some future moment the predicate receive(From,Message) will be true in

4 A more detailed description of the agent file is given in Section 1.3
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at least one state of the recipient agent (where Recipient, From and Message
are all terms and are substituted by the recipient agent’s name, the sending agent’s
name and the message content, respectively). The send predicate is an example
of a special ‘action’ predicate which, when made true, prevents subsequent back-
tracking over the state in which it holds. For this reason, the use of a deliberate–act
style of programming is encouraged in which an agent explores multiple execution
paths, performing only retractable internal actions, backtracking when necessary,
before taking a non-retractable action.
Although METATEM agents exist as individual threads within a single Java™
virtual machine there are no other predefined agent containers or agent spaces
that maintain a centralised structuring of multiple agents. Instead METATEM fol-
lows an agent-centred approach to multi-agent development with the only im-
plemented interactions between autonomous agents being message passing. Sup-
port for the abstract structuring of agent societies is provided by internal (to each
agent) constructs and is discussed in detail in the next section.

Agent structuring: Content and Context.

At the implementation level, and as the default abstraction, agents occupy a single
flat structure (potentially physically distributed). However, each agent maintains
two sets of agent references named ‘Content’ and ‘Context’ which provide the
flexibility to represent a wide range of inter-agent relationships and multi-agent
structuring [22, 8], as can be represented as in Fig. 1.2.

Behaviour

Content

Context

Fig. 1.2 An abstract representation of a single METATEM agent.

The actual meaning of a relationship between an agent and the members of its
Content and its counterpart Context is entirely flexible and dependent on the
application being tackled. That is, during the initial analysis stage of an agent-
oriented software engineering process when the most appropriate abstraction(s)
are determined, it may be declared that the Content set of an agent who acts as
a team leader are the agents that comprise its team. Alternatively, an agent may
be declared to represent an aspect of the environment, and those agents who have
the ‘environment’ agent in their Content set have that aspect of the environment
within their sphere of influence. An agent specification then, contains its temporal
specification (its behaviour) along with its Content and Context sets.
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a) Teams b) Roles c) Hierarchy

Fig. 1.3 A selection of METATEM agent structures, with possible interpretations; a) two teams
of agents, b) five agents fulfilling two roles (one agent fulfills both roles), and c) a nested hierarchy
of agents.

Structurally, an agent’s Content set are those agents an agent is said to “contain”
and its Context are those it is “contained by”. But abstractly, and capturing the
social nature of multi-agent systems, an agent’s Context should be viewed as the
set of agents that influence its own behaviour and its Content as those agents
whose behaviour it has some influence over. These agents sets are used to store
the multi-agent structure in a truly distributed manner that not only allows a
wide range of structures and abstractions to be implemented (as illustrated in
Fig. 1.3) but also allows dynamic structural changes at run-time without central
organisation.

Predicates Actions
inContent(Agent) addToContent(Agent)
inContext(Agent) enterContext(Agent)
enteredContent(Agent) removeFromContent(Agent)
enteredContext(Agent) leaveContext(Agent)
leftContent(Agent)
leftContext(Agent)

Table 1.1 Some of the system predicates and actions that can be used by METATEM agents to
reason about, and modify, their Content and Context sets.

Crucially, an agent is able to reason about, and modify, its relationship with other
agents at any given moment in time using the system predicates and action pred-
icates listed in Table 1.1. In the case of the inContent/1 and inContext/1 pred-
icates, they hold true for all agents that are members of Content (and Context
respectively) and for all moments in time that they remain members. The actions
listed can only be made true by the agent whose Content (and Context respec-
tively) is modified; in each case making the action true entails that in the next
moment in time the modification has taken effect, i.e. for Content, the following
rules apply.

addToContent(a) => NEXT inContent(a);

removeContent(a) => NEXT ~inContent(a);.
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Multicast message passing

One of the most advantageous practical benefits of the Context/Content group-
ing described above, is their use in message passing. For, as well as sending mes-
sages to individual named agents, a METATEM agent can address messages to sets
of agents using a number of supported set expressions. The terms Content and
Context are in fact literal set expressions which can be used to build larger ex-
pressions using the operators UNION, INTERSECTION and WITHOUT, for instance an
agent can send a message to the set Content UNION Context. Additionally, an
agent can send a message to all agents who share the same Context, without main-
taining an explicit reference to those agents. The three fundamental multicasts are
depicted in Fig. 1.4.

message

send(Context,message)send(Content,message) send(Context,broadcast(message))

Fig. 1.4 The three fundamental forms of multicast messaging across METATEM’s multi-agent
structure.

It is expected that the membership of an agent’s Content and Context sets changes
at runtime, as is appropriate for the agent’s activity in the modelled system. The
inclusion of a third set of agents called the Known set contains all agents an agent
has ever encountered. It retains a references to those agents who once belonged to
Content or Context sets after they have left 5.

1.2.2 Semantics and Verification

Programs in METATEM essentially comprise formulae in SNF normal form [13],
together with annotations concerning communication and organisation. It is im-
portant to note that any temporal logic formula can be translated to an equivalent
one in SNF (be it propositional, or first-order) in polynomial time. Once we have
a set of SNF formulae representing the behaviour of an agent, we can begin ex-
ecution. Without external interaction, such execution essentially corresponds to
model construction for the formulae. Thus, an important theorem from [2, 1]
concerning propositional temporal logic is

5 The intended purpose of an agent’s Known set is that of a list of contacts or address book and
is partly implemented for efficiency reasons.
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Theorem 1.1. If a set of SNF rules, R, is executed using the METATEM algorithm,
with the proviso that the oldest outstanding eventualities are attempted first at each
step, then a model for R will be generated if, and only if, R is satisfiable.

Once we add deliberation, for example re-ordering of outstanding eventualities,
then this theorem becomes:

Theorem 1.2. If a set of SNF rules, R, is executed using the METATEM algorithm,
with a fair6 ordering strategy for outstanding eventualities, then a model forR will be
generated if, and only if, R is satisfiable.

Thus, the fair ordering strategy restriction imposes a form of fairness on the even-
tuality choice mechanism [18].
It is also important to note that, once we move to either the execution of full
first-order temporal specifications, or we consider the execution of an agent in an
unknown environment, then completeness can not be guaranteed. At this stage we
are only attempting to build a model for the temporal formula captured within the
program.
If, however, we have specifications of all the participants in the multi-agent sys-
tem, together with a strong specification of the communication and execution
aspects, then we can, in principle, develop a full specification for the whole sys-
tem. If this specification is within a decidable fragment, then we can analyse such
specifications automatically.
An alternative approach is to consider the operational semantics of METATEM and
use model checking. In [7] a common semantic basis for many agent program-
ming languages was given, with METATEM being one of the languages considered.
In [3], a model checker was developed for this common core and so, in principle,
METATEM agents can be verified via this route also (although model-checking for
METATEM agents has not yet been carried out).

1.2.3 Software Engineering Issues

In common with many agent-oriented languages, the aim of METATEM is to cap-
ture the highest level of deliberative behaviour required of a system and to pro-
vide a clear and concise set of constructs with which to express it. It is anticipated
that METATEM code will account for only a small minority of a given system’s
code-base, whilst the majority of functionality will be engineered with whichever
traditional (or otherwise) technique is most appropriate for the application do-
main concerned. Software engineering issues for METATEM therefore reduce to
the following questions. Which methodologies are recommended/suited to the
engineering of systems that employ METATEM agents? Can a METATEM agent

6 By fair we mean a strategy that ensures that if an eventuality is outstanding for an inïňĄnite
number of steps, then at some point in the execution that eventuality will continually be at-
tempted.
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be interfaced with other technologies? In this section we attempt to answer these
questions.

1.2.3.1 Methodology

Although much work can be done to improve our understanding of this impor-
tant aspect of agent technology, we are able to make some constructive comments
about techniques that have been employed during METATEM’s evolution. The
METATEM approach can be considered a generalisation of a number of program-
ming techniques, for instance, from object-oriented programming; agents can be
readily organised into access-controlled groups [21] (akin to packages) and a type
system that implements a kind of inheritance has been adopted as a method of
ensuring that certain behavioural contracts are fulfilled.
Whilst informal agent-oriented design methodologies such as Gaia [31] and
Prometheus [28] are well suited to capturing global system behaviour and agent
interactions, we feel that the behaviour of an individual METATEM agent requires
a more formal design approach if the principle benefit of the execution method
is to be realised (that of direct execution of a logical specification). One way to
arrive at a precise representation of an individual agent’s behaviour is to model
it as a finite-state machine [16]. The derivation of temporal formulae from such a
model is a largely mechanical process.
In other work [15], an iterative approach to system design has been explored
that makes use of the agent grouping structures to make iterative refinement of
a design, by decomposing atomic agents into groups of sub-ordinate agents. In
this way, by adopting appropriate organisation abstractions during each iteration,
complex structures and relationships are developed. This is a promising approach
but needs further development.

1.2.3.2 Integration

A truly agent centred philosophy has been adopted throughout the evolution of
the METATEM approach to multi-agent programming, that considers all entities
to be an agent with an associated temporal specification. Thus, system compo-
nents that are developed and implemented with technology other than agent-
oriented technology7 must be wrapped inside a METATEM agent. A straight-
forward method for achieving this via a Java API is provided, such that any tech-
nology that can be interfaced with Java, can also be interfaced with METATEM.

7 In fact, any technology other than METATEM!
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1.2.4 Extensions

A number of extensions to METATEM have been explored, by the authors and
others, all of which have previously published theory and some of which have
benefited from an implementation. However, as none are yet included in the cur-
rent METATEM implementation we simply provide a list and refer the reader to
relevant publications.

1. Belief predicates and epistemic properties have been explored in [14] and are
expected to be included in the current METATEM implementation in the fu-
ture.

2. Bounded belief and resource-bounded reasoning is described in [19, 20] and it
is intended that this is implemented alongside item 1 above.

3. Probabilistic belief was explored by Ferreira et al. in [6, 5].
4. The use of METATEM as a high-level process coordination language has been

explored in [25].
5. More recently, the notion of context and its applicability to agent organisation

is the subject of ongoing research [8, 9].

1.3 Platform

A METATEM implementation, its documentation and some simple examples are
available from the following URL.

http://www.csc.liv.ac.uk/∼anthony/metatem.html

1.3.1 Defining Programs

The METATEM system is a Java application that has no dependencies other than
a Java Runtime Environment that supports Java 6.0 code. Defining a multi-
agent system with METATEM involves creating the following source files (each are
plain-text files):

1. System file;
2. Agent file;
3. Rule file.

System file. The system file declares the agents and the initial relationships be-
tween agents. For each agent, a name is declared and a type is given that corre-
sponds with an agent file. Any initial relationships between the declared agents
are declared by enumerating the members of each agent’s Content, Context
and Known sets. An example system file is shown below.
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agent fred : "example/robot.agent";

agent Barney : "example/robot.agent";

agent wilma : "example/boss.agent";

fred {

Context : wilma;

}

barney {

Known : wilma, barney;

}

wilma {

Content : wilma;

Known : barney;

}

Agent file. An agent file is defined for each agent type. It defines a METATEM
program by declaring and importing a series of temporal constraints and rule
blocks. In most cases, the majority of an agent file’s content will be any number
of rule blocks, each containing the runtime behaviour of an agent and described
using the three rule types described in Section 1.2.1. In the preamble to these
rule blocks a number of abilities, runtime options, meta-predicates and include
statements can be declared. An example agent file is shown below.

// a traffic light controller

type agent;

ability timer: metatem.agent.ability.Timer;

at_least 1 red;

at_most 1 green;

at_most 1 amber;

startblock: {

start => red(east_west);

start => red(north_south);

}

ruleblock: {

// illegal combinations

amber(X) => ~green(X);

red(X) => ~green(X);
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// when red it must at some time turn to amber...

red(X) => SOMETIME amber(X);

//... but not before the other light is red only

red(X) & amber(Y) & X\=Y => NEXT ~amber(X);

red(X) & green(Y) & X\=Y => NEXT ~amber(X);

// red must hold when amber is shown

red(X) & ~amber(X) => NEXT red(X);

// once amber is shown, green can be displayed

amber(X) & red(X) => NEXT green(X);

amber(X) & red(X) => NEXT ~amber(X);

// amber follows green

green(X) => NEXT amber(X) | green(X);

green(X) => NEXT ~red(X);

// red follows a single amber

amber(X) & ~red(X) => NEXT red(X);

}

Rule file. Rule files are a programming convenience that allows multiple agent
types to re-use rule-blocks via ‘include’ statements. They contain only rule blocks.

The full syntax of each file type, in Backus-Naur form, is provided in the system
documentation.

1.3.1.1 Built-in predicates

On top of the support for first order logic, METATEM provides a number of con-
structs commonly found in Prolog implementations and sometimes known as
built-in predicates. Arithmetic is supported by the is/2 and lessThan/2 predi-
cates. The declaration and manipulation of sets is achieved with set expressions
that support set union, set intersection and set difference operators. Finally, quoted
terms are supported along with a number of built-in predicates that allow a for-
mula to be represented as a term if required.

1.3.1.2 Agent abilities

METATEM’s mechanism for giving agents the ability to act on their environment
is achieved via special predicates we call abilities. The platform provides send and
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timer abilities which allow agents to send messages to other agents immediately
and to themselves after a period of delay, respectively. Application specific actions
are supported by the METATEM API and involve the creation of a Java class that
extends the API’s AgentAbility class for each action. Once declared in the
header of an agent file, abilities may appear wherever it is valid for a conventional
predicate to appear. Abilities have the same logical semantics, on a state by state
basis, as conventional predicates. However, a special ‘external’ ability type exists
which, when executed in a state, prevents the METATEM interpreter from back-
tracking over that state. Characterisation of abilities as internal or external is of
course dependent upon the application but as an example, a database select query
might be implemented as an internal ability whereas an update query might be
considered external. Internal abilities are reversible in the sense that it is safe to
backtrack over them without the need for an equal and opposite action—as the
action is deemed to have no side-effects.

1.3.2 Available tools and documentation

The current version of METATEM has a default command-line execution and out-
put, however a basic graphical visualisation tool is also provided that provides a
dynamic visualisation of the relationships between agents during execution and a
monitoring facility that provides the ability to isolate individual agents and mon-
itor their logical state. Proposals for the near future include a web interface for
online demonstration and teaching purposes. A screen-shot of the tool showing
the visualisation of example multi-agent structures is given in Fig. 1.5.
Developer’s documentation is included in the download available from the project
web page.

1.3.3 Standards compliance, interoperability and portability

The current METATEM implementation is written entirely in Java using no plat-
form dependent APIs and is thus portable to any platform supporting a Java
1.6 (or later) runtime environment. Although METATEM does not support het-
erogeneous agents directly, the creation of METATEM wrapper agents for hetero-
geneous agents is possible and covered by the developers’ documentation.
METATEM agents are executed concurrently, each having a thread of their own
in the same virtual machine. There are no plans to distribute agents across a net-
work but the current implementation does not preclude this extension if it were
required.
It is important to note that the use of logical notations, together with strong
notions of execution and completeness, ensure that the language has a close rela-
tionship with its semantics. The flexibility of general first-order predicates, and
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Fig. 1.5 A visualisation tool for the control and monitoring of METATEM agents.

of the content/context structures, ensures that semantics are both user definable
and transparent.

1.3.4 Other features of the platform

METATEM’s most distinctive feature is the inclusion of structuring constructs in
the core of the language (Context and Content sets) which enable agent organisa-
tion techniques that have the flexibility to be user-definable.
The nature of the declarative logic that describes the behaviour of a METATEM
agent can lead, in cases where agents are faced with many choices, to slow execu-
tion. In these cases, one can often ameliorate the effects of logical complexity by
appropriate use of the deliberation meta predicates discussed in Section 1.2.1.2.
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1.4 Applications supported by the language and/or the
platform

We should make it clear that the current METATEM implementation is a pro-
totype implementation that has been put to experimental use and has not been
used for any real-world applications, though we now feel it is mature enough
to be considered for use in the wider academic world. Its formal underpinnings
and strong semantics make it a natural choice for application areas that require a
high degree of clarity at a high-level of abstraction, particularly where time fea-
tures prominently in the specification or where verification of system properties
may be required. Features of the implementation such as meta-deliberation make
METATEM a candidate language when agents must have the ability to reason about
and/or modify their own reasoning, whilst the built-in agent grouping mecha-
nism aims to support applications that comprise a significant number of agents
with overlapping concerns. The natural handling of concurrency as autonomous
METATEM agents, each defined by a formal temporal specification, lends itself to
use as a language for coordinating processes between which dependencies exist—
the specification of a coordination model [25]. The authors believe that METATEM
will prove useful for the specifcation of highly distributed systems such as those
found in pervasive computing scenarios, this is therefore the focus of their current
application research.
Though the current platform has not been applied widely, the METATEM lan-
guage itself has been used in (or at least has inspired work in) several areas. For
example, in tackling planning, temporal logics have been increasingly used to con-
trol search. In [27] direct execution of temporal formula is used to directly imple-
ment planning. METATEM, and specifically the underlying normal form, provide
a concise description of temporal behaviours and this has been used in [4] to imple-
ment a form of agent verification. Similarly, the encoding of verification problems
using the METATEM rule form has been shown to be beneficial to the efficiency
of model checkers [23].
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Chapter 2
IndiGolog: A High-Level Programming
Language for Embedded Reasoning Agents

Giuseppe De Giacomo, Yves Lespérance, Hector J. Levesque, and Sebastian
Sardina

Abstract IndiGolog is a programming language for autonomous agents that sense
their environment and do planning as they operate. Instead of classical planning,
it supports high-level program execution. The programmer provides a high-level
nondeterministic program involving domain-specific actions and tests to perform
the agent’s tasks. The IndiGolog interpreter then reasons about the preconditions
and effects of the actions in the program to find a legal terminating execution. To
support this, the programmer provides a declarative specification of the domain
(i.e., primitive actions, preconditions and effects, what is known about the initial
state) in the situation calculus. The programmer can control the amount of non-
determinism in the program and how much of it is searched over. The language
is rich and supports concurrent programming. Programs are executed online to-
gether with sensing the environment and monitoring for events, thus supporting
the development of reactive agents. We discuss the language, its implementation,
and applications that have been realized with it.
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2.1 Motivation

Designing autonomous agents that do the right thing in changing and incom-
pletely known environments is challenging. The agent needs to adapt to chang-
ing environment conditions and user objectives. Architectures based on classical
planning can provide flexibility and adaptability, but they often end up being
too demanding computationally. Our approach of high-level program execution
[61] aims for a middle ground between classical planning and normal program-
ming. The idea, roughly, is that instead of searching for a sequence of actions that
would take the agent from an initial state to some goal state, the task is to find a
sequence of actions that constitutes a legal execution of some sketchy high-level
non-deterministic program involving domain specific actions and tests. As in plan-
ning, to find a sequence that constitutes a legal execution of a high-level program,
it is necessary to reason about the preconditions and effects of the actions within
the body of the program. However, if the program happens to be almost deter-
ministic, very little searching is required; as more and more non-determinism is
included, the search task begins to resemble traditional planning. Thus, in for-
mulating a high-level program, the programmer gets to control the search effort
required.
The high-level program execution approach to agent programming was concretely
realized in the Golog programming language [62], a procedural language defined
on top of the situation calculus [71, 82], a predicate logic framework for reasoning
about action. Golog (the name stands for “alGOl in LOGic”) provides a full set of
procedural constructs including conditionals, loops, recursive procedures, as well
as several nondeterministic choice constructs. The interpreter for the language
uses a situation calculus action theory representing the agent’s beliefs about the
state of the environment and the preconditions and effects of the actions to reason
and find a provably correct execution of the program.
An extension of Golog called ConGolog (Concurrent Golog) [24] was later de-
veloped to provide concurrent programming facilities. Then, more recently, in
IndiGolog (incremental deterministic Golog) [26, 87, 28], the framework was gen-
eralized to allow the programmer to control planning/lookahead and support
online execution, sensing the environment, and execution monitoring.
In addition to these, there have been other proposals of languages based on the
high-level program execution approach. One is Thielscher’s FLUX language [99],
which uses the fluent calculus as its formal foundation. As well, decision theoretic
versions of the approach have been proposed yielding languages such as DTGolog
[14, 97, 34].
In this chapter, we will focus our presentation on IndiGolog, briefly mentioning
how it differs from Golog and ConGolog as we go along. The high-level program
execution approach is related to work on planning with domain specific control
information, such as hierarchical task network (HTN) planning [33], and plan-
ning with temporal logic control specifications [3].
The Golog family of high level agent programming languages can be contrasted
with the more mainstream BDI agent programming languages/architectures, such
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as PRS [39] and its various successors, such as AgentSpeak [78], Jason [11], Jack
[17], and JAM [45], as well as the closely related 3APL [44]. These were developed
as a way of enabling abstract plans written by programmers to be combined and
used in real-time, in a way that was both flexible and robust. These BDI agent
programming languages were conceived as a simplified and operationalized ver-
sion of the BDI (Belief, Desire, Intention) model of agency, which is rooted in
philosophical work such as Bratman’s [15] theory of practical reasoning and Den-
net’s theory of intentional systems [31]. In the BDI paradigm, agents are viewed,
as well as built, as entities whose (rational) actions are a consequence of their men-
tal attitudes, beliefs, desires, obligations, intentions, etc. Theoretical work on the
BDI model has focused on the formal specification of the complex logical relation-
ships among these mental attitudes (e.g., [22, 79]). But more practical work in the
area has sought to develop BDI agent programming languages that incorporate a
simplified BDI semantics basis that has a computational interpretation.
An important feature of BDI-style programming languages and platforms is their
interleaved account of sensing, deliberation, and execution [76]. In BDI systems,
abstract plans written by programmers are combined and executed in real-time.
By executing as they reason, BDI agents reduce the likelihood that decisions will
be made on the basis of outdated beliefs and remain responsive to the environ-
ment by making adjustments in the steps chosen as they proceed. Because of this,
BDI agent programming languages are well suited to implementing systems that
need to operate more or less in real time (e.g., air traffic control and unmanned
aerial vehicles (UAVs), space shuttle monitoring, search and rescue co-ordination,
internet electronic business, and automated manufacturing [66, 7, 32, 9]). Unlike
in classical planning-based architectures, execution happens at each step, and there
is no lookahead to check that the selected plan can be successfully expanded and
executed. The assumption is that the careful crafting of plans’ preconditions to
ensure the selection of appropriate plans at execution time, together with a built-
in mechanism for trying alternative options, will usually ensure that a successful
execution is found, even in the context of a changing environment. The approach
works well if good plans can be specified for all objectives that the agent may
acquire and all contingencies that may arise. However, there are often too many
possible objectives and contingencies for this to be practical. Trying alternative
options may not work in an environment where choices cannot be “undone.”
Thus supplying some form of lookahead planning in an agent programming lan-
guage remains valuable provided it can be effectively controlled.
Various proposals have been made to incorporate planning (at execution time)
in BDI agent programming languages. [89, 90] have proposed the CANPlan and
CanPlan2 languages, that incorporate an HTN planning mechanism [33] into a
classical BDI agent programming language. Earlier less formal work on this topic
is reviewed in [89]. We will come back to the relationship between our high level
agent programming approach and other work on agent programming languages
in the final section of the chapter.
The rest of the chapter is organized as follows. In the next section, we present the
syntax and semantics of IndiGolog and discuss the basis of the whole approach. In
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Section 2.3, we discuss in details our platform for high-level program execution
supporting IndiGolog. In Section 2.4, we briefly survey some of the applications
that have been developed using it. After that, we conclude by discussing the dis-
tinguishing features of our approach and issues for future work.

2.2 Language

2.2.1 Syntactical Aspects

The Situation Calculus and Basic Action Theories

Our approach to agent programming relies on the agent being able to reason about
its world and how it can change, whether for planning/lookahead, for updating its
knowledge after executing an action or observing an exogenous action/event, for
monitoring whether its actions are having the expected effects, etc. More specif-
ically, we assume that the agent has a theory of action for the domain in which
it operates, a theory which is specified in the situation calculus [71], a popular
predicate logic formalism for representing dynamic domains and reasoning about
action.
We will not go over the situation calculus in detail. We merely note the following
components. There is a special constant S0 used to denote the initial situation,
namely that situation in which no actions have yet occurred. There is a distin-
guished binary function symbol do, where do(a, s) denotes the successor situa-
tion to s resulting from performing the action a. For example, in a Blocks World,
the situation term do(put(A,B), do(put(B,C), S0)), could denote the situation
where the agent has done the actions of first putting block B on block C and
then putting block A on block B, after starting in the initial situation S0. Re-
lations (resp. functions) whose values vary from situation to situation, are called
fluents, and are denoted by predicate (resp. function) symbols taking a situation
term as their last argument. Thus, for example, we might have that block B was
initially on the table, i.e. OnTable(B,S0), and after the agent put it on C, it no
longer was, i.e. ¬OnTable(B, do(put(B,C), S0)). There is also a special predicate
Poss(a, s) used to state that action a is executable in situation s.
Within this language, we can formulate action theories which describe how the
world changes as the result of the available actions in the domain. Here, we use
basic action theories [82], which include the following types of axioms:

• Axioms describing the initial situation, S0.
• Action precondition axioms, one for each primitive action a, characterizing
Poss(a, s).

• Successor state axioms, one for each relational fluent F (resp. functional fluent
f ), which characterize the conditions under which F (x, do(a, s)) holds (resp.
f(x, do(a, s)) = v) in terms of what holds in situation s; these axioms may
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be compiled from effects axioms, but provide a solution to the frame problem
[81].

• Unique names axioms for the primitive actions.
• A set of foundational, domain independent axioms for situations Σ as in [82].

Various ways of modeling sensing in the situation calculus have been proposed.
One is to introduce a special fluent SF(a, s) (for sensed fluent value) and axioms
describing how the truth value of SF becomes correlated with those aspects of a
situation which are being sensed by action a [58]. For example, the axiom

SF (senseDoor(d), s) ≡ Open(d, s)

states that the action senseDoor(d) tells the agent whether the door is open in sit-
uation s. For actions with no useful sensing information, one writes SF (a, s) ≡
True. In general, of course, sensing results are not binary. For example, reading
the temperature could mean returning an integer or real number. See [93] on how
these can be represented.
To describe an execution of a sequence of actions together with their sensing
results, one can use the notion of a history, i.e., a sequence of pairs (a, µ) where
a is a primitive action and µ is 1 or 0, a sensing result. Intuitively, the history
σ = (a1, µ1) · . . . · (an, µn) is one where actions a1, . . . , an happen starting in
some initial situation, and each action ai returns sensing result µi. We can use
end[σ] to denote the situation term corresponding to the history σ, and Sensed[σ]
to denote the formula of the situation calculus stating all sensing results of the
history σ. Formally,

end[ε] = S0, where ε is the empty history; and
end[σ · (a, µ)] = do(a, end[σ]).

Sensed[ε] = True;
Sensed[σ · (a, 1)] = Sensed[σ] ∧ SF(a, end[σ]);
Sensed[σ · (a, 0)] = Sensed[σ] ∧ ¬SF(a, end[σ]).

We illustrate how a domain is specified by giving a partial specification of the
Wumpus World domain [92]:

LocAgent(S0) = 〈1, 1〉,
HasArrow(S0),
DirAgent(S0) = right,

Poss(pickGold, s) ≡ IsGold(LocAgent(s),s),

DirAgent(do(a, s)) = y ≡
(a = turnRight ∧DirAgent(s) = down ∧ y = left) ∨
. . . ∨ (a 6= turnRight ∧ a 6= turnLeft ∧DirAgent(s) = y).

Thus, the agent is initially on the 〈1, 1〉 square, facing in the right direction, and it
has some arrows to shoot at the Wumpus. It is possible for the agent to perform
the pickGold action in a situation s if there is a gold coin where the agent is located
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in s. The direction of the agent is y in the situation that results from action a being
performed in situation s if and only if the action was to turn in the right direction
(i.e. clockwise) and the agent was facing down in s and the new direction y is left,
or any of several other cases of the agent doing a turning action (we leave out
the details), or the agent’s direction was already y in s and the action a is neither
turning right nor turning left.

The IndiGolog Programming Constructs

Next we turn to programs. IndiGolog provides the following rich set of program-
ming constructs (most of which are inherited from Golog [62] and ConGolog [24]):

a, primitive action
φ?, test/wait for a condition
δ1; δ2, sequence
δ1 | δ2, nondeterministic branch
π x. δ, nondeterministic choice of argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency with δ1 at a higher priority
δ||, concurrent iteration
〈φ→ δ〉, interrupt
proc P (x) δ endProc, procedure definition
P (θ), procedure call
Σ(δ), search operator

In the first line, a stands for a situation calculus action term where the special sit-
uation constant now may be used to refer to the current situation (i.e. that where
a is to be executed). Similarly, in the line below, φ stands for a situation calculus
formula where now may be used to refer to the current situation, for example
OnTable(block, now). We use a[s] (φ[s]) for the action (formula) obtained by sub-
stituting the situation variable s for all occurrences of now in functional fluents
appearing in a (functional and predicate fluents appearing in φ). Moreover when
no confusion can arise, we often leave out the now argument from fluents alto-
gether; e.g. write OnTable(block) instead of OnTable(block, now). In such cases,
the situation suppressed version of the action or formula should be understood as
an abbreviation for the version with now.
Among the constructs listed, we notice the presence of nondeterministic con-
structs. These include (δ1 | δ2), which nondeterministically chooses between pro-
grams δ1 and δ2, π x. δ, which nondeterministically picks a binding for the vari-
able x and performs the program δ for this binding of x, and δ∗, which performs
δ zero or more times. π x1, . . . , xn. δ is an abbreviation for π x1. . . . .π xn δ.
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Test actions φ? can be used to control which branches may be executed, e.g.,
[(φ?; δ1) | (¬φ?; δ2)] will perform δ1 when φ is true and δ2 when φ is false (we
use [. . .] and (. . .) interchangeably to disambiguate structure in programs). A test
can also be used to constrain the value of a nondeterministically bound variable,
e.g., π x. [φ(x)?; δ(x)] will perform δ(x) with x bound to a value that satisfies
φ(x) (or fail if no such value exists). Finally, as we discuss below, tests can also be
used to synchronize concurrent processes.
The constructs if φ then δ1 else δ2 endIf and while φ do δ endWhile are the syn-
chronized versions of the usual if-then-else and while-loop. They are synchronized
in the sense that testing the condition φ does not involve a transition per se: the
evaluation of the condition and the first action of the branch chosen are executed
as an atomic unit. So these constructs behave in a similar way to the test-and-set
atomic instructions used to build semaphores in concurrent programming.1

We also have constructs for concurrent programming. In particular (δ1 ‖ δ2)
expresses the concurrent execution (interpreted as interleaving) of the program-
s/processes δ1 and δ2. Observe that a process may become blocked when it reaches
a primitive action whose preconditions are false or a test/wait action φ? whose
condition φ is false. Then, execution of the program may continue provided that
another process executes next. When the condition causing the blocking becomes
true, the no longer blocked process can resume execution.
Another concurrent programming construct is (δ1 〉〉 δ2), where δ1 has higher
priority than δ2, and δ2 may only execute when δ1 is done or blocked. δ|| is like
nondeterministic iteration δ∗, but the instances of δ are executed concurrently
rather than in sequence.
Finally, one may include interrupts in a concurrent program to immediately “re-
act” to a condition becoming true. An interrupt 〈φ → δ〉 has a trigger condi-
tion φ, and a body δ. If the interrupt gets control from higher priority processes
and the condition φ is true, the interrupt triggers and the body is executed, sus-
pending any lower priority processes that may have been executing. Once the
interrupt body completes execution, the suspended lower priority processes may
resume. The interrupt may also trigger again (when its condition becomes true).
〈x : φ→ δ〉 is an abbreviation for 〈∃x.φ→ πx.[φ?; δ]〉. The language also allows
for recursive procedures, and other convenient constructs can easily be defined,
usually as abbreviations.
Finally, the search operator Σ(δ) is used to specify that lookahead should be per-
formed over the (nondeterministic) program δ to ensure that nondeterministic
choices are resolved in a way that guarantees its successful completion. When a
program is not in a search block, nondeterministic choices are resolved externally
from the program executor, and hence, to the executor, look like they are made
in an arbitrary way. The search operator can thus be used by the programmer to

1 In [62], non-synchronized versions of if-then-elses and while-loops are introduced by defining:
if φ then δ1 else δ2 endIf def

= [(φ?; δ1) | (¬φ?; δ2)] and while φ do δ endWhile def
= [(φ?; δ)∗;¬φ?].

The synchronized versions of these constructs introduced here behave essentially as the non-
synchronized ones in absence of concurrency. However the difference is significant when con-
currency is allowed.
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control the scope of lookahead search (this is a new feature in IndiGolog [26, 87];
in Golog and ConGolog lookahead search over the whole program is automatically
performed). We discuss the semantics of the search operator in the next section.

Some Examples

We illustrate how one specifies an agent’s behavior in IndiGolog with some exam-
ples from the Wumpus World application [92]. If the Wumpus is known to be
alive at a location l which is aligned with the agent’s location, then the agent exe-
cutes procedure shoot(d) with the direction d at which the Wumpus is known to
be. The procedure is in charge of aiming and shooting the arrow at direction d; it
is defined using a search block as follows:

proc shoot(d)
Σ[(turnRight∗ | turnLeft∗); (DirAgent = d)?; shootFwd]

endProc
The agent’s main control procedure, which is to be executed online is as follows:

proc mainControl
〈d, l : LocWumpus = l ∧ AliveWumpus = true ∧

Aligned(LocAgent, d,LocWumpus) −→ shoot(d)〉
〉〉
〈IsGold(LocAgent) = true −→ pickGold〉
〉〉
〈InDungeon = true −→

smell; senseBreeze; senseGold;
[(¬HoldingGold?; explore) | (HoldingGold?; goto(〈1, 1〉); climb)]〉

endProc

Here, we use a set of prioritized interrupts to ensure that the agent reacts imme-
diately to threats/opportunities: if the agent comes to know that the Wumpus is
in shooting range (highest priority interrupt), it interrupts whatever it was doing
and immediately executes the procedure “shoot” with the appropriate direction
argument; otherwise, if it comes to know that there is gold at the current location
(medium priority interrupt), it immediately picks it up; otherwise, finally, if it
is in the dungeon (lowest priority interrupt), it senses its surroundings and then
either executes the “explore” procedure when it is not yet carrying gold or exits
the dungeon otherwise. The program terminates when the conditions of all the
interrupts become false, i.e., when the agent is no longer in the dungeon.
To further illustrate how the search operator can be used, consider the fol-
lowing example (adapted from one in [57]) of an iterative deepening search
procedure to find a robot delivery schedule/route that serves all clients and
minimizes the distance traveled by the robot; one calls the procedure using
Σ(minimizeDistance(0)):

proc minimizeDistance(dist)
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serveAllClientsWithin(dist) % try to serve all clients in at most dist
| minimizeDistance(dist+ 1) % otherwise increment dist

endProc

proc serveAllClientsWithin(dist)
((¬∃c)ClientToServe(c))? % when all clients served, exit
| % otherwise pick a client
π c, d.[ (ClientToServe(c) ∧DistanceTo(c) = d ∧ d ≤ dist)?;

goTo(c); serve(c); % serve selected client
serveAllClientsWithin(dist− d)] % serve remaining clients

endProc

Note that in “minimizeDistance,” we rely on the fact that the IndiGolog implemen-
tation tries nondeterministic branches left-to-right, in Prolog fashion. It is possi-
ble to define a “try δ1 otherwise δ2” construct that eliminates the need for this
assumption.
As a final example of the use of the search operator, consider the following pro-
cedures, which implement a generic iterative deepening planner (adapted from
[82]):

proc IDPlan(maxl) % main iterative deepening planning procedure
IDPlan2(0,maxl)

endProc

proc IDPlan2(l,maxl)
BDFPlan(l) % try to find a plan of length l
| [(l < maxl)?; IDPlan2(l + 1,maxl)] % else increment l up to maxl

endProc

procBDFPlan(l) % a bounded depth first planning procedure
(Goal)? |
[(l > 0)?; π a.(Acceptable(a))?; a; BDFPlan(l − 1)]

endProc

One calls the planning procedure using Σ(IDPlan(N)) where N is a plan length
bound; Goal is a defined predicate specifying the goal and Acceptable is another
defined predicate that can be used to filter what actions are considered in a given
situation.

2.2.2 Semantics and Verification

Reasoning about Action: Projection via Regression and Progression

Our “high level program execution” framework requires reasoning about action.
The executor must reason to check that its actions are possible and to deter-
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mine whether the tests in the high-level program hold. This reasoning is required
whether the agent is actually executing the program online or performing looka-
head/planning to find a successful execution offline. So let’s begin by discussing
reasoning about action.
There are two well known reasoning tasks that our executor must perform. The
main one is called the (temporal) projection task: determining whether or not some
condition will hold after a sequence of actions has been performed starting in
some initial state. The second one is called the legality task: determining whether
a sequence of actions can be performed starting in some initial state. Assuming
we have access to the preconditions of actions, legality reduces to projection, since
we can determine legality by verifying that the preconditions of each action in the
sequence are satisfied in the state just before the action is executed. Projection is a
very basic task since it is necessary for a number of other larger tasks, including
planning and high-level program execution, as we will see later in the chapter.
We can define projection in the situation calculus as follows: given an action the-
ory D, a sequence of ground action terms, a = [a1, . . . , an], and a formula φ[s]
that is uniform in s (i.e. roughly where the only situation term that appears is s),
the task is to determine whether or not

D |= φ[do(a, S0)].

Reiter [81] has shown that the projection problem can be solved by regression:
when D is an action theory (as specified earlier), there is a regression operator R,
such that for any φ uniform in s,

D |= φ[do(a, S0)] iff Duna ∪ DS0 |= φ′[S0],

where DS0 is the part of D that characterizes S0, Duna is the set of unique name
axioms for primitive actions, and φ′ = R(φ,a). So to solve the projection prob-
lem, it is sufficient, to regress the formula using the given actions, and then to
determine whether result holds in the initial situation, a much simpler entailment.
Regression has proved to be a powerful method for reasoning about a dynamic
world, reducing it to reasoning about a static initial situation. However, it does
have a serious drawback. Imagine a long-lived agent that has performed thousands
or even millions of actions in its lifetime, and which at some point, needs to deter-
mine whether some condition currently holds. Regression involves transforming
this condition back through those many actions, and then determining whether
the transformed condition held initially. This is not an ideal way of staying up to
date.
The alternative to regression is progression [65]. In this case, we look for a progres-
sion operator P that can transform an initial database DS0 into the database that
results after performing an action. More precisely, we want to have that

D |= φ[do(a, S0)] iff Duna ∪ D′
0 |= φ[S0],
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where DS0 is the part of D that characterizes S0, Duna is the set of unique name
axioms for primitive actions, and D′

0 = P(DS0 ,a). The idea is that as actions are
performed, an agent would change its database about the initial situation, so that
to determine if φ held after doing actions a, it would be sufficient to determine if
φ held in the progressed situation (with no further actions), again a much simpler
entailment. Moreover, unlike the case with regression, an agent can use its mental
idle time (for example, while it is performing physical actions) to keep its database
up to date. If it is unable to keep up, it is easy to imagine using regression until
the database is fully progressed.
There are, however, drawbacks with progression as well. For one thing, it is geared
to answering questions about the current situation only. In progressing a database
forward, we effectively lose the historical information about what held in the past.
It is, in other words, a form of forgetting [64, 47]. While questions about a current
situation can reasonably be expected to be the most common, they are not the
only meaningful ones.
A more serious concern with progression is that it is not always possible. As Lin
and Reiter show [65], there are simple cases of basic action theories where there
is no operator P with the properties we want. (More precisely, the desired D′

0

would not be first-order definable.) To have a well-defined projection operator, it
is necessary to impose further restrictions on the sorts of action theories we use,
as we will see below.

Reasoning with Closed and Open World Knowledge Bases

So far, we have assumed like Reiter, that DS0 is any collection of formulas uni-
form in S0. Regression reduces the projection problem to that of calculating log-
ical consequences of DS0 . In practice, however, we would like to reduce it to a
much more tractable problem than ordinary first-order logical entailment. It it is
quite common for applications to assume thatDS0 satisfies additional constraints:
domain closure, unique names, and the closed-word assumption [80]. With these,
for all practical purposes, DS0 does behave like a database, and the entailment
problem becomes one of database query evaluation. Furthermore, progression is
well defined, and behaves like an ordinary database transaction.
Even without using (relational) database technology, the advantage of having a
DS0 constrained in this way is significant. For example, it allows us to use Prolog
technology directly to perform projection. For example, to find out if (φ ∨ ψ)
holds, it is sufficient to determine if φ holds or if ψ holds; to find out if ¬φ holds,
it is sufficient to determine if φ does not hold (using negation as failure), and so
on. None of these are possible with an unconstrained DS0 .
This comes at a price, however. The unique name, domain closure and closed-
world assumptions amount to assuming that we have complete knowledge about
S0: anytime we cannot infer that φ holds, it will be because we are inferring
that ¬φ holds. We will never have the status of φ undecided. This is obviously a
very strong assumption. Indeed we would expect that a typical agent might start
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with incomplete knowledge, and only acquire the information it needs by actively
sensing its environment as necessary.
A proposal for modifying Reiter’s proposal for the projection problem along these
lines was made by De Giacomo and Levesque [27]. They show that a modified
version of regression can be made to work with sensing information. They also
consider how closed-world reasoning can be used in an open world using what
they call just-in-time queries. In a nutshell, they require that queries be evaluated
only in situations where enough sensing has taken place to give complete infor-
mation about the query. Overall, the knowledge can be incomplete, but it will be
locally complete, and allow us to use closed-world techniques.
Another independent proposal for dealing effectively with open-world reasoning
is that of Liu and Levesque [106]. (Related proposals are made by Son and Baral
[96] and by Amir and Russell [2].) They show that what they call proper knowl-
edge bases represent open-world knowledge. They define a form of progression for
these knowledge bases that provides an efficient solution to the projection prob-
lem that is always logically sound, and under certain circumstances, also logically
complete. The restrictions involve the type of successor-state axioms that appear
in the action theory D: they require action theories that are local-effect (actions
only change the properties of the objects that are parameters of the action) and
context-complete (either the actions are context-free or there is complete knowl-
edge about the context of the context-dependent ones). Vassos and Levesque [102]
extended this approach to more general theories, while relying on the assump-
tion that there is a finite domain and a restricted form of disjunctive knowledge
in the initial database in order to remain first-order and tractable. In [103], they
also show that an alternative definition of progression that is always first-order
is nonetheless correct for reasoning about a large class of sentences. As well, in
[101] they reconsider Lin and Reiter’s progression (actually a slight variant that
solves a few problems) and show that in case actions have only local effects, this
form of progression is always first-order representable; moreover, for a restricted
class of local-effect axioms they show how to construct a progressed database that
remains finite.

The Offline Execution Semantics

Now let’s return to the formal semantics of IndiGolog. This semantics is based
on that of ConGolog, so we will go over the latter first. In [24], a single step
structural operational (transition system) semantics in the style of [75] is defined
for ConGolog programs. Two special predicates Trans and Final are introduced.
Trans(δ, s, δ′, s′) means that by executing program δ starting in situation s, one
can get to situation s′ in one elementary step with the program δ′ remaining
to be executed. Final(δ, s) means that program δ may successfully terminate in
situation s.
Note that this semantics requires quantification over programs. To allow for this,
[24] develops an encoding of programs as first-order terms in the logical language
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(observe that programs as such, cannot in general be first-order terms, since they
mention formulas in tests, and the operator π in πx.δ is a sort of quantifier, hence
an encoding is needed).2 Encoding programs as first-order terms, although it re-
quires some care (e.g. introducing constants denoting variables and defining sub-
stitution explicitly in the language), does not pose any major problem.3 In the
following we abstract from the details of the encoding as much as possible, and
essentially use programs within formulas as if they were already first-order terms.
The full encoding is given in [24]. (In [36], an approach to handling ConGolog pro-
grams that does not rely on any type of encoding is presented. There, high-level
programs are compiled into standard situation calculus basic action theories such
that the executable situations are exactly those that are permitted by the program.)
The predicate Trans for programs without procedures is characterized by the fol-
lowing set of axioms T (here as in the rest of the chapter, free variables are assumed
to be universally quantified):

1. Empty program:
Trans(nil, s, δ′, s′) ≡ False.

2. Primitive actions:

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s).

3. Test/wait actions:

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s.

4. Sequence:

Trans(δ1; δ2, s, δ′, s′) ≡
∃γ.δ′ = (γ; δ2) ∧ Trans(δ1, s, γ, s′) ∨ Final(δ1, s) ∧ Trans(δ2, s, δ′, s′).

5. Nondeterministic branch:

Trans(δ1 | δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′, s′) ∨ Trans(δ2, s, δ′, s′).

6. Nondeterministic choice of argument:

Trans(πv.δ, s, δ′, s′) ≡ ∃x.Trans(δv
x, s, δ

′, s′).

7. Nondeterministic iteration:

Trans(δ∗, s, δ′, s′) ≡ ∃γ.(δ′ = γ; δ∗) ∧ Trans(δ, s, γ, s′).

2 In the original presentation of Golog [62], a simpler semantics was given where Do(δ, s, s′) was
only an abbreviation for a formula Φ(s, s′) that did not mention the program δ (or any other
programs), thus avoiding the need to reify programs. However, when dealing with concurrency,
it is more convenient to use a transition semantics.
3 Observe that we assume that formulas that occur in tests never mention programs, so it is
impossible to build self-referential sentences.
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8. Synchronized conditional:

Trans(if φ then δ1 else δ2 endIf, s, δ′, s′) ≡
φ[s] ∧ Trans(δ1, s, δ′, s′) ∨ ¬φ[s] ∧ Trans(δ2, s, δ′, s′).

9. Synchronized loop:

Trans(while φ do δ endWhile, s, δ′, s′) ≡
∃γ.(δ′ = γ; while φ do δ) ∧ φ[s] ∧ Trans(δ, s, γ, s′).

10. Concurrent execution:

Trans(δ1 ‖ δ2, s, δ′, s′) ≡
∃γ.δ′ = (γ ‖ δ2) ∧ Trans(δ1, s, γ, s′) ∨ ∃γ.δ′ = (δ1 ‖ γ) ∧ Trans(δ2, s, γ, s′).

11. Prioritized concurrency:

Trans(δ1 〉〉 δ2, s, δ′, s′) ≡
∃γ.δ′ = (γ 〉〉 δ2) ∧ Trans(δ1, s, γ, s′) ∨
∃γ.δ′ = (δ1 〉〉 γ) ∧ Trans(δ2, s, γ, s′) ∧ ¬∃ζ, s′′.Trans(δ1, s, ζ, s′′).

12. Concurrent iteration:

Trans(δ||, s, δ′, s′) ≡ ∃γ.δ′ = (γ ‖ δ||) ∧ Trans(δ, s, γ, s′).

The assertions above characterize when a configuration (δ, s) can evolve (in a
single step) to a configuration (δ′, s′). Intuitively they can be read as follows:

1. (nil, s) cannot evolve to any configuration.
2. (a, s) evolves to (nil, do(a[s], s)), provided that a[s] is possible in s. After hav-

ing performed a, nothing remains to be performed and hence nil is returned.
Note that in Trans(a, s, δ′, s′), a stands for the program term encoding the
corresponding situation calculus action, while Poss and do take the latter as
argument; we take the function ·[·] as mapping the program term a into the
corresponding situation calculus action a[s], as well as replacing now by the
situation s. The details of how this function is defined are in [24].

3. (φ?, s) evolves to (nil, s), provided that φ[s] holds, otherwise it cannot pro-
ceed. Note that the situation remains unchanged. Analogously to the previous
case, we take the function ·[·] as mapping the program term for condition φ
into the corresponding situation calculus formulas φ[s], as well as replacing
now by the situation s (see [24] for details).

4. (δ1; δ2, s) can evolve to (δ′1; δ2, s
′), provided that (δ1, s) can evolve to (δ′1, s

′).
Moreover it can also evolve to (δ′2, s

′), provided that (δ1, s) is a final configu-
ration and (δ2, s) can evolve to (δ′2, s

′).
5. (δ1 | δ2, s) can evolve to (δ′, s′), provided that either (δ1, s) or (δ2, s) can do

so.
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6. (πv.δ, s) can evolve to (δ′, s′), provided that there exists an x such that (δv
x, s)

can evolve to (δ′, s′). Here δv
x is the program resulting from δ by substituting

v with the variable x.4

7. (δ∗, s) can evolve to (δ′; δ∗, s′) provided that (δ, s) can evolve to (δ′, s′). Ob-
serve that (δ∗, s) can also not evolve at all, (δ∗, s) being final by definition (see
below).

8. (if φ then δ1 else δ2 endIf, s) can evolve to (δ′, s′), if either φ[s] holds and
(δ1, s) can do so, or ¬φ[s] holds and (δ2, s) can do so.

9. (while φ do δ endWhile, s) can evolve to (δ′; while φ do δ endWhile, s′), if
φ[s] holds and (δ, s) can evolve to (δ′, s′).

10. You single step (δ1 ‖ δ2) by single stepping either δ1 or δ2 and leaving the
other process unchanged.

11. The (δ1 〉〉 δ2) construct is identical, except that you are only allowed to single
step δ2 if there is no legal step for δ1. This ensures that δ1 will execute as long
as it is possible for it to do so.

12. Finally, you single step δ|| by single stepping δ, and what is left is the remainder
of δ as well as δ|| itself. This allows an unbounded number of instances of δ to
be running.

Observe that with (δ1 ‖ δ2), if both δ1 and δ2 are always able to execute, the
amount of interleaving between them is left completely open. It is legal to execute
one of them completely before even starting the other, and it also legal to switch
back and forth after each primitive or wait action.5

Final(δ, s) tells us whether a program δ can be considered to be already in a final
state (legally terminated) in the situation s. Obviously we have Final(nil, s), but
also Final(δ∗, s) since δ∗ requires 0 or more repetitions of δ and so it is possible
to not execute δ at all, the program completing immediately.
The predicate Final for programs without procedures is characterized by the set
of axioms F :

1. Empty program:
Final(nil, s) ≡ True.

2. Primitive action:
Final(a, s) ≡ False.

3. Test/wait action:
Final(φ?, s) ≡ False.

4. Sequence:
Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).

5. Nondeterministic branch:

4 More formally, in the program term δ, v is substituted by a term of the form nameOf(x),
where nameOf is used to convert situation calculus objects/actions into program terms of the
corresponding sort (see [24]).
5 It is not hard to define new concurrency constructs ‖min and ‖max that require the amount
of interleaving to be minimized or maximized respectively.
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Final(δ1 | δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s).

6. Nondeterministic choice of argument:

Final(πv.δ, s) ≡ ∃x.Final(δv
x, s).

7. Nondeterministic iteration:

Final(δ∗, s) ≡ True.

8. Synchronized conditional:

Final(if φ then δ1 else δ2 endIf, s) ≡
φ[s] ∧ Final(δ1, s) ∨ ¬φ[s] ∧ Final(δ2, s).

9. Synchronized loop:

Final(while φ do δ endWhile, s) ≡ ¬φ[s] ∨ Final(δ, s).

10. Concurrent execution:

Final(δ1 ‖ δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).

11. Prioritized concurrency:

Final(δ1 〉〉 δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).

12. Concurrent iteration:
Final(δ||, s) ≡ True.

The assertions above can be read as follows:

1. (nil, s) is a final configuration.
2. (a, s) is not final, indeed the program consisting of the primitive action a can-

not be considered completed until it has performed a.
3. (φ?, s) is not final, indeed the program consisting of the test action φ? cannot

be considered completed until it has performed the test φ?.
4. (δ1; δ2, s) can be considered completed if both (δ1, s) and (δ2, s) are final.
5. (δ1 | δ2, s) can be considered completed if either (δ1, s) or (δ2, s) is final.
6. (πv.δ, s) can be considered completed, provided that there exists an x such that

(δv
x, s) is final, where δv

x is obtained from δ by substituting v with x.
7. (δ∗, s) is a final configuration, since δ∗ is allowed to execute 0 times.
8. (if φ then δ1 else δ2 endIf, s) can be considered completed, if either φ[s] holds

and (δ1, s) is final, or if ¬φ[s] holds and (δ2, s) is final.
9. (while φ do δ endWhile, s) can be considered completed if either ¬φ[s] holds

or (δ, s) is final.
10. (δ1 ‖ δ2) can be considered completed if both δ1 and δ2 are final.
11. (δ1 〉〉 δ2) is handled identically with the previous case.
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12. δ|| is a final configuration, since δ|| is allowed to execute 0 instances of δ.

The ConGolog semantics handles procedure definitions and procedure calls in a
standard way with call-by-value parameter passing and lexical scoping. We leave
out the axioms that handle this; they can be found in [24].6

In the following we denote by C the set of axioms for Trans and Final plus those
needed for the encoding of programs as first-order terms.
Regarding interrupts, it turns out that these can be explained using other con-
structs of ConGolog:

〈 φ→ δ 〉 def= while Interrupts_running do
if φ then δ else False? endIf

endWhile

To see how this works, first assume that the special fluent Interrupts_running
is identically True. When an interrupt 〈φ→ δ〉 gets control, it repeatedly executes
δ until φ becomes false, at which point it blocks, releasing control to any other
process in the program that is able to execute. Note that according to the above
definition of Trans, no transition occurs between the test condition in a while-
loop or an if-then-else and the body. In effect, if φ becomes false, the process
blocks right at the beginning of the loop, until some other action makes φ true
and resumes the loop. To actually terminate the loop, we use a special primitive
action stop_interrupts, whose only effect is to make Interrupts_running false.
Thus, we imagine that to execute a program δ containing interrupts, we would
actually execute the program {start_interrupts ; (δ 〉〉 stop_interrupts)} which
has the effect of stopping all blocked interrupt loops in δ at the lowest priority,
i.e. when there are no more actions in δ that can be executed.
Offline executions of programs, which are the kind of executions originally pro-
posed for Golog [62] and ConGolog [24], are characterized using the Do(δ, s, s′)
predicate, which means that there is an execution of program δ that starts in situ-
ation s and terminates in situation s′:

Do(δ, s, s′) def= ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′),

where Trans∗ is the reflexive transitive closure of Trans.7 Thus there is an ex-
ecution of program δ that starts in situation s and terminates in situation s′ if

6 Note that when the number of recursive calls is unbounded, this requires defining Trans and
Final using a second order formula. In ConGolog a procedure call is not a transition (only
primitive actions and tests are), so one must allow for an arbitrarily large but finite number of
procedure calls in a transition; see [24].
7 Trans∗ can be defined as the (second-order) situation calculus formula:

Trans∗(δ, s, δ′, s′)
def
= ∀T.[. . . ⊃ T (δ, s, δ′, s′)],

where . . . stands for the conjunction of the universal closure of the following implications:

True ⊃ T (δ, s, δ, s),
Trans(δ, s, δ′′, s′′) ∧ T (δ′′, s′′, δ′, s′) ⊃ T (δ, s, δ′, s′).
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and only if we can perform 0 or more transitions from program δ in situation s
to reach situation s′ with program δ′ remaining, at which point one may legally
terminate.
An offline execution of δ from s is a sequence of actions a1, . . . , an such that:
D ∪ C |= Do(δ, s, do(an, . . . , do(a1, s) . . .)), where D is an action theory as men-
tioned above, and C is a set of axioms defining the predicates Trans and Final
and the encoding of programs as first-order terms [24].

The Online Execution Semantics

The offline execution model of Golog and ConGolog requires the executor to search
over the whole program to find a complete execution before performing any ac-
tion. As mentioned earlier, this is problematic for agents that are long lived or
need to sense their environment as they operate. The online execution model of
IndiGolog [26, 87] addresses this. Imagine that we started with some program δ0
in S0, and that at some later point we have executed certain actions a1, . . . ak

and have obtained sensing results µ1, . . . µk from them, i.e. we are now in history
σ = (a1, µ1) · . . . · (ak, µk), with program δ remaining to be executed. The online
high-level program execution task then is to find out what to do next, defined by:

• stop, if D ∪ C ∪ {Sensed[σ]} |= Final(δ, end[σ]);
• return the remaining program δ′, if

D ∪ C ∪ {Sensed[σ]} |= Trans(δ, end[σ], δ′, end[σ]),

and no action is required in this step;
• return action a and δ′, if

D ∪ C ∪ {Sensed[σ]} |= Trans(δ, end[σ], δ′, do(a, end[σ])).

So the online version of program execution uses the sensing information that has
been accumulated so far to decide if it should terminate, take a step of the program
with no action required, or take a step with a single action required. In the case
that an action is required, the agent can be instructed to perform the action, gather
any sensing information this provides, and the online execution process iterates.
As part of this online execution cycle, one can also monitor for the occurrence of
exogenous actions/events. When an exogenous action is detected it can be added
to the history σ, possibly causing an update in the values of various fluents. The
program can then monitor for this and execute a “reaction” when appropriate
(e.g. using an interrupt).
The IndiGolog semantics of [26] defines an online execution of a program δ starting
from a history σ, as a sequence of online configurations

(δ0 = δ, σ0 = σ), . . . , (δn, σn)

such that for i = 0, . . . , n−1:
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D ∪ C ∪ {Sensed[σi]} |= Trans(δi, end[σi], δi+1, end[σi+1]),

σi+1 =
{
σi if end[σi+1] = end[σi],
σi · (a, µ) if end[σi+1] = do(a, end[σi]) and a returns µ.

An online execution successfully terminates if

D ∪ C ∪ {Sensed[σn]} |= Final(δn, end[σn]).

Note that this definition assumes that exogenous actions do not occur; one can
easily generalize the definition to allow them.

The Search Operator

The online execution of a high-level program does not require a reasoner to de-
termine a lengthy course of action, formed perhaps of millions of actions, before
executing the first step in the world. It also gets to use the sensing information
provided by the first n actions performed so far in deciding what the (n + 1)’th
action should be. On the other hand, once an action has been executed in the
world, there may be no way of backtracking if it is later found out that a nonde-
terministic choice was resolved incorrectly. As a result, an online execution of a
program may fail where an offline execution would succeed.
To cope with the fact that it may be impossible to backtrack on actions executed in
the real world, IndiGolog incorporates a new programming construct, namely the
search operator. The idea is that given any program δ the program Σ(δ) executes
online just like δ does offline. In other words, before taking any action, it first
ensures using offline reasoning that this step can be followed successfully by the
rest of δ. More precisely, according to [26], the semantics of the search operator is
that

Trans(Σ(δ), s, Σ(δ′), s′) ≡ Trans(δ, s, δ′, s′) ∧ ∃s∗.Do(δ′, s′, s∗).

If δ is the entire program under consideration, Σ(δ) emulates complete offline
execution. But consider [δ1 ; δ2]. The execution of Σ([δ1 ; δ2]) would make any
choice in δ1 depend on the ability to successfully complete δ2. But [Σ(δ1) ; δ2]
would allow the execution of the two pieces to be done separately: it would be
necessary to ensure the successful completion of δ1 before taking any steps, but
consideration of δ2 is deferred. If we imagine, for example, that δ2 is a large high-
level program, with hundreds of pages of code, perhaps containingΣ operators of
its own, this can make the difference between a scheme that is practical and one
that is only of theoretical interest.
Being able to search still raises the question of how much offline reasoning should
be performed in an online system. The more offline reasoning we do, the safer
the execution will be, as we get to look further into the future in deciding what
choices to make now. On the other hand, in spending time doing this reasoning,
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we are detached from the world and will not be as responsive. This issue is very
clearly evident in time-critical applications such as robot soccer [34] where there
is very little time between action choices to contemplate the future. Sardina has
cast this problem as the choice between deliberation and reactivity [86], and see
also [6].
Another issue that arises in this setting is the form of the offline reasoning. Since
an online system allows for a robot to acquire information during execution (via
sensing actions, or passive sensors, or exogenous events), how should the agent
deal with this during offline deliberation [23]. The simplest possibility is to say
that it ignores any such information in the plan for the future that it is construct-
ing. This is essentially what the semantics for the search operator given above
does. It ensures that there exist a complete execution of the program (in the ab-
sence of exogenous actions), but it does not ensure that the agent has enough
information to know what to do. For example, consider the program

Σ((a | senseP ); if P then b else c endIf)

and an agent that does not know initially whether P hold. The search semantics
given above says that the agent may do action a, since it knows that afterwards
there will be some way to successfully complete the execution. But in fact the
agent will then get stuck not knowing which branch to take. A more adequate
deliberation mechanism would require the execution of senseP as the first step,
since it does guarantee the complete executability of the program, unlike action
a.
An even more sophisticated deliberation approach would have the agent construct
a plan that would prescribe different behaviors depending on the information ac-
quired during execution. This is conditional planning (see, for example, [10, 73]).
For the example above, this would produce a plan that requires the agent to first
do senseP , and then if it had sensed that P held, to do b and otherwise to do
c; then the agent is guaranteed to always know what action to perform to com-
plete the execution. One form of this has been incorporated in high-level execu-
tion by Lakemeyer [48] and Sardina [84]. In [87], a semantics for such a sophisti-
cated search operator is axiomatized in a version of the situation calculus extended
with a possible-world model of knowledge. [25] and [88] develop non-epistemic,
metatheoretic accounts of this kind of deliberation, and discuss difficulties that
arise with programs involving unbounded iteration.
Another possibility is to attempt to simulate what will happen external to the
agent including exogenous events, and use this information during the deliberation
[56]. This is a kind of contingency planning [77]. In [41], this idea is taken even
further: at deliberation time a robot uses, for example, a model of its navigation
system by computing, say, piece-wise linear approximations of its trajectory; at
execution time, this model is then replaced by the real navigation system, which
provides position updates as exogenous actions. [54] develops an account of delib-
eration where the agent’s high level program must be executed against a dynamic
environment also modeled as a nondeterministic program. Deliberation must pro-
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duce a deterministic conditional plan that can be successfully executed against all
possible executions of the environment program.
Another issue arises whenever an agent performs at least some amount of looka-
head in deciding what to do. What should the agent do when the world (as de-
termined by its sensors) does not conform to its predictions (as determined by
its action theory)? First steps in logically formalizing this possibility were taken
by De Giacomo et al. [30] in what they call execution monitoring. The delibera-
tion model formalized in [87] incorporates execution monitoring and replanning.
Lastly, a search operator that deliberates on a program relative to a set of goals is
described in [91].
As we have seen, it is possible to define different search/deliberation constructs
with varying degrees of sophistication. For many cases, however, the simple
search operator defined above suffices, and implementations for it can easily be
developed; these are provably correct under some plausible assumptions (for in-
stance, when the truth value of all tests in a program will be known by the time
they are evaluated, as in the “just-in-time histories” of [26, 28]).
We close the section by noting that Shapiro et. al [95, 94] have developed a verifica-
tion environment, CASLve, for an extension of ConGolog that supports multiagent
plans and modeling agents’ knowledge and goals, based on the PVS theorem prov-
ing/verification system.8 Some non-trivial programs have been formally verified.

2.2.3 Software Engineering Issues and Other Features of the
Language

At this point, our language offers only limited support for building large soft-
ware systems. It supports procedural abstraction, but not modules. Very complex
agents can be decomposed into simpler agents that cooperate, and each can be im-
plemented separately. One important feature that we do offer is that the agent’s
beliefs are automatically updated based on a declarative action theory, which sup-
ports the use of complex domain models, and helps avoid the errors that typically
occur when such models are manually updated.
Our language/platform is implemented in SWI-Prolog, which provides flexible
mechanisms for interfacing with other programming languages such as Java or
C, and for socket communication. There are also libraries for interfacing with the
JADE and OAA multiagent platforms; see the end of Section 3 for details.
Note that ConGolog has been used as a formal specification/modeling language
for software requirements engineering [50, 104]. Such ConGolog specifications can
be validated by simulated execution or verification. One may even use them for
early prototyping. IndiGolog could be used in a requirements-driven approach to
software development such as Tropos [19].

8 http://pvs.csl.sri.com/
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Our approach provides for a high degree of extensibility. The declarative language
definition supports the easy addition of new programming constructs. The under-
lying situation calculus framework supports many extensions in the way change is
modeled, e.g. continuous change, stochastic effects, simultaneous actions, etc. [82]
Evidence for this extensibility is that the language has been extended numerous
times. Note that there is currently no specific built-in support for mobile agents.
What we have seen so far, is the formal specification of our language. If one wants
to actually run an agent programmed in IndiGolog in the real-world, one needs to
address many practical issues that are not dealt with in the formal account. For
instance, when an action transition step is performed in an online execution, the
action ought to be carried out in the environment where it is supposed to occur,
and its sensing outcome needs to be extracted as well. Similarly, a mechanism for
recognizing and assimilating external exogenous events needs to be developed. All
this requires a framework in which an online execution is realized in the context
of a real (external) environment. In the next section, we describe a platform that
does exactly this.

2.3 Platform

We now turn to describing what is probably the most advanced IndiGolog based
platform currently available. This platform9 was originally developed at the Uni-
versity of Toronto and is based on LeGolog [60], which is in turn based on a
proof-of-concept simple implementation originally written by Hector Levesque.
The platform is a logic-programming implementation of IndiGolog that allows the
incremental execution of high-level Golog-like programs [85]. This is the only
implementation of IndiGolog that is modular and easily extensible so as to deal
with any external platform, as long as the suitable interfacing modules are pro-
grammed (see below). Among others, the system has been used to control the
LEGO MINDSTORM [60] and the ER1 Evolution10 robots, as well as other soft-
ware agents [92], to coordinate mobile actors in pervasive scenarios [52], and to
incorporate automated planning into cognitive agents [21, 20].
Although most of the code is written in vanilla Prolog, the overall architecture
is written in the well-known open source SWI-Prolog11 [105]. SWI-Prolog provides
flexible mechanisms for interfacing with other programming languages such as
Java or C, allows the development of multi-threaded applications, and provides
support for socket communication and constraint solving.
Generally speaking, the IndiGolog implementation provides an incremental inter-
preter of high-level programs as well as a framework for dealing with the real
execution of these programs on concrete platforms or devices. This amounts to

9 Available at http://sourceforge.net/projects/indigolog/.
10 http://www.evolution.com/er1/
11 http://www.swi-prolog.org/



2 IndiGolog: A High-Level Programming Language for Embedded Reasoning Agents 53

Top-level
Execution Cycle

indigolog.pl

Main Cycle
Interface between Executor and

Devices

env_man.pl

Environment Manager

req. action exec
query exog. actions

exec/2
handle_exogenous/2

signal exog. actions

Single step
semantics

transfinal.pl

Trans

Evaluates formulas

eval.pl

Projector

query transition

trans/4
final/2

query
form

ula

e
v
a
l
/
3

handle_sensing/4

handle_rolling/2

Execution
information

main.pl

Dom Exec.
Domain

axiomatization

domain.pl

Axioms Domain HL
programs

domain.pl

Programs

query domain
exec. details

query axioms

qu
ery

H
L

pr
og

ram
s

Manager for
WWW

dev_www.pl

Web Device
Manager for ER1

robot

dev_er1.pl

ER1 Device
Manager for Lego

RCX

dev_rcx.pl

RCX Device
Simulator in

terminal

env_sim.pl

SIM Device

. . . . . . . . .

TCP/IP Socket Communication

Fig. 2.1 The IndiGolog implementation architecture. Links with a circle ending represent goal
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handling the real execution of actions on concrete devices (e.g., a real robot plat-
form), the collection of sensing outcome information (e.g., retrieving some sen-
sor’s output), and the detection of exogenous events happening in the world. To
that end, the architecture is modularly divided into six parts, namely, (i) the top-
level main cycle; (ii) the language semantics; (iii) the temporal projector; (vi) the
environment manager; (v) the set of device managers; and finally (vi) the domain
application. The first four modules are completely domain independent, whereas
the last two are designed for a specific domain. The architecture is depicted in
Figure 2.1.

The Top-Level Main Cycle and Language Semantics

The top-level main cycle implements the IndiGolog online execution account ex-
plained in Section 2.2.2. It realizes the sense-think-act loop well-known in the agent
community [46].
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The main predicate of the main cycle is indigo/2; a goal of the form
indigo(E,H) states that the high-level program E is to be executed online at
history H. As in the definition of online executions, the main cycle strongly relies
on the meaning of the language constructs. Hence, clauses for relations Trans
and Final are needed for each of the constructs. These two relations are modeled
with Prolog predicates trans/4 and final/2 and are defined in the language
semantics module (see below).
The following is a simplified version of the top-level main cycle:

indigo(E,H):- handle_exogenous(H,H2), !, indigo(E,H2).
indigo(E,H):- handle_rolling(H,H2), !, indigo(E,H2).
indigo(E,H):- catch(final(E,H), exog, indigo(E,H)).
indigo(E,H):- catch(trans(E,H,E1,H1), exog, indigo(E,H)),
(var(H1) -> true ;
H1=H -> indigo(E1,H) ;
H1=[A|H] -> exec(A,S), handle_sensing(H,A,S,H2),

indigo(E1,H2)).

The first thing the main cycle does is to assimilate all exogenous events
that have occurred since the last execution step. To that end, predicate
handle_exogenous/2, provided by the environment manager (see below), is
used to transform the current history H into the new history H2 containing the
new exogenous events—if no exogenous actions occurred during the cycle, then
handle_exogenous/2 just fails.
In the second clause, predicate handle_rolling/2 may “roll forward” the
current history H, for example, if its length has exceeded some threshold, yield-
ing then the new (shorter) history H2. This amounts to doing progression of the
current history [65, 101]. Since progressing the current history is a task related to
the background action theory being used to execute the program, the predicate
handle_rolling/2 is implemented by the temporal projector (see below).
After all exogenous actions have been assimilated and the history progressed as
needed, the main cycle goes on to actually executing the high-level program E.
First, if the current program to be executed is terminating in the current history,
then the top-level goal indigo/2 simply succeeds (third clause). Otherwise, the
interpreter checks whether the program can evolve a single step (fourth clause) by
relying on predicate trans/4 (explained below). If the program evolves without
executing any action, then the history remains unchanged and we continue to ex-
ecute the remaining program from the same history. If, however, the step involves
performing an action, then this action is executed and incorporated into the cur-
rent history, together with its sensing result (if any), before continuing the execu-
tion of the remaining program. The actual execution of the action is implemented
via predicate exec/2, provided by the environment manager (described below),
which returns the sensing outcome of the action. Finally, handle_sensing/4
returns the new history obtained by incorporating the executed action and its
sensing outcome into the current history (this predicate is provided by the tempo-
ral projector, to allow for alternative implementations, e.g. through progression).
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Note that, in the third and fourth clauses above, goals final/2 and trans/4
are posted within a catch/3 extra-logical predicate.12 The point is that proving
final/2 or trans/4 could be time consuming, as there may be substantial
reasoning involved. If, during such reasoning, an exogenous event happens, such
reasoning is not guaranteed to be adequate anymore, as the history of events has
changed. In that case, the interpreter simply aborts the single-step reasoning (i.e.,
goal final/2 or trans/4) and re-starts the cycle, which in turn will first as-
similate the just observed events.

As mentioned above, the top-level loop relies on two central predicates, namely,
final/2 and trans/4. These predicates implement relations Trans and
Final, giving the single step semantics for each of the constructs in the language.
It is convenient, however, to use an implementation of these predicates defined
over histories instead of situations. So, for example, these are the corresponding
clauses for sequence (represented as a list), nondeterministic choice of programs,
tests, and primitive actions:

final([E|L],H) :- final(E,H), final(L,H).
trans([E|L],H,E1,H1) :- final(E,H), trans(L,H,E1,H1).
trans([E|L],H,[E1|L],H1) :- trans(E,H,E1,H1).

final(ndet(E1,E2),H) :- final(E1,H) ; final(E2,H).
trans(ndet(E1,E2),H,E,H1) :- trans(E1,H,E,H1).
trans(ndet(E1,E2),H,E,H1) :- trans(E2,H,E,H1).

trans(?(P),H,[],H) :- eval(P,H,true).
trans(E,H,[],[E|H]) :- action(E), poss(E,P),

eval(P,H,true).
/* Obs: no final/2 clauses for action and test
programs */

As is easy to observe, these Prolog clauses are almost directly “lifted” from the
corresponding axioms for Trans and Final. Predicates action/1 and poss/2
specify the actions of the domain and their corresponding precondition axioms;
both are defined in the domain axiomatization (see below). More importantly,
eval/3 is used to check the truth of a condition at a certain history, and is
provided by the temporal projector, described next.
A naive implementation of the search operator would deliberate from scratch at
every point of its incremental execution. It is clear, however, that one can do
better than that, and cache the successful plan obtained and avoid replanning in
most cases:

final(search(E),H) :- final(E,H).
trans(search(E),H,path(E1,L),H1) :-

trans(E,H,E1,H1), findpath(E1,H1,L).

/* findpath(E,H,L): solve (E,H) and store the path in list L */
/* L = list of configurations (Ei,Hi) expected along the path */

12 catch(:Goal, +Catcher, :Recover) behaves as call/1, except that if an excep-
tion is raised while Goal executes, and the Catcher unifies with the exception’s name, then
Goal is aborted and Recover is called.
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findpath(E,H,[(E,H)]) :- final(E,H).
findpath(E,H,[(E,H)|L]) :- trans(E,H,E1,H1), findpath(E1,H1,L).

/* When we have a path(E,L), try to advance using list L */
final(path(E,[(E,H)]),H) :- !. /* last step */
final(path(E,_),H) :- final(E,H). /* off path; re-check */
trans(path(E,[(E,H),(E1,H1)|L]),H,path(E1,[(E1,H1)|L]),H1) :- !.
trans(path(E,_),H,E1,H1) :-

trans(search(E),H,E1,H1). /* redo search */

So, when a search block is first solved, the whole solution path found is stored
as the sequence of configurations that are expected. If the actual configurations
reached match, then steps are performed without any reasoning (first final/2
and trans/4 clauses for program path(E,L)). If, on the other hand, the ac-
tual configuration does not match the one expected next, for example, because an
exogenous action occurred and the history thus changed, replanning is performed
to look for an alternative path (second final/2 and trans/4 clauses for pro-
gram path(E,L)). Other variants of the search operator are provided, such as
a searchc(E) construct in the spirit of [48, 84] that constructs a conditional
plan that solves E.
Finally, we point out that by decoupling trans/4 and final/2 from the main
cycle and the temporal projector, one can change the actual high-level program-
ming language used. In that way, one could use the architecture to execute any
agent language with a single-step operational semantics. For example, one could
use the architecture to execute AgentSpeak agents [78], by suitably recasting the
derivation rules of such BDI languages into trans/4 and final/2 clauses—in
this case, the program E would stand for the agent’s current active intentions and
H for the history of executed actions and external events.

The Temporal Projector

The temporal projector is in charge of maintaining the agent’s beliefs about the
world and evaluating a formula relative to a history. It could be realized with
standard database technology (see [29]) or with an evaluation procedure for some
reasoning about action formalism. In the context of the situation calculus, for
instance, one could use temporal projectors for basic action theories [74], guarded
theories [27], or even fluent calculus theories of action [98]. The only requirement
for the projector module is to provide an implementation of predicate eval/3:
goal eval(+F,+H,?B) states that formula F has truth value B, usually true or
false, at history H.
Within the architecture, the projector is used in two places. First, predicate
eval/3 is used to define trans/4 and final/2, as the legal evolutions of
high-level programs may often depend on what things are believed true or false.
Furthermore, as seen above, the temporal projector provides a number of aux-
iliary tools used by the top-level loop for bookkeeping tasks. For instance, the
top-level cycle is agnostic on how sensing results are incorporated into the belief
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structure of the agent; this is handled by the handle_sensing/4 predicate de-
fined in the projector. Similarly, the projector may provide progression facilities
by implementing the predicate handle_rolling/2.
We illustrate the projector module by briefly describing the one used for modeling
the Wumpus World domain [92]. This projector is an extension of the classical
formula evaluator used for Golog in [62, 24], so as to handle some limited forms of
incomplete knowledge. To that end, the evaluator deals with the so-called possible
values that (functional) fluents may take at a certain history. We say that a fluent
is known at h only when it has exactly one possible value at h. For a detailed
description and semantics of this type of knowledge-based theories we refer to
[100, 59].
We assume then that users provide definitions for each of the following predicates
for fluent f , action a, sensing result r, formula w, and arbitrary value v:

• fluent(f), f is a ground fluent;
• action(a), a is a ground action;
• init(f, v), initially, v is a possible value for f ;
• poss(a,w), it is possible to execute action a provided formula w is known

to be true;
• causes(a, f, v, w), action a affects the value of f : when a occurs and w is

possibly true, v is a possible value for f ;
• settles(a, r, f, v, w), action a with result r provides sensing information

about f : when this happens and w is known to be true, v is the only possible
value for f ;

• rejects(a, r, f, v, w), action a with result r provides sensing information
about f : when w is known to be true, v is not a possible value for f .

Formulas are represented in Prolog using the obvious names for the logical oper-
ators and with all situations suppressed; histories are represented by lists of the
form o(a, r) where a represents an action and r a sensing result. We will not go
over how formulas are recursively evaluated, but just note that the procedure is
implemented using the following four predicates: (i) kTrue(w, h) is the main and
top-level predicate and it tests if the formula w is known to be true in history h; (ii)
mTrue(w, h) is used to test if w is possibly true at h; (iii) subf(w1, w2, h) holds
when w2 is the result of replacing each fluent in w1 by one of its possible values
in history h; and (iv) mval(f, v, h) calculates the possible values v for fluent f in
history h and is implemented as follows:

mval(F,V,[]) :- init(F,V).
mval(F,V,[o(A,R)|H]) :-

causes(A,F,_,_), !, causes(A,F,V,W), mTrue(W,H).
mval(F,V,[o(A,R)|H]) :- settles(A,R,F,V1,W), kTrue(W,H), !,

V=V1.
mval(F,V,[o(A,R)|H]) :-

mval(F,V,H), \+(rejects(A,R,F,V,W), kTrue(W,H)).

So for the empty history, we use the initial possible values. Otherwise, for his-
tories whose last action is a with result r, if f is changed by a with result r, we
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return any value v for which the condition w is possibly true; if a with result r
senses the value of f , we return the value v for which the condition is known;
otherwise, we return any value v that was a possible value in the previous history
h and that is not rejected by action a with result r. This provides a solution to the
frame problem: if a is an action that does not affect or sense for fluent f , then the
possible values for f after doing a are the same as before.
Finally, the interface of the module is defined as follows:

eval(F,H,true) :- kTrue(F,H).
eval(F,H,false) :- kTrue(neg(F),H).

The Environment Manager and the Device Managers

Because the architecture is meant to be used with concrete agent/robotic plat-
forms, as well as with software/simulation environments, the online execution
of IndiGolog programs must be linked with the external world. To that end, the
environment manager (EM) provides a complete interface with all the external
devices, platforms, and real-world environments that the application needs to in-
teract with.
In turn, each external device or platform that is expected to interact with the ap-
plication (e.g., a robot, a software module, or even a user interface) is assumed
to have a corresponding device manager, a piece of software that is able to talk
to the actual device, instruct it to execute actions, as well as gather information
and events from it. The device manager understands the “hardware” of the cor-
responding device and provides a high-level interface to the EM. For example,
the device manager for the Wumpus World application is the code responsible
for “simulating” an actual Wumpus World environment. It provides an interface
for the execution of actions (e.g., moveFwd, smell, etc.), the retrieval of sens-
ing outcomes for action smell, and the detection of occurrences of exogenous
events (e.g., scream). In our case, the device is also in charge of depicting the
world configuration in a Java applet.
Because actual devices are independent of the IndiGolog application and may be
in remote locations, device managers are meant to run in different processes and,
possibly, on different machines; they communicate then with the EM via TCP/IP
sockets. The EM, in contrast, is part of the IndiGolog agent architecture and is
tightly coupled with the main cycle. Still, since the EM needs to be open to the
external world regardless of any computation happening in the main cycle, the
EM and the main cycle run in different (but interacting) threads, though in the
same process and Prolog run-time engine.13

So, in a nutshell, the EM is responsible of executing actions in the real world
and gathering information from it in the form of sensing outcome and exogenous
events by communicating with the different device managers. More concretely,

13 SWI-Prolog provides a clean and efficient way of programming multi-threaded Prolog appli-
cations.
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given a domain high-level action (e.g., moveFwd(2m)), the EM is in charge of:
(i) deciding which actual “device” should execute the action; (ii) ordering its ex-
ecution by the device via its corresponding device manager; and finally (iii) col-
lecting the corresponding sensing outcome. To realize the execution of actions,
the EM provides an implementation of exec/2 to the top-level main cycle:
exec(+A,-S) orders the execution of action A, returning S as its sensing out-
come.
Besides the execution of actions, the EM continuously listens to the external de-
vices, that is to their managers, for the occurrence of exogenous events. When a
device manager reports the occurrence of one or more exogenous actions in its
device (e.g., the robot bumped into an object), the EM stores these events in the
Prolog database so that the main cycle can later assimilate them all. Moreover, if
the main cycle is currently reasoning about a possible program transition (i.e.,
it is trying to prove a trans/4 or final/2 goal), the EM raises an exception
named “exog” in the main cycle thread. As already mentioned, this will cause
the main cycle to abort its reasoning efforts, re-start its loop, and assimilate the
pending events.

The Domain Application

From the user perspective, probably the most relevant aspect of the architecture
is the specification of the domain application. Any domain application must pro-
vide:

1. An axiomatization of the dynamics of the world. The exact form of such an
axiomatization would depend on the temporal projector used.

2. One or more high-level agent programs that specify the different agent behav-
iors available. In general, these will be IndiGolog programs, but they could be
other types of programs under different implementations of trans/4 and
final/2.

3. All the necessary execution information to run the application in the external
world. This amounts to specifying which external devices the application relies
on (e.g., the device manager for the ER1 robot), and how high-level actions are
actually executed on these devices (that is, by which device each high-level
action is to be executed). Information on how to translate high-level symbolic
actions and sensing results into the device managers’ low-level representations,
and vice-versa, could also be provided.

We illustrate the modeling of an application domain using our running exam-
ple for the Wumpus domain (we only give a partial specification for the sake of
brevity):

fluent(locAgent).
fluent(isGold(L)) :- loc(L).
init(locAgent,cell(1,1)).
init(hasArrow,true).
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init(locWumpus,L):- loc(L), not L=cell(1,1).

action(pickGold).
poss(pickGold, isGold(locAgent)=true).

causes(moveFwd, locAgent, Y, and(dirAgent=up,
up(locAgent,Y))).

causes(moveFwd, locWumpus, Y, or(Y=locWumpus,
adj(locWumpus,Y)).

rejects(smell, 0, locW, Y, adj(locAgent, Y)).
rejects(smell, 1, locW, Y, neg(adj(locAgent, Y))).
settles(senseGold, 1, isGold(L), true, locAgent=L).
settles(senseGold, 0, isGold(L), false, locAgent=L).

The first block defines two (functional) fluents: locAgent stands for the cur-
rent location of the agent; isGold(L) states whether location L is known to
have gold. Initially, the agent is in location cell(1,1) and is holding an arrow.
More interestingly, the Wumpus is believed to be somewhere in the grid but not
in cell(1,1). The second block defines the action of picking up gold, which
is possible only if the agent believes that there is gold at its current location.
The two clauses shown for causes/4 state possible ways fluents locAgent
and locWumpus may change when the agent moves forward. First, if the agent
is aiming north, then the new location of the agent is updated accordingly. Sec-
ond, whenever the agent moves, the Wumpus will either stay still or move to
an adjacent cell. Observe that even if at some point the agent knows exactly
where the Wumpus is located (that is, there is only one possible value for fluent
locWumpus), after moving forward the agent considers several possible values for
the location of the Wumpus. The remaining clauses specify how sensing actions
affect the possible values of the relevant fluents. Fluent locWumpus is sensed by
the smell action: if there is no stench (i.e., the sensing result is 0) then each of
the agent’s adjacent locations is not a possible value for fluent locWumpus, oth-
erwise the opposite holds. Fluent isGoldL is sensed by the senseGold action
which settles the value of the fluent depending on the sensing result.

Available Tools and Documentation

The platform distribution includes documentation and examples that, though
simple, have allowed new users to learn how to effectively develop new appli-
cations. Currently, there are no tools developed specifically for the platform. For
debugging, tracing facilities are provided; Prolog facilities can also be used. This is
an area where more work is needed.
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Standards Compliance, Interoperability and Portability

There has been some work on interfacing IndiGolog with commonly used mul-
tiagent platforms and supporting the use of standard agent communication lan-
guages. This can support the development of multiagent systems that incorporate
planning and reasoning agents implemented in IndiGolog. The IG-OAAlib library
[49] supports the inclusion of IndiGolog agents in systems running under SRI’s
Open-Agent Architecture (OAA) [67]. Another library, IG-JADE-PKSlib [69, 68]
supports the inclusion of IndiGolog agents in systems running under JADE [8],
which is FIPA-compliant and more scalable. This library allows IndiGolog agents
to use the FIPA agent communication language and run standard agent interaction
protocols (e.g. contract net).

Other Features of the Platform

Our platform is an advanced stable prototype and is currently hosted as an open
source project at SourceForge (http://sourceforge.net/projects/indigolog/). It is
designed in a modular way and is easily extensible, though this requires expertise
in Prolog.
No detailed analysis regarding the number of agents that could be run efficiently
or the number of messages that could be handled has been performed so far. For
use in robotic architectures or workflow management, performance has not been
a problem.

2.4 Applications Supported by the Language and/or the
Platform

Among some of the applications built using the “high level program execution
approach”, we can mention an automated banking agent that involved a 40-page
Golog program [55, 83]. This is an example of high-level specification that would
have been completely infeasible formulated as a planning problem.
A number of cognitive robotic systems have been implemented on a variety of
robotic platforms, using Golog-family languages. For a sampling of these systems,
see [57, 34, 18, 35]. Perhaps the most impressive demonstration to date was that
of the museum tour-guide robot reported in [16]. Borzenko et al. [13] have used
IndiGolog to develop a high-level controller for a vision-based pose estimation sys-
tem. They have also developed an IndiGolog library for knowledge-based control
of vision systems called INVICON [12].
McIlraith and Son [72] have adapted ConGolog to obtain a framework for perform-
ing web service composition and customization, an approach that has been very
influential. Martinez and Lespérance [69, 68, 70] have developed a library and
toolkit that combines IndiGolog, the JADE multiagent platform [8], and the PKS
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planner [73] for performing web service composition. As well, [38] used a version
of ConGolog to support the modeling and analysis of trust in social networks. To
get a better idea of how IndiGolog can be used in applications, let us briefly discuss
some work using IndiGolog in the area of pervasive computing.

2.4.1 Using IndiGolog to Coordinate Mobile Actors in Pervasive
Computing Scenarios

In [51, 52], de Leoni et al. use the IndiGolog platform described in Section 2.3 to
build a process management system (PMS) that coordinates mobile actors in per-
vasive computing scenarios. PMSs ([63, 1]) are widely used for the management
of business processes that have a clear and well-defined structure. In de Leoni et
al.’s work, the authors argue that PMSs can also be used in mobile and highly dy-
namic situations to coordinate, for instance, operators, devices, robots, or sensors.
To that end, they show how to realize PMSs in IndiGolog, and how to operational-
ize the framework proposed in [53] for automatically adapting a process when a
gap is sensed between the internal world representation (i.e., the virtual reality)
and the actual external reality (i.e., the physical reality).
As an example, consider one of the scenarios investigated in [51, 52, 53]. This
scenario concerns an emergency response operation involving various activities
that may need to be adapted on-the-fly to react to unexpected exogenous events
that could arise during the operation. Figure 2.2 depicts an Activity Diagram of
a process consisting of two concurrent branches; the final task is send data and
can only be executed after the branches have successfully completed. The left
branch, abstracted out from the diagram, is built from several concurrent pro-
cesses involving rescue, evacuation, and census tasks. The right branch begins with
the concurrent execution of three sequences of tasks: go, photo, and survey. When
all survey tasks have been completed, the task evaluate pictures is executed. Then,
a condition is evaluated on the resulting state at a decision point (i.e., whether the
pictures taken are of sufficient quality). If the condition holds, the right branch is
considered finished; otherwise, the whole branch should be repeated.
When using IndiGolog for process management, tasks are taken to be predefined
sequences of actions and processes to be IndiGolog programs. The objective of the
PMS is to carry out the specified processes by assigning tasks to actors, monitor-
ing the progress of the overall process, and adapting its execution when required.
Thus, after each action, the PMS may need to align the internal world representa-
tion with the actual external reality. In Figure 2.2, parts of the IndiGolog program
implementing the PMS for the emergency response example are shown ([52]).
The main procedure, called pms, involves three interrupts running at different
priorities. The first highest priority interrupt fires when an exogenous event has
happened (i.e., condition exogEvent is true). In such a case, the monitor pro-
cedure is executed, evaluating whether or not adaptation is required (see below).
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proc(pms,
prioritized_interrupts(
[interrupt(exogEvent, monitor),
interrupt(true, process),
interrupt(neg(finished), wait)]

)).

proc(process,
[conc(processRescue,
while(or(noPhotos<7,neg(goodPics)),
[conc(

[mTasks(
[witem(go,id19,loc(6,6)),
witem(photo,id20,loc(6,6)),
witem(survey,id21,loc(6,6))]),
mTasks(
[witem(go,id22,loc(7,7)),
witem(photo,id23,loc(7,7)),
witem(survey,id24,loc(7,7))]),
mTasks(
[witem(go,id25,loc(8,8)),
witem(photo,id26,loc(8,8)),
witem(survey,id27,loc(8,8))]),
]

),
mTasks([witem(evalPics,id28,input)])

]) % end of while
), % end concurrent subprocesses
mTasks([witem(sendData,id29,input)])
]).

proc(mTasks(LTasks),
pi(actr,
[?(and(Idle(actr),Capable(actr,LTasks))),
manageListTasks(LTasks,actr)]

)).

proc(manageSingleTask(T,D,I,actr),
[assign(T,D,actr), start(T,D,I,actr),
stop(T,D,actr), release(T,D,actr)]

).

Fig. 2.2 An example of process management with IndiGolog.

If no exogenous event has occurred (or the ones that occurred were expected),
then the second interrupt triggers and execution of the actual emergency re-
sponse process is attempted. Procedure process, also shown in the figure, en-
codes the Activity Diagram of the example process. It relies, in turn, on procedure
mTasks(LTasks), where LTasks is a sequence of elements witem(T,I,D),
each one representing a task T, with identifier I, and input data D that needs to be
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performed. This procedure is meant to carry out all tasks in the list by assigning
them to a single actor that can perform all of them.
Of course, to assign tasks to an actor, the PMS needs to reason about the available
actors, their current state (e.g., their location), and their capabilities, as not every
actor is capable of performing a task. In fact, before assigning the first task in any
task list, a pick operation is done to choose an actor actr that is idle (i.e., fluent
Idle(actr) holds), and able to execute the whole task list (we leave out the
definition of Capable(actr,LTasks)).
Once a suitable actor has been chosen, procedure manageSingleTask(T,
I,D) will be called with each task T in the list (with identifier I and input data
D). This procedure will first execute assign(T,D,actr), which, among other
things, makes fluent Idle(actr) false. The actor is then instructed to start
working on the task when the PMS executes the action start(T,D,I,actr),
which also provides the required information to the actor. When an actor
finishes executing an assigned task, it alerts the PMS via exogenous action
finishedTask(T,actr); the PMS notes the completion of the task by
performing stop(T,D,actr) and releases the actor by executing the action
release(T,D,actr), after which fluent Idle(actr) becomes true.
It is worth mentioning that, if the process being carried out cannot execute fur-
ther, for instance, because it is waiting for actors to complete their current tasks,
the lowest priority interrupt fires and the PMS just waits.
The execution of the process being carried out by the PMS can be interrupted
by the monitor module when a misalignment between the expected reality
and the actual reality is discovered. In this case, the monitor adapts the (cur-
rent) process to deal with the discrepancy. To do this, the monitor procedure
uses the IndiGolog lookahead operator Σ to search for a plan that would bring
the actual reality back into alignment with the expected reality. To that end,
the PMS keeps a “copy” of the expected value of each relevant fluent so that
when an exogenous action is sensed, it can check whether the action has al-
tered the value of some relevant fluent. If so, the monitor looks for a plan that
would bring all fluents to their expected values using a program along the lines
of Σ([(πa.a)∗;ExpectedState?]). It is easily noted that this kind of adaptation
amounts to solving a classical planning problem, and hence, that a state-of-the-
art automated planner could be used to perform the required search. In many
cases though, a domain expert would be able to provide information on how
the adaptation should be performed, thus reducing the complexity of the plan-
ning task. For instance, when the mismatch involves a team of mobile actors
becoming disconnected (e.g., because some actor moved too far away), then the
whole process can be adapted by running a search program along the lines of
Σ([π actr, loc.Idle(actr)?; moveTo(actr, loc)]∗; TeamConnected?), which tries to
relocate idle actors so that the whole team is re-connected (the actual program
used would in fact implement a better search strategy). IndiGolog is well suited for
realizing this kind of domain-specific planning and execution monitoring.
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2.5 Final Remarks

IndiGolog is a rich programming language for developing autonomous agents.
Agents programmed in IndiGolog have a situation calculus action theory that they
use to model their domain and its dynamics. The theory is used to automatically
update their beliefs after actions are performed or events occur. This supports the
use of complex domain models and helps avoid the errors that typically occur
when such models are manually updated. Moreover it can be used for perform-
ing planning/lookahead. The language supports “high level program execution”,
where the programmer provides a sketchy nondeterministic program and the sys-
tem searches for a way to execute it. This is usually much less computationally
demanding than planning, as the sketchy program constrains the search. As well,
programs are executed online and the agent can acquire information at execution
time by performing sensing actions or by observing exogenous actions. The lan-
guage supports concurrent programming, and reactive behaviors can easily be pro-
grammed. The language has a classical predicate logic semantics specified through
a transition system account defined on top of the situation calculus. One can make
statements about offline executions of programs within the logical language and
reason about properties of programs in the logic. Online executions of programs
are formalized metatheoretically in terms of entailment in the situation calculus
theory.
Compared to the mainstream BDI agent programming languages, IndiGolog seems
to have several advantages: support for planning/lookahead, automatic belief up-
date, built-in reasoning capabilities, and clean logical semantics. The downside is
that these reasoning capabilities can slow the agent’s response to events. But with
suitable programming of control knowledge, adequate responsiveness can usually
be achieved.
Perhaps one weakness of IndiGolog in comparison to BDI agent programming
languages is that in the former, plans/procedures are not associated with goal-
s/events; there is no “goal directed invocation”. This can make it harder to orga-
nize the agent’s plan library and to find alternative plans to achieve a goal when a
selected plan fails.
There has only been limited work on relating “Golog-like” high-level program-
ming languages and BDI agent programming languages. Hindriks et al. [43, 42]
show that ConGolog can be bisimulated by the agent language 3APL under some
conditions, which include the agent having complete knowledge; ConGolog’s
lookahead search mechanism is also ignored as are sensing actions and exogenous
events. Also related is the work of Gabaldon [37] on encoding Hierarchical Task
Network (HTN) libraries in ConGolog. Much work remains to be done in order
to better understand how our approach relates to the BDI approach and others.
It would be very interesting to develop an agent programming framework that
combines the best features of the IndiGolog and BDI approaches.
More work is necessary to improve the effectiveness of the IndiGolog platform as
a programming tool. The platform currently provides little built-in support for
programming multiagent systems, interfacing with other agent platforms, or us-
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ing standard communication languages. But this can be circumvented by using
a library like IG-JADE-PKSlib [69, 68], which supports the inclusion of IndiGolog
agents in systems running under JADE [8] and allows IndiGolog agents to use the
FIPA agent communication language and run standard agent interaction proto-
cols. An integrated development environment with good monitoring and debug-
ging facilities would also be highly desirable. Work is also required on facilities to
support large-scale agent programming, e.g. the use of modules.
Another limitation of our platform is that it uses a simple, relatively inefficient
planning/lookahead mechanism implemented in Prolog. But it should be possi-
ble to address this by doing planning with Golog-style task specifications using
state-of-the-art planners. Some authors have addressed this problem. [5] develops
an approach for compiling Golog-like task specifications together with the asso-
ciated domain definition into a PDDL 2.1 planning problem that can be solved
by any PDDL 2.1 compliant planner. [4] describes techniques for compiling Golog
programs that include sensing actions into domain descriptions that can be han-
dled by operator-based planners. [36] shows how a ConGolog task specification in-
volving concurrent processes together with the associated domain definition can
be compiled into an ordinary situation calculus basic action theory; moreover it
show how the specification can be complied into PDDL under some assumptions.
Classen et al. [21, 20] have also used the IndiGolog architecture to integrate auto-
mated planning systems into cognitive agents and tested the performance of the
integrated system in typical planning domain benchmarks [40].
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Chapter 4
Programming Rational Agents in GOAL

Koen V. Hindriks

Abstract The agent programming language GOAL is a high-level programming
language to program rational agents that derive their choice of action from their
beliefs and goals. The language provides the basic building blocks to design and
implement rational agents by means of a set of programming constructs. These
programming constructs allow and facilitate the manipulation of an agent’s beliefs
and goals and to structure its decision-making. GOAL agents are called rational be-
cause they satisfy a number of basic rationality constraints and because they decide
to perform actions to further their goals based upon a reasoning scheme derived
from practical reasoning. The programming concepts of belief and goal incorpo-
rated into GOAL provide the basis for this form of reasoning and are similar to
their common sense counterparts used everyday to explain the actions that we
perform. In addition, GOAL provides the means for agents to focus their attention
on specific goals and to communicate at the knowledge level. This provides an intu-
itive basis for writing high-level agent programs. At the same time these concepts
and programming constructs have a well-defined, formal semantics. The formal
semantics provides the basis for defining a verification framework for GOAL for
verifying and reasoning about GOAL agents which is similar to some of the well-
known agent logics introduced in the literature.

4.1 Motivation

The concept of a goal lies at the basis of our understanding of why we perform
actions. It is common sense to explain the things we do in terms of beliefs and
goals. I started writing this chapter with the goal of explaining the programming
language GOAL. The reasons for performing actions are derived from our moti-
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vations and the notion of rational behaviour is typically explained in terms of
actions that are produced in order to further our goals [5, 14, 16]. A researcher
that has a goal to have finished a book chapter but is going on a holiday instead
is not considered to behave rationally because holidays do not further the goal of
writing a book chapter.
The idea to use common sense notions to build programs can be traced back to the
beginnings of Artificial Intelligence. Shoham, who was one of the first to propose
a new programming paradigm that he called agent-oriented programming, cites
McCarthy about the usefulness of ascribing such notions to machines [29, 39].
One of the first papers on Artificial Intelligence, also written by McCarthy, is
called Programs with Common Sense [28]. It has been realized that in order to have
machines compute with such notions it is imperative to precisely specify their
meaning [39]. To this end, various logical accounts have been proposed, mainly
using modal logic, to clarify the core common sense meaning of these notions
[10, 25, 34]. These accounts have aimed to precisely capture the essence of a con-
ceptual scheme based on common sense that may also be useful and applicable in
specifying rational agent programs. The first challenge thus is to provide a well-
defined semantics for the notions of belief, goal and action which can also provide
a computational interpretation of these notions useful for programming agents.
One of the differences between our approach and earlier attempts to put com-
mon sense concepts to good use in Artificial Intelligence is that we take a definite
engineering stance (contrast [28] and [39]). The concepts are used to introduce a
new agent programming language that provides useful programming constructs
to develop agent programs. The second challenge is to provide agent program-
ming language that is practical, transparent, and useful. It must be practical in the
sense of being easy to use, transparent in the sense of being easy to understand,
and useful in the sense of providing a language that can solve real problems.

4.1.1 The GOAL Agent Programming Language

The agent programming language GOAL that we will introduce and discuss meets
both of the challenges identified above [3, 22]. The distinguishing feature of the
language GOAL is its notion of declarative goals and the way agents derive their
choice of actions from such goals.1 The beliefs and goals of a GOAL agent are called
its mental state. Various constraints are placed on the mental state of an agent,
which roughly correspond to constraints on their common sense counterparts.
On top of the mental attitudes a GOAL agent also has so-called action rules to
guide the action selection mechanism.

1 GOAL is an acronym for Goal-Oriented Agent Language.
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The main features of GOAL include:

• Declarative beliefs: Agents use a symbolic, logical language to represent the in-
formation they have, and their beliefs or knowledge about the environment
they act upon in order to achieve their goals. This knowledge representation
language is not fixed by GOAL but, in principle, may be varied according to the
needs of the programmer.

• Declarative goals: Agents may have multiple goals that specify what the agent
wants to achieve at some moment in the near or distant future. Declarative
goals specify a state of the environment that the agent wants to establish, they
do not specify actions or procedures how to achieve such states.

• Blind commitment strategy: Agents commit to their goals and drop goals only
when they have been achieved. This commitment strategy, called a blind com-
mitment strategy in the literature [34], is the default strategy used by GOAL
agents. Rational agents thus do not have goals that they believe are already
achieved, a constraint which has been built into GOAL agents.

• Rule-based action selection: Agents use so-called action rules to select actions,
given their beliefs and goals. Such rules may underspecify the choice of action
in the sense that multiple actions may be performed at any time given the
action rules of the agent. In that case, a GOAL agent will select an arbitrary
action for execution.

• Policy-based intention modules: Agents may focus their attention and put all
their efforts on achieving a subset of their goals, using a subset of their ac-
tions, using only knowledge relevant to achieving those goals. GOAL provides
modules to structure action rules and knowledge dedicated to achieving spe-
cific goals. Informally, modules can be viewed as policy-based intentions in the
sense of [6].

• Communication at the knowledge level [31]: Agents may communicate with
each other to exchange information, and to coordinate their actions. GOAL
agents communicate using the knowledge representation language that is also
used to represent their beliefs and goals.

This brief but comprehensive overview of the GOAL language illustrates the range
of concepts that are available to program rational agents. GOAL is a high-level and
expressive language that facilitates programming agents that derive their choice
of action from their beliefs and goals. Arguably, as the reader may convince his
or herself by means of the examples provided below, the language is easy to un-
derstand, which is achieved by a careful balance between the rich common sense
intuitions associated with these concepts and their formal counterparts that have
been incorporated into GOAL. Moreover, transparency is achieved since the pro-
gramming contructs available do not aim at capturing all the subtle nuances of
the rich common sense concepts but only their core meaning.
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4.2 Language

In Section 4.2.1, the GOAL language is firstly introduced by means of a number
of examples that illustrate what a GOAL agent program looks like. A classical and
well-known domain called the Blocks World has been used for this purpose. We
like to think of the Blocks World as the "hello world" example of agent program-
ming (see also [40]). It is both simple and rich enough to demonstrate various of
the available programming constructs in GOAL. In Section 4.2.2 the operational
semantics of GOAL is introduced as well as a program logic to verify properties of
GOAL agents.

4.2.1 Syntactical Aspects

A GOAL agent decides which action to perform next based on its beliefs and goals.
In a Blocks World the decision amounts to where to move a block, in a robotics
domain it might be where to move to or whether to pick up something with
a gripper or not. Such a decision typically depends on the current state of the
agent’s environment as well as general knowledge about this environment. In the
Blocks World an agent needs to know what the current configuration of blocks
is and needs to have basic knowledge about such configurations (e.g. when is a
block part of a tower) to make a good decision. The former type of knowledge is
typically dynamic and changes over time, whereas the latter typically is static and
does not change over time. In line with this distinction, two types of knowledge of
an agent are distinguished: conceptual or domain knowledge stored in a knowledge
base and beliefs about the current state of the environment stored in a belief base.
A decision to act will usually also depend on the goals of the agent. In the Blocks
World a decision to move a block on top of an existing tower of blocks would
be made, for example, if it is a goal of the agent to have the block on top of
that tower. In a robotics domain it might be that the robot has a goal to bring a
package somewhere and therefore picks it up. Goals of an agent are stored in a goal
base. The goals of an agent may change over time, for example, when the agent
adopts a new goal or drops one of its goals. As a rational agent should not pursue
goals that it already believes to be achieved, such goals need to be removed. GOAL
provides a built-in mechanism for doing so based on a so-called blind commitment
strategy. We will discuss this built-in goal update mechanism in more detail below.
Together, the knowledge, beliefs and goals of an agent make up its mental state.
A GOAL agent inspects and modifies this state at runtime analogously as a Java
method operates on the state of an object. Agent programming in GOAL therefore
can also be viewed as programming with mental states.
To select an action a GOAL agent needs to be able to inspect its knowledge, beliefs
and goals. An action may or may not be selected if certain things follow from
an agent’s mental state. For example, if a block is misplaced, that is, the current
position of the block does not correspond with the agent’s goals, the agent may
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decide to move it to the table. A GOAL programmer needs to write special con-
ditions called mental state conditions in order to verify whether the appropriate
conditions for selecting an action are met. In essence, writing such conditions
means specifying a strategy for action selection that will be used by the GOAL
agent. Such a strategy is coded in GOAL by means of action rules which define
when an action may or may not be selected. After selecting an action, an agent
needs to perform the action. Performing an action in GOAL means changing the
agent’s mental state. An action to move a block, for example, will change the
agent’s beliefs about the current position of the block. The effects of an action on
the mental state of an agent need to be specified explicitly in a GOAL agent pro-
gram by the programmer except for a few built-in actions. Whether or not a real
(or simulated) block will also be moved in an (simulated) environment depends on
whether the GOAL agent has been adequately connected to such an environment.
Although there are many interesting things to say about this connection (related
to e.g. failure of actions and percepts obtained through sensors), in this chapter
we will not discuss this in any detail.
We are now ready to define more precisely what a GOAL agent is. A basic GOAL
agent program consists of five sections: (1) a set of domain rules, which is optional,
collectively called the knowledge base of the agent, (2) a set of beliefs, collectively
called the belief base, (3) a set of goals, called the goal base, (4) a program section
which consists of a set of action rules, and (5) an action specification that consists
of a specification of the pre- and post-conditions of the actions available to the
agent. To avoid confusion of the program section with the agent program itself,
from now on, the agent program will simply be called agent. The term agent will
be used both to refer to the program text itself as well as to the execution of such a
program. It should be clear from the context which of the two senses is intended.
An Extended Backus-Naur Form syntax definition (cf. [38]) of a GOAL program is
provided in Table 4.1.2 The syntax specification of GOAL also contains references
to modules. Modules are discussed in Section 4.2.1.2.

4.2.1.1 A GOAL Blocks World Agent

In order to explain how a GOAL agent works, we will design an agent that is able
to effectively solve Blocks World problems. To this end, we now briefly introduce
the Blocks World domain. The Blocks World is a simple environment that consists
of a finite number of blocks that are stacked into towers on a table of unlimited
size. It is assumed that each block has a unique label or name a, b, c, .... Labelling

2 Here, boldface is used to indicate terminal symbols, i.e. symbols that are part of an actual
program. Italic is used to indicate nonterminal symbols. [...] is used to indicate that ... is optional,
| is used to indicate a choice, and ∗ and + denote zero or more repetitions or one or more
repetitions of a symbol, respectively. The nonterminal clause refers to arbitrary Prolog clauses,
which is dependent on the Prolog system used. The current implementation of GOAL uses SWI-
Prolog [42]. It is only allowed, however, to use a subset of the built-in predicates available in
SWI-Prolog; in particular, for example, no meta-predicates can be used.
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program ::= main id {
[knowledge { clause∗ }]
beliefs { clause∗}
goals { poslitconj∗}
program { (actionrule | module )+}
action-spec {actionspecification}

}
module ::= module id {

context { mentalstatecond }
[knowledge { clause∗ }]
[goals { poslitconj∗}]
program { (actionrule | module )+}
[action-spec {actionspecification}]

}
clause ::= any legal Prolog clause .

poslitconj ::= atom {, atom}∗ .
litconj ::= [not]atom {, [not]atom}∗

atom ::= predicate[parameters]
parameters ::= (id{ ,id}∗ )
actionrule ::= if mentalstatecond then action .

mentalstatecond ::= mentalatom { , mentalatom }∗ | not( mentalstatecond )
mentalatom ::= true | bel ( litconj ) | goal ( litconj )

actionspec ::= action { pre{litconj} post{litconj} }
action ::= user-def action | built-in action

user-def action ::= id[parameters]
built-in action ::= insert( poslitconj ) | delete( poslitconj ) |

adopt( poslitconj ) | drop( poslitconj ) |
send( id , poslitconj )

id ::= (a..z | A..Z | _ | $) { (a..z | A..Z | _ | 0..9 | $) }∗

Table 4.1 Backus Naur Syntax Definition

blocks is useful because it allows us to identify a block uniquely by its name.
This is much simpler than having to identify a block by means of its position
with respect to other blocks, for example. Typically, labels of blocks are used to
specify the current as well as goal configurations of blocks, a convention that we
will also use here. Observe that in that case labels define a unique feature of each
block and they cannot be used interchangeably as would have been the case if
only the colour of a block would be a relevant feature in any (goal) configuration.
In addition, blocks need to obey the following "laws" of the Blocks World: (i) a
block is either on top of another block or it is located somewhere on the table;
(ii) a block can be directly on top of at most one other block; and, (iii) there is
at most one block directly on top of any other block (cf. [11]).3 Although the
Blocks World domain defines a rather simple environment it is sufficiently rich
to illustrate various features of GOAL and to demonstrate that GOAL allows to
program simple and elegant agent programs to solve such problems.

3 For other, somewhat more realistic presentations of this domain that consider e.g., limited
table size, and varying sizes of blocks, see e.g. [18].
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Fig. 4.1 Example Blocks World problem taken from [40].

A Blocks World problem is the problem of which actions to perform to transform
an initial state or configuration of towers into a goal configuration, where the
exact positioning of towers on the table is irrelevant. A Blocks World problem
thus defines an action selection problem which is useful to illustrate the action
selection mechanism of GOAL. See Figure 4.1 for an example problem. Here we
assume that the only action available to the agent is the action of moving one
block that is on top of a tower onto the top of another tower or to the table. A
block on top of a tower, that is, a block without any block on top of it, is said to
be clear. As there is always room to move a block onto the table, the table is also
said to be clear.
The performance of a Blocks World agent can be measured by means of the num-
ber of moves it needs to transform an initial state or configuration into a goal
state. An agent performs optimally if it is not possible to improve on the num-
ber of moves it uses to reach a goal state.4 Some basic insights that help solving a
Blocks World problem and that are used below in the design of an agent that can
solve such problems are briefly introduced next. A block is said to be in position
if the block in the current state is on top of a block or on the table and this cor-
responds with the goal state, and all blocks (if any) below it are also in position.
A block that is not in position is said to be misplaced. In Figure 4.1 all blocks ex-
cept block c and g are misplaced. Observe that only misplaced blocks have to be
moved in order to solve a Blocks World problem. The action of moving a block
is called constructive if in the resulting state that block is in position. It should be
noted that in a Blocks World where the table has unlimited size in order to reach

4 The problem of finding a minimal number of moves to a goal state is also called the optimal
Blocks World problem. This problem is NP-hard [18]. It is not within the scope of this chapter
to discuss either the complexity or heuristics proposed to obtain near-optimal behaviour in the
Blocks World; see [13] for an approach to define such heuristics in GOAL.
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the goal state it is only useful to move a block onto another block if the move is
constructive, that is, if the move puts the block in position. Also observe that a
constructive move always decreases the number of misplaced blocks.5

Representing Knowledge, Beliefs and Goals

One of the first steps in developing and writing a GOAL agent is to design and
write the knowledge, beliefs and goals that an agent needs to meet its design ob-
jectives. The process of doing so need not be finished in one go but may need
several iterations during the design of an agent before completing the knowledge,
beliefs, and goals sections of a GOAL agent. It is however important to get the
representation of the agent’s knowledge, beliefs and goals right as both the action
specifications and action rules also depend on it. To do so we need a knowledge rep-
resentation language that we can use to describe the content of the various mental
attitudes of the agent. Although, as will be explained in Section 4.2.2, GOAL is not
married to any particular knowledge representation language, here, Prolog will be
used to present an example GOAL agent. We assume the reader to be familiar with
the basics of Prolog (see [41] for a classic introduction), although familiarity with
first-order logic probably will be sufficient to understand the example.
In the Blocks World, first of all we need to be able to represent the configuration
of blocks. That means we need to be able to represent which block is on another
block and which blocks are clear. In order to do so, the expressions on(X,Y) and
clear(X) are introduced. The predicate on is used to express that block X is on
Y, where Y may be either another block or the table. For example, on(a,b)
is used to represent the fact that block a is on block b and on(b,table) is
used to represent that block b is on the table. The predicate clear is used to
represent that nothing is on top of a block and to express that the table is clear,
i.e. there is always an empty spot on the table where a block can be moved to.
It is possible to derive that a block is clear from the facts expressed in terms of
the on predicate and we will introduce a logical rule to do so below. It is not
possible to similarly derive that the table is always clear (because it is a basic
assumption we have made) and we need to represent this fact explicitly by means
of the expression clear(table). Finally, to be able to distinguish blocks from
the table, the expression block(X) is introduced to express that X is a block.
Using the on predicate makes it possible to define the states a Blocks World can be
in. A state is defined as a set of facts of the form on(X,Y) that is consistent with
the basic "laws" of the Blocks World introduced above. Assuming that the set of
blocks is given, a state that contains a fact on(X,Y) for each block X in that set
is called complete, otherwise it is called a partial state. In the remainder, we only
consider complete states. It is now also possible to formally define a Blocks World
problem. A Blocks World problem is a pair 〈Binitial, G〉 where Binitial denotes

5 It is not always possible to make a constructive move, which explains why it is sometimes hard
to solve a Blocks World problem optimally. In that case the state of the Blocks World is said to
be in a deadlock, see [40] for a detailed explanation.
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the initial state and G denotes the goal state. The labels Binitial and G have been
intentionally used here to indicate that the set of facts that represent the initial
state correspond with the initial beliefs and the set of facts that represent the goal
state correspond with the goal of an agent that has as its main aim to solve a Blocks
World problem.

1 main BlocksWorldAgent
2 { This agent solves the Blocks World problem of Figure 1.
3 knowledge{
4 block(a), block(b), block(c), block(d), block(e), block(f), block(g).
5 clear(table).
6 clear(X) :- block(X), not(on(Y,X)).
7 tower([X]) :- on(X,table).
8 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
9 }

10 beliefs{
11 on(a,b), on(b,c), on(c,table), on(d,e), on(e,table), on(f,g), on(g,table).
12 }
13 goals{
14 on(a,e), on(b,table), on(c,table), on(d,c), on(e,b), on(f,d), on(g,table).
15 }
16 program{
17 if a-goal(tower([X,Y|T])), bel(tower([Y|T])) then move(X,Y).
18 if a-goal(tower([X|T])) then move(X,table).
19 }
20 action-spec{
21 move(X,Y) {
22 pre{ clear(X), clear(Y), on(X,Z) }
23 post{ not(on(X,Z)), on(X,Y) }
24 }
25 }
26 }

Table 4.2 GOAL Agent Program for solving the Blocks World Problem of Figure 4.1

In the agent program listed in Table 4.2 the beliefs section consists of the facts
that represent the initial state of the Blocks World problem of Figure 4.1. These
facts are represented in the program as a single conjunction (where the comma-
symbol denotes conjunction in Prolog). It would not have made a difference if
each of these facts would have been represented as individual clauses separated
here by the period-symbol. Similarly, the goal state corresponding with Figure
4.1 is represented as a single conjunction in the goals section in the program. In
the goals section, however, it is important to represent the goal to be achieved
as a single conjunction. The reason is that each of the facts present in the goals
section need to be achieved simultaneously. If these facts would have been included
as clauses separated by the period-symbol this would have indicated that the agent
has multiple, independent goals. Observe that it is not the same to have two separate
goals on(a,b) and on(b,c) instead of a single goal on(a,b), on(b,c) as
in the first case we may put a on top of b, remove a again from b, and put b
on top of c which would not achieve a state where a is on top of b which is
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on top of c simultaneously.6 It thus is important to keep in mind that, from a
logical point of view, the period-symbol separator in the beliefs (and knowledge
section) means the same as the conjunction operator represented by the comma-
symbol, but that the meaning of these separators is different in the goals section.
In the goals section the conjunction operator is used to indicate that facts are
part of a single goal whereas the period-symbol separator is used to represent that
an agent has several different goals that need not be achieved simultaneously. As
separate goals may be achieved at different times it is also allowed that single
goals when they are taken together are inconsistent, where this is not allowed in
the beliefs section of an agent. For example, an agent might have the two goals
on(a,b) and on(b,a). Obviously these cannot be achieved simultaneously,
but they can be achieved one after the other.
Facts that may change at runtime should be put in the beliefs section. They are
used to initialise the belief base of a GOAL agent that may change when a GOAL
agent performs actions. Facts that do not change may be put in the knowledge
section of a GOAL agent. These are used to initialise the knowledge base of the
agent which is never modified at runtime. For this reason, the facts of the form
block(X) representing the blocks present in the Blocks World are put in the
knowledge section in Table 4.2. All blocks present in Figure 4.1 are enumerated
in this section. The fact that the table is clear is also put in the knowledge section.
In addition, domain knowledge related to the Blocks World is represented here.
For example, the rule clear(X) :- block(X), not(on(Y,X)) can be
read as defining when a block X is clear, which is the case whenever there is no
other block on top of X. Observe that this rule is only correct if a state represented
by the agent’s beliefs is complete, as the negation of Prolog succeeds whenever
no proof can be constructed for on(Y,X) (negation as failure). That is, Prolog
supports the closed world assumption which is the presumption that what is not
currently known to be true is false.
A GOAL agent derives conclusions by combining its knowledge and beliefs. This
allows an agent to draw conclusions about the current state it believes it is in using
the rules present in the knowledge section. For example, the agent in Table 4.2
may derive that clear(a), which expresses that block a is clear, by means of
the rule clear(X) :- block(X), not(on(Y,X)). This follows since we
have block(a) according to the knowledge base of the agent and the belief base
does not contain a fact on(X,a) for any X.
Although a programmer may also include rules in the beliefs section it is a better
practice to include these in the knowledge section. One reason is that GOAL does
not allow to modify such rules at runtime. Another reason is that rules present
in the knowledge section may also be used when reasoning with goals. The def-
inition of the predicate tower in the knowledge section in Table 4.2 provides

6 Incidentally, note that these observations are related to the famous Sussman anomaly. Early
planners were not able to solve simple Blocks World problems because they constructed plans
for subgoals (parts of the larger goal) that could not be combined into a plan to achieve the main
goal. The Sussman anomaly provides an example of a Blocks World problem that such planners
could not solve, see e.g. [17].
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an example where this is useful. The rules that define this predicate define when a
list of blocks [X|T] is a tower. The first rule tower([X]) :- on(X,table)
requires that the basis of a tower is grounded on the table. The second rule recur-
sively defines that whenever [Y|T] is a tower, extending this tower with a block X
on top of Y also yields a tower, that is, [X,Y|T] is a tower. Observe that it is not
required that block X is clear and a stack of blocks that is part of a larger tower also
is considered to be a tower. For example, it is possible to derive tower([b,c])
using the facts representing the initial state depicted in Figure 4.1.
It turns out that the concept of a tower is particularly useful for defining when a
block is in position or misplaced. In order to provide such a definition, however,
we need to be able to derive that an agent has the goal of realizing a particular
tower. This cannot be derived from the information present in the goal base of
the example agent but requires additional conceptual knowledge which defines
the notion of a tower. In combination with the conceptual knowledge present in
the knowledge base it is possible, however, to derive such a goal, which illustrates
that it is useful to derive conclusions from a single goal in combination with the
knowledge base. By doing so, for example, it is possible for the example agent of
Table 4.2 to derive that tower([e,b]) is a (sub)goal. It can do so by means of
the rules that define the predicate tower in the knowledge base of the agent and
the (sub)goals on(b,table) and on(e,b) in the goal base.

Mental State Conditions

Agents that derive their choice of action from their beliefs and goals need the
ability to inspect their mental state. In GOAL, mental state conditions provide the
means to do so. These conditions are used in action rules to determine which
actions the agent may consider to perform. A mental state condition consists of
mental atoms which are conditions on the belief base of the form bel(ϕ) and
conditions on the goal base of the form goal(ϕ) where ϕ is a conjunction of
literals.
Informally, bel(ϕ) can be read as "the agent believes that ϕ". bel(ϕ) holds
whenever ϕ can be derived from the belief base in combination with the knowl-
edge base. Using the same example as above, it follows in the initial state that
bel(clear(a)), which expresses that the agent believes that block a is clear.
Similarly, goal(ϕ) can be read as "the agent has a goal that ϕ". goal(ϕ) holds
whenever ϕ can be derived from a single goal in the goal base in combination
with the knowledge base.7 Again using the same example as above, it follows given
the goal base of Table 4.2 and the definition of the tower predicate in the knowl-
edge section that goal(tower([e,b])) since on(b,table) and on(e,b)
are present in the goal base.

7 This reading differs from that provided in [3] where the goal operator is used to denote achieve-
ment goals, which additionally require that the agent does not believe that ϕ. The goal operator
goal introduced here is more basic and, in combination with the belief operator bel, allows
to define achievement goals.
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A mental state condition is a conjunction of mental atoms of the form bel(ϕ)
and goal(ϕ), or a negation of a mental state condition ψ of the form not(ψ).
For example, the mental state condition
goal(on(b,table)), not(bel(on(b,table))
expresses that the agent has a goal that block b is on the table but does not be-
lieve that this is the case (yet). Such goals that have still to be achieved are also
called achievement goals. As achievement goals are important reasons for choos-
ing actions and are frequently used in GOAL programs to this end, a new operator
a-goal(ϕ)is introduced as an abbreviation for mental state conditions of the
form goal(ϕ), not(bel(ϕ)).8

a-goal(ϕ)
df
= goal(ϕ), not(bel(ϕ))

Interestingly, this operator provides what is needed to express that a block is mis-
placed as a block is misplaced whenever the agent believes that the block’s current
position is different from the position the agent wants it to be in.9 As the position
of the tower which a block is part of is irrelevant, the fact that a block X is not in
position can be represented by a-goal(tower([X|T])) where T is a tower.
a-goal(tower([X|T])) expresses that in the goal state block X is on top of
the tower T but the agent does not believe that this is already so in the current
state. The concept of a misplaced block is important for defining a strategy to
resolve a Blocks World problem, since only misplaced blocks have to be moved,
and can be expressed easily and elegantly in GOAL using mental state conditions.
Another useful mental state condition is goal(ϕ), bel(ϕ) which ex-
presses that a (sub)goal has been achieved. Instantiating the template ϕ with
tower([X|T]), this condition expresses that the current position of a block
X corresponds with the position it has in the goal state.10 In this case ϕ is a
(sub)goal that is achieved and we call such a (sub)goal a goal achieved. The op-
erator goal-a(ϕ) is introduced as an abbreviation to denote such goals.

goal-a(ϕ)
df
= goal(ϕ), bel(ϕ)

The condition a-goal(tower([X,Y|T])), bel(tower([Y|T]) provides
another useful example of a mental state condition. It expresses that the achieve-
ment goal to construct a tower tower([X,Y|T])) has been realized except for
the fact that block X is not yet on top of tower [Y|T]. It is clear that whenever it
is possible to move block X on top of block Y the agent would get closer to achiev-

8 See [20] for a discussion of this definition.
9 Actually, here the difference between knowledge and belief is important as we normally would
say something is misplaced only if we know that the block is in a different position. That is, an
agent’s beliefs about the block’s position must also correspond with the actual position of the
block. If, in fact, the block is in the desired position, in ordinary language, we would say that
the block is believed to be misplaced but that in fact it is not.
10 Note that it would not be possible to express this using an achievement goal operator. In [21]
the goal-a operator is used to define the concept of a deadlock [40].
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ing (one of) its goals. Such a move, moreover, would be a constructive move which
means that the block would never have to be moved again. As the possibility to
make a move may be verified by checking whether the precondition of the move
action holds (see below), in combination with the mental state condition, we are
able to verify whether a constructive move can be made. This condition therefore
is very useful to define a strategy for solving Blocks World problems, and is used
in the first action rule in the program section listed in Table 4.2.

Actions

In order to achieve its goals an agent needs to select and perform actions. Unlike
other programming languages, but similar to planners, actions that may be per-
formed by a GOAL agent need to be specified by the programmer of that agent.
GOAL does provide some special built-in actions but typically most actions that
an agent may perform are derived from the environment that the agent acts in.
Actions are specified in the action-spec section of a GOAL agent. These actions
are called user-defined actions. Actions are specified by specifying the conditions
when an action can be performed and the effects of performing the action. The
former are also called preconditions and the latter are also called postconditions.
The action-spec section consists of a set of STRIPS-style specifications [27] of the
form (cf. Table 4.1):

action{
pre{precondition}
post{postcondition}

}

The action specifies the name of the action and its arguments or parameters and is
of the form id[args], where id denotes the name of the action and the [args] part
denotes an optional list of parameters of the form (p1, ..., pn), where the
pi are Prolog terms. If an agent is connected to an environment, the user-defined
actions will be sent to the environment for execution. (In that case it is important
that the name of an action corresponds with the name the environment expects to
receive when it is requested to perform the action.) The parameters of an action
in a GOAL agent may contain free variables which are instantiated at runtime. An
action can only be performed if all free variables in parameters of an action as well
as in the postcondition of the action have been completely instantiated. This is not
only true for user-defined actions but also for built-in actions.
The precondition in an action specification is a conjunction of literals. Precondi-
tions are used to verify whether it is possible to perform an action. A precondition
ϕ is evaluated by verifying whether (an instantiation of) ϕ can be derived from
the belief base (as always, in combination with knowledge in the knowledge base).
Any free variables in a precondition may be instantiated during this process just
like executing a Prolog program returns instantiations of variables. An action is
said to be enabled whenever its precondition is believed to be the case by the agent.
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A postcondition specifies the effect of an action. A postcondition is a conjunction
of literals. In GOAL effects of an action are changes to the mental state of an agent.
The effect ϕ of an action is used to update the beliefs of the agent to ensure the
agent believes ϕ after performing the action. In line with STRIPS terminology, a
postcondition ϕ is also called an add/delete list (see also [17, 27]). Positive literals
ϕ in a postcondition are said to be part of the add list whereas negative literals
not(ϕ) are said to be part of the delete list. The effect of performing an action
is that it updates the belief base by first removing all facts ϕ present in the delete
list and thereafter adding all facts present in the add list. Finally, as an action
can only be performed when all free variables in the postcondition have been
instantiated, each variable present in a postcondition must also be present in the
action parameters or precondition of the action.
In addition, performing an action may affect the goal base of an agent. As a ra-
tional agent should not invest resources such as energy or time into achieving a
goal that has been realized, such goals are removed from the goal base. That is,
goals in the goal base that have been achieved as a result of performing an action
are removed. Goals are removed from the goal base, however, only if they have
been completely achieved. The idea here is that a goal ϕ in the goal base is achieved
only when all of its subgoals are achieved. An agent should not drop any of these
subgoals before achieving the overall goal as this would make it impossible for the
agent to ensure the overall goal is achieved at a single moment in time (see also
the reference to the Sussman anamoly above). The fact that a goal is only removed
when it has been achieved implements a so-called blind commitment strategy [34].
Agents should be committed to achieving their goals and should not drop goals
without reason. The default strategy for dropping a goal in GOAL is rather strict:
only do this when the goal has been completely achieved. This default strategy
can be adapted by the programmer for particular goals by using the built-in drop
action.
In the GOAL agent of Table 4.2 only one action move(X,Y) has been specified.
The precondition specifies that in order to be able to perform action move(X,Y)
of moving X on top of Y both X and Y have to be clear. In addition, the literal
on(X,Z) in the precondition retrieves in variable Z on which particular thing,
i.e. block or table, X is currently on, in order to be able to remove this fact af-
ter performing the action. The precondition of move(X,Y) in Table 4.2 could
have been strengthened by including a condition not(on(X,Y)) to prevent
moves which move a block X on top of block Y in case block X already is on
top of Y. Clearly, such actions are redundant for solving a Blocks World prob-
lem. However, as we will see below, such move options are never generated by
the action selection mechanism of GOAL given the action rules in the program
section. It would be useful to include not(X=Y), however, to prevent moving
a misplaced block on the table to another place on the table. The postcondition
not(on(X,Z)), on(X,Y) of the action move(X,Y) has the effect of (first)
removing the current position on(X,Z) of block X from the belief base and
(thereafter) adding the new position on(X,Y) to it. Even though the precondi-
tion does not preclude moving a block on top of another block it is already on,
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observe that in the case that Z=Y the belief base would not change as a result of
performing the action.
In addition to the possibility of specifying user-defined actions, GOAL provides
several built-in actions for changing the beliefs and goals of an agent, and for
communicating with other agents. Here we only briefly discuss the two built-in
actions adopt(ϕ) and drop(ϕ) which allow for modifying the goal base of an
agent. The action adopt(ϕ) is an action to adopt a new goal ϕ. The precon-
dition of this action is that the agent does not believe that ϕ is the case, i.e. in
order to execute adopt(ϕ) we must have not(bel(ϕ)). The idea is that it
would not be rational to adopt a goal that has already been achieved. The effect
of the action is the addition of ϕ as a single, new goal to the goal base. The action
drop(ϕ) is an action to drop goals from the goal base of the agent. The precon-
dition of this action is always true and the action can always be performed. The
effect of the action is that any goal in the goal base from which ϕ can be derived
is removed from the goal base. For example, the action drop(on(a,table))
would remove all goals in the goal base that entail on(a,table); in the example
agent of Table 4.2 the only goal present in the goal base would be removed by this
action.

Action Rules

The program section specifies the strategy used by the agent to select an action
to perform by means of action rules. Action rules provide a GOAL agent with
the know-how that informs it when it is opportune to perform an action. In line
with the fact that GOAL agents derive their choice of action from their beliefs and
goals, action rules consist of a mental state condition msc and an action action and
are of the form if msc then action. The mental state condition in an action rule
determines whether the corresponding action may be considered for execution or
not. If (an instantiation of) a mental state condition is true, the corresponding
action is said to be applicable. Of course, the action may only be executed if it is
also enabled. If an action is both applicable and enabled we say that it is an option.
We also say that action rules generate options.
The program section of Table 4.2 consists of two action rules. These rules spec-
ify a simple strategy for solving a Blocks World problem. The rule
if a-goal(tower([X,Y|T])), bel(tower([Y|T])) then move(X,Y)
specifies that move(X,Y) may be considered for execution whenever
move(X,Y) is a constructive move (cf. the discussion about the mental state
condition of this rule above). The rule if a-goal(tower([X|T])) then
move(X,table) specifies that the action move(X,table) of moving block
X to the table may be considered for execution if the block is misplaced. As these
are all the rules, the agent will only generate options that are constructive moves
or move misplaced blocks to the table, and the reader is invited to verify that the
agent will never consider moving a block that is in position or making a redun-
dant move that puts a block on top of a block that it already is on. Furthermore,
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observe that the mental state condition of the second rule is weaker than the first.
In common expert systems terminology, the first rule subsumes the second as it
is more specific.11 This implies that whenever a constructive move move(X,Y)
is an option the action move(X,table) is also an option. The set of options
generated by the action rules thus may consist of more than one action. In that
case, GOAL arbitrarily selects one action out of the set of all options. As a result,
a GOAL agent is nondeterministic and may execute differently each time it is run.
A set of action rules may be viewed as specifying a policy. There are two dif-
ferences with standard definitions of a policy in the planning literature, however
[17]. First, action rules do not need to generate options for each possible state. Sec-
ond, action rules may generate multiple options in a particular state and do not
necessarily define a function from the (mental) state of an agent to an action. A
policy for a GOAL agent thus does not need to be universal12 and may underspecify
the choice of action of an agent.

Execution Traces of The Blocks World Agent

We will trace one particular execution of the Blocks World agent of Table 4.2 in
more detail here. As a GOAL agent selects an arbitrary action when there are more
options available, there are multiple traces that may be generated by the agent,
three of which are listed below.

In the initial state, depicted also in Figure 4.1, the agent can move each of the
clear blocks a, d, and f to the table. It is easy to verify the precondition of the
move action in each of these cases by instantiating the action specification of the
move action and inspecting the knowledge and belief bases. For example, instan-
tiating move(X,Y) with block a for variable X and table for variable Y gives
the corresponding precondition clear(a), clear(table), on(a,Z).
By inspection of the knowledge and belief bases, it immediately follows that
clear(table), and we find that by instantiating variable Z with b it follows
that on(a,Z). Using the rule for clear it also follows that clear(a)
and we conclude that action move(a,table) is enabled. Similar reasoning
shows that the actions move(d,table), move(f,table), move(a,d),
move(a,f), move(d,a), move(d,f), move(f,d), move(f,a) are
enabled as well. The reader is invited to check that no other actions are enabled.

(continued overleaf )

11 Thanks to Jörg Müller for pointing this out.
12 In the sense of [37], where a "universal plan" or policy specifies the appropriate action for
every possible situation.
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A GOAL agent selects an action using its action rules. In order to verify whether
moving the blocks a, d, and f to the table are options we need to verify
applicability of actions by checking the mental state conditions of action rules
that may generate these actions. We will do so for block a here but the other cases
are similar. Both rules in the program section of Table 4.2 can be instantiated such
that the action of the rule matches with move(a,table). As we know that
block a cannot be moved constructively, however, and the mental state condition
of the first rule only allows the selection of such constructive moves, this rule
is not applicable. The mental state condition of the second rule expresses that a
block X is misplaced. As block a clearly is misplaced, this rule is applicable. The
reader is invited to verify this by checking that a-goal([a,e,b]) holds in the
initial state of the agent.

Assuming that move(a,table) is selected from the set of options, the action
is executed by updating the belief base with the instantiated postcondition
not(on(a,b)), on(a,table). This means that the fact on(a,b) is re-
moved from the belief base and on(a,table) is added. The goal base may need
to be updated also when one of the goals has been completely achieved, which is
not the case here. As in our example, we have abstracted from perceptions, there
is no need to process any and we can repeat the action selection process again to
select the next action.

As all blocks except for blocks c and g are misplaced, similar reason-
ing would result in a possible trace where consecutively move(b,table),
move(d,table), move(f,table) are executed. At that point in time, all
blocks are on the table, and the first rule of the program can be applied to
build the goal configuration, e.g. by executing move(e,b), move(a,e),
move(d,c), move(f,d). In this particular trace the goal state would be
reached after performing 8 actions.

Additionally, we list the 3 shortest traces - each including 6 actions - that can be
generated by the Blocks World agent to reach the goal state:

Trace1 : move(a, table), move(b, table), move(d, c), move(f, d), move(e, b), move(a, e).
Trace2 : move(a, table), move(b, table), move(d, c), move(e, b), move(f, d), move(a, e).
Trace3 : move(a, table), move(b, table), move(d, c), move(e, b), move(a, e), move(f, d).

There are many more possible traces, e.g. by starting with moving block f to the
table, all of which consist of more than 6 actions.

To conclude the discussion of the example Blocks World agent, in Figure 4.2 the
RSG line shows the average performance of the GOAL agent in number of moves
relative to the number of blocks present in a Blocks World problem. This per-
formance is somewhat better than the performance of the simple strategy of first
moving all blocks to the table and then restacking the blocks to realize the goal
state indicated by the US line13 as the GOAL agent may perform constructive

13 Observe that this simple strategy never requires more than 2N moves if N is the number of
blocks. The label "US" stands for "Unstack Strategy" and the label "RSG" stands for "Random
Select GOAL", which refers to the default action selection mechanism used by GOAL.
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Fig. 4.2 Average Performance of a Blocks World GOAL Agent

moves whenever this is possible and not only after moving all blocks to the table
first.

4.2.1.2 Modules and Focus of Attention

Rational agents are assumed to create partial plans for execution and to not over-
commit to a particular way of achieving a goal. One important reason for not
computing a complete plan is that in a dynamic, uncertain environment an agent
typically does not have sufficient knowledge to fill in the details of a plan that
is guaranteed to succeed. It therefore is better practice to decide on the action to
perform next when the required information is available. As the action selection
mechanism in GOAL ensures that agents select their actions by inspection of their
current mental state overcommitment is avoided. As a result, the Blocks World
agent, for example, provides a robust solution for solving Blocks World problems
because it is flexible in its choice of action. It would still perform well even if
other agents would interfere, assuming that it is able to perceive what happens in
the Blocks World.
Even though action rules provide for a flexible choice of action it is useful to add
additional structure to a GOAL agent. As is the case in almost any programming
language, it is useful to be able to structure parts of a program in a single unit.
In GOAL it is useful to combine related conceptual and domain knowledge, goals,
actions and action rules that are relevant for handling particular situations in a
single structure. Modules provide such a structure in GOAL. Modules provide for
reusability and the encapsulation of related knowledge, goals, actions and action
rules. They also provide a programmer with a tool to focus on the particular
knowledge and skills that an agent needs to handle a situation.
Modules in GOAL also provide for focus in another sense. In many situations it is
natural to focus attention on achieving particular goals and disregard other goals for
the moment. Such focus allows for a more dedicated use of resources and the need
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for creating plans for a subset of ones goals only. It also allows for sequencing po-
tentially conflicting goals. As an example, consider a truck delivery domain where
a truck is supposed to deliver multiple packages to different locations. Given that
the load of packages that the truck may carry is limited, it is useful to focus on the
delivery of packages to a particular subset of locations and only load packages that
need to be delivered to those locations. Modules provide for a mechanism that en-
ables agents to focus attention in this way. In the remainder we will illustrate the
use of modules in the Blocks World domain. This example provides a simple il-
lustration of programming with modules which also illustrates how modules can
be used to program a different strategy for solving a Blocks World problem.
Syntactically, a module is very similar to a GOAL agent. The main difference with
a GOAL agent such as the Blocks World agent discussed in the previous section
is that a module has an additional Context section, which specifies an activa-
tion condition. A distinguishing feature of modules in GOAL is that the context
of a module is specified declaratively. A module’s context specifies not only when
to activate the module but also for what purpose a module is activated. It thus
provides a declarative specification of the intended use of a module. Such specifi-
cations are useful for a programmer as a programmer does not have to inspect the
implementation details inside a module but can read off the intended use from the
context.
Another difference with a GOAL agent is that a module does not have a beliefs
section and that all sections other than the program section are optional. The
reason that a module does not have a beliefs section is that a module specifies
knowledge and skills that are independent of the current state. A module specifies
the generic knowledge and know-how to deal with a particular situation but not
the specifics of a particular state. The belief base of an agent is used to keep track
of the state of the environment and is a "global" component of the agent. This
means that the beliefs of an agent are accessible by and may be modified by any
module. The knowledge and action-spec section are optional because the knowl-
edge in the knowledge section and all actions specified in the action-spec section
of the GOAL agent that contains the module are "inherited" by the module and
are "globally" accessible as beliefs are. The same does not hold for the goals of
an agent, however. The context of a module provides a filter on the set of goals
that the agent currently pursues which allows an agent to focus its attention on a
subset of these goals.
Table 4.3 presents an example module, which can be used by the Blocks World
agent introduced above. In the remainder we assume that the action rules used by
the original agent of Table 4.2 are replaced by the module of Table 4.3 and we
explain how this change modifies the behaviour of that agent.
The context of a module is a mental state condition that serves two functions.
The first function is that a context specifies when a module may be activated. For
example, the context of the module in Table 4.3 specifies that the module may be
activated whenever the agent has an achievement goal to build a tower with block
X as the top of that tower. That is, block X should be clear. The context can also
be viewed as a (pre)condition for activating a composed activity, or a policy, as a
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1 module BuildTower
2 { % This module achieves the goal of building a particular tower of blocks.
3 Context{
4 a-goal(clear(X), tower([X|T]))
5 }
6 program{
7 if a-goal(tower([X,Y|T])), bel(tower([Y|T])) then move(X,Y).
8 if bel(tower([X|T]), not(goal(tower([X|T])) then move(X,table).
9 }

10 action-spec{
11 move(X,Y) {
12 pre{ clear(X), clear(Y), on(X,Z) }
13 post{ not(on(X,Z)), on(X,Y) }
14 }
15 }

Table 4.3 Module Replacing the program Section of the Blocks World Agent

set of action rules in a module specifies such a policy. The second function of a
context is that it is used as a filter on the goals that the agent pursues which selects
a subset of these goals. The goals currently pursued by an agent are said to be in
the agent’s attention set. After activating a module the attention set of an agent is
restricted to those goals in that set that are obtained from a particular instantia-
tion of the context of a module. The goals that are put in the updated attention set
are all goals ϕ that are in the current attention set and correspond with a positive
occurence of a mental atom goal(ϕ) in the instantiated context.14 This means
all other goals in the current attention set of the agent are removed and, that, if a
context does not have positive occurrences of such mental atoms all goals in this
set are removed.15 Any goals introduced by the module’s goals section are added
to this updated attention set. For example, upon activation of the module listed
in Table 4.3, the context of the module is instantiated such that it becomes true.
Assume that the instantiated context is a-goal(clear(g), tower([g])),
which is an achievement goal in the initial state of Figure 4.1. As this con-
text is an abbreviation for a mental state condition with a positive occurrence
of a mental atom of the form goal(clear(g), tower([g])) the goal
clear(g), tower([g]) is included in the attention set of the agent and
all other goals are removed from the attention set. As the goals section in the
module is absent, the resulting attention set would consist of the single goal
clear(g), tower([g]).

14 A mental atom goal(ϕ) occurs positively in a context if it occurs within the scope of an
even number of negations not.
15 Formally, a filter function filter(c,m) with c a context andm a mental state (with a goal base
that provides the current attention set) can be defined as follows: filter(c,m) = {ϕ | m |=c

cθ & goal(ϕ) ∈ pos(cθ)} where pos(c) denotes the set of all positive occurrences of mental
atoms in c and θ is a substitution for variables that occur in c. For a definition of the entailment
relation |=c see Section 4.2.2.1. The filter function filter(c,m) provides the new attention set
after activating a module with context c.
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A module provides not only a means to focus on particular goals but also provides
a context which restricts the choice of action. When a module is activated the ac-
tion rules present in the module are the only rules available to generate action
options. A module may also introduce action specifications that are only avail-
able while the module is executed and specific for handling situations the module
has been designed for. Actions specified in the main GOAL agent, but not those
specified in other modules, are also accessible from within a module. In the ex-
ample in Table 4.3 the move action has been moved from the main GOAL agent
to the module. As a result, it is only possible to move blocks when the module is
activated.
The example module replaces the action rules in the program section of the
Blocks World agent of Table 4.2. The first action rule of that agent which gener-
ates constructive moves is included in the program section of the module. The
second action rule of this agent which generates moves of misplaced blocks to
the table, however, has been replaced by another rule. The reason is that the
original rule assumed that each block is part of the goal configuration and, as a
consequence, any block is either in position or misplaced. As the attention set of
an agent upon activation of a module is restricted we can no longer make this as-
sumption. Instead of being part of a goal condition a block may now be in the way
of achieving a goal of the agent, i.e. it may obstruct making moves with a block
that is part of such a goal because it is above such a block. Therefore, the sec-
ond action rule if bel(tower([X|T]), not(goal(tower([X|T])) then
move(X,table) in Table 4.3 still moves blocks to the table but under a differ-
ent condition. The mental state condition of this rule expresses that block X is
possibly in the way to get to a block needed to achieve a goal of the agent. Here,
possibly in the way means that the agent does not intend the block to be in the po-
sition it believes it to be in.16 Observe that blocks that are misplaced also satisfy
this mental state condition but that blocks that are possibly in the way do not
always satisfy the mental statement condition
goal(tower([X|T])), not(bel(tower([X|T]))). The latter condition
expresses that block X is misplaced and therefore must be part of the agent’s goals
whereas a block that is possibly in the way does not need to be part of one of the
goals of the agent.17

16 We use "does not intend" here instead of the seemingly more natural "does not want" as the
agent is supposed to not have a goal here. The natural language expression "does not want ϕ"
is more commonly used to express that one wants to be in a state where ϕ is not the case (the
effect of which can be strengthed by putting more stress on "not" in the phrase). In other words,
this expression is commonly used to express that one has a goal to achieve that ϕ is not the case.
In contrast, the expression "does not intend" is more commonly used to express the lack of an
intention or goal. From a more technical point of view, as the knowledge representation used
is Prolog, there is no difference between writing not(goal(ϕ)) or goal(not(ϕ)) since
in Prolog the Closed World Assumption is supported (a similar point can be made for the bel
operator). The negation in Prolog is negation as failure and cannot be used to express "explicit"
negation which would be needed to make the distinction.
17 Suppose that block X is misplaced and the agent believes that X is part of a tower [X|T].
In that case, the agent has a goal that the block is part of another tower. That is, we have
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The second action rule may generate options that are not needed to realize the
achievement goal of the agent as there may be stacks of blocks which do not
contain a block needed to build the desired tower and these blocks therefore are
not in the way to achieve this goal. The reader is invited to provide a mental
state condition that more accurately captures the notion of a block being in the
way. (Hint: it is useful to introduce a Prolog definition of the concept above.) The
strategy of building towers in the goal state one by one implemented using the
module construct, however, never requires more than 2N steps where N is the
number of blocks.
Activating a module is making a commitment to achieve the goals in the atten-
tion set that is initialised upon activation. A module is terminated only when the
attention set, i.e. the set of goals currently pursued by the agent, is empty. The
knowledge and skills incorporated in a module need to be sufficient in order to
realize the goals in the agent’s attention set. In addition, another module may
be activated from a module whenever the context of that module is true. In the
example, the agent has a goal to achieve clear(g), tower([g]) and after
moving block f to the table this goal has been achieved and is removed from the
attention set and, as a result, the module is terminated. Upon termination the
agent’s previous goals except for those that have been completely achieved by the
module are put back into the attention set and the agent continues execution.18

4.2.2 Semantics and Verification

In this section we introduce the formal semantics of GOAL and discuss the veri-
fication framework for the language. The semantics of GOAL consists of several
more or less independent parts. The first part defines the semantics of the agent’s
mental state and the mental state conditions that can be used to inspect such states.
The second part defines the semantics of actions and the agent’s action rules used
for choosing an action to perform. The various parts combined together define
the operational semantics of GOAL.

4.2.2.1 Semantics of Mental States

GOAL is a general-purpose agent programming language. The basic design of the
language assumes that beliefs and goals of an agent are specified in a declarative
way. Beliefs of a GOAL agent thus do not encode procedural knowledge but rep-
resent what is the case and goals of a GOAL agent do not specify which actions an
agent wants to perform but represent what state an agent wants to achieve. The

not(goal([X|T])). Vice versa, it is not possible to derive from the fact that a block is possi-
bly in the way that the block is part of one of the goals of the agent and we cannot conclude the
block is misplaced.
18 For further details on and explanation of modules the reader is referred to [19].
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main benefit of using declarative specifications to represent an agent’s beliefs and
goals is that it allows an agent to reason with its beliefs and goals. GOAL thus aims
to facilitate the design of agent programs at the knowledge level [31].
An agent’s mental state consists of its knowledge, its beliefs and its goals as ex-
plained in Section 4.2.1.1. In the current implementation of GOAL these are rep-
resented in Prolog [41, 42]. The knowledge and beliefs of an agent in this imple-
mentation are stored in two different Prolog databases; the storage of goals in this
implementation is slightly more complicated because of the difference in seman-
tics of goals and beliefs. The details are not important here, however, since the
main point we want to make is that GOAL does not commit to any particular
knowledge representation technology. Instead of Prolog an agent might use variants
of logic programming such as Answer Set Programming (ASP; [1]), a database
language such as Datalog [7], the Planning Domain Definition Language (PDDL;
[17]), or other, similar such languages, or possibly even Bayesian Networks [32].
The only assumption that we will make throughout is that an agent uses a sin-
gle knowledge representation technology to represent its knowledge, beliefs and
goals. For some preliminary work on lifting this assumption, we refer the reader
to [13].
In order to abstract from the details of any specific knowledge representation
technology in the presentation of the semantics of GOAL, we first define abstractly
what we mean by a knowledge representation technology. The basic capabilities
that we need such a technology to provide are the capability to represent states
of affairs (which is fundamental), the capability to store these representations in
a storage facility, the capability to reason with them and the capability to change
the representations present in a storage. These capabilities are similar to some of
the functions associated with a knowledge technology as discussed in [15].
The first capability to represent states of affairs is realized by means of a language.
The only assumptions we make about this language is that it defines what a for-
mula is and that it contains a special formula ⊥. In other words, we assume that a
language defines the grammar or syntax of well-formed formulae. We write ϕ ∈ L
to denote that ϕ is a formula of language L; in particular, we have ⊥ ∈ L. In-
tuitively, we think of a formula as a sentence that expresses that a state of affairs is
the case (or not) similar to declarative sentences in natural language. Although the
meaning of formulae of a language is not formally defined, informally, we think
of a formula as having a truth value and of a formula being true or false (but other
possible truth values such as undefined are also allowed). The special formula ⊥ is
assumed to always have the truth value false and is introduced to be able to define
when a set of formulae is inconsistent.
The second capability to store representations is formalised here by means of the
notion of a set. We thus abstract from most implementation details typically asso-
ciated with this capability. A knowledge, belief and goal base each are represented
in the semantics as a set of formulae, or, equivalently, as a subset of a language L.
Below we use D ⊆ L to denote a knowledge base, Σ ⊆ L to denote a belief base,
and Γ ⊆ L to denote a goal base.
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The third capability is realized by means of a consequence relation (also called
entailment). A consequence relation defines when a formula follows from ("is a
consequence of") a set of formulae. We use |= to denote consequence relations
and write T |= ϕ for ϕ follows from a set of formulae T . For example, a formula
ϕ follows from an agent’s belief base Σ whenever we have Σ |= ϕ. When the
special formula ⊥ follows from a set T we say that T is inconsistent; the intuition
here is that in that case T is contradictory, something we typically want to avoid.
For example, we would like an agent’s knowledge and belief base to be consistent.
A consequence relation is the formal counterpart of the reasoning capability of
an agent in the semantics since it allows an agent to derive and reason with its
knowledge, beliefs, and goals.
The fourth and final capability we need is the capability to update an agent’s
beliefs.19 Recall that an agent’s knowledge base is assumed to be static and does
not change since it is assumed to represent conceptual and domain knowledge that
does not change (see also section 4.2.1). In particular we will need to be able to
define how an agent’s beliefs change when it performs an action. In order to do
so an update operator denoted by ⊕ is assumed that updates a set of formulae T
with a formula ϕ. That is, T ⊕ ϕ denotes the new set of formulae obtained after
updating T with ϕ. This will enable us in the next section to say that the resulting
belief base of updating a belief base Σ with the effect ϕ of an action is Σ ⊕ϕ. See
section 4.2.1.1 for a concrete, informally defined STRIPS-style operator.
Summarizing, a knowledge representation technology is defined here as a triple
〈L, |=,⊕〉 with L a language to represent states of affairs, |= a consequence rela-
tion that defines when a formula follows from a set of formulae, and ⊕ defines
how a set of formulae is updated with a given formula.20 Using our definition of
a knowledge representation technology, it is now easy to formally define what a
mental state of an agent is and to formally define the semantics of mental state
conditions. We first define a mental state, since it is needed to define the seman-
tics of mental state conditions as well, and then proceeed to discuss mental state
conditions.
A mental state consists of an agent’s knowledge, its beliefs, and its goals. Each
of these are represented using a particular knowledge representation language L.
The knowledge, beliefs and goals of a rational agent should satisfy some additional
constraints that we will call rationality constraints. First, we assume that an agent’s
knowledge as well as its beliefs are consistent. This is a reasonable assumption,
which may be debated by philosophers, logicians and psychologists, but makes
sense in the context of an agent programming language. We also assume that in-
dividual goals γ ∈ Γ in the goal base of an agent are consistent. It is irrational
for an agent to pursue inconsisent goals, which by definition it cannot achieve.

19 In the setup we use here, we do not need a special capability to update the goal base when an
agent comes to believe it has achieved a goal; in that case we simply remove the goal from the
goal base, which is a set-theoretic operation; see the next section.
20 Technically, we would also need to clarify the notion of a term which may be used to instanti-
ate a variable in order to specify the use of variables in a GOAL agent, but we abstract from such
details here.
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The reason that we require single goals in a goal base to be consistent but not
conjunctions of multiple goals is that we allow an agent to have conflicting goals
in its goal base. For example, an agent may want to achieve a state where the light
is on but thereafter may want to achieve a state where the light is off again. Here
we assume that the language used to express goals is not capable of expressing
such temporal dimensions of goals and therefore allow an agent to have multiple
goals that when viewed as a single goal would be inconsistent. The main reason
for allowing contradictory goals thus is not because we believe that the goals of
an agent may be inconsistent but because of the (assumed) lack of expressivity
of the knowledge representation language used to represent goals here.21 Finally,
an agent is assumed to only have goals which it does not believe to already have
been achieved completely. Any rational agent should avoid investing resources into
achieving something that is already the case. For that reason it should not have
any goals that have already been achieved. Note that an agent is allowed but not
required to believe that the opposite of what it wants is the case; for example, it
may believe the light is on when it wants to have the light off but does not need
to believe so to have the goal.

Definition 4.1. (Mental State)
A mental state is a triple 〈D, Σ, Γ 〉whereD ⊆ L is called a knowledge base,Σ ⊆ L
is a belief base, and Γ ⊆ L is a goal base that satisfy the following rationality
constraints:

• An agent’s knowledge combined with its beliefs is consistent:

D ∪Σ 6|= ⊥

• Individual goals are consistent with an agent’s knowledge:

∀γ ∈ Γ : D ∪ {γ} 6|= ⊥

• An agent does not have goals it believes to be completely achieved: 22

∀γ ∈ Γ : D ∪Σ 6|= γ

The next step in defining the semantics of GOAL is to define the semantics of
mental state conditions. An agent needs to be able to inspect its mental state, and

21 See for work on extending GOAL with temporal logic as a knowledge representation language
[20, 23].
22 The precise formulation of the rationality constraints relating the contents of the goal base to
that of the knowledge and/or belief base of an agent may depend on the knowledge representa-
tion language. In particular, when the knowledge representation language allows for expressing
temporal conditions, e.g. allows for expressing that a state of affairs holds at some time in the
future, then these constraints and the semantics of the G operator below would be in need of
reformulation (see [24]). In that case, the third rationality constraint also could be refined and
in addition we could require that an agent should not have any goals it believes are impossible
to achieve (a condition which can only be properly expressed using temporal operators).
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mental state conditions allow an agent to do so. Mental state conditions are condi-
tions on the mental state of an agent, expressing that an agent believes something
is the case, has a particular goal, or a combination of the two (see also section
4.2.1). Special operators to inspect the belief base of an agent, we use B(ϕ) here,
and to inspect the goal base of an agent, we use G(ϕ) here, are introduced to do
so. We allow boolean combinations of these basic conditions but do not allow the
nesting of operators. Basic conditions may be combined into a conjunction by
means of ∧ and negated by means of ¬. For example, G(ϕ) ∧ ¬B(ϕ) with ϕ ∈ L
is a mental state condition, but B(G(ϕ)) which has nested operators is not. Note
that we do not assume the operators ∧ and ¬ to be present in the L, and if so, a
negation operator might still have a different meaning in L.

Definition 4.2. (Syntax of Mental State Conditions)
A mental state condition ψ is defined by the following rules:

ϕ ::= any element from L
ψ ::= B(ϕ) | G(ϕ) | ψ ∧ ψ | ¬ψ

The meaning of a mental state condition is defined by means of the mental state of
an agent. A belief condition B(ϕ) is true whenever ϕ follows from the belief base
combined with the knowledge stored in the agent’s knowledge base (in order to
define this the consequence relation of the knowledge representation technology
is used). The meaning of a goal condition G(ϕ) is different from that of a belief
condition. Instead of simply defining G(ϕ) to be true whenever ϕ follows from
all of the agent’s goals (combined with the knowledge in the knowledge base),
we will define G(ϕ) to be true whenever ϕ follows from one of the agent’s goals
(and the agent’s knowledge). This is in line with the remarks above that a goal
base may be inconsistent, i.e. may contain multiple goals that taken together are
inconsistent. We do not want an agent to conclude it has the absurd goal ⊥ (i.e.
to achieve the impossible). Since individual goals are assumed to be consistent, we
can use these individual goals to infer the goals of an agent.

Definition 4.3. (Semantics of Mental State Conditions)
Let m = 〈D, Σ, Γ 〉 be a mental state. The semantics of mental state conditions ψ
is defined by the following semantic clauses:

m |=c B(ϕ) iff D ∪Σ |= ϕ,
m |=c G(ϕ) iff ∃γ ∈ Γ : D ∪ {γ} |= ϕ,
m |=c ψ1 ∧ ψ2 iff m |=c ψ1 and m |=c ψ2,
m |=c ¬ψ iff m 6|=c ψ.

Note that in the definition of the semantics of mental state conditions we have
been careful to distinguish between the consequence relation that is defined, de-
noted by |=c, and the consequence relation |= assumed to be given by the knowl-
edge representation technology and used to define |=c. The definition thus shows
how the meaning of a mental state condition can be derived from the semantics
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of more basic notions defined in an arbitrary knowledge representation technol-
ogy.23

In the remainder of this section, it is useful to assume that the knowledge repre-
sentation language at least provides the propositional operators for conjunction
and negation. Here we will simply use the same notation ∧ and ¬ also used for
mental state conditions to refer to these operators in the knowledge representa-
tion language L as well. Given this assumption, note that because of the fact that
a goal base may contain multiple goals that are inconsistent when taken together,
it follows that we may have that G(ϕ) as well as G(¬ϕ). It should be clear from
our previous discussion however that it does not follow from this that G(ϕ∧¬ϕ)
also holds. To repeat, intuitively, G(ϕ) should be interpreted as expressing that
the agent wants to achieve ϕ some time in the future. Given this reading of G(ϕ)
it is perfectly consistent for an agent to also have a goal ¬ϕ, i.e. G(¬ϕ).

P1 if ψ is an instantiation of a classical tautology, then |=c ψ.
P2 if |= ϕ, then |=c Bϕ.
P3 |=c B(ϕ→ ϕ′) → (Bϕ→ Bϕ′).
P4 |=c ¬B⊥.
P5 |=c ¬G⊥.
P6 if |= ϕ→ ϕ′, then |=c Gϕ→ Gϕ′.

Table 4.4 Properties of Beliefs and Goals

Some other properties of the belief and goal modalities and the relation between
these operators are listed in Table 4.4. Here, we use → to denote implication,
which can be defined in the usual way by means of the conjunction ∧ and nega-
tion ¬. The first property (P1) below states that mental state conditions that in-
stantiate classical tautologies, e.g. Bϕ ∨ ¬Bϕ and Gϕ → (Bϕ′ → Gϕ), are valid
with respect to |=c. Property (P2) corresponds with the usual necessitation rule
of modal logic and states that an agent believes all validities of the base logic. (P3)
expresses that the belief modality distributes over implication. This implies that
the beliefs of an agent are closed under logical consequence. Finally, (P4) states
that the beliefs of an agent are consistent. In essence, the belief operator thus
satisfies the properties of the system KD (see e.g. [30]). Although in its current
presentation, it is not allowed to nest belief or goal operators in mental state con-
ditions in GOAL, from [30], section 1.7, we conclude that we may assume as if our
agent has positive (Bϕ→ BBϕ) and negative (¬Bϕ→ B¬Bϕ) introspective prop-
erties: every formula in the system KD45 (which is KD together with the two
mentioned properties) is equivalent to a formula without nestings of operators.
Property (P5) states that an agent also does not have inconsistent goals, that is, we
have |=c ¬G⊥. Property (P6) states that the goal operator is closed under implica-

23 This semantics was first introduced in [22]. For a discussion of alternative semantics for goals,
see also [35].



146 Koen V. Hindriks

tion in the base language. That is, whenever ϕ → ϕ′ is valid in the base language
then we also have that Gϕ implies Gϕ′. This is a difference with the presentation
in [3] which is due to the more basic goal modality we have introduced here. For
the same reason we also have that Bϕ ∧Gϕ is not inconsistent.
We may now put our definitions to work and provide some examples of what we
can do. First, as discussed in section 4.2.1, we can introduce some useful abbreva-
tions. In particular, we can define the notions of an achievement goal A-goal(ϕ)
and the notion of a goal achieved goal-A(ϕ) as follows:

A-goal(ϕ)
df
= G(ϕ) ∧ ¬B(ϕ),

goal-A(ϕ)
df
= G(ϕ) ∧ B(ϕ).

For some properties of the A-goal operator we refer the reader to [3], Lemma
2.4. Both of these defined operators are useful when writing agent programs. The
first is useful to derive whether a part of a goal has not yet been (believed to be)
achieved whereas the second is useful to derive whether a part of a goal has already
been (believed to be) achieved. For some concrete examples, please refer back to
section 4.2.1. It should be noted that an agent is allowed to believe part of one
of its goals has been achieved but cannot believe that one of its goals has been
completely achieved as such goals are removed automatically from the goal base.
That is, whenever we have γ ∈ Γ we must have both A-goal(γ) as well as G(γ)
since it is not allowed by the third rationality constraint in Definition 4.1 that an
agent believes γ in that case.
Note that in this section we have only used the first two components of a knowl-
edge representation technology, the language L and consequence relation |=, so
far. We will use the third component, the update operator ⊕, in the next section
to formally define the effects of performing an action.

4.2.2.2 Semantics of Actions and Action Selection

GOAL has a formal, operational semantics defined by means of Plotkin-style tran-
sition semantics [33]. The details of the semantics of modules and communication
are not discussed here.24

In order to define the semantics of actions, we need to model both when an ac-
tion can be performed as well as what the effects of performing an action are.
As actions, except for the built-in actions, are user-defined, we introduce some
assumptions about what information is available to define the semantics. First,
we assume that it is known which actions the agent can perform, i.e. those
actions specified by the programmer in the agent program, and that these ac-
tions are given by a set A. Second, we assume that two mappings pre and post

24 The reader is referred to [19] for a detailed semantics of modules. Communication in the
current implementation of GOAL implements a simple "mailbox semantics" as in 2APL [12].
In GOAL, messages are stored in an agent’s mailbox and may be inspected by querying special,
reserved predicates sent and received. See for a discussion also section 4.2.4.
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which map actions a from this set of actions A and mental states m to a for-
mula ϕ in the knowledge representation language L are given. The mappings
pre and post are assumed to provide the preconditions respectively postcondi-
tions associated with an action in a given state. For example, we would have
pre(move(a,table),m)=clear(a), clear(table), on(a,b) in the
initial state mental m of the GOAL agent listed in Table 4.2 and
post(move(a,b),m)=not(on(a,b)),on(a,table). Finally, we also as-
sume that the postconditions specified by post for each action are consistent with
the domain knowledge of the agent. As the domain knowledge of an agent is
assumed to be static, it would not be possible to perform an action with a post-
condition that conflicts with the agent’s domain knowledge without violating the
rationality constraints introduced earlier.
The precondition of an action is used to represent when an action can be per-
formed, whereas the postcondition is used to represent the effects of an action.
An action may affect both the beliefs and goals of an agent. The postcondition ex-
presses how the beliefs of an agent’s mental state should be updated. This is where
the update operator ⊕ of the knowledge representation technology is useful. The
new belief base that results from performing an action a ∈ A can be obtained by
applying this operator. In addition, the goals that have been completely achieved
need to be removed from the goal base. This transformation of the mental state is
formally defined by means of a mental state transformer function M, which also
provides the semantics of the built-in actions adopt and drop below.

Definition 4.4. (Mental State Transformer M)
Let pre and post be mappings from A to L. Then the mental state transformer
function M is defined as a mapping from user-defined and built-in actions A ∪
{adopt(ϕ), drop(ϕ) |ϕ ∈ L} and mental states m = 〈D, Σ, Γ 〉 to mental states
as follows:

M(a,m) =
{
〈D, Σ′, Γ \ Th(D ∪Σ′)〉 if D ∪Σ |= pre(a,m)
undefined otherwise

M(adopt(ϕ),m) =
{
〈D, Σ, Γ ∪ {ϕ}〉 if 6|= ¬ϕ and Σ 6|= ϕ
undefined otherwise

M(drop(ϕ),m) = 〈Σ,Γ \ {ψ ∈ Γ | ψ |= ϕ}〉

where Σ′ = Σ ⊕ post(a,m) and Th(T ) = {ϕ ∈ L | T |= ϕ}.

As discussed above, an action rule r is of the form if ψ then a. An action rule
specifies that action a may be performed if the mental state condition ψ and the
precondition of a hold. In that case, we say that action a is an option. At runtime,
a GOAL agent non-deterministically selects an action from the set of options. This
is expressed in the following transition rule, describing how an agent gets from
one mental state to another.

Definition 4.5. (Action Semantics)
Let m be a mental state, and r =if ψ then a be an action rule. The transition
relation a−→ is the smallest relation induced by the following transition rule.
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m |=c ψ M(a,m) is defined

m
a−→M(a,m)

The execution of a GOAL agent results in a computation. We define a computation
as a sequence of mental states and actions, such that each mental state can be
obtained from the previous by applying the transition rule of Definition 4.5. As
GOAL agents are non-deterministic, the semantics of a GOAL agent is defined as
the set of possible computations of the GOAL agent, where all computations start
in the initial mental state of the agent.

Definition 4.6. (Computation)
A computation, typically denoted by t, is an infinite sequence of mental states
m0, a0,m1, a1,m2, a2, . . . such that for each i we have that mi

ai−→ mi+1 can be
derived using the transition rule of Definition 4.5, or for all j > i, mj = mi and
mi 6

a−→ m′ for any a and m′. The meaning S of a GOAL agent with initial mental
state m0 is the set of all computations starting in that state. We also write tmi to
denote the ith mental state and tai to denote the ith action.

Observe that a computation is infinite by definition, even if the agent is not able
to perform any action anymore from some point in time on. Also note that the
concept of an agent computation is a general notion in program semantics that is
not particular to GOAL. The notion of a computation can be defined for any agent
programming language that is provided with a well-defined operational semantics.

4.2.2.3 Verification Framework

A formal verification framework exists to verify properties of GOAL agents [3].
This verification framework allows for compositional verification of GOAL agents
and has been related to Intention Logic [20]. The language GOAL thus is firmly
rooted in agent theory.
The verification logic for GOAL is based on Linear Temporal Logic extended
with modal operators for beliefs and goals. In addition the logic includes a set of
Hoare rules to reason about actions [3]. The setup of the verification framework
has some similarities with that for Unity [8]. To obtain a verification logic for
GOAL agents temporal operators are added on top of mental state conditions to
be able to express temporal properties over traces. Additionally an operator start
is introduced to be able to pinpoint the start of a trace.25

Definition 4.7. (Temporal Language: Syntax)
The temporal language LG, with typical elements χ, χ′, is defined by:

25 Here, only the temporal semantics is presented. The compositional verification of an agent
program also requires reasoning about actions. [3] introduces so-called Hoare rules to do so. In
[20] an operator [a]χ for reasoning about actions is introduced as this makes it easier to relate
the verification logic for GOAL to Intention Logic [10].
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χ ∈ LG ::= start | ψ ∈ Lm | ¬χ | χ ∧ χ | χUχ

The semantics of LG is defined relative to a trace t and time point i.

Definition 4.8. (Temporal Language: Semantics)
The truth conditions of sentences from LG given a trace t and time point i are
inductively defined by:

t, i |= start iff i = 0,
t, i |= Bφ iff tmi |=c Bφ,
t, i |= Gφ iff tmi |=c Gφ,
t, i |= ¬ϕ iff t, i 6|= ϕ,
t, i |= ϕ ∧ ψ iff t, i |= ϕ and t, i |= ψ,
t, i |= ©ψ iff t, i+ 1 |= ψ,
t, i |= ϕUψ iff ∃j ≥ i : t, j |= ψ and ∀i ≤ k < j : t, k |= ϕ

Using the U operator, other temporal operators such as the "sometime in the
future operator"♦ and the "always in the future operator" can be defined by
♦ψ ::= trueUψ and ψ ::= ¬♦¬ψ.
The temporal logic introduced above has provided a basis for a Maude [9] im-
plementation for the GOAL language which facilitates model checking of GOAL
agents. Maude has been used to verify the Blocks World agent discussed in this
chapter.

4.2.3 Software Engineering Issues

A key step in the development of a GOAL agent is the design of the domain knowl-
edge, the concepts needed to represent the agent’s environment in its beliefs and
the goals of the agent. As it has been discussed above, GOAL does not commit
to any particular knowledge representation language to represent the beliefs and
goals of an agent. In section 4.2.2.1 we have abstracted away from any particular
knowledge representation language and defined an abstract knowledge represen-
tation technology. This abstract knowledge representation has been defined such
that it makes clear what the minimal requirements are that a particular knowl-
edge representation language should satisfy in order to facilitate integration into
GOAL. Although the current implementation has integrated Prolog as the technol-
ogy for knowledge representation, in principle, other languages such as Answer
Set Programming [1], expert system languages such as CLIPS [26], database lan-
guages such as SQL [7], or a language such as PDDL [17] also fit the definition of a
knowledge representation technology in section 4.2.2.1 and could have been used
as well.
The option to integrate other knowledge representation technologies than Prolog
in an agent programming language may facilitate programmers as agent program-
ming per se does not require a programmer to learn a new and specific knowl-
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edge representation language but the programmer may choose its own favorite
knowledge representation tool instead. In principle this flexibility also allows the
integration of, for example, legacy databases. The GOAL interpreter provides an
interface that facilitates such integration in Java.
The GOAL interpreter provides other interfaces that facilitate connecting GOAL
to an environment or to middleware infrastructure on top of which GOAL agents
are run. The interface to an environment is generic and abstracts from the imple-
mentation language used to run the environment. At the time of writing, as the
GOAL interpreter has been written in Java, Java has been used to connect GOAL
agents to an environment. Our view is that this interface can be used and allows
the integration of GOAL agents into a larger application, part of which has been
written in Java or other languages.

4.2.4 Other features of the language

In this section we briefly discuss some other features of the GOAL language that are
important in order to write practical applications. As the main aim of this chapter
is to introduce the core concepts that distinguish GOAL from other languages, we
only discuss some of the issues that are involved in the development of GOAL
agents.

Environments and Sensing

Agents with incomplete information that act in an environment which possibly
inhabits other agents need to have sensors for at least two reasons. First, sensors
provide an agent with the ability to acquire new information about its environ-
ment previously unknown to it and thus to explore its environment. Second, sen-
sors provide an agent with the ability to acquire information about changes in its
environment that are not caused by the agent itself and thus to keep track of the
current state of its environment.
In GOAL, sensing is not represented as an explicit act of the agent but a perceptual
interface is defined between the agent and the environment that specifies which
percepts an agent will receive from the environment. A GOAL agent thus does
not actively perform sense actions (except for the case where the environment
makes such actions available to an agent). Each time after a GOAL agent has per-
formed an action the agent processes any percepts it may have received through
its perceptual interface. Percepts represent "raw data" received from the environ-
ment the agent is operating in. The percept interface is part of the environment
interface to connect GOAL agents to an environment.
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Multi-Agent Systems

GOAL facilitates the development and execution of multiple GOAL agents. A
multi-agent GOAL system needs to be specified by means of a mas file. A mas
file in GOAL is a recipe for running a multi-agent system. It specifies which agents
should be launched when the multi-agent system is launched and which GOAL
source files should be used to initialize those agents. GOAL allows for the possi-
bility that multiple agents instantiate a single GOAL agent file. Various features
are available to facilitate this. In a mas file one can associate multiple agent names
with a single GOAL file. Each agent name additionally can be supplied with a list
of optional arguments. These options include the number of instances of an agent,
indicated by #nr, that should be launched. This option is available to facilitate the
launching of large numbers of agents without also having to specify large numbers
of different agent names. Other options allow to initialize an agent with a particu-
lar set of beliefs specified in a separate file using #include:filename.bb. The
beliefs in the file filename.bb are simply added to the belief base specified in
the agent file. This option allows for the launching of a multi-agent system with a
set of agents that, for example, share the same domain knowledge but have differ-
ent beliefs about the state of the environment. The #override:filename.bb
option is provided to completely override and replace the initial beliefs specified
in the GOAL agent file. The overriding of a by the #override:filename.bb
option simply replaces all beliefs in the initial belief base specified in the GOAL
file; this is implemented by using the file filename.bb to initialize the belief
base of the agent instead of loading the beliefs specified in the GOAL file into the
agent’s belief base. Similar options are available for other sections such as the goals
and action-spec sections of a GOAL agent.
GOAL does not support explicit constructs to enable the mobility of agents. The
main concern in the design of the language is to provide appropriate constructs
for programming rational agents whereas issues such as mobility are delegated to
the middleware infrastructure layer on top of which GOAL agents are run.

Communication at the Knowledge Level

Communication in the current implementation of GOAL is based on a simple
"mailbox semantics", very similar to the communication semantics of 2APL [12].
Messages received are stored in an agent’s mailbox and may be inspected by the
agent by means of queries on special, reserved predicates sent(agent,msg) and
received(agent,msg) where agent denotes the agent the message has been
sent to or received from, respectively, andmsg denotes the content of the message
expressed in a knowledge representation language.
Although a "mailbox semantics" can be used to write agents that communicate
messages, such a semantics leaves too much to the programmer. We feel that a se-
mantics is needed that facilitates programming with the high-level concepts used
to write agents such as beliefs and goals. Agent communication at the knowledge
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level should facilitate communication between agents about their beliefs and goals.
At the time of writing, it seems that there is no commonly agreed approach to in-
corporate communication into agent programming languages. Various languages
take different approaches. The "mailbox semantics" of 2APL is based on com-
munication primitives Send(receiver,performative,content) with
the effect of adding sent(Receiver, Performative, Content) to the
sender’s mailbox and received(Receiver, Performative, Content)
to the receiver’s mailbox. A similar construct is available in Jason [4]. However, the
effect of performing a .send(Receiver,tell,Content) where tell is a
specific instance of a performative is that the receiving agent adds the Content
of the received message to its belief base instead of the fact that a message has been
received.
The semantics of communication in agent programming languages seems rather
poor compared to more theoretical frameworks such as FIPA. FIPA introduces
many primitive notions of agent communication called speech acts. The broad
range of speech act types identified, however, may complicate writing agent pro-
grams and it makes more sense to us to restrict the set of communication prim-
itives provided by an agent programming language. In this respect we favor the
approach taken by Jason which limits the set of communication primitives to a
core set. We would prefer a set of primitives that allows communication of declar-
ative content only in line with our aim to provide an agent programming language
that facilitates declarative programming. We believe this is still an evolving area
that requires more research. It would be useful, from a more practical perspective,
to gain more experience about what would be useful communication primitives
that facilitate the programming of multi-agent systems.

4.3 Platform

4.3.1 Available tools and documentation

The GOAL interpreter can be obtained by downloading the GOAL installer. For
the most up to date version as well as information about the GOAL agent pro-
gramming language the reader may visit

http://mmi.tudelft.nl/~koen/goal.html

Here also additional references to GOAL-related publications can be found. The
language comes with an Integrated Development Environment (IDE) which al-
lows editing and debugging of GOAL agents. The IDE is illustrated in Figures 4.3
and 4.4. Figure 4.3 shows the IDE after loading a mas file into the IDE. Upon
loading a mas file, all files related to the same project are loaded and the plain text
files (inlcuding GOAL files) are ready for editing. jar files related to environments
cannot be edited.
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Fig. 4.3 GOAL Integrated Development Environment

Alternatively, a loaded GOAL mas file can be executed from the IDE and the IDE is
switched automatically to the run environment. Various options are available here
to a user to monitor and debug GOAL agents. Figure 4.4 shows the introspector
that is associated with each agent that is part of the multi-agent system that has
been launched.

Fig. 4.4 GOAL Agent Introspector

The introspector shows the agent’s beliefs and goals, and any percepts and mes-
sages received. The knowledge, action rules and action specfications which are
static parts of a GOAL agent are not shown here but may be inspected by inspect-
ing the GOAL agent program text. The debugging functionality provided by the
IDE can be used to trace the operation of an agent at various levels of granularity,
e.g. at the inference level which allows tracing belief and goal inferences as well
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as at higher levels which allows tracing of action selection only. Additionally, a
sniffer is available to monitor message exchanges between agents.
GOAL comes with documentation discussing the language, IDE and some exam-
ples that are distributed with the language as well. A manual is provided for GOAL,
including a discussion of the main language features, the IDE, installation and
some advice on troubleshooting, and can be obtained from the site referenced
above. The development of a tutorial is planned.

4.3.2 Standards compliance, interoperability and portability

The implementation of GOAL has been tested and runs on most well-known plat-
forms. The system has been tested on Windows XP, Windows Vista 32bit, OSX
Tiger, OSX Leopard (Intel only), and Linux with Ubuntu or Suse 10.1. The GOAL
interpreter has been written in Java and needs SUN Java version 1.5 or higher.
The design of the interpreter has been structured such that it provides a "plu-
gin framework" that, in principle, can be instantiated with various knowledge
representation technologies in line with the discussion in section 4.2.2.1 and vari-
ous middleware systems that facilitate message passing and distributed computing
on multiple machines. This has been achieved by defining a number of interfaces
that specify what functionality the GOAL interpreter expects to be provided by
the knowledge representation technologies or middleware systems. Similarly, an
interface has been created that specifies how the GOAL interpreter can be con-
nected to environments, e.g. a robot system or a simulated environment such as
the Blocks World.
The requirements on the knowledge representation language used are minimal but
the choice may introduce additional dependencies that may have consequences
for portability. The current implementation integrates and uses SWI-Prolog [42]
as the knowledge representation technology. As SWI-Prolog runs on most well-
known operating systems, this does not introduce any severe restrictions, but
other choices may do so. The use of SWI-Prolog does have implications for the
number of agents that may be run on a single machine, however. Since by default
SWI-Prolog reserves 100MB for any instance of a SWI-Prolog engine, in combi-
nation with the memory capacity of a machine on which the GOAL interpreter
is run, this constrains the number of agents that may be run on that machine.
Creating additional GOAL agents that go beyond this limit requires distributing
these agents on multiple machines.
Similarly, the GOAL interpreter does not depend on any particular middleware
infrastructure. The current implementation uses JADE [2] to facilitate interoper-
ability with other systems that are built on top of JADE, but in principle any
other middleware system that provides for message passing and the distributed
execution of agents on multiple machines may be chosen. The middleware on top
of which GOAL is run may also introduce additional dependencies or constraints
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on the GOAL interpreter. We did not encounter any severe problems, however,
while running GOAL on top of JADE on the platforms listed above.
The GOAL framework does not itself provide support for open systems nor for
heterogeneous agents. GOAL agents are particular agents defined by their beliefs,
goals and action rules that facilitate decision making. GOAL agents may neverthe-
less interact with other types of agents whenever these agents run on top of the
same middleware infrastructure and exchange messages using the facilities pro-
vided by this infrastructure.

4.3.3 Other features of the platform

The current state of the GOAL platform is still a prototype. The core of the GOAL
framework is stable and well-defined in several papers [3, 19, 21, 22] and has been
implemented in the GOAL interpreter. GOAL will be distributed under the GPL
open source license.The GOAL language is aimed at providing a general-purpose
programming language for rational agents at the knowledge level. As it does not
commit to any particular knowledge representation technology, domain or mid-
dleware infrastructure (see also section 4.3.2), users and/or developers of agent
systems are provided with the tools to extend the GOAL interpreter with other
knowledge representation technologies, and to implement other environments to
run agents in.

4.4 Applications supported by the language and/or the
platform

The GOAL agent programming language provides a high-level language for pro-
gramming agents. The language provides high-level concepts such as beliefs, goals
and action rules to select actions. GOAL is a general purpose agent programming
language, but is most suitable for developing systems of rational agents that de-
rive their choice of action from their beliefs and goals. It is not targeted at any
specific application in particular, but may be most beneficially used in domains
that are familiar from the traditional planning competitions. The Blocks World
example discussed in this chapter provides an example of such a domain, but other
domains such as the transportation domain may also provide good examples.
GOAL agents provide additional flexibility and robustness as also illustrated by
the Blocks World example. This is achieved by a flexible action selection mecha-
nism based on action rules. The GOAL interpreter has been used in education to
program agents that operate in a toy world and similarly a multi-agent system for
cleaning dirt in a grid world has been written. We are currently looking at more
serious applications among which a system of agents that negotiate by exchanging
qualitative information besides the traditional bids in an alternating offer protocol
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and a Philips iCat robot with a cognitive control layer that interacts with humans
while playing a game.
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Chapter 5
Merging Agents and Services — the JIAC
Agent Platform

Benjamin Hirsch, Thomas Konnerth, and Axel Heßler

Abstract The JIAC V serviceware framework is a Java based agent framework
with its emphasis on industrial requirements such as software standards, secu-
rity, management, and scalability. It has been developed within industry- and
government-funded projects during the last two years. JIAC combines agent tech-
nology with a service oriented approach. In this chapter we describe the main
features of the framework, with a particular focus on the language JADL++ and
the service matching capabilities of JIAC V.

5.1 Motivation

The JIAC (Java Intelligent Agents Componentware) agent framework was orig-
inally developed in 1998 [1] and has been extended and adapted ever since. Its
current incarnation, JIAC V, as well as its predecessor JIAC IV, is based on the
premise of service-oriented communication, and the framework as well as its pro-
gramming language have been geared towards this.
While originally the main application area was telecommunications, JIAC IV has
been applied in a number of different projects, ranging from personal information
agents [2] and service delivery platforms [22] to simulation environments [5].
The design of JIAC V was guided by the simple paradigm to take the successful
features of JIAC IV and rebuild them with modern software-libraries and tech-
nologies. However, while the technologies and technical details may have changed,
most features of JIAC IV are still present. Nevertheless, we made some deliberate
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design changes to the agent architecture. This was mainly aimed at simplifying
things for the programmer, as we felt that usability was the aspect that needed the
most improvements.
The main objectives of JIACs architecture are:

• Transparent distribution
• Service based interaction
• Semantic Service Descriptions (based on ontologies)
• Generic Security, Management and AAA1 mechanisms
• Support for flexible and dynamic reconfiguration in distributed environments

(component exchange, strong migration, fault tolerance)

JIAC V agents are programmed using JADL++ which is the successor of JADL
(JIAC Agent Description Language) [25]. This new language features knowledge
or facts based on the ontology language OWL [27] as well as an imperative script-
ing part that is used for the implementation of plans and protocols. Moreover,
it allows to semantically describe services in terms of preconditions and effects,
which is used by the architecture to implement features such as semantic service
matching and planning from first principles. The architecture implements dy-
namic service discovery and selection, and thus the programmer does not have to
distinguish between remote services and local actions.
The JIAC V agent model is embedded in a flexible component framework that
supports component exchange during runtime. Every agent is constructed of a
number of components that either perform basic functionalities (such as commu-
nication, memory or the execution cycle of an agent) or implement abilities and
access to the environment of an agent. These components are bundled into an
agent by plugging them into the superstructure of the agent.
During runtime, all parts of an agent, i.e. all components as well as the agent
itself, can be monitored and controlled via a generic management framework.
This allows either the agent itself or an outside entity such as an administrator
to evaluate the performance of an agent. Furthermore, it allows the modification
of an agent up to the point where whole components can be exchanged during
runtime.
The execution cycle of an agent supports the BDI [4] metaphor and thus realises
a goal oriented behaviour for the agents. This behaviour can be extended with
agent abilities like planning, monitoring of rules, or components for e.g. handling
of security certificates.
Finally, communication between JIAC V agents is based around the service
metaphor. This metaphor was already the central point in the design of the JIAC
IV architecture. However, JIAC V extends the rather restricted service concept
of JIAC IV to include multiple types of services, thereby allowing to integrate
all kinds of technologies, ranging from simple Java-methods to semantic service
described in OWL-S [3].

1 Authentication, authorisation, and accounting. AAA refers to security protocols and mecha-
nisms used for online transactions and telecommunication. For more information see [29].
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5.2 Language

JIAC V features an agent programming language called JADL++. While it is pos-
sible in JIAC to implement agents using plain Java, JADL++ allows the program-
mer to implement agents with a high abstraction level and the explicit usage of
knowledge based concepts.
JADL++ consists of a scripting and a service description language part. It is de-
signed to support programmers in developing different types of agents, ranging
from simple reactive agents to powerful cognitive agents that are able to use rea-
soning and deliberation. The language is the successor of the JIAC IV Action
Description Language JADL [25].
In order to understand some of the design choices made, it is useful to compare
the main features with JIAC V’s predecessor JIAC IV and its agent programming
language JADL.
Our experiences with JADL were mixed [20]. On the one hand, using a knowl-
edge oriented scripting language for programming agents worked quite well. With
JIAC IV, agents and applications could be programmed very efficiently and on a
high abstraction level. Also, the addition of STRIPS style preconditions and ef-
fects [13] to action and service descriptions allowed us to enhance agent programs
with error correction and planning from first principles, which in turn resulted
in more robust and adaptive agents.
However, there were a number of drawbacks that prompted us to change some
of the features of JADL++ quite radically. The first of these was the use of a
proprietary ontology description language. The use of ontologies to describe data
types is a sound principle [6], but the proprietary nature of JIAC IV ontologies
defeated the purpose of interoperability. Although we did provide a mapping to
OWL ontologies [27], thereby providing some measure of interoperability, it was
a clear disadvantage to work with proprietary ontologies, as the whole idea of
ontologies is to share knowledge, and to include publicly available knowledge
bases. Therefore, we now use OWL for ontology descriptions and OWL-S [3] for
service descriptions in JADL++.
Furthermore, JADL allowed exactly one method of agent interaction, namely
though service calls. Although a programmer was free to use any FIPA speech
acts [14] within that service protocol, the core service protocol itself was always
wrapped by a FIPA request protocol [15]. The restriction of communication to
services allowed us to implement strong security features which were instrumen-
tal in JIAC IV becoming the first security certified agent framework according to
common criteria level three [7, 8, 9].
The service approach proved to be quite comfortable for furnishing services with
security or quality of service, but it did have some distinct drawbacks with respect
to more simple types of communication. For example, it was not possible to send
a simple Inform speech act to one or more agents in JADL, unless those agents
provided a service that received that speech act. Therefore, JADL++ now features
a message based interaction method that allows both, single Inform messages and
multicast messages to groups of agents.
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Last but not least, we changed the syntax style. JADL++ uses a C-style syntax
for most procedural aspects of the language, while JADL used a LISP-like syntax.
The reason for this is that the acceptance of JADLs LISP-style syntax among pro-
grammers was not very good, and programmers tended to confuse the logical and
procedural parts of the language which both had a similar syntax. JADL++ now
clearly discerns between the two programming concepts.

5.2.1 Syntactical Aspects

In order to explain the role of JADL++ within an agent, we need to give a brief
description of how a JIAC V agent is constructed and how it operates. A more
detailed explanation of an agents structure will be given in Section 5.3.
The basic concept of a JIAC V agent is that of an intelligent and autonomously
acting entity. Each agent has its own knowledge, its own thread of execution and a
set of abilities called actions that it can apply to its knowledge or its environment.
Furthermore, agents are able to use abilities provided by other agents, which we
then call services.
In order to implement a new agent, a programmer needs to identify the roles the
agent is supposed to play. For each of these, relevant goals and actions that are
necessary to fulfill the role are specified. Moreover, each action is either marked
as private or accessible from other agents. Finally, the programmer needs to im-
plement the actions.
The implementation of the actions can be done in various ways. An action is
made available to the agent by the inclusion of a component that executes the
actions functionality. Consequently, most basic way to implement an action is to
implement it in pure Java, and to include a component that calls the Java code
into the agent. Other options include the usage of web services or other existing
technologies.
However, while implementing an action with Java and plugging it into an agent is
very straightforward, it has some distinct drawbacks. First of all, the composition
of multiple actions into a single workflow is complex and error prone. Action
invocation in JIAC V is asynchronous and thus the programmer has to take care
of the synchronization if he wants to invoke multiple actions. Furthermore, while
the agent’s memory can be used with simple Java objects, one strong feature of
JIAC V is the possibility of using OWL ontologies to represent knowledge. Access
to these ontologies is possible from Java, but not very comfortable as most APIs
work in a very generic way and require a programmer to know the used ontology
by heart.
To alleviate the above issues, we introduce the agent programming language JADL
++. This language does not aim at introducing elaborate language concepts but is
merely devised to simplify the implementation of large and complex applications
with JIAC V. At the same time, it tries to embed OWL and especially OWL-S
and support programmers that do not have a logics background in their usage of
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both. An action that is implemented in JADL++ can be plugged into an agent via
a special component that implements an interpreter for the language and can hold
multiple scripts. To the agent, it looks like any other component that provides
actions implemented in Java.
JADL++ is fairly easy to learn, as it uses mostly elements from traditional imper-
ative programming languages. The instruction set includes typical elements like
assignments, loops, and conditional execution. For the knowledge representation
part of the language, JADL++ includes primitive and complex data types, where
the notion of complex data types is tightly coupled to OWL-based ontologies.
The complex data types are the grounding for the integrated OWL support, and
a programmer is free to either use these complex data types like conventional ob-
jects or he can use them within their semantic framework, thus creating more
powerful services.

1 i n c l u d e de . d a i l a b . onto logy . CarOntology ;
2 import de . d a i l a b . s e r v i c e . R e g i s t r a t i o n O f f i c e ;
3

4 s e r v i c e F i n d A n d R e g i s t e r C a r S e r v i c e
5 ( in $name : s t r i n g $ c o l o r : s t r i n g )
6 ( out $foundCar : CarOntology : Car )
7 {
8

9 i f ( $name != n u l l ) {
10 // c r e a t e a c a r t e m p l a t e with name and c o l o r
11 // and s e a r c h the memory f o r i t
12

13 $carTempla te = new CarOntology : Car ( ) ;
14 $carTempla te . owner = $name ;
15 $carTempla te . c o l o r = $ c o l o r ;
16 $foundCar = r e ad $carTempla te ;
17 }
18 e l s e {
19 // i f no name i s g iven , any c a r w i l l do
20

21 $carTempla te = new CarOntology : Car ( ) ;
22 $carTempla te . c o l o r = $ c o l o r ;
23 $foundCar = r e ad $carTempla te ;
24 }
25

26 // now c a l l the r e g i s t r a t i o n s e r v i c e to r e g i s t e r the found c a r
27 var $ r e s u l t : bool ;
28 invoke C a r R e g i s t r a t i o n S e r v i c e ( $foundCar ) ( $ r e s u l t ) ;
29

30 // and p r i n t the r e s u l t s
31 i f ( $ r e s u l t ) {
32 l o g i n f o " S u c c e s s " ;
33 } e l s e {
34 l o g e r r o r " F a i l u r e " ;
35 }
36

37 // end of s e r v i c e
38 // the output v a r i a b l e $foundCar i s a l r e a d y f i l l e d ,
39 // so no r e t u r n i s needed .
40 }

Fig. 5.1 JADL++ example
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A simple example of the language can be seen in Figure 5.1. This example shows
the implementation of a service that searches the memory of an agent for a car and
then calls a registration service. The service has two input parameters: the name
of the owner and the color of the car. Additionally, it has an output parameter
that returns the found car. If the name of the owner is left empty, the service will
search any car with a matching color.
For the memory search, the script first creates a template (either with the name
of the owner or without it). In line 13, new CarOntology:Car is used to
create a new object instance from the class Car as described in the ontology
CarOntology. Properties of a car are accessed via the . operator. For exam-
ple, in line 15, $carTemplate.color denotes the color of the car object that
is stored in the variable $carTemplate.
Access to the memory is done using a tuple space semantic. That means that
the memory is given a template of an object that should be retrieved and then
tries to find the object stored in the memory that gives the best match with the
template. The match may not have property values that contradict the values of
the template. However, if any property values are not set (either for the template
or for the matching object) the match is still valid.
During the course of the script, another service is invoked. This service is used
to register the car with the registration office. The service is imported via the
import statement at the top of the example, so no fully qualified name is neces-
sary. The invoked service has one input and one output parameter and as we have
given no further information regarding providers etc., the agent will call the first
service it can find that has a matching name and matching parameters.
Figure 5.2 shows a shortened version of the syntax of JADL++ in eBNF nota-
tion. We omit production rules for names and identifiers, as well as definitions
of constants. The complete syntax with accompanying semantics can be found
in [21].

5.2.1.1 Data Types & Ontologies

The primitive data types are an integral part of the language. Internally, data types
are mapped to corresponding XSD datatypes2 [40], as this makes the integration of
OWL simpler. Instead of implementing the full range of XSD types only the most
important ones, namely bool, int, float, string, and uri, are currently
supported.
An important aspect of the language is the integration of OWL-Ontologies as a
basis for service descriptions and knowledge representation in general. As men-
tioned already, services are defined using the OWL-S service ontology. OWL pro-
vides the semantic grounding for data types, structures, and relations, thus cre-
ating a semantical framework for classes and objects that the programmer can
use. In contrast to classical objects, however, the programmer does not need to

2 XML Schema, a W3C standard for the definition of XML documents.
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1 Model :
2 header = ( Header ) *
3 e l e m e n t s = ( S e r v i c e ) *
4 Header :
5 " import " T_YADLImport " ; " | " i n c l u d e " T_OWLImport " ; "
6 S e r v i c e :
7 " s e r v i c e " T_BPELConformIdenti f ier
8 d e c l a r a t i o n = D e c l a r a t i o n
9 body = Seq

10
11 D e c l a r a t i o n :
12 " ( " " in " in pu t = ( V a r i a b l e D e c l a r a t i o n ) * " ) "
13 " ( " " out " output = ( V a r i a b l e D e c l a r a t i o n ) * " ) "
14 V a r i a b l e D e c l a r a t i o n : " var " V a r i a b l e " : " Abstrac tType
15 V a r i a b l e : name = T _ V a r i a b l e I d e n t i f i e r
16 ( complex = " . " proper ty = Proper ty ) ?
17 Proper ty : name = T_BPELConformIdenti f ier
18
19 S c r i p t :
20 Seq | Par | P r o t e c t | TryCatch | I f T h e n E l s e
21 | Loop | ForEach | Atom
22
23 Seq : " { " ( S c r i p t ) * "}"
24 Par : " par " "{" ( S c r i p t ) * "}"
25 P r o t e c t : " p r o t e c t " "{ " ( S c r i p t ) * "}"
26 TryCatch : " t r y " "{" ( S c r i p t ) * "}"
27 " c a t c h " "{" ( S c r i p t ) * "}"
28 I f T h e n E l s e : " i f " " ( " E x p r e s s i o n " ) " S c r i p t
29 ( " e l s e " S c r i p t ) ?
30 Loop : " whi l e " " ( " E x p r e s s i o n " ) " S c r i p t
31 ForEach : " f o r e a c h " " ( "
32 e l ement = T _ V a r i a b l e I d e n t i f i e r " in "
33 l i s t = T _ V a r i a b l e I d e n t i f i e r " ) "
34 S c r i p t
35 Atom : Ass i gn | V a r i a b l e D e c l a r a t i o n | Invoke
36 | Read | Write | Remove | Query | Send
37
38 Ass i gn : V a r i a b l e "=" Ass i gnVa lue " ; "
39 Ass i gnVa lue : E x p r e s s i o n | Read | Remove | Query
40
41 Invoke : " invoke "
42 name = T_BPELConformIdenti f ier
43 " ( " in pu t = ( Term ) * " ) "
44 " ( " output = ( T _ V a r i a b l e I d e n t i f i e r ) * " ) " " ; "
45 Read : " r e a d " Term " ; "
46 Write : " w r i t e " Term " ; "
47 Remove : " remove " Term " ; "
48 Query : " query " " ( " s u b j e c t=Term proper ty=Proper ty o b j e c t=Term " ) " " ; "
49 Send : " send " r e c e i v e r = T_BPELConformIdenti f ier
50 message = Term " ; "
51 Re c e i v e : " r e c e i v e " message Id = BPELConformIdent i f i er " ; " ;
52
53 Value : " t r u e " | " f a l s e " | " n u l l " | URLConst | S t r i n g C o n s t
54 | F loa tCons t | IntCons t | HexConst
55 | "new" o b j e c t = ComplexType " ( " " ) "
56 Term : V a r i a b l e | Value
57
58 E x p r e s s i o n : ( not = " ! " ) ? headTerm = Express ionTerm
59 t a i l s =( E x p r e s s i o n T a i l ) *
60 Express ionTerm : Value | V a r i a b l e | B r a c k e t E x p r e s s i o n
61 B r a c k e t E x p r e s s i o n : " ( " e x p r e s s i o n = E x p r e s s i o n " ) "
62 E x p r e s s i o n T a i l : o p e r a t o r = Operator term = Express ionTerm
63
64 Enum Operator :
65 And = "&&" | Or = "||" | NotFac = " ! "
66 | Add = "+" | Sub = "−" | Mul = "*" | Div = "/" | Mod = "%"
67 | Lower = "<" | LowerEqual = "<=" | Equal = "=="
68 | NotEqual = "!=" | Gra te r = ">" | Grea t e rEqua l = ">="
69
70 Abstrac tType : SimpleType | ComplexType ;
71 SimpleType : d a t a t y p e = Str ingType | URLType | BoolType | FloatType
72 | IntType | HexType | DateType | TimeType | AnyType
73 ComplexType : onto logy = T_OWLOntology " : "
74 owlClassName = T_BPELConformIdenti f ier

Fig. 5.2 JADL++ syntax
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directly and fully instantiate all properties of an object before they are usable, as
default-values, inheritance, and reasoning are employed to create properties of an
instance that have not been explicitly set.
Currently, we are using ontologies that are compatible to the OWL-Lite standard,
as these are still computable and we are interested in the usability of OWL in a
programming environment rather than theoretical implications of the ontological
framework.

5.2.1.2 Control Flow

These commands control the execution of a script. They are basically the classical
control flow operators of a simple while-language, consisting only of assignment,
choice,and a while loop (see for example [31]), but are extended by commands like
par and protect to allow an optimised execution.

• Seq: This is not an actual statement, but rather a structural element. By de-
fault, all commands within a script that contains neither a Par nor a Protect-
command, are executed in a sequential order.

• IfThenElse: The classical conditional execution.
• Loop: A classical while-loop which executes its body while the condition

holds.
• ForEach: A convenience command that simplifies iterations over a given list

of items. The command is mapped to a while-loop.
• Par: This command gives the interpreter the freedom to execute the follow-

ing scripts in a parallel or quasi-parallel fashion, depending on the available
resources.

• Protect: This command states that the following script should not be inter-
rupted, and thus ensures that all variables and the agents memory are not ac-
cessed by any other component while the script is executed. This gives the
programmer a tool to actively handle concurrency issues that may occur in
parallel execution.

5.2.1.3 Agent Programming Commands

There are a few other commands in the language, namely:

• read: Reads data from the agent’s memory, without consuming it.
• remove: Reads data from the agent’s memory and consumes it, thus removing

it from the memory.
• write: Writes data to the agent’s memory.
• send: Sends a message to an agent or a group of agents.
• receive: Waits for a message.
• query: Executes a query and calls the inference engine.
• invoke: Tries to invoke another service.
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Access to the memory is handled similarly to the language Linda [17]. The mem-
ory behaves like a tuple space, and all components within an agent, including
the interpreter for JADL++, have access to it via the read, remove and write
commands, which correspond to rd, in and out in Linda.
The command for messaging (send) allow agents to exchange simple messages
without the need for a complex service metaphor and thus realise a basic means
for communication.
receive allows the agent to wait for a message. It should be noted here though
that received messages are by default written in the agent’s memory, and a non-
blocking receive can thus be implemented by using a read statement.
The query command is used to trigger the inference engine for reasoning about
OWL statements. The queries are encapsulated in order to allow the agents con-
trol cycle to keep control over the queries, so the agent can still operate, even if a
more complex query is running.
Another important feature of JADL++ is the invoke-operation, which calls ser-
vices of other agents. Catering to industry, we have hidden goal oriented be-
haviour behind a BPEL3 [32] like service invocation. Rather than only accepting
fully specified service calls, the invoke command accepts abstract and incomplete
service descriptions that correspond to goals, and subsequently tries to fulfill the
goals. Informally, if the abstract service description only states certain qualities of
a service, but does not refer to a concrete service (e.g. it only contains the postcon-
dition of the service, but not its name or provider), the agent maps the operation
to an achievement goal and can consequently employ its BDI-cycle to create an
appropriate intention and thus find a matching service. However, if the service
template can be matched to one and only one service or action, the agent skips
its BDI-cycle and directly executes the service. This gives the programmer many
options when programming agents, as he can freely decide, when to use classical
strict programming techniques, and when to use agent oriented technologies.
We describe the matching algorithm in detail in the next section.

5.2.1.4 Communication

JIAC V features two distinct methods for communication, which are mirrored
in JADL++. The first is a simple message based method, that works by sending
directly addressed messages to an agent or to a group of agents. An agent that
receives a message automatically writes the contents of the message into its mem-
ory, and from there it is up to the agent to decide what to do with the message.
The advantage of this approach is that it makes very little assumptions about the
agents involved and thus constitutes a very flexible approach to agent interaction.
However, for complex interactions it does not offer much support.
Nowadays, the notion of service has become a very popular approach to software
interaction, and JIAC V uses this notion as the predominant means of communi-

3 Business Process Execution Language. BPEL is the de facto standard for web service composi-
tion.
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cation. The approach in JADL++ for service invocation is based on the premise
that in a multi–agent system, a programmer often does not want to care about spe-
cific agents or service instances. Rather, agent programming is about functionality
and goals. Therefore, JADL++ supports an abstract service invocation, in which
a programmer can give an abstract description of the state he wants to achieve,
and this template is then used by the agent to find appropriate goals, actions and
services to fulfill the request. Based on this template, the agent tries to find an
appropriate action within the multi–agent system. A service within JIAC V is
merely a special case of an action, namely an action that is executed by another
agent and thus has to be invoked remotely. However, this remote invocation is
handled by the architecture, thus the programmer can use it as if it were a local
action.

5.2.2 Semantic Service Matching and Invocation

In the previous section we have presented the syntax of a JIAC V agent, and the
structure of the language JADL++. As mentioned above, JADL++ is based on
a while language with a number of extensions, but the interpretation is rather
straightforward. Therefore, we focus in this section on the service matching part,
and refer the reader interested in the formal semantics to [21].
The concept of data structures based on ontologies extends the goal oriented ap-
proach of agents. Informally, service matching means to have an expression that
describes what the agent want to achieve (its goal), and for each service that may
be applicable, to have an expression describing what that service does. To find a
matching service, the agent try to find a service with an expression that is semanti-
cally equivalent to the goal expression. While other agent programming languages
like 3APL [19] or AgentSpeak [36] typically use the underlying semantics of tra-
ditional first order logic to identify matching expressions, our approach allows to
extend this matching also to the semantic structures of the arguments as they are
described in OWL, resulting in a better selection of matching services for a given
goal.
Although OWL provides the technical basis for the description of semantic ser-
vices, it does not offer a structural specification of the semantic services design
itself. In order to bridge this gap an OWL-based ontology called OWL-S [3] has
been developed that allows the semantic description of web services. The main
intention of OWL-S is to offer the discovery, classification and finally invocation
of resources. Since the first two attributes are exactly the requirements for the
development of matching concepts, OWL-S turns out to be an adequate format.
Therefore, the principal challenge of the JIAC Matcher is to compare the service
attributes that are embedded in the OWL-S context. In general, these are input pa-
rameters, output parameters, preconditions and effects of a service, often abbre-
viated as IOPE. Furthermore, user-defined attributes such as Quality-of-Service
(QoS), the service’s provider, the service name and the category to which the
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service belongs can represent additional matching information. This information
can either be passed on to the JIAC Matcher in OWL-S notation or in a serialized
Java class structure.

Fig. 5.3 The components of the JIAC Matcher

Figure 5.3 illustrates the internal layout of the JIAC Matcher components.
The Sensor entity receives a service query and forwards it to the OWL-
ServiceAnalyser module, which parses the OWL-S file for the relevant service
attributes (if the service description has not already been passed as a Java object).
The ServiceDirectory component in turn provides all existing service descriptions
within the platform. It is asked iteratively for available service descriptions, and
both the requested service information and the advertised description are being
passed to the MatcherController. This entity finally initiates the service matching,
which is divided into several categories, which we describe more detail below. The
result of the matching process leads to a numerical rating value for each service
request/service advertisement pair. After this the service description/value pairs
are sorted in a list and returned to the requesting instance via the Effector module.
In contrast to most of the other existing OWL-S service matchers [23, 24] the
JIAC Matcher4 implementation is able to compare services not only by input and
output parameters but also by precondition and effect as well as by service name
and service provider. Depending on the information given by the service request
the matching algorithm compares only one, multiple, or all parameters. Further-
more the JIAC Matcher uses a rating-based approach for the classification between
a service request and a service advertisement. This means the matching procedure

4 The JIAC Matcher participated at the Semantic Service Selection Contest 2008 in the context
of the International Semantic Web Conference (ISWC) in Karlsruhe where it had the name
JIAC-OWLSM and achieved good results. For more information see http://www-ags.dfki.uni-
sb.de/ klusch/s3/s3c-2008.pdf
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is separated into several matching modules, each of them returning a numerical
value indicating the matching factor regarding this particular module. All of these
values are added to a final result value which indicates the total matching factor of
the specific service advertisement in relation to the service request. However, not
every module gets the same weighting since some matching aspects are considered
as more important than others. The algorithm procedure for each parameter type
is explained below.

5.2.2.1 Service Name Matching

The service name is the unique identifier of the service. Therefore if an agent is
searching for the description of a certain service he can send a requesting template
to the JIAC Matcher containing just the service name. The matching algorithm
will then perform a string comparison between the requested service name and
all advertised names. Additionally, if the name comparison failed, it is further
checked whether the service name is contained within another one, which can
indicate that the functionality of the offered service resembles the requested one.

5.2.2.2 Service Provider Matching

The service provider attribute declares which agent offers the respective service.
Since agents can vary in their Quality-of-Service characteristics greatly, it is pos-
sible to search for services provided by particular agents. Similarly to the service
name, the service provider is a unique identifier and the matching also results
from a string comparison between requested and advertised service provider.

5.2.2.3 Parameter Taxonomy Matching

Input and output parameters can either be simple data types or more complex
concepts defined in ontologies. These concepts are organised hierarchically and
therefore the matching algorithm should not only be able to check for the ex-
act equality of requested and advertised input and output parameters but also for
some taxonomy dependencies between them. In general the JIAC Matcher distin-
guishes between four different matching results when comparing two concepts:

• exact: the requested concept R and the advertised concept A are equivalent to
each other

• plug-in:

– output concept comparison: concept A subsumes concept R
– input concept comparison: concept R subsumes concept A

• subsumes:
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– output concept comparison: concept R subsumes concept A
– input concept comparison: concept A subsumes concept R

• fail: no equivalence or subsumption between concept R and concept A has
been recognized

For instance, if a service request searches a service with input parameter "SMS"
and an advertised service expects a parameter "TextMessage" as an input the JIAC
Matcher would analyse this as a plug-in matching as far as the ontology describes
concept "SMS" as a subclass of concept "TextMessage". Since a SMS is a special
form of a text message (consider other text messages like email, etc.) it is reason-
able that the proposed service might be suitable for the requester although he has
searched for a different parameter. This task of taxonomy matching of input and
output parameters is done by the TaxonomyMatcher component within the JIAC
Matcher (see Figure 5.3). In contrast to other OWL-S service matchers, the result
of a total input/output parameter comparison (a service can require more than
one input/output parameter) does not lead to the result of the worst matched pa-
rameter pair but to a numerical value. Each of the four different matching levels
(exact, plug-in, subsumes, fail) is mapped to a numerical result which is given to
each concept pair. The total input/output concept matching result is then com-
puted by the mean value of all concept pair results. This approach has the ad-
vantage that the matching quality of services can be differentiated more precisely,
since a mean value is more significant then a worst case categorisation. The disad-
vantage of this procedure however is that a service can be no longer categorised
into one of the four levels that easily, because the mean value can lie between two
matching level values.

5.2.2.4 Rule Structure Matching (Precondition/Effect Matching)

OWL allows the use of different rule languages for the description of precondi-
tions and effects. One of the most accepted languages is SWRL (Semantic Web
Rule Language) [30]. A rule described in SWRL can be structured into several
predicate elements which are AND related to each other. The JIAC Matcher
breaks up a precondition/effect rule into the predicates for the requesting rule as
well as for the advertised rule (processed by RuleStructureMatcher component).
This enables the matcher to compare the predicates with each other. If they are
exactly the same, an exact matching is recognized. Since predicates are also hier-
archically structured, a taxonomy matching has to be done as well. Therefore, if
an exact match is not found, the JIAC Matcher tries to find out if either, a plug-in
or a subsumes matching, exists. Just like the taxonomy matching of input/out-
put concepts, each result is mapped to a numerical value. This approach applies
for preconditions as well as for effects and is done by the PredicateMatcher com-
ponent. Most of the predicates describe references between subjects and objects,
therefore the arguments have to be checked as well. As arguments can be of dif-
ferent types, a type matching between advertised and requested arguments is also
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necessary. Again, the rule structure matching returns a numerical value which
indicates the matching degree between requested effect and advertised effect.

5.2.2.5 Rule Inference Matching

Preconditions contain states that the requesting instance must fulfil in order to
use a service. Given an email service for example it is reasonable that the service
call of sending an email must not only contain any kind of recipient address as
an input parameter, but in particular a valid one (e.g. it is not malformed) . This
requirement can be expressed as a precondition. Now the challenge of the Matcher
is not only to check if the preconditions of the requester are the same as the
advertiser’s ones (which rarely might be the case) but to also verify whether the
requesting parameter instances really fulfil the advertiser’s preconditions. This
has been done with the help of a rule engine which is able to derive if an instance
fulfils a given rule. Since rules are described in SWRL, a promising rule engine in
this aspect is Jess5 in combination with the OWL API Protégé6. The rule engine
stores all precondition rules of the advertiser. Then the requested information
instance is passed to the Knowledge Base (KB) of the rule engine. If it fulfils the
rule’s conditions it returns the requesters information instance as a result, which
implies that the request corresponds to the advertiser’s precondition (in the above
example, this would be the recipient address). However, since the updating of
the rule engine’s KB by inserting all the ontological knowledge of the requesting
instance can be very expensive this matching task is only suitable when using the
service matcher directly within the requesting agent. Within the JIAC Matcher
architecture the rule engine is processed by the RuleEvaluator component.

5.2.3 Other Features of the Language

An interesting aspect of JADL++ and the underlying JIAC V framework is that
JADL++ makes no assumptions about an action, other than that the architecture
is able to handle it. JIAC V was designed with the primary requirement that it
should be able to handle multiple kinds of actions, be it JADL++ scripts, web
services, or Java methods. The common denominator is the action– or service
description which can come in two variations. There is a simple action descrip-
tions which merely covers input, output and an action name. This is tailored for
beginners and allows a programmer to become familiar with JIAC V. The more
advanced version utilises OWL-S descriptions for actions and services and thus
allows the programmer to use service-matching and the BDI-cycle.

5 http://herzberg.ca.sandia.gov/
6 http://protege.stanford.edu/
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Nevertheless, both action-descriptions are abstract in the sense that they only
require some part of the agent to be responsible for the execution. Thus only this
component in the agent has to know how to access the underlying technology.
For example, the interpreter for JADL++ is the only part that knows about the
scripting-part of JADL++. There can be a component dedicated to the invocation
of web services. Or there can be multiple components for multiple web services.
And so on. This allows us to easily and quickly get access to multiple technologies
from JIAC V, and at the same time always use the same programming principles
for our agents.

5.3 Platform

JIAC V is aimed at the easy and efficient development of large scale and high
performance multi–agent systems. It provides a scalable single-agent model and is
built on state-of-the-art standard technologies. The main focus rests on usability,
meaning that a developer can use it easily and that the development process is
supported by tools.
The framework also incorporates concepts of service oriented architectures such
as an explicit notion of service as well as the integration of service interpreters in
agents. Interpreters can provide different degrees of intelligence and autonomy, al-
lowing technologies like semantic service matching or service composition. JIAC
V supports the user with a built-in administration and management interface,
which allows deployment and configuration of agents at runtime.
The JIAC V methodology is based on the JIAC V meta-model and derived from
the JIAC IV methodology. JIAC V has explicit notions of rules, actions and ser-
vices. Composed services are modelled in BPMN and transformed to JADL+
+. We distinguish between composed services and infrastructure services. The
former can be considered a service orchestration with some enhancements (e.g.
service matching) whereas the latter describes special services that agents, com-
posed services, or basic actions can use, e.g. user management, communication or
directory services. Rules may trigger actions, services or updates of fact base en-
tries. Basic actions are exposed by AgentBeans and constitute agent roles, which
are plugged into standard JIAC V agents. The standard JIAC V agent is already
capable of finding other JIAC V agents and their services, using infrastructure
services, and it provides a number of security and management features.
The core of a JIAC V agent consists of an interpreter that is responsible for exe-
cuting services (see Figure 5.4).
Our approach is based on a common architecture for single agents in which the
agent uses an adaptor concept7 to interact with the outside world. There exists a
local memory for each agent to achieve statefulness, and each agent has dedicated

7 Each of these adaptors may be either a sensor, an effector, or both.
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Fig. 5.4 The architecture of a single agent

components (or component groups) that are responsible for decision making and
execution.
In JIAC, the adaptor concept is used not only for data transmission, but also for
accessing different service technologies that are available today. Thus, any call
to a service that is not provided by the agent itself can be pictured as a call to
an appropriate effector. Furthermore, the agents’ interpreter allows to execute a
set of different services. These services’ bodies may also contain calls to different
services or subprograms. Consequently, an agent is an execution engine for service
compositions.
In the following, we will give you a brief explanation of the function of each
component:

• Matcher: The Matcher is responsible to match the invoke commands against
the list of known services, and thus find a list of applicable services for a given
invoke. The service templates within the invoke commands may differ in com-
pleteness, i.e. a template may contain a specific name of a service together with
the appropriate provider, while others may just contain a condition or the set
of parameters.
Once the matcher has identified the list of applicable services, it is up to the
interpreter to select a service that is executed. Note that this selection process
includes trial&error strategies in the case of failing services.

• Memory: The interpreter uses the agent’s memory to manage the calls to ser-
vices as well as the parameters. We use a simple Linda-like tuple space [17] for
coordination between the components of an agent. Additionally, the current
state of the execution can be watched in the memory any time by simply read-
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ing the complete contents of the tuple space, allowing for simple solutions for
monitoring and debugging.

• KnowledgeBase: The knowledge base provides functionalities for reasoning
and inferences within an agent. All declarative expressions within either a ser-
vice description or an action invocation are evaluated against this knowledge
base. In contrast to the Memory above, the knowledge base is a semantic mem-
ory rather than a simple object store and has a consistent world model.

• Interpreter: The interpreter is the core for service execution. It has to be able
to interpret and execute services that are written in JADL++. Essentially, all
atomic actions that can be used within the language are connected to services
from either the interpreter or the effectors of the agent.

• Adaptor: The adaptors are the agent’s connection to the outside world. This
is a sensor/effector concept in which all actions that an agent can execute on
an environment (via the appropriate effector) are explicitly represented by an
action declaration and optionally a service declaration that is accessible for the
matcher. Thus, all actions may have service descriptions that are equivalent to
those used for actual services.

5.3.1 Available Tools and Documentation

Our former framework JIAC IV already came with an extensive tool support
which has been described in [38]. Consequently, the design of JIAC V was always
guided by the requirement to have existing tools be applicable to JIAC V. In the
following we will give an overview of these tools and their role in the development
process for JIAC applications.
The JIAC agent framework supports the development of multi–agent systems
using BDI agents and standard Java technologies. The framework has been imple-
mented using the Java programming language. Two building blocks constitute the
basic agent architecture: a Java Spring8 based component system and the language
(JADL++). The basic architecture of a JIAC-based application is summarised in
the multi–agent system meta–model, which is shown in Figure 5.5.
In the framework, the following concepts are defined and must be supported by
tools:

• Domain Vocabulary

– Ontologies define classes, which are used to create the beliefs and the interac-
tion vocabulary of the agents.

– In addition to classes, ontologies provide properties which can describe rela-
tionships between class instances.

• Knowledge

8 http://www.springframework.org/
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Fig. 5.5 JIAC MAS meta-model

– Initial beliefs (facts) using these categories are created before the agent is
started.

– Reaction rules constitute the reactive behaviour of an agent.
– Actions define the behaviour of the agents. They can be deliberatively se-

lected and then become intentions. Actions can be used to aggregate more
complex plans by either the developer or a planning component as part of
an agent.

• Component

– Agent beans are core components and also used to wrap or connect the non-
agent environment via Java APIs or user interfaces. They implement bean
roles (to allow dynamic bean exchange at runtime) and can communicate
with each other using the agent’s memory.

• Deployment

– Agent roles are composites of agent functionalities and interaction capabili-
ties (services) from the above concepts.

– Agents are agent roles that have standard components as well as domain
specific agent roles and are able to run on an agent platforms.

– Agent nodes are the infrastructure for each computer, which play the role of
an Agent Management System (AMS) and Directory Facilitator (DF) [16],
i.e. they provide management and white and yellow page services, and con-
stitute the agent environment and infrastructure services.

5.3.1.1 JIAC Methodology

The JIAC methodology is an iterative and incremental process model which sup-
ports re–use. It looks very similar to other agent-oriented methodologies, such
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as PASSI [10] or Prometheus [34], but is, in fact, streamlined to the use of our
framework.

Fig. 5.6 JIAC methodology - iterative and incremental process model in SPEM [33] notation

As shown in Figure 5.6, the development process starts with collecting domain
vocabulary and requirements, which then are structured and prioritised. In this
step, we also look for ontologies and other artifacts that can be re-used, saving time
and effort. Second, we take the requirements with the highest priority and derive a
MAS architecture by identifying agents and the platforms where the agents reside
on, and create a user interface prototype. The MAS architecture then is detailed
by deriving a role model, showing the design concerning functionalities and in-
teractions. Agents and agent roles available can be retrieved from a repository
consisting of standard and domain specific configurations. We then implement
the agents’ behaviour by coding or adapting plans, services and protocols, which
are plugged into agents during integration. This phase is accompanied with ex-
tensive unit testing. The agents are deployed to one or more agent platforms and
the application is ready to be evaluated. Depending on the evaluation, we align
and amend requirements and start the cycle again with eliminating bugs and en-
hancing and adding features until we reach the desired quality of the agent-based
application.
We have implemented Toolipse [38], a fully functional prototype of an IDE9 based
on the Eclipse platform, which facilitates the development of agent applications
with the JIAC agent framework, increases their quality and shortens the develop-
ment time. While Toolipse has been developed for the JIAC IV framework, we
are currently porting the tools to JIAC V. The aim of the IDE is to hide the lan-
guage syntax from the developers as much as possible, to allow them to develop

9 Integrated Development Environment
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an agent application visually and to assist them where possible. To achieve that, it
provides the following main functionalities:

• creating and building projects, managing their resources and providing an in-
ternal resource model;

• creating ontologies, manipulating them visually and importing ontologies
from other ontology languages;

• developing agent knowledge in a visual environment;
• testing agent behaviours with agent unit tests;
• implementing agent beans in Java;
• configuring and deploying agent roles, agents and nodes visually;
• helping and guiding the developers through the entire development process

with documentations, interactive how-to’s and interactive tutorials.

Each functionality is realised as an Eclipse feature consisting of one or more plug-
ins and typically comprises wizards, editors and views, which are arranged in an
own perspective.
In Toolipse, wizards are used for creating projects and skeletal structures of JIAC
files; each file type has its own wizard. After creating a file, the agent develop-
ers can edit the file with the associated editor, which is in the majority of cases
a multi-page editor consisting of a source code editor and of a visual editor. The
source code editors support syntax highlighting, warning and error marking, fold-
ing, code formatting and code completion which suggests possible completions to
incomplete language expressions. In contrast to the source code editors, which
require from the developers good knowledge of the language, the visual editors of
Toolipse allow to work with abstract models, to create and modify instances of
the meta-model graphically. This facilitates the agent development and minimises
errors. In order to achieve this, the visual editors model the JIAC concepts with
the Eclipse Modeling Framework10 (EMF), visualise them graphically with the
Graphical Editing Framework11 (GEF) and provide simple graphical layouts such
as radial layout, zooming and modifying properties of the visualised elements
with the associated dialog windows as well as with the Properties view of Eclipse.
This Properties view belongs to one of the so-called workbench part concepts:
views. They are typically used to navigate through resources or to assist the edi-
tors with extra functionalities. For example, all our editors support the Outline
view where the outline of the file which is currently open is displayed. In addition
to the Properties and Outline view, which are general views of Eclipse, Toolipse
provides its own views that navigate the developers through the JIAC resources,
present results of agent unit tests, to help or to guide them through the develop-
ment process. Figure 5.7 shows the JIAC perspective with an editor and some of
these views.

10 http://www.eclipse.org/modeling/emf/
11 http://www.eclipse.org/gef/



5 The JIAC Agent Platform 179

Fig. 5.7 Toolipse with the following components (from left to right): JIAC navigator, knowl-
edge editor (center), JIAC guide (bottom), interactive tutorial and user guide.

5.3.2 Standards Compliance, Interoperability, and Portability

In terms of standards, JIAC V has changed considerably from its predecessors,
as we focussed on the use of software standards heavily. However, as of today
one important standard, the FIPA speech act, is not explicitly supported. It is of
course possible to design messages that comply with the standard but it is not a
requirement. However, the underlying technologies are all based on today’s indus-
try standards, such as OWL and OWL-S for ontologies, but also JMX12 [35] for
management functionality, JMS13 [28] for message delivery, and web service inte-
gration. For portability to small devices, we have developed a cut-down version
of JIAC called MicroJIAC.

5.3.3 MicroJIAC

The MicroJIAC framework is a lightweight agent architecture targeted at devices
with different, generally limited, capabilities. It is intended to be scalable and use-
able on both resource constrained devices (i.e. cell phones and PDAs) and desktop
computers. It is implemented in the Java programming language. At the moment a

12 Java Management Extensions
13 Java Message Service
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full implementation for CLDC14 devices is available, which is the most restricted
J2ME15 configuration available.
The agent definition used here is adapted from [37]. It is a biologically inspired def-
inition where agents are situated in some environment and can modify it through
actuators and perceive it through sensors. Thus the framework is also split into
environment and agents. The environment is the abstraction layer between the
device and agents. It defines life cycle management and communication function-
alities. These functionalities include a communication channel through which the
agents send their messages.
Agents are created through a combination of different elements. The predefined
element types are sensors, actuators, rules, services and components. Actuators
and sensors are the interface between the agent and the environment. Rules spec-
ify reactive behaviour and services define an interface to provide access to specific
functionalities. Finally, components maintain a separate thread and host time con-
suming computations. All elements are strictly decoupled from each other and are
thus exchangeable.
In contrast to JIAC, MicroJIAC does not use an explicit ontology language, goals
or an agent programming language such as JADL++. Furthermore, agent migra-
tion is restricted to Java configurations which support custom class loaders and
reflection. It should be noted here that both architectures, MicroJIAC and JIAC
V, are targeted at different fields of application and have different development
histories. However, they use a common communication infrastructure to enable
information exchange between agents.

5.3.4 Other Features of the Platform

JIAC V aims to easily allow to implement service oriented architectures. In order
to support the creation of such systems, JIAC V comes with a workflow editor
called VSDT that allows to create diagrams using the Business Process Modeling
Notation (BPMN) and compile them into JIAC V [11, 12].
The editor has been developed in the SerCHo project16 at TU Berlin [26]. While
the main intent behind the VSDT was to enable a transformation from BPMN
to executable languages it has by now evolved to a mature BPMN modelling tool
(Figure 5.8).
Unlike most other BPMN editors, it is not tightly coupled to BPEL, but instead
provides a transformation framework that can be extended with transformations
to and from any executable language. As the framework provides modules for
separate stages of the transformation (Validation, Normalisation, Structure Map-
ping, Element Mapping, and Clean-Up), parts of it can be reused (or if necessary

14 Connected Limited Device Configuration http://java.sun.com/products/cldc/
15 Java 2 Platform Micro Edition http://java.sun.com/javame/index.jsp
16 http://energy.dai-labor.de
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Fig. 5.8 The Visual Service Design Tool. Clockwise: Editor view, RSD client, Web services
view, Organize Assignments dialog, property sheet, visual outline, variables inspector, navigator.

refined) for new transformation, which has proven especially useful for the chal-
lenging transformation of the process diagram’s graph structure to a block struc-
ture. Thus, a new transformation feature can easily be implemented and plugged
into the tool — in fact, the only stage that has to be implemented is the element
mapping. Further, the meta model does provide enough information so that a de-
tailed process diagram can be exported to readily executable code, provided that
the respective transformation can handle all of these details, too.

5.4 Applications Supported by the Language and/or the
Platform

While the DAI-Labor works mainly in the surroundings of telecommunication
and network applications, JIAC V is not specifically tailored to that environment.
We designed JIAC V to be applicable in a wide range of applications, and are cur-
rently evaluating different domains to test the applicability of agents in different
fields. While our work with the predecessor platform JIAC IV has already brought
some interesting results [20], ranging from personal information agents [2] and
service delivery platforms [22] to simulation environments [5], we are currently
exploring the context of service composition for small and medium-sized enter-
prises, office applications, automotive, and energy conservation.
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5.4.1 Multi Access, Modular Services

The language JADL++, together with JIAC V, has already been applied and tested
in a BMBF17-funded project, Multi Access, Modular Services (MAMS)18. MAMS fo-
cused on the development of a new and open service delivery platform, based
on Next Generation Networks (NGN). It realises the integration of software de-
velopment and components, ranging from high level service-orchestration tools
over a service-deployment and -execution framework to the integration of the
IP-Multimedia Subsystem (IMS).
In the course of the project, JADL++ and its underlying execution framework
were used to create the service delivery platform for the execution of newly cre-
ated service orchestrations. The service creation- and deployment-cycle works as
follows:

• A new service orchestration is created by a user with help of a graphical tool
and an associated graphical modelling language. Essential for this modelling
process is a list of available basic services that can be combined by the user.

• The finished service orchestration is translated into JADL++ and an appropri-
ate agent is instantiated on a running platform.

• Whenever a service is called by a user, the agent starts executing the JADL+
+-script and calls the appropriate basic services.

So far, the project has realised prototypical scenarios with a very small list of
available basic services. However, as we were able to proof our concepts, a follow-
up project is currently running, in which a much larger list of services is imple-
mented, and thus we will have a broader base for evaluations.

5.4.2 Agent Contest 2008

The DAI-Labor used JIAC V in the 2008 edition of the ProMAS agent contest,
and won the contest. While only some of JIAC’s features were actually applica-
ble in the contest, it was still a very good test for our platform’s stability and
performance. We learned some very interesting lessons. For example the decision
to introduce direct messages between agents in addition to the somewhat larger
service model allowed for a quick and efficient communication between agents.
Furthermore, we were able to reuse a lot of code from our agents of the 2007
competition [18, 39], as the plug-in model of JIAC V allow easy integration of the
respective components.

17 Bundesministerium für Bildung und Forschung (Federal Ministry for Education and Research)
18 see http://www.mams-platform.net/
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5.4.3 NeSSi

Another project on the basis of JIAC IV is the Network Security Simulator
(NeSSi) [5]. In the context of this project, devices within a large telecommuni-
cations network and possible threats are simulated. Using the simulator, the be-
haviour of attackers, threats, and possible counter measures can be evaluated.
The first implementation of this project was done in JIAC IV. However, since
JIAC V has reached the required maturity, the simulator was ported to JIAC V
agents, resulting in an overall performance increase.
While the initial model used one agent per device for the simulation, the cur-
rent implementation maps sub-nets onto agents. This change in the design was
necessary to allow the system to scale to large networks of thousands of devices.
Currently we simulate systems with about 100 sub-nets and about 3500 single
devices.

5.4.4 Other Projects

In addition to the projects mentioned above, a number of mostly industry
funded projects in the context of energy, automotive, office automation, and self-
organising production are carried out where JIAC is used as the underlying tech-
nology.

5.5 Final Remarks

JIAC has been around for quite some time now, and has made a number of tran-
sitions. This chapter describes the newest incarnation, JIAC V, and while there
are still some features missing that the predecessor had, we are continuously im-
proving and bringing it back to have the wealth of features that JIAC IV provided,
while at the same time improving performance, interoperability, and stability of
the platform.
In contrast to many other agent frameworks, the main focus and driving force of
JIAC is the application within industry projects, and the feature set is accordingly
different. The service oriented approach, support of management functionalities
through JMX, and the inclusion of accounting functionalities are examples of
such features. We hope that the focus on these issues allows an easier integration
of agent technology in today’s software environment of companies, where dis-
tributed computing is already a daily reality.
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Chapter 6
Towards Pervasive Intelligence: Reflections on
the Evolution of the Agent Factory Framework

Conor Muldoon, Gregory M. P. O’Hare, Rem W. Collier, and Michael J.
O’Grady

Abstract Agent Factory is a cohesive framework for the development and deploy-
ment of multi-agent systems. Since its inception in the mid 1990s, Agent Factory
has gone through a metamorphosis process, whereby several new extensions, re-
visions, and enhancements have been made. This chapter provides a discussion of
the incremental developments in Agent Factory and provides motivations as to
why such changes were necessary. Agent Factory distinguishes itself from other
intentional agent platforms in several ways. It provides a practical and efficient
approach to the development of intentional agent-oriented applications. This is
combined with a methodology, integrated development environment support,
and a suite of tools that aid the agent fabrication process. A detailed comparison
to related work is provided. We include a tutorial on how to use the framework.

6.1 Introduction

A curtsey examination of the research literature will quickly indicate the interest
that Multi-Agent Systems (MAS) attract from the Distributed Artificial Intelli-
gence (DAI) community. A number of frameworks, some well-known, others
less so, have been documented since the mid 1990s. Agent Factory is an exem-
plar framework in that it was conceived of and developed at this time, but it
has been significantly enhanced over the years in response to ongoing software
developments. For example, Wireless Sensor Networks (WSNs) offer a promis-
ing solution for many categories of problems, such as real-time environmental
monitoring, however, such networks are characterised by limited computational
resources. An optimised Agent Factory runtime environment has recently been
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developed that factors these issues into its design. Thus an Agent Factory MAS
can be deployed on a wide range of hardware, extending and increasing the ap-
plication domains that can harness the MAS paradigm. Today, Agent Factory
represents the culmination of over a decadeŠs effort by a number of researchers
and has been successfully demonstrated in a wide range of application domains.
This chapter will discuss various facets of Agent Factory and its constituent com-
ponents. In Section 6.2, a motivation of Agent Factory is presented. This section
discusses the chronological enhancements/alterations made to the system over
the course of its development. Section 6.3 discusses the Agent Factory Agent Pro-
gramming Language (AFAPL), AFAPL is an agent-oriented programming lan-
guage that is based on a logical formalism of belief and commitment. The agent
platform is discussed in Section 6.4. At present, Agent Factory is divided, as with
many other frameworks, into two editions, one for standard Java, the other for
Java Micro Edition (JME) CLDC. We describe some applications of the frame-
work in Section 6.5. Finally, a brief but succinct comparison of Agent Factory
with other frameworks is presented in Section 6.6.

6.2 Motivation

In order to motivate the Agent Factory platform and language, the Agent Factory
Agent Programming Language (AFAPL), we must put the current system into
context; as such, in this section, we provide the history of the system and discuss
its evolution into its current form. This provides several motivations as to why
certain design decisions were made and reflects the general changing trends in both
agent technology and software development in general over the past decade. For
instance, when the initial version of the system was developed, the now pervasive
Java programming language was only being released and was still a very new and
unproven platform. We discuss Agent Factory’s development in a chronological
narrative that begins in the mid 1990s and progressively introduces the main fea-
tures of the language and framework, ending with a overview of the system in its
current state.

6.2.1 History

Agent Factory was first proposed by O Hare in 1996 [39] and was conceived
of as an environment for the prototyping and testing of multi-agent systems. It
supported the rapid creation of central agent components and the aggregation
of such components into communities, whose model of social interaction would
subsequently be described. It differed from other similar frameworks available
at the time in its use of an algebraic specification technique (the UMIST Para-
dox System) that could be directly executed. The system was underpinned by the
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theory associated with heterogeneous algebras that was developed by Birkhoff
and Lispson [5]. The environment drew heavily from Communicating Sequential
Processes [23] (CSP) and viewed multi-agent systems as a specific class of complex
distributed systems, namely Communicating Intentional Processes (CIP). It built
upon and extended pre-existing work to model CIPs effectively [40].
Early work on Agent Factory extended the framework to include an agent clas-
sification hierarchy to aid the rapid prototyping of agent designs and a commu-
nication infrastructure, based on TCP/IP and Speech Act theory, that enabled
the agent communities to be distributed over a network [9]. Due to the diffi-
culties of using the original algebraic approach, this version of the system was
implemented using a combination of VDM and Smalltalk-80. The main reason
for using Smalltalk-80 was that it was a flexible object-oriented language and thus
provided distinct advantages, in terms of rapid prototyping, maintainability, and
ease of development, over attempting to directly execute the specifications. At the
time, Java was only being released, and was quite a new and unproven platform.
C++ was widely used at this time, but it was (and still is) viewed as a bastardised
language rather than truly object-oriented. Additionally, Smalltalk contained fea-
tures, such as reflection, not supported in C++.
Further work redesigned Agent Factory to reflect newer trends in agent devel-
opment [11]. A generalized agent communication language framework was intro-
duced along with a commitment management system module that could be con-
figured for different commitment models and/or strategies. A mobility feature
was subsequently introduced [13]. Up to this point, much work had been done in
the field on mobility, but it primarily focused on the actual mechanism for agent
transfer; the intelligent component and decision making process in migration was
largely ignored. Agent Factory merged the notion of intentional decision making
with mobility.
At the start of the millennium, work began to focus on the possibility of using
Agent Factory for the creation of mobile context sensitive applications, such as
Guilliver’s Gennie [38]. A new Java version of the system was developed. The
reason for this development was that, at the time, there were no Smalltalk-80
interpreters or byte code compilers/translators for the Microsoft Pocket PC op-
erating system. There was, however, a (rather slow) Esermertec Jeode Java inter-
preter that was based on PersonalJava, the forerunner to what is now known as
the JME CDC Java configuration augmented with Personal Profile. At this time,
there were two versions of Agent Factory in operation. The Smalltalk-80 version
was intended for desktop environments, whereas the Java version was intended
for mobile devices. This motivated the development of the Agent Factory Agent
Programming Language (AFAPL), which drew heavily from Shoham’s AGENT0
[44] language and Agent Oriented Programming. AFAPL was an abstract declar-
ative language that enabled agents to be created that were based upon a theory
of rational agency. It enabled the creation of agent designs that were indepen-
dent of the underlying imperative environment in which they were to operate.
The idea was that different interpreters, written in different languages, could be
developed for AFAPL, but the specification of the agent design would remain
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consistent regardless of the environment in which it would subsequently be ex-
ecuted. Additionally, AFAPL supported the notion of agent design inheritance.
This enabled the creation of generic agent designs that could be reused and aug-
mented with application specific functionality. This version of the Agent Factory
laid the foundation for Collier’s thesis [10], which provided a cohesive framework
for mobile distributed multi-agent application development, and was based upon
a logical formalism of belief and commitment. The thesis introduced an agent de-
velopment methodology that drew from early work by O Hare and Wooldridge
[41] on Agent-Oriented Software Engineering.
Due to the differences in the languages and the need to duplicate new features of
the system, it was decided to drop the Smalltalk-80 version of the system. It had
to be the Smalltalk version of the system that was dropped because, as noted ear-
lier, there was no Smalltalk-80 interpreter for Pocket PC. PersonalJava was, more
or less, a full Java platform for embedded devices, almost identical to standard
Java less the Swing graphical interfacing capabilities. It was therefore possible to
have a single Agent Factory platform for mobile and desktop applications. The
Smalltalk-80 version of the system didn’t add enough to justify its continued main-
tenance.
At this time, the primary general purpose programmable mobile devices being
used were Personal Digital Assistants (PDAs). This market, however, never really
took off in the mainstream. Much of the functionality of the PDA was begin-
ning to be incorporated in to mobile phones. In contrast to the PDA market,
the mobile phone market was in the billions. The problem, however, was that the
standard Java environment for phones was the J2ME Constrained Limited Device
Configuration (CLDC) augmented with the Mobile Information Device Profile
(MIDP). Agent Factory was developed for use with the CDC Java environment
augmented with Personal Profile. This environment, although classified as J2ME,
is closer to standard Java than it is to CLDC, which is highly constrained and
limited. Therefore, it was not possible to use Agent Factory, in its current form,
for the development of mobile phone applications.
In 2005, Muldoon developed a minimised footprint version of Agent Factory that
facilitated the development and deployment of intentional agents for highly con-
strained mobile and ubiquitous devices [35, 34, 33]. This version of Agent Factory
was referred to as Agent Factory Micro Edition (AFME). Initially, AFME tar-
geted cellular digital mobile phones. It soon became clear, however, that AFME
could be deployed on a much broader array of devices, since it was based on
CLDC, which is the de factor standard Java environment for constrained envi-
ronments. In 2007, Sun launched the SunSPOT mote in Europe, which was based
on CLDC. AFME was subsequently deployed on the SunSPOT , making it the
first intentional agent platform to be used to control the leaf nodes of a Wire-
less Sensor Network (WSN). AFAPL was developed to provide a common high-
level language that would be consistent between Smalltalk-80 and Java. Although
Smalltalk-80 was no longer supported, this approach proved useful again, but in a
different context, to ensure that an agent could be represented consistently among
different Java environments.



191

In parallel to the development of AFME, a new concept of a role was introduced
to AFAPL [8]. This version of AFAPL became known as AFAPL2. The notion
of a role improved the efficiency of the platform. The idea was that, at various
stages throughout execution, triggers would cause commitment rules to be added
to the rule set of the agent. That is, an agent would adopt various behaviours,
referred to collectively as a role, if some trigger condition was true. The trigger
condition was evaluated by checking the agent’s beliefs. If an agent had a particular
belief and that belief matched the trigger condition, the role would be adopted.
If the role was no longer relevant or the objectives associated with the role were
achieved, the role would be retracted by an actuator. In this way, the overhead for
evaluating the role would only be incurred at times when the role was active. The
trigger did not represent a maintenance condition for the role. The execution of
the retraction actuator would be evaluated in the usual manner i.e. either directly
though the evaluation of the commitment rules or through the execution of a
plan. The version of Agent Factory represents its current form.

6.3 Language

Agent Factory is an open framework for building agent-based systems (see Section
6.4), and as such, does not enforce a single flavour of agent upon the developer.
Instead, the developer is free to either use a pre-existing agent interpreter / archi-
tecture, or develop a custom solution that is more suited to their specific needs.
That said, as was highlighted in Section 6.2, Agent Factory has a long tradition
of promoting the use of intentional agents to construct multi-agent applications.
Support for this style of agent has been realized through the Agent Factory Agent
Programming Language (AFAPL), which is now in its second incarnation, and is
known as AFAPL2. AFAPL2 is an agent programming language that supports
the development of agents that use a mental state architecture to reason about
how best to act. The remainder of this section will provide a brief summary of
AFAPL.
The AFAPL2 language supports the fabrication of agents whose mental state is
comprised of beliefs, goals, and commitments. Beliefs describe - possibly incor-
rectly - the state of the environment in which the agent is situated, goals describe
future states of the environment that the agent would like to bring about, and
commitments describe the activity that the agent is committed to realising. The
behaviour of the agent is realised primarily through a purpose-built execution
algorithm that is centred about the notion of commitment management.
Commitments are viewed as the mental equivalent of a contract; they define a
course of action/activity that the agent has agreed to, when it must realise that
activity, to whom the commitment was made, and fnally, what conditions, if any,
would lead to it not having to fulfil the commitment. Commitment management
is then a meta-level process that AFAPL2 agents employ to manipulate their com-
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mitments based upon some underlying strategy known as a commitment manage-
ment strategy. This strategy specifies a set of sub-strategies that:

• define how an agent adopts new commitments; maintains its existing commit-
ments.

• refines commitments to plans into additional commitments.
• realises commitments to primitive actions; and handles failed commitments.

The principal sub-strategy that underpins the behaviour of AFAPL2 agents is
commitment adoption. Commitments are adopted either as a result of a decision
to realise some activity, or through the refinement of an existing activity. The
former type of commitment is known as a primary commitment and the latter
as a secondary commitment. The adoption of a primary commitment occurs as a
result of one of two processes: (1) in response to a decision to attempt to achieve
a goal using a plan of action, or (2) as a result of the triggering of a commitment
rule. Commitment rules define situations (a conjunction of positive and negative
belief atoms) in which the agent should adopt a primary commitment.

6.3.1 Syntactical Aspects

The first step in understanding how to program AFAPL2 agents is to understand
how beliefs are used to construct models of the current state of the environment.
Without this model, the agents will not be aware of what is happening in the
environment, and consequently, will not be able to act in a meaningful way.
The key step underpinning the generation of an agents’ belief model is percep-
tion. This is the process by which an agent converts raw environment data (sen-
sor readings, ACL messages, address books, etc.) into various beliefs that provide
a higher-level representation of this data (and consequently, the state of the envi-
ronment). Perception is an integral part of the belief update phase of the AFAPL2
interpreter cycle.
The principle building block of the perception process is the perceptor unit. This
is a Java class that collates any relevant raw data and generates a corresponding set
of beliefs. Perceptors are associated with agents via the PERCEPTOR construct.
This construct generates a mapping between specific perceptor units and a given
AFAPL2 agent program. For example, when developing a robot soccer agent, a
ball perceptor unit may be created that uses visual information to decide whether
or not the robot has the ball. In the AFAPL2 program, this perceptor would be
declared through the following statement:

PERCEPTOR BallWatcher CLASS perceptor.BallPerceptor;
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Where perceptor.BallPerceptor is the Java class that implements the perceptor
unit. This unit would then be responsible for generating a corresponding belief
about the presence of the ball ( e.g. BELIEF(hasBall) or BELIEF(noBall) ).
AFAPL2 has been designed to support the fabrication of agents that exist within
highly dynamic environments. As such, agents may adopt beliefs that quickly
become invalid. For example, consider a robot soccer agent that has a perceptor
which generates a belief about whether the agent can see the ball or not. If the
ball passes quickly in front of the agent, then it may see the ball only for one or
two iterations of the interpreter cycle.
Rather than implement a complex belief revision algorithm that tries to under-
stand when a belief has become invalid, the approach adopted in AFAPL2 is to
assume that, by default, all beliefs become invalid at the end of a given iteration
of the AFAPL2 interpreter cycle. In this way, perception becomes the process by
which the agent generates a snapshot of the current state of the environment. This
snapshot is then thrown away immediately before the next snapshot is generated.
While this approach helps to simplify the maintenance of an agentŠs beliefs, it
is not always appropriate (sometimes we need beliefs that persist for longer). To
handle this requirement, AFAPL2 also provides a number of temporal operators,
which can be used to define beliefs that persist for more than one iteration.
This first example illustrates how to create an Agent Factory perceptor. To
implement a perceptor, we create a Java class that is a subclass of the class
com.agentfactory.logic.agent.Perceptor, and implement the perceive() method:

import com.agentfactory.logic.agent.Perceptor;

public class AlivePerceptor extends Perceptor {
public void perceive() {

adoptBelief( "BELIEF(alive)" );
}

}

The above perceptor generates a single belief that represents the fact that the agent
is “alive”. This belief is added to the agent’s belief set at the start of each iteration
of the interpreter cycle. The name of the Java class is specified within the agent
design file.
The next example illustrates how to specify an action (and the corresponding ac-
tuator) in AFAPL2. Actions are used to enable agents to affect their environment.
To implement an action, we must do two things: first, we need to create an actua-
tor that contains the implementation of the action. After this, we need to specify
our action in an AFAPL2 file, using the ACTION construct.
Actuators are Java classes that subclass the com.agentfactory.logic.agent. Actuator
class and implement the act(..) method. Upon creation, the agent creates on in-
stance of each specified actuator. Thus, the same instance is used even when the
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action is being performed concurrently. Consequently, actuators must be imple-
mented as thread-safe classes.
To illustrate how to create an actuator, we will develop a “helloWorld” action that
prints the string “Hello World” to the console.

import com.agentfactory.logic.agent.Actuator;
import com.agentfactory.logic.lang.FOS;

public class HelloWorldActuator extends Actuator {
public boolean act( FOS action ) {

System.out.println( "Hello World" );
return true;

}
}

What the above actuator implementation does is fairly obvious. The only “issue”
is the return value of an actuator. This is used to define whether the commitment
to the corresponding action failed or succeeded. This is useful in situations where
it is possible for the actuator to complete unsuccessfully, for example, updating a
table in a database. In such cases, the actuator can indicate its failure by returning
false instead of true.
For an actuator to be used by an agent, an action definition for the actuator must
be specified in the agent design. The action definition below specifies an action
called “helloWorld” and links the action to the HelloWorldActuator. In addition,
this definition requires that any pre and post conditions that apply to the action
be specified.
Pre-conditions are used to ensure that the action is only performed when it is
possible. For example, a robot soccer agent program may include a “kick” action.
The pre-condition for this action would be that the agent has the ball (i.e. BE-
LIEF(hasBall) ). Conversely, post-conditions are used to identify which actions
can be used to achieve the goals of the agent. For this example, we will declare
both the pre- and post- condition of our action to be true (this is a default that
means “no precondition or postcondition”).

ACTION helloWorld PRECONDITION BELIEF(true); POSTCONDI-
TION BELIEF(true);

CLASS helloworld.HelloWorldActuator;

Many scenarios require that an agent act in response to some change in its envi-
ronment (for example the receipt of a message from another agent, the triggering
of a sensor, the location of additional resources for processing, and so on). In such
cases, we require a mechanism that allows the developer to define situations in
which the agent must commit to some activity (i.e. some action or plan). Agent
Factory supports this through the use of commitment rules. Commitment rules
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specify situations (defined as a belief sentence) in which the agent should adopt a
commitment.
The following example illustrates the situation in which we want to program our
robot soccer agent to move towards the ball whenever it sees it. This is achieved
through a rule of the following form:

BELIEF(seesBall) => COMMIT(?self, ?now, BELIEF(seesBall),
moveTo(ball));

This rule states that, if the robot soccer agent sees the ball, then it should commit
to the action of moving to that ball. Two key points to take from the above
example are:

• The introduction of two pre-defined variables, ?self and ?now, which are bound
to constants representing the agents name and the current time respectively.

• The use of a maintenance condition to constrain the persistence of the commit-
ment when adopted. The agent maintains the commitment to move to the ball
until either the moveTo(ball) action completes or the agent no longer believes
that it sees the ball.

Should the robot soccer agent ever come to believe that it sees the ball (i.e. it
has the belief BELIEF(seesBall) ), then the commitment rule would be fired. This
would cause the agent to adopt the corresponding commitment. So, if the agent
was called striker, and it saw the ball at 11:46am, then it would adopt a commit-
ment of the form:

COMMIT(striker, 11:46, BELIEF(seesBall), moveTo(ball))

The above commitment rule specifies a behaviour that is realised through the
adoption of a single commitment. Commitment rules can also be used to drive
the adoption of multiple commitments simultaneously. This can be achieved by
introducing variables into the situation definition.
For example, consider an agent-based security system that includes a monitoring
agent that is responsible for monitoring what Radio Frequency IDentification
(RFID) tags that enter or leave a specified region (which is monitored by one or
more RFID antenna). This agent may be designed to handle beliefs of the form
BELIEF(newTag(?tagID)) where ?tagID is a unique code that is assigned to every
RFID tag, and the belief itself is used to represent the fact that an new RFID tag
has entered the monitored region.
The expected behaviour of this agent is that it will perform a security check when-
ever a tag enters the monitored region. The agent uses the result of the security
check to determine whether or not it should raise an alarm.
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To implement this behaviour within AFAPL2, a commitment rule of the form is
added:

BELIEF(newTag(?tagID)) => COMMIT(?self, ?now, BELIEF(true), check-
Tag(?tagID));

Informally, this rule states that, if the agent detects that a new RFID tag has en-
tered the monitored region, then it should perform a check to see whether that
tag is allowed to be in the monitored region. What the agent does when the tag
has been checked can be specified through the introduction of additional commit-
ment rules. For example:

BELIEF(illegalTagMovement(?tagID)) & BE-
LIEF(tagAuthority(?agentName, ?agentAddress)) => COMMIT(?self,
?now, BELIEF(true), inform(agentID(?agentName, ?agentAddress), illegal-
TagMovement(?tagID));

This second rule states that if the agent believes that a tag is not allowed to be in
the monitored region (this is the first of the beliefs on the left hand side of the
belief rule) and it knows a tag authority agent (this is the second of the beliefs on
the left hand side of the belief rule), then it informs the tag authority agent that
it has detected an illegal tag movement (this happens through the adoption of the
commitment on the right hand side of the commitment rule).
Agent Factory uses resolution-based reasoning to evaluate the truth of the belief
sentence part of a commitment rule. To illustrate this point, let us consider the
RFID scenario in more detail. The agent is responsible for monitoring the move-
ment of objects in a physical space of a building using RFID tags. In such systems,
the actual monitoring of the space is carried out by an one or more RFID an-
tenna. The corresponding agent is then linked to that antenna (or set of antenna)
via some form of interface that generates events when RFID tags enter or leave
the monitored space. To make the agent aware of these events, we introduce an
event perceptor that generates beliefs based on the events that are produced by
the interface. For events where an object that has an RFID tag enters the moni-
tored space, the perceptor generates beliefs of the form BELIEF(newTag(?tagID)),
which corresponds to the belief on the left hand side of the second commitment
rule.
As an example, consider the case where a single tagged object (with a unique
identifier of 101 - for simplicity) enters the region that is monitored by an agent
with identifier “lobby”. The entry of this tag is detected by the antenna and passed
to the agent’s perceptor via the interface. This causes the perceptor to generate
the belief BELIEF(newTag(101)). The adoption of this belief causes the second
commitment rule to be triggered. That is, the belief sentence on the left hand side
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of this commitment rule is evaluated to true when the variable binding ?tagID /
101 is applied. This results in the adoption of a single commitment of the form:

COMMIT(lobby, 9:28, BELIEF(true), checkTag(101))

If, at the same time, a second tag, with identifier 320, also entered the mon-
itored region, then the agent would have a second belief of the form BE-
LIEF(newTag(320)). This would cause the query process to generate two variable
bindings for the second commitment rule: tagID / 101 and ?tagID / 320 . Based
on these bindings, two commitments would now be adopted by the agent: the
commitment above, and a second commitment of the form:

COMMIT(lobby, 9:28, BELIEF(true), checkTag(320))

So, what this example highlights is that the interpreter generates every possible
variable binding for the belief sentence component of each commitment rule.
These bindings are then applied to the commitment component of each commit-
ment rule and the resultant commitments are adopted.
To summarise some of the main features of the language:

• The language is deliberative and is based on a logical formalism of beliefs and
commitments. Reactive behaviour within the framework is encoded impera-
tively within Java (more recently, some work has been done to put structure
around the reactive behaviour within the SoSAA architecture [18]).

• The language provides high level speech act primitives for communication.
It facilitates the broadcast of messages through the use of wild card pattern
matching.

• The language is relatively easy to understand for developers that have experi-
ence of declarative or logic-based programming. For developers without such
experience, the learning curve is steeper.

6.3.2 Semantics and Verification

The language has a clear and precise semantics. The original version of AFAPL
was formalised in Collier’s Thesis [10]. Work is underway to provide a formal
operational semantics of the language in its current form for a future paper. The
a language is suitable for the creation of a wide variety of agent-oriented applica-
tions (see Section 6.5).
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6.3.3 Software Engineering Issues

The Agent Factory system, in general, has been designed with Software Engi-
neering concerns at its core. Developing a system and methodology that had a
sound software engineering basis was one of the contributions of Collier’s the-
sis [10]. The Agent Factory system is modular and can be extended with func-
tionality for a number of different agent architectures. The design of AFME has
been strongly influenced by good objected oriented precepts, such as the ‘Law
of Demeter’ (LoD) [30]. The LoD, which was popularised by Grady Booch and
James Rumbaugh [6, 43] in the 1990s, greatly improves the maintainability of
the software. As with many researchers in the Software Engineering and Object-
Oriented community, we view the overuse of inheritance as a bad thing and tend
to favour composition.
The language is integrated with Java. At present, no support is provided for in-
tegrating the language with other classical (imperative) languages, but there is no
reason why such support could not be provided in the future.

6.3.4 Other features of the language

The platform supports the construction and deployment of mobile agents. Truly
strong migration is not possible in Java because much of the system state is con-
trolled by the JVM and cannot be directly accessed (see Section 6.4). Within Agent
Factory support is provided for the migration of both code (application classes)
and the agents’ mental state. Within AFME, support is only provided for the
transferral of state. The language does not facilitate the definition of new language
components from basic constructs.

6.4 Platform

As with many other agent frameworks (see Section 6.6), Agent Factory has been
divided into two editions, one for standard Java, the other for JME CLDC. In this
section, we initially discuss the standard platform, then AFME.
Agent Factory is an open source framework that has been developed to support
the deployment of multi-agent systems [12]. It is broadly compliant with the cur-
rent FIPA standards and is implemented in the Java programming language. In its
latest incarnation, the framework has been restructured to facilitate the deploy-
ment of applications that consist of multiple agents that employ a diverse range of
agent architectures. As such, the framework has become an enabling middleware
layer that can easily be extended and adapted for different application domains.
The Agent Factory framework can be broken down into three parts:
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• a distributed Run-Time Environment (RTE) that consists of a FIPA-compliant
agent platform together with a number of prefabricated agent system architec-
tures that have been built to provide infrastructure services for applications;

• a set of Development Kits (DK) that contain agent interpreter / architecture
implementations together with relevant tool support; and

• a Deployment Process that provides a structured approach to the deployment
of multi-agent systems using the framework.

The critical components used in the deployment of a multi-agent system are the
agent platforms and the development kits. Agent platforms deliver the machinery
necessary to create and support agents that are developed using one or more of
the development kits. These development kits include:

• an agent container that holds the agents currently resident on the agent plat-
form;

• a platform service manager that supports the deployment of a set of platform
services that implement shared resources that are available to some or all of the
resident agents;

• a security module that controls what platform services each agent has access
to;

• an architecture factory module that manages the instantiation of the various
agent interpreters / architectures that can be deployed on the platform; and

• a module that creates and deploys any run-time tools that are required to pro-
vide necessary support for the visualization, management, profiling, and de-
bugging of the resident agents.

Conversely, each development kit provides some form of template agent inter-
preter / architecture that can be used to create application agents. The most com-
mon support tools that a development kit provides are: a customized agent inspec-
tor that allows the visualization of the internal state of that architecture; and code
templates for an appropriate IDE. However, other support tools may be added if
deemed appropriate. Currently, Agent Factory provides two basic development
kits: the AFAPL2 Development Kit, which supports the creation of intentional
agents; and the Reactive Message Agent (RMA) development kit, which provides
a simple reactive agent architecture that combines message handlers, event han-
dlers, and an internal memory.
The configuration of the agent platform and the specification of the initial agent
community are supported via two deployment files: the platform configuration
file is used to specify a configuration for each agent platform and the agent plat-
form script is used to specify the initial community of agents that are to be de-
ployed on that platform.
The platform configuration file aids developers in defining what platform ser-
vices, agent architectures, and run-time tools should be deployed on each agent
platform. It is also used to assign a default name to each agent platform. Perhaps
the most common use of this configuration file is to specify what message trans-
port services will be made available to agents residing on the platform. They are
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deployed as platform services, and currently, implementations exist for local mes-
sage passing, HTTP, UDP and XMPP.
Conversely, the agent platform script is used to declare the initial agent commu-
nity that will be deployed on an agent platform at start-up. This file allows devel-
opers to define what agents will be created, to initialize the state of those agents,
and when to start their execution. The script allows the creation of two kinds
of agents: system agents and application agents. System agents are those agents
that make up the system architecture, while application agents are those agents
that contain the application logic. The main practical differences between system
agents and application agents are that system agents are created first and have the
chance to carry out initial configuration before the application agents are created,
and system agents start executing by default, while application agents do not.
In summary, Agent Factory provides a modular and extensible framework for
constructing and deploying multi-agent systems. It offers a set of APIs that can
be used to implement and integrate agents that employ different architectures and
can support multiple interpreters that realise high-level AOP languages via the
creation of development kits. One such language, which is described in the next
section, is the Agent Factory Agent Programming Language (AFAPL).

6.4.1 Agent Factory Micro Edition

Agent Factory Micro Edition (AFME) is a minimized footprint version of the
Agent Factory platform designed specifically for use with resource constrained
devices. AFME was originally used for the development of applications for cellu-
lar digital mobile phones, but has since been ported to the leaf nodes of a WSN
and specifically Sun SPOT motes. In deploying agents on sensor nodes, develop-
ers are faced with a number of problems; perhaps the most obvious is the limited
spatiotemporal computational and power resources available. It is for this reason
that initial agent frameworks developed for WSNs were based on a weak notion
of agency, whereby agents did not possess reasoning capabilities, the canonical ex-
ample being Agilla. Other more recent approaches focus on particular algorithms
for agent interaction [46], but the agents would not be considered strong in the
traditional sense of the word.
This chapter advocates the use of AFME agents, which are loosely based on the
BDI notion of agency. The BDI model is an appropriate paradigm for devices such
as WSN motes in that it acknowledges that agents are resource constrained and
will be unable to achieve all of their desires even if their desires are consistent. An
agent must fix upon a subset of desires within its intention selection process and
commit resources to achieving them.
Traditionally, the BDI model of agency would be considered too computation-
ally intensive for small devices, such as WSN motes. In this paper, we agree with
this argument, in so far as that we are not proposing to deploy BDI agents on
extremely low specification nesC type devices, such as the Berkeley or Tyndall
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motes. Nonetheless, there are now several devices on the market, such as the
Sun SPOT or Imote2, that have considerably more resources available than early
motes. On such devices, it is quite feasible to deploy minimized footprint BDI
agents. For this to be practical, however, it is still essential to ensure that resources
are not squandered and are used in an intelligent and prudent manner. BDI lan-
guages are, for the most part, declarative although in practice most of them are
used in conjunction with imperative components. In general, the declarative com-
ponents specify a theory of the problem to be solved, whereas as the imperative
components specify the low level coding procedures. The imperative components
are usually written in object languages, such as Java or C++. The agent languages
represent a logical abstraction. Various interpreters can be built for them so that
they can be used in different environments. There are no failsafe development
methodologies that ensure a good agent design. The design decisions made are of
significant importance in the WSN domain where resources are extremely scarce.
There is an inherent cost in controlling a system and in performing computations.
The complexity of algorithms puts certain constraints on the time in which we
may obtain the results of the computation; therefore there is a limit to the amount
of knowledge or information we can attain at a particular time point. Either we
accept errors due to the lack of information and allow the system to be respon-
sive or we allow the system to carry on operating in a suboptimal manner as
we are performing computations or obtaining information so as to make better
decisions. That is, the fact that performing a computation has a spatiotemporal
and energy usage overhead prevents us from controlling a large system perfectly
[3]. In developing software systems in practice, this ultimately comes down to a
granularity problem.
In AFME, we provide the developer with functionality to encode the deliberative
behaviour of agents yet they may also encode functionality at an imperative level
directly within Java. The decision as to whether a particular task should be declar-
ative or imperative is not clear cut and ultimately comes down to the experience
and knowledge of the developer. It often depends on whether the developer be-
lieves something should be a task or a goal. Tasks are less expensive in that they
use fewer resources and the result may be obtained faster, but they are also less
flexible and reduce the possibilities for recovery from failure.
In developing BDI agents for sensor networks, the developer could be tempted to
develop everything as a task, but this would be little better than using the weak
approach to agency. At the other extreme if the agent does too much reasoning,
resources will be wasted and the system will be unresponsive. The development
framework discussed in this article supports both approaches. It is our belief that
it is no longer the case that the BDI model of agency is too computationally inten-
sive for resource constrained devices. With developments in computing technol-
ogy, improvements in the efficiency of algorithms, and the dissemination of good
design practices and the knowledge of algorithms to developers, the traditional ar-
guments no longer hold. It is for this reason that a number of agent-based ambient
systems have begun to emerge. To the best of our knowledge, AFME was the first
BDI framework to be deployed on the leaf nodes of a wireless sensor network.
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Each agent in AFME consists of a set of roles, which are adopted at various points
throughout execution. Each role consists of a trigger condition and a set of com-
mitment rules. Once an agent adopts a belief that matches the trigger, the role is
adopted and the set of commitment rules are added to the agent’s mental state.
Subsequently, on each iteration of the agent’s control process, the commitment
rules are evaluated until either the role is retracted or the agent is terminated. The
set of commitment rules adopted when a role is triggered specify the conditions
under which commitments are adopted for the role. Originally, these conditions
only included the agent’s beliefs, but more recently, in AFME, support has been
added for equalities, inequalities, and rudimentary mathematic operations. This
is useful because it allows developers to specify, at a declarative level, relationships
among beliefs. For instance, if an agent had beliefs about the cost of bread and
butter, the developer could encode conditions such as if bread costs more than
butter or if bread costs less than butter minus 10. With the original approach,
this is not possible without writing imperative code to compare the beliefs or be-
lief arguments. Once commitments have been adopted, the agent commences the
commitment management process. Various arguments are passed to the commit-
ment when it is adopted, such as the time at which it should commence, to whom
the commitment is made, and the maintenance condition of the commitment. An
identifier is specified which acts as a trigger for the plan or primitive action to be
performed. In subsequent iterations of the control algorithm, the commitment is
invoked subject to the arguments specified.

6.4.1.1 AFME Platform and Life Cycle

An AFME platform comprises a scheduler, several platform services, and a col-
lection of agents. The scheduler is responsible for the scheduling of agents to
execute at periodic intervals. Rather than each agent creating a new thread when
they begin operating, agents share a thread pool. Platform services are a shared
information space amongst agents. Platform services, such as the local message
transport service, are required in situations where agents must gain access to a
shared object instance so as to act upon the object or perceive its state.
AFME delivers support for the creation of agents that follow a sense-deliberate-
act cycle. The control algorithm performs four functions (see Figure 6.1). First,
preceptors are fired and beliefs are updated. Second, the agent’s desired states are
identified. A subset of desires (new intentions) is chosen, and added to the agent’s
commitment set. It should be noted that if the agent has older commitments,
which are of lower importance, they will be dropped if there is not enough re-
sources available to execute all commitments. This is handled through the knap-
sack procedure. Fourth, depending on the nature of the agent’s commitments,
various actuators are fired.
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Fig. 6.1 The AFME Control Process

6.4.2 Available tools and documentation

Both Agent Factory and AFME are well documented and provide tool based sup-
port for the development and debugging of applications:

• The platform has extensive documentation available from the Agent Factory
website (http://www.agentfactory.com). This includes tutorials on how to use
the framework and technical documentation, such as Javadoc.

• An agent logger and visual debugging tool, which enables the developer to
examine the agent’s mental state, is available.

• On-line help is available from the website along with information on how to
download and install the system.

• Tools for the administration, management, and configuration of the platform
are integrated into the Netbeans IDE.

6.4.3 Agent Factory/AFME Integration

Agent Factory and AFME are integrated through the message transport and mi-
gration services. Both platforms are FIPA compliant therefore and message trans-
fer and communication is consistent. In terms of migration, it is necessary for
agents to change their form when migrating from a standard desktop environ-
ment to a constrained device and vice versa. The remainder of this section will
discuss how the message transport and migration services of AFME have been
developed to integrate with Agent Factory.
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6.4.3.1 Message Transport Service

The Message Transport Service of AFME had to be changed considerably from
the original design. This was because the local GPRS and 3G service providers
have a firewall operating to prevent incoming socket connections and also be-
cause MIDP and J2SE support different APIs for networking. Rather than having
a server operating on the mobile device, the message transport service periodically
polls a mailbox server operating outside the firewall domain. Incoming messages
are stored in the mailbox until a connection is made from the client devices, at
which point all stored messages are transferred. This increases the latency of mes-
sage passing but is necessary to pierce the firewall.
The message transport service has two modes of operation, namely synchronous
and asynchronous. These modes are related to how outgoing messages are pro-
cessed. Incoming messages are handled generically. When operating in syn-
chronous mode, all outgoing messages are buffered within the service. When a
connection is made to the mailbox server and all incoming messages have been
received, the same socket connection is kept open and used to transfer outgoing
messages. When the mailbox server receives the outgoing messages, they are for-
warded on to their destination. When operating in asynchronous mode, outgoing
messages are sent directly within their own individual sockets. This is possible
because the firewall only blocks incoming sockets not outgoing. The choice made
of which mode to use when developing an application depends on whether the
developer wishes to minimize latency or maximize performance. When operating
within synchronous mode, there will be less socket connections made, whereas in
asynchronous mode the latency of outgoing messages will be lower.
When the mailbox server receives an outgoing connection from an embedded de-
vice, it is in the form of a direct binary connection over TCP. The use of a direct
binary connection improves the performance of message transfer. This binary
information is converted to an XML format and subsequently forwarded over
HTTP in compliance with the FIPA specifications. When receiving incoming
messages for an embedded device from other platforms, this process is reversed,
thus the HTTP is converted into a binary format. In this respect, the AFME
message transport service supports transparent communication between agents
operating on embedded devices and those operating on the standard version of
the system or other FIPA compliant platforms. Agents are unaware of whether
the cohort they are communicating with is behind a firewall or not. They corre-
spond with the mailbox server in the same manner as if they were communicating
with a platform directly.

6.4.3.2 Migration

Agent migration is often classified as either strong or weak. This classification
is related to the amount of information transferred when an agent moves from
one platform to another. Truly strong migration is not possible in Java. Within
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AFME support is only provided for the transfer of the agent’s mental state (see
Figure 6.2). Any classes required by the agent must already be present at the des-
tination. This is because CLDC does not contain an API for introspection and is
thus prevented from dynamically loading foreign objects. The reason CLDC ap-
plications do not contain security managers or class loaders that would enable the
dynamic execution of foreign code is that the JVM specification does not contain
a class verifier. The verifier forms one of the most important security aspects of
the original J2SE JVM architecture. It ensures the integrity of a sequence of byte
codes by performing a data-flow analysis on them at runtime. Conversely, within
CLDC the code must be pre-verified in order to execute. This improves the per-
formance of the system in that the code does not have to be continuously checked
while executing. It prevents the system however from dynamically downloading
and executing foreign objects because the system cannot verify that the objects’
code is safe to use. Malicious developers could simply alter the structure of a class,
for example by changing the operand of a jump opcode such as goto, to crash the
JVM and potentially the operating system of the mobile device. Thus no support
for introspection is provided.

Fig. 6.2 AFME Migration

To facilitate the migration process within AFME a similar approach is taken to
that of the message transport service. This is because agents must also be capable
of penetrating the service provider firewall. Thus, agents first migrate to a mi-
gration server where they wait for a connection from their destination platform.
When a connection is received they are transferred accordingly. When migrating
back the agents also go through the migration server.
As agents move to and from embedded devices the BDI commitment rules that
govern the agents’ behaviour are altered to enable the agents to adapt to their envi-
ronments. The agents’ designs are decoupled into the core behaviours that operate
on all platforms and platform specific behaviours that contain dependencies on a
particular framework. The core behaviours represent the lowest common denom-
inator or the essence of an agent’s functionality that will execute on all devices.
The platform specific behaviour represents the commitment rules that need to
be altered when an agent moves from one type of environment to another. The
essence of the agent is always contained within the agent design, whereas agents
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maintain beliefs about where the platform specific commitment rules may be ob-
tained. These beliefs are in the form of URLs and represent the location at which
the rules may be downloaded. These URLs are used within the mailbox server
in the creation of agent designs that combine the essence of the agents with their
platform specific functionality.

6.4.4 Standards compliance, interoperability and portability

Although the AFAPL is a general language, at the moment the interpreters and
all of the tools for both Agent Factory and AFME are based on Java. Communi-
cation in the system is consistent with the FIPA specifications.

• At present, the platform requires Java to operate. The desktop version of the
system will work with either standard Java or the JME CDC platform; it
cannot work with CLDC. AFME has been specifically designed for the JME
CLDC Java platform, but it can also work with standard Java.

• The message transport service and architecture of the system is consistent with
the FIPA specifications. We discuss the message transport service in greater
detail in the previous subsection. Additionally, support for yellow and white
page services is provided.

• The System has been integrated with Java Servlets, JSP, and Struts. Future
work will investigate the incorporation of the system with OSGi [2] for service
management and deployment.

• Standard Java is required for the current framework and the Netbeans IDE
is required for some of the tools to operate. In theory, an interpreter for
AFAPL could be written in any imperative programming language. In the past,
a Smalltalk-80 AFAPL interpreter was maintained, but at present, however,
Java is necessary.

• The platform supports open multi-agent systems and heterogeneous agents.

6.4.5 Other features of the platform

Agent Factory is a modular open source platform. It supports the development
and deployment of different types of agent architectures. Nevertheless, the plat-
form is generally used for the development of intentional agents. The AFAPL
interpreter is quite efficient when compared to other work in this area, but it is
acknowledged that AFAPL does not conform to the same semantics as other sys-
tems. The footprint of the software has been reduced with the development of
AFME. We discuss this in greater detail in Section 6.6.
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• Agent Factory is a modular system and has been specifically designed to enable
its core functionality to be extended with new features. It is open source and is
freely available from SourceForge.

• The overhead of Agent Factory depends on the type of agents that are devel-
oped using the framework. AFAPL is quite practical and efficient when con-
sidered in the context of intentional agent platforms.

• The platform is currently a stable open source distribution.
• The structure of the agent community developed using Agent Factory is

dependent on the design of the individual agents. As such, centralised, dis-
tributed, or hierarchical control can be catered for, but it does not provide
libraries for interaction protocols or group templates.

• The platform enables the reuse of agent designs through the use of inheritance
and dynamic role adoption.

6.5 Applications supported by the language and/or the
platform

Over the years, the Agent Factory Framework has been used for the development
of several research projects. The results and requirements of these projects have
influenced the design of the system and have motivated the introduction of new
features and functionality.

• At present, the majority of applications Agent Factory has been used for have
been research projects that reflect the requirements of real world applications.

• Agent Factory does not target a specific domain and has been deployed in an
array of diverse application domains. These have included E-Commerce [26],
Ubiquitous Computing [36], Mobile Computing [38], Robotics [19], Wireless
Sensor Networks [37], and Mixed Reality [17].

6.6 Comparison to Related Work

Agent Factory distinguishes itself from other intelligent agent frameworks [25,
32, 45, 1] in several ways. It is founded upon a logical formalism of belief and
commitment [10] and enables agents to be programmed directly in terms of their
commitments (see Section 6.3 for a discussion of the commitment management
process). Additionally, it was one of the earliest frameworks to consider software
engineering issues at its core, drawing from, and building upon, early work on
Agent Oriented Software Engineering [41]. The framework comprises a four layer
architecture that includes a development methodology, integrated development
environment support, an agent-oriented programming language, and a runtime
environment.
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There currently a trend in the development of programming languages that use an
XML syntax [7, 21, 48, 14, 47, 29, 16]. Although these systems have made many
significant and innovative contributions to the field, the use of XML has to be
called to account. This approach has not been adopted in Agent Factory/AFME.
XML is useful as a mechanism for data exchange between computer programs, but
not as a language to be used by humans. It’s a sophisticated data format nothing
more (see Terence Parr’s soapbox [42] for more details). The correct approach is
to write a parser and lexical analyzer, lest pay a heavy price in productivity due to
the cumbersome nature of XML. Even if XML were to be used, the data must still
be interpreted. That is, even though XML has an extensible syntax, the developer
must still write code to “make sense” of, or use, the information obtained from the
parser when additional functionality or requirements are added. The semantics
must still be encoded in the application or agent, regardless of the manner in
which the agent design is represented. James Davidson, the creator of the well
known Apache Ant, one of the most widely used XML-based tools, notes about
the XML syntax of Ant in [15]:

“If I knew then what I know now, I would have tried using a real scripting language, such
as JavaScript via the Rhino component or Python via JPython, with bindings to Java
objects that implemented the functionality expressed in today’s tasks. Then, there would
be a first-class way to express logic, and we wouldn’t be stuck with XML as a format that
is too bulky for the way that people really want to use the tool.”

XML is overly verbose and is far from ideal as the syntax of a programming lan-
guage, specification language, or for configuration files to be used by people. As
noted by Parr [42]:

“Humans have an innate ability to apply structure to a stream of characters (sentences),
therefore, adding mark-up symbols can only make it harder for us to read and more
laborious to type. The problem is that most programmers have very little experience
designing and parsing computer languages. Rather than spending the time to design and
parse a human-friendly language, programmers are using the fastest path to providing a
specification language and implementation: “Oh, use XML. Done.” And that’s OK, but
I want programmers to recognize that they are providing an inferior interface when they
take that easy route.”

Several agent frameworks have been developed for the fabrication of agents for
desktop environments. With the explosive growth of the mobile phone market,
there has been a drive to develop similar frameworks for constrained environ-
ments and in particular JME CLDC. Typically, these systems have two versions
of the agent platform, one for the desktop environment and one for the CLDC en-
vironment. This is the case with Agent Factory/AFME. Other examples include
Jade/Jade LEAP [4], 3APL/3APL-M [28], SAGE/SAGE-Lite [27], and Cougaar/-
CourgaarME [49]. Agent Factory/AFME distinguishes themselves from these
other frameworks in a number of ways. JADE-LEAP, CougaarME, MicroFIPA-
OS, and SAGE-Lite are frameworks for the development of agent technology, but
they are not reflective and do not use an abstract agent programming language
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that is based on a theory of rational agency1. 3APL-M is similar to AFME/Agent
Factory in that it does contain reasoning capabilities, but it does not contain a net-
working component. If the developer wishes an agent to communicate over the
network, they must write the code from scratch. Agent Factory/AFME provides
support for networking through the message transport service.
At present, most of these frameworks target mobile phones and PDAs. Agilla
[20] is an agent platform that has been developed for WSNs, but it also does
not contain reasoning capabilities and therefore does not conform to the same
definition of agency as Agent Factory/AFME.
The design of AFME has been strongly influenced by the ‘Law of Demeter’
[30], which specifies the coding guideline “only talk to your immediate friends”.
The ‘Law of Demeter’, or Principle of Least Knowledge, leads to the creation of
loosely coupled classes that improve the maintainability of the software [6, 43].
Using the Law as a general principle, tends to favour composition over inheritance
and avoids the use of accessor (get/set) methods2. Rather than a callee obtaining
data from an object to perform some operation through the use of an accessor
method, the callee directs the object to perform the operation on its behalf [24].
That is, objects are designed in terms of their capabilities and their state is not
exposed through the use of accessors. This is often referred to as ‘delegation’ by
object-oriented developers. It leads to a more declarative approach to object de-
velopment and also tends to reduce the footprint of the software by minimising
code duplication.
The footprint of AFME is quite low. For instance, the core infrastructure has a
Jar size of 77k, an NCSS value [22] of 2601, and a McCabe cyclomatic complexity
[31] (not to be confused with algorithmic complexity) of 2.91. If just the core rea-
soning capabilities of the platform are considered and the Jar file is obfuscated, the
Jar size can be reduced to 17k. When considering the footprint, we must also take
into account the overhead and resource requirements of the software necessary to
run the platform. With AFME, the JME CLDC Java platform is required. CLDC
is considerably less resource intensive than standard Java. As noted earlier, there
have been a number of platforms developed for CLDC. 3APL-M is the closest
framework to AFME in that it is based on a theory for rational agency and con-
tains reasoning capabilities. Through our experience and experimentation [33],
it has been found that AFME is considerably faster than 3APL-M in terms of
execution time. Nevertheless, it is acknowledged that 3APL-M contains features
not supported by AFME. To the best of our knowledge, AFME is the small-
est footprint reflective agent-oriented platform. Nevertheless, it is accepted that
AFME does not conform to the same semantics as other reflective platforms. For
instance, 3APL-M has been incorporated with a complete Prolog engine, AFME
has not.

1 Intelligent extensions built for JADE will not work with the CLDC version of LEAP without
making modifications to the code due to the different APIs supported by standard Java and
CLDC.
2 It should be noted that the LoD does not only apply to accessors (see [30] for more details).
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6.7 Conclusion

Agent Factory is a flexible FIPA compliant open source Java-based platform for
the development, visualisation, and deployment of multi-agent systems. It is an
evolving project and over the years has gone through a metamorphosis process,
producing sibling frameworks such as AFME. Agent Factory has been designed
with Software Engineering principles at its core and represents a modular frame-
work that supports the development of a diverse variety of agent-oriented applica-
tions. The footprint of the system has been further reduced with the development
of AFME. This chapter discussed the various modifications and enhancements
that were made to the framework together with the motivations for such. As new
technologies emerge, it is envisaged that Agent Factory will be further augmented
to reflect new threads and developments. In the short term, we are investigating
the potential to further enhance and optimise performance for embedded and re-
source constrained devices. In the longer term, as the number of heterogeneous
devices and platforms increases, we are looking at the potential of using technolo-
gies, such as OSGi [2], for service management and deployment.
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Chapter 7
Debugging and Testing of Multi-Agent
Systems using Design Artefacts

David Poutakidis∗, Michael Winikoff†, Lin Padgham, and Zhiyong Zhang

Abstract Agents are a promising technology for dealing with increasingly com-
plex system development. An agent may have many ways of achieving a given
task, and it selects the most appropriate way of dealing with a given task based
on the context. Although this makes agents flexible and robust, it makes testing
and debugging of agent systems challenging. This chapter presents two tools: one
for generating test cases for unit testing agent systems, and one for debugging
agent systems by monitoring a running system. Both tools are based on the thesis
that design artefacts can be valuable resources in testing and debugging. An empirical
evaluation that was performed with the debugging tool showed that the debug-
ging tool was useful to developers, providing a significant improvement in the
number of bugs that were fixed, and in the amount of time taken.
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7.1 Introduction

“As soon as we started programming, we found to our surprise that it wasn’t as easy to get
programs right as we had thought. Debugging had to be discovered. I can remember the exact
instant when I realized that a large part of my life from then on was going to be spent in
finding mistakes in my own programs.” — Maurice Wilkes

Agents are seen as a promising technology for dealing with increasingly com-
plex system development, with a range of agent-based solutions having now been
developed in a range of domains [4, 44]. Agents provide a flexible and robust
approach to task achievement making them ideal for deployment in challenging
environments. Agents can be equipped with multiple ways of achieving tasks, and
depending on the task and the context in which the task should be completed, can
select the most appropriate way for dealing with it.
To support the development of agent systems a new field of software engineering,
commonly referred to as agent-oriented software engineering, has emerged, in
which the agent is proposed as the central design metaphor. A vital and time
consuming part of any software engineering process is testing and debugging.
However, the autonomous and distributed nature of agent systems, while modular
and powerful, is notoriously difficult to test and debug [27].
It has been argued that multi-agent systems merely represent a specific form of
distributed systems [51]. Several methods have been developed to assist in the de-
bugging of distributed systems: recording a history of execution for analysis or
replay [36]; animating the execution of a system at run-time by providing a visual
representation of the program [8], and race detection algorithms to facilitate the
detection of simultaneous access to shared resources [65, 47]. However, although
debugging techniques developed for distributed systems can be used to facilitate
the debugging of multi-agent systems to some extent, there are characteristics of
agent systems that require specific attention. Traditional distributed systems sup-
port distributed information and algorithms whereas multi-agent systems address
distributed tasks achieved by coarse grained agents. The individual agents within
a multi-agent system are autonomous and they can act in complicated and so-
phisticated ways. Furthermore, the interactions between agents are complex and
often unexpected. These issues and others need to be addressed for a multi-agent
debugging approach.
During testing and debugging the aim is to reconcile any differences between the
actual program behaviour and the expected behaviour in order to uncover and
resolve bugs. Current techniques fail to take advantage of the underlying design
of systems to support the debugging task. This problem is best summed up by
Hailpern & Santhanam [29]:

There is a clear need for a stronger (automatic) link between the software design (what
the code is intended to do) . . . and test execution (what is actually tested) in order to
minimize the difficulty in identifying the offending code. . .

Our central thesis is that the design documents and system models developed when
following an agent based software engineering methodology will be valuable resources
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during the testing and debugging process and should facilitate the automatic or semi-
automatic detection of errors.
This chapter describes two tools that follow this central thesis and use design
artefacts to assist in the testing and debugging process:

1. A testing tool [71] that uses design artefacts to generate test cases; and
2. A debugging tool [55, 59, 60, 61] that uses artefacts to monitor a system, and

alerts the developer should the system deviate from the behaviour specified by
the design artefacts.

Although both tools use design artefacts, and focus on detecting errors, there are
significant differences between them. Firstly, the testing tool does unit testing
of entities within a single agent (e.g. plans, events, beliefs), whereas the debugging
tool detects errors in a complete running system. Secondly, the testing tool detects
certain domain-independent error conditions such as a plan never being used,
whereas the debugging tool detects domain-specific error conditions relating to
interaction protocols not being followed correctly1. Thirdly, the debugging tool
observes the system in action, leaving it up to the user to adequately exercise
the system’s functionality. By contrast, the testing tool systematically generates a
wide range of test cases.
Thus the two tools are complementary: we envision that the testing tool would
be used initially to do unit testing, and then, once the system is integrated, the
debugging tool would be used to monitor the whole system.
Both tools have been implemented, and the implementations were used for eval-
uation. The debugging tool is not yet integrated and documented in a manner
suitable for public release, but is available from David Poutakidis on request. The
testing tool is under further development and is not yet available.
The remainder of this chapter is structured as follows. Section 7.2 reviews relevant
background material, including previous work on testing and on debugging, and a
review of the design artefacts that we use. Sections 7.3 and 7.4 respectively describe
the testing and the debugging tools. We have chosen to have two “tool” sections,
since we are describing two separate tools. Our evaluation is covered in section
7.5, and we conclude in section 7.6.

7.2 Background

This section begins by reviewing model based testing (section 7.2.1), then briefly
reviews related work on testing and on debugging (sections 7.2.2 and 7.2.3). We
then (section 7.2.4) introduce the design artefacts that we use in the remainder of
the chapter.

1 However, there is some overlap in functionality, in that both tools detect errors relating to
coverage and overlap (see section 7.2.4.3).
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7.2.1 Model Based Testing

Model Based Testing ([1, 25]) proposes that testing be in some way based on mod-
els of the system, which are abstractions of the actual system, and can be used for
automated generation of test cases. Automated test case generation is attractive
because it has the potential to reduce the time required for testing, but perhaps
more importantly it is likely to lead to far more testing being done, and hopefully
therefore more robust systems.
Design models which are developed as part of the process of developing the sys-
tem are one kind of model which can readily be used for model based testing.
They specify aspects of expected/designed system behaviour which can be sys-
tematically checked under a broad range of situations. Different approaches to
model based testing have focussed on different kinds of models, which are then
used to generate certain kinds of test cases. For example Apfelbaum and Doyle [1]
describe model based testing focussing on use scenarios defined by sequences of
actions and paths through the code, which are then used to generate the test cases.
This kind of testing is similar to integration testing or acceptance testing. Others
(e.g. [17]) focus on models that specify correct input and output data, but these
are not so appropriate for testing of complex behaviour models.
In current software development, some level of design modelling is almost always
used. These design models specify certain aspects of the system, and can there-
fore be used as a basis against which to check runtime behaviour under a range
of conditions. Substantial work has been done using UML models as the basis
for model based testing approaches. Binder [5] summarised the elements of UML
diagrams, exploring how these elements can be used for test design and how to
develop UML models with sufficient information to produce test cases. He devel-
oped a range of testability extensions for each kind of UML diagram where such
is needed for test generation.
There are a number of agent system development methodologies, such as Tro-
pos [46], Prometheus [53], MaSE [18] and others, which have well developed struc-
tured models that are potentially suitable as a basis for model based testing, in a
similar way to the use of UML. The design artefacts representing aspects of these
models are potentially well suited to use in guiding testing.

7.2.2 Testing Agent Systems

There has been increasing work on testing of agent systems in recent years, with
several systems using design models for some level of assistance in generation of
test cases.
One approach is to use existing design models to derive test cases. For instance, the
eCAT system associated with Tropos [49] uses the goal hierarchy created during
system specification in order to generate test suite skeletons, which must be com-
pleted by the developer/tester, and which are then run automatically. There has
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also been work on generating test cases based on application domain ontologies
[50]. The eCAT system also uses continuous testing of the system under develop-
ment, an approach that could be used with our own testing tool as well.
Another instance of deriving test cases from existing information is the work of
Low et al. [38] which derives test cases for BDI systems based on the structure
of plans. Their work investigates a range of criteria for test-case generation, and
assesses the relationships between the different criteria, specifically which criteria
subsume which other criteria.
Another approach is to introduce new design artefacts that contain additional
details which are used in testing. For instance, the work of Caire et al. [11] derives
test cases from (additional) detailed design artefacts called “Multi-Agent Zoomable
Behaviour Descriptions” (MAZBDs), which are based on UML activity diagrams.
However, user intervention is required to derive test cases from the MAZBDs.
A number of other agent development systems also have testing support subsys-
tems, such as SUNIT [24] for SEAGENT, the JAT testing framework [13], and
the testing framework of INGENIAS [28]. Testing is also discussed by Knublauch
[35] and by Rouff [64]. However, all of these approaches require manual develop-
ment of test cases, which may then be run automatically.
To our knowledge, our testing tool is the only agent testing system which (a) fo-
cusses on unit testing, and (b) fully automates the generation of test cases as well
as the running of them.

7.2.3 Debugging

Although there is some speculation as to where the term bug was first used [14, 33]
it is widely accepted that the term is used to describe a mistake, malfunction
or error associated with a computer program. Most commonly we are able to
identify that such a bug exists because some observed execution of a program (or
observation of the recorded output of a program) does not conform with what is
expected. From this we can define debugging in the following way: Debugging is
the process of locating, analysing and correcting suspected errors [42].
To aid the debugging process debugging tools have been developed to help with
all three of these activities. Fault localisation, which is defined by Hall et al. as
tracing a bug to its cause [30], is seen by some as the most difficult part in de-
bugging [34, 23, 68]. Indeed, most of the debugging support provided by debug-
ging tools focusses on the process of localising a discovered fault. Such tools are
typically tailored to a specific target programming language for which they have
been designed. However, there are a number of features that one may come to ex-
pect from a debugging tool. Namely, tracing the execution of a program, defining
breakpoints, and variable or memory display and manipulation. In the context
of agents, a number of platforms (e.g. [48, 10, 58]) provide traditional debugging
support, i.e. breakpoints, stepping through code, and an ability to display agent
specific properties, such as goals and tasks.
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Program tracing allows one to follow the executable program as lines in the source
code are executed. This can be useful for understanding the flow of control within
a program. Although, in a large search space or when long iteration sequences are
being followed this can become difficult. Breakpoints are a special instruction
that can be inserted into a program such that the program will halt when the
instruction is reached. This is an efficient way of allowing a program to run to
a specific location and then halt to allow some other debugging activity to occur
from that point, for example, tracing from the breakpoint onwards, or inspecting
the state of a variable and possibly changing it before continuing execution.
For effective debugging sufficient understanding and comprehension of both the
implemented system and the design that the system is based on are required. It
is necessary to gain sufficient understanding of these two closely related parts of
system development for the purposes of identifying and resolving behaviour that
is not consistent with the design specification. Developing the necessary under-
standing of the implemented system can, to some degree, be accomplished by
performing code walkthroughs, or more formally code inspections [26]. Code in-
spections are incrementally applied to parts of the source code to develop the
necessary understanding of the system to uncover code defects. The utility of
this process has also been shown to be effective [22, 40]. However, observing the
behaviour of the system as it executes is still an extremely useful and common
exercise that is employed by developers to obtain a more complete understanding
of the behaviour of the implemented system. One issue is that, often, there is too
much information available, and it can be hard for a developer to know what to
focus on when debugging.
An interesting approach to helping users understand the complex behaviours and
interdependencies in applications is proposed in the Whyline framework where
users are able to ask ‘why?’ or ‘why not?’ questions about observations they make
while interacting with a system [45]. These questions, which are automatically
derived, are typically of the form “why does property p of object o have value
v?”. The Whyline system recursively traverses through the operations that cause
properties to take on their values and provides an answer to the question. In a user
study the Whyline approach was found to be very effective in improving under-
standing in computer programs. However, it is not clear how generally applicable
the approach is.
Another attempt at focusing the debugging task takes the approach of abstrac-
tions over the target program. This is especially important in domains such as
distributed programming where the data, especially event data, can be overwhelm-
ing. By using the abstractions appropriate to developing distributed software Bates
[2] has shown that a debugging system, consisting of a model builder, event mod-
els and an event recogniser can greatly reduce the amount of event information
being propagated to the developer. Primitive event instances need to be defined
such that they can be automatically identified in a program. Once identified the
program needs to be modified to announce the event to an external component
(such as the event recogniser). Models are built using an Event Description Lan-
guage (EDL), as defined in [2]. With such a language one can build expressions
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and further abstractions over the primitive events. Instead of being informed of
the primitive event data, the developer is instead alerted to the meta events de-
fined in the models. The benefit of such an approach is a greatly reduced amount
of event information. One of the major limitations of this approach is that one
needs to learn the EDL and also manually define the models used for compari-
son. The model is built on the users’ interpretation of how the system should
behave, based on such things as their interpretation of potentially informal design
documents. This leads to another concern that the abstractions that have been
applied should not filter out any information required for a particular diagnosis.
In addition the diagnosis can only be successful if the model developed is a correct
representation of expected behaviour.
Other noteworthy approaches to debugging include techniques such as program
slicing [69, 6], algorithmic debugging [66] and model based diagnosis [12, 41, 70]
which each provide support for automating, or partially automating, the debug-
ging process.

7.2.4 Design Artefacts

Both tools follow our central thesis, using design artefacts to assist in testing and
debugging. This section briefly introduces the specific design artefacts that the
tools use.
The testing tool is a generic framework that can be applied to any agent based
system with appropriate models available. The models against which it analy-
ses test output are primarily design artefacts that describe the detailed structure
within each agent: how plans, events, and data are connected. In the context of
Prometheus this information can be found in Agent and Capability Overview
Diagrams (see section 7.2.4.2), as well as information regarding coverage and over-
lap, extracted from message descriptors (section 7.2.4.3), which is also used by the
debugging tool.
In addition important information is extracted from the descriptor forms of be-
liefs, events and plans, regarding variables relevant to the entity, their types and
value ranges, as well as potential relationships between them. For example a de-
sign descriptor of a plan to make a savings deposit, may state that there are two
relevant variables: income and expenses. The relationship is that income > ex-
penses (this is the context condition for this plan, which deposits the surplus to a
savings account). Each are of type money with value range 0 to ∞.
In addition to the information obtained from design descriptors, some additional
information is added specifically for the purpose of testing. This includes links
between design variables and their implementation counterparts, or some other
method to allow assignment of values for the different test cases. It can also include
application initialisation processes necessary before testing can commence, as well
as such things as stubs for other system agents necessary for testing a particular
unit.
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The debugging framework we present is generic, and can be applied to a wide
range of design artefacts. However, the tool that we have developed (and evaluated)
exploits two particular design artefact types: interaction protocols (see section
7.2.4.1), and the coverage and overlap information mentioned above.
Note that although our work has been done in the context of the Prometheus
methodology [53], the approach is generic. Furthermore, the artefacts that we
have chosen are ones that are common to many methodologies. Interaction pro-
tocols are used in many methodologies, and indeed, due to the adoption of Agent
UML [3] by a number of methodologies, the same notation is widely used. Some
form of structural diagram is used in all of the major methodologies, including
Prometheus [53], MaSE [20], and Tropos [7]. On the other hand, coverage and
overlap are specific details about the intent of event handling (in BDI2 systems)
that are specified in the Prometheus methodology.
In this chapter we are concerned more with using design artefacts, and less with
how they are developed. We do note that methodological guidance is important,
and that good tool support is invaluable in creating and, more importantly, main-
taining designs. Fortunately, many methodologies provide mature tool support
(e.g. [19, 43, 52]).
We now discuss each of these design artefacts in turn.

7.2.4.1 Interaction Protocols

Interaction protocols can be defined in a number of ways: as state machines [21,
page 110], in which the states might express the concept of waiting for a message,
and the transitions express the concept of sending/receiving a message [67]; as
statecharts backed by a program logic with formal semantics [57]; as Petri nets
where Petri net places specify protocol state and Petri net transitions encode mes-
sage types [16, 62]; as standard UML [37], or more commonly with an extension
to UML in the form of the Agent UML (AUML) notation [3].
In this chapter we focus on Petri nets: since they are simple and precisely defined
they serve well as a lingua franca for other notations. Indeed, we have defined
translations from the older version of AUML [3] into Petri nets [60], and also
from the more recent version of AUML [32] into Petri nets [59, Chapter 4]. Addi-
tionally, we classify places as either message places, which correspond to a message
in the protocol and do not have incoming transitions, or state places.
Petri nets are a model of procedures that support the flow of information, in par-
ticular the concurrent flow of information. A Petri net (named after Carl Adam
Petri) consists of places (depicted graphically as circles) and transitions (depicted
graphically as rectangles). Places and transitions are linked by arcs which indi-
cate the relation between the elements in the net. This relation is called the flow-
relation, and the flow-relation may only connect places to transitions and transi-
tions to places [63].

2 Belief-Desire-Intention
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Fig. 7.1 Example of a Petri net firing

Additionally, places may contain tokens. The placement of tokens on a net is its
marking, and executing (“firing”) a Petri net consists of moving tokens around
according to a simple rule; the places, transitions, and the links between them
remain unchanged. A transition in a Petri net is enabled if each incoming place (i.e.
a place with an arrow going to the transition) has at least one token. An enabled
transition can be fired by removing a token from each incoming place and placing
a token on each outgoing place (i.e. each place with an arrow from the transition
to it). For example, figure 7.1 shows a very simple Petri net, the transition in this
Petri net is enabled because both state P and state A are marked. The transition
fires by removing a token from state A and from state P and placing a token on
state Q.
In this chapter we present most of our discussions on Petri nets using this graphi-
cal notation. A formal definition is not required for this chapter, and can be found
elsewhere [59].

7.2.4.2 Overview Diagrams

Prometheus captures the static structure of the system being designed using a
range of overview diagrams. Specifically, there is a single System Overview Dia-
gram which captures the overall structure of the whole system; there is an Agent
Overview Diagram for each agent type in the system; and there is a Capability
Overview Diagram for each capability.
These overview diagrams use a common notation where nodes represent entities
in the design — with a different icon being used to distinguish between different
entity type (e.g. agent, plan, protocol) — and relationships between entities are
depicted using arrows between entities (optionally labelled with the nature of
the relationship, where this isn’t clear from context) [54]. Figure 7.2 shows the
notation used, and figure 7.3 depicts an example System Overview Diagram for a
conference management system.
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Fig. 7.3 Example System Overview Diagram (From [54])
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7.2.4.3 Descriptors

The overview diagrams (system, agent, and capability) provide a graphical visual-
isation of the static structure of the system. As their names suggest, they are well-
suited to giving a high-level overview, but they are not intended for capturing the
details of entities. Instead, in Prometheus, the details of entities are captured using
descriptors.
Each entity type has its own descriptor form, which is filled out for each instance
of that type. For example, each agent (type) has its own agent descriptor form,
which captures such information as how many instances of the agent type will
exist at run-time, when these agent instances are created and destroyed, and what
needs to be done to initialise an agent instance. For the unit testing currently
covered by the testing tool, belief, plan and event descriptors are used. Much of
the information from the overview diagrams is also available in the descriptor as
it is automatically propagated.
Both the debugging and testing tool use information relating to coverage and over-
lap (defined below) which is extracted from message3 descriptor forms.
In BDI agent systems such as JACK [10], JAM [31], and Jadex [58] in which agents
select an appropriate pre-defined plan from a plan library, one common cause of
errors is incorrectly specifying when a plan should be selected by the agent for
execution. This often results in one of two situations: either there is no plan suit-
able to respond to a given goal or event, resulting in the goal not being attempted
or the event not being reacted to; or alternatively there may be multiple suitable
plans, and the one chosen is not the one intended4.
The Prometheus methodology prompts the developer to consider how many
plans are expected to be suitable for each event type in all possible situations.
For each event the developer is asked to specify whether it is ever expected that
either multiple plans will be applicable5, or that no plans will be applicable. Two
concepts are introduced within Prometheus in order to facilitate this considera-
tion. They are coverage and overlap. Having full coverage specifies that the event
is expected to have at least one applicable plan found under all circumstances.
Overlap specifies that it is possible, although not required, that multiple plans are
applicable at the time the event occurs.
Full coverage means that the context conditions of the plans that are relevant for
the event must not have any “holes”. An example of an unintended hole that can
occur is if two plans are specified for an event, one with context temperature <
0◦ and the other with context temperature > 0◦. Temperature = 0◦ is then a
“hole” and if that is the situation when the event occurs, no plan will be applica-
ble. If at design time the developer specifies that an event type has full coverage,
and yet at run-time a situation occurs when there is no applicable plan for an
event of that type, then an error can be reported.

3 Prometheus views events as being “internal messages”.
4 Both these situations may occur legitimately, however, they are sometimes an indication of a
problem.
5 A plan is applicable if its context condition is true at the current time.
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For an event to have no overlap requires that the context conditions of plans rel-
evant for that event are mutually exclusive. If overlap is intended, the developer
is prompted to specify whether plans should be tried in a particular order, and if
so how that will be accomplished. Overlap can occur when multiple plan types
are applicable or when a single plan can result in multiple versions of itself based
on the variable assignments that may occur during plan initialisation. For exam-
ple, in JACK if there is more than one way to satisfy a context method’s logical
expression, there will be multiple instances of the plan that are applicable. One
applicable instance will be generated for each set of bindings that satisfy the con-
text condition. The developer is also prompted at design time to specify which of
these situations is expected if overlap is possible.

7.3 Testing Tool Description

The testing tool that we have developed does automated generation and execution
of test cases. Test cases cover the internals of agents. In order to do so we need
to make some assumptions about how the agents are structured internally, and
we assume that agents are designed and implemented in terms of the BDI archi-
tecture, that is that agents consist internally of event-triggered plans and beliefs
(as well as capabilities [9], a modularisation construct introduced by JACK). In
terms of design artefacts, we use the Prometheus structural overview diagrams
and descriptor forms, but the information that we require could also be extracted
from the sorts of information provided by other methodologies, or from the code
itself.
The approach followed aims to support a “test as you go” approach to unit testing
of the building blocks within an individual agent, as the developer moves from
design to code. There are of necessity some constraints in that it does not make
sense to test units which have dependencies on other units, before those units
themselves have been tested. Consequently ordering of testing of units is an im-
portant part of the tool, and units which are depended on must be tested (and
therefore developed) before those depending on them, or at least, they must be
appropriately stubbed.
As was indicated in section 7.2.4 the basic units being tested are beliefs, plans and
events. There are some nuances, as discussed in [71], but the dependencies are
essentially that:

• a plan is dependent on beliefs that it accesses, on subgoals/events/messages
that it posts, and on anything on which these subgoals/events/messages are
dependent;

• an event/subgoal/message is dependent on plans that it triggers and all that
these plans are dependent on;

• beliefs are independent of other units;
• cycles must be treated as a unit, as described in [71].
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If testing all units within something such as a capability, or an agent (or any
collection of units), an initial step is to generate the appropriate testing order for
these units. Following this each unit is tested individually, by running a suite of
automatically generated (or user defined) test cases. If a sufficiently serious error
is encountered, no further testing will be attempted for units which depend on
the unit for which an error was detected.
The focus of the testing tool is to automatically generate and run a sufficiently
comprehensive set of tests for each unit. However, there are cases where develop-
ers want, or need, to specify specific test cases, and this is also supported. User
defined test cases are stored, and combined with system generated test cases each
time testing is done.
The overview of the testing process, using our tool, is as follows:

1. The user selects a set of units for test (often all units within a particular capa-
bility or agent).

2. Using the information available in the capability and agent overview models,
the testing tool determines test case order.

3. Following the testing order, each unit is augmented with code to provide ap-
propriate information to the testing system, and placed within the subsystem
under test.

4. Units on which the unit under test is dependent are placed into the subsystem
under test, with code augmented if needed.

5. Appropriate combinations of variable values are generated to adequately test
the unit, using heuristics to reduce the number of cases as appropriate (see [71]
for details).

6. The environment is initialised and a test cases for the unit is run for each set of
variable values identified.

7. The data collected is analysed, and errors and warnings are recorded for the
report.

8. Following completion of all tests on all units, a report is generated, provid-
ing both an overview and details. Problems are classified as either errors, or
warnings.

Figure 7.4 shows an abstract view of the testing framework for a plan unit. It
has two distinct components, the test-driver and the subsystem under test. The test-
driver component contains the test-agent, testing specific message-events that are
sent to and from the test-agent, and a plan (test-driver plan) that initiates the
testing process, and also sends certain results back to the testing agent. This plan
is embedded into the subsystem under test as part of the code augmenting process.
The subsystem under test is the portion of the system that is needed for testing of
the unit under test and includes the units on which it depends.
Figure 7.4 illustrates the steps in the testing process for a plan: the test-agent gen-
erates the test cases, and runs each test case by sending an activation message to
the test-driver plan; the test-driver plan sets up the input and activates the subsys-
tem under test that executes and sends information (via specially inserted code)
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back to the test-agent; when testing is complete the test-agent generates an HTML
report providing both a summary and details of the testing results.

7.3.1 Errors detected

As described earlier, our testing tool tests each belief, plan, and event, to ascertain
whether, across a range of testing values, they behave as expected, based on the
agent paradigm used, and on the specific application models, as exemplified in the
relevant agent and capability overviews, as well as the descriptors. We list here
the kind of errors that we are able to detect in the testing tool.

Plan errors

• Plan is never executed. If a plan is included in a system as one option for re-
sponding to an event/goal, one would expect to observe that it is used in some
situations, if there is sufficient sampling of the state space. If when testing an
event, some plan that is specified as triggered by that event never executes,
then this is reported as a warning. This error is often caused by an incorrectly
specified context condition of this plan, or another plan handling the same
event. This can cause both to evaluate to true, unintentionally, and due to
declaration order the other plan is always selected.
This is however a warning only, as it is possible that the plan is developed
only for use as a backup, if the intended plan (perhaps non-deterministically)
fails. Also it is possible that despite an effort to cover the state space, a vari-
able combination that would cause the context condition to evaluate to True
was not selected. In this case, on reading the test report the developer/tester
should add a test case which will ensure that the plan is chosen.

• Context condition is never valid. If a context condition never evaluates to
True, this is an indication that there is a problem. However, it is reported
only as a warning, as it may be the case that (as above) the system, despite
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its efforts, did not choose the correct set of variable values. As above, an
appropriate test case should then be manually added.

• Missing subtasks or messages. If there are events specified in the design to
be generated from a plan, but these are not seen in any test case run, then this
is likely to be an error. As above it is however possible that suitable values
have not been chosen, in which case a test case should be manually added.

• Plan does not complete. While it is difficult to determine whether a plan
completes successfully or not, we can at least determine whether the plan
executed to completion. If the plan does not complete then there is an error.6

Event errors

• Failure to handle the event. If there is a test case for an event where the
event has no applicable plan, then this indicates that there are gaps in what
we call coverage. That is, there are some situations where there is no applicable
plan to handle this event. This may be intended, but is in fact a very common
cause of errors in agent programs. In the design descriptors for events in the
Prometheus Design Tool (PDT), the developer notes whether coverage is in-
tended. If it is, then this is a definite error. If not a warning is still generated
to allow the developer to check that the lack of coverage was intended.

• Multiple applicable plans. It is common that there are multiple applicable
plans for handling an event. At design time this needs to be considered to
ensure correct precedence in selection (if this matters). If the developer has
indicated that overlap (the existence of multiple applicable plans in some situ-
ations) is not intended, then this is an error. A warning is always generated to
allow easy checking of whether the overlap was intended, as this is a common
cause of problems in practice. Unintended overlap easily results in a different
plan being selected than that intended.

Belief errors

• Failure of basic operations. Basic operations of insert, update, delete and mod-
ify should work as expected. The testing framework attempts each of these
operations on the beliefset and checks that the expected result holds using a
beliefset query.

• Failure to post specified events. Beliefsets can be specified to generate au-
tomatic events based on the basic behaviours of insert, modify, delete and
update. If an event is not posted as expected, this is an error.

• Posting of an event even if the corresponding beliefset operation fails. If
for some reason a particular beliefset operation fails (e.g. insert may fail if the
belief to be inserted already exists), then an automated event based on this
operation should not be generated. If it is, then this is an error.

The testing system currently only deals with testing of beliefs that are part of the
agent’s explicit beliefset structure. In fact any arbitrary data can represent aspects

6 When deployed, a plan may well fail due to some change in the environment after the time it
was selected. However, in the controlled testing situation where there are no external changes, a
plan that does not complete properly (due to failure at some step) should not have been selected.
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of the agent’s beliefs, but these are not currently tested, other than as they are
used by plans.
Faults identified (or possible faults) are categorised into different levels in order
to specify the effect that they should have with regard to running an entire test
suite. If a definite error is identified within a particular unit, there is no point
testing other units dependent on it, and all such scheduled tests should be aborted
until the problem is fixed. However if a warning is identified, this may be simply
because suitable test cases have not been identified. The user can specify whether
they wish the testing to continue or to abort in such situations, with regard to
dependent units.

7.3.2 Test case input

An aim of testing is to generate a range of test cases that adequately covers the
entire space of situations that can be encountered. Specifying a comprehensive
set of test cases for each unit is tedious and time consuming, and so we have
automated this in an attempt to obtain good coverage. However, we also allow for
specification of specific test cases by the developer/tester. Once specified these are
stored and always used when the unit is tested, in addition to those automatically
generated.
The test cases are comprised of combinations of relevant variable values, which
must then be initialised within the environment of the unit to be tested, or must
be part of the input to the test. Relevant variables include those within an event,
those referenced in a plan’s context condition or body, and those within a be-
liefset. We require the design documentation for a particular unit to identify the
variables that affect that unit, as well as a mapping to enable values to be assigned
to these variables during the testing process.
In order to generate the value combinations that define the different test cases, we
employ the following steps:
1. Variable extraction from the design documents.
2. Generation of equivalence classes within the input range of each variable.
3. Generation of combinations of the equivalence classes using a heuristic to

reduce the number of different combinations.
4. Generation of specific input values.

Values that are within the specified range for a particular variable we call valid
values, while ones outside the specified range we call invalid. We test using both
valid and invalid values, under the assumption that the system should gracefully
degrade in the presence of invalid input, rather than crash.
Partitioning into equivalence classes [56, p.67] [5, p.401] allows us to obtain group-
ings of values where it is assumed that any value in the group will be processed
similarly. We use standard techniques to create equivalence class structures with
five fields:7

7 More complete details are available in [71].
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1. var-name: The name of the variable.
2. index: A unique identifier.
3. domain: An open interval or a concrete value.
4. validity: Whether the domain is valid or invalid.
5. sample: A sample value from the domain: if the domain is an open interval

(e.g. (0.0, +∞)), it is a random value in this interval (e.g 778); if the domain is
a concrete value (x=3), it is this value.

As the number of all possible combinations of equivalence classes can be very
large, we use combinatorial design [15]. to generate a reduced set of value com-
binations that cover all n-wise (n≥2) interactions among the test parameters and
their values. We use the CTS (Combinational Testing Service) software library
of Hartman and Raskin8 which implements this approach. Where viable, we do
however ensure that all combinations of valid data are used to increase the likeli-
hood that all options through the code are exercised.

7.3.3 The testing report

Once a suite of test cases have been run an HTML report is generated to allow the
developer/tester to view the test results. The overview lists the agent that the units
tested belong to, the number of units tested for that agent, the number of faults
found and whether they were warnings or errors. The summaries for each unit
can then be accessed via a link, and figure 7.5 shows an example of such a summary
for the plan “Book_Query”. As shown in figure 7.5 it is then possible to review
the specific values for the problematic test cases, in order to assess modifications
needed. In some cases, as for the second fault in “Book_Query”, there is not a
specific test case which causes the problem, but rather the fault arises from an
analysis across the range of test cases. In this example “Book_Query” is specified
to post the message “Check_Category”. This means that in some situation such a
message would be posted by this plan. If in the set of test cases generated to cover
the range of values of variables, the message is never posted, it is an indication
either that there is an error, or that a suitable test case has not been generated to
exercise this posting. Sometimes, by providing an appropriate test case, such faults
can be eliminated.

7.3.4 Evaluation

An initial validation of the testing tool has been done using the case study of
the Electronic Bookstore system as described in [53]. The Stock Manager agent was
implemented according to the design specified, and then deliberately seeded with
a range of faults, such as failing to post an expected message. Examples of each

8 http://www.alphaworks.ibm.com/tech/cts
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Fig. 7.5 Example of portions of testing report

of the kinds of faults discussed above, were introduced into the Stock Manager
agent; for instance, the Stock Manager agent is designed with the plan Out of stock
response, which posts the subtask Decide supplier, if the default supplier is out of
stock and the number of books ordered is not greater than 100. The code was
modified so that the condition check never returned true, resulting in the Decide
supplier subtask never being posted. The testing framework generator automati-
cally generated the testing framework for the testable units of the Stock Manager,
and then executed the testing process for each unit following the sequence deter-
mined by the testing-order algorithm. For each unit, the testing framework ran
one test suite, which was composed of a set of test cases, with each case having as
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input one of the value combinations determined. Further details and examples are
described in [71]. All faults were successfully found by the tool, which generated
a total of 252 test cases.
We are currently in the process of doing a more thorough evaluation, using a
number of programs with design models, developed as part of a class on Agent
Programming and Design. Once this is completed we will be able to comment
on the kind of faults identified and the relationship of these to errors identified
during marking the assignments. We have also evaluated the testing system on
a demonstration program developed for teaching purposes. In this program 22
units were tested with 208 automatically generated test cases. This uncovered 2
errors where messages were not posted as specified in the design (apparently due
to unfinished coding), and one error where certain data caused an exception to be
thrown, due to a certain input data type that can not currently be handled by the
testing tool (the tool is under improvement to solve this issue). This program had
been tested by its developer, so the results of this testing process would seem to
indicate that the generation and execution of automated test cases were effective
in uncovering bugs in the system.
However the testing tool is limited in what it tests for. It does not currently test
for any higher level functionality, such as agent interaction according to specified
processes, or the satisfactory following of scenarios as specified during require-
ments. We plan to add these aspects of testing in future work. Our debugging tool
(described in the next section) should be able to be combined with automated gen-
eration of variable values and a test harness, to realise focussed interaction testing.

7.4 Debugging Tool Description

In this section we describe the debugging tool. We begin (section 7.4.1) by de-
scribing the debugging framework which the tool instantiates. We then discuss
the types of bugs that can occur in interactions (section 7.4.2) before proceed-
ing to discuss how interactions are monitored (section 7.4.3) and how erroneous
interactions can be identified (section 7.4.4) and reported (section 7.4.5).

7.4.1 Architecture of the Debugging Framework

The debugging framework that we have developed uses the design artefacts, apply-
ing to them a process to produce debugging components to facilitate the automatic
debugging of agent systems. The debugging framework is based on the premise
that we can utilise the system design artefacts as a partial specification of correct
system behaviour. We describe this framework in terms of the processes that are
applied as well as the underlying debugging infrastructure required to support
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the observation of the system, comparison of the system against the developed
debugging artefacts, and the reporting of the system to the user.
Figure 7.6 provides an overview of our debugging framework. This consists of a
set of debugging components, framed with a solid line and annotated with C1,
C2, and so on, that together represent the run-time debugging environment. In
addition to the debugging components are a set of processes, framed with a broken
line and annotated with P1, P2, and so on, that represent the processes that need
to be applied to generate the debugging components.
The run-time system (C1) in the center of the figure depicts the agent system
that is the focus of the debugging exercise. It is developed using the system design
artefacts (P1). During execution the run-time system sends information to one
or more monitoring components (C3). The monitoring components are supplied
by a library of debugging artefacts that specify correct system behaviour (C2).
The debugging artefacts represent a partial model of correct behaviour that is
generated by following processes P1 through P3.
The processes in the debugging framework specify how to develop a suitable de-
bugging component from a system design artefact. Each of the design artefacts
from the set of system design artefacts (P1) are considered. From these we iden-
tify and select suitable design artefacts that could be used as debugging compo-
nents (P2). From the identified artefacts we develop a partial model of correct
system behaviour. This requires that we develop a machine interpretable format
for the design artefacts (P3). Each of the developed debugging artefacts feed into
the library of debugging artefacts that is used in the monitoring component for
run-time debugging.
The monitoring components are where the comparison between actual system
behaviour and expected system behaviour is carried out. Before such a compari-
son can be carried out we must determine a method for extracting the relevant
run-time information from the run-time system that should be sent to the mon-
itoring components. The necessary information is identified and the source code
is instrumented (P4) so that when certain events of interest occur in the system
they are forwarded onto the monitoring components for consideration. Once the
system has been modified to send the relevant information it can be compared
to the debugging artefact and then a report can be sent to the user via the user
interface in (C4).
In this chapter we focus our attention on two important design artefacts, Inter-
action Protocols for detecting interaction related bugs and Event Descriptors for
detecting incorrect interactions between events and plans (as discussed in section
7.2.4.3).
The debugging framework is generic: it does not make any assumptions about
agent architectures or implementation platforms. However, when instantiating
the framework in a tool, we must select design artefacts, and the choice may result
in assumptions about the agent architecture. For example, debugging incorrect in-
teractions between events and plans assumes that agents are implemented in terms
of these concepts, i.e. that a BDI-like platform is used. On the other hand, no as-
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sumptions about the agent architecture are required in order to debug interaction
related bugs.
This framework forms the foundations of our approach to debugging multi-agent
system. Before we move forward and discuss the generation of the different de-
bugging artefacts we will first provide a review of the types of bugs that we will
expect to resolve.

7.4.2 Types of Bugs

Interaction related bugs, where agents at run-time do not interact with each other
as expected, are a common source of problems in multi-agent systems. Following
is a discussion of several types of interaction related bugs that we have identified
as being characteristic in multi-agent systems.

• Sending the wrong message:
We define the sending the wrong message bug as the act of an agent sending a mes-
sage that is not appropriate given the current expectations as defined by the protocol.
This bug represents the case where the protocol requires an agent to send mes-
sage m1 but instead some other message, m2, is sent. Typically m2 is a message
that is valid at some other point in the protocol, but it may also be a message
that is never valid in the protocol that the agents are meant to be following.

• Failure to send a message:
We define failure to send a message as the act of an agent failing to send a message
when the protocol required that one be sent.
Failing to send a message when one is expected is often symptomatic of a failure
in some part of the agent system. When developing the agent goals and plans
the requirements of the protocols are considered. Failure to respond according
to the protocol can be an indication that the agent or some part of the agent
has stopped functioning correctly.

• Sending a message to the wrong recipient:
We define sending a message to the wrong recipient as the act of sending a message
to an agent that is not the intended recipient as specified by the protocol design.
When sending a message to another agent the receiver is chosen and explicitly
referenced in the message header. If at run-time the message is sent to a different
agent than that specified in the design this is incorrect. The wrong recipient
may be wrong based on the agent role that received the message, or could
be wrong based on the agent bindings that may have already occurred in a
conversation.

• Sending the same message multiple times:
We define sending the same message multiple times as the act of an agent incorrectly
sending the same message multiple times when only one message should have been
sent.
When an agent wishes to send a message to another agent it should do so only
once, unless the interaction protocol or some other logic dictates otherwise.
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If the same message is sent multiple times it is possible that the message will
be processed by the receiving agent multiple times. Doing so could result in
incorrect or unexpected behaviour. For instance if a customer agent sends a
message to purchase goods from a merchant multiple times, it is likely that the
merchant will also process the order multiple times, sending more than one
order.
Although sending a message more than once may seem to be unlikely, it is, in
fact, behaviour that can arise due to the failure handling mechanism used by
a range of BDI systems. In such systems it is common to have a number of
different ways of achieving the goals that the agent adopts. The choice of plan
is made at run-time and it is inside these plans that the messages are created and
transmitted to other agents. The plan failure mechanism within these systems
enables the agent to select alternative plans if a plan fails to achieve the goal
for which it is selected. If the same plan can be retried after a message is sent
but before the goal is achieved, or if alternative plans can be tried that send the
same message upon failure then unless care is taken it is possible that the agent
is unaware that it might have sent the same message multiple times.

7.4.3 Monitoring Interactions

We now discuss how we use derived Petri net protocols to monitor and provide
useful information about the interactions occurring between agents to support the
debugging of multi-agent systems. We present the Interaction Monitor: an instance
of the abstract Monitoring component discussed in section 7.4.1. The Interaction
Monitor is responsible for processing messages that are exchanged within the sys-
tem by modelling the messages as conversations within the Petri net protocols.
In addition to the mechanics of the Petri nets, the Interaction Monitor utilises
a number of other processes and algorithms to determine the correctness of the
messages exchanged in the monitored system.
Following this, we describe how the Interaction Monitor detects the bug types
which we have identified. Each of the bug types that were introduced in section
7.4.2 are discussed. Reporting the results of the Interaction Monitor is carried out
by a reporting interface that we have developed as part of our Debugging Toolkit.
The reporting interface is a basic prototype tool that we use to convey the results
of the Interaction Monitor to the developer.
Modelling and processing conversations occurs within the debugging framework
introduced in section 7.4.1. Figure 7.7 shows an abstract view of the Interac-
tion Monitor which is responsible for debugging agent interactions in a deployed
multi-agent system. The Interaction Monitor is responsible for processing mes-
sages within the Petri net protocols for the purpose of detecting erroneous in-
teractions. It is composed of a message queue that is used to store the incoming
messages while an existing message is being processed, and a Conversation List
which contains the set of active conversations. Messages are removed from the
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Fig. 7.7 Overview of the Interaction Monitor.

message queue and partitioned into conversations based on the conversation id
that is included with each message9.
When a message is removed from the queue the conversation id is inspected. The
first step in processing the message is to determine which conversation it belongs
to. If the conversation id matches any active conversations then the message is
directed to the respective conversation. If, however, the conversation id is not
matched to a conversation a new conversation is initialised.
We construct a conversation list which is used to hold all of the active conver-
sations occurring in the multi-agent system. Each conversation is comprised of
a conversation id, a Possible Protocol List (PPL), and a role map (not shown in
figure 7.7) which is used to map agent instances with role types and is used to
reason about role related bugs. The PPL contains an instantiation of each of the
protocols that could be the protocol that the agents are using to direct their con-
versation. We need the PPL because we do not require that the agents include the
name of the protocol when sending messages to one another, and take the view
that each protocol in the PPL is potentially the protocol that the agents are fol-

9 The agents are required to create new conversation ids for new conversations, and then to
include the relevant conversation id with each message.
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lowing. When a message sequence violates a protocol we mark it as in error and
continue to process any other remaining possible protocols.
Initially the conversation list is empty. Upon removing a message from the mes-
sage queue a conversation is created and the message is modelled in the conver-
sation. If a conversation already exists, because the currently dequeued message
shares the same conversation id as a previously received message, then the mes-
sage is added to that conversation. Adding a message to a conversation is done by
adding it to each of the protocols in the PPL. The message is simulated as a token
in the Petri nets and the Petri nets are fired to enable any valid transitions. The
protocols are then checked for errors and if necessary the user is alerted.
The following summarises the monitoring procedure that we use to detect proto-
col related errors. Below we discuss the details for steps 1, 2, 6, and 8. Steps 3, 4,
5, 7 and 11 are trivial and do not require further discussion. Step 9 is covered in
section 7.4.4 and step 10 is discussed in section 7.4.5.

intercept a message;1

add message to queue;2

while message queue is not empty do3

remove message from head of queue;4

if message does not belong to an existing conversation then5

initialise a new conversation;6

end7

add message to each protocol in the PPL for the relevant conversation8

and fire Petri nets;
check for errors;9

report errors if necessary;10

end11

7.4.3.1 Intercepting Messages (steps 1 and 2)

The Interaction Monitor needs to receive a copy of every message that is trans-
mitted in the system that it monitors. The mechanism for sending a copy of the
message to the Interaction Monitor will be platform dependent. However, the
technique of overloading which we use in our JACK prototype should be gener-
ally applicable. We overload the JACK send method so that each time it is invoked
a message is also sent to the Interaction Monitor. This approach does not intrude
on the developer, nor does it complicate the source code that the developer works
with.
The overhead in relation to the number of messages transmitted in the system is
for every message sent, a copy of the message is also sent to the Interaction Mon-
itor. If the target system is highly timing dependent then the additional messages
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being transmitted and the additional time taken to transmit a carbon copy of mes-
sages may affect the system’s behaviour. This is a standard concern with adding
debugging support to timing dependent systems. The benefit of the debugging
support will need to be considered in terms of the possibility of adversely affect-
ing the execution of the system. However, given that multi-agent systems are de-
signed to function with often unknown numbers of agents, and hence unknown
numbers of messages, this overhead should not prove a problem in any but the
most sensitive systems.

7.4.3.2 Initialising a Conversation (step 6)

Initialising a new conversation is primarily concerned with identifying and set-
ting up the Petri net protocols so that the conversation can be modelled. A given
message may require the initialisation of multiple interaction protocols, depend-
ing on the number of protocols for which the start message matches. Further,
the starting message of a protocol is not guaranteed to be unique: for example,
both the Contract Net protocol and the Iterated Contract Net protocol have a cfp
message as their starting message.
The process for creating a new conversation involves searching the Protocol Li-
brary for all correct protocols that could possibly be used to model the conversa-
tion. The protocols that will be used to model the conversation will be the proto-
cols that have an initial message that matches the message type of the sent message
m. We define an initial message as any message in a protocol from the Protocol
Library where the message place in the Petri net has an outgoing transition that is
also an outgoing transition of the start state (recall that the start state is the only
non-message state that has no incoming transitions). For example, in figure 7.8,
request is an initial message because it shares an outgoing transition (T1) with the
start place (A). Note that identifying the initial messages for each protocol can be
computed in advance.
The Interaction Monitor creates a copy of each matching protocol (i.e. one with
an initial message that matches the dequeued message) initialises the protocol by
placing a token on its start place, and adds the protocol to the PPL of the conver-
sation.

7.4.3.3 Add Message and Fire Petri Nets (step 8)

After a conversation has been initialised, and the PPL contains at least one pro-
tocol, the currently dequeued message is added to each of the Petri nets in the
PPL. The message place matching the dequeued message is identified and a token
is created and deposited onto the place. The Petri net is fired to allow for any en-
abled transition to fire and the tokens are removed and deposited in the standard
method for Petri nets.
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Messages will be processed inside the Petri net in this manner until either an error
is detected or the Petri net protocol terminates successfully. A conversation is said
to have successfully terminated if all tokens in the net reside on a final state place.
A final state place is any state place that is not an input to any transition. When
one of the valid protocols terminates successfully the conversation is marked as
successfully terminating, indicating that no errors were detected in the protocol.
Given that the PPL may contain other currently valid protocols, it is possible that
after one protocol terminates successfully there are other protocols that are not in
error but also are not complete. Any further messages received in a conversation
that has an already terminated protocol will still be processed inside the other
relevant protocols, and in the event that one of these protocols results in an error
this will be indicated to the user.

7.4.4 Identifying Erroneous Interactions

The reason for processing messages inside Petri nets is to identify erroneous sit-
uations. For example, if a wrong message is sent we would want to identify this
and report it accordingly. Identifying information such as this is precisely how we
use the Petri net models of agent interactions to assist in debugging interactions.
We can determine the state of a Petri net protocol by considering the distribu-
tion of tokens over places. Inspection of the Petri net can indicate, among other
things, the current state of the conversation and the next valid message. This is an
important property that we leverage to help identify errors, and provide useful
debugging information. The various methods that we employ to identify errors
will be the subject of this section.
We now discuss the following three cases:

1. Observing a wrong message (which includes sending a message multiple times)
2. Failure to observe a message
3. Role-related errors (including situations where the message is correct, but the

recipient or sender is the wrong agent)

7.4.4.1 Observing a Wrong Message

Sending the wrong message is characterised by an agent sending a message that is
not valid. There are two main cases that we focus on: (A) the message not being
valid in the protocol at all, and (B) the message not being valid at the current time
(because of the previous messages that have been sent). Case (A) is detected by
identifying that the message does not match any messages in any of the protocols
in the PPL. Case (B) is identified when the message does not successfully fire any
transitions in any protocol.
We now consider case (B), where the message is valid in the protocol but is not
valid given the current state of the protocol. We begin this discussion starting from
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the protocol state represented by figure 7.8. At this point the participant agent has
agreed to perform the required task. Consider what happens if the next message
sent and subsequently received into the Petri net is a refuse message. A token will
be generated and the refuse message place will be located and a token deposited
onto it. When the Petri net fires no transition is enabled. For a transition to fire
there would need to be a token on state place B, which would enable transition T2.
The conversation has already transitioned beyond this state, hence, the addition
of the message does not trigger any transitions.

A
place)

(Start request

T1

acceptrefuse
B

C
T2 T3

(d) Result of second Firing of the Petri Net

inform−done

T4 T5 T6

E F G

inform−result failure
D

Fig. 7.8 Modelling a conversation following the FIPA request protocol.

We use the following logic to determine that this behaviour indicates an error
in the conversation: when a token is deposited onto a message place the token
represents the receipt of a message. If the message is valid, based on the current
state of the conversation, a transition should be enabled to advance the protocol
into a subsequent valid state. If no transition is enabled the message must not
have been valid. Therefore, if after adding the message token and checking for
enabled transitions (firing the net), a token still resides on a message place it can
be concluded that the message was sent at the wrong time. As discussed previously
the protocol is marked as in error but the conversation only reports an error if no
error-free protocols remain in the PPL.
In addition to identifying the error we can also identify the set of valid messages
based on the current marking of the Petri net. We identify the valid messages by
locating any message place that shares an outgoing transition with any state place
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that contains a token. For example, in figure 7.8 both failure and inform-result
share an outgoing transition with state place D, and hence are valid messages.

7.4.4.2 Failure to Observe a Message

Thus far, we have described error detection based on receipt of messages. The
Interaction Monitor receives a message and determines if it is valid based on the
current state of the conversation. This process will not identify conditions in
which an agent has failed to act, rather than acted in the wrong way. In terms
of interaction modelling, this problem is characterised by an agent not sending a
message that it was expected to send.
In a framework based on observations, we need to consider the issue of observing
something that does not happen. To enable this we need to redefine our semantics
of observation, from those in which the observer waits forever for an event to
occur, to one in which the observer waits for an event to occur over a specific
time period. Under such conditions an observer can make assertions such as over
time period t, event e has not been observed to have occurred.
When developing an interaction protocol there is an expectation that if an agent
receives a message it will reply with an appropriate message. Yet, although proto-
cols can be specified with deadlines for message transmission this feature is often
not used10. The reason that time limits are not imposed on the replying agent
is that there is an expectation that the agent will reply as soon as is practicable.
Given that agents can engage in multiple dialogues, waiting for a reply in one
conversation does not have an impact on executing another. There is, however, an
expectation that the reply will be made in a reasonable time.
Identifying when a failure has occurred requires that we both determine a time
frame for each message and devise a method for determining when the time frame
has been exceeded. The first problem is one that should be considered by the
developers of the system. If one wishes to have support for identifying when
a message is not sent, then, effort must be expended to determine the timing
constraints on the interactions. Each protocol, or if desired, each protocol state,
must have a duration added. The time limit will indicate the duration that the
Interaction Monitor will use to determine if a message has been received.
To support the detection of a failure to send a message we add timer support to
the Interaction Monitor. The state places of the Petri net protocols (representing
the state the conversation is in) have a timer added such that whenever a token is
deposited the timer is triggered. When a valid message for the current state of the
conversation is received a transition is enabled and the token that was marking the
state is removed and a new token is generated on another state place. The removal
of the token from the state place stops the timer indicating that the message has
advanced the state of the conversation. If a timer expires it is inferred that a mes-

10 Auction protocols are a notable exception, however only the initial propose message has a
deadline.
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sage that should have been sent has not been sent, hence the error: failure to send
a message.
In the event that a timer does expire the Interaction Monitor is able to report the
current state of the conversation and can indicate the next valid messages. How-
ever, instead of reporting an error, a warning is reported. We view the failure to
send a message as a warning rather than an error because it is possible that too
short a timer has been set. In the early stages of development the timing charac-
teristics of the system may not be well understood and may require refinement.
By reporting a warning we are able to alert the developers to possible problems
for investigation.
In terms of processing messages into the protocols stored in the Possible Protocols
List, those protocols that have been marked as a warning are handled differently
to a protocol that has been marked as an error. When a conversation is considered
to be in error no more messages are delivered to the Petri net. In the case of a
warning, messages are still delivered and processed by the Petri net. If a message
that was previously marked as not being received subsequently arrives then the
status of the Petri net will be changed to reflect that the conversation has returned
to an active, valid state. Or in the case that the message was invalid, the protocol
can then be marked with an error.

7.4.4.3 Role-related Errors

During the initialisation phase we also assign agent instances to roles for each of
the protocols in the PPL. The protocols are specified with role types and each role
type is associated with a set of messages that it can send and a set of messages that
it can receive. By mapping agent instances to roles in this way we are then in a
position to identify certain role related errors.
Roles are assigned to agent instances based on the contents of the header of the
initial message that triggered the creation of a new conversation. The sending
agent, whose name appears in the sender field of the message header, is mapped
to the role that triggers the conversation. The recipient of the message, whose
name appears in the recipient field, is mapped to the role that receives the message
in the protocol. Once roles have been mapped to agent instances any message
that appears in the conversation will only be considered valid if it first matches
the role mapping. We consider the information relating to both the sender and
the recipient of a message when performing the role checks. In the event that
there are more than two roles in a protocol the role map will not be completely
assigned after the first message is sent. Subsequent messages will be used to assign
any unmapped roles.
To illustrate the role mapping consider the situation where the Interaction
Monitor receives a propose message that was sent from agent A to agent B. In
this example there is only one protocol that matches the propose message. The
messages that are valid for the initiator are:
〈 initiator ⇒ propose 〉
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The messages that are valid for the participant are:
〈 participant ⇒ accept, refuse, failure , inform-done, inform-result 〉

Since we are in the initialisation phase we simply map the agents to the roles
for this protocol. Agent A is mapped to the initiator role and agent B is mapped
to the participant role. For all subsequent messages that are exchanged in this
conversation the role map is queried to verify that the sender and receiver fields
in the message header match those that have been defined in the role mapping. Or
if roles are appearing for the first time the agent instances are mapped and added
to the role map.
The role mapping procedure supports the mapping of agent instances to multiple
roles within the same conversation. This is achieved by allowing a one to many as-
sociation in the mapping procedure which allows agent instances to play multiple
roles. Since role mappings are done at the conversation level there is no restriction
placed on which roles an agent plays in different conversations. For example, an
agent can play an initiator in one conversation and a participant in another.
Having developed a procedure for mapping agent instances to roles we are in a po-
sition to identify certain errors to do with the sending and receiving of messages.
We had previously stated that the rule for depositing a token into the net was to
locate the message place that matched the received message and generate a token
on that place. However, once the message place has been located a further check
is performed to ensure that the agent that sent the message was permitted to send
it, and that the recipient is permitted to receive it. This is the verification of the
role assignments.
Using the role map we can identify two different errors. Sending a message to the
wrong agent, and the wrong agent sending a message. Both are identified in the
same manner. After the first message from each role has been sent any further
messages must conform to the (possibly partial) mapping established. When a
message is received the sender and receiver are extracted from the message and
compared against the role map. If either of the two fields conflict with what is
stored in the mapping no token is generated for the Petri net. Instead, the Petri
net is marked as being in error for either sending a message to the wrong recipient,
or the wrong agent sending a message.

7.4.5 Reporting Errors

When an interaction is found to be in error it is necessary to communicate this
fact to the developer. In reporting errors (or warnings) we include a range of in-
formation such as which protocol was being followed, which agent instances were
mapped to which roles, and the point at which a conversation diverged from the
allowed behaviour. This information can assist in locating the underlying error in
the agent code that is the cause of a bug.



246 Poutakidis et al.

The examples in this section are from the meeting scheduler application which
was used for evaluation (see section 7.5.1 for details).
We have developed a simple prototype interface to display information about the
status of active and completed conversations that occur in the deployed multi-
agent system. The prototype interface also reports coverage and overlap errors.
The user interface provides a collection of tabbed text areas, one for each conver-
sation. Each of the conversation panels displays the status of the conversation by
both a text description of the status and the icon on the conversation tab. The
text area is responsible for displaying the messages received for each conversation.
While a conversation is progressing correctly the text area in the tool will simply
output each of the messages in the form11:

AddTaskEv(Lenny -> Carl)
Possible Protocols:
AddTask, AddTaskMoveTask

When a conversation is known to be in error, i.e. there are no remaining possible
protocols that are not in error, the relevant conversation’s tab has a red cross
added, and the text area provides details of the error, with a message of the form:

*** ERROR TaskAddedByDP (Lenny -> Carl)
Message is not a valid start message

In this example the conversation is in error because the message that was sent as
the first message in the conversation is not a start message in any of the protocols
within the system, hence an error is immediately reported.
The Interaction Monitor keeps track of the time elapsed since the last message is
received in a conversation. If the time exceeds the developer defined duration then
a warning can be reported by changing the conversation’s tab label to include a
warning icon and giving a warning message which indicates what messages were
expected based on the current state of each protocol in the PPL:

*** WARNING. Expected a message by now.
Expected:

AddTaskToDPEv from AddTaskProtocol.
AddTaskToDPEv from AddTaskMoveTask protocol.

11 In the interests of brevity and readability we have simply provided the output text, rather
than given screenshots.
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Since this is only a warning, if a correct message is received after the conversation
has been set to a warning then normal operation can continue. The conversation
is switched back to active and the warning icon is removed.
When a conversation completes successfully the icon on the tab will change to
a green tick and a message will be displayed indicating that the conversation has
completed successfully:

TaskAddedEv (TodoList@John -> GUIProxy)
Conversation finished successfully

If any further messages are received with the conversation id of an already com-
pleted conversation they will cause the conversation to be in error.
In the current version of the reporting interface all previous conversation panels
are retained. If the number of conversations becomes large it would not be prac-
tical to keep the successfully completed panels on the main interface. A first step
would be to move the completed conversation panels to a secondary location.
From the user’s perspective using the debugging tool is non-intrusive: the applica-
tion being developed is run and tested as normal, and the debugging tool monitors
its behaviour and reports errors/warnings.

7.5 Evaluation of the Debugging Tool

We wish to evaluate the degree to which such debugging support translates to an
improvement in debugging performance. In the background section we discussed
the three main stages that a user will proceed through during a debugging task.
These are, firstly, identifying the bug by identifying that the program is not acting
as expected. Secondly, locating the cause of the bug, by locating the part (or parts)
of the source code that are responsible for the bug. And finally, fixing the bug by
providing the necessary source code modifications to remove the bug.
For each of these — identification, location and fixing — we investigate to what
extent our tool assists. We measure both overall success, i.e. the number of pro-
grammers who were able to identify/locate/fix a given bug, and also the time that
they took to do so.

7.5.1 Experimental Process

The multi-agent test application that we developed for the experiment is a multi-
user personal organiser (called “MAPO”) with support for managing a user’s daily
activities. A user can add tasks and meetings with properties such as duration, pri-
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ority and deadlines. MAPO automatically schedules (and re-schedules) tasks and
meetings. The application was designed using the Prometheus methodology [53]
and was implemented using the JACK Intelligent Agents programming platform
[10]. Each user is support by an instance of the MAPO system, which contains 5
agent types which use 55 plans to handle 63 event types. For our experiments we
used three instances of MAPO (corresponding to three hypothetical users).
Four variants of MAPO were developed, each seeded with a different bug. Bugs
one and two were of the plan selection type as discussed in section 7.2.4.3, and
Bugs three and four were of the interaction type as described in section 7.4.2.
Since MAPO was developed using JACK, participants in the experiment had to
be familiar with the JACK platform. We contacted members of the local agent
community in Melbourne, Australia, an email was also sent to an international
JACK programming mailing list, and finally the developers of the JACK program-
ming platform were contacted for participation. In total 20 subjects completed the
experiment with the majority (17) being from Melbourne, Australia.
To ensure comparable levels of ability between groups. we administered a pre-
experiment survey to measure the experience and ability of each participant with
regard to programming generally and specifically programming on an agent plat-
form such as JACK. The surveys were evaluated and the participants were as-
signed to one of three categories: beginner, intermediate and advanced. We then
randomly allocated equal numbers of each category to the two groups. Group A
used the debugging tool for bugs 1 and 2 but not for bugs 3 and 4, whereas Group
B used the debugging tool for bugs 3 and 4 but not for bugs 1 and 2. By having
each participant work both with and without our tool, we were able to compare
the performance of individuals against themselves (see section 7.5.2.4, for more
details see [59, Section 6.2.4]).
Participants were provided with documentation for MAPO, consisting of approx-
imately 40 pages of functional specifications and design documentation, including
the design artefacts used as inputs to the debugging tool. These design artefacts
included a number of Agent UML (AUML) interaction protocols, which were
converted to Petri nets (using the translation rules of [59, Chapter 4]) and added
to the debugging tool for use in the experiments.
Each participant was also provided with instructions that included a set of steps
to be followed. Each set of steps comprised the minimum test data that would en-
sure the system would encounter the planted bug. We chose to direct the testing
activities of the participants rather than leave them to define their own test cases
as there was a concern that if we did not direct the test input the participants
may be unlikely to encounter the bugs in the limited time available. However,
this approach inevitably results in the participants quickly identifying the bugs.
Consequently we were unable to fully evaluate our first hypothesis, that the de-
bugging tool would help to identify bugs more easily. This is a limitation of the
evaluation procedure but seemed necessary.
A maximum of 1 hour per bug was permitted to limit the experiment to approxi-
mately half a day per participant. This seemed to be the maximum length of time
that many of the participants would be willing to spend on such an experiment.
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For each bug we collected information on what the participants thought the bug
was (i.e. identification), what they saw as the cause of the bug (i.e. location), and
how they fixed the bug (i.e. fixing). For each participant and each bug we assessed
whether they had successfully identified, located and fixed the bug. That is, a
participant’s description of the bug’s existence, cause and its fix, was assessed as
being either correct or incorrect12. To limit the possibility of bias, grading was
carried out without knowledge of which participant used the debugging tool for
which debugging task. Only after the forms had been graded were the results
added to the appropriate group.
The bug data collection form also included a field for recording the time when
each of the three debugging sub tasks was completed. Given that we asked partic-
ipants to record the actual time we end up with a cumulative time for each of the
debugging phases. This means that the time to fix a bug includes the time taken
to locate the cause of the bug and to identify that the bug exists in the first place.
Statistical analysis of how many participants were able to identify/locate/fix a
given bug used a chi-square test, whereas statistical analysis of the time taken used
a Wilcoxon rank sum test (see [59, Section 6.1.7] for a discussion of these tests and
the rationale for their selection).

7.5.2 Results

In this section we present the results of the debugging experiments We compare
the results over each of the sub problems that occur during debugging: identify,
locate and fix. For each of these problems we consider if the participant was suc-
cessful as well as the time taken to resolve the bug (bug resolution speed). We
analyse the difference between the two groups with respect to our hypothesis to
identify the effect that our debugging tool has on debugging the test application.

7.5.2.1 Identifying the Bug

Since participants were provided with instructions that guided them to identify
the bug, we did not find significant differences in identifying bugs between de-
bugging with and without the tool. Bug 1 was identified by all participants, and
bugs 2-4 were identified by all ten participants with the debugger, and by 9 of
the participants who did not use the debugger for that bug (this difference is not
significant, p=0.3049).
Similarly, there is little difference between the time taken for the two groups
(p=0.4638 for bug 1, 0.898 for bug 2, 0.79 for bug 3). Bug 4 is interesting in that
the median time for participants who used the debugger was higher (14 minutes,
compared with 9), but this difference was was not quite significant (p=0.06317).

12 In fact, we originally used a three point scale.
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7.5.2.2 Locating the Cause of the Bug

Figure 7.9 shows the number of participants that successfully located the cause of
the bug for each of the bug revisions. There is a very clear and significant differ-
ence between the proportions for both bug 1 (p=0.0062) and bug 4 (p=0.0003).
For instance, for bug 4, only participants who used the debugger were able to
locate the cause of the bug within an hour. The proportion data for bug 2 and
bug 3 also show differences, but these do not appear to be significant (p=0.5312
for bug 2, p=0.1213 for bug 3).
Figure 7.10 shows the box plots for each of the 4 bug revisions concerning the time
spent trying to locate the cause of the bug. As previously mentioned, it should
be noted that the time recorded here is cumulative from the time the experiment
was started for the bug revision, i.e. it includes the time taken to identify the
presence of the bug. Furthermore, since there was a one hour time limit imposed
on the bug version the y-axis is marked from 0 to 61 minutes. We extend the axis
by 1 minute to differentiate between participants that finished in exactly 1 hour
and those that did not finish. The latter case is presented as taking 61 minutes to
complete the task.
Using the debugging tool clearly shows an improvement in performance for bugs
1 and 4. This difference is significant (p=0.0027 for bug 1, and p=0.0003 for bug
4). From these results we can conclude that the difference between the median
time to locate bug 1 was at least 22 minutes (38 minutes vs. 60(+1) minutes).
For bug 4 it was at least 19 minutes. This is quite a substantial amount and we
can speculate that if the one hour time limit was not imposed the real difference
could be greater. The results for bug 2 reveal less of a difference between the two
groups. The group that used the debugging tool had a median time of 23 minutes
compared with 37.5 minutes for the group that did not use the tool. However,
this difference is not quite significant (p=0.0683). For bug 3 there was a greater
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(and significant, p=0.0059) difference: more than a 20 minute increase in time for
the group that did not use the debugging tool.

7.5.2.3 Fixing the Bug

Figure 7.11 shows the proportion of participants that were able to successfully
fix the bug within what time was left of the 1 hour time limit. There is a clear
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difference between the two groups for bug 1 (p=0.001), bug 3 (p=0.0246) and bug
4 (p=0.0034). However, the results for bug 2 do not show a significant difference
between the two groups (p=0.5312).
Figure 7.12 shows the box plots for each of the 4 bug revisions concerning the
time spent trying to fix the bug. As in the previous phase there is strong evi-
dence that the debugging tool was a significant advantage for bug 1 and bug 4.
No participant was able to fix the bug for either of these two bug versions if they
were in the group that did not have the tool. The median time for completing
the task is therefore artificially set at 61 minutes, while the median time taken
for the group that used the tool was 45.5 minutes for bug 1 and 47.5 minutes for
bug 4. These differences are statistically significant with both recording a p-value
of 0.0015. For bug 2 there is a large difference between the median times to pro-
vide the fix (24 minutes for one group versus 45 for the other), but there is also
a large variation in the recorded times, and the difference between the groups is
not significant (p=0.1192). Bug 3 shows a similar trend. The difference between
the median time to provide a fix for the bug is the same as for bug 2, 21 minutes.
There are, however, slight differences in the distribution of times that make this
bug version more statistically significant than the previous one (p=0.0497).

7.5.2.4 Within Subject Analysis

It is likely that a certain amount of variability exists because of the varying abil-
ities of each of the participants. A within subject analysis is an effective method
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for handling the variability between subjects and can shed some further light on
the effect of the debugging tool on an individual’s performance. The general pro-
cess of evaluation is to have each participant complete a task under two different
circumstances (typically described as a control task and a treatment task). Scores
are recorded for each task and the difference between the scores for the two tasks
is obtained. If the difference is close to zero then we can conclude that the treat-
ment variable (the debugging tool) had no effect on the outcome. However, if a
large difference is measured then there is evidence that the treatment condition
did effect the outcome.
For this analysis we will concentrate on bug 2 and bug 3, and on the second two
phases (locating and fixing the bug). We do this because we have already noted a
statistically significant advantage for using the debugging tool for bugs 1 and 4,
and we see no advantage to using the debugging tool for the first phase. Group A
comprises participants 1 though 10, who used the debugging tool for bug 2 but
not for bug 3. Group B comprises participants 11 through 20 who used the tool
for bug 3 but not for bug 2.
Figure 7.13 (left) is a graphical representation of the differences in the time taken
for each participant to locate the cause of bugs 2 and 3. Group A is represented
by the light shading of grey and group B by the dark shading of grey. This graph
shows how much quicker each participant was able to locate each of the bugs.
For example, participant 1 was observed to have a 30 minute speed increase in
locating bug 2 (using the tool) over Bug 3 (not using the tool). The graph shows
an increase in performance for most subjects when the debugging tool was used
to locate the bug. However, there are three exceptions. Participant 6, 10 and 13
had a performance decrease of approximately 7, 16 and 1 minutes respectively.
However, overall the debugging tool results in bugs being located more quickly
(p=0.00987).
Figure 7.13 (right) shows the difference that the debugging tool had for each par-
ticipant in fixing the bugs. Again this graph clearly shows that the majority of
the participants were able to fix the bug more quickly when using the tool than
without (p=0.00987).
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7.6 Conclusion

In this chapter we explored the problems associated with testing and debugging
multi-agent systems and have provided a framework for testing and debugging
based on using design documents to automatically identify errors in developed
systems. We have demonstrated two proof of concept tools: one that uses design
documents to generate extensive test cases for unit testing, and another that uses
design documents (specifically protocol specifications and parts of event descrip-
tors) to help in debugging.
The debugging tool was used to assess the effectiveness of our debugging technique
via an empirical evaluation. The results that we obtained clearly demonstrate that
using the debugging tool translates to an improvement in debugging performance.
We gathered data from twenty participants over four debugging tasks. Each de-
bugging task was measured over the three aspects of debugging; identifying, locat-
ing and fixing a bug. In terms of overall successes in locating the cause and fixing
the bugs we identified that using the debugging tool afforded the participant a
considerable advantage.
One advantage of using design artefacts in testing and debugging is that it provides
continued checking that the design and code are consistent, thus helping to avoid
the typical accumulation of differences, leading to out-of-date design documents.
There are a number of areas for future work including:

• Improving the user interface of the debugging tool, and looking at possibly
integrating it into an agent-based design tool, such as the Prometheus Design
Tool (PDT).

• Developing a distributed debugging environment, with multiple debugging
agents. This would be needed to debug large agent systems that comprise hun-
dreds or even thousands of agents. A key challenge is managing the interactions
between debugging agents and determining how to group agents.

• Extending testing to focus on higher level aspects such as scenarios and goals.
• Thorough evaluation of the testing approach including common types of er-

rors not able to be identified.

Although much interesting work remains to be done, this chapter has established
the viability and effectiveness of the approach to using design artefacts in the
testing and debugging of multi-agent systems.
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Chapter 8
Environment Programming in CArtAgO

Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini

Abstract CArtAgO is a platform and infrastructure providing a general-purpose
programming model for building shared computational worlds – referred here as
work environments – that agents, possibly belonging to heterogeneous agent plat-
forms, can exploit to work together inside a Multi-Agent System. Being based on
the A&A (Agents and Artifacts) conceptual model, CArtAgO work environments
are modelled and engineered in terms of set of artifacts programmed by MAS de-
signers, collected in workspaces. From the agent viewpoint, artifacts are first-class
entities representing resources and tools that agents can dynamically instantiate,
share and use to support their individual and collective activities. After describ-
ing the basic motivations behind the approach, the chapter provides an overview
of the programming model promoted by CArtAgO for the definition of artifacts
(MAS designer’s viewpoint) and for the use of artifacts (agent’s viewpoint), using
Jason as reference platform for MAS programming.

8.1 Introduction

The notion of environment is a primary concept in the agent literature, as the
place – either virtual or physical – where agents are situated, which agents are ca-
pable of sensing through some kind of sensors, and of modifying through a reper-
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Fig. 8.1 The canonical view of MAS as defined in [10].

toire of actions provided by some kind of effectors. A canonical representation
of a Multi-Agent Systems (MAS) including the environment is shown in Fig. 8.1
(adapted from [10]). There, the environment is depicted as the context shared by
multiple agents, each one having some kind of sphere of influence on it, i.e. that
portion that they are able to (partially) control, and that could overlap with other
agent’s sphere of influence—meaning that the environment is shared and could be
jointly controlled.
This perspective is reflected by existing agent programming languages and plat-
forms for programming MAS, which typically provide some kind of API to define
agent actions and perceptions implementing the interaction with some kind of ex-
ternal system. Quite frequently, the API also includes some kind of support for
defining the structure and behaviour of the environment – besides the interface –
so as to set up simulations of the overall system.
So, in this canonical view the environment is basically conceived as a black box,
defining the set of the possible agent moves and generating perceptions accord-
ingly. Besides this perspective, which is rooted mainly in the Artificial Intelligence
view [27], recent works pointed out the important role that the environment can
play in MAS engineering [30]: essentially, by being the enabler and mediator of
agent interactions, MAS environment can be the right place where to encapsulate
functionalities that concern the management of such interactions, making it pos-
sible to define and enact strategies for MAS coordination, organisation, security.
The interested reader can find in [31] a survey of these works, summing up the
the results of three years of the E4MAS (Environment for Multi-Agent Systems)
workshop, held at the AAMAS (Autonomous Agents and Multi-Agent Systems)
conference from 2004 to 2006.
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Fig. 8.2 A MAS view enriched with a work environment layer.

By generalising this view, in this chapter we envision a novel perspective on the
environment concept: rather than from merely a target of agent actions and gen-
erator of agent perceptions, the environment should be conceived as something
that can be (partially) designed to be a good place for agents to live and work in.
In other words, the idea is to design worlds in the agent world aimed at the agents’
use. We refer to such a kind of world as work environment, as that part of the MAS
which, on the one side, is explicitly designed and programmed by MAS engineers,
and, on the other side, is perceived and used by agents as a first-class entity of their
world, aimed at easing their activities, in particular those involving interaction, co-
ordination, cooperation. By referring to the MAS representation previously seen,
work environments could be represented as an extra computational layer within
the MAS, conceptually placed between agents and the external environment, and
mediating agent activities and agent interaction with the external environment
(see Fig. 8.2).
Then, by taking the MAS programming perspective, which is the focus of this
volume, an important issue concerns what kind of (general-purpose) program-
ming and computational models can be adopted in order to design and program
work environments. Desiderata, quite common in computer programming and
software engineering, include:

Abstraction | The programming model adopted should preserve the agent ab-
straction level, i.e. the main concepts used to define work environments struc-
ture and dynamics (including interaction with agents) should be consistent
with agent main concepts and semantics. Moreover, such concepts should be
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effective and general enough to capture main properties of work environments
(such as being observable and controllable).

Modularity | The programming model should introduce concepts to modu-
larise work environments, away from the monolithic and centralised view
which is typically adopted for MAS environment in general.

Orthogonality | The programming model should be as much orthogonal as pos-
sible with respect to the models, architectures, languages adopted for agent
programming, so as to naturally support the engineering of heterogeneous sys-
tems.

(Dynamic) Extensibility | The programming model should support the dynamic
construction, replacement, extension of work environment parts, in the open
system perspective.

Reusability | The programming model should promote the reuse of work envi-
ronment parts in different application contexts/domains.

To this end, CArtAgO is a platform/infrastructure providing a programming
model and a runtime environment for creating work environments based on
the notions of artifact and workspace, as defined by the A&A (Agents and Ar-
tifact) model [18, 25]. The basic idea of work environment provided by A&A
and CArtAgO is metaphorically depicted in Fig. 8.3 (representing a kind of bak-
ery): the work environment of a MAS is composed by a set of resources and tools
that we refer generally as artifacts that agents share and cooperatively use to per-
form their activities inside some workspace. Some artifacts are used to mediate
the interaction between agents and the external environment (such as the com-
munication channel), some other as just instruments to help their work (such as
the blackboard or the task scheduler), and some other else as resources target of
the agent work (such as the cake).
Before discussing in more detail the feature of CArtAgO as a platform for pro-
gramming artifact-based environments and its integration with main existing
agent programming platforms (Section 8.3), next section will provide a back-
ground discussion about the A&A conceptual model, focussing in particular on
the features of the artifact abstraction and its computational model.

8.2 The A&A Model

8.2.1 Artifacts and Workspaces in Multi-Agent Systems

Agents & Artifacts (A&A) is a conceptual (or meta) model introducing the no-
tion of artifact, along with agents, as a first-class abstraction for modelling and en-
gineering of Multi-Agent Systems [18, 25]. The main inspiration of A&A comes
from Activity Theory [15]—a psycho-sociological conceptual approach started in
the Soviet Union at the beginning of the 20th century, further developed in north-
ern Europe in particular—today, a main reference for HCI (Human Computer
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Fig. 8.3 A metaphorical representation of a MAS according to the A&A meta-model.

Interaction) and CSCW (Computer Supported Cooperative Work) contexts. One
of the main concepts put forward by Activity Theory – along with Distributed
Cognition and other movements within cognitive science – is that, in human soci-
eties, properly designed artifacts and tools play a fundamental (mediation) role in
coping with the scaling up of complexity in human activities, in particular when
social activities are concerned, by simplifying the execution of tasks, improving
problem-solving capabilities, and enabling the efficient coordination and coop-
eration in social contexts [16]. In Activity Theory, the concept of tool is broad
enough to embrace both technical tools, intended to manipulate physical objects
(e.g., a hammer), and psychological tools, used by humans to influence other peo-
ple or even themselves (e.g., the multiplication table or a calendar).
The A&A conceptual framework brings these ideas in the context of multi-agent
systems, in particular for designing and programming complex software systems
based on MAS [18]. According to this, a MAS is conceived, designed and devel-
oped in terms of an ensemble of agents that play together within a common envi-
ronment not only by communicating through some high-level agent communica-
tion language (ACL), but also co-constructing and co-using using different kinds
of artifacts organised in workspaces.
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At the core of the A&A model, the artifact1 abstraction is introduced as a unit to
structure and organise work environments. From the MAS designer’s viewpoint,
artifacts are the basic building blocks – or rather the first-class abstraction – to
design and engineer agent work environments; from the agent view point, artifacts
are first-class entities of their world that they can instantiate, discover, share, and
finally use and observe to perform their activities and achieve their goals. If agents
are the basic bricks to design the autonomous and goal/task-oriented part of the
MAS, artifacts are the basic entities to organise the non-autonomous, function-
oriented2 (from the agent point view) part of it.
Artifacts are then a natural abstraction to model and implement existing computa-
tional entities and mechanisms that are frequently introduced in the engineering
of MAS representing shared resources, such as shared data stores, or coordina-
tion media, such as blackboards, tuple spaces, event managers. Besides this, analo-
gously to the human context [16], artifacts can be specifically designed to change
(improve) the way tasks get done by agents, by distributing actions across time
(precomputation) and agents (distributed cognition), and also by changing the way
in which individuals perform the activity.
Besides artifacts, A&A introduces the notion of workspace to structure and organ-
ise the overall set of artifacts (and agents) in a MAS from a topological point of
view (see Fig. 8.4, left). A workspace is a logic container of agents and artifacts,
providing a logical notion of locality and situatedness for agents, by defining a
scope for the interactions and observability of events, as well as for the set of re-
lated activities carried by a group of agents using some set of artifacts. A complex
MAS can then be organised as a set of workspaces, distributed among multiple
nodes of the network, with agents possibly joining multiple workspaces at the
same time.

8.2.2 A Computational Model for Artifacts

The development model introduced with A&A and adopted in CArtAgO aims
at both capturing the function-oriented nature of artifacts, as computational enti-
ties that are used (observed, controlled) by agents, and being sufficiently general-
purpose to be used in programming any type of artifact that might be useful in
MAS applications.
An abstract view of the computational model is shown in Fig. 8.4 (on the right).
Artifact functionalities are defined in terms of operations, which can be triggered
by agents via artifact usage interface. Analogously to usage interface of artifacts in
the real world, an artifact usage interface is composed by a set of usage interface
controls that agents can trigger to start and control the execution of an opera-
tion, and more generally the artifact behaviour. Each usage interface control is

1 The term artifact has been explicitly taken from Activity Theory and Distributed Cognition,
to recall the properties that such a notion have in the context of human environments.
2 The term function is used here with the meaning of “intended purpose”.



8 Environment Programming in CArtAgO 265

Fig. 8.4 (left) An abstract representation of a MAS involving both agents (represented by stick
figures) and artifacts (squares with a sketch of an interface inside), collected in workspaces (w0
and w1). Main interaction types are represented: use interaction (solid arrows from agents to
artifacts), observation (dotted arrows from artifacts to agents), artifact link (solid lines among
artifacts). Among the artifacts, some are used as interfaces to interact with the environment
outside the MAS (artifacts on the workspace border), including GUIs for interacting with hu-
man users (thick stick figure). Direct communications among agents are not represented. (right)
An abstract representation of an artifact, showing the main features of the model as defined in
A&A.

identified by a label (typically equals to the operation name) and a list of input
parameters.
Operations are the basic units for structuring artifact functionalities, and can be
either atomic or processes involving a sequence of atomic computational steps.
Executing an artifact operation can result both in changes in the artifact inner
(non-observable) state, and in the generation of a stream of observable events that
can be perceived by the agents using or observing the artifact.
Besides observable events generated with operation execution, an artifact may
expose a set of observable properties, i.e. properties whose dynamic values can
be observed by agents without necessarily interacting with it, i.e. without going
through the usage interface. Differently from events, which are non-persistent
signals carrying some kind of information, observable properties are persistent –
typically dynamic – attributes of an artifact.
Analogously to artifacts in the human case, in A&A each artifact is meant to be
equipped with a manual describing the artifact function (i.e., its intended pur-
pose), the artifact usage interface (i.e., the observable “shape” of the artifact), and
the artifact operating instructions (i.e., usage protocols or simply how to correctly
use the artifact so as to take advantage of all its functionalities). Artifact manuals
are meant to be inspected and used at runtime, in particular intelligent agents, for
reasoning about how to select and use artifacts so as to best achieve their goals.
This is a fundamental feature for developing open systems, where agents cannot
have a priori knowledge of all the artifacts available in their workspaces since
new instances and types of artifacts can be created dynamically, at runtime. Cur-
rently, no commitments towards specific models, ontologies, and technologies to
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Fig. 8.7 Observing an artifact: by focussing an artifact, an agent is (1) continuously made aware
of observable properties value as percepts typically mapped into agent belief base, and (2) re-
ceives all the observable events generated by the artifact in executing operations possibly trig-
gered by other user agents.

be adopted for manual description have as yet been made, as this is part of ongoing
work.
Finally, as a principle of composition, artifacts can be linked together, to enable
inter-artifact interaction. This is realised through link interfaces, which are analo-
gous to interfaces of artifacts in the real world (e.g., linking/connecting/plugging
the earphones into an MP3 player, or using a remote control for the TV). Linking
is supported also for artifacts belonging to distinct workspaces, possibly residing
on different network nodes.

Fig. 8.5 Workspace dynamics: an agent joining a workspace called a-workspace and creating
an artifact called myArg. Artifact creation is not a primitive action: it is a functionality provided
by a predefined artifact available in each workspace called factory. Besides factory, also a registry
is available, which keeps tracks of all the artifacts currently available in the workspace.

Fig. 8.6 Using an artifact: by selecting the myOpControl control belonging to the usage in-
terface, a new operation instance starts its execution inside the artifact. The execution of the
operation will eventually generate events observable to the user agents – and to all the agents
observing the artifact – and possibly update artifact observable properties.
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8.2.2.1 Agent-Artifact Interaction Model: Use and Observation

The interaction between agents and artifacts mimics the way in which humans use
their artifacts. As a simple but effective analogy, we adopt here a coffee machine
artifact. The set of buttons of the coffee machine represents the usage interface,
while the displays used to show the state of the machine represent artifact ob-
servable properties. The signals emitted by the coffee machine during its usage
represent observable events generated by the artifact.
The interaction takes place by means of a use action (see Fig. 8.6), which agents
can perform to select (i.e. act upon) a control of the usage interface, specifying the
parameters possibly required by the control. If the use action succeeds, then a new
instance of the operation linked to the usage interface control starts its execution
inside the artifact. The execution of the operation eventually generates a stream
of observable events that may be perceived both by the agent which is responsible
of the operation execution and by all the agents that are observing the artifact—we
will come back on the notion of observation later in this chapter. Some basic types
of events are meant to be generated by default by artifacts, independently of their
specific type, in correspondence to situations such as the completion or failure of
an operation, the update of an observable property, or rather the disposal of an
artifact.
To perceive the observable events generated by the artifact, two basic modalities
are possible, called here active and passive. In the active modality, the agent per-
forming a use action explicitly specifies a sensor, where artifact observable events
are collected as percepts as soon as they are generated; then, a further sense action
is available to the agent so as to actively fetch the percept from the sensor as soon
as it needs it, possibly specifying some filters and eventually blocking the course
of the activity until a matching percept is found. In this case, sensors play the role
of perceptual memory explicitly manageable by the agent, who can use them to
organise in a flexible way the processing of the events, possibly generated by mul-
tiple different artifacts that an agent can be using for different, even concurrent,
activities.
In the passive modality, events generated by an artifact are made observable to the
agent directly as internal event or new beliefs about the occurrence of the event
(depending on the specific agent model and architecture), without the explicit
mediation of sensors. Compared to the previous one, this modality promotes a
reactive approach in managing interaction with artifacts.
Some notes here are useful to clarify the features of the use action and interac-
tion. First, the execution of a use action on a usage interface control involves a
synchronous interaction between the agent and the artifact (analogous to press-
ing a button on the usage interface of the coffee machine): action success means
that the operation linked to the control has started its execution. This should
be contrasted with inter-agent communication, which is based, instead, on fully
asynchronous communication. Second, the execution of operations is completely
asynchronous to the agent activity. So, the use action does not involve any transfer
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of control as it happens in the case of remote procedure call or method invocation
in procedure-based or object-oriented systems.
Besides use, observation is the other main aspect concerning agent-artifact inter-
action, that account for perceiving observable properties and events of an artifact
without necessarily using it, i.e. without acting on its usage interface. To this end,
two basic actions are provided, observeProperty and focus. The observeProperty ac-
tion simply makes it possible to read the current value of a specific observable
property, which is returned directly as feedback of the action. The focus action is
more complex (see Fig. 8.7): by executing a focus on a specific artifact, an agent
starts continuously perceiving the state of artifact observable properties and is
notified of all the observable events that the artifact will generate from that mo-
ment on, even though it is not actually using it. Observable properties are directly
mapped onto agent percepts, that is, for cognitive agent architecture in particular,
on beliefs about the state of the artifact. For observable events, the two perceiv-
ing modalities are available also for focus, either specifying or not a sensor. The
semantics is the same as the use case: by specifying a sensor all the observable
events generated by the artifact are detected by the sensor and fetched by the
agent through a sense internal action whenever it decides to do it.
Some more notes concerning observation: first, focus and observeProperty actions
do not have any effect on artifact structure and behaviour, and then no real in-
teraction actually takes place between the observer agent(s) and the observed ar-
tifacts. So, conceptually and practically, observation is radically different from
analogous scenarios purely based on agents, such as request-response interactions
between information requester and information provider agents. Second, contin-
uous observation of properties – on the one hand – and of events – on the other
hand – have deeply different characteristics (and then purposes, from the designer
point of view). In particular, observable properties represent the state of the world
– structured in this case as a set of artifacts – which, as such, could change with
a frequency that could be beyond agent perceiving capabilities. Instead, observ-
able events, representing changes in the world, are conceptually all buffered and
processed, in some kind of order that depends on event priorities.

After this overview of the computational model of artifacts and the agent-artifact
interaction model, in next section we describe how this is concretely supported
by the CArtAgO platform.

8.3 The CArtAgO Platform

8.3.1 Overview

CArtAgO (Common Artifact infrastructure for Agent Open environment) is a
platform and infrastructure for programming and executing artifact-based work
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environments for MAS, implementing the A&A conceptual model [25]. In detail,
the platform includes:

• a Java-based API for programming artifacts, for defining (programming) new
types of artifacts following the A&A programming model (a general overview
with examples will be given in Subsection 8.3.2);

• an agent API on the agent side to play within CArtAgO work environments,
composed by a basic set of actions for creating and interacting with artifacts,
and managing and joining workspace (an overview will be given in Subsec-
tion 8.3.1.2);

• a runtime environment and related tools, supporting the distribution and exe-
cution of work environments, managing workspace and artifact lifecycle.

CArtAgO technology is open-source3 and is implemented on top of the Java plat-
form.

8.3.1.1 The Application Model

A work environment in CArtAgO is conceived as collection of workspaces pos-
sibly distributed on different nodes where the infrastructure has been installed
(referred in the following as CArtAgO nodes). Agents – possibly in execution
on multiple and heterogeneous agent platforms – can dynamically join and quit
the workspaces, possibly working in multiple/distributed workspaces at the same
time.
A Role-Based Access Control (RBAC) model is adopted for specifying and manag-
ing security aspects at workspace level, ruling agent entrance and exit, and agent
access and interaction with artifacts. In particular, for each workspace a (dynamic)
set of roles can be defined, and for each role policies can be specified to constrain
the overall set of actions permitted to agents playing that role, including agent
entrance/exit from the workspace and agent use/observation of artifacts. The set
of roles and of the policies associated to roles can be inspected and changed dy-
namically, both by human administrators and by agents themselves.
By default, each workspace contains a set of pre-defined artifacts, created at the
workspace creation time, which provides some fundamental functionalities and fa-
cilities for agents working inside the workspace and for workspaces management.
Such a set currently includes:

• factory artifact – used to instantiate artifacts, specifying the artifact template and
a name. The artifact provides functionalities also to manage the set of artifact
template that can be created inside the workspace.

• registry artifact – used to keep track of the set of artifacts actually available in
the workspace.

• security-registry artifact – used to manage the set of roles and role policies de-
fined in the workspace.

3 Available at http://cartago.sourceforge.org.
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• console artifact – used as standard output, to print messages that can be read by
human users.

So the CArtAgO background idea here is to reify in terms of a suitably-designed
artifact every infrastructure part and functionality so as to make it observable,
controllable, adaptable by agents themselves (for agents that have the permission
to do that according to their role), besides human administrators.

8.3.1.2 Integration with Agent Platforms

As mentioned before, CArtAgO is orthogonal to the specific model(s) and tech-
nology adopted for the agents playing within work environments. Actually, it
has been conceived and designed to be integrated and exploited in principle by
any agent programming platform, enabling agents from heterogeneous platforms
(with heterogeneous models and architectures) to interact and interoperate as part
of the MAS, sharing common artifact-based environments [24].
In order to realise such an integration, both from a conceptual and an engineering
point of view, the notion of agent body has been introduced, as that part of an
agent which is – on the one hand – situated in a workspace, containing effectors to
act upon workspace artifacts and sensors to perceive workspace observable events,
and – on the other hand – governed by the agent mind which is in execution
externally, on the agent platform side (see Fig. 8.8).
From an architectural point of view, platform-specific bridges are introduced to
connect mind and body(ies), functioning as wrappers on the agent mind side
to control the body and perceive stimuli collected by body sensors. Currently,
bridges exist for Jason4 platform [3], an interpreter for an extended version of
AgentSpeak, Jadex5 [22], a BDI agent platform based on Java and XML as main-
stream language/technologies to develop intelligent software agent systems, and
simpA6 [26], a Java-based agent-oriented framework based on the A&A concep-
tual model7.
The integration extends the repertoire of agent actions natively provided by the
agent platform with a new set of actions for playing inside an artifact-based en-
vironment. The concrete realisation of all such actions can vary, depending on
the specific agent programming platform [24]. Four main action groups can be
identified (see Table 8.1):

• join and leave workspaces;
• create, lookup, dispose artifacts;
• use artifacts;

4 http://jason.sourceforge.net)
5 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
6 http://simpa.sourceforge.net
7 At the time of writing, ongoing work is on the integrations with 2APL [6] and JADE plat-
form [1].
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Fig. 8.8 A layered representation of a MAS in execution on top of CArtAgO, with in evidence
agent bodies functioning as mediators with external agent platforms.

(1) joinWorkspace(+Workspace[,Node])
(2) quitWorkspace
(3) makeArtifact(+Artifact,+ArtifactType[,ArtifactConfig])
(4) lookupArtifact(+ArtifactDesc,?Artifact)
(5) disposeArtifact(+Artifact)
(6) use(+Artifact,+UIControl([Params])[,Sensor][,Timeout][,Filter])
(7) sense(+Sensor,?PerceivedEvent[,Filter][,Timeout])
(8) focus(+Artifact[,Sensor] [,Filter])
(9) stopFocussing(+Artifact)
(10) observeProperty(+Artifact,+Property,?PropertyValue)

Table 8.1 Actions for agents’ interaction with the working environment: managing workspaces
(1–2), creating, disposing and looking up artifacts (3–5), using artifacts (6–7), and observing
artifacts (8–10). Syntax is expressed in a logic-like notation, where italicised items in square
brackets are optional.

• observe artifacts without directly using them.

Actions in the first group (1–2 in Table 8.1) are used to manage a working session
inside a workspace, joining or quitting a given workspace. The address of the
CArtAgO node hosting the workspace can be specified, if the workspace is not on
the local node.
In the second group (3–5), makeArtifact is used to create a new artifact (instance)
specifying the artifact name and the artifact type. The type corresponds to the
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full name of the Java class implementing the artifact structure and behaviour (this
point will be clairified in next section). Then, disposeArtifact is used to dispose of
an existing artifact, and lookupArtifact to locate an artifact given its description.
Actually, actions in this group are not primitive: they are built on top of the basic
use and sense actions described in next group, and operate on some basic arti-
facts available by default in each workspace—in particular, the factory and registry
artifacts.
Actions in the third group (6–7) are the core part of the API, described in Sub-
section 8.2.2.1: use selects (or acts on) a control of the artifact usage-interface to
trigger the execution of an operation, while sense actively retrieves the percepts
collected by a sensor. If a sensor is specified, it is used to collect any observable
event subsequently generated by the artifact as an effect of the operation execu-
tion. If, instead, no sensor is specified, observable events are made observable to
the agent directly as internal events to which the agent can react directly. Then,
the action sense, in its turn, suspends the current agent’s activity until a percept
is available: optional parameters include a timeout (after which the action is con-
sidered failed), and a filter to select the percepts of interest.
Finally, actions in the fourth group (8–10) concern the capability of continuously
observing artifacts’ events (focus/stopFocussing) and properties (observeProperty)
without directly using the operation controls, following the semantics informally
described in Subsection 8.2.2.1. By executing focus on a specific artifact, all the
observable events generated by such an artifact from that time on are made ob-
servable to the agent, despite the cause that originated them (such as the execution
of an operation by some agent or an update of their observable properties). As in
the case of use, a sensor may or may not be specified, according to the desired per-
ception modality. It is worth noting that observeProperty does not involve sensors
nor events: the value of the property is returned as an action feedback.

8.3.2 Programming and Using Artifacts: Basic Examples

In this section we briefly describe the main features of the API for programming
artifacts and of the agent API to play within work environment by using some
simple examples of artifacts and related agents working with them. The complex-
ity of the type of artifacts used in the example is gradual, starting from a simple
counter artifact, which is almost the simplest possible example useful to show
the basics about artifact structure/behaviour and and artifact usage/observation.
Then, more advanced features of artifact computational model are discussed in
two further examples, showing the implementation of a bounded inventory arti-
fact and and of a synchronizer artifact, along with the agents exploiting them.
Other main features of the artifact computational model – linkability among
the others – are not discussed here: the interested reader can find examples in
CArtAgO documentation.



8 Environment Programming in CArtAgO 273

On the agent side Jason is adopted here as reference agent programming language,
being general enough to make it straightforward for the reader to figure out how
the same examples could be implemented different agent languages, in particular
BDI-based such as Jadex and 2APL. The bridge integrating Jason with CArtAgO
is called C4Jason, and is available on CArtAgO Web Site—along with the docu-
mentation describing how to set up a Jason MAS using CArtAgO and the concrete
set of actions made available to agents to work within the CArtAgO environment.

8.3.2.1 First Step: A Counter

An artifact template (or type) is programmed directly by defining a Java class ex-
tending a pre-existing class – alice.cartago.Artifact, part of the API – and
using a basic set of Java annotations8 and existing methods to define the elements
of artifact structure and behaviour. As a first example, we consider here a simple
counter artifact, as an artifact displaying a count and providing the means to incre-
ment it (see Fig. 8.9, left): to this end, the artifact has a single observable property
called count, displaying the current value of the count, and a single usage interface
control called inc, used to increment the count. An example of the counter usage
could be keeping track of the number of hits found by a team of agents searching
for Web pages containing some information.
The implementation of the artifact using the Java-based CArtAgO API is shown
in Fig. 8.9 (right side). The Counter artifact template is implemented by the Java
class with the same name, extending the alice.cartago.Artifact class. The
usage interface is implemented as a set of methods annotated with @OPERATION

whose signatures coincide with the usage interface controls triggering operations
and whose bodies represent the computational behaviour of the operation trig-
gered by the control. Counter has a single inc usage interface control. For simple
operations, like in this case, the operation is composed by a single atomic step, so
the body of inc method represents the computational behaviour of the full op-
eration. The init operation is executed by default when the artifact is instantiated,
similarly to a constructor in the case of objects.
Observable properties are defined, typically during artifact initialisation, by
means of the defineObsProperty primitive, specifying the property name and
initial value. The counter has a single count observable property, which is read
and updated by the execution of the inc operation by means of available prim-
itives (getObsProperty, updateObsProperty). In this case, the artifact has no
inner state variables, which would be implemented as directly instance fields of
the object.

8 A feature introduced with Java 5.0 that makes it possible to tag some elements of
a class description on the source code – including methods, fields, and the class def-
inition itself – with some descriptors possibly containing attributes that can be ac-
cessed at runtime by the program itself, through the reflection API. Annotations are
represented by symbols of the kind @ANNOT_NAME, possibly containing also attributes
@ANNOT_NAME(attrib=value,...).
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Fig. 8.10 An alternative version of the counter without observable properties, generating ob-
servable events only. Note that in this case the specification of the observable properties for the
inc operation control includes also count_incremented, which is explicitly generated with
the signal primitive.

In this minimal example, no observable events are explicitly generated by arti-
fact operation: however, some observable events are generated by default, in par-
ticular op_exec_completed(OpName) is generated as soon as the operation has
completed its execution and prop_updated(PropName,NewValue,OldValue) is
generated as soon as the count observable property is updated. A variant of the
counter without observable properties, purely based on observable events, is
shown in Fig. 8.10. In this case, an observable event count_incremented(C) is
explicitely generated by the signal primitive in the inc operation.
Then, two Jason agents interacting with an artifact counter follow. The first one
simply creates a Counter artifact called mycount and interacts with it by selecting

inc

count 5

OBSERVABLE PROPERTIES:
count: int

USAGE INTERFACE:
inc: [ prop_updated(...),
         op_exec_completed(...) ] 

import alice.cartago.*;

public class Counter extends Artifact {

  void init(){
defineObsProperty("count",0);

  }

@OPERATION void inc(){
    int count = getObsProperty("count").intValue();

updateObsProperty("count",count+1);
  }
}

Fig. 8.9 A simple counter artifact example: on the left an abstract description of the counter
observable properties and usage interface; on the right, an implementation in CArtAgO. The
usage interface control (inc) includes also the list of the possible observable events generated
by the operation execution. In this case the operation does not explicitly generate any observ-
able event: prop_updated and op_exec_completed are generated by default when respec-
tively an observable property is updated (count in this case) and when the operation execution
has completed.

inc

OBSERVABLE PROPERTIES:
none

USAGE INTERFACE:
inc: [ count_incremented(C),
         op_exec_completed(...) ] 

import alice.cartago.*;

public class Counter2 extends Artifact {
  int count;

  void init(){
    count = 0;
  }

@OPERATION void inc(){
    count++;

signal("count_incremented",count);
  }
}
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twice the inc operation and finally printing on the console artifact the value
of the observable property count, retrieved by means of the observeProperty

action:

!create_and_use.
+!create_and_use : true <-

cartago.makeArtifact("mycount","Counter",C);
cartago.use(C,inc);
cartago.use(C,inc,s0);
cartago.sense(s0,op_exec_completed(_),1000);
cartago.observeProperty(C,count(V));
cartago.use(console,println("Final count value: ", V)).

Brief explanation of the Jason code: !create_and_use defines agen’s initial goal,
i.e. create_and_use. Then it follows a plan to achieve the goal, which is triggered
by the +!create_and_use goal addition event. Among the actions in the plan,
those starting with “cartago.” are provided by the CArtAgO bridge.
The first occurrence of use action just triggers the operation without caring about
events generated, the second one instead specifes the s0 sensor and by means of
the sense action executed on it the agent suspends its intention (for a maximum
of 1000 milliseconds) until a perception matching op_exec_completed(Op) is
found in the sensor or a timeout occurs. In the case of timeout, the action and
then the plan fail.
The second agent – showed in the following – acts as a purely observer, first
locating the mycount artifact and then starting to observe it and printing on the
console a message as soon as it has a new percept about the value of the observable
property:

!discover_and_observe.
+!discover_and_observe : true <-

!locateCount(C);
cartago.focus(C).

+count(V) : true <-
cartago.use(

console,println("Current observed count is ",V)
).

+!locateCount(C) : true <-
cartago.lookupArtifact("mycount",C).

-!locateCount(C) : true <-
.wait(10);
!locateCount(C).

The Jason construct !locateCount(C) in the plan body specifies an achievement
goal (locateCount(C)) which must be achieved before the execution of the rest
of the plan. The locateCount block deserves some explanation. It is the plan
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to locate in the workspace the mycount artifact: first the agent tries to locate it
by the lookupArtifact action. If the action fails, because the artifact has not
been instantiated yet, then the locateCount plan fails and -!locateCount han-
dles this event, specifying a contingency plan which suspends the activity for 10
milliseconds and after that retries to achieve the goal.
A main difference with respect to the previous agent is that in this case the agent
reacts on the addition of the belief that concerns the count observable property,
not on the detection of observable events.
A slightly different example involving observable events follows, in which the
agent observes a Count2 artifact (see Fig. 8.10), which has no observable prop-
erties but generates the count_incremented(C) event with the inc operation
execution:

!discover_and_observe.
+! discover_and_observe : true <-

!locateCount(C);
cartago.focus(C).

+count_incremented(V) [source("mycount2")]: true <-
cartago.use(

console,println("Current observed count is ",V)
).

...

Here the agent reacts to +count_incremented(V) which does not refer to the
addition or change of a belief about the world, like in the case of count(C) per-
cept in the previous case, but to the occurrence of an observable event, generated
by mycount2 artifact. The snipped of code shows how Jason annotations are ex-
ploited for managing additional information brought by a CArtAgO event, such
as the artifact source of the event (shown in the example), the name of the op-
eration that generated the event, the artifact time in which the event has been
generated, and so on.

8.3.2.2 Second Step: Usage Interface Controls with Guards

For each usage interface control a guard can be specified, as a condition over arti-
fact state specifying if (when) the operation control is either enabled or disabled.
Therefore, an operation control can change dynamically its status, from enabled
to disabled and vice-versa, according to the state of the artifact. On the agent side,
the behaviour of the use action depends on the usage interface control status: if it
is enabled, the action succeeds and operation is triggered; if it is disabled, the use
action is suspended until either the usage interface control becomes enabled or
the timeout possibly specified as parameter of the use action occurs. Multiple use
actions, typically executed by different agents, can be suspended on the same con-
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Fig. 8.11 A simple bounded-inventory artifact, exploiting guards in usage interface controls to
synchronize agent use of the inventory.

trol: when (if) the control becomes active, one is selected non deterministically
for being served and the other ones keep being suspended.
This feature is useful in general for realising quite easily basic forms of synchro-
nization among multiple agents using an artifact. As a simple yet quite effective ex-
ample, Fig. 8.11 shows the description and implementation of a bounded-inventory
artifact, that is an artifact designed to function as a shared inventory mediating
the exchange of some kind of items between a possibly dynamic number of pro-
ducer agents and consumer agents. The producers-consumers architecture is quite
common in concurrent systems, and requires some kind of effective coordination
mechanism in order to coordinate the cyclic production of items by producer
agents and its consumption by available consumer agents. The coordination strat-
egy must be effective both for the performance (time) and the memory consumed.
The introduction of a bounded-inventory is typically adopted as a mechanism to
uncouple the interaction of producers and consumers and, at the same time, syn-
chronize their activities, providing a locus of design (the size of the inventory) for
tuning the performance of the system [13].
Fig. 8.11 shows an implementation of a bounder inventory artifact. The usage in-
terface includes two guarded usage interface controls to respectively insert (put) e
consume (get) items. Two observable properties are defined: max_nitems, show-
ing the maximum capacity of the inventory, and n_items, showing the current
number of items stored in the inventory. Internally, a simple linked list is used to
store items.

OBSERVABLE PROPERTIES:

n_items: int+
max_items: int

Invariants:
n_items <= max_items

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): 
  [ prop_updated(...), op_exec_completed(...) ] 

get / (n_items >= 0) : 
  [ prop_updated(...), new_item(item:Item),
    op_exec_completed(...) ] 

put

n_items 0

max_items 100

get

import alice.cartago.*;
import java.util.*;

public class BoundedInventory extends Artifact {
  private LinkedList<Item> items;

  void init(int nmax){
    items = new LinkedList<Item>();

defineObsProperty("max_items",nmax);
defineObsProperty("n_items",0);

  }

@OPERATION(guard="inventoryNotFull") void put(Item obj){
    items.add(obj);

updateObsProperty("n_items",items.size()+1);
  }

@OPERATION(guard="itemAvailable") void get(){
    Item item = items.removeFirst();

updateObsProperty("n_items",items.size()-1);
signal("new_item",item);

  }

@GUARD boolean itemAvailable(){ return items.size() > 0; }

@GUARD boolean inventoryNotFull(Item obj){
    int maxItems = getObsProperty("max_items").intValue();
    return items.size() < maxItems;
  }
}
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Guards are implemented as boolean methods annotated with @GUARD, asso-
ciated to operation controls by the guard attribute inside @OPERATION. In
the example, the put control is enabled only when the inventory is not full
(inventoryNotFull guard), and get is enabled when the inventory is not empty
(itemAvailable guard). Then, for instance, if an agent selects the put operation
control and the inventory is full, the action is suspended.
It follows a generic producer agent, which cyclically produce a new item object
and tries to insert it into a myInventory artifact.

!produce.

+!produce: true <-
+count(0);
!produceItems.

+!produceItems : true <-
?nextItemToProduce(Item);
cartago.use(myInventory,put(Item),5000);
!produceItems.

-!produceItems: true <-
cartago.use(console,println("Inventory timeout.")).

+?nextItemToProduce(Item) : true <-
?count(N);
-+count(N+1);
cartago.newObj("Item",[N],Item).

A count(N) belief, with N initially set to zero and then increment at each cycle, is
used to represent the information content of the items to be inserted in the buffer.
The Jason construct ?count(N) (and ?nextItemToProduce) is a test goal, used to
retrieve information (the belief count(N)) from the belief base.
Differently from previous examples, here the agent selects the put usage interface
control specifying a five seconds timeout, after which the use action and the
overall plan fail and a message is printed on the console by the goal deletion plan
-!produceItems.
An important issue concerning the integration of CArtAgO with agent platforms
concerns the data structures exchanged with agent-artifact interaction, in partic-
ular as usage interface control parameters and observable events/properties argu-
ments. To this end, object-oriented data structures are exploited – Java objects in
particular – and the CArtAgO bridges provide specific API to create, manipulate,
access from the agent platforms. In the example a new Item object is instantiated
by the newObj internal action, which is part of the CArtAgO bridge API to work
with objects; the Item class, not reported here, has a constructor accepting an in-
teger value. An XML-based approach could be adopted as an alternative solution:
Java objects are currently used for convenience, being CArtAgO currently imple-
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mented on Java. However it’s worth remarking that, conceptually, the choice of
the language to represent data objects is independent from the artifact computa-
tional model.
A generic consumer agent follows, cyclically interacting with the inventory to
consume items:

!consume.

+!consume: true <-
cartago.use(myInventory,get,s0,10000);
cartago.sense(s0,new_item(Item));
!consumeItem(Item);
!consume.

+!consumeItem(Item) : true <- ...

In this case sensors are explicitly used to detect and manage the observable events
of type new_item(Item) generated by the artifact executing the get operation.
Note that here, differently from the counter user seen previously, the timeout is
not specified for the sense action (so by default the sense timeout is infinite in
this case) but for the use action selecting get.

8.3.2.3 Third Step: Composed Operations and Coordination Artifacts

In the previous examples, artifact operations were atomic, composed by a sin-
gle step. In the most general case, which we will see is particularly useful to
design coordination artifacts, operations can be conceived as controllable pro-
cesses composed by the execution of multiple guarded computational steps, each
one executed atomically. In that way multiple operations can be simultaneously
in execution inside an artifact, by interleaving the steps. In CArtAgO operation
steps are implemented by methods annotated with @OPSTEP, and a primitive called
nextStep is provided to specify the chain of steps constituting an operation. In
particular nextStep makes it possible to specify (from the computational body
of an operation/step) the name and parameters of the next step to be triggered.
Also for steps a guard can be specified, so a triggered step is executed actually
only when (if) its guard is satisfied. The execution of an operation is considered
completed only when no operation steps are pending.
Composed operations are useful to implement: (i) long-term operations inside
artifacts, which need to provide some control points to their execution; (ii) coor-
dination artifacts, which typically accounts for some structured operations inter-
leaving their guarded steps. Here we consider one of the simplest cases of coor-
dination artifact: a synchronizer, shown in Fig. 8.12. More complex cases, such as
artifact implementing blackboards, tuple spaces, schedulers, have a similar design,
based on structured operations with guarded operation steps.
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Fig. 8.12 A synchronizer artifact, with a composed operation (ready).

The synchronizer is meant to be useful for a team of agents performing inde-
pendent activities that need, at a certain point, to synchronize before proceeding.
The usage interface of the artifact includes two operation controls: ready, which
must be selected by each agent of the group as soon as it is ready to synchronize
with the rest of the team, and reset, used to reset the synchronizer. Finally, the
artifact has a ready_ok observable boolean property, which is set to true as soon
as all the agents have achieved the synchronization point. The ready operation
is structured in two steps: the first one is executed as soon as the operation con-
trol is selected, and it updates the inner state variable (nReady) which is used to
keep track of the number of agents that have already reached the synchronization
point. The second step called setReadyOK, triggered by the first one, is executed as
soon as such a number of agents achieve the total number of agents to be synchro-
nized (allReady guard), and its execution accounts for switching the ready_ok

observable property to true.
A snipped of the code of a generic agent using the synchronizer follows, in two
different versions:

!work.

+!work: true <-
...
// synchronize
cartago.focus(mySynch);
cartago.use(mySynch,ready).

+ready_ok(true) : true <-
// synchronized: go on
// working
...

!work.

+!work: true <-
...
// synchronize
cartago.use(mySynch,ready,s1);
cartago.sense(s1,

op_exec_completed(ready));
// synchronized: go on
// working
...

ready

ready_ok false

OBSERVABLE PROPERTIES:
ready_ok: {true,false}

USAGE INTERFACE:
ready: [ op_exec_completed(...),
              prop_updated(...) ]
reset: [ op_exec_completed(...),
              prop_updated(...)] 

import alice.cartago.*;

public class Syncroniser extends Artifact {
  int nReady, nParticipants;

  void init(int nParticipants){
defineObsProperty("ready_ok",false);

    nReady = 0;
    this.nParticipants = nParticipants;
  }

@OPERATION void ready(){
    nReady++;

nextStep("setReadyOK");
  }

@OPSTEP(guard="allReady") void setReadyOK(Item obj){
updateObsProperty("ready_ok",true);

  }

@GUARD boolean allReady(){ return nReady == nParticipants; }
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In the first one, on the left, continuous observation is exploited and the agent
proceeds its work as soon as it perceive the observable property ready_ok

set to true. In the second one, on the right, a sensor is used and the agent
proceeds its work as soon as it perceives the completion of the ready operation
(the execution of an operation is considered completed only when there are
no pending computational steps). The example does not include the creation
of the mySynch artifact, which must be initialised with the number of agents
participating to the synchronization.

8.4 Evaluation

From the agent programming languages/platforms perspective, CArtAgO can be
conceived as a general-purpose tool to be exploited in all such application domains
or problems in which the introduction of a suitably designed work environment
could be useful and effective for designing and programming the MAS. In par-
ticular, the CArtAgO model provides a direct support for programming MAS
featuring some degree of:

• Distribution: agents can join and work simultaneously in multiple workspaces
possibly (not necessarily) hosted in different network nodes (i.e. CArtAgO
nodes). Artifacts cannot be distributed across workspaces: however, distributed
artifacts can be realised by linking together artifacts belonging to different
workspaces (in different nodes).

• Openness: referring to the structure of the MAS, agents can dynamically join
and quit from workspaces, and can dynamically change the set of artifacts in
workspaces by creating and disposing them. The RBAC model makes it pos-
sible to constrain such openness according to policies that can be changed dy-
namically either by humans or by agents, since the functionality is encapsu-
lated in proper system artifacts.

• Heterogeneity: being orthogonal to the specific model and architecture adopted
to define agents, CArtAgO in principle supports the development of fully het-
erogenous MAS, in which different types of agents – either goal-oriented or re-
active, in execution on different agent platforms – work together inside a com-
mon work environment. This feature could be a first step towards a novel form
of interoperability in open MAS, besides the traditional one based on ACL-
based communication, based in this case on working in the same workspace(s)
and sharing and using the same artifacts with a common understanding of such
a use—possibly using artifact manuals if necessary.

Besides these general features, in the following we describe some specific MAS
programming contexts and problems where artifacts and CArtAgO have been
already exploited with some results.
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Coordination

Artifacts are a natural abstraction to encapsulate coordination mechanisms and
make it available to agents as first-class entities to be controlled and managed by
agents themselves [19]. By working as interaction enablers and mediators, coor-
dination artifacts are particularly useful in all such contexts or problems which
require a loosely-coupled interaction (in particular from a temporal and spatial
point of view) among agents, and where it is useful to adopt an objective approach
to coordination [17], i.e. encapsulating the state and the rules defining the coordi-
nation policy in some proper controllable medium, out of the interacting agents.
Objective coordination is particularly useful when (i) the coordination laws are
stable and the objective is to automate the coordination process as much as pos-
sible, without the need of negotiation among the participants which are even
not required to know or understand to the overall coordination strategy; (ii) the
coordination rules must be enforced besides the individual behaviour of the par-
ticipants (prescriptive coordination), but without violating their autonomy (i.e.
control of their behaviour). In our case all this is achieved by designing proper
coordination tools that agents create, share and use at runtime.
Agents’ capability to replace artifacts at runtime or to inspect and possibly
change/adapt artifact functioning dynamically make the approach interesting for
those contexts in which the overall coordination policies need to be changed at
runtime, possibly without requiring changes in participant agents.

Organisation-Oriented Programming

Organisation Oriented Programming (OOP) in MAS is concerned with the
introduction of proper organisation modelling languages and corresponding
organisation-oriented middleware for supporting both organisations and their
members [2]. One of the challenges there is to conceive and design proper in-
frastructures (i.e. middleware) for enacting the organisational rules and processed
defined by organisational models without violating agent autonomy, and, at the
same time, supporting open organisations. To this end, in the ORA4MAS pro-
posal [11] artifact-based work environments are used to embody the functional
side of MAS organisation—modelled in that case with MOISE+ organisation mod-
elling language [9]. In ORA4MAS organisational infrastructure the functional
part of the organisation is represented (and enacted) by some organisational ar-
tifacts used, on the one side, by organisation members to access to organisation
services and, on the other side, controlled by organisational agents, reifying in
that way part of the organisation as a set of distributed first-class entities populat-
ing the agent world.
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System and Technology Integration

The integration and interaction with existing systems and technologies is a very
common issue in building real applications with MAS. An example among the
others is the integration of agent-based systems with Web based technologies (used
as case study in many agent books, such as [20, 3]), including Web Services [8].
Typical solution to this problem accounts for either extending the set of agent
actions with ad hoc new actions, which enable the interaction with external sys-
tems, or introducing wrapper agents that play the role of mediators (for instance
the WSIG gateway agent proposed in the FIPA platform for mediating the interac-
tion with Web Services [8]), encapsulating the machinery required to interact with
the external system. An alternative solution is to introduce properly designed ar-
tifacts to be exploited by agents as tools providing functionalities to interact with
external systems, and configured and adapted by agents according to their need.
An example is described in [23], in which a basic set of artifacts is introduced to in-
teract with Web Services and to implement Web Services in the Service-Oriented
Architecture (SOA) context. This solution is more effective than the previous
one in particular when the mediation function does not require autonomy, but,
instead, controllability and (dynamic) configurability.
More generally, artifacts provide a principled way to reuse in agent languages ex-
isting technologies and libraries, typically developed in general-purpose non-agent
languages such as Java or C, suitably wrapped in artifacts and represented as first-
class entities in the agent world. As a simple yet common example, consider the
need to create, access and manage a database from an agent-based application.
A quite natural way to solve the problem using CArtAgO is to design a DBase

artifact, providing a usage interface to make the SQL queries, mapping the infor-
mation generated by the database (such as the answer to queries) as observable
events or properties, and encapsulating in the artifact implementation the use of
the standard JDBC Java library for database access. It is worth noting that in this
case, by adopting this design, the artifact does not represent just a library of ac-
tions to access databases, but a specific instance of a database: multiple instances
of the same artifact can be used to work with different databases.
Graphical User Interfaces are another quite explicative and useful example in this
context. By adopting CArtAgO, a GUI can be easily implemented as an artifact
used and observed by human users on the one side and by agents on the other
side, wrapping and hiding the use of object-oriented GUI frameworks (such as
Java Swing). As a concrete example, Fig. 8.13 shows the artifact implementation
of a simple GUI frame (window) providing a button (get) and a text field func-
tioning as a display. The usage interface provides the setValue) interface control
to set the value of the display. Then, the artifact is programmed to generate two
observable events: get_selected whenever the button is pressed and closed

whenever the window is closing. Actually, the artifact in the example extends
GUIArtifact which is an existing type of artifact included in CArtAgO libraries
encapsulating the implementation of the mechanisms related to Java Swing event
management. Such mechanisms are hidden inside the mapXXXEvent methods (ex-
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Fig. 8.13 An example of simple GUI artifact implementation (right) used by a Jason agent (top-
left).

amples are mapActionEvent and mapWindowEvent used in in Fig. 8.13), which
make it possible to specify which observable events must be generated when a
specific GUI events occur. In the example, an observable event get_selected is
generated whenever an actionPerformed is triggered on the frame.getButton

button, and closed when the frame is closed by the human user. The Jason agent
shown in Fig. 8.13 observes the artifact and whenever a get_selected event is
detected, it changes the value of the display with a random number by acting on
the setValue control. If a closed event is detected, the agent terminates.

Goal-directed Use of Artifacts

An important research theme concerning A&A and CArtAgO is how artifacts
could be effectively exploited in the context of intelligent agents to improve
agents’ ability to execute individual as well as social tasks. Questions related to
this theme are: which reasoning models could be adopted by agents to use artifacts
in the best way, simplifying their job; how could the manual be used in agent rea-
soning processes, in order to help them using artifacts and finally achieving their
goal(s); how could an agent reason to select which artifacts to use; how could
artifact function description be exploited for this purpose; how could agents rea-
son to construct or adapt artifacts behaviour in order to be useful for their goals.
Actually all these questions are strictly related to some of the main foci in the
research in MAS applied to service-oriented architectures [14].

import javax.swing.*;
import alice.cartago.*;

public class MyGUIArtifact extends GUIArtifact {
  private MyFrame frame;

  void init() throws CartagoException {
    frame = new MyFrame();
    frame.setVisible(true);

mapActionEvent(frame.getButton,"actionPerformed","get_selected");
mapWindowEvent(frame, "windowClosing", "closed");

  }

@OPERATION void setValue(double value){ 
    frame.text.setText(""+value); 
  }

  class MyFrame extends JFrame {
    public JTextField text;

    public MyFrame(){
      setTitle("Simple GUI Artifact");
      setSize(200,100);
      JPanel panel = new JPanel();
      setContentPane(panel);
      JButton button = new JButton("get"); 
      button.setSize(80,50);
      panel.add(button);
      text = new JTextField(10); 
      text.setEditable(false);
      panel.add(text); 
    }
}

!manage_gui.

+!manage_gui : true <- 
  cartago.makeArtifact(myGUI,
                  "MyGUIArtifact",GUI);
  cartago.focus(GUI).

 +get_selected(Ev)[source(myGUI)]: true <- 
  .random(R);
  cartago.use(myGUI,setValue(R)).

 +closed(Ev)[source(myGUI)] : true <- 
  .my_name(Me);
  .kill_agent(Me).
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On the one side, the simplest case concerns agents directly programmed to use
specific artifacts, like the examples shown in this chapter, with usage protocols
directly defined by the programmer as part of the procedural knowledge/plans
of the agents. In spite of its simplicity, this case can bring several advantages for
MAS engineers, exploiting separation of concerns when programming agents on
the one hand and work environments on the other hand. On the other side, in the
case of fully open systems, the intuition is that artifact manual can be the key for
building MAS where intelligent agents dynamically look for and select which arti-
facts to use, and then exploit them accordingly, simplifying the reasoning required
to achieve the goals with respect to the case in which artifacts are not available.
We refer to this as goal-directed use of artifacts.
Actually, it is useful to frame such abilities progressively, scaling with the openness
and complexity of the domain context. Some levels can be identified, involving
different kinds of artifact aspects and agents’ abilities:

• unaware use – at this level, agents exploit artifacts without being aware of them.
In other words, agents’ actions never refer explicitly to the execution of opera-
tions on some kinds of artifacts.

• programmed use – at this level agents use some artifacts according to what has
been explicitly programmed by the agent designer. In the case of cognitive
agents, for instance, agent programmers can specify usage protocols directly as
part of the agent plan. For the agent point of view, there is no need to under-
stand explicitly artifacts’ operating instructions or function: the only require-
ment is that the agent model adopted could be expressive enough to model
in some way the execution of external actions and the perception of external
events.

• cognitive use – at this level, the agent programmer directly specifies in the agent
program some knowledge about what artifacts to use. However, how to exploit
the artifacts is dynamically discovered by the agent, by reading the operating
instructions inside the manual. So, generally speaking the agent must be able
to embed the procedural knowledge given by the operating instructions in the
procedural knowledge defined in its plans. First investigations on this level can
be found in [29]. In this case the adoption of shared ontologies for operating
instructions description/goal description is necessary.

• cognitive selection and use – this case extends the previous one by conceiving
agents that autonomously select artifacts to use, get operating instructions and
use them. With respect to the previous case, agents must be able both to un-
derstand and embed the operating instructions, and also understand artifacts
function description, in order to possibly decide to use the artifacts for their
own goal(s). It is worth noting that such a selection process can concern also set
of cooperative agents, interested in using a coordination artifact for their social
activities. As in the previous case, shared ontologies are necessary, in this case
both for operating instructions and function description. Besides ontologies,
from a cognitive point of view this level requires that both the artifact repre-
sentational and operational contents are mapped into reasoning processes, in
particular artifact representational contents (both static, such as the manuals,
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and dynamic, such as observable properties) has to be grounded with agents
epistemic (beliefs) and motivational (goals) states. First investigation on this
level can be found [21], which focuses goal-directed interaction in Jadex agents
using artifacts, and in the notion of extrospective agent developed in [12].

• construction and manipulation – in this case the point of view is changed, con-
sidering agents playing the role of designers of the artifacts. At this level agents
are supposed to understand how artifacts work, and to adapt their behaviour
(or build new ones from scratch) in order to make it more effective or effi-
cient for other agents’ goals. For its complexity, this level generally concerns
humans. However, agents can e.g. be adopted to change artifact behaviour ac-
cording to schema explicitly defined by the agent programmer.

Future work is planned in particular for the last two levels, which are the core of
the goal-directed use of work environments.

8.5 Conclusion and Future Developments

CArtAgO provides agent programming platforms with a principled and uniform
approach to construct and use work environments in MAS, useful for both en-
gineering the integration with the real external (physical or computational) envi-
ronments and, in particular, for designing computational worlds inside the MAS
that agents can exploit to perform their work.
Among the planned future works, the definition of a formal model and semantics
for CArtAgO aligned with existing models defined for agent languages (such as
[7]) will be important for both easing the integration of further agent platforms,
and investigating the formal verification of MAS which include artifacts, along
the line of the work suggested in [4].
Then, currently CArtAgO lacks a reference model and ontologies for defining the
machine-readable content of artifact manuals, and this partially limits the level of
inter-operability and openness that can be achieved. Accordingly, some planned
future work is in this direction: towards the definition of a common model for
manuals, with a shared semantics of the description of artifact purpose and usage.
For this purpose, existing work on related research domains, such as the Seman-
tic Web [28] and Functional Reasoning [5], will be an important reference. This
step is particularly important for the investigations about the intelligent use, con-
struction and adaptation of work environments by cognitive agents, as discussed
in Section 8.4.
Besides open systems and interoperability, the integration with heterogeneous
cognitive agent platforms makes it possible to easily create testbeds for bench-
marking and comparing different agents and MAS models and their design solu-
tions. Then, future work will also account for exploring how the different cog-
nitive models may differ in their performances given their different reasoning
processes and problem-solving styles.
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Chapter 9
A Survey of Agent-oriented Development Tools

Alexander Pokahr and Lars Braubach

Abstract Development tools represent an important additive for the practical re-
alization of software applications, mainly because they help automating develop-
ment activities and are able to hide complexity from developers. In this chapter,
the requirements for tools are generically analyzed by the various tasks that need
to be performed in the different development phases. These requirements are the
foundation for a detailed investigation of the landscape of available agent-oriented
development tools. In order to assess the variety of tools systematically, existing
surveys and evaluations have been used to isolate three important categories of
tools, which are treated separately: modeling tools, IDEs and phase-specific tools.
For each of these categories specific requirements are elaborated, an overview of
existing tools is given and one representative tool is presented in more detail.

9.1 Introduction

The term tool is defined in dictionaries as a means used in performing an operation
or task. In computing, a (software) tool is therefore a software for developing
software or hardware.1 As the product that is developed with a software tool is
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itself again a piece of software, we further want to restrict our discussions on tools
to so called development tools . A development tool is a software that is used by
a software developer to produce some result (e.g. a text editor used for editing a
source file). Unlike other kinds of software (e.g. libraries or agent platforms), a
development tool is only used during the development of a system and not part
of the final software product.
The results presented in this chapter are part of a larger survey on agent-oriented
development artifacts. Specifically, agent architectures, languages, methodologies,
platforms and tools have been researched. For the evaluation of the surveyed rep-
resentatives, a criteria catalog has been developed, which covers besides functional
criteria also non-functional issues such as usability, operating ability and pragmat-
ics. Details of the criteria catalog as well as condensed and summarized survey
results can be found in [14]. The criteria catalog will be used in this chapter as a
guiding principle for discussing requirements with respect to tool support. More
information on the survey is available in [11], covering architectures, methodolo-
gies and platforms, and in [47], dealing with languages and tools.
In the next section, the background on software development tools will be pre-
sented, thereby highlighting general requirements and providing a model for as-
sessing tool support for the different phases in the software development process.
Section 9.3 deals with agent-oriented tools. In this section, a survey about existing
agent-oriented software development tools will be given. Thereafter, in Sections
9.4 and 9.5, two important categories of tools – namely modeling tools and inte-
grated development environments (IDEs) – are discussed in detail. In Section 9.6,
tools for individual phases of the development process are presented. A short eval-
uation of the presented state-of-the-art is given in Section 9.7. The chapter closes
with a summary and conclusion.

9.2 Background

The following sections discuss which kinds of tools are employed in the differ-
ent phases of the software development process. For generality and simplicity, a
basic and well-known five phase model [6] is used as a foundation instead of a con-
crete and detailed agent-oriented methodology such as Gaia [73] or Prometheus
[45]. The five phase model distinguishes between 1) requirements, 2) design, 3)
implementation, 4) testing, and 5) deployment.
First, an overview of common development tasks in each of the phases will be
given (Section 9.2.1). For a structured and systematic discussion, these tasks are
then unified according to a generalized classification scheme (Section 9.2.2). Fur-
ther, kinds of tools for supporting the tasks as well as criteria for assessing the
quality of tool support are presented in Section 9.2.3. The following discussions
are intentionally kept general (i.e. not specific to agent-oriented software develop-
ment) to avoid an isolated “agents only” view and for facilitating a comparison of
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the state of the art of agent tools with respect to the state of the art in software
engineering in general.

9.2.1 Development Tasks During the Software Engineering
Process

This section describes the tasks, a developer has to perform during the different
phases of the software development process. Usually, these tasks correspond to
single steps, which have to be conducted more than once during iterative refine-
ments.
The requirements phase is necessary to elaborate the requirements of the software
to be. This phase involves talking to end users and customers to identify the needs
and wishes. These have to be analyzed for being able to write them down in a
precisely defined and unambiguous form. The elaborated requirements also have
to be checked for consistency to each other and the requirements specifications
have to be validated with the aid of the customers and end users.
After the requirements have been fixed, the design of the system can start. The
design phase has the goal to develop a blueprint of a system that captures all iden-
tified requirements. During the continuous refinements of the design it should
be checked for consistency of the design artifacts to each other. Moreover, the
design should be validated with respect to the identified requirements, such that
problems in the development process can be detected early.
Tasks during the implementation phase mainly consist in editing the source code.
This includes, besides creating new code fragments, also the task of refactoring,
which is a systematic restructuring of the source with the aim of preserving the ex-
isting functionality but at the same time e.g. better supporting the integration of
planned future functionality. Depending on the level of detail in the design, code
generation can be used to produce initial code fragments automatically based on
the design information. For iterative development processes it is in this case nec-
essary that changes to the code are also reflected in the original design artifacts,
e.g. by using reverse engineering technologies. Another important task during the
implementation phase is producing documentation to keep the code base main-
tainable and understandable. Therefore, decisions should be documented, which
are necessary because of a higher abstraction of design artifacts compared to the
concrete code. Especially, the concrete interfaces between modules of the system
should be described, as in larger projects these modules are often developed by
independent developer teams.
In accordance with the V-model [22, 52], the steps of system testing mirror the
steps of system design in the opposite direction. System design moves from ab-
stract requirements to detailed design-specification and finally concrete code. To
validate an implementation, these steps should be taken backwards. Therefore
one starts validating concrete implementations of partial functionalities (e.g. by
so called unit testing). Validation errors occurring in this step usually can be cor-
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rected directly in the code. When the functionality of single components is veri-
fied, the correct interplay between these components can be validated (integration
testing). This shows, if design specification (e.g. interface definitions) are sufficient
to ensure the smooth integration of components. If validation errors occur at this
stage, often design decisions have to be revised and implementations adapted ac-
cordingly. Finally, a validation of the system as a whole is performed with respect
to the initially identified requirements. In so called system tests, the developers
can play through the defined use cases. During acceptance tests, the system is eval-
uated by the real end users and customers. Problems, which are identified in these
tests, form the requirements that are used in the next iteration of the development
process.
The deployment of a software system follows a sequence of several steps (cf. [40]).
Because systems are usually not developed from scratch, the first step is to ob-
tain/provide the required additional components. Thereafter, the obtained and
newly developed components have to be configured according to the intended
usage contexts resulting in a set of application configuration specifications. For
each application configuration, a deployment plan needs to be devised. In the
preparation step, the code of the application components will be placed at the re-
quired target locations. When all components are installed, the application can be
started, meaning that for a complex distributed application several components
on potentially different network nodes need to be started. Once the application is
running, the maintenance phase starts, during which e.g. changes to the applica-
tion configurations can be made. Such changes may not require performing a new
iteration of the development process, if they have been already considered in the
system design. Depending on the runtime infrastructure may be possible while
the application runs or may require the application to be restarted. For unforeseen
changes, the development process has to start again for designing, implementing,
testing and deploying changed components according to the new requirements.
Besides these tasks corresponding to the five development process phase, there are
other cross-cutting tasks, which have to be conducted during the whole develop-
ment process. Among such tasks are the provision, management and usage of a
repository for holding and providing consistent access to the different versions
of the produced specifications and code. Also the coordination among software
developers is a task that is required in all phases.

9.2.2 Classification of Software Engineering Tasks

The aim of the last section was to give an overview of the different tasks and
activities that have to be performed during the software development process.
This section investigates how these tasks can be supported by software tools. To
keep the discussion general it is abstracted away from concrete tools and specific
tasks. Instead it is tried to identify the commonalities for tasks that recur in similar
forms in different phases. This investigation helps to identify the kind of tool
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support that is required in general and also sheds some light on the relations
between different kinds of tools.
A unification and categorization of the tasks from the last section is illustrated
graphically in Figure 9.1. The five phases of the software development process
(requirements, design, implementation, testing, deployment) are shown from the
left to the right. From top to bottom, you can find a classification according to
primary tasks, ancillary tasks, and cross-cutting tasks (see left hand side legend).

Fig. 9.1 Tasks in the software engineering process

Primary tasks are those tasks, that form the major part of a phase. Therefore, such
tasks should if possible be supported by a single integrated tool to avoid having to
switch often between different work environments. This means that, e.g., a design
tool should support all tasks of the design phase in an integrated and consistent
way.
Supporting tasks, which are optional or required less often compared to primary
tasks are termed ancillary tasks. Because these tasks make up only a low portion
of the overall development effort, requirements for tool support for these tasks are
somewhat reduced. E.g. support for some of these tasks need not be part of an in-
tegrated tool but can also be realized in several independent tools, without causing
too much interruption in the workflow of the developer. Nevertheless, an inte-
gration of such tools would be beneficial, e.g. in the form of plug-in mechanisms
that allow to invoke external tools from an integrated development environment.
Finally, cross-cutting tasks are not associated only to a single phase of the develop-
ment process. Therefore, tool support for these tasks should be realized separately
from any tool that is only intended for a specific phase so as not to require the use
of tools from different phases. E.g., repository management support should not
be realized solely as part of a design tool, otherwise developers would be required
to always have the design tool at hand even in the later development phases. Nev-
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ertheless, some integration of the functionality (e.g. using plug-ins) into phase
specific tools can be beneficial as long as it does not hinder the consistent usage
across all phases.
In the following, the concretely identified generalized tasks as shown inside the
Figure 9.1 will be explained in more detail. In the figure, similar tasks are sub-
sumed under a common name. Therefore, a common primary task for all phases
is the creation and editing of artifacts, where artifacts depend on the phase (e.g.
requirements specifications, design models, application code, test cases, or de-
ployment descriptors). Also, the consistency checking refers to the artifacts of the
respective phases, e.g. checking different design models for consistency to each
other. Some tasks such as elicitation of requirements have no counterpart on
other phases, as the later phases, the documents from the earlier phases are di-
rectly used as input. Similarly, the performing of artifacts such as test cases and
deployment plans only happens in the last two phases respectively, because in the
earlier phases, the produced artifacts (design models or code) directly form the de-
sired result, while in the last two phases, the artifacts are only means to the final
goal of a validated resp. installed system.
Unlike the primary task of consistency checking, the ancillary cross-checking task
refers to checking the consistency between artifacts of different phases (as indi-
cated by small arrows in the figure), mostly checking the newly produced artifacts
of the current phase for consistency with the artifacts from the earlier phase(s) to
verify that, e.g., design models capture all previously defined requirements. In a
similar way, also forward and reverse engineering (fw. rev. engineering) has to con-
sider artifacts from different phases. The aim is to automatically create artifacts
for one phase out of the information available in artifacts in an earlier (forward
engineering) or later phase (reverse engineering). A common form of this task is
code generation, which produces an implementation phase artifact (code) based
on some design phase artifacts (design models). Refactoring is the task of system-
atically changing a set of artifacts with respect to a common restructuring goal.
Systematic means that changes apply to many artifacts at once and special care
has to be taken to ensure the consistency of the artifacts.2 These tasks are termed
ancillary because they are partially optional (fw./rev. engineering and refactor-
ing) or are only require limited amount of effort (cross-checking) compared to
the primary tasks. Another ancillary task that requires limited amount of effort
is producing documentation for the specific phase. Because the major artifacts of
the requirements and design phase have documentary character themselves, a sep-
arate documentation task is not considered for these phases, in other words, (cre-
ating/editing of) documentation is a primary task in these phases.
Cross-cutting tasks are also associated to the artifacts of the different phases. E.g.
the aim of repository management is to store the artifacts and their changes and to
provide access to them, when needed. Besides the artifacts itself, meta-information
such as the user, version and time of a change needs to be stored. Also the coordi-

2 Although refactoring is often referred to in the context of code refactoring only, it is also
possible to generalize the refactoring idea to other kinds of artifacts. For example, [61, 7] propose
refactoring mechanism for UML design models.
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nation is usually tightly coupled to the creation and editing of artifacts. E.g. it has
to be coordination who is allowed to edit which artifact (access management) and
who is responsible for creating which artifact (task allocation).
The dots in the categories indicate that the figure is not claimed to be complete
with respect to all possible kinds of software development tasks. For example the
list of tasks could easily be extended to tasks, which are less focused to direct
development tasks, such as e.g. project management or quality assurance.

9.2.3 Tool Support for Development Tasks

For an effective and efficient software development it is essential that preferably
all tasks and activities during the development process are adequately supported
by tools. Nowadays, a huge amount of vastly different tools has been developed
in research and industry. Grundy and Hosking [30] have given a broad overview
over the state of the art in the area of software tools. Their overview considers
tools in general (i.e. not specifically focused on agent-oriented application devel-
opment). Grundy and Hosking identify 18 different kinds of tools (e.g. design
tools, IDEs, as well as testing and debugging tools) and describe the phases in the
development process, where these tools are used. The considered tools usually
support more than a single activity or task inside a phase like, e.g. design tools,
which besides the creation and editing of design models also often support consis-
tency checking and/or code generation. Moreover, some tools can be used across
different development phases. For example, many IDEs not only address the im-
plementation phase, but also offer support for testing and debugging as well as
sometimes aspects of deployment.
The quality of any tool support can be assessed by considering the degree of
support for the different phases and tasks. The support for all tasks and activities
in the sense of a complete tool-support for the software development process
can be achieved on the one hand by combining a multitude of specialized tools
for single tasks or on the other hand by a few powerful tools, each of which
addresses a large portion of software development tasks. Besides this functional
quality aspects, also non-functional quality criteria, such as usability, operating
ability and pragmatic aspects (cf. [14]) should be considered when evaluating or
designing tool support. For these criteria, the continuity of the tool support is
of primal importance (cf. [51]). In this respect, continuity refers to the seamless
working with the same artifacts across different interrelated tasks. This continuity
can easily be obtained, if support for related tasks is combined in a larger tool
(e.g. design tool or IDE). When related tasks are supported by separate tools, the
continuity needs to be achieved by an integration of these tools. A fully integrated
tool support also directly improves usability, because it provides a unified view of
the development process reducing the learning effort and the potential for errors.
According to Figure 9.1, integration can be pursued across two axes. On the one
hand, integration can consider two tasks from different phases (horizontal integra-
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tion). For example design and implementation tools, which are both responsible
for creating and editing artifacts could be integrated by providing an interface
for data interchange. On the other hand, tasks from the same phases can be inte-
grated (vertical integration), like combining support for these tasks inside a com-
mon usage interface, e.g. using a plug-in mechanism. Grundy and Hosking [30],
differentiate four basic ways of integration: data integration, control integration,
presentation integration and process integration. Data integration is achieved by the
already mentioned data interchange interfaces and can be based on standardized
as well as proprietary data formats. Data interchange is essential to allow consis-
tency checking among artifacts created with different tools (especially for cross-
checking artifacts from different phases). Control integration allows redirecting
commands issued in one tool to another tools. As an example consider a debug-
ger and a source code editor, where the debugger has to tell the editor, which line
to show, when the developer issues a program step. Presentation integration has
the goal to combine the functionality of different tools in a unified user interface,
e.g. simply by invoking the command line tools such as CVS/SVN and present
their output or by using sophisticated plug-in facilities that allow to extend also
the user interfaces, e.g. of integrated development environments. Finally, process
integration focuses on integrating subsequent activities or steps. Therefore, pro-
cess integration has to combine data, control, and presentation integration and
adds knowledge about the development process and the interdependencies of pro-
cess steps, i.e. process integration automatically presents to the developer the right
tool with the right data for the next required working task.
To summarize the preceding analysis of tools and tool support it is noted that,
according to Section 9.2.2, the quality of tool support and integration is more
important for the primary tasks than for ancillary tasks. With respect to the goal
of achieving a complete and continuous tool supported development process this
means that modeling or design tools as well as IDEs are the most important class
of tools, as these tools aim to combine and integrate most of the primary tasks
and also many ancillary tasks from the requirements and design as well as imple-
mentation testing and deployment phases. Moreover, cross-cutting tasks should
be supported by separate tools, which are not bound to a specific development
phase. In the following, it will be investigated, how these requirements for design
tools, IDEs, and tools for cross-cutting tasks can be met by existing agent-oriented
software tools.

9.3 Agent-oriented Development Tools

The previous sections of this chapter have taken a general viewpoint towards
tools. This section investigates, which kind of tools exist in the specific area of
agent-oriented software engineering. For this investigation, existing surveys and
online resources on agent software are used as a starting point. As some of these
surveys have a quite specific focus, the results of them cannot be easily compared
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to each other. Particularly, some surveys consider quite different kinds of agent
software, not limited to pure development tools as defined in the introduction,
but often also agent platforms and execution environments. Moreover, it should
be distinguished between generic software and software that is targeted to a spe-
cific application domain or category. Such category-specific software e.g. supports
the creation of virtual characters or the building and execution of simulation
experiments. In addition, some of the surveys also include built agent-oriented
applications. To give a coherent view of existing agent software, the following
analysis presents not only development tools, but also runtime-relevant software
like agent platforms and support libraries. Further categories of software are in-
troduced as needed, when they are present in some survey or online resource.
Nevertheless, in the subsequent discussions the scope will again be reduced to
development tools.

9.3.1 Analysis of Existing Surveys and Online Resources

The examined surveys differ in the selection of tools as well as in the definition
of the investigated categories. Some investigations only define a single category
and only study representatives of this category. Other surveys have the aim to be
broader and therefore examine different representatives of categories, which are
defined in advance or afterwards.
Among the surveys focused on a single category, Eiter and Mascardi [23] and Bit-
ting et al. [5] only consider environments for developing agent applications. The
term multi-agent system development kit (MASDK) is introduced to denote inte-
grated development environments with functionalities similar to object-oriented
IDEs, such as eclipse3 or IntelliJ IDEA4. Considering the examined development
environments such as AgentBuilder [53], IMPACT [21], JACK [71], and Zeus [39],
it can be noted that each of them introduces a new proprietary programming lan-
guage for agent specification. In contrast, object-oriented IDEs usually support
existing languages like C++ and Java. This difference is probably due to the fact,
that in the area of agent technology no broad consensus exists about how to imple-
ment the agent specific concepts leading to quite different approaches with their
own respective advantages and drawbacks. The use of proprietary concepts and
languages forces these development environments to also include runtime com-
ponents such as an agent platform for supporting the execution of the developed
agents. Runtime environments resp. platforms for executing agents are the focus
of Serenko and Detlor [56], Fonseca et al. [24] as well as Pokahr and Braubach
[48, 13]. These surveys consider in addition to platforms as part of a develop-
ment environment also pure execution environments like JADE [3] and ADK

3 http://www.eclipse.org
4 http://www.jetbrains.com/idea/



298 Alexander Pokahr and Lars Braubach

[64]. These platforms do not introduce new proprietary programming languages,
but instead rely on existing object-oriented languages such as Java.
The respective aims of the broader surveys are sometimes quite difficult to define.
E.g. Mangina [36] considers agent software in general, based on the entries of the
AgentLink agent software directory at that time. The survey includes 36 represen-
tatives, but partitions them in quite vaguely defined categories such as “develop-
ment environment” or “support software”. Newer reviews of Bordini et al. [9, 8]
and Unland et al. [65] consider current software from the area of agent-oriented
software engineering categorized, e.g., in languages, platforms, and applications
[9].

9.3.1.1 Agent Software in the AgentLink Software Directory

The most current and comprehensive overview over agent software is the publicly
available AgentLink agent software directory.5 It was initiated in the context of a
series of EU-funded research networks. Although AgentLink ended in 2005, the
list has still been updated since then.6 With a total of 125 entries7 it is therefore
much more up-to-date than other online resources, which seem to be no longer
maintained, such as the UMBC Agent Web software directory (149 entries until
2003)8 or the even no longer available Université Laval Agents Portal (40 entries
until 2006) or MultiAgent.com (35 entries until 2007).
An in-depth analysis of the representatives listed in the AgentLink directory re-
sults in the chart shown in Figure 9.2. For the chart, each of the entries has first
been assigned to one of the major groups introduced in the beginning of this sec-
tion, namely tools (left hand side), runtime software (middle) and software for a
specific application category (right). The tools group is subdivided into IDEs, design
tools, as well as other tools. In the runtime software group it is further distin-
guished between complete platforms and additional supporting libraries, which do
not form a platform in their own respect. Category-specific software comprises
runtime environments for simulation (sim.), applications (app.) and miscellaneous
agent software (misc.), which does not fit into any other category, such as libraries
for developing virtual characters.
For valid conclusions about the current state of the art, it has also been investi-
gated, which of the representatives are still actively developed. A representative
is termed inactive, if there has not been a software update or a publication about
the software in the last two years. The number in braces give the exact number of
representatives, whereas the first number is only the active representatives, while
the second number is the total number (i.e. active and inactive) representatives.

5 http://eprints.agentlink.org/view/type/software.html
6 Last entry was added on September 10th, 2007.
7 Of the actually 128 entries, three have been identified as duplicates.
8 http://agents.umbc.edu/Applications_and_Software/Software/index.shtml
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Fig. 9.2 Analysis based on AgentLink tool directory

Considering the distribution of entries into the three major groups, it can be ob-
served, that runtime software is by far the most common group (69 of 125, i.e
55%). The smallest part is tools with only 15 of 125 entries (12%). The reason
for this distribution could be that agent programming is still young compared to
e.g. object-oriented programming and therefore the main focus of research and de-
velopment has initially been on the basic infrastructure for execution, and some-
what less on abstract and easy to use development tools. When considering only
actively developed representatives, the picture changes in favor of the tools, which
now make up 20% (14 of 72) compared to now only 48% for runtime software,
while the third category stays around the same level of 32%. This result could be
an indication that the available runtime infrastructure has matured in the recent
years as now the focus has shifted towards higher level tools.
Concerning the subdivisions in the major groups, it can be noted that platforms
are by far the most commonly developed kind of agent software (53 of 125 entries,
i.e. 42%). A reason for this might be the already mentioned lack of consensus
among agent researchers forcing many research teams to develop a platform on
their own instead of reusing existing software. Also, simulation software makes
up a considerable portion (16%), which is even higher than the tools group in
total and indicates that agent technology is already quite well accepted in the area
of simulation. Another noticeable fact is that IDEs are developed twice as much
compared to design tools. A possible reason for this could be that the proprietary
programming languages often require developing new IDEs while for modeling
techniques, which are not specifically agent-oriented, existing tools (e.g. UML
tools) can partially be used.
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Finally, the reduction of the subcategories to only active representatives is ex-
plained. It confirms the picture already present with regard to the major groups,
namely, that fewer representatives of runtime software like platforms and libraries
remain compared to, e.g. IDEs and development tools. The biggest reduction is in
the area of platforms, where more than half of the platforms (54%) are no longer
developed. This indicates this area has matured and a convergence to a few widely
used platforms, such as JADE, has happened. Additionally, only few of the plat-
forms have been developed in a commercial setting (ca. 10 of 53, i.e. less than 20%)
while the majority of IDEs (7 of 10, i.e. 70%) have a commercial background.9

9.3.1.2 Tool Kinds for Supporting Agent-oriented Software Development

The goal of the previous sections has been to identify the kinds of tools, which are
required and already used for supporting the development of agent-based applica-
tions. Therefore, Section 9.2.1 has presented an overview of software development
tasks, which have been generalized and classified in Section 9.2.2, according to pro-
cess phases, as well as primary, ancillary and cross-cutting tasks. Moreover, Sec-
tion 9.2.3 has discussed how these single tasks should be addressed by integrated
(sets of) tools. Finally, Section 9.3.1.1 has given an overview of tools and other
development supporting software in the area of agent technology. This overview
identifies the important classes of IDEs and design tools and therefore fits well
with the generic analysis from Section 9.2.3, which identifies modeling tools and
IDEs as the basis of a continuous tools support, augmented by additional tools
for project management, coordination and special purpose tasks. This leads to the
question, for which tasks specific agent-oriented tools are necessary and for which
other tasks existing tools e.g. from the object-oriented world would be sufficient.
An important criterion for this decision is the kind of artifact, that is manipu-
lated by a tool, i.e. for working with agent-specific artifacts like design models or
program code specific agent tools would be advantageous. Cross-cutting tasks (cf.
Figure 9.1) like project or repository management abstract away from concrete
artifact types and therefore can be adequately supported by existing tools, such as
Microsoft Project10 or CVS11.
Therefore the identified modeling tools and IDEs form the most important aspect
of a tool-supported agent-oriented software development process to adequately
support the requirements and design, as well as implementation, testing and de-
ployment phases. In the following two sections, these two tool kinds will be ana-
lyzed in more detail, by discussing the common properties and giving an overview
of typical representatives.

9 This is also due to the fact that many commercial agent platforms like JACK include IDE
support and have therefore been assigned to the IDE category.
10 http://microsoft.com/office/project
11 http://www.nongnu.org/cvs/



9 A Survey of Agent-oriented Development Tools 301

9.4 Modeling Tools

Agent-oriented graphical modeling tools are developed to support the software
engineer during modeling tasks and to simplify the transition from an abstract
specification to an implemented multi-agent system. Replacing or augmenting
existing object-oriented modeling techniques as e.g. available in UML [41], new
agent-oriented diagram types are introduced, which allow to specify e.g. inter-
action protocols or describe internal agent properties at the abstraction level of
graphical modeling. A modeling tool realizes the corresponding user interface for
working with these diagram types. The graphical representation of system proper-
ties allows visualizing interdependencies between the elements and improves the
developer’s understanding of the structure of single agents as well as the system as
a whole.
Graphical agent-oriented modeling techniques usually are not self-contained (with
the exception of AUML [42] for specifying agent interactions), but rather are em-
bedded into complete software engineering methodologies (see, e.g., [58] or [31]
for an overview). Methodologies provide besides modeling techniques also a devel-
opment process, in which the single techniques are embedded. The development
process defines a sequence of steps, which have to be passed through during the
realization of a system, and the techniques to be employed in each of the steps
[59]. Regarding this aspect, some methodologies are more strict than others, i.e.,
some restrict single techniques to be only used in some of the steps, while others
propagate an iterative refinement of specifications in subsequent steps using the
same modeling technique. This strictness can be supported by a tool by offering
only those modeling techniques, which correspond to the current process step.

9.4.1 Requirements for Modeling Tools

This section discusses the specific requirements for modeling tools by referring
to the general discussions from Sections 9.2.2 and 9.2.3. With respect to devel-
opment tasks (cf. Figure 9.1), modeling tools address the design phase as well as
(sometimes) the requirements phase. Artifacts of these phases are graphical models
and text-based specifications, which can be written in natural language or follow
a predefined (formal) scheme (e.g. role schema definitions in GAIA [73]). The
main function of a modeling tool is to enable the developer to create and edit
these models and specifications. Depending on how strict or formal the models
and specifications of the employed technique or methodology are, a tool can also
check the consistency of created artifacts and suggest changes for improving the
specification (so called design critics [55]).
Among the further tasks in the requirements and design phases is validating spec-
ifications or modeling artifacts from different phases with respect to each other.
E.g., it can be checked that design documents adequately reflect the scenarios,
which have been identified in the requirements phase [2]. Moreover, it is advanta-
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geous, if a tool provides the developer with an option to transform artifacts from
one phase into artifacts of another phase. For instance, a tool might be able to
generate code fragments based on design information (forward engineering) or
extract design information out of existing application code (reverse engineering).
A drawback of forward or reverse engineering techniques is that after a once gen-
erated artifact has been changed manually, forward or reverse engineering cannot
be reapplied without loosing the changes, i.e. the so called “post editing problem”
[62]. The combined support of forward and reverse engineering, such that changes
in one artifact can always be merged into the other without compromising consis-
tency or loosing changes, is called round-trip engineering. Round-trip engineering
allows employing forward or reverse engineering techniques also in iterated and
agile development processes, where existing implementations are used as a basis
for the design of the next iteration. Refactoring techniques are also most useful in
agile development processes. Initially only applied to the implementation phase,
refactoring ideas have recently also been transferred to graphical modeling [61, 7].
Among the non-functional criteria, especially the group of usability criteria (cf.
[14]) requires a specific treatment. To evaluate the usability of graphical modeling
tools, the ergonomics of the user interface is of primary importance. In general,
this covers properties, such as the suitability for the intended task and control-
lability (cf. ISO 9241-110 “Ergonomics of human-system interaction - Dialogue
principles” [32]). In the specific context of modeling tools, these properties can
be refined to concrete requirements. For instance, a tool should relieve the devel-
oper by automating tedious tasks like the uniform and clearly arranged placement
of diagram elements, but without posing unnecessary restrictions on the user.
Moreover, it should be possible to take back actions in case of undesired effects
(undo), and often used functionality should be easily accessible without forcing
the developer to repeatedly change between mouse and keyboard (e.g. by enabling
commands to be issued through hot keys as well as dialog elements).

9.4.2 Existing Agent-oriented Modeling Tools

The analysis of existing agent-oriented tools from Section 9.3.1.1 has shown that
the choice of tools in the area of agent technology is somewhat limited. Most tools
evolved in the context of a specific project or product. Hence, for each specific ap-
proach, such as a concrete agent-oriented programming language or development
methodology, usually only a single tool (if any) is available, which is highly tai-
lored for this specific approach.
Due to this situation, it seems appropriate to examine tools not in isolation,
but to also consider the project or product context. Figure 9.3 shows current
agent-oriented design tools and highlights their interdependencies to other agent-
oriented development artifacts. In the figure, design tools are depicted in the
highlighted column in the middle. To the left hand side of the design tools,
their conceptual foundations are given in the form of development methodolo-
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Fig. 9.3 Modeling tools and relations to other artifacts

gies. Methodologies in turn are related to their originating software engineering
(SE) approaches, which, according to [14], are given as agent orientation (AO), ob-
ject orientation (OO), knowledge engineering (KE), and requirements engineering
(RE). To the right of the design tool column, interdependencies to implemen-
tation aspects of the modeled agents can be seen. Those interdependencies go
through the development environments (i.e. IDEs), which are also covered in this
chapter, and programming languages to the behavioral agent architectures, which
in turn form the conceptual foundation of the programming languages. For rea-
sons of clarity, artifacts without relations to modeling tools are not shown in this
figure, even if they will be covered later with regard to IDEs (e.g. 2APL or AOP
languages and associated tools).
All modeling tools shown in the figure have been developed to support a concrete
methodology, but not all of them are related to some agent-oriented IDE. The
relation to an IDE follows from the fact that a tool is able to generate code of
a specific agent programming language or platform, supported by this IDE. For
example this is the case for the Prometheus Design Tool (PDT)12 [63] and the
LS/TS Modeler, which are developed for the Prometheus methodology [72] resp.
the Agent DEvelopment Methodology (ADEM, [67]), are able to generate code
for the language JAL of the JACK agent platform [71] resp. the Java API of the
Living Systems Technology Suite LS/TS [54]. The INGENIAS Development Kit

12 http://www.cs.rmit.edu.au/agents/pdt/



304 Alexander Pokahr and Lars Braubach

(IDK)13 [27] supports the INGENIAS Development Process IDP [46] and gener-
ates code for two languages/platforms (JADE [3, 4] and Soar [34]), one of which
(Soar) is supported by a specific IDE.
Other tools, such as the PASSI Toolkit14 and agentTool15, which have been devel-
oped for the PASSI [16] resp. the MaSE methodology [20], are able to create code
from the models, but no specific IDEs exist for the target languages. Especially
tools related to requirements engineering (OpenOME16, Objectiver17, FAUST18)
are not capable of generating agent-oriented code. This is probably due to the fact
that the supported methodologies KAOS [35] and i* [74] as a foundation of Tro-
pos [26] consider agents merely as an abstract modeling concepts and do not tar-
get an agent-oriented implementation. The TAOM4e tool19 is an exception to this
case, because unlike OpenOME supporting i*, it supports the Tropos methodol-
ogy directly and therefore explicitly considers using agent-oriented concepts for
the implementation (here by generating JADE code). The Multi Agent System
Development Kit MASDK, [28], deserves a special presentation covering the de-
sign tool as well as the IDE column. MASDK realizes an approach for graphical
programming, which is inspired by the Gaia methodology [73].

9.4.3 Example Modeling Tool: Prometheus Design Tool (PDT)

The Prometheus Design Tool (PDT) is developed at the RMIT University in Mel-
bourne [44, 43]. It has the objective to support the agent-oriented development
according to the Prometheus methodology [72]. The Prometheus methodology
consists of three subsequent stages: system specification, architectural design, and
detailed design. In each of these stages a developer specifies design artifacts, which
is supported by the PDT. In Figure 9.4 a screenshot of the PDT user interface is
shown. The basic working area is split into four main regions. At the upper left
pane the three mentioned development stages and the associated design diagrams
are listed. This area can be used to select a specific diagram, which is then shown
at the right hand side and can be edited there. Each element of a design is also
contained in an entity list at the lower left region. For each design element the ed-
itor for the type-dependent textual descriptor can be activated and used for adding
further details (bottom right area of main window).
In the system specification phase an analysis of the problem domain is pur-
sued. Main goal in this phase is the specification and elaboration of the analysis

13 http://ingenias.sourceforge.net/
14 http://sourceforge.net/projects/ptk
15 http://macr.cis.ksu.edu/projects/agentTool/agentool.htm
16 http://www.cs.toronto.edu/km/openome/
17 http://www.objectiver.com/
18 http://faust.cetic.be
19 http://sra.itc.it/tools/taom4e/
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Fig. 9.4 Overview of PDT

overview diagram, which has the purpose to highlight the main use cases and the
stakeholders participating in these use cases. This diagram can be further refined
to include also the interface of the system described by percepts as inputs and
actions as outputs of scenarios. In addition to this analysis overview, a system
goal hierarchy can be modeled. As starting point, it is assumed that for each sce-
nario one top-level goal exists, which can be used for a subsequent refinement into
lower-level goals.
The next phase is the architectural design, where the internal composition of the
system is specified. In this phase it needs to be decided which agent types make
up the system and additionally in which way these agent types communicate via
protocols. An agent type here is seen as a composition of one or more roles and
is guided by data coupling and acquaintance considerations. Once the agent types
have been identified, the agent overview diagram can be composed. This diagram
is similar to an object-oriented class diagram, because it mainly highlights the
agent types and their communication relationships. Also similar to class diagrams,
the system overview diagram plays a central role in Prometheus and represents
one of the most important artifacts produced by the methodology.
Finally, in the detailed design phase the agent internals are specified in order to
equip the agents with the means to achieve their goals and handle their interac-
tions appropriately. For each agent type, represented in an agent overview dia-
gram, a functional decomposition is performed in order to identify its required
functionalities. These functionalities are grouped according to their coherence
and consistency into so called capabilities (agent modules). For each capability a
capability overview diagram is developed, which shows how a functionality can
be realized in terms of belief-desire-intention concepts. For these concepts indi-
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vidual textual descriptors can be devised. Using the detailed design artifacts, the
code generation facility of the PDT can be employed for automatically producing
JACK agent language code.
PDT provides all standard functionalities of a modeling tool. It allows design dia-
grams being created and refined and also exported in a graphical format for docu-
mentation purposes. In addition, the consistency of the design artifacts is ensured
to some degree based on constraints derived from the Prometheus metamodel.
According to [44], the tool inter alia avoids references to non-existing entities, giv-
ing the same name to two elements, connecting unrelated entities and breaking
interface rules. Semantical aspects can be further investigated by the tool, which
generates a report indicating possible weaknesses and inconsistencies in the cur-
rent design. Such a report could e.g. highlight that the model contains a message,
which is actually never send by any agent in the design.
PDT also partially addresses the ancillary tasks (cross-checking, refactoring and
forward/reverse engineering). The consistency of different artifacts is mainly en-
sured within one development phase but as specific elements such as percepts and
actions are used throughout all phases, also cross-stage consistency is respected.
Additionally, the automatic propagation of elements to diagrams of later phases
increases the consistency further. Refactoring is not supported by the PDT so far,
even though the persistent usage of elements throughout different diagrams helps
to make simple operations like renaming of elements work without consistency
problems. The PDT offers a code generation module for producing code skeletons
directly from the models (forward engineering). If changes in the design are done
only within the tool, it will preserve hand-made code changes and hence mitigate
the post-editing problem [62]. A reverse engineering for producing design arti-
facts out of existing code is not yet available and hence no round-trip engineering
is possible.
The PDT aims at supporting all relevant modeling activities of a system. A verti-
cal integration, i.e. the integration of further tools for enabling a richer modeling
experience, is currently not provided. Concerning the horizontal integration, the
PDT has the already mentioned code generation mechanism, which represents a
weak form of data integration. The data integration is weak, because it works in
one direction only (from PDT -> Code). Furthermore, a PDT eclipse plugin is
available, which allows using PDT from eclipse and realizes a control integration.
For the future several extensions are planned. One aspect is the achievement of
a complete data integration between the design and code layer. Moreover, the
functionalities of the PDT eclipse plugin shall be extended substantially to pro-
vide further integration facilities. In this respect, it is aimed at supporting code
generation also for other target agent platforms and allow other modeling tools
(e.g. UML) to be used directly from PDT, e.g. to model non-agent related system
aspects such as the underlying data model. The horizontal integration shall be
further extended in direction of including the test and deployment phases as part
of Prometheus and PDT.
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9.5 Integrated Development Environments (IDEs)

IDEs are software applications, which combine different development tools under
a unified user interface. The main focus of IDEs are the programming tasks that
appear primarily in the implementation phase, but also in the testing and (par-
tially) deployment phases (cf. Sections 9.2.1 and 9.2.3). Therefore most IDEs are
restricted to these phases. Yet, some IDEs offer graphical modeling features, but
these are usually not focused on providing a fully fledged design phase support,
but instead target an abstract visual way of programming (e.g. MASDK [28]).
In the area of object-oriented software engineering there are numerous IDEs of
different levels of maturity. E.g., among mature IDEs focusing on Java program-
ming, the most widely used ones are eclipse20, IntelliJ IDEA21 and NetBeans22

(cf. Methods & Tools23 and ComputerWire24). IDEA is a commercial product of
the company JetBrains, whereas eclipse and NetBeans are freely available Open
Source solutions, which are nevertheless initiated and pushed forward by com-
mercial companies (Sun Microsystems in case of NetBeans and a consortium of
IBM, Borland, QNX, RedHat, SuSE and others for eclipse).
The following section will discuss desired features of IDEs in general, backed by
the analysis from Section 9.2.2 and the available features of the aforementioned
state-of-the art object-oriented IDEs.

9.5.1 Requirements for IDEs

A simple IDE at least combines an editor for working on source code with a
compiler or interpreter, which translates code to a runnable program or directly
executes it. Additional important functionalities of an IDE are a debugger, which
allows monitoring and control a running program in order to find programming
errors, as well as a repository management functionality for dealing with the files
associated to a development project.
The central component of an IDE from the viewpoint of the developer is the ed-
itor, which is used primarily to create and edit source code but sometimes also
other kinds of artifacts, such as deployment descriptors. The editor should of-
fer integrated consistency checks, validating the code while it is typed. To im-
prove the productivity of a developer, many IDEs additionally offer so called
auto-completion, i.e. the IDE makes useful suggestions to the developer, how the
partial code pieces can be expanded (e.g. variable or method names). These sugges-

20 http://www.eclipse.org/
21 http://www.jetbrains.com/idea/
22 http://www.netbeans.org/
23 http://www.methodsandtools.com/facts/facts.php?nov03
24 http://www.computerwire.com/industries/research/?pid=8885533F-BE8C-4760-881C-
0BBBFECF534E
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tions bear on the one hand on a syntactical understanding of the programming
language and on the other hand on the current context, i.e. knowledge of the
classes, variables, methods, etc. of the current project, which are accessible from
the given code location. Similar knowledge is required for refactoring function-
alities, which in the implementation phase also belong to the duties of an editor
(e.g. the consistent renaming of methods). Besides text-based source code editors,
some IDEs offer other (e.g. visual) description means for specific aspects of a sys-
tem, such as graphical user interfaces, and transform these descriptions to source
code automatically.
To verify progress during programming, the developer continuously has to exe-
cute and test those parts of the system, she is working on. Therefore, the IDE
on the one hand has to transform source code into an executable program. For
larger projects this can include, besides compiling single source files, also addi-
tional steps, such as pre- and post-processing as well as creating and assembling
complex subcomponents (e.g. libraries). The IDE should enable the developer to
specify/alter project specific guidelines for the build process and define all the re-
quired steps for constructing the application. Capabilities of an IDE related to
the build process therefore also address tasks from the deployment phase. On the
other hand, the IDE has to provide a runtime environment, in which partially
completed versions of an application can be executed. Using different execution
configurations, a developer can select different parts of the application for execu-
tion, based on her current situation.
A common task during the programming activity is the process of localizing bugs
in a running system. For this purpose, IDEs offer so called debuggers, which al-
low executing a program in a step-wise manner, while observing the position in
the source code as well as current variable values. A central concept of a debugger
are breakpoints, i.e. positions that a developer has marked in the source code and
at which executing should be interrupted. For compiled programs the debugger
therefore has to be enabled to map the internal machine representation of the
running program back to the source code. To support this process, program bi-
naries usually are enriched with debugging information during the compilation
process. Modern IDEs support in addition to simple breakpoints also semantic
breakpoints, which are activated only, when certain conditions or events are de-
tected (e.g. the occurrence of a specific exception type).
Besides phase-specific activities in the area of implementation, testing and deploy-
ment, many IDEs also support cross-cutting tasks. Especially the repository man-
agement or an integration of an existing repository management or versioning
system is among the standard features of today’s IDEs. The first goal of reposi-
tory management is grouping all files belonging to a project into a common (e.g.
directory) structure, such that the developer can easily grasp the current state of
the project. Moreover, versioning features allow retrieving different (earlier) states
of single files or the project as a whole, when needed. The integration with an ex-
ternal repository management system like CVS further facilitates a parallel and
distributed development in larger project teams.
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Fig. 9.5 Agent-oriented IDEs and relations to other artifacts

9.5.2 Existing Agent-oriented IDEs

For a systematic overview of existing agent-oriented IDEs , the approach from
Section 9.4.2 is picked up. Therefore Figure 9.5 shows in the style of Figure 9.3
the interdependencies of existing agent-oriented IDEs with other development
artifacts. E.g. the Visual Soar IDE25 supports the Soar Language, for which the
IDK modeling tool can generate code as also already shown in Figure 9.3.
Extending Figure 9.3, the AOP and 3APL/2APL architectures have now been in-
cluded in the figure (see top right), because corresponding IDEs are available. The
current 2APL platform26 [19] supporting the 2APL language provides an IDE-
like tool, that offers code editing as well as debugging capabilities. AgentBuilder27

is a commercial agent platform and toolkit supporting the Reticular Agent Def-
inition Language (RADL), while Agent Factory28 (see Chapter 6) is an IDE sup-
ported framework for the Agent Factory Agent Programming language (AF-APL)
and its variations. Both RADL and AF-APL are inspired by the seminal work of
Shoham [57] on Agent-oriented Programming (AOP).

25 http://www.eecs.umich.edu/ soar/sitemaker/projects/visualsoar/
26 http://www.cs.uu.nl/2apl/
27 http://www.agentbuilder.com/
28 http://www.agentfactory.com/
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Besides the 3APL/2APL and AOP branches, additionally, the IMPACT develop-
ment environment and corresponding language [21] have been added (see bottom),
which are not inspired by a specific agent architecture or methodology. On the
other hand, several methodologies (e.g. Tropos and MaSE), which are present in
Figure 9.3, have been removed in Figure 9.5, because for these there is no contin-
uous tool support available, which includes an IDE.
In the area of IDEs supporting BDI (belief-desire-intention) languages (cf. middle),
many IDE/language pairs have been added in addition to the already mentioned
JACK development environment and language (JDE, JAL, cf. Section 9.4.2). The
Jason agent interpreter29 [10] includes an IDE for the Jason agent language, which
is a derivative of AgentSpeak(L) [50]. JIAC (Java-based Intelligent Agent Compo-
nentware)30 [25] is a sophisticated tool suite and agent platform, which recently
has been made available as open source and uses a BDI-style language called JADL
(JIAC Agent Description Language). Finally, for the PRS successor SPARK (SRI
Procedural Agent Realization Kit)31 [38], developed at SRI, an IDE is available,
which is realized as an eclipse plugin. Although the figure shows that an LS/TS
API for BDI-style agents is available (MARGE - multi-agent reasoning based on
goal execution [70]), the LS/TS Developer IDE support is mostly oriented to-
wards the alternative task-model based MDAL API as described below.

9.5.3 Example IDE: LS/TS Developer

The LS/TS Developer is part of the Living Systems Technology Suite (LS/TS) of
Whitestein Technologies.32 As already mentioned in the last section, instead of a
new agent language, LS/TS provides several APIs that allow implementing agent
applications in Java. The agent concepts and behavioral architecture are realized
in the existing framework classes, while the programmer can provide new imple-
mentations of API classes that are called by the framework at relevant time points
(inversion of control principle). One example of such a class is a user defined mes-
sage handling component to be executed, when a matching message is received.
The basic API of LS/TS is CAL (core agent layer) [68] on top of which the other
APIs are built. CAL only provides a very basic autonomous agent that reacts on
incoming messages or the passage of time. Besides the autonomous agent, CAL
also provides so called Servants, representing passive service, and DAOs (data ac-
cess objects) for managing potentially persistent data. The MDAL (message dis-
patching agent logic) [69] extends CAL and introduces mechanisms for selecting
specific components (so called message handlers) based on properties of incoming
messages. Each message handler is responsible for a sequence of messages (e.g. a

29 http://jason.sourceforge.net/
30 http://www.jiac.de/
31 http://www.ai.sri.com/ spark/
32 http://www.whitestein.com/



9 A Survey of Agent-oriented Development Tools 311

Fig. 9.6 Developer perspective of the LS/TS Development Suite in eclipse

negotiation with another agent) and is composed of so called fragments for each
single step of the interaction. A so called context factory is responsible for instan-
tiating new message handlers for messages that cannot be assigned to an existing
message handler.
The LS/TS Development Suite includes on the one hand the already mentioned
LS/TS Modeler (cf. Section 9.4.2) and on the other hand a set of development
tools, which provide views and editors for working with CAL and MDAL ele-
ments, carrying handy names such as Developer, Debugger, Tester, and Admin-
istrator. Despite this naming, these are not separate tools, but integrated into the
eclipse IDE, therefore offering an agent developer an accustomed environment al-
lowing flexible access to the additional agent-oriented development features. The
features are grouped into two perspectives that offer a useful predefined layout of
the available views that can also be adapted if necessary. In the developer perspec-
tive, the agent-specific code of an application can be edited. The administrator
perspective contains tools for monitoring and manipulating a running agent ap-
plication.
Figure 9.6 shows some features of the developer perspective. In the upper half,
there are existing eclipse views for Java programming (package explorer left, Java
source editor middle, Java source outline right), which are useful also for editing
CAL and MDAL artifacts. The lower area shows extensions like the CAL ex-
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plorer and MDAL explorer (both left) or message handler diagrams (middle). In
the following, the tool support available in the LS/TS Developer will be discussed
with respect to the phases implementation, testing, and deployment as well as the
corresponding tasks.
Relevant implementation artifacts of LS/TS applications are Java files as well as
(mostly XML-based) configuration files. Elements of the CAL and MDAL APIs
are represented as Java classes that can be created and edited using existing eclipse
mechanisms. Additionally, the LS/TS Developer introduces new wizards that sim-
plify the creation of such elements based on predefined templates and can be ac-
tivated from the CAL/MDAL explorer and partially also directly from the Java
code editor. Syntactical consistency of Java classes can also be checked using ex-
isting eclipse mechanisms. Dependencies between MDAL elements (e.g. message
handlers and contained fragments) are not considered by eclipse, because these
are stored in string-based mapping tables in Java code. Besides editing Java code
directly, two graphical views are provided. The first (agent diagram) allows observ-
ing and manipulating the aforementioned dependencies between context factories,
message handlers, and fragments. The agent diagram is extracted from the Java
sources and changes to the graphical view, such as adding/removing elements, are
written back to the corresponding Java files after the changes have been reviewed
and accepted/rejected by the developer in a preview window (roundtrip engineer-
ing). The second view (message handler diagram, cf. Figure 9.6 middle) is also
extracted from the Java code and shows the execution flow of a message handler
as a Petri-net. Editing of this diagram is not possible. Refactoring for Java source
files is already supported in eclipse and can also be applied to the Java-based CAL
and MDAL elements, but may lead to inconsistencies, because references to ele-
ments in the aforementioned mapping tables and e.g. in XML-base deployment
descriptors will not be considered by eclipse. Similarly, automatic cross-checking
between different phases (e.g. implementation classes and deployment descriptors)
is currently not supported and therefore has to be performed by hand. No addi-
tional support is offered for documentation tasks (e.g. it is not directly possible
to export message handler and agent diagrams or include these automatically in
generated Javadoc documentation).
For testing and debugging, existing Java mechanisms of eclipse can be reused. Ad-
ditionally, LS/TS extends Java breakpoints in terms of agent concepts, allowing
the developer to focus on specific agent instances or message types. The adminis-
trator perspective allows to record messages that are passed between agents and,
for the purpose of debugging, display these messages in a sequence diagram like
view as well as in a topological view. Creating test cases is supported by a test
framework based on the open source jUnit33 framework. It allows testing parts of
agents (e.g. message handlers) and is supported in the IDE through wizards that
enable the creation of test cases based on templates. Consistency checking and
refactoring, is supported by existing eclipse mechanisms, but, as in the implemen-
tation phase, does not respect all dependencies.

33 http://www.junit.org/
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Application configurations for deployment are stored in XML files. A mapping
file declares available agent types and relates them to the implementing Java
classes. A startup file defines the required agent instances for a concrete appli-
cation configuration by specifying for each agent instance the name, type and
optionally parameters. Both descriptors can be edited in XML directly as well as
in a specific form based editor that abstracts away from XML syntax and provides
all settings in an intuitive manner. To create an application from a specified con-
figuration, a build process can be initiated, that is based on a predefined Ant34

build file. Using a dialog, settings can be made that specify which configuration
files are to be used and if the application should be directly deployed into an ex-
isting runtime environment. Once specified, such deployment configurations can
then be executed as needed.
Cross-cutting tasks like project and repository management are already supported
in part by existing eclipse features or separately available eclipse plugins for e.g.
repository management with CVS. For project management, eclipse offers e.g.
management of to-do entries and various search features. LS/TS additionally of-
fers access to project files through the CAL and MDAL explorers. Moreover, the
MDAL explorer offers special search functionality that simplifies the navigation
in the project.

9.6 Phase-specific Tools

Besides the already discussed modeling tools and IDEs, which generally span
several development phases, in this section phase-specific tools will be dis-
cussed. Phase-specific tools can substantially support selected development tasks.
Nonetheless, these tools are intentionally not meant to be a universal solution
for building software. In order to build software the whole development process
consisting of all mentioned phases need to be homogeneously tool supported. In
this respect, it is of crucial importance that the tools can be integrated with each
other and therefore allow a smooth transition forward and back along the differ-
ent development phases, meaning that artifacts produced in one phase can be also
used or refined in another phase. This integration is rather difficult to achieve and
requires agreed upon conceptual models as well as standards or at least published
specifications. In the area of multi-agent systems, a high heterogeneity on all lay-
ers exists rendering a desired fully-integrated tool-support across all development
even harder to achieve than for the standard object-oriented paradigm. The fol-
lowing sections will introduce the specific requirements each phase poses towards
the possible tool support, name important tool representatives and discuss one of
these representatives in detail.

34 http://ant.apache.org/
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9.6.1 Requirements Analysis Phase

The artifacts of the requirements analysis phase are graphical models and/or tex-
tual specifications of an initially abstract problem. These artifacts represent con-
cretized requirements for the system to be built. At this point in the development
process, normally no decision is made about the usage of agent or an alternative
technology for the realization of the system. Therefore, the produced artifacts
in this stage are generally not agent-specific, which makes it possible to employ
existing techniques for the communication between the customers and users on
the one side and developers on the other side. Among such techniques, use cases
[33] are a widespread approach that allow for capturing the main interaction pos-
sibilities of users with the system at a high abstraction level and thus facilitate
the customer-developer communication. Another well-known technique is rapid
prototyping, which aims at developing software demonstrators with limited func-
tionality very early to be able to get feedback from the customers as soon as possi-
ble. As an alternative, also agent-related requirements engineering techniques can
be used. Examples especially include the goal-driven approaches i* [74] and KAOS
[35], which do not prescribe an agent-oriented implementation of the system, even
though the transition to agent systems is conceptually more straight-forward than
to traditional approaches.

Fig. 9.7 Requirements traceability (from [47])

One important requisite for tools from this phase consist in the traceability of the
produced application requirements, which means that the state of a requirement
can be described and can be traced from all development phases. This traceability
includes two different aspects (cf. Figure 9.7). From the viewpoint of a developer,
traceability mainly refers to the later development phases, whereby the compo-
nents responsible for implementing requirements should be locatable (forward
tracing) and also the other way around the contribution of components to the re-
quirements should be determinable (backward tracing). Taking up the customer’s
perspective, it is of importance that changed requirements are adequately com-
municated to the developers (forward tracing) and also that user groups can be
identified, which are responsible for specific requirements (backward tracing). Re-
quirements traceability can be realized utilizing different strategies (cf. [29]). One
example are cross-references between requirements and other artifacts, which need
to be explicitly specified.
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As tools in this phase need not to be agent-oriented, among many different tra-
ditional and agent-related tools can be chosen. Overviews of the different tools
available in this phase can be e.g. found at the web.35 If use cases shall be uti-
lized, it is also possible to resort to standard UML case tools.36 As agent-related
requirement tools facilitate an agent-oriented design and implementation, in the
following the Objectiver tool for KAOS will be shortly presented.

Fig. 9.8 Objectiver tool

The commercial Objectiver tool is developed by company Respect-IT.37 It sup-
ports a KAOS-based goal-driven requirements specification, whereby a goal is
meant to describe what the system needs to achieve. Goals are described in terms
of so called patterns, which define their behavior in temporal logic. In many cases,
standard patterns such as “achieve”, for making true a specific world state (♦P ) or
“maintain” for permanently preserving a state (�P ) . The initial system goal def-
initions will subsequently be refined to a goal hierarchy using “why” and “how”
questions until the point is reached that the subgoals on the lowest level can be
clearly assigned to one of the actors. In a second step, besides the goal view, also
system responsibilities, data objects and operations are considered and integrated
to a holistic system requirements specification. In Figure 9.8 a screenshot of the
Objectiver tool is depicted. In the main area a goal hierarchy is shown, which
decomposes the top-level goal “emergency stop available” into several subgoals.

35 http://easyweb.easynet.co.uk/ iany/other/vendors.htm
http://www.volere.co.uk/tools.htm

36 http://www.objectsbydesign.com/tools/umltools_byCompany.html
37 http://www.objectiver.com/ http://www.objectiver.com/
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Using the form at the bottom left, various entity properties can be edited. An
overview of all different diagrams is given via the tree structure above. The tool
automatically ensures consistency between different diagrams and can also test
the specifications for plausibility and completeness.

9.6.2 Design Phase

In the design phase graphical and textual specifications for different aspects of
the system to be realized are described. In contrast to the requirements analy-
sis phase, agent concepts play an essential role in this stage of the development
process. Considering the system as a whole, organizational concepts play an im-
portant role and can be used to describe the high-level structures of the system.
In this respect, e.g. the AGR-model has been conceived for defining a system in
terms of agents, groups, and roles. For the design of concrete system function-
alities on the agent level, the internal agent architecture concepts are of primary
interest. For example, if intentional agents shall be designed, BDI concepts such
as beliefs, goals and plans could be utilized. Besides these agent related concepts,
for the description of specific aspects the agent-based views can be complemented
by standard modeling concepts. One prominent area is the description of data
model or conversation relationships, which can e.g. be done by using standard
UML class and sequence diagrams.
The most important requirement for design tools relates to their integration abil-
ity with earlier and later development phases. It should be possible to system-
atically deal with already defined requirements and connect them to the newly
specified design artifacts. Furthermore, the connection from the typically graph-
ical design phase to the following code-centric implementation phase is of vital
importance. This connection is difficult to achieve, because the often existing
conceptual gap and additionally, the different representation media (diagrams vs.
code) have to be bridged adequately.
Existing tools for the design of agent systems mainly have two different origins.
First, many agent-oriented tools exist that aim at supporting a specific agent-
oriented methodology such as PDT, TAOM4e or agentTool. These kinds of tools
have already been discussed in the context of modeling tools (cf. Section 9.4) and
will not be considered further here. Second, a few dedicated agent-oriented mod-
eling tools have been developed to support the agent-oriented design approaches
such as AUML and AML (agent modeling notation)[66]. The main contribution
of AUML consists in the definition of a standard interaction diagram notation,
which has influenced the UML 2.0 standard. Hence, traditional UML case tools
can readily be used for modeling agent interactions. AML is already conceived as
an agent-specific extension to UML 2.0 and extends it with agent concepts to also
support the design of such kinds of software systems. An overview of the new
AML diagram is given in Figure 9.9. In the following the LS/TS modeler, which
can be used for creating AML designs, will be presented in more detail.
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Fig. 9.9 AML Diagrams (from [66])

The LS/TS Modeler is part of the commercial Living Systems Technology Suite,
which is distributed by Whitestein technologies. All new diagram types of AML
have been introduced as refinements of existing diagram types using the stan-
dardized UML extension mechanisms. This allows normal UML case tools to
be used for AML modeling when an AML UML profile for the tool exists. So
far, Whitestein has developed an UML profile for the Enterprise Architect UML
tool. The modeler supports all new kinds of AML diagrams, which can be cate-
gorized into architectural, behavioral and communication diagrams. Architecture
diagrams are intended to describe a multi-agent system as a whole, whereas behav-
ioral diagrams relate to the internal agent architecture and finally communication
diagrams refine protocol specification facilities. As the tool is based on a standard
UML tool it exhibits all necessary modeling features. In addition, the modeler
add-in mainly provides code generation mechanism that can be used to create
agent skeleton code for the LS/TS platform.

9.6.3 Implementation Phase

The focus of the implementation phase is on code and corresponding editing
tasks. A major concern therefore is the agent-specific code, which depends on
the chosen agent architecture and platform. E.g. for a BDI-based platform, the
developer will have to write textual specifications of beliefs, goals, and plans in
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the provided agent language, while for a platform supporting the task model, the
activities of an agent and their interrelations have to be coded (e.g. in Java). Re-
gardless of the internal agent architecture, also communication and integration
aspects have to be implemented. This includes e.g. Java classes or XML-Schema
definitions for representing message content as well as mapping information for
persistent data. Often, for the communication and integration issues, traditional
implementation means (e.g. XML, JDBC) can be used alternatively to possibly
available agent-specific solutions.
Most important requirement for agent-oriented implementation tools is the abil-
ity to deal with agent-specific code. In this respect, agent-oriented tools should
strive to offer the same level of support that developers are used to in the prevail-
ing object-oriented world. Besides the primary tasks such as creation and editing,
therefore also the ancillary tasks should be adequately supported. E.g. in object
orientation, code metrics are available that allow to check code consistency not
only on the basis of a strict syntactical check, but also provide indications in terms
of good or bad design. Moreover, given that some communication and integra-
tion issues can be realized using existing techniques, there should be tools, which
provide the necessary “glue” to seamlessly operate on the different specification
means.
Primary tasks are captured by IDEs for specific agent languages. Adaptable ed-
itors, such as jEdit38 or extensible IDEs like eclipse can be used as a basis for
building such IDEs to support features like syntax checks and syntax highlight-
ing. For consistency checks, separately developed tools, such as [60], can be imple-
mented. Moreover, some existing object-oriented metrics or style check programs
allow additional metrics or inspections being added (e.g. Eclipse Checkstyle39),
which allows adding agent-specific consistency checks. To provide the necessary
glue between different technologies, often plugins or code generation templates
can be used. E.g. the database mapping framework Apache Cayenne40 supports
custom code templates being used and therefore can be adapted to agent-specific
requirements and for the ontology editor Protégé several plugins exist that aim at
integrating ontology-based knowledge representation with an agent platform. As
one example of such a tool, the Beanynizer plugin, which is part of the Jadex BDI
agent framework [49], will be shortly described.
The Beanynizer is a plugin to Protégé and allows generating Java classes from
an ontology modeled in Protégé. The output format is defined using templates
written in the Apache Velocity41 template language. Besides using custom tem-
plates, the Beanynizer includes two ready to use template sets – one for JADE
ontology code and one for JavaBeans compliant code. For the JADE template
set, the modeled ontology has to be based on a standard FIPA ontology, which
includes common agent-related concepts like actions and agent identifiers. Gener-

38 http://www.jedit.org/
39 http://eclipse-cs.sourceforge.net/
40 http://cayenne.apache.org/
41 http://velocity.apache.org/
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ated classes can be used for developing JADE-based agents communicating, e.g.,
via the FIPA-SL content representation language. The JavaBeans templates gener-
ate platform independent pure Java code, which can e.g. be processed by the Java
XML de- and encoding facilities.

9.6.4 Testing Phase

The aim of the testing phase is to find and correct conceptual as well as technical
implementation errors. As these errors are also called “bugs” a common name for
this activity in the development process is debugging. According to Dassen and
Sprinkhuizen-Kuyper [18] debugging mainly consists of three subsequent steps:
noticing the bug, localizing the bug and finally fixing the bug. To find possible
bugs in a systematic way, often a testing approach is chosen, which requires that
important aspects are captured in test cases. These test cases represent require-
ments that can be verified against the current implementation. The localization
of bugs is still a manual skill that requires considerable effort, experience and cre-
ativity. It mainly requires the programmer to inspect the source code in detail and
possibly use a debugger tool execute the program stepwise resp. stop it at specific
breakpoints. As errors may manifest themselves in unpredictable behavior their
identification can be a very hard and complex task. Fixing the bug is not directly
part of the testing phase but requires a developer to step back to the implementa-
tion phase or in case of conceptual problems even to the design phase and correct
the identified artifacts. As can be seen from this description, additional artifacts in
this phase are only constructed for specifying test cases. The other activities fully
operate on existing artifacts, especially on the code level.
Main requirements for tools of this phase consist in a conceptual and technical
support for the detection and localization of bugs. For the systematic detection
of bugs tools should facilitate the implementation and automated execution of
test cases. This should include test cases for different layers such as unit tests
for single functionalities, integration tests for larger components and system tests
for the validation of system requirements. In addition, it is helpful if the test
coverage, i.e. which system aspects are tested to what degree, can be automatically
calculated and presented to the developer. An indication of possible bugs can also
be produced by software metrics that try to capture the quality of source code.
Tools supporting the testing phase have mainly been developed in the context of
object-oriented languages and are often directly integrated into IDEs. In the area
of multi-agent systems, only recently the testing topic has gained some attention.
Conceptually, multi-agent systems increase the complexity of all activities in this
phase, so that a direct transfer of existing solutions is not easily possible. Testing
and debugging on the level of the whole multi-agent system entails all the diffi-
culties involved in testing and debugging distributed system (e.g. concurrency and
lack of global state). Tools in this area focus on the interactions, i.e. the messages
passed between agents and allow monitoring messages (e.g. JADE Sniffer) or test-
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ing compliance to specified protocols (e.g. [1]). To address the issues of debugging
under consideration of the whole development process, it is also researched how
design artifacts can support this phase (see Chapter 7). Support for unit testing at
the level of single agents has been devised in the context of tool suites for agent
platforms such as JADE , Jadex and LS/TS . Furthermore, nearly all existing agent
platforms offer (at least simple) debugging tools, which allow the stepwise execu-
tion of agents. In the following Jadex TestCenter tool will be shortly described.

Fig. 9.10 Jadex TestCenter

A screenshot of the Jadex TestCenter is shown in Figure 9.10. Its underlying con-
cepts are based on JUnit, i.e. it is possible to define a set of test cases as test suite
(in form of a list at the top right area) and then execute this suite automatically
(control area below the list). Here, test agents containing an arbitrary number of
test cases can be directly added from the file system view (left area) to the list.
The results of the test suite execution are summarized as a colored bar, which is
green in case all test cases have been successful and red in case at least one test
failed. The detailed test results are displayed in a form of a textual report (right
bottom), which explains what the individual test cases do, which ones have failed
and a possible reason for that failure.

9.6.5 Deployment Phase

For object-oriented systems the tasks of the deployment phase are clearly speci-
fied and also well tool-supported. In this context, the Object Management Group
(OMG) has defined deployment as the activity between obtaining and operating
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a software product. More concretely, in [40] the OMG has specified a general de-
ployment process consisting of five subsequent steps. In the first, so called instal-
lation step, the software is obtained and stored in a local repository, which must
not necessarily be the same location as the destined execution location. In the fol-
lowing configuration step, the software is parametrized according to the intended
use cases. Hereafter, a deployment plan is devised in the planning step. This plan
is then used in the preparation step to install the desired components on the target
platforms. In the final launching step the application is started and hence put into
operation, which might require further configuring activities at runtime.
Regarding agent-based systems this process is usually more flexible, because the
constituents are not passive components, but active autonomous entities [12].
Nonetheless, the aforementioned steps remain important for multi-agent systems
as well. In the installation step the execution infrastructure for the agents, i.e.
the agent platform and also the application specific components, e.g. consisting
of agent code as well as standard libraries, have to be available. This may not
necessarily mean that the application code has to be obtained completely in be-
forehand. Possibly agent code could also be downloaded on demand at runtime.
The functional configuration of the application can be done by defining the num-
ber and kinds of agents that should be initially started and by setting their ini-
tial parameters to appropriate values. The planning and preparation steps mainly
need to take into account at which hosts which infrastructure should be accessible
and which agents should be located. In case of mobile agents, the distribution of
agents at the different nodes could also be adjusted at runtime, e.g. with respect to
non-functional aspects like load balancing. Starting an agent application is quite
different from launching a component-based software, because there is no single
centralized starting point. Instead a set of (possibly independent or interrelated)
actors need to be created in a meaningful way. Hence, in order to specify agent
applications it should be abstracted away from single agents and some form of
application descriptors should be made available.
Artifacts of the deployment phase are therefore mainly these application and
agent descriptors. Tools of this phase have the tasks of supporting the creation
and processing of such descriptors, whereby the creation can be associated with
the configuration and the processing with the launching step. In addition, deploy-
ment tools can also be extended in direction of runtime monitoring facilities.
Tool-based deployment support for agent applications is rather limited today. It
has mainly been considered technically in the context of agent platforms and sev-
eral similar ad-hoc solutions have been provided so far. E.g. in Agent Academy
[37], AgentFactory [15], Jason [10], simple application descriptors have been in-
troduced, which at least enable a definition of the parametrized agent instances to
start. With the LS/TS Developer also a tool exists, which simplifies the specifica-
tion of agent applications in a similar way to J2EE deployment descriptors. It can
be used to deploy the tool generated application in the agent platform automat-
ically. Similarly, approaches like BlueJADE [17] and jademx42 try to make agent

42 http://jademx.sourceforge.net
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platforms administrable similar to J2EE server environments, but do not consider
the assembly of agent applications. In the following, the ASCML tool, conceived
specifically for the deployment of agent applications, will be described.

Fig. 9.11 ASCML refernce model (from [12])

The ASCML (Agent Society Configuration Manager and Launcher) is based on a
generic deployment reference model for agent applications (cf. Figure 9.11) [12].
This reference model assumes that agent applications (here called societies) are
controlled by dedicated manager (ASCML) agents. These agents have the respon-
sibilities to start, supervise, and possible reconfigure the controlled societies. The
concept of agent society here is recursively defined, meaning that it can be com-
posed of a hierarchy of agent instances or sub societies possibly distributed across
different network nodes. The ASCML tool allows defining agent applications in
the form of society and agent descriptors, which are interpreted by the tool at
runtime and lead to the instantiation of the specified software runtime configu-
ration. It extends the basic facilities by constraint expressions, which can be used
to state, in which cases the application needs to reconfigured, e.g. by restarting
specific agents given that a necessary service is not available any longer.

9.7 Evaluation

The preceding sections have shown that numerous agent-oriented tools have been
developed. Besides the phase-specific tools, which only address tasks of one devel-
opment phase, mainly modeling tools and IDEs have been identified as important
tool categories. In this section a coarse evaluation of these modeling tools and
IDEs will be presented.43 The main objective of this evaluation is an assessment
of the state of the art of agent-oriented tools in order to highlight the strengths

43 The phase-specific tools have been excluded from the evaluation due to the low number of
representatives in each phase.
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and weaknesses of the current tool landscape. The evaluation is based on the
generic task requirements within the different phases of a development process
(cf. Section 9.2.2). Each of the 10 modeling tools and 11 IDEs have been analyzed
with respect to the identified tasks of the corresponding phases, i.e. modeling
tools have been evaluated against task requirements from the analysis and design
phase whereas IDEs have been tested against the task requirements from the im-
plementation, testing and deployment phases. Cross-cutting activities like repos-
itory management and development coordination are not agent-specific and have
not been evaluated. With regard to those cross-cutting tasks established tool sup-
port can be reused, e.g. the CVS (Concurrent Versions System) can be employed
for version management. In case that agent-oriented tools build on established ob-
ject oriented IDEs like eclipse, orthogonal support for those features is directly
available via plugins for the IDEs. The aggregated results of the evaluation, which
intentionally abstract away from the concrete tool representatives, are depicted
in Figure 9.12. It is shown how many tools of each category (modeling tools vs.
IDEs) support a given task.

Fig. 9.12 Tool evaluation

Looking at the modeling tools, it can be seen that, in general, stronger support
exists for tasks of the design phase, whereas only a few tools tackle tasks from the
preceding requirements phase. The basic features for creating and editing require-
ments artifacts is supported by 5 of 10 tools. Further primary tasks are rarely
supported in the requirements phase, i.e. only one representative handles the ini-
tial elicitation of requirements and consistency checking of requirements artifacts.
Regarding the ancillary tasks, also only marginal tool support could be revealed.
Two representatives allow the generation of design artifacts and one representa-
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tive tackles cross-checking with generated artifacts. None of the tools addressed
refactoring aspects. A similar support structure can be identified also at the de-
sign phase. Creating and editing of design artifacts is available by nearly all tools
(8/10) and also the consistency checking of artifacts is supported by nearly half
of the tools (4/10). When looking at the ancillary tasks, it can be seen that 5/10
tools include forward engineering features. Though, in most cases, only simple
code generation facilities are available, which can produce initial code skeletons
from design artifacts. Advanced features like reverse or round-trip engineering
have not been introduced in any tool. Cross-checking and refactoring have not
been addressed at all.
An agent-oriented IDE would ideally support all tasks from the implementation,
testing and deployment phases. Among the IDEs, nearly all representatives (10
of 11) offer functionality for creating/editing implementation artifacts (i.e. agent
code) as well as debugging running agent applications (i.e. the performing task in
the testing phase). This reveals that tool developers consider programming and
debugging agents as the most important tasks of agent developers. On the other
hand, the systematic creation of repeatable test cases is only supported by 2 rep-
resentatives. A considerable amount of support is also available in the deploy-
ment phase, for the creation of deployment descriptors (7/11) as well as actually
deploying agents to an existing infrastructure (5/11). The fact that deployment
features are considered important by tool developers reinforces the significance
of agents as a technology for distributed computing. Among the primary tasks,
consistency checking is the least supported. Only 2 representatives offer some
consistency analysis features for agent programs. Ancillary tasks are also seldom
supported. In the implementation phase, only four tools offer code generation
features, two support refactoring and one tool allows the generation of documen-
tation. In the testing and deployment phases, ancillary features are mostly not
addressed at all. Only one tool offers the forward generation of deployment de-
scriptors from agent models.
Summing up this coarse evaluation of the state of tool support for agent-oriented
development it can be noted that at least for the important tasks considerable
support is available by most current development tools. This means the the most
common development tasks are adequately supported by tools, regardless which
specific agent language or methodology is chosen by the developer. On the other
hand, no single tool is able to support all tasks. Especially in the area of the
(probably less important) ancillary tasks, agent-oriented tools have considerable
potential for improvement. As an example: even the most powerful agent-oriented
IDEs only support at most 7 of possible 20 tasks in the implementation, testing
and design phases. For comparison, a short analysis of state-of-the-art OO IDEs,
such as eclipse or IntelliJ IDEA, indicates that these support up to 12-15 tasks out
of the box and even more when using additional plugins. One notable feature in
this area is refactoring, which becomes more and more important, the larger the
developed applications grow. Therefore, improving agent-oriented tool support in
this direction could be crucial for adequately supporting larger software projects.
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9.8 Conclusion

This chapter has the purpose the give a systematic overview about the existing
agent-oriented development tool landscape. Therefore, first the tasks of sofware
development tools have been collected and categorized along the two dimensions:
development phases and task importance. It has been identified as crucial that
tools of all phases should enable the creation and editing as well as consistency
checking of development artifacts. In addition, it is helpful when tools also cope
with ancillary tasks like cross-checking, forward/reverse engineering and refactor-
ing and also crosscutting tasks like repository management. Based on the existing
surveys three major categories of tools have been identified: modeling tools, IDEs
and phase-specific tools. For each of the categories the specific requirements have
been described, an overview of existing tools has been given and finally one spe-
cific representative has been selected and described in greater detail.
The evaluation of the current agent tool landscape allows some general observa-
tions to be made. First, all development phases and all tasks are to some extent
tool-supported, meaning that a variety of different tools are available for all possi-
ble use cases. Nonetheless, most of these tools suffer from the strong heterogene-
ity of the multi-agent systems field. This heterogeneity often leads to very specific
approaches suitable only for one specific agent approach, e.g. a design tool for BDI
agents only. Furthermore, the number of available tools is quite low compared to
mainstream object-oriented solutions. In order to further improve the overall tool
support it is necessary that at least the following future trends emerge. First, a gen-
eral agreement on core concepts and a consolidation of the agent platforms would
help concentrating on successful development branches. Second, tool support is
generally dependent on the industry uptake of agent technology as a whole, be-
cause research institutions normally do not have enough resources for providing
industry-grade tools, which typically demand high investments in terms of man-
month of work (cf. the efforts for building an object-oriented IDE like eclipse).
The survey reveals that tool-support of agent technology is still a bit behind the
currently available support in the predominant object-oriented paradigm. Nev-
ertheless, the recent years have shown significant improvements in this respect.
The analysis of the AgentLink directory highlights that some convergence has al-
ready happened in the area of agent platforms. The increasing maturity of agent
platforms allows development efforts to also focus on secondary items like tool
support. Moreover, agent-oriented tool support also profits from the fact that
object-oriented tools have become more and more flexible and therefore many
agent tools are not built from scratch but instead adapt existing object-oriented
tools to agent-specific requirements. One reason for object-oriented tools becom-
ing more flexible can be seen in the desire of supporting other post object-oriented
technologies like model-driven development and web services. These technolo-
gies shift the focus to abstract modeling or the interaction of system components.
Therefore, these technologies are conceptually much closer to the agent paradigm,
which may foster an integration and convergence with agent concepts and tools
in the future.
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Chapter 10
A Multi-Agent Environment for Negotiation

Koen V. Hindriks, Catholijn M. Jonker, and Dmytro Tykhonov

Abstract In this chapter we introduce the System for Analysis of Multi-Issue Ne-
gotiation (SAMIN). SAMIN offers a negotiation environment that supports and
facilitates the setup of various negotiation setups. The environment has been de-
signed to analyse negotiation processes between human negotiators, between hu-
man and software agents, and between software agents. It offers a range of dif-
ferent agents, different domains, and other options useful to define a negotiation
setup. The environment has been used to test and evaluate a range of negotiation
strategies in various domains playing against other negotiating agents as well as
humans. We discuss some of the results obtained by means of these experiments.

10.1 Introduction

Research on negotiation is done in various research disciplines; business man-
agement, economics, psychology, and artificial intelligence. The foundations of
negotiation theory are decision analysis, behavioral decision making, game the-
ory, and negotiation analysis. The boost of literature on negotiating agents and
strategies of recent years is in line with the continuous advance of ecommerce
applications, such as eBay, and Marketplace in which negotiations play a role. In
essence it focuses on the development of ever more clever negotiation agents, that
are typically tested in one domain, against one or two other negotiation agents,
almost never against humans. In our opinion, in order to become acceptable as ne-
gotiators on behalf of human stakeholders, negotiation agents will have to prove
their worth in various domains, against various negotiation strategies and against
human negotiators. In order to gain a better understanding of the negotiation dy-
namics and the factors that influence the negotiation process it is crucial to not
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only mathematically evaluate the efficiency of negotiation outcomes but also to
look at the pattern of offer exchanges, what Raiffa [30] calls the negotiation dance.
In the remainder we present architecture of a formal toolbox to simulate negoti-
ations and analyze patterns in offer exchanges and present some initial findings
in the literature. The System for Analysis of Multi-Issue Negotiation1 (SAMIN)
is developed as a research tool, to improve the quality of negotiating agents, and
as a training environment to develop negotiation skills of human negotiators. To
that purpose SAMIN offers a range of analytical tools, a tournament tool, a pref-
erence elicitation tool, and a number of negotiation domains, negotiation agents,
and user interfaces for human negotiators.

10.2 Application Domain

Negotiation is an interpersonal decision-making process necessary whenever we
cannot achieve our objectives single-handedly [32]. Pruitt [28] emphasizes the pro-
cess of negotiation and the fact that the outcome should be a joint decision by the
parties involved. Typically each party starts a negotiation by offering the most
preferred solution from the individual area of interest. If an offer is not acceptable
by the other parties they make counter-offers in order to move each other closer
to an agreement. The field of negotiation can be split into different types, e.g.
along the following lines: (a) one-to-one versus more than two parties; (b) single-
versus multi-issues; (c) closed versus open (d) mediator-based versus mediator-free.
The research reported in this chapter concerns one-to-one, multi-issue, closed,
mediator-free negotiation. A special case of one-to-many negotiation is consid-
ered. In this case, an auction mechanism [10] is approximated by a negotiation
setup [16]. For more information on negotiations between more than two parties
(e.g., in auctions), the reader is referred to, e.g., [31]. In single-issue negotiation,
the negotiation focuses on one aspect only (typically price) of the object under
negotiation. Multi-issue negotiation (also called multi-attribute negotiation) is of-
ten seen as a more cooperative form of negotiation, since often an outcome exists
that brings joint gains for both parties, see [30]. Closed negotiation means that
no information regarding preferences is exchanged between the negotiators. The
only information exchanged is formed by the bids. More information about (par-
tially) open negotiations can be found, e.g., in [20] and [30]. However, the trust
necessary for (partially) open negotiations is not always available. The use of me-
diators is a well-recognised tool to help the involved parties in their negotiations,
see e.g., [19, 30]. The mediator tries to find a deal that is fair to all parties. Reasons
for negotiating without a mediator can be the lack of a trusted mediator, the costs
of a mediator, and the hope of doing better. The SAMIN system is developed to
support research into the analysis of negotiation strategies. The analysis of negoti-

1 This negotiation environment, user manuals, and a number of implemented negotiation agents
can be downloaded from http://mmi.tudelft.nl/negotiation.
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ation strategies provides new insights into the development of better negotiation
strategies.
Negotiation parties need each other to obtain an outcome which is beneficial to
both and is an improvement over the current state of affairs for either party. Both
parties need to believe this is the case before they will engage in a negotiation. Al-
though by engaging in a negotiation one party signals to the other party that there
is potential for such gain on its side, it may still leave the other party with little
more knowledge than that this is so. Research shows that the more one knows
about the other party the more effective the exchange of information and offers
[30]. Furthermore, humans usually do have some understanding of the domain of
negotiation to guide their actions, and, as has been argued, a machine provided
with domain knowledge may also benefit from such domain knowledge [6]. It is
well-known that many factors influence the performance and outcome of humans
in a negotiation, ranging from the general mindset towards negotiation to partic-
ular emotions and perception of fairness. As emphasized in socio-psychological
and business management literature on negotiation, viewing negotiation as a joint
problem-solving task is a more productive mindset than viewing negotiation as a
competition in which one party wins and the other looses [7, 30, 32]. Whereas the
latter mindset typically induces hard-bargaining tactics and rules out disclosure of
relevant information to an opponent, the former leads to joint exploration of pos-
sible agreements and induces both parties to team up and search for trade-offs to
find a win-win outcome. Different mindsets lead to different negotiation strate-
gies. A similar distinction between hard- and soft-bargaining tactics has also been
discussed in the automated negotiation system literature where the distinction has
been referred to as either a boulware or a conceder tactics [5]. Emotions and per-
ception of fairness may also determine the outcome of a negotiation. People may
have strong feelings about the “rightness” of a proposed agreement. Such feelings
may not always be productive to reach a jointly beneficial and efficient agreement.
It has been suggested in the literature to take such emotions into account but at
the same time to try to control them during negotiation and rationally assess the
benefits of any proposals on the table [7, 32]. Apart from the factors mentioned
above that influence the dynamics of negotiation, many other psychological biases
have been identified in the literature that influence the outcome of a negotiation,
including among others partisan perceptions, overconfidence, endowment effects,
reactive devaluation [25, 32].

10.2.1 The Added Value of the MAS Paradigm

Negotiation involves conflicting interests, hidden goals, and making educated
guesses about the preferences and goals of the other parties involved. A system
that supports closed negotiation needs to protect the integrity of the parties or
stakeholders that participate in a negotiation and it is natural to provide every
stakeholder with an agent of their own. It thus is natural to use the MAS paradigm
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to model the interaction between negotiating parties. Parties in a negotiation are
autonomous and need to decide on the moves to make during a negotiation. This
decision problem is particularly complex in a closed negotiation where negotiat-
ing parties do not reveal their preferences to each other. Moreover, other factors
such as the complexity of the domain of negotiation may pose additional prob-
lems that need to be solved by a negotiating agent.
SAMIN contributes to the MAS paradigm as a research tool that facilitates re-
search into the design of efficient negotiation strategies. The tool more specifically
facilitates the evaluation of the performance of a negotiation strategy by means
of simulating multiple negotiation sessions and feeding the results of the simu-
lation to the analytical toolbox of SAMIN. We have found that the results of a
well-defined negotiation setup may help analysing the strengths and weaknesses
of a strategy and may be used to improve a negotiation strategy significantly. It
has also been shown that strategies may perform quite differently on different
domains. A variety of negotiation domains and agents is available in SAMIN to
evaluate a negotiation strategy in different negotiation setups. The open architec-
ture of SAMIN, moreover, facilitates the integration of new negotiation domains
and agents.

10.2.2 Design Methods Used

An earlier version of SAMIN, see [2, 17], was designed using the DESIRE method
[3]. Redesign was necessary to open the system for agents designed and imple-
mented by others and to ease the definition of new negotiation domains. The
redesigned version is implemented in the Java programming language that is sup-
ported my the majority of computer platforms.
The current version of SAMIN implements the architecture proposed in [13].
Figure 10.1 illustrates this architecture. The architecture is based on an analysis of
the tasks that need to be supported by a generic negotiation environment that is
capable of integrating a variety of negotiating agents and is able to simulate nego-
tiations between such agents. The architecture provides a minimal but sufficient
framework including all features necessary to simulate a wide range of negotia-
tion scenarios and to enable integration of negotiation agents. The architecture
consists of four main layers, a human bidding interface, and a negotiating agent
architecture. The four layers include an interaction layer, an ontology layer, a graph-
ical user interface layer, and an analytical toolbox.
The interaction layer provides functionality to define negotiation protocols and
enables communication between agents (see Section 10.4.2 for details). The ontol-
ogy layer provides functionality to define, specify and store a negotiation domain,
and the preferences of the negotiating agents (see Section 10.4.3 for details). The
architecture can also be used for education purposes and for the training of hu-
mans in negotiation. For that purpose, a graphical user interface layer is available
that facilitates human user(s) to participate in a negotiation setup (see Section
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Fig. 10.1 The Open Negotiation System Architecture

10.2.3 for details). The analytical toolbox provides functionality to organize tour-
naments between agents, and to review the performance and benchmark results
of agents that conducted a negotiation. It provides a variety of tools to analyze the
performance of agents and may also be used to compute quality measures related
to e.g. the quality of an opponent model [15].
The architecture that is introduced here identifies the main integration points
where adapters are needed to connect a negotiating agent to this architecture. The
agent architecture itself defines the common components of a negotiating agent.
This architecture may be instantiated with various software agents, as illustrated
below.
The integration points or interfaces to connect software agents to the negotia-
tion environment which allows them to interact with other agents available in
the environment are numbered 1 through 5 in Figure 10.1. To integrate hetero-
geneous negotiation agents, such agents have to be aligned with these integration
points. Alignment by complete redesign of the agent typically requires significant
programming efforts and may also cause backward compatibility problems. To
minimize the programming efforts, a better approach is to use a set of adapters or
wrappers which are used to wrap the agent code. We have used the adapter design



338 Koen V. Hindriks, Catholijn M. Jonker, and Dmytro Tykhonov

pattern [22] for this purpose. The minimal set of adapters that has to be imple-
mented includes a negotiation domain adapter, a preference profile adapter and an
interaction protocol adapter, which each correspond to an essential element of a
negotiation. The shared domain knowledge adapter and the agent introspection
adapter are optional. The shared domain knowledge adapter provides additional
knowledge about the domain to all agents, making this knowledge shared and
publicly available. The agent introspection adapter facilitates the introspection of
internal components of an agent, such as an opponent model. The latter adapter
is mainly available for analysis purposes and research. For more details about the
adapters the reader is referred to [13].

10.2.3 User Interaction

The user interaction in SAMIN takes place in the graphical user interface layer
and can be divided in two categories of user: researchers and human subjects in ex-
periments. We implemented a graphical user interface that enables a user to define
the negotiation game. the parameters of the negotiation, the subject or domain of
negotiation, and preferences of the agents (which also means that the preferences
of a human subject can be predefined).

10.2.3.1 Negotiation Domain and Preference Profile Editor

The Negotiation Domain and Preference Profile Editor of SAMIN (see Figure 10.2)
is used to create and modify negotiation domains and preference profiles. A ne-
gotiation domain is a specification of the objectives and issues to be resolved by
means of negotiation. An objective may branch into sub-objectives and issues pro-
viding a tree-like structure to the domain. The leafs of such a tree representing the
domain of negotiation must be the issues that need to be agreed upon in a nego-
tiation. Various types of issues are allowed, including discrete enumerated value
sets, integer-valued sets, real-valued sets, as well as a special type of issue used to
represent a price associated with the negotiation object. For every issue the user
can associate a range of values with a short description and a cost.
A preference profile specifies personal preferences regarding possible outcomes of
a negotiation. The profile is used to convert any offer in that domain to a value
indicating how the user would rate that offer, the so called utility value. The
current version of SAMIN supports linear additive utility functions [30]. The
profile is also called a utility space.
A weight that is assigned to every issue indicates the importance of that issue.
A human user (see Figure 10.2) can move sliders to change the weights or enter
their values by hand, which are automatically normalized by the editor. In the
issue editor the user can assign an evaluation to every value of the issue. The
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Fig. 10.2 A graphical user interface for preferences elicitation.

evaluation values are positive integers starting with 1. The evaluation values are
automatically normalized for each issue to ensure they are in the range [0; 1].

10.2.3.2 Human Negotiator User Interface

A human subject playing in a negotiation game, is provided with a graphical in-
terface for the bidding phase of the game. The bidding interface is implemented
with a dummy agent that exchanges the messages between the graphical user in-
terface (GUI) and the environment. Therefore, the GUI for the human negotiator
is not hard coded in SAMIN. The GUI can be easily extended without modifica-
tions of the SAMIN code. Furthermore, the dummy agent can be replaced with
an algorithm that would provide negotiation a support to the human negotiator.
It provides, for example, an analysis of the opponent’s behaviour or even advise
the human negotiator upon the next offer to propose and an action to be taken.
Figure 10.3 presents human player GUI that is currently available in SAMIN.
This GUI has three main components: a bidding history table (top), a utility his-
tory plot (bottom left), and a bidding interface (bottom right). The bidding his-
tory shows all bids exchanged between the negotiating parties in a single session.
The bids are represented by the values assigned to every issue in the negotiation
domain. In addition, the utilities of the bids according to the human player’s
preference profiles are shown in the table. Note that in a closed negotiation the
negotiating parties have no access to the preference profiles of each other and,
therefore, utilities can be calculated only on the basis of own preference profile.
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Fig. 10.3 Human negotiator graphical user interface.

The bidding interface has two main components: a table showing the last bid
and a possible next bid and a row of buttons representing possible actions for the
humans negotiator’s. The table has three columns:

• the left column shows the names of the issues in the domain;
• the center column shows the values for the issues as proposed in the last bid of

the opponent;
• the right column shows the current selected values for the issues. A user can

edit the current bid by clicking on the fields, which will open the drop-down
boxes in the fields.

The last two rows of the table show the cost and utility of the last opponent’s bid
and your current bid. The cost field will turn red if the bid exceeds the maximum
cost. The utility is shown as a percentage and also as a bar of matching size. These
values are computed according to the user’s utility space because a user has no
access to the opponent’s utility space. The lower three buttons allow a user to
submit the next bid as it is set in the right column, or to accept the opponent’s
last bid.

10.3 Agents

In this section we present an agent architecture in SAMIN and explain the state-
of-the-art negotiation agents that are available in SAMIN.
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10.3.1 Agent Architecture

The software agent component highlighted with the darker area in Figure 10.1 is
a generic component that can be instantiated by a variety heterogeneous software
agents. The components that are specified as part of a software agent in Figure
10.1 are the parts of the conceptual design of such agents but do not need to be
actually present or identifiable as such in any particular software agent. These
components are not introduced here to specify a requirements that need to be
satisfied when developing an agent (although it could be used as such [1, 18, 21]).
Here these components are introduced to identify integration points of agents
with the system architecture. Five of such integration points, also referred to as
adapters, were identified above.
In the reminder of this section we discuss every component of the proposed agent
architecture.

Preference Model

The component models the agent’s preferences with respect to the set of possible
negotiation outcomes. The model can be based on various structures: utility func-
tions, rankings, etc. This component can require additional processing depending
on the complexity of the agent’s preferences and the types of inquiries that can be
made by other components, see e.g. [19]. Typically, the preferences model must
be able to evaluate an outcome on a given scale, compare two or more outcomes,
give a single or a set of outcomes that satisfy some constraints on the negotiation
domain and preferences.

Negotiation Strategy

This is the core component of any negotiation agent. It makes decisions about
acceptance of the opponent’s offer, ending the negotiation, and sending a counter-
offer. To propose a counter-offer the negotiation strategy can use various tactics
[5]. Depending on the negotiation tactics used in the negotiation strategy the com-
ponent can use information about the model of the agent’s own preferences, the
opponent’s preferences and strategy (as far as known to or guessed by the agent),
and, the previous offers made during the current, or even previous negotiation
sessions.

Negotiation History

The negotiation history component keeps track of the bids exchanged between
the agents in a negotiation. It can also have a history about earlier negotiations,
the outcomes, identities of the opponents, and even opponent models. It can be
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used by the negotiation strategy component as an additional information source
to improve its negotiation performance. For example, in repetitive negotiations
with the same opponents this information can be used as a priori knowledge about
the opponent to shorten the learning time.

Opponent Model

In the negotiation games we consider here, the preferences of negotiation parties
are private [30]. Efficiency of a negotiation strategy can be significantly improved
with information about the preferences of the opponent [33]. In the literature a
number of learning techniques have been proposed to learn the opponent’s pref-
erences model from the offers exchanged in a single-shot negotiation, see e.g.,
[34, 13]. In [33] it was show that a successful negotiation strategy should make use
of an opponent model.
Our generic component consists of three main subcomponents: preferences, nego-
tiation strategy, and update mechanism.
The component Preferences contains specifications of the preferences of the cur-
rent and previous negotiation opponents. As the opponent’s preferences are typ-
ically private, the preference information has a certain degree of uncertainty. De-
pending on the agent developed on the base of the generic components informa-
tion about the certainty of the preferences can be maintained or not.
The aim of the model of opponent’s strategy is to predict negotiation moves that
will be made by the opponent. It is important to know for an agent what the next
move of the opponent would be. This knowledge can be used in the negotiation
strategy to increase the efficiency of the agent’s own offers and increase the chance
of acceptance of its offer by the opponent.
Models of the opponent’s preferences and strategy are typically learned by the
agent from the evidence, such as negotiation agreements achieved in the previous
negotiations [33], and offers sent by the opponent in multiple sessions of single-
shot negotiations [13, 34, 18]. The learning techniques used in the agent can de-
pend on the types of the models chosen to represent the opponent’s preferences
and strategy.

10.3.2 State of the Art Negotiating Agents

Interfaces and adapters have been developed to make it easy to integrate agents de-
veloped by others into SAMIN, see [13]. A number of the state-of-the-art agents
have found a place in SAMIN: ABMP [17], Bayesian agent [14], Bayesian Tit-for-
Tat [12], FBM [29], Trade-off agent [6], QO agent [24], Random Walker [11]. As
they were developed by different teams, their design, architecture, and implemen-
tation varies.
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Random Walker

The Random Walker strategy introduced in [11], also known as Zero Intelligence
(ZI) strategy [8], randomly jumps through the negotiation space. It does not use
own preferences or a model of opponent’s preferences to make an offer. Random
Walker accepts the opponent’s offer if it has higher utility than the agent’s own
last offer. The Random Walker strategy can be run with a break-off point to avoid
making offers below that utility and, thus, introduces some limited rationality in
its behaviour.
It is difficult for the Random Walker strategy to achieve a better agreement than
its break-off point as there is only a very low probability that it will be able to
find bids close to Pareto frontier. Any efficient negotiation strategy that is capable
of learning an opponent model and is able to use it efficiently would be expected
to outperform the Random Walker strategy. For this reason, the Random Walker
strategy may be used as a “baseline” strategy. In addition, as the Random Walker
strategy does not derive its moves from its preference profile but only uses an
acceptance strategy to avoid outcomes with a utility below its break-off point, it
also provides a good test case to evaluate of robustness of a negotiation strategy.

ABMP Agent

The ABMP strategy is a concession-oriented negotiation strategy, see [17]. It se-
lects counter-offers without taking domain or opponent knowledge into account.
The ABMP strategy decides on a negotiation move based on considerations de-
rived from the agent’s own utility space only. It calculates a utility of a next offer,
called target utility, based on the current utility gap between the last opponent’s
offer and the last own offer. To determine the next offer the target utility is prop-
agated to the individual issues taking into account the weights of the issues in
the agent’s preferences profile. The ABMP strategy can be fine-tuned with a num-
ber of parameters, such as the negotiation speed, concession factor, configuration
tolerance and others.
The original ABMP strategy was not capable of learning. A heuristic for adapting
the ABMP strategy to the opponent’s issue priorities was introduced in [18]. The
results showed improvement of the negotiation outcome compared to the original
version of the ABMP strategy.
The ABMP strategy was implemented in an ad hoc environment using the DE-
SIRE method [3]. The environment facilitated negotiation about a Second-hand
car domain [17] that was hard-coded in the implementation. Later, when the sec-
ond Java-based version of the SAMIN was available the ABMP strategy was re-
implemented in SAMIN. The results of the DESIRE-based ABMP implementa-
tion were reproduced in SAMIN.
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Trade-off Agent

The effectiveness of using knowledge about the negotiation domain has been
demonstrated in the Trade-off strategy introduced in [6]. In particular, this pa-
per shows that domain knowledge (coded as so-called similarity functions) can be
used to select bids that are close to the opponent’s bids, thus increasing the like-
lihood of acceptance of a proposed bid by that opponent. In this approach, the
knowledge represented by similarity functions is assumed to be public.
In [6], the Trade-off strategy is combined with several so called meta strategies
that control the concession behaviour of the agent. The most interesting meta
strategy, the smart strategy, consists of deploying a Trade-off mechanism until
the agent observes a deadlock in the average closeness of own offers compared
to that of the opponent as measured by the similarity function. In a case of the
deadlock, the value of the previous offer is reduced by a predetermined amount
(0.05), thereby lowering the input value of the Trade-off mechanism.
The Trade-off strategy was originally evaluated on the Service-Oriented Negoti-
ation (SON) domain. The SON domain has four quantitative continuous issues,
the price, quality, time, and penalty. Both, buyer and seller use linear functions to
evaluate individual issues and combine them in a linear additive utility function
using a vector of weights. It is assumed that the buyer and the seller have opposite
preferences for every issue, that is, if buyer wants to maximize the quality then
the seller wants to minimize it. Therefore, in this domain the differences in the
weights are the key elements to consider for joint improvements of the offers.
The Trade-off strategy combined with the smart meta strategy showed good per-
formance on the SON in the experimental setup of [6]. It was demonstrated that
the Trade-off strategy is capable of producing very efficient offers resulting in
agreements that are very close to the Pareto efficient frontier. Interestingly, the
best performance the Trade-off strategy showed in negotiation against itself, while
in negotiations against agents that used other meta strategies the utility of agree-
ment was somewhat lower. This phenomenon will be discussed in details in Sec-
tion 10.6.
Unfortunately, no implementation of the Trade-Off strategy was available. The
strategy was implemented in the SAMIN from scratch. The results reported in [6]
were reproduced for the Service-Oriented Negotiation domain.

Bayesian Agent

One way to approach the problem of incomplete information in closed negoti-
ation is to learn an opponent’s preferences given the negotiation moves that an
opponent makes during the negotiation. A learning technique based on Bayesian
learning algorithm was proposed in [14]. The opponent model in [14] is based
on learning probability over a set of hypothesis about evaluation functions and
weights of the issues. The probability distribution is defined over the set of hy-
pothesis that represent agent’s belief about opponent’s preferences. Structural as-
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sumptions about the evaluation functions and weights are made to decrease the
number of parameters to be learned and simplify the learning task.
The set of hypotheses about the evaluation function is defined using three types
of shapes of the functions: (a) downhill shape: minimal issue values are preferred
over other issue values, and the evaluation of issue values decreases linearly when
the value of the issue increases; (b) uphill shape: maximal issue values are preferred
over other issue values, and the evaluation of issue values increases linearly when
the value of the issue increases; (c) triangular shape: a specific issue value some-
where in the issue range is valued most and evaluations associated with issues to
the left (“smaller”) and right (“bigger”) of this issue value linearly decrease (think,
e.g., of an amount of goods).
During a negotiation every time when a new bid is received from the opponent
the probability of each hypothesis is updated using Bayes’ rule. This requires a
conditional probability that represents the probability that the bid might have
been proposed given a hypothesis. Therefore the utility of bid is calculated ac-
cording to this hypothesis and compared with the predicted utility according to
the rationality assumption. To estimate the predicted utility value an assumption
about the opponent concession tactics is used based on a linear function.
Authors propose two versions of the learning algorithm. In the first version of the
algorithm each hypotheses represents a complete utility space as a combination
of weights ranking and shapes of the issue evaluation functions. The size of the
hypothesis space growth exponentially with respect to the number of issue and
thus is intractable for negotiation domains with high number of issues.
The second version of the algorithm is a scalable variant for the first one. This
version of the agent tries to learn probability distribution over the individual hy-
pothesis about the value of the weight and shape of the issue evaluation function
independently of other issues. The computational tractability of the learning is
achieved by approximating the conditional distributions of the hypotheses using
the expected values of the dependent hypotheses.

QO Agent

In [24] the authors propose a negotiation agent, called QO agent, that is based on
qualitative decision making. The QO agent is designed for automated negotiations
with multiple issues. The internal structure of the QO agent is similar to the agent
architecture proposed in this article. The underlying assumption in the QO agent
is that the opponent uses one of three preference profiles. The preference profiles
of the opponent are represented in same way as QO agent’s own preference pro-
file. A probability is associated with each of the possible opponent profiles. An
update mechanism interprets the observed offers from the opponent and updates
the probability distribution according to the opponent strategy model. The oppo-
nent profiles have the same structure as the own preferences profile and the same
preference profile adapter is used to load them from files.
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The original implementation of the QO agent uses Java programming language.
The interaction protocol, however, is more complex then the alternating offers
protocol currently used by the SAMIN. The QO agent environment implements
a rather complex interaction protocol that extends the alternating offers protocol.
It does not have a clear turn taking flow and allows agents to exchange pre-defined
textual messages between the agents, such as threats of breaking negotiation if the
last offer is not accepted. It was decided to simplify it in the interaction proto-
col adapter. Only those functions of the agent were used that represent the core
functionality: interpret the opponent’s offer, generate next action of the agent,
generate a counter-offer.

Fuzzy-based Model Agent

The other agent integrated into the negotiation system is the Fuzzy-based model
(FBM) agent introduced in [29]. The Fuzzy-based agent is designed for negotiation
where agents can exchange fuzzy proposals. The original FBM agent is designed
for negotiations where agents can exchange fuzzy proposals. The original imple-
mentation of the FBM agent works only for one-issue negotiations but can be
extended for multi-issue negotiations. As a result, the negotiation domain is de-
fined using one issue that takes real values from a give interval. The agent adopts
time dependent negotiation tactics from [5] and, thus, always makes concession
towards opponent. The offers are defined using two values: the peak value and the
stretch of the offer.
The FBM agent is implemented in an experimental setup using Java programming
language. The experimental setup uses the alternating offers protocol [27]. The
preference profile is hard-coded in the agent and based on a linear function. The
experimental setup consists two agents that have opposed preferences over the
issues.

Bayesian Tit-for-Tat Agent

In [12] a negotiation strategy is proposed that uses a model of the opponent’s
preferences not only to increase the efficiency of the negotiated agreement but
also to avoid exploitation by the other party in a sophisticated Tit-for-Tat man-
ner.Authors in [12] try to show that two important goals in any negotiation can
be realized when a reasonable estimate of the preferences of an opponent is avail-
able.
For that purpose they combine the Bayesian learning technique as proposed in
[14] with a Tit-for-Tat tactic, see e.g., [5], and the classification of negotiation
moves as described in, e.g., [11]. As is typical for Tit-for-Tat, it avoids exploita-
tion by a form of mirroring of the bids of the opponent. Bayesian learning is used
to learn the opponent’s preferences. The opponent profile together with the classi-
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fication scheme is used to develop a sophisticated Tit-for-Tat Bayesian negotiation
strategy.
Bidding of the proposed strategy can be understood by the opponent as signalling
whether a move is appreciated or not (which is not as easy as it seems). Tit-for-Tat
Bayesian negotiation strategy does not punish the opponent for making a move
that can be understood as an honest mistake. The strategy is based on a ratio-
nality assumption, i.e., that an opponent would tend to accept more preferred
offers over less preferred. In line with this assumption the strategy searches for
Pareto efficient offers, i.e., offers that cannot be improved for both parties simul-
taneously. Pareto efficient offers increase the chances that an opponent accepts
an offer, while protecting the agent’s own preferences as best as possible. Finding
such offers requires that the Pareto efficient frontier can be approximated which
is only feasible if a reasonable model of the opponent’s preferences is available.
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Fig. 10.4 Bayesian Tit-for-Tat Strategy

The basic idea of Tit-for-Tat in multi-issue negotiation is to respond to an oppo-
nent move with a symmetrical one, as depicted in Figure 10.4. Typically, a rational
negotiation strategy would try to make concession moves at some points during
the negotiation. The most reasonable response to a concession move would be a
concession move of approximately the same concession size. This is called “mir-
roring” the move of the opponent.
Mirroring simply in this manner would imply that an unfortunate move (an offer
that decreases utility for both parties compared to the agent’s previous offer) of
the opponent would be answered with an unfortunate step. However, it is not
rational to consciously make unfortunate steps. Therefore, authors conclude that
the pure tactic by mirroring the opponent moves is too simplistic. Instead they
use an approximation of the Pareto frontier computed using the learned opponent
model and the agent’s own preference profile to add an additional step.
The Bayesian Tit-for-Tat strategy is constructed on the basis of the assumption
that by maximizing the opponent’s utility in every offer, the chance of acceptance
increases as well. Therefore, if after mirroring the opponent’s move the efficiency
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of the agent’s own next move can be increased by selecting an equivalent offer
(with respect to the agent’s preference profile) on the Pareto frontier the strategy
will choose to make that offer. Important is that this approach makes the Bayesian
Tit-for-Tat negotiation strategy less dependent on the efficiency of the opponent’s
strategy. The opponent might intend to make a concession but in fact make an
unfortunate move. By selecting a bid on the approximated Pareto frontier, while
mirroring the concession intent of the opponent, the strategy is able to maintain
a high efficiency of the outcome, no matter what mistakes the opponent makes.

10.4 Multi-Agent System

The organisation of SAMIN as a multi-agent system and as research environment
is introduced in [13].

10.4.1 Organisation

Negotiation, in fact, can take place in a distributed environment. To support dis-
tributed negotiation a Web-based interface to the system will be introduced in the
next version. This will enable negotiations between humans that are physically
distributed. In addition, the Web interface will allow researchers to upload their
code from different locations and participate in a tournament.
To setup a negotiation a negotiation template is created. Negotiation template
specifies all details of the negotiation: number of agents (currently only bilateral
negotiations are supported), names of the agent’s classes that implement negoti-
ation strategies, negotiation domain and preference profiles of the parties. This
setup is static through single negotiation session.
The structure of the multi-agent system and organisation of the negotiating agents
in SAMIN is determined by the negotiation protocol that is used. The interaction
of agents is also fully controlled by the environment and negotiation protocol
used. All agents are required to comply with the protocol, which is enforced by
the environment.

10.4.2 Interaction

The interaction layer manages the rules of encounter or protocol that regulate the
agent interaction in a negotiation. Any agent that wants to participate in such a
negotiation protocol must accept and agree to conform to these rules. An interac-
tion protocol specifies which negotiation moves and what information exchange
between agents is allowed during a negotiation.
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The current version of SAMIN focuses on bilateral negotiation. A centralized in-
teraction engine is used, which facilitates the control over the negotiation flow and
the enforcement of rules on the negotiation process. The interaction engine also
feeds information to the advanced logging capabilities of SAMIN. Logs are used
by the analytical toolbox to assess the performance of negotiation strategies and
algorithms, see [11, 13]. Interaction protocols are implemented in the negotiation
environment as a separate component to allow the use of a variety of protocols.
Implementation of a new interaction protocol in the negotiation environment is
a relatively easy task and has no or minimal effect on the agent code.

Fig. 10.5 A sequence diagram of the interaction protocol

An example of one of the best known negotiation protocols, the alternating offer
protocol [27], is illustrated in Figure 10.5. The alternating offers protocol in a
bilateral setting dictates a simple turntaking scheme where each agent is allowed
to make a single negotiation move when it is its turn. Apart from turntaking a
protocol may also dictate whether exchange of complete package deals is required
or that alternatively the exchange of partial bids is allowed. In addition a protocol
may manage deadlines, or timeouts that are fixed by the environment.
The interaction protocol is initialized with the information provided by the user.
There is no need for a yellow pages mechanism as the agents are made aware about
the identity of each other and thus are able to keep track of previous negotiations
with the same partner if multiple negotiation sessions are played.
In [16] an alternative protocol involving multiple agents is introduced that is also
available in SAMIN. The motivation for introducing this protocol is that it can
be used to simulate an auction mechanism. [16] shows that a particular auction
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mechanism, called the Qualitative Vickrey Auction (QVA) [10], can be simulated
with the protocol.2

The QVA mechanism can be thought of as consisting of two rounds. In the first
round, the buyer publicly announces her preferences, potential service providers
(sellers) submit offers in response, and a winner is selected by the buyer. The win-
ner is the seller who has submitted the best offer from the point of view of the
buyer. After establishing the winner, in a second round, the buyer determines
the second-best offer (from its perspective again) it received from another seller,
announces this publicly, and then the winner is allowed to select any agreement
that has at least the same utility to the buyer as the second-best offer (which can
be determined by the winner since the preferences of the buyer are publicly an-
nounced). It is assumed that the bids proposed in the first round are all monitored
by a trusted third party.
The negotiation protocol of [16] provides an alternative to the QVA mechanism.
An advantage of using a negotiation setup instead of the QVA is that in that case
the buyer does not have to publicly announce its preferences. The negotiation
protocol is structured in two rounds to match the structure of the mechanism. In
the first round negotiation sessions are performed between the buyer and every
potential seller using the Alternating offers protocol (see Figure 10.5). Moreover,
the negotiation sessions are assumed to be independent. At the end of the first
round, a winner (one of the sellers) is determined. Before starting the second
round, the agreement between the seller and buyer that is second-best from the
perspective of the buyer is revealed to all sellers, in particular to the winner. In
the second round an agreement between the winner and the buyer is established.
In section 10.6 we present some experimental results received for the proposed
negotiation mechanism.

10.4.3 MAS Environment

The MAS environment in SAMIN is a negotiation environment that controls
some aspects of the agent’s behaviour, such as the setup and initialization of a ne-
gotiation session(s), compliance of the agents with a selected negotiation protocol,
etc. The layers with corresponding components of the negotiation environment
are shown in Figure 10.1 and have a lighter background. First of all, the negoti-
ation environment provides a negotiation ontology to the agents. The ontology
specifies concepts, such as a negotiation domain, a preference profile, and shared
knowledge.
A negotiation domain is a specification of the objectives and issues to be resolved
by means of negotiation. It specifies the structure and content of bids or offers
exchanged, and of any final outcome or agreement. An outcome determines a
specific value for each issue, or, alternatively, only for a subset of the issues. Ob-

2 The QVA is a generalization of the well-known Vickrey auction to a multi-issue setting where
payments are not essential. In QVA a buyer has complex preferences over a set of issues.
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jectives allow to define a tree-like structure with either other objectives again or
issues as children, in line with [30]. Various types of issues are allowed, including
discrete enumerated value sets, integer-valued sets, real-valued sets, as well as a spe-
cial type of issue called price issue. Additionally, a specification of a negotiation
domain may introduce constraints on acceptable outcomes. For example, costs
associated with a particular outcome may not exceed the available budget of the
agent.
A preference profile specifies the preferences regarding possible outcomes of an
agent. It can be thought of as a function mapping outcomes of a negotiation do-
main onto the level of satisfaction an agent associates with that outcome. The
structure of a preference profile for obvious reasons resembles that of a domain
specification. The tree-like structure allows to specify relative priorities of parts
of the tree. This allows, for example, to ensure that all issues relating to travel-
ling combined are weighted equally as all issues relating to the actual stay at a
particular location.
In a closed negotiation an agent is not informed about the preferences of its ne-
gotiating partner. In that case an agent can at best use a reconstruction (using
e.g. machine learning techniques) of these preferences to decide on the negotia-
tion move it should do next. It is typical, however, that with a domain comes
certain public knowledge that is shared and can be used to obtain a better ne-
gotiation outcome. For example, common preferences such as preferring early
delivery over later (though not always the case) may be common knowledge in a
given domain. Such knowledge allows agents to compute the preferences of their
negotiation partner e.g. using the time interval between two dates. This type of
knowledge, labelled shared domain knowledge, is modelled explicitly as a separate
component that can be accessed by all negotiating agents.
The analytical toolbox layer of the negotiation environment a set of statistical
analysis methods to perform an outcome analysis on negotiation sessions as intro-
duced and discussed in e.g., [11, 30]. Furthermore, the toolbox contains methods
for the analysis of dynamic properties of negotiation sessions as discussed in e.g.,
[11]. The methods for both outcome and dynamics analysis were used to produce
a number of performance benchmarks for negotiation behaviour and for the agent
components [13]. The analytical toolbox uses the optimal solutions [30], such as
the Pareto efficient frontier, Nash product and Kalai-Smorodinsky solution for
the negotiation outcome benchmarking. The benchmarks in the negotiation sys-
tem can be used to analyze the performance of opponent modelling techniques,
the efficiency of negotiation strategies, and the negotiation behaviour of the agent.
The result of the analysis can help researchers to improve their agents. The output
of the analytical toolbox is presented graphically (see e.g., Figures 10.6 and 10.8).
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10.5 Execution Platform

The system is implemented as a stand-alone application running on a single com-
puter. The negotiation settings, such as role and types of the agents, negotiation
domain, and preference profiles are predefined by an script. A tournament is a
typical experimental setup for negotiating agents [11]. Therefore, the system has
a utility to generate scripts for a tournament setup and can automatically run a
sequence of negotiation.
SAMIN is currently focused on the closed negotiations, where negotiating par-
ties have no access to the preference profiles of each other. In addition, agent’s
own preference profile is supposed to be static during negotiation and cannot be
changed during the negotiation. Few security precautions were implemented in
SAMIN to meet these requirements and avoid situations where agents would im-
prove their performance by means of software hacks. This is especially important
when SAMIN is used as a testbed for negotiating agents or in an educational setup.
Negotiating agents in SAMIN as any imperfect software product can fail. All er-
rors and exception raised by the agent’s code are properly logged by the SAMIN
to allow the agent’s developer to improve it. SAMIN uses multi-threading mech-
anism to assure responsiveness of the SAMIN’s GUI during negotiation sessions.
Agents running into a deadlock can be stopped by the user by means of the GUI
without fatal consequences for the negotiation environment.
The algorithms used in the negotiation strategies can have high computational
complexity [19] and, thus, require significant computational power from the exe-
cution platform and essential time slot to perform necessary computations to pro-
cess opponent’s offer or select the next action. Negotiation typically, take place
under time constraints [5]. Therefore, a timeout mechanism is implemented in
SAMIN.
The agents are notified by the negotiation environment about the time left until
the deadline using the real-time clock. The timeout mechanism can be switched
off by the user when SAMIN is used as a research tool.

10.6 Results

The main advantage of the proposed MAS architecture is to allow for integra-
tion of heterogeneous agents and to facilitate comparison of their negotiation.
SAMIN can be used as a testbed to perform experiments with various negotiation
domains, preference profiles and negotiating agents. Thus, it contributes to auto-
mated negotiating agents research by providing a tool that is able to show new
insights about such agents. Here we shortly present the most interesting results
received with SAMIN for negotiating agents that have been implemented and/or
integrated in it.
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10.6.1 Experimental Setup

A tournament is a typical experimental setup for evaluation of negotiating agents
It enables analysis if the behaviour and effectiveness of an agent compared to that
of others. Multiple negotiation domains and preferences profiles can be selected
for a tournament. To test sensitivity of a strategy to its internal parameter the
value of the parameter can be varied in a tournament. Every session can be re-
peated a number of times to build a representative sample of negotiation results
for a statistical analysis in case of non-deterministic negotiation strategies.
A number of negotiation factors influencing negotiation behaviour have been re-
ported in [11]. We reuse these factors in our method.
Size of the negotiation domain. Complexity of the negotiation domain and pref-
erence profiles is determined by the size of the negotiation domain. Size of the
domain can influence learning performance of the negotiation strategy and, thus,
the outcome reached by the strategy [14]. The size of the domain is exponential
with respect to the number of issues. Therefore, to be able to test scalability of a
negotiation strategy the experimental setup should have a set of domains ranging
from low number of issues to higher number of issues.
Predictability of the preferences. Negotiation strategies can try to exploit the inter-
nal structure of the preferences in order to improve one’s own efficiency. I.e., the
Trade-off strategy assumes that distance measures can be defined using domain
knowledge for the preferences of the opponent. These measures combined with
the opponent’s offers allow the Trade-off strategy to predict opponent preferences
and as a result improve efficiency of the bidding. In [11], however, it has been
shown that in case of a mismatch of the domain knowledge and the actual struc-
ture of the opponent’s preferences the performance of a strategy can drastically
drop. Therefore, we introduce the notion of the predictability of the preferences
into our method.
Issues are called predictable when even though the actual evaluation function for
the issue is unknown, it is possible to guess some of its global properties. For
example, a price issue typically is rather predictable, where more is better for the
seller, and less is better for the buyer, and the normal ordering of the real numbers
is maintained; an issue concerning colour, however, is typically less predictable.
Opposition of the preferences. The results of analyzing negotiation dynamics pre-
sented in [11] revealed that some negotiation strategies are sensitive to preference
profiles with compatible issues. Issues are compatible if the issue preferences of
both negotiating parties are such that they both prefer the same alternatives for
the given issue. Negotiation strategies may more or less depend on whether pref-
erences of the negotiating parties are opposed or not on every issue. That is, using
some strategies it is harder or even impossible to exploit such common ground and
agree on the most preferred option by both parties for compatible issues (humans
are reported to have difficulty with this as well; cf. [32]). A selection of preference
profiles should therefore take into account that both preference profiles with and
without compatible issues are included.
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To measure the opposition between two preference profile we use ranking dis-
tance measure proposed [16]. The measure is based on the conflict indicator pro-
posed in [9]. The conflict indicator function yields 1 when the ranking relation
of two arbitrary outcomes based on the utility space of one agent is not the same
as the ranking relation based on the utility space of the opponent; if the rankings
based on both utility functions match the conflict indicator takes the value of 0.
The conflict indicator is calculated for all permutations in the negotiation domain
and normalized over the domain. The higher the value of the ranking distance the
stronger opposition between the preference profiles.
Another measure for the opposition of preferences proposed in [15] uses Pearson’s
correlation coefficient for that purpose. This coefficient represents the degree of
linear relationship between two variables. The Pearson’s correlation coefficient
takes a real value from the interval [−1; 1]. A value of +1 means that there is a
perfect positive linear relationship between variables, whereas a value of−1 means
that there is a perfect negative linear relationship between variables. A value of 0
means that there is no linear relationship between the two variables.
The following negotiation domains and preference profiles are available in
SAMIN (see Table 10.1 for summary):

• The Second hand car selling domain, taken from [17], includes 5 issues. Only
the buyer’s preferences and the price issue are predictable, in the sense that an
agent can reliably predict the other agent’s preferences associated with an issue.

• The Party domain is created for negotiation experiments with humans. It is a
rather small domain with 5 discrete issues with 5 possible values each. All of
the issues are unpredictable. In this domain, the preference profiles used are
not as opposed to each other as in the other domains.

• The Employment contract negotiation domain, taken from [26] with 5 discrete
issues. All issues have predictable values. The preference profiles are strongly
opposed, i.e. both negotiators dislike outcomes that the other prefers most.

• The Service-Oriented Negotiation domain, taken from [6], includes 4 issues. All
issues are predictable, i.e. based on available “domain knowledge” preferences
can be reliably predicated.

• The AMPO vs City domain, taken from [30], includes 10 issues, of which 8 are
predictable. Information about the opponent’s issue priorities, i.e. the weights
agents associate with issues. This is a large domain with more than 7, 000, 000
possible outcomes.

Domain Utility spaces Weights Domain size Number of
Ranking Pearson Ranking Pearson predictable

AMPO vs. City 0.662 -0.482 0.422 -0.139 7,128,000 3 (10)
Party 0.540 -0.126 0.467 -0.276 3,125 0 (5)
SON 0.669 -0.453 0.833 -0.751 810,000 4 (4)
2nd hand car 0.635 -0.387 0.600 -0.147 18,750 1 (5)
Employment contract 0.698 -0.584 0.600 -0.241 3,125 5 (5)

Table 10.1 Summary of the negotiation domains and preference profiles
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10.6.2 Experimental Results

Here we present the most interesting results we received for the state-of-the-art
agents described in Section 10.3.2.

Trade-off and ABMP Agents

Figure 10.6 shows typical runs in the AMPO vs City domain. Figure 10.6a shows
a run of Trade-Off, representing the City, versus Random Walker (with break-
off set to 0.6), playing AMPO. The Random Walker strategy is insensitive with
respect to its own preferences. This fact, combined with the lack of information
of relative importance of issues (weights) causes the unfortunate moves (an offer
that decreases utility for both parties compared to the agent’s previous offer, see
[11]) produced by the Trade-off strategy.
Figure 10.6b shows Trade-off (as City) vs ABMP (as AMPO) in which ABMP
is rather insensitive to the behaviour of the opponent, and Trade-off is sensitive.
In this domain Trade-off really exploits the available domain knowledge. Figure
10.6c shows Random Walker (City) vs ABMP (AMPO). ABMP always concedes
on all issues, determining the size of the concession on the difference between the
utilities of its own bid and that of its opponent. It does not use previous opponent
bids to get insight into the opponent’s preferences and, as a result, does not adapt
much to the strategy of the opponent.

Fig. 10.6 Dynamics of negotiation process for: a) Trade-off (City) vs Random Walker strategy
(AMPO), b) Trade-off (City) vs ABMP strategy (AMPO), c) Random Walker (City) vs ABMP
strategy (AMPO).

This analysis shows a direct link between the correctness and/or completeness
of the domain knowledge and opponent preferences sensitivity. The Trade-off
strategy is very sensitive to opponent preferences given complete information. In
that case, the similarity functions exactly match the opponent’s preferences and
the weights exactly represent the issue importance factors of the opponent.
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The SON domain does not have information about weights of the similarity func-
tions and thus opponent preferences sensitivity of the Trade-off strategy decreases
but it is still more sensitive to the opponent preferences than ABMP. Similarity
functions for the Second hand car domain were defined in such a way that they
often do not match the preferences of the negotiation opponents. In addition, the
weights of the similarity function do not match the opponent’s importance fac-
tors of the negotiation issues. This leads to under performance of the Trade-off
strategy while ABMP shows more robust negotiation behavior. The experiments
show that if less domain knowledge is available, Trade-off makes more unfortu-
nate steps.
In general, when issues are predictable, the chance of making an unfortunate step
becomes small. This aspect becomes clear in the car domain, where the seller’s
preferences are rather predictable, but the buyer’s preferences vary a lot.
We conclude that it is impossible to avoid unfortunate steps without sufficient do-
main knowledge or opponent knowledge. Indeed, the similarity criteria functions
used in the Trade-off Strategy provide general information about the negotiation
problem, but do not take into account the specific attributes of the negotiating
parties. In any particular case, a negotiator may deviate from the generalized do-
main model in various ways. Approaches as reported in [4, 23, 32] apply tech-
niques to learn more about the opponent.

Bayesian Agent

In small domains such as the SON domain, the Bayesian agent is very efficient
in learning issue weights and evaluation functions of the issues that is indicated
by the fact that the negotiation trace almost coincides with the Pareto frontier,
see [14] for the details. Here we demonstrate the effectiveness of the scalable
version of the Bayesian Agent on larger domains. The results on the AMPO vs
City domain presented in Figure 10.7 show, as is only to be expected, that it be-
comes harder to stay close to the Pareto efficient frontier. The performance of the
Bayesian learning agents is now similar to that of the agent based on the Trade-off
strategy and both stay close to the Pareto frontier. The ABMP strategy shows sim-
ilar behaviour as on the other negotiation domains, and is outperformed by the
other strategies. The results thus are still very good. Also, note that the agreement
reached by the Bayesian agents has a higher utility than that reached by the other
strategies and that both the Bayesian agent without domain knowledge as well as
the Trade-off agent make quite big unfortunate steps.

QO Agent

Figure 10.8 presents the results of the negotiation experiment. A small and simple
negotiation problem, called “Party“ [14], is used to analyze the performance of
the QO gent within our negotiation framework. This domain has been created
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Fig. 10.7 Negotiation dynamics for the Bayesian agent on the AMPO vs. City domain

for negotiation experiments with humans, which also explains its rather limited
size. The charts show the space of all possible negotiation outcomes. The axis
represent the utilities of the outcomes with respect to the utility functions of the
negotiating agents. The charts show the negotiation paths of the agents marked
by arrows with the names of the agents.
The Bayesian agent starts with an offer that has maximum utility. It tries to learn
the opponent preferences from the offers it receives and uses this model when it
makes a concession towards the opponent. As a result, it stays close to the Pareto
Efficient frontier. The QO agent in this domain has more difficulty to propose
efficient offers. This is a result of limitation of the opponent model of the agent.
The QO agent accepts an offer of the Bayesian agent as soon as such an offer has
a utility level for the QO agent that is higher then utility of the QO agent’s own
offer.

Fuzzy-based Model Agent

The other agent integrated into SAMIN is the FBM agent introduced in [29]. The
FBM agent was tested in a setup where it has to negotiate against the Bayesian
agent about a single issue defined on real values ranging from 10 to 30. The origi-
nal FBM agent is designed for negotiations where agents can exchange fuzzy pro-
posals. The implementation of the FBM agent we used is able to negotiate about
one-issue negotiations but can be extended for multi-issue negotiations. The agent
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Fig. 10.8 Negotiation dynamics for the QO agent on the Party domain

adopts time dependent negotiation tactics from [5] and, thus, always makes con-
cessions towards opponent. The offers are defined using two values: the peak value
and the stretch of the offer. The preference profiles of the agents used were in com-
plete opposition: the FBM agent wants to minimize the value of the issues and the
Bayesian agent tries of maximize it. In the experiments we performed, the β pa-
rameter that defines whether an agent makes bigger concessions in the beginning
of the negotiation (Conceder) or at the end (Boulware) was varied, see Table 10.2.

Agents Utility
β=0.02 β=0.1 β=0.5 β=1 β=2 β=10 β=50

FBM Agent 0.898 0.897 0.734 0.585 0.449 0.193 0.060
Bayesian Agent 0.102 0.103 0.266 0.415 0.551 0.807 0.940

Table 10.2 Utility values of the FBM and Bayesian agents

In a single issue negotiation there is no possibility for a “win-win" outcome and
all negotiation outcomes are Pareto efficient. One of the more important aspects
of a negotiation strategy for a single issue negotiation is how fast it concedes to
the opponent. As a result, for β > 1 the FBM agent implements a Conceder tactic
and the FBM agent under performs with respect to the Bayesian agent that makes
linear concessions in this case because no moves towards the Pareto frontier are
possible. When the FBM agent employs a Boulware tactic (β < 1) the Bayesian
agent starts conceding significantly and the result is a much lower utility for the
Bayesian agent.

Bayesian Tit-for-Tat Agent

As discussed, the main objective associated with a negotiation strategy is to gain
the best agreement possible in a negotiation. Utility of an agreement, therefore,
measures the efficiency of a strategy. For every negotiation domain and prefer-
ence profile the utility of agreements achieved by a strategy were averaged over
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Negotiation Domain Negotiation Strategy
ABMP Trade-Off Bayesian Smart Bayesian Tit-for-Tat

Car 16% 12% 13% 14%
Party domain 13% 9% 13% 14%
Service-Oriented 14% 17% 25% 38%
Employment contr. 11% 40% 44% 47%
AMPO vs City 10% 13% 14% 20%

Table 10.3 Increase in utility for the Bayesian Tit-for-Tat strategy relative to the Random Walker
strategy

all opponent strategies in the tournament. We assume that an efficient negotia-
tion strategy should perform better than the Random Walker strategy. Therefore,
we calculate the percentage of the utility increase compared to the utility of the
Random Walker strategy (see Table 10.3).
The results show that on all domains the Bayesian Tit-for-Tat strategy performs
better than all other strategies currently available in the negotiation repository.
Only on the 2nd hand car negotiation domain the Bayesian Tit-for-Tat strategy
is outperformed by the ABMP strategy. As in this domain a concession-based
strategy is very efficient, and ABMP aims to concede on all issues, this strategy
does particularly well in this domain.
The most significant increase in the efficiency of the reached agreement is shown
on the Employment contract negotiation domain. This negotiation domain is
rather small and evaluations of the issue alternatives are predictable in this do-
main. Learning in such a domain is relatively simple and, as a result, the Bayesian
Tit-for-Tat strategy shows excellent performance. The Trade-off strategy shows
good performance as well, however, it does not perform as well as the Bayesian
Tit-for-Tat strategy. The ABMP strategy is significantly less efficient than the
Bayesian Tit-for-Tat and the Trade-off strategies due to presence of issues with
compatible preferences.
Similar results are obtained for the Service-Oriented Negotiation domain. This
domain is much bigger than the Employment contract domain in terms of the
possible agreements but has less issues. In addition, weights of the issues in the
SON domain have bigger variation then in the Employment Contract domain
where importance of the issues is more uniform. This explains the much lower
efficiency of the Trade-Off strategy that is not capable of dealing with the weights
of the issues. The Bayesian Tit-for-Tat strategy learns weights of the issues in the
opponent preference profile and therefore shows a better performance.
AMPO vs City domain is the biggest domain in the repository. As is to be ex-
pected, the performance of the learning technique used in the Bayesian Tit-for-Tat
strategy degrades in such bigger negotiation domains. This explains the lower rel-
ative increase in Table 10.3.
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10.6.3 Approximating Auction Mechanism with Negotiation

In Section 10.4.2 we introduced a one-to-many negotiation protocol that approx-
imates an auction mechanism. Here we present experimental results received for
the proposed negotiation protocol. Figure 10.9 shows the histograms of the differ-
ences in utilities between the outcomes received with the original auction mecha-
nism and the negotiation protocol.

Fig. 10.9 Histograms of the differences in the utilities of experimental and theoretical outcomes
for the buyer (left) and the seller (right).

The winner predicted by the mechanism and the negotiation protocol coincide
100%. This means that the negotiation protocol does not change the results of the
first round in which a seller is selected as winner. Moreover, in the second round,
in general the outcomes obtained by negotiation are also quite close to those de-
termined by the mechanism. That is, in 78% of the experiments the deviation is
less than 5%. The standard deviation of the difference between the mechanism
outcome and the experimental results is 4%, and in 94% of the experiment the de-
viation did not differ with more than 10%, indicating that overall outcomes were
reasonably close to the mechanism outcome with a few exceptions. This means
that the negotiating agents that can learn are able to approximate the outcome
determined by the mechanism quite well.

10.7 Conclusion

SAMIN, the system for analysis of multi-issue negotiation introduced here, has
proved to be a valuable tool to analyse the dynamics of human-human closed
negotiation against a number of dynamic properties. Our analysis shows that hu-
mans find it difficult to guess where the Pareto Efficient Frontier is located, mak-
ing it difficult for them to accept a proposal. Although humans apparently do not
negotiate in a strictly Pareto-monotonous way, when considering larger intervals,
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a weak monotony can be discovered. Such analysis results can be useful in two dif-
ferent ways: to train human negotiators, or to improve the strategies of software
agents. Clear from our research so far, is that five key factors shape the outcome
of a bilateral negotiation with incomplete information: (i) knowledge about the
negotiation domain (e.g. the market value of a product or service), (ii) oneŠs own
and oneŠs opponentŠs preferences, (iii) process attributes (e.g. deadlines), (iv) the
negotiation strategies, and (v) the negotiation protocol.
The use of agent technology for negotiation systems has been a big help in both
the design and the implementation of the SAMIN system. Principled design meth-
ods for agents and multi-agent systems such as DESIRE ensured a transparent
design that properly reflects the interests of the stakeholders (researchers) and ne-
gotiators (human and software agent). The organization makes it easy to run tour-
naments with any number of agents, and over a number of negotiation domains.
The interface and adapters to connect agents to the negotiation environment have
been clearly specified which enable an easy integration of heterogeneous negoti-
ating agents. The graphical user interfaces support both researchers and human
subjects participating in experiments.
A good start has been made in the development of a toolkit for analysis in
SAMIN, but more work needs to be done. Additional research on ontologies
for negotiation is required to make this feasible; for example, we cannot currently
formulate associated constraints on the domain of negotiation that must be sat-
isfied for an agreement to be acceptable. More technically, components for web
integration as well as extensions of adapters need to be developed, e.g., in order to
handle more generic ontologies.
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Appendix A
Language Summaries

This appendix provides summaries of the main features of the programming lan-
guages presented in the first part of this book. The first section shows a list of
questions that the editors posed to the contributing authors of chapters about
agent programming languages. The following six sections provide the answers
given by the authors of the respective chapters. This can be useful for quick ref-
erence and comparision of the languages, for example in searching for the best
approach for a particular application.

A.1 Comparison Criteria

1. Agent-Oriented Programming Language

a. Functionality
Does the language support various agent concepts such as, mental attitudes,
deliberation, adaptation, social abilities, and reactive as well as cognitive-
based behaviour?

b. Communication
Does the language provide high-level (i.e., speech-act based) primitives for
communication (as well as general addressing mechanism such as broadcast
and multi-cast)?

c. Underlying Computational Model
Does the language support the design of mobile agents, and if so, which
kind of mobility (week and/or strong)?

d. Simplicity
How easy it is to use and understand the language?

e. Preciseness
Does the language have clear and precise semantics? How has it been for-
malised?
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f. Expressiveness
Is the language suitable for the implementation of a variety of agent-oriented
programs and applications or is it purpose-specific?

g. Extensiveness
Does the language allow the definition of new language components from
the basic constructs in a systematic way?

h. Verification
Does your approach provide a clear path for the (formal) verification of
programs written in this language?

i. Software Engineering Principles
Have Software Engineering and Programming Language principles, such as
abstraction, inheritance, modularity, overloading, information hiding, error
handling, generic programming, etc., been considered or adopted within
design of this language?

j. Language Integration
i. Does your approach deal with the possibility of integrating the language

with existing (well-known) programming language (e.g., Java)?
ii. Can the language be interfaced with other programming languages, or

does it allow the invocation of methods/programs built using other (clas-
sical) programming languages?

2. Platform

a. Deployment and Portability
i. Does the platform provide material, such as documentation, tutorials

or training of any kind, installation and deployment guidelines, to help
users in deploying their systems?

ii. Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

b. Standards Compliance
To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management, etc.?

c. Platform Extensibility
Can the platform be extended with additional functionality, for example
through Open Source collaboration?

d. Available Tools
i. What tools are provided by the platform for the management, monitor-

ing, logging and debugging of applications?
ii. What documentation for on-line help, and manuals for the platform’s

installation, use, and maintenance are available?
iii. Are there tools for administration, management, and configuration of

the platform? Is an IDE provided?
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e. Tool Integration
In existing applications, what tools (e.g., JESS, web services, JSP) have been
integrated or are known to work well with applications running on this
platform ?

f. Technical Interoperability
Is an application aimed at running on this platform tied to a specific pro-
gramming language, specific architectures (e.g., .NET, J2EE), or are there
special operating system requirements?

g. Performance Issues
i. What number of agents can be expected to run efficiently within a sin-

gle instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

ii. What is the current state of the platform (simple prototype, available as
a commercial product, stable Open Source distribution, etc.)?

h. Multi-Agent Systems Features
i. Does the platform support open multi-agent systems and heterogeneous

agents?
ii. Does the platform provide centralised or distributed control, and hierar-

chical structure of agents?
iii. Does the platform offer libraries for programming multi-agent systems

(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

3. Applications Supported by the Language and Platform

a. Typical Examples
What types of application have already been developed with this platform
(toy problems, real-world applications, industrial applications)? What are
the most prominent examples?

b. Targeted Domains
Is any particular domain of application (e.g., simulation, resource allocation,
mobile computation) targeted by your approach?

A.2 MetateM

1(a) Cognitive deliberation is the abstraction that best describes the behaviour
of METATEM agents, specifying reactive behaviour is also possible though less
intersting. Adaptation is supported by the ability agent have to modify their
plan-base and deliberation preferences at run-time. A variety of social abilities
can be built on top of METATEM’s agent grouping mechanisms, which provide
the programmer with the flexibility to define their own social behaviour.

1(b) Multi-cast is the default messaging mechanism. METATEM does not rely
upon a centralised addressing service but one-to-one messaging is, of course,
possible between agents known to each other and broadcast messaging can also
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be achieved by a series of recursive multi-casts. Speech-acts are not explicitly
supported, but the logical nature of the language allows their semantics to be
built-in.

1(c) METATEM does not have a built-in mobility framework, however it does
have some reflection constructs and as agents can be extended with arbitrary
Java code, weak mobility is possible.

1(d) Founded, as it is, on temporal logic and composed of just four simple rule
types (start, present, next and sometime), we believe the language is intuitive
and easy to use.

1(e) The semantics of METATEM and some of its extensions have been for-
malised in [12, 9] by way of both temporal and operational semantics.

1(f) METATEM is a general, high-level and flexible language for the specification
of multi-agent behaviour.

1(g) All METATEM constructs use the language of classical first order logic,
including complex terms. Creating new language components, for example
the “tell” informative, is achieved by employing complex terms. For example;
receive(From, tell(Message)) => ...

1(h) The clear semantics make METATEM amenable to automated verification
by model checking [3].

1(i) A similar notion to that of object-oriented inheritance in which agents re-
ceive behaviours (goals, preferences, beliefs) from other agents at run-time is
supported. Modularity and re-use of code is supported by the include pre-
processing insruction.

1(j).i Yes, the developer can define executable chunks of Java code that are de-
noted by ability predicates in the METATEM specification.

2(j).ii The language only supports direct integration with Java, but of course
one can use Java as a wrapper for many other languages and/or services.

2(a).i Language documentation, example programs and API documentation is
provided. Tutorials are planned.

2(a).ii The METATEM download is a self-contained Java archive that contains
no platform dependent libraries. It requires a Java runtime version 1.6 or later.

2(b) Standards have not been considered during the development of METATEM,
though this does not preclude their future compliance.

2(c) The developers of METATEM welcome suggestions for its improvement
and, whilst the source code is not currently available, it is planned to release
the source under an open-source license.

2(d).i METATEM has an agent visualisation tool which monitors agents during
execution, it provides a graphical representation of the structure of a multi-
agent system and allows the inspection of an individual agent’s states and access
to their logs.

2(d).ii Basic documentation for installation is provided. METATEM is not in-
tended for real-world deployments that require long-term maintenance.

2(d).iii No tools for administration, management, and configuration of the plat-
form at present, though an Eclipse plug-in (or similar) would be considered if
requested.
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2(e) Since Java code can be accommodated, any tool that can be accommodated
by Java can be integrated with METATEM, however this has not been done in
any existing application.

2(f) The only requirement is a Java runtime environment (see item 2(a) above).
2(g).i Whilst no performance statistics are available, each agent consumes its

own thread in the Java virtual machine, thus scaling of the number of agents is
related to the thread management employed by the host virtual machine.

2(g).ii METATEM should be regarded as a stable prototype language.
2(h).i Open-systems are not currently supported, although new agents can be

spawned at run-time. Heterogeneous agents can only be accommodated by
wrapping them inside a METATEM agent with a Java interface.

2(h).ii Control is truly distributed whilst agents can form social structures of
many kinds including groups and hierarchies.

2(h).iii It has a mechanism to create and draw from libraries of agent definitions
and behaviours. Some social protocols are being worked on.

3(a) The language has only been used for simple examples so far.
3(b) METATEM targets application areas that require high degree of clarity at

a high-level of abstraction, particularly where temporal constraints feature
prominently in the specification.

A.3 IndiGolog

1(a) The language supports agents with complex beliefs about their environ-
ment and its dynamics, specified as a situation calculus action theory. The be-
liefs are automatically updated based on the model when actions are performed
or events occur. The agent can perform sensing actions to acquire additional
knowledge. It can perform means-ends reasoning to generate a plan that will
achieve a goal or find an execution of a “sketchy” nondeterministic program.
Specifying reactive behaviors is also supported. However, there is no built-in
support for declarative goals, or for reasoning about other agents and their
mental states.

1(b) The language does not provide built-in support for speech act based com-
munication. However, communication in FIPA ACL and FIPA coordination pro-
tocols (e.g. contract net), as well as interfacing with the JADE [8] multiagent
platform are supported by the IG-JADE-PKSlib library [69, 68]. The framework
been extended to incorporate a rich model of multiagent beliefs and goals and
speech acts based communication in [95, 94]; but the resulting formalism is
no longer a programming language but a specification language that supports
verification of properties.

1(c) No specific built-in support for mobile agents is available so far.
1(d) The language is easy to understand and learn, as it combines a classical

Algol-like imperative language for specifying behavior with a well known ac-
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tion description language for specifying the application domain dynamics. The
whole language has a classical logic semantics.

1(e) The language has a very solid formal foundation. The semantics of pro-
grams is specified through a transition system account defined on top of the
situation calculus (the latter is used to specify the application domain, primitive
actions and state-dependent predicates). Thus the language is fully formalized
in classical predicate logic. One can make statements about offline executions
of programs within the logical language, and one can reason about proper-
ties of programs in the logic. Online executions of programs are formalized
metatheoretically in terms of entailment in the situation calculus theory.

1(f) The language is very rich and expressive. Complex domain models can be
specified declaratively and the agent’s beliefs are automatically updated. Com-
plex tests about the state of the world can be evaluated. Behavior can be fully
scripted, or synthesized through planning, with the program constraining the
search. A rich set of procedural constructs is provided, including concurrent
programming facilities. Reactivity and online sensing are also supported.

1(g) The declarative language definition supports the easy addition of new pro-
gramming constructs. The underlying situation calculus framework supports
many extensions in the way change is modeled, e.g. continuous change, stochas-
tic effects, etc. The language has been extended numerous times.

1(h) Given its strong formal foundations, the language is highly suited for for-
mal verification. The CASLve verification environment [95, 94], which is based
on the PVS theorem proving/verification system, has been developed to sup-
port verification of programs in an extended version of ConGolog.

1(i) The language supports procedural abstraction, but not modules. However,
very complex agents can be decomposed into simpler agents that cooperate.
The agent’s beliefs are automatically updated based on a declarative action the-
ory, which supports the use of complex domain models, and helps avoid the
errors that typically occur when such models are manually updated.

1(j) Our platform is implemented in SWI-Prolog, which provides flexible mech-
anisms for interfacing with other programming languages such as Java or C,
and for socket communication.

2(a).i The platform provides documentation and examples that, though simple,
have allowed new users to learn how to effectively develop new applications.

2(a).ii The current implementation of the platform requires SWI-Prolog, a so-
phisticated Prolog implementation which is actively supported and available
free for many architectures and operating systems (including MS-Windows,
Linux and MacOS X).

2(b) The basic language and its current platform do not per se adhere or con-
form to any standards. However, a library, IG-JADE-PKSlib [69, 68], has been
developed to support communication in FIPA ACL and FIPA coordination pro-
tocols (e.g. contract net), as well as interfacing with the JADE [8] multiagent
platform.
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2(c) The platform is designed in a modular way and is easily extensible, though
this requires expertise in Prolog. It is currently hosted as an open source project
at SourceForge (http://sourceforge.net/projects/indigolog/).

2(d) Currently, there are no CASE tools developed specifically for the platform.
For debugging, tracing facilities are provided; Prolog facilities can also be used.

2(e) The platform is integrated with Prolog (more specifically SWI-Prolog) and all
the facilities it provides can be used (e.g. socket communication, calling C or
Java procedures). The IG-OAAlib library [49] supports the inclusion of IndiGolog
agents in systems running under SRI’s Open-Agent Architecture (OAA) [67].
As mentioned earlier, another library, IG-JADE-PKSlib [69, 68] supports the
inclusion of IndiGolog agents in systems running under JADE [8].

2(f) The platform is implemented in Prolog and requires SWI-Prolog
(http://www.swi-prolog.org/).

2(g).i No detailed analysis regarding the number of agents that could be run ef-
ficiently or the number of messages that could be handled has been performed
so far. For use in robotic architectures or workflow management, performance
has not been a problem.

2(g).ii The current state of the implementation is as an advanced stable proto-
type that is available through open source distribution.

2(h).i The language itself does not provide specific facilities for multi-agent pro-
gramming (though it and the underlying theory are expressive enough to allow
the design of multi-agent systems). It is intended primarily for the implemen-
tation of individual autonomous agents. Multi-agent programming (including
open systems) is accommodated through the interfaces with the JADE and OAA
platforms.

2(h).ii The language provides a centralized control architecture.
2(h).iii As already mentioned, the IG-JADE-PKSlib library [69, 68] allows

IndiGolog agents to be integrated in systems running under the JADE [8]
multi-agent platform; it supports the development of IndiGolog agents that use
FIPA ACL communication and coordination protocols. Another library [49]
supports including IndiGolog agents in systems running under the OAA plat-
form [67].

3(a) So far, the language and platform have been used to program high-level
controllers for several real robotic platforms (as part of a larger control ar-
chitecture). Moreover, the language (or variants), and the platform, have been
used as part of larger systems to develop advanced applications, for instance
the museum guide robot of [16], the process/workflow management system
for pervasive computing applications of [52], the automated web service com-
position/customization systems of [70, 72], etc.

3(b) The language is not targeted at any particular application domain. How-
ever, it is primarily intended for developing complex autonomous agents that
do reasoning and planning. It provides good support for interfacing with
robotic control architectures/platforms.
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A.4 Brahms

1(a) Brahms agents include mental attitudes, deliberation, adaptation, social
abilities, and reactive as well as cognitive-based behaviour.

1(b) Brahms provides two types of communication capabilities: 1) a built-in
belief communication activity, 2) a FIPA-based Communication Library for
sending/receiving Communicative Acts.

1(c) Brahms, currently, does not support any mobility service.
1(d) Brahms is easy to learn. Brahms users include not only computer scientists,

but also cognitive scientists, psychologists, economists and even an architect.
1(e) Brahms has a precise syntax and semantics. The syntax is specified in

EBNF. The semantics is currently not formalized, but is descibed as part of
the Brahms language document.

1(f) Brahms is suitable for the development of agent-based work practice, orga-
nizational, work flow and cognitive simulations, as well as the implementation
of a variety of agent-oriented programs and applications.

1(g) Brahms allows for extention and definition of new language components
through the definition of Java activities using the JAPI.

1(h) Although the Brahms semantics is currently not formalized, Brahms does
allow for a clear path for the (formal) verification of programs (also called mod-
els).

1(i) Software Engineering and Programming Language principles, such as ab-
straction, inheritance, modularity, overloading, information hiding, error han-
dling, generic programming, have been adopted within the design of the
Brahms language.

1(j).i Brahms can be integrated with the Java programming language, using the
JAPI, in both simulation and real-time execution mode.

1(j).ii In real-time execution mode, Brahms agents can communicate with other
general Java or C++ agents, using the agent Collaborative Infrastructure (CI).

2(a).i The Brahms website (http://wwww.agentisolutions.com) provides Java
docs of the JAPI, a detailed Brahms language specification, both EBNF syntacs
and semantics, a Brahms tutorial that includes excercises and documentation,
and a web-based discussion forum. The BAE installation is done with an easy
to use installation wizard. The Brahms website includes a readme file with
some additional information on configuring MySQL.

2(a).ii Brahms requires the Java Runtime Environment (version 6), and is
currently supported on Windows 2000/XP, Linux, OS X, Solaris. The
AgentViewer tool requires MySQL 4.1, 5.1.51 or later to be installed.

2(b) In real-time execution mode, Brahms uses a custom agent collaborative in-
frastructure (CI). Both Brahms and the CI use Communicative Acts, loosely
based on FIPA. The CI provides a custom naming/directory service and cus-
tom agent life-cycle management for managing the starting and stopping of
distributed agents running in one or more Brahms Virtual Machines (BVMs).

2(c) Brahms is not Open Source, but does allow for being extended with addi-
tional functionality. Using the JAPI, it is possible to add new services, external
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agents to interact with, external systems, and java activities to add additional
activity behaviors.

2(d).i Brahms logs history events that are used post-execution in the
AgentViewer tool, for the display of all agent events (new beliefs, work-
frame/activity and thoughtframe execution, movement in the geography
model, and communication).

2(d).ii Brahms is installed as the Brahms Agent Environment using an
easy install wizard. The Brahms web-site provides a web-based discus-
sion forum through which the Brahms developers can be contacted
http://www.agentisolutions.com/cgi-bin/Ultimate.cgi). There is no specific
maintenance provided to external users, however, the Brahms team is regu-
larly updating the BAE with new releases for download. Any bugs in the BAE
that are reported will be resolved in the next release, or provided as updates on
the website.

2(d).iii The BAE does not include specific tools for management or real-time
monitoring. However, there are two separate IDEs provided: 1) the Composer
is an IDE through which Brahms models can be designed, implemented, com-
piled, and executed, 2) there is also a Brahms Eclipse Plugin. The Composer
includes the Agentviewer, which is can be used as a post-execution debugger.
Both the compiler and the BVM has configuration files that can be set outside
the Composer in a text editor, or within the Composer using property editors.

2(e) Existing tools and applications integrated are JacORB CORBA, E-mail
Client, FTP Client, IM Client (Jabber), GPS, Biosensors, digital cameras,
MS Excel (J-integra), MS Word (J-integra), RIALIST speech dialoque system,
LEGACI astronaut metabolic calculation algortithms, Compendium.

2(f) Brahms requires Java Runtime Environment (version 6) and MySQL ver-
sion 4.1, 5.1.51 or later

2(g).i Currently, there are no specific performance metrics available. However,
depending on the complexity of the agents, one BVM can easily simulate 150
Brahms agents and objects. In distributed real-time execution mode, the num-
ber of BVMs is unlimited, and depending on the complexity of the agents, each
BVM can easily run 10 to 20 agents.

2(g).ii The BAE is a thoroughly tested and stable agent environment. It is used
to execute a MAS application 24x7 in NASA’s International Space Station Mis-
sion Control. A free release is available for research purposes only. Brahms is
not Open Source.

2(h).i The new version of Brahms will support open multi-agent systems and
heterogeneous agents through the use of the Collaborative Infrastructure (CI).
Other ways are to develop proxy agents using the external agent JAPI.

2(h).ii The BAE, through the CI, provides distributed control. The Brahms lan-
guage provides hierarchical structure of agents. However, the directory service
for distributed agents does not.

2(h).iii The BAE provides a Communicative Acts library and templates for pro-
gramming multi-agent systems (both in Brahms and Java).



374 A Language Summaries

3(a) Brahms has been used to develop research, real-world and industrial appli-
cations both for simulation and for MAS development. The most prominent
application is the OCA Mirroring System (OCAMS) in NASA’s International
Space Station Mission Control and Mobile Agents, a planetary exploration
MAS workflow framework for robots and astronauts.

3(b) Brahms is a domain-independent simulation and MAS language. It can be
used for agent-based simulation, as well as for MAS development and execu-
tion. Brahms is not geared towards any specific domain, but has mostly been
used in the space mission operations and exploration domain. It is particularly
useful for simulating work practice and organizations, and developing intelli-
gent agent-based workflow services and applications.

A.5 Goal

1(a) GOAL has been designed to support rational agents that derive their choice
of action from their beliefs and goals. Two types of knowledge or beliefs of an
agent are distinguished: conceptual or domain knowledge stored in a knowledge
base and dynamic beliefs to represent the state of the environment stored in a
belief base. Goals are declarative representations of what a GOAL agent wants to
achieve not how to achieve it. The language supports action selection (i.e. deci-
sion making) using so-called action rules, which provides for the programming
of flexible agents capable of cognitive as well as reactive behaviour. Additional
constructs to structure action selection by agents are provided by means of
modules.

1(b) Multi-agent GOAL systems are supported by communication primitives
that enable agents to exchange declarative messages derived from their men-
tal state. The current implementation of GOAL runs on top of the JADE in-
frastructure [2] to facilitate communication between agents but abstracts from
most implementation details that need to be specified when using JADE com-
munication primitives (such as the requirement to specify the knowledge rep-
resentation language in which message content has been specified). Communi-
cation in the current implementation is based on a simple "mailbox semantics"
as in 2APL [12]. Messages received are stored in an agent’s mailbox and may
be inspected by the agent by means of queries on special, reserved predicates
sent(agent,msg) and received(agent,msg) where agent denotes the
agent the message has been sent to or received from, respectively, and msg
denotes the content of the message expressed in a knowledge representation
language.

1(c) GOAL does not support explicit constructs to enable the mobility of agents.
The main concern in the design of the language is to provide appropriate con-
structs for programming rational agents whereas issues such as mobility are
delegated to the middleware infrastructure layer on top of which GOAL agents
are run.
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1(d) One of the main concerns in the design of GOAL has been to design a
language that provides intuitive programming constructs related to common
sense concepts used everyday by humans to explain and justify their actions in
ordinary language, including in particular the notions of belief and goal (see
also 1(a)) as well as a basic notion of action. To facilitate understanding, the
architecture for running GOAL agents is a simple instance of the sense-plan-act
cycle [36]. At the core of this architecture is the action selection mechanism
based on action rules. The main additions to this action selection mechanism
concern connecting GOAL agents to the environment. These include exchanges
with the environment of percepts (received from the environment and processed
just before action selection), messages received from other agents and actions (to
be executed by the environment).

1(e) GOAL has a formal, operational semantics defined by means of Plotkin-
style transition semantics [33]. A formal verification framework exists to verify
properties of GOAL agents [3]. This verification framework allows for composi-
tional verification of GOAL agents and has been related to Intention Logic [20].
The language GOAL is firmly rooted in agent theory as well as the practice of
agent programming.

1(f) GOAL is a general-purpose agent-oriented programming language. The lan-
guage has been designed such as to enable declarative specifications of the men-
tal states of agents using high-level concepts such as beliefs and goals. It thus
aims at designing programs at the knowledge level [31].

1(g) GOAL allows programmers to specify user-specified actions using a STRIPS-
style notiation [17]. The main concept for structuring agent programs in GOAL
is the notion of a module. Modules allow a programmer to structure the agent
and facilitate a modular development of an agent. More specifically, modules
allow a programmer to locate and combine the beliefs and actions relevant for
achieving particular goals inside a module. Modules allow an agent to focus on
a particular goal and to choose the relevant actions to achieve that goal within
the context of a module.

1(h) GOAL provides a verification framework that facilitates compositional ver-
ification of GOAL agents. A Maude [9] implementation for the GOAL language
has been provided which facilitates model checking of GOAL agents. Maude
has been used to verify the Blocks World agent discussed in this chapter.

1(i) The GOAL language supports reusability by providing a mechanism for in-
cluding belief base files and goal base files as well as by providing a module
construct (see also 1(g)).

1(j).i The GOAL language is designed to facilitate writing agent programs that
derive their choice of action from beliefs and goals. GOAL, however, does not
commit to any particular knowledge representation language to represent the
beliefs and goals of an agent. The current implementation has integrated Prolog
as the technology for knowledge representation. In principle, however, Answer
Set Programming [1], expert system languages such as CLIPS [26], database
languages such as SQL [7], or a language such as PDDL [17] could have been
used as well.
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1(j).ii The main interfaces the GOAL platform offers concern interfaces con-
necting GOAL to a middleware infrastructure on top of which GOAL agents
are run (see 1(b) and (c) above), to a knowledge representation technology (see
1(j).i), and to an environment. The interface to an environment is generic and
abstracts from the implementation language used to run the environment. Cur-
rently, Java is used to connect GOAL agents to an environment.

2(a).i The GOAL language can be obtained by downloading the GOAL installer.
GOAL comes with documentation discussing the language, IDE and some ex-
amples that are distributed with the language as well. For the most up to date
information about the GOAL system the reader may visit the page
http://mmi.tudelft.nl/∼koen/goal.html where it also can find
references to GOAL-related publications. The development of a tutorial is
planned.

2(a).ii The implementation of GOAL has been tested and runs on most well-
known platforms. The GOAL language has been implemented in Java and re-
quires Java version 1.5 or higher. In addition, a middleware infrastructure layer
on top of which GOAL is run must be supported (see also 1(b)).

2(b) The Goal agent programming language provides a framework for program-
ming rational agents and has been designed to support basic notions associated
with such agents (see also 1(a,b,d)).

2(c) The GOAL language is aimed at providing a general-purpose programming
language for rational agents at the knowledge level. It does not commit to any
particular knowledge representation language, domain or middle-ware infras-
tructure (see also 1(j)). The main extensions and variations that can be created
are by implementing other KR technologies or environments to run agents in.
It is planned to distribute Goal under the GPL open source license.

2(d).i GOAL is distributed with a simple Integrated Development Environment
which includes the main functionality for monitoring, logging and debugging
agents. A sniffer is available to monitor message exchange between agents. De-
bugging can be used to trace the operation of an agent at various levels of gran-
ularity, e.g. at the inference level which allows tracing belief and goal inferences
as well as at higher levels which allow tracing of action selection only.

2(d).ii A manual is provided for GOAL, including a discussion of the main lan-
guage features, the IDE, installation and some advice on troubleshooting, and
can be obtained from http://mmi.tudelft.nl/∼koen/goal.html.

2(d).iii GOAL comes with a simple Integrated Development Environment.
2(e) In the GOAL framework a number of interfaces have been defined for inte-

grating knowledge representation technologies and environments. The current
implemented version of GOAL is implemented in Java and it should be rela-
tively straightforward to integrate various tools that provide a Java interface or
are easily accessible from Java.

2(f) Applications written in GOAL require the Java Virtual Machine since GOAL
has been implemented in Java. In addition, the current implementation runs
on top of JADE (which is distributed and installed with the GOAL interpreter
by the installer for GOAL). The implementation has been tested and shown
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to run on several operating systems including the main versions of Windows,
OSX, as well as Unix.

2(g).i The number of agents that can be run efficiently and the number of mes-
sages handled depends on the underlying knowledge representation technology
(currently we use SWI Prolog [42]) as well as the middleware infrastructure
(currently we use JADE). For example, it turns out that SWI Prolog does not
allow to start up more than 100 threads simultaneously restricting the num-
ber of agents we can simultaneously run. For small-scale agent systems most
choices do not pose any restrictions but the development of large-scale agent
systems would require to carefully consider the choice of knowledge represen-
tation technology and middleware infrastructure.

2(g).ii The current state of the platform is still a prototype. We are putting con-
tinuous effort in developing a stable release. The core of the GOAL framework
is stable and well-defined in several papers [3, 19, 21, 22].

2(h).i The GOAL framework does not itself provide support for open systems
nor heterogeneous agents. GOAL agents are particular agents defined by their
beliefs, goals and action rules that facilitate decision making. GOAL agents may
nevertheless interact with other types of agents whenever these agents run on
top of the same middleware infrastructure and exchange messages using the
facilitaties provided by this infrastructure to this end.

2(h).ii The GOAL language does not itself provide a centralised or distributed
control but depends on the middleware infrastructure on top of which GOAL
agents are run to provide such control. Although GOAL does not provide sup-
port for hierarchical structuring of agents it does provide a construct to define
modules within agents that define agent-like substructures of such an agent.

2(h).iii The GOAL framework does not provide libraries yet.
3(a) GOAL so far has been illustrated by means of classical examples such as

the Blocks World discussed in this chapter and has been used in education by
students to program rational agents.

3(b) GOAL is a general purpose agent programming language. It is most suitable
to developing systems of rational agents.

A.6 JIAC

1(a) JIAC V supports three different types of agents that build upon each other.
The first type is a simple reactive agent with no mentalistic attributes. The
second type uses a BDI metaphor and explicit knowledge to enhance its deci-
sion making and the third type extends the agents with learning and planing
capabilities.

1(b) JIAC V agents support communication via Inform messages. Agents have
individual messageboxes as well as the possibility to join agentgroup channels
which are used for delivery of these messages. Furthermore, interaction can be
realised via services for a more structured approach.
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1(c) The architecture is designed to support strong mobility for agents. How-
ever, as we perceive mobility rather as an action on the part of a management
entity (likely an AMS), JADL++ has no distinct support for it.

1(d) As the procedural part is simple scripting language with C-style syntax,
most programmers should be familiar with it. However, due to the integration
of OWL ontologies, a programmer should be familiar with the OWL concepts
and their usage.

1(e) We have tried to formalise most of the scripting elements of JADL++. The
formalisations of OWL and OWL-S are of course publicly available. However,
our formalisation of the use of OWL in JADL++ is still incomplete, as we are
still experimenting with the precise semantics.

1(f) The language JADL++ is tilted towards service composition, and as it is a
scripting language it is not as powerful as a full programming language. How-
ever, the easy inclusion of Java allows for any programs to be implemented in
JIAC V.

1(g) The scripting part of the language is rather static. However, due to the
inclusion of OWL, the knowledge description part of the language is freely
extensible (as long as the ontologies are OWL-lite conform). Furthermore, the
language can be expanded by arbitrary services, which by means of the agent
architecture can be implemented with multiple technologies.

1(h) So far, verification was out of scope.
1(i) As the language uses OWL for knowledge representation, all features of

OWL are also useable within JADL++. Furthermore, JADL++ supports mod-
ularity with its concept of service invocations.

1(j).i The language uses OWL for knowledge representation and allows the in-
vocation of actions and services that are implemented in arbitrary languages
via an abstract description.

1(j).ii Due to the invocation mechanism that allows actions and services to be
implemented in any language, Yadl has a clearly defined interface to other lan-
guages. Moreover, as JIAC V is implemented completely in Java, thus Java-
Methods can easily be used as actions in Yadl and vice versa.

2(a).i Currently, JIAC V is supported by a programmers guide, an extensive
maven site documentation for developers, a tutorial document and a list of
small examples that display certain features.

2(a).ii JIAC V is implemented with Java 1.6, using a list of openly available
libraries such as the Spring-framework and ActiveMQ. Thus we are able to
provide a complete release than can be run with any installation of Java 1.6.

2(b) While the platform adheres to the FIPA life cycle management, it currently
does not natively support any other FIPA standards.

2(c) Currently, licensing issues about JIAC V have not been fixed. However,
collaboration on development can be discussed on request.

2(d).i JIAC V currently features an interaction monitor for monitoring and
demonstrations, a standard conform JMX interface for management (that can
be used with e.g. JConsole). Logging is handled via the commons-logging api,
for which free tools are publicly available. We are currently working on an in-
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vocation monitor for services and service chains. Future plans include a JADL
++-debugger as well as a tailored management tool for the management api.

2(d).ii Currently the JIAC V documentation consists of a short tutorial, a list of
example applications and a maven-site documentation for developers. Detailed
documentation about the architecture is currently in the works.

2(d).iii As the architecture is based on Java, we recommend to use Eclipse to
programm java-based components for JIAC V. As for JADL++, we have not
yet implemented any tool support, though it is possible to use the VSDT tool
to design workflows. We plan to provide an extended Eclipse plug-in for the
scripting part. The OWL part is well covered with Protégé. To support con-
figuration and deployment of multi agent systems in JIAC V, we are currently
adapting the JIAC IV agent role editor.

2(e) JIAV V supports and provides webservices, and has connectors for UPnP
services. Each node provides a webserver which can be used to easily deploy
JSPs and therby provide user interfaces for the agents. The communication
technology is based on JMS, and it comes with an extensive management inter-
face that is based on JMX.

2(f) With the basic JIAC V platform, any system that has Java 1.6 installed can
run it. However, certain extensions, e.g. webservice or IMS-support may have
additional requirements.

2(g).i Currently we are able to run about 10000 Agents on a standard work-
place machine without notable performance issues. However, this is of course
subjects to the individual agents workload.

2(g).ii The core of JIAC V is stable, though not yet publicly released. The BDI-
extension and the service-matcher are currently in the prototyping phase. Fur-
ther extensions are in development with varying degrees of completion.

2(h).i The platform supports three different scalability levels for agents (with
the highest level open to extensions). Furthermore, agents have a well de-
fined interface for interaction with other software systems, including agent-
and SOA-platforms.

2(h).ii The platform provides methods of group communication which can be
used to create groups. It does not however support hierarchical groups. Each
platform consists of any number of nodes, each of which controls agents on
them. It therefore provides distributed control of agents.

2(h).iii We are currently in the process of providing libraries for different ap-
plications, such as a webserver, usermanagement and an integration to the IP-
Multimedia-Subsystem(IMS).

3(a) JIAC V has been used as a service execution environment within the con-
text of a german funded research project. It is currently used in a number of
further projects ranging from simulation, and service execution, to energy con-
trol and home automation.

3(b) While the platform is domain agnostic it is tilted towards service oriented
structures and telecommunication environments in that it provides services to
deal with IMS and other telecommunication technologies. Its extensive man-
agement interface allows the use in industrial applications.
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A.7 Agent Factory

1(a) The language supports mental attitudes and specifically beliefs and com-
mitments. Reactive behaviour is encoded imperatively in Java.

1(b) The language supports speech act based primitives for communication.
Wildcard pattern matching is used to broadcast messages to multiple agents,
for example a message sent to Ja* would be received by Jack and Jay, but not
Frank.

1(c) Support is provided for the construction of mobile agents. Truly strong
migration is not possible in Java. With Agent Factory, the agents’ mental state
and code are transferred. With AFME, only the mental state is transferred.

1(d) The language is easy to understand for someone who has experience of
declarative/logic programming.

1(e) The language has clear and precise semantics. The original language was for-
malised in Collier’s thesis [10]. Work is underway on formalising more recent
enhancements/alterations.

1(f) The language is intended for the construction of a variety of agent pro-
grams.

1(g) The language enables the reuse of agent designs through roles, but does not
enable the definition of new language components.

1(h) At present a clear path to formal verification is not provided.
1(i) Software Engineering principles have been considered in the design of the

language.
1(j).i The language is integrated with Java and was previously integrated with

Smalltalk-80.
1(j).ii The language allows the invocation of methods written in classical lan-

guages.
2(a).i Detailed instructions on how to install and use the framework (including

Javadoc) are available from http://www.agentfactory.com.
2(a).ii In its current form, the framework requires either Java Standard Edition

or Java Micro Edition to execute.
2(b) The general architecture of the framework is consistent with the FIPA spec-

ifications. Agent Factory provides FIPA compliant communication through a
message transport service. With AFME, FIPA communication is facilitated
through a combination of a TCP (binary) message transport service and a
“translator message server” that operates on a desktop machine. Support is
also provided for yellow and white page services.

2(c) The platform can be extended with additional functionality through open
source collaboration.

2(d).i An agent mental state debugger is provided along with a logger.
2(d).ii Extensive documentation including Javadoc is available from agentfac-

tory.com.
2(d).iii A Netbeans IDE plugin is provided.
2(e) Existing applications have been integrated with JSP, Java Servlets, and

Struts.
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2(f) An application running the platform would require Java.
2(g).i Agent Factory is quite an efficient and practical system and is capable of

executing a large number of agents subject to the number of commitment rules
the agents have and the hardware on which they are operating.

2(g).ii The platform is a stable open source distribution.
2(h).i The platform supports open multi-agent systems and heterogeneous

agents.
2(h).ii The structure of the agent community is dependent on the design of the

individual agents that form the community. As such, centralised, hierarchical,
or distributed control can be catered for.

2(h).iii The platform does not provide libraries of interaction protocols. Agent
templates are supported and reuse is facilitated through the use of roles.

3(a) The platform has been used for the development of applications in several
disparate domains, including E-Commerce [26], Ubiquitous Computing [36],
Mobile Computing [38], Robotics [19], Wireless Sensor Networks [37], and
Mixed Reality [17].

3(b) The platform does not target a specific domain.
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